WorldWideScience

Sample records for assurance project plan

  1. Project Specific Quality Assurance Plan

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan (QAPP) identifies the Westinghouse Hanford Co. (WHC) Quality Assurance (QA) program requirements for all contractors involved in the planning and execution of the design, construction, testing and inspection of the 200 Area Effluent BAT/AKART Implementation, Project W-291

  2. Project Specific Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K.S.

    1995-09-27

    This Quality Assurance Project Plan (QAPP) identifies the Westinghouse Hanford Co. (WHC) Quality Assurance (QA) program requirements for all contractors involved in the planning and execution of the design, construction, testing and inspection of the 200 Area Effluent BAT/AKART Implementation, Project W-291.

  3. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  4. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  5. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  6. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  7. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  8. Near-facility environmental monitoring quality assurance project plan

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site

  9. ERD UMTRA Project quality assurance program plan, Revision 7

    International Nuclear Information System (INIS)

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors

  10. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    International Nuclear Information System (INIS)

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  11. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  12. Quality assurance program plan for SNF characterization support project

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Spent Nuclear Fuel Characterization Support Project. This QAPP has been developed specifically for the Spent Nuclear Fuel Characterization Support Project, per Letter of Instruction (LOI) from Duke Engineering and Services Company, letter No. DESH-9655870, dated Nov. 22, 1996. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP) and LOI. These activities include installation of sectioning equipment and furnace, surface and subsurface examinations, sectioning for metallography, and element drying and conditioning testing, as well as project related operations within the 327 facility as it relates to the specific activities of this project. General facility activities are covered in other appropriate QA-PPS. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping,1261 and HSRCM-1, Hanford Site Radiological Control Manual. The 327 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a Babcock and Wilcox Hanford Company (BVMC) managed facility. During this transition process existing procedures and documents will be utilized until replaced by BVMC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to IO CFR 830.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be utilized in support of this project and the subject organizations are

  13. Quality assurance program plan for cesium legacy project

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Cesium Legacy Project. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of cask transportation, project related operations within the 324 Building, and waste management as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations, Central Waste Complex Operations, etc.) are covered in other appropriate QAPPs. The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents

  14. UMTRA Project Office quality assurance program plan. Revision 6

    International Nuclear Information System (INIS)

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors

  15. Near-Facility Environmental Monitoring Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards

  16. PREPARING PERFECT PROJECT PLANS: A POCKET GUIDE FOR THE PREPARATION OF QUALITY ASSURANCE PROJECT PLANS

    Science.gov (United States)

    This Pocket Guide helps you prepare Quality Assurance (QA) Project Plans thoroughly and easily. he Risk Reduction Engineering Laboratory (RREL) utilizes a four-tiered project category approach in order to more effectively focus QA with respect to the intended use of the data and ...

  17. UMTRA project technical assistance contractor quality assurance implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP) (DOE, 1993a), which was developed using US Department of Energy (DOE) Order 5700.6C quality assurance (QA) criteria. The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. All QA issues in the QAIP shall comply with requirements contained in the TAC QAPP (DOE, 1933a). Because industry standards for data acquisition and data control are not addressed in DOE Order 5700.6C, the QAIP has been formatted to the 14 US Environmental Protection Agency (EPA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) QA requirements. DOE Order 5700.6C criteria that are not contained in the CERCLA requirements are added to the QAIP as additional requirements in Sections 15.0 through 18.0. Project documents that contain CERCLA requirements and 5700.6 criteria shall be referenced in this document to avoid duplication. Referenced documents are not included in this QAIP but are available through the UMTRA Project Document Control Center.

  18. Large hadron collider (LHC) project quality assurance plan

    International Nuclear Information System (INIS)

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4)

  19. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  20. NIF Project Quality Assurance Program Plan Revision E

    Energy Technology Data Exchange (ETDEWEB)

    Dun, C; Brereton, S; Yatabe, J; Moses, E I

    2001-06-01

    The National Ignition Facility (NIF) is a key constituent of the Department Energy's (DOE's) Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets and will perform weapons physics, weapons effects, and high-energy-density experiments in support of national security and civilian objectives. The primary mission of the NIF Project is the design and construction of the facility and equipment, acceptance testing, and activation. To accomplish this mission, the LLNL Director created the NIF Programs Directorate, and within that Directorate, the NIF Project Office to organize and manage the Project. The NIF Project Office establishes this QA Program to ensure its success. This QA Program Plan (QAPP) defines and describes the program--the management system--for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of LLNL and the NIF Programs Directorate.

  1. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, 'Quality Assurance Requirements', ANSI/ASQC E4-2004, 'Quality Systems for Environmental Data and Technology Programs - Requirements with Guidance for Use', and ISO 14001-2004, 'Environmental Management Systems', have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, 'Quality Assurance Program', identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, 'QA Program Implementation', identifies the TAC organizations that have responsibility for implementing the QA

  2. Quality Assurance program plan - plutonium stabilization and handling project W-460

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) identifies Project Quality Assurance (QA) program requirements for all parties participating in the design, procurement, demolition, construction, installation, inspection and testing for Project W-460

  3. 242-A evaporator quality assurance project plan: Revision 1

    International Nuclear Information System (INIS)

    The scope of this quality assurance project plan (Plan) is sampling and analytical services including, but not limited to, sample receipt, handling and storage, analytical measurements, submittal of data deliverables, archiving selected portions of samples, returning unneeded sample material to Westinghouse Hanford Company (WHC), and/or sample disposal associated with candidate feed samples and process condensate compliance samples. Sampling and shipping activities are also included within the scope. The purpose of this project is to provide planning, implementation, and assessment guidance for achieving established data quality objectives measurement parameters. This Plan requires onsite and offsite laboratories to conform to that guidance. Laboratory conformance will help ensure that quality data are being generated and therefore, that the 242-A evaporator is operating in a safe and compliant manner. The 242-A evaporator feed stream originates from double-shell tanks (DSTs) identified as candidate feed tanks. The 242-A evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending it to the Liquid Effluent Retention Facility (LERF) storage basin before further treatment. The slurry product is returned to DSTs. Evaporation results in considerable savings by reducing the volume of mixed waste for disposal

  4. 242-A evaporator quality assurance project plan: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, B.J.

    1994-11-04

    The scope of this quality assurance project plan (Plan) is sampling and analytical services including, but not limited to, sample receipt, handling and storage, analytical measurements, submittal of data deliverables, archiving selected portions of samples, returning unneeded sample material to Westinghouse Hanford Company (WHC), and/or sample disposal associated with candidate feed samples and process condensate compliance samples. Sampling and shipping activities are also included within the scope. The purpose of this project is to provide planning, implementation, and assessment guidance for achieving established data quality objectives measurement parameters. This Plan requires onsite and offsite laboratories to conform to that guidance. Laboratory conformance will help ensure that quality data are being generated and therefore, that the 242-A evaporator is operating in a safe and compliant manner. The 242-A evaporator feed stream originates from double-shell tanks (DSTs) identified as candidate feed tanks. The 242-A evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending it to the Liquid Effluent Retention Facility (LERF) storage basin before further treatment. The slurry product is returned to DSTs. Evaporation results in considerable savings by reducing the volume of mixed waste for disposal.

  5. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  6. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  7. Effluent monitoring Quality Assurance Project Plan for radioactive airborne emissions data. Revision 2

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling Hanford Site radioactive airborne emissions data. These data will be reported to the U.S. Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Effluent Monitoring performs compliance assessments on radioactive airborne sampling and monitoring systems. This Quality Assurance Project Plan is prepared in compliance with interim guidelines and specifications. Topics include: project description; project organization and management; quality assurance objectives; sampling procedures; sample custody; calibration procedures; analytical procedures; monitoring and reporting criteria; data reduction, verification, and reporting; internal quality control; performance and system audits; corrective actions; and quality assurance reports

  8. Final Hanford Site Transuranic (TRU) Waste Characterization Qualit Assurance Project Plan

    International Nuclear Information System (INIS)

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP)

  9. Tank waste remediation system privatization phase I infrastructure, project W-519, Quality Assurance implementation plan

    International Nuclear Information System (INIS)

    This document has been prepared to identify the quality requirements for all products/activities developed by or for Project W-519. This plan is responsive to the Numatec Hanford Corporation, Quality Assurance Program Plan, NHC-MP-001

  10. Up-Stream Dissolved Oxygen TMDL Project Quality Assurance ProjectPlan

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.

    2005-05-13

    A quality assurance project plan (QAPP) for the execution of an ecosystem level monitoring and research program examining algal ecology in highly impaired rivers. Procedures for executing both field and laboratory surface water quality and flow analysis are described. The procedures described here are compatible with the California Surface Water Ambient Monitoring program (SWAMP).

  11. Up-Stream Dissolved Oxygen TMDL Project Quality Assurance Project Plan

    OpenAIRE

    Stringfellow, William T.

    2005-01-01

    A quality assurance project plan (QAPP) for the execution of an ecosystem level monitoring and research program examining algal ecology in highly impaired rivers. Procedures for executing both field and laboratory surface water quality and flow analysis are described. The procedures described here are compatible with the California Surface Water Ambient Monitoring program (SWAMP).

  12. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  13. Project Specific Quality Assurance Plan Project (QAPP) W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) provides information on how the Project Hanford Quality Assurance Program is implemented by CH2M HILL Hanford Group Inc (CHG) for managing the Initial Tank Retrieval Systems (ITRS), Project W-211. This QAPP is responsive to the CHG Quality Assurance Program Description (QAPD) (LMH-MP-599) which provides direction for compliance to 10 CFR 830 120, ''Nuclear Safety Management, Quality Assurance Requirements'', and DOE Order 5700 6C, ''Quality Assurance'' Project W-211 modifies existing facilities and provides systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. This project includes the design, procurement, construction, startup and turnover of these retrieval systems This QAPP identifies organizational structures and responsibilities. Implementing procedures used by CHG project management can be found in the CHG Quality Assurance Program (CHG QAP) Implementation Matrix located in HNF-IP-0842, Volume XI, Attachment Proposed verification and inspection activities for critical items within the scope of project W-211 are identified in Attachment 1 W-211. Project participants will identify the implementing procedures used by their organization within their QAF'Ps. This project specific QAPP is used to identify requirements in addition to the QAPD and provide, by reference, additional information to other project documents

  14. Gulf of Mexico dissolved oxygen model (GoMDOM) research and quality assurance project plan

    Science.gov (United States)

    An integrated high resolution mathematical modeling framework is being developed that will link hydrodynamic, atmospheric, and water quality models for the northern Gulf of Mexico. This Research and Quality Assurance Project Plan primarily focuses on the deterministic Gulf of Me...

  15. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  16. Quality assurance project plan for ground water monitoring activities managed by Westinghouse Hanford Company. Revision 3

    International Nuclear Information System (INIS)

    This quality assurance project plan (QAPP) applies specifically to the field activities and laboratory analysis performed for all RCRA groundwater projects conducted by Hanford Technical Services. This QAPP is generic in approach and shall be implemented in conjunction with the specific requirements of individual groundwater monitoring plans

  17. Project specific quality assurance plan for Project W-178, 219-S secondary containment

    International Nuclear Information System (INIS)

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design, procurement and construction of the 219-S Secondary Containment Upgrade. The reviews and verifications will be on activities associated with design, procurement, and construction of the Secondary Containment Upgrade which includes, but is not limited to demolition, removal, new tank installation, tank 103 isolation, tank cell refurbishment, electrical, instrumentation, piping/tubing including supports, pump and valves, and special coatings. The full project scope is defined in the project Functional Design Criteria (FDC), SD-W178-FDC-001, and all activities must be in compliance with this FDC and related design documentation

  18. Quality Assurance Program Plan for Project W-379: Spent Nuclear Fuels Canister Storage Building Projec

    International Nuclear Information System (INIS)

    This document describes the Quality Assurance Program Plan (QAPP) for the Spent Nuclear Fuels (SNF) Canister Storage Building (CSB) Project. The purpose of this QAPP is to control project activities ensuring achievement of the project mission in a safe, consistent and reliable manner

  19. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    International Nuclear Information System (INIS)

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  20. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  1. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  2. PREPARATION AIDS FOR THE DEVELOPMENT OF CATEGORY I QUALITY ASSURANCE PROJECT PLANS

    Science.gov (United States)

    Data collection activities performed for the Risk Reduction Engineering aboratory (RREL) of the U.S. Environmental Protection Agency are divided into tour categories, depending on the intended use of the data. uality Assurance (QA) Project Plans are written to ensure that project...

  3. PREPARATION AIDS FOR THE DEVELOPMENT OF CATEGORY II QUALITY ASSURANCE PROJECT PLANS

    Science.gov (United States)

    Data collection activities performed for the Risk Reduction Engineering aboratory (RREL) of the U.S. Environmental Protection Agency are divided into tour categories, depending on the intended use of the data. uality Assurance (QA) Project Plans are written to ensure that project...

  4. Quality assurance program plan for 324 Building B-Cell safety cleanout project (BCCP)

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP-1131, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996. This QAPP has been developed specifically for the BCCP. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of decontaminating B-Cell and project related operations within the 324 Building as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations) are covered in the Building 324 QAPP. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping, and HSRCM-1, Hanford Site Radiological Control Manual, The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing, PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to 10 CFR 83 0.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be

  5. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  6. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    International Nuclear Information System (INIS)

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1

  7. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-03-28

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  8. PREPARATION AIDS FOR THE DEVELOPMENT OF CATEGORY IV QUALITY ASSURANCE PROJECT PLANS

    Science.gov (United States)

    Data collection activities performed for the Risk Reduction Engineering Laboratory (RREL) of the U.S. Environmental Protection Agency are divided into four categories, depending on the intended use of the data. uality Assurance (QA) Project Plans are written to ensure that projec...

  9. PREPARATION AIDS FOR THE DEVELOPMENT OF CATEGORY III QUALITY ASSURANCE PROJECT PLANS

    Science.gov (United States)

    Data collection activities performed for the Risk Reduction Engineering Laboratory (RREL) of the U.S. Environmental Protection Agency are divided into four categories, depending on the intended use of the data. uality Assurance (QA) Project Plans are written to ensure that projec...

  10. Project specific quality assurance plan project W-058 replacement cross-site transfer system

    International Nuclear Information System (INIS)

    This is part of the Tank Waste Projects (TWP) Quality Assurance Program Plan. This document and the Tank Waste Projects QAPP describe the program and the planned actions which WHC will implement, demonstrate and ensure that the project meets the requirements of 10 CFR 830.120. Purpose of Project W058, Replacement Cross-Site Transfer System, is to replace the existing cross-site transfer system for transferring waste (via pipeline) in support of the Hanford Site clean-up mission. The transfers will be made from 200 East and 200 West tank farms to treatment, storage, and disposal facilities in the 200 East Area. The new system will consist of a pipe-in-pipe connecting the 241-SY A and B valve pits in the 200 West Area with the 244-A Lift Station in the 200 East Area. The work to be accomplished by W-058 and covered by this QAPP includes diversion box, vent station, piping, booster pump, backup flush system, power lines

  11. Spent nuclear fuel project quality assurance program plan

    Energy Technology Data Exchange (ETDEWEB)

    Lacey, R.E.

    1997-05-09

    This main body of this document describes how the requirements of 10 CFR 830.120 are met by the Spent Nuclear Fuel Project through implementation of WHC-SP-1131. Appendix A describes how the requirements of DOE/RW-0333P are met by the Spent Nuclear Fuel Project through implementation of specific policies, manuals, and procedures.

  12. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    International Nuclear Information System (INIS)

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste

  13. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  14. Waste Management Project Quality Assurance Program Plan (QAPP)

    International Nuclear Information System (INIS)

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence

  15. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    HORHOTA, M.J.

    2000-12-21

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  16. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2009-04-02

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2 Project. The plan is designed to be used exclusively by project staff.

  17. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  18. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted

  19. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    International Nuclear Information System (INIS)

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements

  20. Remedial investigation quality assurance program plan: Weldon Spring Site Remedial Action Project: Revision 0

    International Nuclear Information System (INIS)

    The Remedial Investigations Quality Assurance Program Plan (RIQAPP) for Weldon Spring Site Remedial Action Project (WSSRAP) is distinguished by purpose from the WSSRAP overall Quality Assurance/Quality Control Program Plan (QAPP). The RIQAPP is focused only on meeting EPA requirements under CERCLA whereas the QAPP is designed to meet quality assurance program requirements for nuclear facilities. The RIQAPP specifically addresses factors, methods and criteria. Specific QC procedures are contained in existing documents incorporated into the plan by reference. These include Standard Operating Procedures, laboratory QA procedures, and activity level sampling plans. The existing procedures provide many of the required QA elements: measurement, sampling, sample and document custody and control, calibration, analysis and data reduction, validation and reporting. Addition QA elements addressed in the RIQAPP include performance and system audits, surveillance, and reporting and correction of deficiencies. System audits, on a regularly scheduled basis, will evaluate all components of measurement systems to determine capability, proper selection and use. Performance audits, on a scheduled basis, will determine adequacy and accuracy of a given measurement system and/or procedural compliance. Surveillance, both scheduled and unscheduled, of field and laboratory activities will be performed to verify conformance to specified requirements. 8 refs., 1 fig., 1 tab

  1. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  2. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

  3. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    International Nuclear Information System (INIS)

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review

  4. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  5. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff

  6. Final Hanford Site Transuranic (TRU) Waste Characterization Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP

  7. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field- investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans

  8. Quality assurance program plan for the Radiological Survey Activities Program - Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  9. Performance assurance program plan

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, B.H.

    1997-11-06

    B and W Protec, Inc. (BWP) is responsible for implementing the Performance Assurance Program for the Project Hanford Management Contract (PHMC) in accordance with DOE Order 470.1, Safeguards and Security Program (DOE 1995a). The Performance Assurance Program applies to safeguards and security (SAS) systems and their essential components (equipment, hardware, administrative procedures, Protective Force personnel, and other personnel) in direct support of Category I and H special nuclear material (SNM) protection. Performance assurance includes several Hanford Site activities that conduct performance, acceptance, operability, effectiveness, and validation tests. These activities encompass areas of training, exercises, quality assurance, conduct of operations, total quality management, self assessment, classified matter protection and control, emergency preparedness, and corrective actions tracking and trending. The objective of the Performance Assurance Program is to capture the critical data of the tests, training, etc., in a cost-effective, manageable program that reflects the overall effectiveness of the program while minimizing operational impacts. To aid in achieving this objective, BWP will coordinate the Performance Assurance Program for Fluor Daniel Hanford, Inc. (FDH) and serve as the central point for data collection.

  10. QUASIMODO: An ESTRO project for performing quality assurance of treatment planning systems and IMRT

    International Nuclear Information System (INIS)

    A computerised treatment planning system, TPS, is an essential tool in the design of a radiotherapeutic treatment of a cancer patient. Presently there exists only limited information on how to perform quality assurance, QA, of a TPS in a systematic and efficient way. Particularly with respect to the 3D aspects of planning systems, there are no clear guidelines which specific tests should be performed before implementing a 3D TPS in clinical use. For that reason it was decided that ESTRO would start some activities in the field of QA of a TPS. It was decided, that ESTRO would concentrate on those activities not yet covered by other reports. These activities concern mainly two aspects. First there is a need for a minimum number of tests to be performed in those institutions that have only limited resources. These tests should be not too cumbersome to perform and cover the most essential parts of a TPS required for accurately planning of established conformal radiotherapy techniques. Recently a rapidly increasing number of institutions started with the clinical introduction of a new form of conformal radiotherapy, the so-called intensity-modulated radiotherapy, IMRT. By varying the beam intensity over a treatment field it is possible to deliver the radiation dose more conform to irregularly shaped target volumes. In this way it is possible to deliver a higher dose to the tumour while at the same time reducing the volume of surrounding healthy tissues For the QA of these advanced techniques, tests are in progress in individual institutions but no guidelines are yet formulated. It is the second aim of this project to design tests and to provide guidelines for the verification of IMRT

  11. Quality assurance plan for the molten salt reactor experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by Molten Salt Reactor Experiment (MSRE) Remediation Project personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description, Y/QD-15 Rev. 2 (Martin Marietta Energy Systems, Inc., 1995) and Environmental Management and Enrichment Facilities Work Smart Standards. This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRE Remediation Project. This QAP will be periodically reviewed, revised, and approved as necessary. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan

  12. Quality-Assurance Program Plan

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) is provided to describe the Quality Assurance Program which is applied to the waste management activities conducted by AESD-Nevada Operations at the E-MAD Facility located in Area 25 of the Nevada Test Site. The AESD-Nevada Operations QAPP provides the necessary systematic and administrative controls to assure activities that affect quality, safety, reliability, and maintainability during design, procurement, fabrication, inspection, shipments, tests, and storage are conducted in accordance with established requirements

  13. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order; TOPICAL

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system

  14. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    Lawrence Berkeley Laboratory's Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department's activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A

  15. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    International Nuclear Information System (INIS)

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements

  16. Environmental Management Department Quality Assurance Project Plan for Radionuclide Emission Measurements Project for compliance with National Emission Standards for Hazardous Air Pollutants (NESHAP)

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan (QAPP) satisfies the quality assurance (QA) requirements in 40 CFR Part 61, Method 114, for ensuring that the radionuclide air emission measurements from the Y-12 Plant are representative; of a known precision and accuracy; and include administrative controls to ensure prompt response when emission measurements indicate an increase over normal radionuclide emissions. The QAPP ensures the quality of the Y-12 Plant radionuclide emission measurements data from the continuous samplers, breakthrough monitors, and minor radionuclide release points. The plan specifies the procedures for the management of the activities affecting the quality of the data for the Y-12 Plant Environmental Management Department (EMD) within the Health, Safety, Environment, and Accountability Division (HSEA)

  17. Quality assurance plan for Final Waste Forms project in support of the development, demonstration, testing and evaluation efforts associated with the Oak Ridge reservation's LDR/FFCA compliance

    International Nuclear Information System (INIS)

    This quality assurance project plan specifies the data quality objectives for Phase I of the Final Waste Forms Project and defines specific measurements and processes required to achieve those objectives. Although the project is funded by the U.S. Department of Energy (DOE), the ultimate recipient of the results is the U.S. Environmental Protection Agency (EPA). Consequently, relevant quality assurance requirements from both organizations must be met. DOE emphasizes administrative structure to ensure quality; EPA's primary focus is the reproducibility of the generated data. The ten criteria of DOE Order 5700.6C are addressed in sections of this report, while the format used is that prescribed by EPA for quality assurance project plans

  18. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs

  19. Waste Characterization Plan for the Hanford Site single-shell tanks. Appendix D, Quality Assurance Project Plan for characterization of single-shell tanks: Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J.G.; Winters, W.I.; Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States); Buck, J.W.; Chamberlain, P.J.; Hunter, V.L. [Pacific Northwest Lab., Richland, WA (United States)

    1991-09-01

    This section of the single-shell tank (SST) Waste Characterization Plan describes the quality control (QC) and quality assurance (QA) procedures and information used to support data that is collected in the characterization of SST wastes. The section addresses many of the same topics discussed in laboratory QA project plans (QAPjP) (WHC 1989, PNL 1989) and is responsive to the requirements of QA program plans (QAPP) (WHC 1990) associated with the characterization of the waste in the SSTs. The level of QC for the project depends on how the data is used. Data quality objectives (DQOs) are being developed to support decisions made using this data. It must be recognized that the decisions and information related to this part of the SST program deal with the materials contained within the tank only and not what may be in the environment/area surrounding the tanks. The information derived from this activity will be used to determine what risks may be incurred by the environment but are not used to define what actual constituents are contained within the soil surrounding the tanks. The phases defined within the DQOs on this Waste Characterization Plan follow the general guidance of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) yet are pertinent to analysis of the contents of the tanks and not the environment.

  20. Hanford Tanks Initiative quality assurance implementation plan

    International Nuclear Information System (INIS)

    Hanford Tanks Initiative (HTI) Quality Assurance Implementation Plan for Nuclear Facilities defines the controls for the products and activities developed by HTI. Project Hanford Management Contract (PHMC) Quality Assurance Program Description (QAPD)(HNF-PRO599) is the document that defines the quality requirements for Nuclear Facilities. The QAPD provides direction for compliance to 10 CFR 830.120 Nuclear Safety Management, Quality Assurance Requirements. Hanford Tanks Initiative (HTI) is a five-year activity resulting from the technical and financial partnership of the US Department of Energy's Office of Waste Management (EM-30), and Office of Science and Technology Development (EM-50). HTI will develop and demonstrate technologies and processes for characterization and retrieval of single shell tank waste. Activities and products associated with HTI consist of engineering, construction, procurement, closure, retrieval, characterization, and safety and licensing

  1. Quality assurance project plan for the Chestnut Ridge Fly Ash Pond Stabilization Project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The Chestnut Ridge Fly Ash Pond Stabilization (CRFAPS) Project will stabilize a 19-m-high (62-ft-high) earthen embankment across Upper McCoy Branch situated along the southern slope of Chestnut Ridge. This task will be accomplished by raising the crest of the embankment, reinforcing the face of the embankment, removing trees from the face and top of the embankment, and repairing the emergency spillway. The primary responsibilities of the team members are: Lockheed Martin Energy Systems, Inc., (Energy Systems) will be responsible for project integration, technical support, Title 3 field support, environmental oversight, and quality assurance (QA) oversight of the project; Foster Wheeler Environmental Corporation (FWENC) will be responsible for design and home office Title 3 support; MK-Ferguson of Oak Ridge Company (MK-F) will be responsible for health and safety, construction, and procurement of construction materials. Each of the team members has a QA program approved by the US Department of Energy (DOE) Oak Ridge Operations. This project-specific QA project plan (QAPP), which is applicable to all project activities, identifies and integrates the specific QA requirements from the participant's QA programs that are necessary for this project

  2. Process chemistry {ampersand} statistics quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Meznarich, H.K.

    1996-08-01

    This document provides quality assurance guidelines and quality control requirements for Process Chemistry and Statistics. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing process chemistry activities.

  3. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization Project: Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Studies continued on organic tracers for use as hydrologic tracers as part of the Yucca Mountain Site Characterization project. This subject report for the quarter 01/01/93 through 03/31/93 discusses the following issues: project organization and responsibilities; quality assurance program; design control; procurement document control; instructions, procedures, and drawings; document control; control of purchased items and services; identification and control of items; control of processes; inspection; test control; control of measuring and test equipment; handling, storage, and shipping; inspection, test, and operating status; control of nonconforming items and conditions; corrective action; quality assurance records; audits; software quality assurance; and scientific investigation

  4. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project

  5. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  6. AVLIS Production Plant Preliminary Quality Assurance Plan and Assessment

    International Nuclear Information System (INIS)

    This preliminary Quality Assurance Plan and Assessment establishes the Quality Assurance requirements for the AVLIS Production Plant Project. The Quality Assurance Plan defines the management approach, organization, interfaces, and controls that will be used in order to provide adequate confidence that the AVLIS Production Plant design, procurement, construction, fabrication, installation, start-up, and operation are accomplished within established goals and objectives. The Quality Assurance Program defined in this document includes a system for assessing those elements of the project whose failure would have a significant impact on safety, environment, schedule, cost, or overall plant objectives. As elements of the project are assessed, classifications are provided to establish and assure that special actions are defined which will eliminate or reduce the probability of occurrence or control the consequences of failure. 8 figures, 18 tables

  7. Research and development quality assurance planning

    International Nuclear Information System (INIS)

    Planning for quality assurance (QA) in research and development (R ampersand D) is like stealing eggs without waking up the chickens. The QA program should be as unobtrusive as possible. Researchers require a QA program that affords them an environment capable of supporting repeatable experiments with accurate data without unduly stifling their creative abilities. Careful advance planning ensures that the intensity of control provided by quality-related systems is commensurate with the importance and scope of the activities being performed. Good scientific practices applied to small bench-scale projects may require minimal additional controls. As projects increase in size and complexity the controls imposed through planning must, by necessity, be increased. Research and development QA planning, just like any other planning, involves all affected individuals. The application of control systems is determined by factors such as customer or sponsor requirements, the importance of an item or activity to the experiment's success, and the organizational complexity of the project. Many larger experiments are highly dependent on quality-related support activities such as calibration, engineering design, and inspection provided by organizations outside the R ampersand D group. Since, in most cases, the expense of support activities is taken directly from funds available for research, it is important for the researchers to be involved in the planning efforts to help determine and agree with the level of QA effort required. A single plan will often suffice for organizations engaged in large numbers of similar experiments. Complex experiments may require unique QA plans or additions to existing plans. Once implemented, the R ampersand D QA plans, like any others, require audits or surveillances and may require revisions if the scope of the experiment changes. 1 ref., 1 fig

  8. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence

  9. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.

  10. 222-S Laboratory Quality Assurance Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Meznarich, H.K.

    1995-07-31

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.

  11. 222-S Laboratory Quality Assurance Plan. Revision 1

    International Nuclear Information System (INIS)

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document

  12. Quality assurance project plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    This quality assurance project plan defines project organization and roles of responsibility, sampling and field procedures, sample documentation and chain-of-custody protocols, equipment calibration, analytical procedures, data reduction and validation, and internal quality control procedures for the former YS-860 Firing Ranges removal action at the Oak Ridge Y-12 Plant. The ENTECH Team will maintain the highest standards to ensure strict compliance with this plan. Implementation of this plan will include consideration of the technical, as well as administrative, aspects of activities affecting quality. Plan implementation is based on the premise that quality controls selected for each element of work are consistent with the risk, importance, and health and safety considerations of performing the work. The purpose of this removal action is to address lead-contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within the watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of two small arms firing ranges. This plan covers the removal action at the former YS-86O Firing Ranges. These actions involve the excavation of lead-contaminated soils, the removal of the concrete trench and macadam (asphalt) paths, verification sampling, grading, and revegetation

  13. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    International Nuclear Information System (INIS)

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S ampersand A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S ampersand A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI

  14. SWiFT Software Quality Assurance Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  15. 48 CFR 37.604 - Quality assurance surveillance plans.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Quality assurance... assurance surveillance plans. Requirements for quality assurance and quality assurance surveillance plans are in Subpart 46.4. The Government may either prepare the quality assurance surveillance plan...

  16. The role of gap analyses in energy assurance planning.

    Science.gov (United States)

    Shea, Katherine

    2013-01-01

    Energy-related emergencies, such as power outages or interruptions to other energy supplies, can arise from a number of factors. Common causes include severe weather events--such as snowstorms, hurricanes, or summer storms with strong winds--as well as energy infrastructure that is overburdened, aging, or in need of repair. As past experience indicates, jurisdictions will continue to experience severe weather events, as well as confront infrastructure issues that make future power outages likely. As a result, state and local governments have turned to energy assurance planning, an energy-specific form of planning that helps jurisdictions prepare for and recover from energy emergencies. Energy assurance recognizes that power loss/disruption cannot be eradicated completely, but jurisdictions can mitigate the impact of power loss through effective planning. This article discusses the role of energy assurance planning and provides a description of what energy assurance means and why developing such plans at the state and local levels is important. In addition, this article discusses the role of statutory gap analyses in energy assurance planning and discusses how a gap analysis can be used by planners to identify trends and gaps in energy assurance. To provide context, a recently conducted statutory gap analysis analyzing national emergency backup power trends is provided as a case study. A summary of this project and key findings is included. Finally, this article briefly touches on legislation as an alternative to energy assurance planning, and provides summaries of recent legislative proposals introduced in the aftermath of Hurricane Sandy. PMID:24180061

  17. Work plan, health and safety plan, and quality assurance project plan for hazardous waste removal at the CTF K-1654B underground collection tank

    Energy Technology Data Exchange (ETDEWEB)

    Panter, M.S.; Burman, S.N.; Landguth, D.C.; Uziel, M.S.

    1991-10-01

    The Central Training Facility (CTF), located on Bear Creek Road approximately two miles south of the K-25 Site, is utilized for training security personnel at Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee. At the request of the CTF staff, this plan has been developed for the removal of the waste contents in the facility's 500-gal septic tank and associated distribution box. The septic tank and distribution box were historically located beneath the K-1654B trailer and adjacent to the K-1654A Indoor Firing Range. Recently, however, the K-1654B trailer was removed to accommodate the objectives of this work plan as well as future construction activities planned at CTF. The purpose of this plan is to develop and assign responsibilities, establish personnel protection requirements and mandatory safety procedures, and provide for contingencies that may arise while operations are being conducted by ORNL/MAD at the CTF K-1654B underground collection tank site. This document addresses requirements of 29 CFR 1910.120, Final Rule, with respect to aspects of health and safety applicable to an underground collection tank waste removal.

  18. Transuranic Waste Characterization Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes

  19. MCNP trademark Software Quality Assurance plan

    International Nuclear Information System (INIS)

    MCNP is a computer code that models the interaction of radiation with matter. MCNP is developed and maintained by the Transport Methods Group (XTM) of the Los Alamos National Laboratory (LANL). This plan describes the Software Quality Assurance (SQA) program applied to the code. The SQA program is consistent with the requirements of IEEE-730.1 and the guiding principles of ISO 900

  20. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization project: Quality Assurance Project Plan, Revision 1

    International Nuclear Information System (INIS)

    The purpose of this work is to identify and characterize candidate conservative organic tracers for use as hydrologic tracers for experiments to be conducted at the Yucca Mountain C-well complex. During this quarter the main effort was directed towards rewriting the quality assurance program in preparation for a review and audit by the USGS. However, due to budget constraints the review and audit were not carried out. The tracer QA plan and standard operating procedures (SOPs) were revised and copies are included in the report. Instrumental problems were encountered and corrected with the addition of new integration and sample control software. In the sampling, there was an unexplained peak in the chromatograms of the tracers being tested in the light tuff. This was not correctable and these experiments will be repeated in the next quarter

  1. Causal Models for Safety Assurance Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fulfillment of NASA's System-Wide Safety and Assurance Technology (SSAT) project at NASA requires leveraging vast amounts of data into actionable knowledge. Models...

  2. Mixed Waste Integrated Program Quality Assurance requirements plan

    International Nuclear Information System (INIS)

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities

  3. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  4. Revision of Krsko NPP Quality Assurance Plan

    International Nuclear Information System (INIS)

    International standards from nuclear power plant operation area are being frequently upgraded and revised in accordance with the continuous improvement philosophy. This philosophy applies also to the area of Quality Assurance, which has also undergone significant improvement since the early 1950s. Besides just nuclear industry, there are also other international quality standards that are being continuously developed and revised, bringing needs for upgrades also in the nuclear application. Since the beginning of Krsko NPP construction, the overall Quality Assurance program and its applicable procedures were in place to assure that all planned and systematic actions necessary to provide adequate confidence that an item or service will satisfy given requirements to quality, are in place. The overall requirements for quality as one of the major objectives for Krsko NPP operation are also set forth in the Updated Safety Analyses Report, the document that serves as a base for operating license. During more than 30 years of Krsko NPP operation, the quality requirements and related documents were revised and upgraded in several attempts. The latest revision 6 of QD-1, Quality Assurance Plan was issued during the year 2011. The bases for the revision were: Changes of the Slovenian regulatory requirements (ZVISJV, JV5, JV9?), Changes of Krsko NPP licensing documents (USAR section 13?), SNSA inspection requirements, Changes of international standards (IAEA, ISO?), Conclusions of first PSR, Implementation of ISO standards in Krsko NPP (ISO14001, ISO17025), Changes of plant procedures, etc. One of the most obvious changes was the enlargement of the QA Plan scope to cover interdisciplinary areas defined in the plant management program MD-1, such as Safety culture, Self-assessment, Human performance, Industrial Safety etc. The attachment of the QA Plan defining relationships between certain standards was also updated to provide matrix for better correlation of requirements of

  5. Quality Assurance Project Plan: Suitability of Leak Detection Technology for Use In Ethanol-Blended Fuel Service

    Science.gov (United States)

    Oversight of this investigation will be provided by the U.S. Environmental Protection Agency through the Environmental Technology Verification (ETV) Program. This project will be performed by Battelle, which manages the ETV Advanced Monitoring Systems (AMS) Center through a coop...

  6. 222-S laboratory quality assurance plan

    International Nuclear Information System (INIS)

    This document provides quality assurance guidelines and quality control requirements for analytical services. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing 222-S and 222-SA analytical and quality control activities. The 222-S Laboratory provides analytical services to various clients including, but not limited to, waste characterization for the Tank Waste Remediation Systems (TWRS), waste characterization for regulatory waste treatment, storage, and disposal (TSD), regulatory compliance samples, radiation screening, process samples, and TPA samples. A graded approach is applied on the level of sample custody, QC, data verification, and data reporting to meet the specific needs of the client

  7. 222-S laboratory quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Meznarich, H.K.

    1995-04-01

    This document provides quality assurance guidelines and quality control requirements for analytical services. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing 222-S and 222-SA analytical and quality control activities. The 222-S Laboratory provides analytical services to various clients including, but not limited to, waste characterization for the Tank Waste Remediation Systems (TWRS), waste characterization for regulatory waste treatment, storage, and disposal (TSD), regulatory compliance samples, radiation screening, process samples, and TPA samples. A graded approach is applied on the level of sample custody, QC, data verification, and data reporting to meet the specific needs of the client.

  8. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192 ampersand D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for ∼4 years

  9. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  10. UMTRA technical assistance contractor quality assurance program plan

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements

  11. Quality assurance program plan for radionuclide airborne emissions monitoring

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements

  12. 42 CFR 441.474 - Quality assurance and improvement plan.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Quality assurance and improvement plan. 441.474... pursue opportunities for system improvement. (b) The quality assurance and improvement plan shall also... SERVICES Optional Self-Directed Personal Assistance Services Program § 441.474 Quality assurance...

  13. Software quality assurance plan for viscometer

    Energy Technology Data Exchange (ETDEWEB)

    Gimera, M.

    1994-10-18

    The in situ viscometer is a portable instrument designed to raise and lower a sphere (rheometer ball) through layers of tank waste material while recording ball position, velocity, and cable tension. In the field, the viscometer attaches to a decontamination spool piece which in turn is designed to attach to any 4-inch, 150-pound flange (typical of many available tank risers). The motion of the ball and collection of data is controlled by instrumentation and control equipment housed in a separate remote control console. This document covers the product, Viscometer Data Acquisition Software. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain rheology data from Tank SY-101.

  14. Software quality assurance plan for viscometer

    International Nuclear Information System (INIS)

    The in situ viscometer is a portable instrument designed to raise and lower a sphere (rheometer ball) through layers of tank waste material while recording ball position, velocity, and cable tension. In the field, the viscometer attaches to a decontamination spool piece which in turn is designed to attach to any 4-inch, 150-pound flange (typical of many available tank risers). The motion of the ball and collection of data is controlled by instrumentation and control equipment housed in a separate remote control console. This document covers the product, Viscometer Data Acquisition Software. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain rheology data from Tank SY-101

  15. Quality Assurance Program Plan (QAPP) Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD

  16. Quality assurance plan for the Molten Salt Reactor Experiment Remediation Project at the Oak Ridge National Laboratory. Phase 1 -- Interim corrective measures and Phase 2 -- Purge and trap reactive gases

    International Nuclear Information System (INIS)

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by the Molten Salt Reactor Experiment Remediation Project (MSRERP) personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description Y/QD-15 Rev. 2 (Energy Systems 1995f). This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRERP Phase 1--Interim Corrective Measures and Phase 2--Purge and Trap objectives. This QAP will be reviewed, revised, and approved as necessary for Phase 3 and Phase 4 activities. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan

  17. Quality assurance management plan special analytical support

    Energy Technology Data Exchange (ETDEWEB)

    Myers, M.L.

    1997-01-30

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy (DOE), WDOE or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  18. Quality assurance for IAEA inspection planning

    International Nuclear Information System (INIS)

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed

  19. Solid Waste Assurance Program Implementation Plan

    International Nuclear Information System (INIS)

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixed waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities

  20. SAPHIRE 8 Software Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith

    2010-02-01

    This Quality Assurance (QA) Plan documents the QA activities that will be managed by the INL related to JCN N6423. The NRC developed the SAPHIRE computer code for performing probabilistic risk assessments (PRAs) using a personal computer (PC) at the Idaho National Laboratory (INL) under Job Code Number (JCN) L1429. SAPHIRE started out as a feasibility study for a PRA code to be run on a desktop personal PC and evolved through several phases into a state-of-the-art PRA code. The developmental activity of SAPHIRE was the result of two concurrent important events: The tremendous expansion of PC software and hardware capability of the 90s and the onset of a risk-informed regulation era.

  1. Quality Assurance Program Plan for the Environmental Restoration Program

    International Nuclear Information System (INIS)

    The United States Department of Energy (USDOE) has initiated the Environmental Restoration Program (ERP) in an effort to manage, control and remediate existing hazardous, toxic and radioactive wastes generated at the Portsmouth Gaseous Diffusion Plant (PORTS). This ERP Quality Assurance Program Plan (QAPP) is responsive to the PORTS ESH Division QAPP and the ES Environmental Restoration Division (ERD) QAPP. This QAPP establishes the policies, requirements and responsibilities by which an appropriate level of QA shall be implemented within the PORTS-ERP. All PORTS-ERP activities shall be conducted in accordance with the requirements of this document and/or of a project level document which is derivative of this document

  2. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Carl J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  3. Software quality assurance plan for the National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project's controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy's (DOE's) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project

  4. Quality assurance plan, Westinghouse Water Reactor Divisions

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The Quality Assurance Program used by Westinghouse Nuclear Energy Systems Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements.

  5. Westinghouse Water Reactor Divisions quality assurance plan

    International Nuclear Information System (INIS)

    The Quality Assurance Program used by Westinghouse Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements. This program satisfies the NRC Quality Assurance Criteria, 10CFR50 Appendix B, to the extent that these criteria apply to safety related NSSS equipment. Also, it follows the regulatory position provided in NRC regulatory guides and the requirements of ANSI Standard N45.2.12 as identified in this Topical Report

  6. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vance, L.M.

    1993-07-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

  7. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site

  8. 49 CFR 1180.10 - Service assurance plans.

    Science.gov (United States)

    2010-10-01

    ..., TRACKAGE RIGHTS, AND LEASE PROCEDURES General Acquisition Procedures § 1180.10 Service assurance plans. For... describe how the operations of principal classification yards and major terminals would be changed...

  9. Assurance management program for the 30 Nova laser fusion project

    International Nuclear Information System (INIS)

    The Nova assurance management program was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management program. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project

  10. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  11. Operating and Assurance Program Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The LBL Operating and Assurance Program (OAP) is a management system and a set of requirements designed to maintain the level of performance necessary to achieve LBL`s programmatic and administrative objectives effectively and safely through the application of quality assurance and related conduct of operations and maintenance management principles. Implement an LBL management philosophy that supports and encourages continual improvement in performance and quality at the Laboratory. Provide an integrated approach to compliance with applicable regulatory requirements and DOE orders. The OAP is intended to meet the requirements of DOE Order 5700.6C, Quality Assurance. The Program also contains management system elements of DOE Orders 5480.19, Conduct of Operations Requirements for DOE Facilities; 5480.25, Safety of Accelerator Facilities; and 4330.4A, Maintenance Management Program, and is meant to integrate these elements into the overall LBL approach to Laboratory management. The requirements of this program apply to LBL employees and organizations, and to contractors and facility users as managed by their LBL sponsors. They are also applicable to external vendors and suppliers as specified in procurement documents and contracts.

  12. UMTRA technical assistance contractor Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAC Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements. The key to ensuring compliance with this directive is a two-step professional approach: utilize the quality system in all areas of activity, and generate a personal commitment from all personnel to provide quality service. The quality staff will be experienced, trained professionals capable of providing maximum flexibility to Project goal attainment. Such flexibility will enable the staff to be more cost effective and to further improve communication and coordination. To provide control details, this QAPP will be supplemented by approved standard operating procedures that provide requirements for performing the various TAC quality-related activities. These procedures shall describe applicable design input and document control activities and documentation

  13. Strategic Planning and Quality Assurance in the Bologna Process

    Science.gov (United States)

    Kettunen, Juha; Kantola, Mauri

    2007-01-01

    Strategic planning and quality management have been developed independently of each other, but they meet in practice in many kinds of organisations. Strategic planning and quality assurance integrate different aspects of higher education institutions (HEIs) to ensure high-quality educational outcomes. This paper investigates the role of these two…

  14. Quality Assurance Plan, N springs expedited response action

    International Nuclear Information System (INIS)

    This document is the Quality Assurance Plan (QAP) to be followed during the definitive design, construction, and operational phases for activities associated with the N Springs Expedited Response Action (ERA) for the 100-NR-2 Operable Unit (OU). Westinghouse Hanford Company (WHC) will comply with the US Department of Energy (DOE) Order 5700.6C, Quality Assurance (DOE 1989), and the US Environmental Protection Agency (EPA), EPA/530-SW-86-031, Technical Guidance Document: Construction Quality Assurance for Hazardous Waste Land Disposal Facilities (EPA 1986)

  15. Quality assurance plan, Westinghouse Nuclear Energy Systems Divisions

    International Nuclear Information System (INIS)

    The Quality Assurance Plan used by Westinghouse Nuclear Energy Systems Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements. This document replaces the contents of Chapter 17 Safety Analysis Reports, except for any special or unique requirements. (auth)

  16. Quality assurance plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    This Quality Assurance Plan (QAP) is concerned with design and construction (Sect. 2) and characterization and monitoring (Sect. 3). The basis for Sect. 2 is the Quality Assurance Plan for the Design and Construction of Waste Area Grouping 6 Closure at Oak Ridge National Laboratory, Oak Ridge, Tennessee, and the basis for Sect. 3 is the Environmental Restoration Quality Program Plan. Combining the two areas into one plan gives a single, overall document that explains the requirements and from which the individual QAPs and quality assurance project plans can be written. The Waste Area Grouping (WAG) 6 QAP establishes the procedures and requirements to be implemented for control of quality-related activities for the WAG 6 project. Quality Assurance (QA) activities are subject to requirements detailed in the Martin Marietta Energy Systems, Inc. (Energy Systems), QA Program and the Environmental Restoration (ER) QA Program, as well as to other quality requirements. These activities may be performed by Energy Systems organizations, subcontractors to Energy Systems, and architect-engineer (A-E) under prime contract to the US Department of Energy (DOE), or a construction manager under prime contract to DOE. This plan specifies the overall Energy Systems quality requirements for the project. The WAG 6 QAP will be supplemented by subproject QAPs that will identify additional requirements pertaining to each subproject

  17. Quality assurance of treatment planning systems

    International Nuclear Information System (INIS)

    In Finland the inspections (site visits) of the Finnish Centre for Radiation and Nuclear Safety (STUK) represent quality audit procedures for the treatment machines and simulators, but at present do not cover treatment planning and CT imaging. The centre has now planned to extend the quality audit program to include the whole treatment chain. The preliminary step of this program was the intercomparison of radiotherapy treatment planning system. As the next step, a special phantom has been designed in order to check the whole treatment chain from treatment planning to dose delivery. (author). 2 figs, 1 tab

  18. Overview about project planning

    OpenAIRE

    Catalin Drob

    2012-01-01

    The purpose of this article is to present the main aspects regarding project planning. This study is generally based on the fourth edition of the Guide to the Project Management Body of Knowledge (PMBOK Guide) developed by the Project Management Institute (PMI) in 2008. According to this edition of PMBOK, project planning involves a group of processes required to establish the scope of the project, refine the objectives, and define the actions that must be undertaken to attain the objectives ...

  19. International Thermonuclear Experimental Reactor U.S. Home Team Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Sowder, W. K.

    1998-10-01

    The International Thermonuclear Experimental Reactor (ITER) project is unique in that the work is divided among an international Joint Central Team and four Home Teams, with the overall responsibility for the quality of activities performed during the project residing with the ITER Director. The ultimate responsibility for the adequacy of work performed on tasks assigned to the U.S. Home Team resides with the U.S. Home Team Leader and the U.S. Department of Energy Office of Fusion Energy (DOE-OFE). This document constitutes the quality assurance plan for the ITER U.S. Home Team. This plan describes the controls exercised by U.S. Home Team management and the Performing Institutions to ensure the quality of tasks performed and the data developed for the Engineering Design Activities assigned to the U.S. Home Team and, in particular, the Research and Development Large Projects (7). This plan addresses the DOE quality assurance requirements of 10 CFR 830.120, "Quality Assurance." The plan also describes U.S. Home Team quality commitments to the ITER Quality Assurance Program. The ITER Quality Assurance Program is based on the principles described in the International Atomic Energy Agency Standard No. 50-C-QA, "Quality Assurance for Safety in Nuclear Power Plants and Other Nuclear Facilities." Each commitment is supported with preferred implementation methodology that will be used in evaluating the task quality plans to be submitted by the Performing Institutions. The implementing provisions of the program are based on guidance provided in American National Standards Institute/American Society of Mechanical Engineers NQA-1 1994, "Quality Assurance." The individual Performing Institutions will implement the appropriate quality program provisions through their own established quality plans that have been reviewed and found to comply with U.S. Home Team quality assurance plan commitments to the ITER Quality Assurance Program. The extent of quality program provisions

  20. Software quality assurance plan for the National Ignition Facility integrated computer control system

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project`s controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy`s (DOE`s) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project.

  1. Implementation plan: Quality assurance requirements: Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    This document establishes the Quality Assurance (QA) Program requirements for the Hazards Waste remedial Actions Program (HASWRAP) for ensuring, with a high degree of confidence, that program objectives will be achieved as planned. The QA Program is introduced in Sect. 1. The HAZWRAP Support Contractor Office (SCO) functional organization and QA responsibilities are shown in Sect. 2. QA program requirements are contained in Sect. 3. These requiremens are pased on the American national Standard, American National Standards Institute/American Society of Mechanical Engineers NQA-1 Quality Assurance Program Requirements for Nuclear Facilities. The 18 elements defined in the standard are tailored to HAZWRAP's needs. The QA program requirements are delineated under the major headings: Quality Assurance Program, Organization, and Control of Quality;two additional program requirements, Software Quality Assurance and Problem Prevention, are included. Definitions of QA terms and the list of formal reports published by the HAZWRAP SCO are included as appendixes. 8 refs., 1 fig

  2. Planning and programing a quality assurance system in the National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    The quality assurance systems implanted in the National Institute of Nuclear Research toward the latest of 70's, was derived in two main emptying the first one is dedicated to verify the system implantation in several studies, projects, services and areas of the Institute through the application of inspection, vigilance and auditories. The second one is referred the present paper which is the representative to watch the document completion of the diverse distinguished requisites in the codes, by-laws, standards, specifications and other applicable standing documents as national as internationals. In the NINR is started the Quality Assurance Systems implantation, through of its 'Quality Assurance Plan' which to determine the Quality Institutional policies and the general nature requisites which must be executed in every study, project or area subjected to the Institutional Quality Assurance Systems. From this plan are derived the 'Quality Assurance Programs', in which are indicated the specific requisites in according to the activity type to development. Later is started the documentation preparation which is previous to activities developing which is verified by Quality Assurance with the object to check between other aspects, its foundation and convenience with respect to the applicable standing standards; just as the competence, brightness, legibility, homogeneity and formality of each document. (Author)

  3. National Ignition Facility quality assurance plan for laser materials and optical technology

    International Nuclear Information System (INIS)

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials ampersand Optical Technology (LM ampersand OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM ampersand OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies

  4. Assessment report for Hanford analytical services quality assurance plan

    International Nuclear Information System (INIS)

    This report documents the assessment results of DOE/RL-94-55, Hanford Analytical Services Quality Assurance Plan. The assessment was conducted using the Requirement and Self-Assessment Database (RSAD), which contains mandatory and nonmandatory DOE Order statements for the relevant DOE orders

  5. Plan Assurance Qualité for an Installation Contract

    CERN Document Server

    Gascon, C

    2001-01-01

    The current ST/EL group's installation and maintenance contract expires on June 2001. Official procedures for a new contract began a few months ago. Once the new contract has been adjudicated, contractor firm should establish a Quality Assurance Plan (PAQ) within 6 months to be approved. This PAQ is the essential main instrument which ST/EL group has in order to assure a perfect achievement of signed contract. PAQ efficiency depends on its good knowledge and its permanent application on the part of the contractor firm and especially on the part of ST/EL group. The acquired experience during last PAQ should be reflected in the future contract.

  6. Development strategies in design and process planning quality assurance context

    Directory of Open Access Journals (Sweden)

    J. Duda

    2010-07-01

    Full Text Available According to the new development strategies, the product development focuses on as much as possible parallel execution of alldevelopment related product life cycle phases, thus creating CE (Concurrent Engineering approach. Its further extension is CEE (CrossEnterprises Engineering approach incorporating the relations between business and engineering activities, so securing also the access tothe resources of cooperating enterprises. Computer integration of product phases can be viewed as functional, informational and complexintegration. The process planning quality is assured on the design and technological process planning stage with the use of methods andsystems processing the data from the other product development phases. The paper presents the methods and systems for design andprocess planning quality assurance in the product life cycle as well as the possibility for the implementation of the presented productdevelopment phases.

  7. Commissioning of radiotherapy treatment planning systems: Testing for typical external beam treatment techniques. Report of the Coordinated Research Project (CRP) on Development of Procedures for Quality Assurance of Dosimetry Calculations in Radiotherapy

    International Nuclear Information System (INIS)

    Quality Assurance (QA) in the radiation therapy treatment planning process is essential to ensure accurate dose delivery to the patient and to minimize the possibility of accidental exposure. Computerized radiotherapy treatment planning systems (RTPSs) are now widely available in both industrialised and developing countries so, it is of special importance to support hospitals in the IAEA Member States in developing procedures for acceptance testing, commissioning and ongoing QA of their RTPSs. Responding to these needs, a group of experts developed a comprehensive report, the IAEA Technical Reports Series No 430 'Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer', that provides the general framework and describes a large number of tests and procedures to be considered by the RTPS users. To provide practical guidance for implementation of IAEA Technical Reports Series No. 430 in radiotherapy hospitals and particularly in those with limited resources, a coordinated research project (CRP E2.40.13) 'Development of procedures for dosimetry calculation in radiotherapy' was established. The main goal of the project was to create a set of practical acceptance and commissioning tests for dosimetry calculations in radiotherapy, defined in a dedicated protocol. Two specific guidance publications that were developed in the framework of the Coordinated Research Project E2.40.13 are based on guidelines described in the IAEA Technical Report Series No. 430 and provide a step-by-step description for users at hospitals or cancer centres how to implement acceptance and commissioning procedures for their RTPSs. The first publication, 'Specification and acceptance testing of radiotherapy treatment planning systems' IAEA-TECDOC-1540 uses the International Electrotechnical Commission (IEC) standard IEC 62083 as its basis and addresses the procedures for specification and acceptance testing of RTPSs to be used by both manufacturers and

  8. Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques. Report of the Coordinated Research Project (CRP) on Development of Procedures for Quality Assurance of Dosimetry Calculations in Radiotherapy

    International Nuclear Information System (INIS)

    Quality Assurance (QA) in the radiation therapy treatment planning process is essential to ensure accurate dose delivery to the patient and to minimize the possibility of accidental exposure. Computerized radiotherapy treatment planning systems (RTPSs) are now widely available in both industrialised and developing countries so, it is of special importance to support hospitals in the IAEA Member States in developing procedures for acceptance testing, commissioning and ongoing QA of their RTPSs. Responding to these needs, a group of experts developed a comprehensive report, the IAEA Technical Reports Series No 430 'Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer', that provides the general framework and describes a large number of tests and procedures to be considered by the RTPS users. To provide practical guidance for implementation of IAEA Technical Reports Series No. 430 in radiotherapy hospitals and particularly in those with limited resources, a coordinated research project (CRP E2.40.13) 'Development of procedures for dosimetry calculation in radiotherapy' was established. The main goal of the project was to create a set of practical acceptance and commissioning tests for dosimetry calculations in radiotherapy, defined in a dedicated protocol. Two specific guidance publications that were developed in the framework of the Coordinated Research Project E2.40.13 are based on guidelines described in the IAEA Technical Report Series No. 430 and provide a step-by-step description for users at hospitals or cancer centres how to implement acceptance and commissioning procedures for their RTPSs. The first publication, 'Specification and acceptance testing of radiotherapy treatment planning systems' IAEA-TECDOC-1540 uses the International Electrotechnical Commission (IEC) standard IEC 62083 as its basis and addresses the procedures for specification and acceptance testing of RTPSs to be

  9. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization project: Quality Assurance Project Plan, Revision 1; Quarterly progress report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stetzenbach, K.J.

    1993-12-13

    The purpose of this work is to identify and characterize candidate conservative organic tracers for use as hydrologic tracers for experiments to be conducted at the Yucca Mountain C-well complex. During this quarter the main effort was directed towards rewriting the quality assurance program in preparation for a review and audit by the USGS. However, due to budget constraints the review and audit were not carried out. The tracer QA plan and standard operating procedures (SOPs) were revised and copies are included in the report. Instrumental problems were encountered and corrected with the addition of new integration and sample control software. In the sampling, there was an unexplained peak in the chromatograms of the tracers being tested in the light tuff. This was not correctable and these experiments will be repeated in the next quarter.

  10. Project Planning: An Analysis

    Directory of Open Access Journals (Sweden)

    Dr.S.S.Riaz Ahamed

    2010-01-01

    Full Text Available The purpose of the Planning stage is to analyze the project in terms of work breakdown, cost, resources, and timing. At the end of this stage all team members should be clear on the sub tasks and deliverables with the project, the time constraints they are working too and the roles and responsibilities that are expected from them.Software Project Plan defines what the work is, and how this work can be completed. This plan is developed at the beginning of the software project and is continually refined and improved as the work rocesses. It can be useful to management as a frame work for review and control the process of developing the software. Additionally, the Software Project Plan can define each of the major tasks and estimate the time and resources that are required to complete these tasks.

  11. The assurance management program for the Nova laser fusion project

    International Nuclear Information System (INIS)

    In a well managed project, Quality Assurance is an integral part of the management activities performed on a daily basis. Management assures successful performance within budget and on schedule by using all the good business, scientific, engineering, quality assurance, and safety practices available. Quality assurance and safety practices employed on Nova are put in perspective by integrating them into the overall function of good project management. The Inertial Confinement Fusion (ICF) approach is explained in general terms. The laser ICF and magnetic fusion facilities are significantly different in that the laser system is used solely as a highly reliable energy source for performing plasma physics experiments related to fusion target development; by contrast, magnetic fusion facilities are themselves the experiments. The Nova project consists of a 10-beam, 74 cm aperture neodymium-glass laser experimental facility which is being constructed by the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy. Nova has a total estimated cost of $176M and will become operational in the Fall of 1984. The Nova laser will be used as the high energy driver for studying the regime of ignition for ICF. The Nova assurance management program was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management program. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project

  12. Quality assurance in the Antares laser fusion construction project

    International Nuclear Information System (INIS)

    The Antares CO2 laser facility came on line in November 1983 as an experimental physics facility; it is the world's largest CO2 laser fusion system. Antares is a major component of the Department of Energy's Inertial Confinement Fusion Program. Antares is a one-of-a-kind laser system that is used in an experimental environment. Given limited project funds and tight schedules, the quality assurance program was tailored to achieve project goals without imposing oppressive constraints. The discussion will review the Antares quality assurance program and the utility of various portions to completion of the project

  13. DAF Glovebox Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.W.; Higgs, R.L.

    2000-11-14

    This document defines how the glovebox project will be managed and executed. It provides a path forward for establishing a glovebox capability in Building 341 of the DAF in time to meet JASPER programmatic requirements as the first user. Note that some elements of the glovebox project have been under way for some time and are more mature than others; other elements are being worked concurrently. This plan serves the following purposes: Assign organizational and individual responsibilities for bringing the glovebox capability online; Coordinate activities between organizations; Facilitate communication between project members and management; and Identify the mechanisms used to manage and control the project. The scope of this plan includes all activities conducted to achieve project objectives, culminating in DOE/NV approval to operate. This plan does not address the issues associated with the steady-state operation of the glovebox.

  14. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-01-31

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

  15. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  16. Quality Assurance. Summary Report of a Project to Develop and Evaluate a Quality Assurance Package. FEU/PICKUP Project Report.

    Science.gov (United States)

    Further Education Unit, London (England).

    A curriculum development project began with a market survey to investigate the demand for training in quality assurance (QA). The project objective was to develop a final study program that would cater to a broad range of employees, from operative to senior management; enable employees to appreciate their potential role within a QA system; and…

  17. Quality assurance management plan (QAPP) special analytical support (SAS)

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-05-20

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  18. Quality assurance management plan (QAPP) special analytical support (SAS)

    International Nuclear Information System (INIS)

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data

  19. Quality assurance management plan (QAPP) special analytical support (SAS); TOPICAL

    International Nuclear Information System (INIS)

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data

  20. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  1. Spent Nuclear Fuel project, project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  2. Data Quality Assurance Program Plan for NRC Division of Risk Analysis Programs at the INL

    International Nuclear Information System (INIS)

    The Division of Risk Analysis (DRA), Office of Nuclear Regulatory Research (RES), must ensure that the quality of the data that feed into its programs follow Office of Management and Budget (OMB) and U.S. Nuclear Regulatory Commission (NRC) guidelines and possibly other standards and guidelines used in nuclear power plant risk analyses. This report documents the steps taken in DRA's Data Quality Improvement project (Job Control Number N6145) to develop a Data Quality Assurance Program Plan. These steps were: (1) Conduct a review of data quality requirements; (2) Review current data programs, products, and data quality control activities; (3) Review the Institute of Nuclear Power Operation (INPO) Equipment Performance and Information Exchange (EPIX) data quality programs and characterize the EPIX data quality and uncertainty; (4) Compare these programs, products, and activities against the requirements; and (5) Develop a program plan that provides assurance that data quality is being maintained. It is expected that the Data Quality Assurance Program Plan will be routinely implemented in all aspects of future data collection and processing efforts and that specific portions will be executed annually to provide assurance that data quality is being maintained

  3. Data Quality Assurance Program Plan for NRC Division of Risk Analysis Programs at the INL

    Energy Technology Data Exchange (ETDEWEB)

    Sattison, Martin B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wierman, Thomas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vedros, Kurt G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Germain, Shawn W. St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Eide, Steven A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sant, Robert L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-07-01

    The Division of Risk Analysis (DRA), Office of Nuclear Regulatory Research (RES), must ensure that the quality of the data that feed into its programs follow Office of Management and Budget (OMB) and U.S. Nuclear Regulatory Commission (NRC) guidelines and possibly other standards and guidelines used in nuclear power plant risk analyses. This report documents the steps taken in DRA’s Data Quality Improvement project (Job Control Number N6145) to develop a Data Quality Assurance Program Plan. These steps were 1. Conduct a review of data quality requirements 2. Review current data programs, products, and data quality control activities 3. Review the Institute of Nuclear Power Operation (INPO) Equipment Performance and Information Exchange (EPIX) data quality programs and characterize the EPIX data quality and uncertainty 4. Compare these programs, products, and activities against the requirements 5. Develop a program plan that provides assurance that data quality is being maintained. It is expected that the Data Quality Assurance Program Plan will be routinely implemented in all aspects of future data collection and processing efforts and that specific portions will be executed annually to provide assurance that data quality is being maintained.

  4. Software quality assurance plan for void fraction instrument

    Energy Technology Data Exchange (ETDEWEB)

    Gimera, M.

    1994-10-18

    Waste Tank SY-101 has been the focus of extensive characterization work over the past few years. The waste continually generates gases, most notably hydrogen, which are periodically released from the waste. Gas can be trapped in tank waste in three forms: as void gas (bubbles), dissolved gas, or absorbed gas. Void fraction is the volume percentage of a given sample that is comprised of void gas. The void fraction instrument (VFI) acquires the data necessary to calculate void fraction. This document covers the product, Void Fraction Data Acquisition Software. The void fraction software being developed will have the ability to control the void fraction instrument hardware and acquire data necessary to calculate the void fraction in samples. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain void fraction data from Tank SY-101

  5. Quality Assurance Plan for the AL3 Test Procedure

    CERN Document Server

    Béjar-Alonso, Isabel

    1999-01-01

    This paper describes the new quality assurance plan for the Alarms-of-Level-3 (AL3) test. The aim of the plan is to introduce engineering techniques and to standardise and simplify the procedures for carrying out tests following Safety Instruction 37 (IS37). The procedures are to co-ordinate all the services involved (fire brigade, maintenance and computer support) and to create a consistent documentation. When the procedures are implemented, it will be possible to determine with confidence how field actions are carried out and to measure actual performance. The focus will be on personnel training and documentation. It is important however to keep documentation and procedures to a reasonable level that can be maintained at appropriate intervals. The plan is the result of an internal requirement from ST/MC and a formal request from Installations Nucléaires de Base (INB).

  6. Role of quality assurance vs project manager's responsibility for waste projects

    International Nuclear Information System (INIS)

    This paper takes a project manager's perspective and discusses the role of the quality assurance organization in the development, implementation and interface related to the QA program for waste projects. The author describes the role which the QA program plays in allowing project management to assure that the project manager knows what is placed in the repository and the characteristics of the surrounding environment meet closure requirements

  7. Plutonium immobilization project development and testing technical project office quality assurance program description

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Project (PIP) is one of several fissile materials disposition projects managed by the Department of Energy (DOE) Office of Fissile Materials Disposition (OFMD). The PIP is expected to evolve from the current Development and Testing (D and T) effort, to design, to construction, and finally to operations. Overall management and technical management of the D and T effort resides at the Lead Laboratory, Lawrence Livermore National Laboratory (LLNL), through the LLNL Manager, Fissile Materials Disposition Program (FMDP). Day to day project activities are managed by the D and T Technical Project Office (TPO), which reports to the LLNL Manager, FMDP. The D and T TPO consists of the Technical Manager, the TPO Quality Assurance (QA) Program Manager, and TPO Planning and Support Staff. This Quality Assurance Program Description (QAPD) defines the QA policies and controls that will be implemented by these TPO personnel in their management of D and T activities. This QAPD is consistent with and responsive to the Department of Energy Fissile Materials Disposition Program Quality Assurance Requirements Document (FMDP QARD). As the Project and upper level requirement's documents evolve, this QAPD will be updated as necessary to accurately define and describe the QA Program and Management of the PIP. The TPO has a policy that all development and testing activities be planned, performed and assessed in accordance with its customer's requirements, needs and expectations, and with a commitment to excellence and continuous improvement. The TPO QAPD describes implementation requirements which, when completed, will ensure that the project development and testing activities conform to the appropriate QA requirements. For the program to be effective, the TPO QA Program Manager will ensure that each site participating in D and T activities has developed a QAPD, which meets the customer's requirements, and has a designated quality leader in place. These customer

  8. Software Quality Assurance-Challenges in Launch Vehicle Projects

    Directory of Open Access Journals (Sweden)

    Poofa Gopalan

    2006-01-01

    Full Text Available Launch vehicle projects now depend on software, more than ever before, to ensure safetyand efficiency. Such critical software syfiems, which can lead to injury, destruction or loss ofvital equipment, human lives, and damage to environment, must be developed and verified withhigh level of quality and reliability. An overview of current quality practices pursued in launchvehicle projects is presented in this paper. These practices have played a vital role in the successfullaunch vehicle missions of Indian Space Research Organisation. As complexity of softwareincreases, the activity that gets affected is nothing but, software quality assurance (SQA. TheSQA team is facing a lot of challenges in current practices. This paper brings out such challengesin different phases of software life cycle. A set of key points to some techniques and tools, thatcould contribute to meet the software quality 'assurance challenges in launch vehicle projects,are also discussed.

  9. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participant’s requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  10. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  11. Recertification Project Plan

    International Nuclear Information System (INIS)

    The Waste Isolation Pilot Plant's (WIPP) Recertification Project was established to meet the requirement placed in the WIPP Land Withdrawal Act (LWA) to demonstrate WIPP's continued compliance with the Environmental Protection Agency's (EPA) disposal regulations at five-year intervals. This plan delineates the end goal of the effort, sets out interim goals, and offers up guiding assumptions. In general, it sets the overall direction for a highly complex and interdependent set of tasks leading to recertification of the repository in the spring of 2004. In addition, this plan establishes the institutional roles and responsibilities of WIPP project participants in the recertification effort and lays out a high-level schedule for producing the Compliance Recertification Application (CRA). Detailed plans from each organization supporting this project have been included with this document as attachments. Each participant plan provides significantly more detail with descriptions of activities that are designed to ensure a successful outcome. Woven throughout this plan are the elements of guidance and direction gained from technical exchanges with EPA managers and staff. An important principle on which this plan is built is that the process of recertification will not involve modification to the certification baseline, nor will it involve rule making of any kind. Only changes previously approved by the EPA will be detailed in the CRA. EPA-approved changes to the WIPP certification will be accepted through modification or will be approved through the annual change reporting process. For any compliance areas that have not changed since the submission of the Compliance Certification Application(CCA), these will merely be incorporated in the CRA by reference. The CRA will cover all information since the October 1996 submittal of the CCA. A second major principle on which this plan is built stems from the EPA WIPP Recertification Guidance. That guidance makes it clear that, if

  12. Study on quality assurance for high-level radioactive waste disposal project

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has developed comparatively detailed quality assurance requirements for the high-level radioactive waste disposal systems. Quality assurance is recognized as a key issue for confidence building and smooth implementation of the HLW program in Japan, and Japan is at an initial phase of repository development. Then the quality assurance requirements at site research and site selection, site characterization, and site suitability analysis used in the Yucca Mountain project were examined in detail and comprehensive descriptions were developed using flow charts. Additionally, the applicability to the Japan high-level radioactive waste disposal project was studied. The examination and study were performed for the following QA requirements: The requirements that have the relative importance at site research and site selection, site characterization, and site suitability analysis (such as planning and performing scientific investigations, sample control, data control, model development and use, technical report review, software control, and control of the electric management of data). The requirements that have the relative importance at the whole repository phases (such as quality assurance program, document control, and control of quality assurance records). (author)

  13. Software quality assurance on the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    The Yucca Mountain Site Characterization Project (YMP) has been involved over the years in the continuing struggle with establishing acceptable Software Quality Assurance (SQA) requirements for the development, modification, and acquisition of computer programs used to support the Mined Geologic Disposal System. These computer programs will be used to produce or manipulate data used directly in site characterization, design, analysis, performance assessment, and operation of repository structures, systems, and components. Scientists and engineers working on the project have claimed that the SQA requirements adopted by the project are too restrictive to allow them to perform their work. This paper will identify the source of the original SQA requirements adopted by the project. It will delineate the approach used by the project to identify concerns voiced by project engineers and scientists regarding the original SQA requirements. It will conclude with a discussion of methods used to address these problems in the rewrite of the original SQA requirements

  14. Quality assurance program plan for low-level waste at the WSCF Laboratory

    International Nuclear Information System (INIS)

    The purpose of this document is to provide guidance for the implementation of the Quality Assurance Program Plan (QAPP) for the management of low-level waste at the Waste Sampling and Characterization Facility (WSCF) Laboratory Complex as required by WHC-CM-4-2, Quality Assurance Manual, which is based on Quality Assurance Program Requirements for Nuclear Facilities, NQA-1 (ASME)

  15. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    Science.gov (United States)

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  16. IMRT Quality Assurance Using a Second Treatment Planning System

    International Nuclear Information System (INIS)

    We used a second treatment planning system (TPS) for independent verification of the dose calculated by our primary TPS in the context of patient-specific quality assurance (QA) for intensity-modulated radiation therapy (IMRT). QA plans for 24 patients treated with inverse planned dynamic IMRT were generated using the Nomos Corvus TPS. The plans were calculated on a computed tomography scan of our QA phantom that consists of three Solid Water slabs sandwiching radiochromic films, and an ion chamber that is inserted into the center slab of the phantom. For the independent verification, the dose was recalculated using the Varian Eclipse TPS using the multileaf collimator files and beam geometry from the original plan. The data was then compared in terms of absolute dose to the ion chamber volume as well as relative dose on isodoses calculated at the film plane. The calculation results were also compared with measurements performed for each case. When comparing ion chamber doses, the mean ratio was 0.999 (SD 0.010) for Eclipse vs. Corvus, 0.988 (SD 0.020) for the ionization chamber measurements vs. Corvus, and 0.989 (SD 0.017) for the ionization chamber measurements vs. Eclipse. For 2D doses with gamma histogram, the mean value of the percentage of pixels passing the criteria of 3%, 3 mm was 94.4 (SD 5.3) for Eclipse vs. Corvus, 85.1 (SD 10.6) for Corvus vs. film, and 93.7 (SD 4.1) for Eclipse vs. film; and for the criteria of 5%, 3 mm, 98.7 (SD 1.5) for Eclipse vs. Corvus, 93.0 (SD 7.8) for Corvus vs. film, and 98.0 (SD 1.9) for Eclipse vs. film. We feel that the use of the Eclipse TPS as an independent, accurate, robust, and time-efficient method for patient-specific IMRT QA is feasible in clinic.

  17. Software quality assurance plans for safety-critical software

    International Nuclear Information System (INIS)

    Application software is defined as safety-critical if a fault in the software could prevent the system components from performing their nuclear-safety functions. Therefore, for nuclear-safety systems, the AREVA TELEPERMR XS (TXS) system is classified 1E, as defined in the Inst. of Electrical and Electronics Engineers (IEEE) Std 603-1998. The application software is classified as Software Integrity Level (SIL)-4, as defined in IEEE Std 7-4.3.2-2003. The AREVA NP Inc. Software Program Manual (SPM) describes the measures taken to ensure that the TELEPERM XS application software attains a level of quality commensurate with its importance to safety. The manual also describes how TELEPERM XS correctly performs the required safety functions and conforms to established technical and documentation requirements, conventions, rules, and standards. The program manual covers the requirements definition, detailed design, integration, and test phases for the TELEPERM XS application software, and supporting software created by AREVA NP Inc. The SPM is required for all safety-related TELEPERM XS system applications. The program comprises several basic plans and practices: 1. A Software Quality-Assurance Plan (SQAP) that describes the processes necessary to ensure that the software attains a level of quality commensurate with its importance to safety function. 2. A Software Safety Plan (SSP) that identifies the process to reasonably ensure that safety-critical software performs as intended during all abnormal conditions and events, and does not introduce any new hazards that could jeopardize the health and safety of the public. 3. A Software Verification and Validation (V and V) Plan that describes the method of ensuring the software is in accordance with the requirements. 4. A Software Configuration Management Plan (SCMP) that describes the method of maintaining the software in an identifiable state at all times. 5. A Software Operations and Maintenance Plan (SO and MP) that

  18. IX Disposition Project - project management plan

    International Nuclear Information System (INIS)

    This report presents plans for resolving saving and disposal concerns for ion exchange modules, cartridge filters and columns. This plan also documents the project baselines for schedules, cost, and technical information

  19. Quality assurance FY 1995 site support program plan WBS 6.7.2.5

    International Nuclear Information System (INIS)

    This report is a summary of the quality assurance plan and program for the Westinghouse Hanford Company. The quality assurance plan verifies that the appropriate quality assurance programs and controls are applied to activities that affect quality related to work in: waste management; environmental activities (restoration, remediation, and monitoring); implementation of environmental, state, local, and federal regulations; tri-party agreement activities; facility operation and deactivation/transition to shutdown; new facility construction and operation

  20. Establishing the quality assurance programme for a nuclear power plant project

    International Nuclear Information System (INIS)

    This Safety Guide provides requirements, recommendations and illustrative examples for establishing the overall quality assurance programme, and its constituent programmes, for a nuclear power plant project. It also provides guidance on the planning and documenting of programme plans and actions that are intended to ensure the achievement of the appropriate quality throughout the design, procurement, manufacture, construction, commissioning, operation and decommissioning of the nuclear power plant. The provisions of this Safety Guide are applicable to all organizations performing activities affecting the quality of items important to safety, such as designing, purchasing, fabricating, manufacturing, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling, modifying and decommissioning

  1. Research on quality assurance classification methodology for domestic AP1000 nuclear power projects

    International Nuclear Information System (INIS)

    To meet the quality assurance classification requirements of domestic nuclear safety codes and standards, this paper analyzes the quality assurance classification methodology of domestic AP1000 nuclear power projects at present, and proposes the quality assurance classification methodology for subsequent AP1000 nuclear power projects. (authors)

  2. Quality assurance in technology development for The Clinch River Breeder Reactor Plant Project

    International Nuclear Information System (INIS)

    The Clinch River Breeder Reactor Plant Project is the nation's first large-scale demonstration of the Liquid Metal Fast Breeder Reactor (LMFBR) concept. The Project has established an overall program of plans and actions to assure that the plant will perform as required. The program has been established and is being implemented in accordance with Department of Energy Standard RDT F 2-2. It is being applied to all parts of the plant, including the development of technology supporting its design and licensing activity. A discussion of the program as it is applied to development is presented

  3. Project Hanford management contract quality improvement project management plan; TOPICAL

    International Nuclear Information System (INIS)

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process

  4. Status of quality assurance of treatment planning systems in Europe

    International Nuclear Information System (INIS)

    Quality assurance, QA, of treatment planning systems, TPS, is generally performed by individual physicists directed to the specific needs of their own institution. In the past a number of tests has been performed by national societies mainly of the accuracy of dose calculation algorithms. Little information is available on national recommendations in the field of QA of TPS. A questionnaire was therefore distributed amongst European countries to review national activities in this field. From the 19 responding countries 7 indicated that only limited efforts are underway, 8 answered that a working group is evaluating their specific national requirements while in 4 countries a document is drafted or tested in various clinics. The main part of these reports concerns detailed descriptions of acceptance tests and constancy checks, including action levels and frequency tests. Additional information concerns recommendations for documentation and short descriptions of dose calculation algorithms. In some countries, having a large number of TPS of the same type, regular users meetings and/or close co-operation with the manufacturer are employed to exchange information concerning QA of their systems. Some of the working groups mentioned separate checks of 2-D and 3-D features of a TPS. Special attention should also be paid to monitor unit computation programs. The survey showed that currently not many countries in Europe have national recommendations on the QA of treatment planning systems. ESTRO and other international organizations, in co-operation with national societies and manufacturers, might therefore play an important role in stimulating the drafting of guidelines for QA of treatment planning systems

  5. Specific application for Oak Ridge National Laboratory dismantlement of Building 3004. Appendix A - Quality assurance plan; Appendix B - Records management plan

    International Nuclear Information System (INIS)

    This quality assurance (QA) plan defines the QA requirements for the dismantlement and removal of Building 3004 at Oak Ridge National Laboratory (ORNL). The building is a four-story wooden trained structure with wooden siding, which resides approximately 150 ft west of the Bulk Shielding Reactor, and only several feet away from the visitors entrance to the Graphite Reactor museum. Complete descriptions and sketches are in the Performance Specification document for this project. This project is being conducted as a non-CERCLA maintenance action. This plan is an appendix to the QA plan for the ORNL Environmental Restoration (ER) Program. ORNL/ER-225, which is the source of the project QA requirements, tailors those QA requirements to the specific needs of this project as defined in ORNL/ER-225. Project-specific description and organization are also provided in this plan. Appendix B, Records Management Plan, is included

  6. Control plan as a part of quality assurance plan on the constructing site

    OpenAIRE

    Hribar, Janez

    2005-01-01

    This bachelor thesis presents us problems we run into when assuring quality and controlling quality of the working performance on the constructing site. The thesis consists of five parts of one thematic integrity. Throughtout the thesis one gets to know to general facts about the quality control and the quality itself, and also to the planning of the controlling and inspecting on the constructing site. At the beginning there is a presentation of the purpose and aims that lead me when writing ...

  7. Project Management Plan Solution Stabilization

    International Nuclear Information System (INIS)

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process

  8. Guidance and Control Software Project Data - Volume 4: Configuration Management and Quality Assurance Documents

    Science.gov (United States)

    Hayhurst, Kelly J. (Editor)

    2008-01-01

    The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977 and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements, design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project, describes the 4-volume set of documents and the role they are playing in training, and includes configuration management and quality assurance documents from the GCS project. Volume 4 contains six appendices: A. Software Accomplishment Summary for the Guidance and Control Software Project; B. Software Configuration Index for the Guidance and Control Software Project; C. Configuration Management Records for the Guidance and Control Software Project; D. Software Quality Assurance Records for the Guidance and Control Software Project; E. Problem Report for the Pluto Implementation of the Guidance and Control Software Project; and F. Support Documentation Change Reports for the Guidance and Control Software Project.

  9. Lessons learned from development and quality assurance of software systems at the Halden Project

    Energy Technology Data Exchange (ETDEWEB)

    Bjorlo, T.J.; Berg, O.; Pehrsen, M.; Dahll, G.; Sivertsen, T. [OECD Halden Reactor Project (Norway)

    1996-03-01

    The OECD Halden Reactor Project has developed a number of software systems within the research programmes. These programmes have comprised a wide range of topics, like studies of software for safety-critical applications, development of different operator support systems, and software systems for building and implementing graphical user interfaces. The systems have ranged from simple prototypes to installations in process plants. In the development of these software systems, Halden has gained much experience in quality assurance of different types of software. This paper summarises the accumulated experience at the Halden Project in quality assurance of software systems. The different software systems being developed at the Halden Project may be grouped into three categories. These are plant-specific software systems (one-of-a-kind deliveries), generic software products, and safety-critical software systems. This classification has been found convenient as the categories have different requirements to the quality assurance process. In addition, the experience from use of software development tools and proprietary software systems at Halden, is addressed. The paper also focuses on the experience gained from the complete software life cycle, starting with the software planning phase and ending with software operation and maintenance.

  10. Neste plans three projects

    International Nuclear Information System (INIS)

    Neste Chemicals (Helsinki) is discussing three joint ventures with local authorities in China, says Mikko Haapavaara, v.p./Asia. The projects should help the Finnish producer to increase sales in Asia by a considerable amount by 2000, he says. The plan involves production of polyethylene (PE), unsaturated polyester resins and PE compounding-all core operations. Sites have not been selected, but Shanghai is the favored location for the PE operations. The company is also looking at a site in the south, near Hong Kong, and at locations near Beijing. The PE plant would need to be near an ethylene unit, says Haapavaara. The PE resin plant would be designed to produce about 150,000 m.t./year and would cost about No. 150 million. A part of the output would need to be exported to take care of the financing, the company says. A feasibility study now under way with the potential Chinese partners should be completed by the end of March. The plant would use Neste's linear low-density PE process, proved in a world-scale plant at Beringen, Belgium. The compounding units would produce specialty PE material for the wire and cable and pipe industry. The company is a joint venture partner in a propane dehydrogenation/polypropylene (PP) plant and a minority partner in a Qualipoly, the 20,000 m.t./year unsaturated polyester resin producer

  11. Quality assurance program plan for the Site Physical and Electrical Calibration Services Lab. Revision 1

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) is organized to address WHC's implementation of quality assurance requirements as they are presented as interpretive guidance endorsed by the Department of Energy (DOE) Field Office, Richland DOE Order 5700.6C Quality Assurance. The quality assurance requirements presented in this plan will assure Measuring and Test Equipment (M and TE) are in conformance with prescribed technical requirements and that data provided by testing, inspection, or maintenance are valid. This QAPP covers all activities and work elements that are variously called QA, quality control, and quality engineering regardless of the organization performing the work. This QAPP identifies the QA requirements for planning, control, and documentation of operations, modifications, and maintenance of the WHC Site Physical and Electrical Calibration Services Laboratory. The primary function of the WHC Site Physical and Electrical Calibration Services Laboratory is providing calibration, standardization, or repair service of M and TE

  12. Quality assurance plan for Atlas raw steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, V.

    1998-02-10

    As part of a collaborative experimental High Energy Physics experiment at the LHC Facility, CERN Laboratory, Geneva, Switzerland, a group of US institutions has accepted the responsibility for constructing a large portion of the calorimeter for this experiment. This device is referred to as the Tile Calorimeter. The Tile Calorimeter has three major elements, a large center section (Barrel), and two end sections (Extended Barrel). The US group will be responsible for the construction of one of these extended barrel sections. All of the components that are required to construct this device will be fabricated in the US over a period of three years commencing in 1998. Another similar element and the barrel element will be constructed in both eastern and western Europe by parallel groups. The extended barrel is a cylindrical device approximately 8.5 meters (28 ft.) OD x 4.5 meters (14 ft.) ID, made up of 64 wedges. Each of these wedges is constructed by bolting submodules to a strongback girder. Each submodule is constructed of a series of sheets that are welded and glued together. The purpose of this Quality Assurance document is to insure that the raw steel sheet meets the magnetic, strength, and stamping requirements for the Atlas tile Calorimeter. In order to meet these requirements, a set of specifications has been developed and are described below. These specifications must be met by the steel supplier as well as an independent testing plan to be performed by Argonne National Laboratory (ANL). The independent testing is divided into three parts: on-site inspection of the cold rolling process and subsequent slitting of the coil into individual sheets; off-site tests on the magnetic properties of the steel sheet; off-site tests of the internal stress of the sheet.

  13. The Project of Planning

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    1986-01-01

    This article contains an interview with John Friedmann. The interview covers two core areas in John Friedmann's work: (a) The history of planning, from the beginning of the industrial era till today and (b) radical planning and social mobilization. In relation to radical planning and social mobil...

  14. Standard review plan for the review of environmental restoration remedial action quality assurance program plans

    International Nuclear Information System (INIS)

    This plan establishes both the scope of the review and the acceptance criteria to be utilized for the review of Quality Assurance Program Plans (QAPPs) developed in accordance with the requirements of DOE/RL-90-28. DOE/RL-90-28, the Environmental Restoration Remedial Action Quality Assurance Requirements Document (QARD) defines all quality assurance (QA) requirements governing activities that affect the quality of the Environmental Restoration Remedial Action (ERRA) program at the Hanford Site. These requirements are defined in three parts, Part 1 of Quality Management and Administration tasks, Part 2 for Environmental Data Operations, and Part 3 of the Design and Construction of items, systems, and facilities. The purpose of this document is to identify the scope of the review by the DOE Field Office, Richland staff, and establish the acceptance criteria (Parts 1, 2, and 3) that the DOE Field Office, Richland staff will utilize to evaluate the participant QAPPs. Use of the standard review plan will (1) help ensure that participant QAPPs contain the information required by DOE/RL-90-28, (2) aid program participant and DOE Field Office, Richland staff is ensuring that the information describing the participant's QAPP is complete, (3) help persons regarding DOE/RL- 90-28 to locate information, and (4) contribute to decreasing the time needed for the review process. In addition, the Standard Review Plan (SRP) ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate compliance of participant quality programs against DOE/RL-90-28

  15. DIGITAL ARCHITECTURE PROJECT PLAN

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken

    2014-09-01

    The objective of this project is to develop an industry consensus document on how to scope and implement the underlying information technology infrastructure that is needed to support a vast array of real-time digital technologies to improve NPP work efficiency, to reduce human error, to increase production reliability and to enhance nuclear safety. A consensus approach is needed because: • There is currently a wide disparity in nuclear utility perspectives and positions on what is prudent and regulatory-compliant for introducing certain digital technologies into the plant environment. For example, there is a variety of implementation policies throughout the industry concerning electromagnetic compatibility (EMC), cyber security, wireless communication coverage, mobile devices for workers, mobile technology in the control room, and so forth. • There is a need to effectively share among the nuclear operating companies the early experience with these technologies and other forms of lessons-learned. There is also the opportunity to take advantage of international experience with these technologies. • There is a need to provide the industry with a sense of what other companies are implementing, so that each respective company can factor this into their own development plans and position themselves to take advantage of new work methods as they are validated by the initial implementing companies. In the nuclear power industry, once a better work practice has been proven, there is a general expectation that the rest of the industry will adopt it. However, the long-lead time of information technology infrastructure could prove to be a delaying factor. A secondary objective of this effort is to provide a general understanding of the incremental investment that would be required to support the targeted digital technologies, in terms of an incremental investment over current infrastructure. This will be required for business cases to support the adoption of these new

  16. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    Science.gov (United States)

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  17. Quality Assurance Program Plan Waste Management Federal Services of Hanford, Inc

    International Nuclear Information System (INIS)

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program

  18. Project Quality Plan

    DEFF Research Database (Denmark)

    Sandborg-Petersen, Ulrik; Øhrstrøm, Peter

    This document defines the procedures, standards, and strategies which will be used to ensure high standards of quality of the work produced within the HANDS project. It contains the following sections......This document defines the procedures, standards, and strategies which will be used to ensure high standards of quality of the work produced within the HANDS project. It contains the following sections...

  19. Project implementation plan: ASTD remote deployment

    International Nuclear Information System (INIS)

    This document is the project implementation plan for the ASTD Remote Deployment Project. The Plan identifies the roles and responsibilities for the project and defines the integration between the ASTD Project and the B-Cell Cleanout Project

  20. Planning and Managing Drupal Projects

    CERN Document Server

    Nordin, Dani

    2011-01-01

    If you're a solo website designer or part of a small team itching to build interesting projects with Drupal, this concise guide will get you started. Drupal's learning curve has thrown off many experienced designers, particularly the way it handles design challenges. This book shows you the lifecycle of a typical Drupal project, with emphasis on the early stages of site planning. Learn how to efficiently estimate and set up your own project, so you can focus on ways to make your vision a reality, rather than let project management details constantly distract you. Plan and estimate your projec

  1. Quality control and quality assurance plan for bridge channel-stability assessments in Massachusetts

    Science.gov (United States)

    Parker, Gene W.; Pinson, Harlow

    1993-01-01

    A quality control and quality assurance plan has been implemented as part of the Massachusetts bridge scour and channel-stability assessment program. This program is being conducted by the U.S. Geological Survey, Massachusetts-Rhode Island District, in cooperation with the Massachusetts Highway Department. Project personnel training, data-integrity verification, and new data-management technologies are being utilized in the channel-stability assessment process to improve current data-collection and management techniques. An automated data-collection procedure has been implemented to standardize channel-stability assessments on a regular basis within the State. An object-oriented data structure and new image management tools are used to produce a data base enabling management of multiple data object classes. Data will be reviewed by assessors and data base managers before being merged into a master bridge-scour data base, which includes automated data-verification routines.

  2. Project W-320 ALARA Plan

    International Nuclear Information System (INIS)

    This supporting document establishes the As Low As Reasonable Achievable (ALARA) Plan to be followed during Sluicing Project W-320 design and construction activities to minimize personnel exposure to radiation and hazardous materials

  3. Project W-320 ALARA Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harty, W.M.

    1995-06-06

    This supporting document establishes the As Low As Reasonable Achievable (ALARA) Plan to be followed during Sluicing Project W-320 design and construction activities to minimize personnel exposure to radiation and hazardous materials.

  4. HANDI 2000 project execution plan

    Energy Technology Data Exchange (ETDEWEB)

    BENNION, S.I.

    1999-09-09

    The HANDI 2000 project will meet some of the major objectives and goals of the PHMC Management and Integration Plan, HNF-MP-00, Rev. 11, by integrating the major Hanford business processes and their supporting information systems.

  5. HANDI 2000 project execution plan

    International Nuclear Information System (INIS)

    The HANDI 2000 project will meet some of the major objectives and goals of the PHMC Management and Integration Plan, HNF-MP-00/Rev. 11, by integrating the major Hanford business processes and their supporting information systems

  6. Plutonium immobilization project development and testing quality assurance program description - February 1999

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory Immobilization Development and Testing organization (LLNL ID and T) is a Participant in the Plutonium Immobilization Project (PIP). The LLNL D and T has lead responsibilities for form characterization and qualification, ceramic form development, process/equipment development with plutonium, and process systems testing and validation for both conversion and immobilization. This work must be performed in accordance with the graded approach of a Quality Assurance (QA) Program. A QA Program has been developed at LLNL to meet the requirements of the DOE/MD Quality Assurance Requirements. The LLNL QA Program consists of a Quality Assurance Program Description (QAPD) and Quality Implementing Procedures. These documents interface and are a subset of the overall PIP QA Program Documents. The PIP QA Program is described in the PIP ID and T QA Plan, PIP QAPD, and QA Procedures. Other Participant Organizations also must document and describe their PIP compliant QA Programs in a QAPD and implementing procedures. The purpose of this LLNL QAPD is to describe the organization, management processes, QA Controls for Grading, functional responsibilities, levels of authority, and interfaces for those managing, performing, and assessing the adequacy of work

  7. Public Information Plan. [UMTRA Project

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    The Public Information Plan is intended to be used in conjunction with the DOE-UMTRA Project Public Participation Plan'' to describe the Department of Energy's plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control of Act of 1978, PL95-604. The Act provides for a cooperative effort with affected states and Indian tribes for the cleanup of designated abandoned or inactive uranium mill tailings sites. The objective of the Public Information Plan of the UMTRA Project is timely and sufficient dissemination of factual information to promote understanding of the project by federal, state, and local officials, the media, special interest groups, and the general public; and thereby to encourage informed participation in the project by the public and government officials. The Uranium Mill Tailings Radiation Control Act provides for public involvement in remedial action planning, with special consideration given to landowners, Indian tribes, and the states. According to the Act, the Secretary of Energy shall hold public hearings in the states where processing sites, vicinity properties, and disposal sites are located. Public participation in the UMTRA Project will not, however, be limited to those mechanisms formally required by law. The public may also be involved informally through informational meetings, workshops, and local citizens' task forces. 12 refs., 2 figs., 1 tab.

  8. Quality Assurance Program Plan for the Waste Sampling and Characterization Facility

    International Nuclear Information System (INIS)

    The objective of this Quality Assurance Plan is to provide quality assurance (QA) guidance, implementation of regulatory QA requirements, and quality control (QC) specifications for analytical service. This document follows the Department of Energy (DOE)-issued Hanford Analytical Services Quality Assurance Plan (HASQAP) and additional federal [10 US Code of Federal Regulations (CFR) 830.120] QA requirements that HASQAP does not cover. This document describes how the laboratory implements QA requirements to meet the federal or state requirements, provides what are the default QC specifications, and/or identifies the procedural information that governs how the laboratory operates. In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. This document also covers QA elements that are required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAPPs), (QAMS-004), and Interim Guidelines and Specifications for Preparing Quality Assurance Product Plans (QAMS-005) from the Environmental Protection Agency (EPA). A QA Index is provided in the Appendix A

  9. Quality Assurance Program Plan for the Waste Sampling and Characterization Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grabbe, R.R.

    1995-03-02

    The objective of this Quality Assurance Plan is to provide quality assurance (QA) guidance, implementation of regulatory QA requirements, and quality control (QC) specifications for analytical service. This document follows the Department of Energy (DOE)-issued Hanford Analytical Services Quality Assurance Plan (HASQAP) and additional federal [10 US Code of Federal Regulations (CFR) 830.120] QA requirements that HASQAP does not cover. This document describes how the laboratory implements QA requirements to meet the federal or state requirements, provides what are the default QC specifications, and/or identifies the procedural information that governs how the laboratory operates. In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. This document also covers QA elements that are required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAPPs), (QAMS-004), and Interim Guidelines and Specifications for Preparing Quality Assurance Product Plans (QAMS-005) from the Environmental Protection Agency (EPA). A QA Index is provided in the Appendix A.

  10. Task Technical and Quality Assurance Plan for the Characterization of Tank 25F Saltcake Core Samples

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) recognizes the need for the characterization of High-Level Waste (HLW) saltcake in the Savannah River Site (SRS) F- and H-area tank farms to support upcoming salt processing activities. As part of the enhanced characterization efforts, Tank 25F will be sampled and the samples analyzed at the Savannah River National Laboratory (SRNL). This Task Technical and Quality Assurance Plan documents the planned activities for the physical, chemical, and radiological analysis of the Tank 25F saltcake core samples. This plan does not cover other characterization activities that do not involve core sample analysis and it does not address issues regarding sampling or sample transportation. The objectives of this report are: (1) Provide information useful in projecting the composition of dissolved salt batches by quantifying important components (such as actinides, 137Cs, and 90Sr) on a per batch basis. This will assist in process selection for the treatment of salt batches and provide data for the validation of dissolution modeling. (2) Determine the properties of the heel resulting from dissolution of the bulk saltcake. Also note tendencies toward post-mixing precipitation. (3) Provide a basis for determining the number of samples needed for the characterization of future saltcake tanks. Gather information useful towards performing characterization in a manner that is more cost and time effective

  11. Project Surveillance and Maintenance Plan

    International Nuclear Information System (INIS)

    The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the [guidance] to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs

  12. Model for deployment of a Quality Assurance System in the nuclear fuel cycle facilities using Project Management techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Ricardo F.; Ribeiro, Saulo F.Q., E-mail: rflage@gmail.com, E-mail: quintao.saulo@gmail.com [Industrias Nucleares do Brasil (INB), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Nuclear Safety is the main goal in any nuclear facility. In this sense the Norm CNEN-NN-1.16 classifies the quality assurance issue as a management system to be deployed and implemented by the organization to achieving security goals. Quality Assurance is a set of systematic and planned actions necessary to provide adequate confidence ensuring that a structure, system, component or installation will work satisfactorily in s. Hence, the Quality Assurance System (QAS) is a complete and comprehensive methodology, going far beyond a management plan quality from the perspective of project management. The fundamental of QAS requirements is all activities that influence the quality, involving organizational, human resources, procurement, nuclear safety, projects, procedures and communication. Coordination of all these elements requires a great effort by the team responsible because it usually involves different areas and different levels of hierarchy within the organization. The objectives and desired benefits should be well set for everyone to understand what it means to be achieved and how to achieve. The support of senior management is critical at this stage, providing guidelines and resources necessary to get the job elapse clearly and efficiently, on time, cost and certain scope. The methodology of project management processes can be applied to facilitate and expedite the implementation of this system. Many of the principles of the QAS are correlated with knowledge areas of project management. The proposed model for implementation of a QAS in the nuclear fuel cycle facilities considered the best project management practices according to the Project Management Book of Knowledge (PMBOK - 5th edition) of the Project Management Institute (PMI). This knowledge is considered very good practices around the world. Since the model was defined, the deployment process becomes more practical and efficient, providing reduction in deployment time, better management of human

  13. Model for deployment of a Quality Assurance System in the nuclear fuel cycle facilities using Project Management techniques

    International Nuclear Information System (INIS)

    The Nuclear Safety is the main goal in any nuclear facility. In this sense the Norm CNEN-NN-1.16 classifies the quality assurance issue as a management system to be deployed and implemented by the organization to achieving security goals. Quality Assurance is a set of systematic and planned actions necessary to provide adequate confidence ensuring that a structure, system, component or installation will work satisfactorily in s. Hence, the Quality Assurance System (QAS) is a complete and comprehensive methodology, going far beyond a management plan quality from the perspective of project management. The fundamental of QAS requirements is all activities that influence the quality, involving organizational, human resources, procurement, nuclear safety, projects, procedures and communication. Coordination of all these elements requires a great effort by the team responsible because it usually involves different areas and different levels of hierarchy within the organization. The objectives and desired benefits should be well set for everyone to understand what it means to be achieved and how to achieve. The support of senior management is critical at this stage, providing guidelines and resources necessary to get the job elapse clearly and efficiently, on time, cost and certain scope. The methodology of project management processes can be applied to facilitate and expedite the implementation of this system. Many of the principles of the QAS are correlated with knowledge areas of project management. The proposed model for implementation of a QAS in the nuclear fuel cycle facilities considered the best project management practices according to the Project Management Book of Knowledge (PMBOK - 5th edition) of the Project Management Institute (PMI). This knowledge is considered very good practices around the world. Since the model was defined, the deployment process becomes more practical and efficient, providing reduction in deployment time, better management of human

  14. Quality management system for application of the analytical quality assurance cycle in a research project

    Science.gov (United States)

    Camargo, R. S.; Olivares, I. R. B.

    2016-07-01

    The lack of quality assurance and quality control in academic activities have been recognized by the inability to demonstrate reproducibility. This paper aim to apply a quality tool called Analytical Quality Assurance Cycle on a specific research project, supported by a Verification Programme of equipment and an adapted Quality Management System based on international standards, to provide traceability to the data generated.

  15. Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    1999-03-22

    Created in 1989 to address over 50 years of environmental liabilities arising out of nuclear weapons production and testing in the United States since World War II, the U.S. Department of Energy's (DOE's) Environmental Management (EM) Programs decade-long effort to reduce the costs of those environmental liabilities, collectively known as DOE's ''environmental mortgage,'' includes past as well as future cleanup costs associated with environmental contamination, hazardous and radioactive materials and wastes, contaminated buildings and facilities, and their associated risks. Tasked with the bulk of these cleanup efforts, the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's), Nevada Environmental Restoration Project (NV ERP) is attempting to complete applicable corrective actions at inactive contaminated sites and facilities managed by DOE/NV, while at the same time protecting human health and the environment. Regulated under the Federal Facility Agreement and Consent Order, the objectives of the NV ERP are to identify the nature and extent of the contamination, determine its potential risk to the public and the environment, and to perform the necessary corrective actions in compliance with this and other state and federal regulations, guidelines, and requirements. Associated with this vast effort are approximately 2,000 sites both on and off of the Nevada Test Site (NTS) that were used primarily for nuclear testing and are addressed in the NV ERP. This includes sites that were underground areas where tests were actually conducted, contaminated surface soils resulting from aboveground testing activities, and sites that supported other related testing hardware paraphenalia and/or NTS real estate properties (e.g., underground storage tanks, leachfields, landfills, contaminated waste areas, injection wells, muckpiles, and ponds). To assist in this effort, a NV ERP Team was assembled which is composed of

  16. Project Execution Plan

    International Nuclear Information System (INIS)

    Created in 1989 to address over 50 years of environmental liabilities arising out of nuclear weapons production and testing in the United States since World War II, the U.S. Department of Energy's (DOE's) Environmental Management (EM) Programs decade-long effort to reduce the costs of those environmental liabilities, collectively known as DOE's ''environmental mortgage,'' includes past as well as future cleanup costs associated with environmental contamination, hazardous and radioactive materials and wastes, contaminated buildings and facilities, and their associated risks. Tasked with the bulk of these cleanup efforts, the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's), Nevada Environmental Restoration Project (NV ERP) is attempting to complete applicable corrective actions at inactive contaminated sites and facilities managed by DOE/NV, while at the same time protecting human health and the environment. Regulated under the Federal Facility Agreement and Consent Order, the objectives of the NV ERP are to identify the nature and extent of the contamination, determine its potential risk to the public and the environment, and to perform the necessary corrective actions in compliance with this and other state and federal regulations, guidelines, and requirements. Associated with this vast effort are approximately 2,000 sites both on and off of the Nevada Test Site (NTS) that were used primarily for nuclear testing and are addressed in the NV ERP. This includes sites that were underground areas where tests were actually conducted, contaminated surface soils resulting from aboveground testing activities, and sites that supported other related testing hardware paraphenalia and/or NTS real estate properties (e.g., underground storage tanks, leachfields, landfills, contaminated waste areas, injection wells, muckpiles, and ponds). To assist in this effort, a NV ERP Team was assembled which is composed of organizations from both the public and private

  17. Project management plan for exploratory shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    This Project Management Plan (PMP) provides the basic guidance and describes the organizational structure and procedures for the design, construction, and testing of a large-diameter Exploratory Shaft (ES) in tuffaceous media as a major element within the Nevada Nuclear Waste Storage Investigations (NNWSI) project, which is a part of the National Waste Terminal Storage (NWTS) Program, US Department of Energy (DOE). The PMP encompasses activities identified as construction phase and in situ phase testing to be conducted from the ES through September 30, 1986. Specific topics addressed are the ES project objectives, the management organization and responsibilities, functional support requirements, work plan (including quality assurance aspects), work breakdown structure, milestone schedule, logic diagram, performance criteria, cost estimates, management control systems, procurement plan, test plan, and environmental, health and safety plans

  18. Project Execution Plan, Rev. 3

    International Nuclear Information System (INIS)

    This plan addresses project activities encompassed by the U.S. Department of Energy's (DOE's), National Nuclear Security Administration Nevada Operations Office, Environmental Restoration Division and conforms to the requirements contained in the Life-Cycle Asset Management, DOE Order 430.1A; The Joint Program Office Policy on Project Management in Support of DOE Order 430.1; Program and Project Management for the Acquisition of Capital Assets, DOE Order 413.3; the Project Execution and Engineering Management Planning Guide, GPG-FM-010; and other applicable Good Practice Guides; and the FY 2001 Integrated Planning, Accountability, and Budgeting System Policy Guidance. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense; and traditional project management philosophies such as the development of life-cycle costs, schedules, and work scope; identification o f roles and responsibilities; and baseline management and controls

  19. SAPHIRE 8 Software Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Curtis L.Smith; Ted S. Wood

    2010-03-01

    This project is being conducted at the request of the DOE and the NRC. The INL has been requested by the NRC to improve and maintain the Systems Analysis Programs for Hands-on Integrated Reliability Evaluation (SAPHIRE) tool set concurrent with the changing needs of the user community as well as staying current with new technologies. Successful completion will be upon NRC approved release of all software and accompanying documentation in a timely fashion. This project will enhance the SAPHIRE tool set for the user community (NRC, Nuclear Power Plant operations, Probabilistic Risk Analysis (PRA) model developers) by providing improved Common Cause Failure (CCF), External Events, Level 2, and Significance Determination Process (SDP) analysis capabilities. The SAPHIRE development team at the Idaho National Laboratory is responsible for successful completion of this project. The project is under the supervision of Curtis L. Smith, PhD, Technical Lead for the SAPHIRE application. All current capabilities from SAPHIRE version 7 will be maintained in SAPHIRE 8. The following additional capabilities will be incorporated: • Incorporation of SPAR models for the SDP interface. • Improved quality assurance activities for PRA calculations of SAPHIRE Version 8. • Continue the current activities for code maintenance, documentation, and user support for the code.

  20. SAPHIRE 8 Software Project Plan

    International Nuclear Information System (INIS)

    This project is being conducted at the request of the DOE and the NRC. The INL has been requested by the NRC to improve and maintain the Systems Analysis Programs for Hands-on Integrated Reliability Evaluation (SAPHIRE) tool set concurrent with the changing needs of the user community as well as staying current with new technologies. Successful completion will be upon NRC approved release of all software and accompanying documentation in a timely fashion. This project will enhance the SAPHIRE tool set for the user community (NRC, Nuclear Power Plant operations, Probabilistic Risk Analysis (PRA) model developers) by providing improved Common Cause Failure (CCF), External Events, Level 2, and Significance Determination Process (SDP) analysis capabilities. The SAPHIRE development team at the Idaho National Laboratory is responsible for successful completion of this project. The project is under the supervision of Curtis L. Smith, PhD, Technical Lead for the SAPHIRE application. All current capabilities from SAPHIRE version 7 will be maintained in SAPHIRE 8. The following additional capabilities will be incorporated: (1) Incorporation of SPAR models for the SDP interface. (2) Improved quality assurance activities for PRA calculations of SAPHIRE Version 8. (3) Continue the current activities for code maintenance, documentation, and user support for the code.

  1. PACTEL OECD project planning (PACO). PACTEL OECD project planning

    International Nuclear Information System (INIS)

    OECD launched the SETH project to investigate issues relevant for accident prevention and management and to ensure the existence of integral thermal hydraulic test facilities. The facilities included in the SETH project are PKL from Germany and PANDA from Switzerland. At the early stages of the SETH project an idea was raised to exploit the PACTEL facility in a similar OECD project. Without any external funding the analytical work in the required extent would not be possible within Lappeenranta University of Technology, the party responsible of operating PACTEL. This fact directed the PACO project proposal to be conducted for the SAFIR programme. The aim of the PACO project is to prepare a project proposal to OECD of a PACTEL related project. To attain this objective some preliminary analyses have to be performed to ensure the relevancy of the proposed topic. The low power situation, i.e. midloop state was chosen to be the topic in the PACO studies and project planning basis. The plan is to use PACTEL to examine vertical steam generator behaviour during the midloop operation and the following loss of residual heat removal system transient. Such a possibility is acknowledged with special alterations to PACTEL. The APROS code version 5.04.07 was selected as a tool for the preanalyses. The virtual simulation of the chosen experimental situation would give a preconception on the phenomena to be expected and the progression of the transient. Originally the PACO project was planned to continue only for a few months, ending up with the project proposal to OECD during the summer time 2004. During the pre-calculation process it became obvious that the time expected was not enough to establish good pre-calculation results. The reasons for this relates to time used to learn and adapt the use of the chosen code, improvements and corrections in modelling as well as the code ability to manage the special conditions defined for the project topic. Another aspect on completing a

  2. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  3. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  4. Recommendations for a Software Quality Assurance Plan for the CMR Facility at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Adams, K.; Matthews, S. D.; McQueen, M. A.

    1998-10-01

    The Nuclear Materials Technology (NMT) organizations 1 and 3 within the Chemical and Metallurgical Research (CMR) facility at the Los Alamos National Laboratory are working to achieve Waste Isolation Pilot Plant (WIPP) certification to enable them to transport their TRU waste to WIPP. This document is intended to provide not only recommendations to address the necessary software quality assurance activities to enable the NMT-1 and NMT-3 organizations to be WIPP compliant but is also meant to provide a template for the final Software Quality Assurance Plan (SQAP). This document specifically addresses software quality assurance for all software used in support of waste characterization and analysis. Since NMT-1 and NMT-3 currently have several operational software products that are used for waste characterization and analysis, these software quality assurance recommendations apply to the operations, maintenance and retirement of the software and the creation and development of any new software required for waste characterization and analyses.

  5. Summary report on the Solar Consumer Assurance Network (SOLCAN) Program Planning Task in the southern region

    Energy Technology Data Exchange (ETDEWEB)

    Browne, M. B. [comp.

    1981-03-15

    The goal of the SOLCAN Program Planning Task is to assist in the development, at the state and local levels, of consumer assurance approaches that will support the accelerated adoption and effective use of new products promoted by government incentives to consumers to meet our nation's energy needs. The task includes state-conducted evaluations and state SOLCAN meetings to identify consumer assurance mechanisms, assess their effectiveness, and identify and describe alternative means for strengthening consumer and industry assurance in each state. Results of the SOLCAN process are presented, including: a Solar Consumer Protection State Assessment Guide; State Solar Consumer Assurance Resources for Selected States; State Solar Consumer Protection Assessment Interviews for Florida; and state SOLCAN meeting summaries and participants. (LEW)

  6. Recommendations for a Software Quality Assurance Plan for the CMR Facility at LANL

    International Nuclear Information System (INIS)

    The Nuclear Materials Technology (NMT) organizations 1 and 3 within the Chemical and Metallurgical Research (CMR) facility at the Los Alamos National Laboratory are working to achieve Waste Isolation Pilot Plant (WIPP) certification to enable them to transport their TRU waste to WIPP. This document is intended to provide not only recommendations to address the necessary software quality assurance activities to enable the NMT-1 and NMT-3 organizations to be WIPP compliant but is also meant to provide a template for the final Software Quality Assurance Plan (SQAP). This document specifically addresses software quality assurance for all software used in support of waste characterization and analysis. Since NMT-1 and NMT-3 currently have several operational software products that are used for waste characterization and analysis, these software quality assurance recommendations apply to the operations, maintenance and retirement of the software and the creation and development of any new software required for waste characterization and analyses

  7. Planning for high performance project teams

    International Nuclear Information System (INIS)

    Both industry-wide research and corporate benchmarking studies confirm the significant savings in cost and time that result from early planning of a project. Amoco's Team Planning Workshop combines long-term strategic project planning and short-term tactical planning with team building to provide the basis for high performing project teams, better project planning, and effective implementation of the Amoco Common Process for managing projects

  8. Improving Quality Assurance with CDIO Self-Evaluation: Experiences From a Nordic Project

    OpenAIRE

    Kontio, Juha; Roslöf, Janne; Edström, Kristina; Naumann, Sara; Hussmann, Peter Munkebo; Schrey-Niemenmaa, Katriina; Karhu, Markku

    2012-01-01

    The main goal of the Nordic project Quality Assurance in Higher Education was to develop and implementa self-evaluation model in the participating Higher Education Institutes (HEIs) to support their quality assurancework and continuous curriculum development. Furthermore, the project aimed at strengthening thecooperation of HEIs in quality assurance (QA) and disseminating good practices of QA. The framework ofdevelopment is based on the CDIO approach and the CDIO self-evaluation process. The ...

  9. Assuring a Healthy Future: Succession Planning at Independent Schools

    Science.gov (United States)

    Mason, Peter L.

    2015-01-01

    On Monday, October 6, 2014, Meg Whitman, CEO of Hewlett Packard, announced that her company would be splitting into two companies and laying off thousands of employees in the process. Speaking to "Fortune" magazine, Whitman underscored that the company's problems over the years relate directly to a lack of succession planning among…

  10. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  11. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    International Nuclear Information System (INIS)

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO's quality standards during the software maintenance phase. 8 refs., 1 tab

  12. Quality Interaction Between Mission Assurance and Project Team Members

    Science.gov (United States)

    Kwong-Fu, Helenann H.; Wilson, Robert K.

    2006-01-01

    Mission Assurance independent assessments started during the development cycle and continued through post launch operations. In operations, Health and Safety of the Observatory is of utmost importance. Therefore, Mission Assurance must ensure requirements compliance and focus on process improvements required across the operational systems including new/modified products, tools, and procedures. The deployment of the interactive model involves three objectives: Team member Interaction, Good Root Cause Analysis Practices, and Risk Assessment to avoid reoccurrences. In applying this model, we use a metric based measurement process and was found to have the most significant effect, which points to the importance of focuses on a combination of root cause analysis and risk approaches allowing the engineers the ability to prioritize and quantify their corrective actions based on a well-defined set of root cause definitions (i.e. closure criteria for problem reports), success criteria and risk rating definitions.

  13. Financial assurances

    International Nuclear Information System (INIS)

    US Ecology is a full service waste management company. The company operates two of the nation's three existing low-level radioactive waste (LLRW) disposal facilities and has prepared and submitted license applications for two new LLRW disposal facilities in California and Nebraska. The issue of financial assurances is an important aspect of site development and operation. Proper financial assurances help to insure that uninterrupted operation, closure and monitoring of a facility will be maintained throughout the project's life. Unfortunately, this aspect of licensing is not like others where you can gauge acceptance by examining approved computer codes, site performance standards or applying specific technical formulas. There is not a standard financial assurance plan. Each site should develop its requirements based upon the conditions of the site, type of design, existing state or federal controls, and realistic assessments of future financial needs. Financial assurances at U.S. Ecology's existing sites in Richland, Washington, and Beatty, Nevada, have been in place for several years and are accomplished in a variety of ways by the use of corporate guarantees, corporate capital funds, third party liability insurance, and post closure/long-term care funds. In addressing financial assurances, one can divide the issue into three areas: Site development/operations, third party damages, and long-term care/cleanup

  14. Quality and Safety Assurance - Priority Task at Nuclear Power Projects Implementation

    International Nuclear Information System (INIS)

    Quality and safety assurance at implementation of nuclear power engineering projects is important and difficult task for realization. Many problems arise during this process, when many companies from different countries participate, with various kinds of activities and services provided. The scope of activities necessary for quality and safety assurance is therefore quite expanded and diverse. In order to increase the safety and reliability of Kozloduy NPP Plc (KNPP) Units 5 and 6, as well as to bring the units in conformity with the newest international requirements for quality and safety in the field of nuclear energy, a program for their modernization on the basis of different technical studies and assessments was implemented. The Units 5 and 6 Modernization Program of Kozloduy Nuclear Power Plant was composed of 212 modifications aimed to improve the safety, operability, and reliability of the Units. The Program was realized by stages during yearly planned outages since year 2002 to 2007, without additional outages. A major Program Objective was to extend the Units Life Time in at least 15 Years, under a continuous, safe, and reliable operation. The Modernization Program of Units 5 and 6 of the Bulgarian Nuclear Power Plant in Kozloduy was the first and for the time being the only one in the world, program in the field of nuclear power engineering, by which the full scope of recommendations for improvement of the Kozloduy NPP units was applied. The main goal of the National Electric Company, which is the Employer for the construction of new nuclear facility in Bulgaria, is after completion of all activities regarding construction of Belene NPP the plant to meet or exceed the requirements of the respective national and international quality and safety codes and standards, as well as the IAEA guidelines, as they are established. The objective of this report is to describe different aspects of the quality assurance according to the requirements of quality and

  15. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q. [Department of Radiation Oncology, Duke University Medical Center Durham, North Carolina 27710 (United States)

    2015-01-15

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  16. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    International Nuclear Information System (INIS)

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  17. The APT program plan: Providing an assured tritium production capability

    International Nuclear Information System (INIS)

    Tritium is a radioactive hydrogen isotope used in all U.S. nuclear weapons. Because the half-life of tritium is short, 12.3 yr, it must be periodically replenished. To provide a new source, the U.S. Department of Energy (DOE) is sponsoring conceptual design and engineering development and demonstration activities for a plant that will use a high-power proton linear accelerator to produce tritium and will go on-line no later than 2007. The APT project is in the process of completing the conceptual design for a tritium production plant. In addition, there are several important areas under engineering development and demonstration that will ensure an efficient, cost-effective plant design and provide an adequate margin of tritium production. Information provided from this work will be used by the DOE in its 1998 choice of production technology implementation

  18. SNF Project Engineering Process Improvement Plan

    International Nuclear Information System (INIS)

    This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities

  19. Advanced Life Support Project Plan

    Science.gov (United States)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  20. Development of integrated software project planning model

    OpenAIRE

    Manalif, Ekananta; Capretz, Luiz Fernando; Ho, Danny

    2012-01-01

    As the most uncertain and complex project when compared to other types of projects, software development project is highly depend on the result of software project planning phase that helping project managers by predicting the project demands with respect to the budgeting, scheduling, and the allocation of resources. The two main activities in software project planning are effort estimation and risk assessment which has to be executed together because the accuracy of the effort estimation is ...

  1. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Shipler, D.B.

    1992-03-01

    This Project Management Plan (PMP) describes the approach that will be used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems that will be used to plan and control the HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease Control (CDC), and the Technical Steering Panel (TSP).

  2. Design and development of an expert system based quality assurance module for the Dynamo Model of software project management

    OpenAIRE

    Leidy, Frank H.

    1989-01-01

    Quality assurance is a crucial function to the successful development and maintenance of a software system. Because this activity has a significant impact on the cost of software development, the cost-effectiveness of quality assurance is a major concern to the software quality manager. There are tradeoffs between the economic benefits and costs of quality assurance. Using the Dynamo model of software project management, an optimal quality assurance level and its distribution throughout a pro...

  3. Quality-Assurance Plan for Water-Quality Activities in the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Wagner, Richard J.; Kimbrough, Robert A.; Turney, Gary L.

    2007-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), this quality-assurance plan has been created for use by the USGS Washington Water Science Center (WAWSC) in conducting water-quality activities. The plan documents the standards, policies, and procedures used by the personnel of the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures that are documented in this quality-assurance plan for water-quality activities are meant to complement the WAWSC's quality-assurance plans for surface-water and ground-water activities and to supplement the WAWSC quality-assurance plan.

  4. QUALITY ASSURANCE PLAN FOR 1991 PILOT STUDY OF ECOLOGICAL CONDITION OF MUNICIPAL WASTEWATER CONSTRUCTED WETLAND TREATMENT SYSTEMS

    Science.gov (United States)

    The purpose of this quality assurance plan is to detail the methods and procedures to be used in the pilot study of the ecological condition in municipal wastewater constructed wetland treatment systems. t includes specific procedures for assuring that data are of known, high qua...

  5. Optimisation of small-scale hydropower using quality assurance methods - Preliminary project; Vorprojekt: Optimierung von Kleinwasserkraftwerken durch Qualitaetssicherung. Programm Kleinwasserkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, S.; Staubli, T.

    2006-11-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary project that examined how quality assurance methods can be used in the optimisation of small-scale hydropower projects. The aim of the project, to use existing know-how, experience and synergies, is examined. Discrepancies in quality and their effects on production prices were determined in interviews. The paper describes best-practice guidelines for the quality assurance of small-scale hydro schemes. A flow chart describes the various steps that have to be taken in the project and realisation work. Information collected from planners and from interviews made with them are presented along with further information obtained from literature. The results of interviews concerning planning work, putting to tender and the construction stages of these hydro schemes are presented and commented on. Similarly, the operational phase of such power plant is also examined, including questions on operation and guarantees. The aims of the follow-up main project - the definition of a tool and guidelines for ensuring quality - are briefly reviewed.

  6. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    International Nuclear Information System (INIS)

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references

  7. Software Quality Assurance-Challenges in Launch Vehicle Projects

    OpenAIRE

    Poofa Gopalan; S.S. Uma Sankari; D. Mohan Kumar; R. Vikraman Nair

    2006-01-01

    Launch vehicle projects now depend on software, more than ever before, to ensure safetyand efficiency. Such critical software syfiems, which can lead to injury, destruction or loss ofvital equipment, human lives, and damage to environment, must be developed and verified withhigh level of quality and reliability. An overview of current quality practices pursued in launchvehicle projects is presented in this paper. These practices have played a vital role in the successfullaunch vehicle mission...

  8. Software Project Planning : The Relationship between Project Planning and Project Success

    OpenAIRE

    Ljungquist, Andreas; Rosander, Björn

    2004-01-01

    Software engineering is the computer science discipline concerned with developing computer software. However, software engineering does not only include the technical perspective of producing software. It also involves management issues, such as planning, controlling, and monitoring a software project. A project typically embraces a structured set of activities, which are performed in a pre-determined sequence. The initial activity is generally the process of planning the project, which accor...

  9. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Shipler, D.B.; McMakin, A.H.; Finch, S.M.

    1992-09-01

    This Project Management Plan (PMP) describes the approach being used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems used to plan and control HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease control (CDC), and the Technical Steering Panel (TSP). Battelle`s contract with CDC only extends through May 1994 when the key technical work will be completed. There-fore, this plan is focused only on the period during which Battelle is a participant.

  10. Project Management Plan for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Shipler, D.B.; McMakin, A.H.; Finch, S.M.

    1992-09-01

    This Project Management Plan (PMP) describes the approach being used to manage the Hanford Environmental Dose Reconstruction (HEDR) Project. The plan describes the management structure and the technical and administrative control systems used to plan and control HEDR Project performance. The plan also describes the relationship among key project participants: Battelle, the Centers for Disease control (CDC), and the Technical Steering Panel (TSP). Battelle's contract with CDC only extends through May 1994 when the key technical work will be completed. There-fore, this plan is focused only on the period during which Battelle is a participant.

  11. Spent Nuclear Fuel project interface control plan

    International Nuclear Information System (INIS)

    This implementation process philosophy is in keeping with the ongoing reengineering of the WHC Controlled Manuals to achieve interface control within the SNF Project. This plan applies to all SNF Project sub-project to sub-project, and sub-project to exteranl (both on and off the Hanford Site) interfaces

  12. Project structure plan requirements for the deconstruction projects

    International Nuclear Information System (INIS)

    The deconstruction of nuclear facilities requires due to the particular conditions and the size of the project a special project planning. The authors analyze the possible requirements to be fulfilled by a project structure plan for nuclear facilities, including personnel resources, organization structure, budget questions, operation and project oriented measures, possibility of modifications and supplements. Further topics include controlling and project realization procedures, documentation, third party activities (authorities, consultants, surveyors), logistics and transport, and radiation protection issues. Several questions remain for plants-specific planning, including the integration of the plant personnel, administrative work, project management, economic and financial issues, radioactive waste management issues.

  13. Lessons Learned from Canadian Pre-Project Design Review - Quality assurance of design

    International Nuclear Information System (INIS)

    This presentation deals with lessons learned from Canadian pre-project design review. It provides an overview of the Canadian legislative and regulatory framework and the pre-licensing review process. It highlights 12 lessons learned from design reviews, including incomplete project quality assurance program, lack of definition of design management process, lack of implementing procedures, weaknesses in considerations of interconnections between systems, non-conformances related to control of design, and difficulties in addressing the functions and responsibilities of the design authority

  14. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  15. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and

  16. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal

  17. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    Science.gov (United States)

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  18. Fast flux test facility, transition project plan

    International Nuclear Information System (INIS)

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  19. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  20. Quality assurance of IMRT plan evaluation and dosimetric comparison using AAPM Task Group 119

    International Nuclear Information System (INIS)

    Intensity Modulation Radiotherapy (IMRT) planning demands stringent quality assurance and accurate dose determination for delivery of highly conformal dose to the patients. Generally 3-D dose distributions obtained from a treatment planning system have to be verified by dosimetric methods (Herzen J 2007). Commissioning studies are best done by defining target and normal structure shapes on CT images of the dosimetry phantom, planning the treatment, and then comparing the measured dose in the phantom to the planned dose from the computer system. These studies should mimic the types of target and structure geometries along with the target doses and dose constraints that are likely to be encountered in the clinic. IMRT commissioning procedure based on multi institution planning and dosimetry comparisons was proposed by AAPM task group 119 (Ezzell G A 2009). In order to verify our IMRT QA procedure and to establish the practical base line commissioning, we downloaded the AAPM TGI 19 test suite DICOM-RT images and structure sets to our treatment planning system (TPS) for planning and dosimetric comparison. The square slab phantom CT images of dimension 30 cm X 30 cm x 15 cm were loaded to the Eclipse (V8.6) TPS

  1. Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated Pareto-optimal treatment plans

    Science.gov (United States)

    Wang, Yibing; Breedveld, Sebastiaan; Heijmen, Ben; Petit, Steven F.

    2016-06-01

    IMRT planning with commercial Treatment Planning Systems (TPSs) is a trial-and-error process. Consequently, the quality of treatment plans may not be consistent among patients, planners and institutions. Recently, different plan quality assurance (QA) models have been proposed, that could flag and guide improvement of suboptimal treatment plans. However, the performance of these models was validated using plans that were created using the conventional trail-and-error treatment planning process. Consequently, it is challenging to assess and compare quantitatively the accuracy of different treatment planning QA models. Therefore, we created a golden standard dataset of consistently planned Pareto-optimal IMRT plans for 115 prostate patients. Next, the dataset was used to assess the performance of a treatment planning QA model that uses the overlap volume histogram (OVH). 115 prostate IMRT plans were fully automatically planned using our in-house developed TPS Erasmus-iCycle. An existing OVH model was trained on the plans of 58 of the patients. Next it was applied to predict DVHs of the rectum, bladder and anus of the remaining 57 patients. The predictions were compared with the achieved values of the golden standard plans for the rectum D mean, V 65, and V 75, and D mean of the anus and the bladder. For the rectum, the prediction errors (predicted–achieved) were only  ‑0.2  ±  0.9 Gy (mean  ±  1 SD) for D mean,‑1.0  ±  1.6% for V 65, and  ‑0.4  ±  1.1% for V 75. For D mean of the anus and the bladder, the prediction error was 0.1  ±  1.6 Gy and 4.8  ±  4.1 Gy, respectively. Increasing the training cohort to 114 patients only led to minor improvements. A dataset of consistently planned Pareto-optimal prostate IMRT plans was generated. This dataset can be used to train new, and validate and compare existing treatment planning QA models, and has been made publicly available. The OVH model was highly

  2. Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated Pareto-optimal treatment plans.

    Science.gov (United States)

    Wang, Yibing; Breedveld, Sebastiaan; Heijmen, Ben; Petit, Steven F

    2016-06-01

    IMRT planning with commercial Treatment Planning Systems (TPSs) is a trial-and-error process. Consequently, the quality of treatment plans may not be consistent among patients, planners and institutions. Recently, different plan quality assurance (QA) models have been proposed, that could flag and guide improvement of suboptimal treatment plans. However, the performance of these models was validated using plans that were created using the conventional trail-and-error treatment planning process. Consequently, it is challenging to assess and compare quantitatively the accuracy of different treatment planning QA models. Therefore, we created a golden standard dataset of consistently planned Pareto-optimal IMRT plans for 115 prostate patients. Next, the dataset was used to assess the performance of a treatment planning QA model that uses the overlap volume histogram (OVH). 115 prostate IMRT plans were fully automatically planned using our in-house developed TPS Erasmus-iCycle. An existing OVH model was trained on the plans of 58 of the patients. Next it was applied to predict DVHs of the rectum, bladder and anus of the remaining 57 patients. The predictions were compared with the achieved values of the golden standard plans for the rectum D mean, V 65, and V 75, and D mean of the anus and the bladder. For the rectum, the prediction errors (predicted-achieved) were only  -0.2  ±  0.9 Gy (mean  ±  1 SD) for D mean,-1.0  ±  1.6% for V 65, and  -0.4  ±  1.1% for V 75. For D mean of the anus and the bladder, the prediction error was 0.1  ±  1.6 Gy and 4.8  ±  4.1 Gy, respectively. Increasing the training cohort to 114 patients only led to minor improvements. A dataset of consistently planned Pareto-optimal prostate IMRT plans was generated. This dataset can be used to train new, and validate and compare existing treatment planning QA models, and has been made publicly available. The OVH model was highly accurate

  3. Plan van aanpak project : Social Media Lab

    NARCIS (Netherlands)

    Beer, Erwin; Kox, Corné; Willems, Frank

    2013-01-01

    Dit document beschrijft de projectopdracht voor het project Social Media Lab en geeft de criteria waaraan het project moet voldoen om te slagen. Het bevat tevens het plan van aanpak voor het uitvoeren van het project. Doel van het project is het realiseren van een fysiek Social Media Lab, waar door

  4. Implementation of a quality assurance program for computerized treatment planning systems

    International Nuclear Information System (INIS)

    In the present investigation, the necessary tests for implementing a quality assurance program for a commercial treatment planning system (TPS), recently installed at Sao Paulo University School of Medicine Clinicas Hospital--Brazil, was established and performed in accordance with the new IAEA publication TRS 430, and with AAPM Task Group 53. The tests recommended by those documents are classified mainly into acceptance, commissioning (dosimetric and nondosimetric), periodic quality assurance, and patient specific quality assurance tests. The recommendations of both IAEA and AAPM documents are being implemented at the hospital for photon beams produced by two linear accelerators. A Farmer ionization chamber was used in a 30x30x30 cm3 phantom with a dose rate of 320 monitor unit (MU)/min and 50 MU in the case of the dosimetric tests. The acceptance tests verified hardware, network systems integration, data transfer, and software parameters. The results obtained are in good agreement with the specifications of the manufacturer. For the commissioning dosimetric tests, the absolute dose was measured for simple geometries, such as square and rectangular fields, up to more complex geometries such as off-axis hard wedges and for behavior in the build up region. Results were analysed by the use of confidence limit as proposed by Venselaar et al. [Radio Ther. Oncol. 60, 191-201 (2001)]. Criteria of acceptability had been applied also for the comparison between the values of MU calculated manually and MU generated by TPS. The results of the dosimetric tests show that work can be reduced by choosing to perform only those that are more crucial, such as oblique incidence, shaped fields, hard wedges, and buildup region behavior. Staff experience with the implementation of the quality assurance program for a commercial TPS is extremely useful as part of a training program

  5. Plan d'assurance qualité (PAQ) un outil de partenariat

    CERN Document Server

    Pasquali, J

    1998-01-01

    En matière d'assurance qualité, la formalisation du système qualité est nécessaire pour démontrer la conformité par rapport au modèle (ex : ISO 9001, 9002 ou 9003). Dans ce cadre, certains contractants mettent en place un plan d'assurance qualité PAQ destiné à contenir les dispositions spécifiques à l'exécution de leur contrat avec le CERN. Si le PAQ, outil du système qualité du contractant, régit la relation « ST-contractant », il n'en demeure pas moins qu'une définition précise de « ce que l'on veut » s'avère indispensable. L'assurance qualité est censée garantir la régularité de la qualité pour obtenir la confiance des clients et réduire les coûts par la réduction des contrôles et des dysfonctionnements. Cela suppose qu'en amont, la parfaite prise en compte des besoins du client final de la part de « ST »soit assurée. Cela le sera d'autant plus et mieux, qu'avec la démarche "Qualité", ST pourra pleinement se concentrer sur son rôle de conseiller, d'expert technique et...

  6. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    International Nuclear Information System (INIS)

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS

  7. Fission-Product Development Laboratory cell-decommissioning project plan

    International Nuclear Information System (INIS)

    The Fission Product Development Laboratory (FPDL) at Oak Ridge National Laboratory (ORNL) was a full-scale processing facility for separating megacurie quantities of 90Sr, 137Cs, and 144Ce for a variety of source applications, operating at full capacity from 1958 to 1975. Since facility shutdown, the inactive portions of the FPDL have been maintained in a protective storage mode as part of the ORNL Surplus Facilities Management Program (SFMP). Due to the significant radio-nuclide inventory remaining in the facility, the high surveillance and maintenance costs necessary to assure radionuclide containment, and the potential for reuse of the facility by other programs, the decommissioning of the inactive portions of the FPDL has been given a high priority by the SFMP. In response to this program direction, plans are being made for initiation of these activities in late FY 1983. This project plan has been prepared to satisfy the program documentation requirements for SFMP project planning. The plan outlines the scope of the proposed effort, describes the proposed methods of project accomplishment, and provides estimates of the project resource needs and schedule

  8. Understanding Applications of Project Planning and Scheduling in Construction Projects

    OpenAIRE

    AlNasseri, Hammad Abdullah

    2015-01-01

    Construction project life-cycle processes must be managed in a more effective and predictable way to meet project stakeholders’ needs. However, there is increasing concern about whether know-how effectively improves understanding of underlying theories of project management processes for construction organizations and their project managers. Project planning and scheduling are considered as key and challenging tools in controlling and monitoring project performance, but many worldwide constru...

  9. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and

  10. UMTRA Project: Environment, Safety, and Health Plan

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project`s ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors` evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations.

  11. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  12. The planning of a Customer Relationship Management project: requirements and opportunities

    OpenAIRE

    Adriana OLARU; Alexandru CAPATINA

    2007-01-01

    After a brief presentation of the aspects regarding the planning of a customer relationship management (CRM) project, we emphasize the factors that assure the success of such an approach. In order to obtain the attended results, an organization needs the best selection of the project manager and the most efficient teamwork, which implies employees from the company’s departments and also IT specialists. In the final part, we made appreciations concerning the efficiency of a CRM project and the...

  13. Uranium Mill Tailings Remedial Action Project surface project management plan

    International Nuclear Information System (INIS)

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials

  14. Use of statistic control of the process as part of a quality assurance plan

    International Nuclear Information System (INIS)

    One of the technical requirements of the standard IRAM ISO 17025 for the accreditation of testing laboratories, is the assurance of the quality of the results through the control and monitoring of the factors influencing the reliability of them. The grade the factors contribute to the total measurement uncertainty, determines which of them should be considered when developing a quality assurance plan. The laboratory of environmental measurements of strontium-90 in the accreditation process, performs most of its determinations in samples with values close to the detection limit. For this reason the correct characterization of the white, is a critical parameter and is verified through a letter for statistical process control. The scope of the present work is concerned the control of whites and so it was collected a statistically significant amount of data, for a period of time that is covered of different conditions. This allowed consider significant variables in the process, such as temperature and humidity, and build a graph of white control, which forms the basis of a statistical process control. The data obtained were lower and upper limits for the preparation of the charter white control. In this way the process of characterization of white was considered to operate under statistical control and concludes that it can be used as part of a plan of insurance of the quality

  15. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). DOE plans to conduct experiments in the WIPP during a Test Phase of approximately 5 years. These experiments will be conducted to reduce the uncertainties associated with the prediction of several processes (e.g., gas generation) that may influence repository performance. The results of the experiments will be used to assess the ability of the WIPP to meet regulatory requirements for the long-term protection of human health and the environment from the disposal of TRU wastes. 37 refs., 25 figs., 18 tabs

  16. Licensing plan for UMTRA project disposal sites

    International Nuclear Information System (INIS)

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC's acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information

  17. UMTRA Project: Environment, Safety, and Health Plan

    International Nuclear Information System (INIS)

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project's ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors' evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations

  18. Planning of construction projects: a managerial approach

    OpenAIRE

    Sunke, Nicole

    2009-01-01

    The construction industry, in contrast to the manufacturing industries, is characterized by an unstable and complex project planning environment. Moreover, construction still is an unsustainable industry, especially focusing on economic and ecological aspects of sustainability. From the economic perspective it was revealed that construction projects are often delayed and over budget, i. e. they suffer poor performance. Poor performance can be traced back to project planning procedures. Main c...

  19. SAPHIRE 8 Software Quality Assurance Oversight

    Energy Technology Data Exchange (ETDEWEB)

    Kurt G. Vedros

    2011-09-01

    The software quality assurance oversight consists of updating and maintaining revision control of the SAPHIRE 8 quality assurance program documentation and of monitoring revision control of the SAPHIRE 8 source code. This report summarizes the oversight efforts through description of the revision control system (RCS) setup, operation and contents. Documents maintained under revision control include the Acceptance Test Plan (ATP), Configuration Management Plan, Quality Assurance Plan, Software Project Plan, Requirements Traceability Matrix (RTM), System Test Plan, SDP Interface Training Manual, and the SAPHIRE 8, 'New Features and Capabilities Overview'.

  20. Graduate Student Project: Operations Management Product Plan

    Science.gov (United States)

    Fish, Lynn

    2007-01-01

    An operations management product project is an effective instructional technique that fills a void in current operations management literature in product planning. More than 94.1% of 286 graduates favored the project as a learning tool, and results demonstrate the significant impact the project had in predicting student performance. The author…

  1. Quality assurance considerations in nuclear waste management

    International Nuclear Information System (INIS)

    Proper use of quality assurance will provide the basis for an effective management control system for nuclear waste management programs. Control is essential for achieving successful programs free from costly losses and failures and for assuring the public and regulators that the environment and health and safety are being protected. The essence of quality assurance is the conscientious use of planned and systematic actions, based on selecting and applying appropriate requirements from an established quality assurance standard. Developing a quality assurance program consists of using knowledge of the technical and managerial aspects of a project to identify and evaluate risks of loss and failure and then to select appropriate quality assurance requirements that will minimize the risks. Those requirements are integrated into the project planning documents and are carried out as specific actions during the life of the project

  2. Project Management Plan for Material Stabilization

    International Nuclear Information System (INIS)

    This plan presents the overall objectives, description, justification and planning for the plutonium Finishing Plant (PFP) Materials Stabilization project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617/Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines to manager the execution of this project. It describes the organizational approach and roles/responsibilities to be implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action. Materials stabilization is designated the responsibility to open and stabilize containers of plutonium metal, oxides, alloys, compounds, and sources. Each of these items is at least 30 weight percent plutonium/uranium. The output of this project will be containers of materials in a safe and stable form suitable for storage pending final packaging and/or transportation offsite. The corrosion products along with oxides and compounds will be stabilized via muffle furnaces to reduce the materials to high fired oxides

  3. Policy and planning for large infrastructure projects

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2005-01-01

    This paper focuses on problems and their causes and cures in policy and planning for large infrastructure projects. First, it identifies as the main problem in major infrastructure development pervasive misinformation about the costs, benefits, and risks involved. A consequence of misinformation ...... for large infrastructure projects, with a focus on better planning methods and changed governance structures, the latter being more important.......This paper focuses on problems and their causes and cures in policy and planning for large infrastructure projects. First, it identifies as the main problem in major infrastructure development pervasive misinformation about the costs, benefits, and risks involved. A consequence of misinformation is...... likelihood that it is their projects, and not the competition's, that gain approval and funding. This results in the "survival of the unfittest," where often it is not the best projects that are built, but the most misrepresented ones. Finally, the paper presents measures for reforming policy and planning...

  4. Corrective action investigation plan for Project Shoal Area CAU No. 416

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This Corrective Action Investigation Plan (CAIP) is part of an ongoing US Department of Energy (DOE)-funded project for the investigation of Corrective Action Unit (CAU) No. 416, Project Shoal Area (PSA). Project Shoal was conducted to determine whether seismic waves produced by underground nuclear testing could be differentiated from naturally occurring earthquakes. The PSA site is located approximately 30 miles southeast of Fallon, Nevada, in the northern portion of Sand Springs Mountains in Churchill County. This CAIP will be implemented in accordance with the Federal Facility Agreement and Consent Order, the Industrial Sites Quality Assurance Project Plan, and all applicable Nevada Division of Environmental Protection policies and regulations.

  5. Oak Ridge National Laboratory Facilities Revitalization Project - Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Myrick, T.E.

    2000-06-06

    The Facilities Revitalization Project (FRP) has been established at Oak Ridge National Laboratory (ORNL) to provide new and/or refurbished research and support facilities for the Laboratory's science mission. The FRP vision is to provide ORNL staff with world-class facilities, consolidated at the X-10 site, with the first phase of construction to be completed within five years. The project will utilize a combination of U.S. Department of Energy (DOE), State of Tennessee, and private-sector funds to accomplish the new construction, with the facilities requirements to be focused on support of the ORNL Institutional Plan. This FRP Project Management Plan has been developed to provide the framework under which the project will be conducted. It is intended that the FRP will be managed as a programmatic office, with primary resources for execution of the project to be obtained from the responsible organizations within ORNL (Engineering, Procurement, Strategic Planning, etc.). The FRP Project Management Plan includes a definition of the project scope, the organizational responsibilities, and project approach, including detailed Work Breakdown Structure (WBS), followed by more detailed discussions of each of the main WBS elements: Project Planning Basis, Facility Deactivation and Consolidation, and New Facilities Development. Finally, a general discussion of the overall project schedule and cost tracking approach is provided.

  6. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  7. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project (the Project) to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819 (1819). These requirements are imposed on all engineering activities performed for the Project and apply to all life-cycle stages of the Project's systems, structures and components (SSCs). This Plan describes the steps that will be taken by the Project during the transition period to ensure that new procedures are effectively integrated into the Project's work process as these procedures are issued. The consolidated procedures will be issued and implemented by September 30, 1999

  8. Quality assurance of HDR prostate plans: Program implementation at a community hospital

    International Nuclear Information System (INIS)

    Adenocarcinoma of the prostate is currently the most commonly diagnosed cancer in men in the United States, and the second leading cause of cancer mortality. The utilization of radiation therapy is regarded as the definitive local therapy of choice for intermediate- and high-risk disease, in which there is increased risk for extracapsular extension, seminal vesicle invasion, or regional node involvement. High-dose-rate (HDR) brachytherapy is a logical treatment modality to deliver the boost dose to an external beam radiation therapy (EBRT) treatment to increase local control rates. From a treatment perspective, the utilization of a complicated treatment delivery system, the compressed time frame in which the procedure is performed, and the small number of large dose fractions make the implementation of a comprehensive quality assurance (QA) program imperative. One aspect of this program is the QA of the HDR treatment plan. Review of regulatory and medical physics professional publications shows that substantial general guidance is available. We provide some insight to the implementation of an HDR prostate plan program at a community hospital. One aspect addressed is the utilization of the low-dose-rate (LDR) planning system and the use of existing ultrasound image sets to familiarize the radiation therapy team with respect to acceptable HDR implant geometries. Additionally, the use of the LDR treatment planning system provided a means to prospectively determine the relationship between the treated isodose volume and the product of activity and time for the department's planning protocol prior to the first HDR implant. For the first 12 HDR prostate implants, the root-mean-square (RMS) deviation was 3.05% between the predicted product of activity and time vs. the actual plan values. Retrospective re-evaluation of the actual implant data reduced the RMS deviation to 2.36%

  9. Communication Plan and Management in Change Project

    OpenAIRE

    Raito, Katriina

    2010-01-01

    This thesis case study describes how a communication plan is made for a change project which has an effect on more than a hundred employees. The project for which I did a communication plan and management was about a company’s IT process and process-related project. The purpose of the project was to develop the current as-is process and process tools so they would be based on a global process framework. In the first part of this thesis report I have introduced a few communication theories...

  10. Conceptual Design Plan SM-43 Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Los Alamos National Laboratory, SCC Project Office

    2000-11-01

    The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

  11. Analytical quality assurance procedures developed for the IAEA's Reference Asian Man Project (Phase 2)

    International Nuclear Information System (INIS)

    Analytical quality assurance procedures adopted for use in the IAEA Co-ordinated Research Project on Ingestion and Organ Content of Trace Elements of Importance in Radiological Protection are designed to ensure comparability of the analytical results for Cs, I, Sr, Th, U and other elements in human tissues and diets collected and analysed in nine participating countries. The main analytical techniques are NAA and ICP-MS. For sample preparation, all participants are using identical food blenders which have been centrally supplied after testing for contamination. For quality control of the analyses, six NIST SRMs covering a range of matrices with certified and reference values for the elements of interest have been distributed. A new Japanese reference diet material has also been developed. These quality assurance procedures are summarized here and new data are presented for Cs, I, Sr, Th and U in the NIST SRMs. (author)

  12. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). This experimental-waste characterization program is only one part of the WIPP Test Phase, both in the short- and long-term, to quantify and evaluate the characteristics and behavior of transuranic (TRU) wastes in the repository environment. Other parts include the bin-scale and alcove tests, drum-scale tests, and laboratory experiments. In simplified terms, the purpose of the Program is to provide chemical, physical, and radiochemical data describing the characteristics of the wastes that will be emplaced in the WIPP, while the remaining WIPP Test Phase is directed at examining the behavior of these wastes in the repository environment. 50 refs., 35 figs., 33 tabs

  13. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  14. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819. All new procedures will be issued and implemented by September 30, 1999

  15. Experiences with IAEA project: TC Regional Project on Quality Control and Quality Assurance for Nuclear Analytical Techniques (RER/2/004)

    International Nuclear Information System (INIS)

    In the TC Regional Project on Quality Control and Quality Assurance for Nuclear Analytical Techniques RER/2/004, 12 laboratories from east and central European countries participated. Within this project 4 workshops, 2 audit inspections and 2 proficiency tests were organized. The aim of this project was to help these laboratories to implement quality assurance system based on the ISO 17025 standard and to help them on the way towards accreditation. (author)

  16. Quality assurance plan for the data acquisition and management system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California

    International Nuclear Information System (INIS)

    In February 1975, the accidental puncture of an underground transfer line buried about 4 ft below the ground surface at the SNL installation in Livermore, California, resulted in the release of approximately 225.5 m3 of No. 2 diesel fuel. This report describes the formal quality assurance plan that will be used for the data acquisition and management system developed to monitor a bioremediation pilot study by Argonne National Laboratory in association with Sandia National Laboratories. The data acquisition and management system will record the site data during the bioremediation effort and assist users in site analysis. The designs of the three major subsystems of this system are described in this report. Quality assurance criteria are defined for the management, performance, and assessment of the system. Finally, the roles and responsibilities for configuration management of this system are defined for the entire life cycle of the project

  17. Fiscal planning of private electricity production projects

    International Nuclear Information System (INIS)

    Various fiscal considerations frequently encountered in the context of the planning of private electricity production projects were described. Two major themes were discussed: 1) the different jurisdictional vehicles that can be used during the planning of private electricity production projects and the associated fiscal considerations, and 2) the two main fiscal incentives of the Income Tax Act (Canada) which could impact on the financing and operation costs of such a project, namely the accelerated amortization and the possibility of deducting the costs associated to renewable energies and energy savings in Canada. This was a general presentation that did not go into specific details and did not represent a legal opinion. refs

  18. Sustainable Building through Project Planning Process

    OpenAIRE

    Anuar Alias; Nor Kalsum Mohd Isa; Zulkiflee Abdul Samad

    2014-01-01

    Planning process has a significant impact on the ability of a construction project to success. This is the stage where the detailed directions are given which would affect thewhole course of the project. The process is argued to be the most crucial stage which the principles of sustainability are integrated throughout the whole life of building. The purpose of this research was to investigate the Malaysian building project stakeholders’ perspectives on the most significant strategies to integ...

  19. Ship Project Supply Chain Planning

    OpenAIRE

    Bohlin, Ragnhild Anker

    2011-01-01

    Shipbuilding is a project and customer driven industry with complex processes. The shipbuilding market is dependent on many other markets, such as world trade, world energy demand, demand for infrastructural development, international and national environmental and safety standards.World shipbuilding capacity has tripled during the last few years. The industry has therefore experienced an increase in competition during the last decade which has resulted in a broad focus on improvement, produc...

  20. Predictors of breast radiotherapy plan modifications: Quality assurance rounds in a large cancer centre

    International Nuclear Information System (INIS)

    Background and purpose: This study describes the process and outcomes of breast radiotherapy (RT) quality assurance (QA) rounds, seeking to identify variables associated with plan modifications. Materials and methods: Real-time data were prospectively collected over 2 years. Descriptive statistics determined the proportion of cases requiring no (A), minor (B), or major (C) modifications, which were then subjected to univariate and multivariate analyses. Results: A total of 2223 breast cancer QA cases were reviewed; 47 cases (2.1%) underwent a minor, and 52 cases (2.3%) required a major modification. Common changes included boost, volume, seroma, and bolus. On univariate analysis, regional nodal irradiation (RNI), tumour size, and axillary node dissection were significantly associated with major modifications. Upon multivariate analysis, the only independent predictor was RNI (OR 2.12, p = 0.0075). For patients with no RNI, <2 cm tumours, no axillary lymph node dissection, and no boosts (n = 420); the likelihood of category C was only 1.4%. Conclusions: It is feasible to conduct QA review for all breast cancer cases prior to commencing RT. Patients undergoing RNI had a higher likelihood of plan modifications; a group with low risk of modification was identified, which could direct future re-structuring of QA rounds

  1. Next Generation Nuclear Plant Project Preliminary Project Management Plan

    International Nuclear Information System (INIS)

    This draft preliminary project management plan presents the conceptual framework for the Next Generation Nuclear Plant (NGNP) Project, consistent with the authorization in the Energy Policy Act of 2005. In developing this plan, the Idaho National Laboratory has considered three fundamental project planning options that are summarized in the following section. Each of these planning options is literally compliant with the Energy Policy Act of 2005, but each emphasizes different approaches to technology development risks, design, licensing and construction risks, and to the extent of commercialization support provided to the industry. The primary focus of this draft preliminary project management plan is to identify those activities important to Critical Decision-1, at which point a decision on proceeding with the NGNP Project can be made. The conceptual project framework described herein is necessary to establish the scope and priorities for the technology development activities. The framework includes: A reference NGNP prototype concept based on what is judged to be the lowest risk technology development that would achieve the needed commercial functional requirements to provide an economically competitive nuclear heat source and hydrogen production capability. A high-level schedule logic for design, construction, licensing, and acceptance testing. This schedule logic also includes an operational shakedown period that provides proof-of-principle to establish the basis for commercialization decisions by end-users. An assessment of current technology development plans to support Critical Decision-1 and overall project progress. The most important technical and programmatic uncertainties (risks) are evaluated, and potential mitigation strategies are identified so that the technology development plans may be modified as required to support ongoing project development. A rough-order-of-magnitude cost evaluation that provides an initial basis for budget planning. This

  2. Software Support of Project Planning

    OpenAIRE

    Škorpík, Vojtěch

    2013-01-01

    Tématem bakalářské práce je specializovaný software používaný pro podporu plánování projektů. Těžiště práce spočívá v definování dostupných softwarových produktů pro projektové řízení a jejich porovnání na základě stanovených kritérií. Součástí je popis vybraných programů – MS Project, PMportal, RSV II a Easy Project. Porovnání těchto programů je provedeno formou přehledné tabulky. Praktické využití projektového plánování je ukázáno na projektu výstavby výrobní haly v Jihlavě s využitím progr...

  3. River Protection Project (RPP) Environmental Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    POWELL, P.A.

    2000-03-29

    This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

  4. Energy Strategic Planning & Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  5. Quality Assurance of Radiation Therapy Planning Systems: Current Status and Remaining Challenges

    International Nuclear Information System (INIS)

    Computerized radiation therapy planning systems (RTPSs) are pivotal for treatment planning. The acceptance, commissioning, and quality control of RTPSs are uniquely complex and are described in the American Association of Physicists in Medicine Task Group Report 53 (1998) and International Atomic Energy Agency Technical Report Series No. 430 (2004). The International Atomic Energy Agency also developed a document and data package for use by vendors and purchasers to aid with acceptance testing of RTPSs. This document is based on International Electrotechnical Commission standard 62083 (2000) and describes both 'type' tests to be performed in the factory and 'site' tests to be performed in the clinic. The American Association of Physicists Task Group Report 67 described benchmark tests for the validation of dose calculation algorithms. Test data are being produced with the backing of the U.S. National Cancer Institute. However, significant challenges remain. Technology keeps evolving rapidly, thus requiring new quality assurance (QA) procedures. Intensity-modulated radiation therapy with its use of inverse optimization has added a new dimension to QA, because the results are not intuitively obvious. New technologies such as real-time ultrasound guidance for brachytherapy, TomoTherapy, and Cyberknife, require their own specialized RTPSs with unique QA requirements. On-line imaging allows for the generation of dose reconstructions using image warping techniques to determine the daily dose delivered to the patient. With increasing computer speeds, real-time reoptimization of treatment plans will become a reality. Gating technologies will require four-dimensional dose calculations to determine the actual dose delivered to tissue voxels. With these rapidly changing technologies, it is essential that a strong QA culture is invoked in every institution implementing these procedures and that new protocols are developed as a part of the clinical implementation process

  6. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  7. Quality Assurance With Plan Veto: Reincarnation of a Record and Verify System and Its Potential Value

    International Nuclear Information System (INIS)

    Purpose: To quantify the potential impact of the Integrating the Healthcare Enterprise–Radiation Oncology Quality Assurance with Plan Veto (QAPV) on patient safety of external beam radiation therapy (RT) operations. Methods and Materials: An institutional database of events (errors and near-misses) was used to evaluate the ability of QAPV to prevent clinically observed events. We analyzed reported events that were related to Digital Imaging and Communications in Medicine RT plan parameter inconsistencies between the intended treatment (on the treatment planning system) and the delivered treatment (on the treatment machine). Critical Digital Imaging and Communications in Medicine RT plan parameters were identified. Each event was scored for importance using the Failure Mode and Effects Analysis methodology. Potential error occurrence (frequency) was derived according to the collected event data, along with the potential event severity, and the probability of detection with and without the theoretical implementation of the QAPV plan comparison check. Failure Mode and Effects Analysis Risk Priority Numbers (RPNs) with and without QAPV were compared to quantify the potential benefit of clinical implementation of QAPV. Results: The implementation of QAPV could reduce the RPN values for 15 of 22 (71%) of evaluated parameters, with an overall average reduction in RPN of 68 (range, 0-216). For the 6 high-risk parameters (>200), the average reduction in RPN value was 163 (range, 108-216). The RPN value reduction for the intermediate-risk (200 > RPN > 100) parameters was (0-140). With QAPV, the largest RPN value for “Beam Meterset” was reduced from 324 to 108. The maximum reduction in RPN value was for Beam Meterset (216, 66.7%), whereas the maximum percentage reduction was for Cumulative Meterset Weight (80, 88.9%). Conclusion: This analysis quantifies the value of the Integrating the Healthcare Enterprise–Radiation Oncology QAPV implementation in clinical workflow

  8. Project Execution Plan,Rev. 3; FINAL

    International Nuclear Information System (INIS)

    This plan addresses project activities encompassed by the U.S. Department of Energy's (DOE's), National Nuclear Security Administration Nevada Operations Office, Environmental Restoration Division and conforms to the requirements contained in the Life-Cycle Asset Management, DOE Order 430.1A; The Joint Program Office Policy on Project Management in Support of DOE Order 430.1; Program and Project Management for the Acquisition of Capital Assets, DOE Order 413.3; the Project Execution and Engineering Management Planning Guide, GPG-FM-010; and other applicable Good Practice Guides; and the FY 2001 Integrated Planning, Accountability, and Budgeting System Policy Guidance. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense; and traditional project management philosophies such as the development of life-cycle costs, schedules, and work scope; identification o f roles and responsibilities; and baseline management and controls

  9. AVLIS Production Plant Project Management Plan

    International Nuclear Information System (INIS)

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables

  10. Project Plan IRRS Ireland 2015

    International Nuclear Information System (INIS)

    . This time is in line with the requirements of both the Nuclear Safety Directive and the Radioactive Waste Directive. The project will be taking place in the context of the merger with EPA and when the mission happens in 2015 RPII will no longer exist. However, for now as RPII is the legal entity the term RPII will be used in this and associated documents but will be amended to EPA post merger

  11. Application of chemical dosimetry system for quality assurance of clinical external beam radiotherapy planning and dose delivery with cobalt-60 photon beams

    International Nuclear Information System (INIS)

    The introduction of computer technology in radiotherapy has improved both the quality of treatment plan (by permitting more sophisticated plans) and the dosimetric accuracy of treatment. The software quality assurance checks of treatment planning system (TPS) include checking accuracy of dose distributions for a selected set of treatment conditions against measured distribution or manual calculations. Another important aspect of TPS quality assurance is algorithm verification. This article illustrates an easy, inexpensive and effective way to undertake quality assurance of a computerized TPS for 30-volume planning and treatment delivery using an 80 cm isocentric telecobalt machine

  12. Regional technical cooperation model project, IAEA - RER/2/2004 ''quality control and quality assurance for nuclear analytical techniques'

    International Nuclear Information System (INIS)

    An analytical laboratory should produce high quality analytical data through the use of analytical measurements that is accurate, reliable and adequate for the intended purpose. This objective can be accomplished in a cost-effective manner under a planned and documented quality system of activities. It is well-known that serious deficiencies can occur in laboratory operations when insufficient attention is given to the quality of the work. It requires not only a thorough knowledge of the laboratory's purpose and operation, but also the dedication of the management and operating staff to standards of excellence. Laboratories employing nuclear and nuclear-related analytical techniques are sometimes confronted with performance problems which prevent them from becoming accepted and respected by clients, such as industry, government and regulatory bodies, and from being eligible for contracts. The International Standard ISO 17025 has been produced as the result of extensive experience in the implementation of ISO/IEC Guide 25:1990 and EN 45001:1989, which replaces both of them now. It contains all of the requirements that testing and calibration laboratories must meet if they wish to demonstrate that they operate a quality system that is technically competent, and are able to generate technically valid results. The use of ISO 17025 should facilitate cooperation between laboratories and other bodies to assist in the exchange of information and experience, and in the harmonization of standards and procedures. IAEA model project RER/2/004 entitled 'Quality Assurance/Quality Control in Nuclear Analytical Techniques' was initiated in 1999 as a Regional TC project in East European countries to assist Member State laboratories in the region to install a complete quality system according to the ISO/IEC 17025 standard. 12 laboratories from 11 countries plus the Agency's Laboratories in Seibersdorf have been selected as participants to undergo exercises and training with the

  13. FY95 software project management plan: TMACS, CASS computer systems

    International Nuclear Information System (INIS)

    The FY95 Work Plan for TMACS and CASS Software Projects describes the activities planned for the current fiscal year. This plan replaces WHC-SD-WM-SDP-008. The TMACS project schedule is included in the TWRS Integrated Schedule

  14. U.S. ALMR prototype project plan

    International Nuclear Information System (INIS)

    The ALMR Program, with its modular reactor design, has adopted a prototype project as the quickest and lowest cost approach to obtaining design certification. One nuclear island can be built for a fraction of the cost of a complete plant, and subjected to a series of tests to demonstrate safety characteristics. A non-safety related turbine island can then be added, permitting demonstration of the prototype as an electrical power producer, and permitting payback of funding required for construction and operation of the prototype. Based on the results of these tests, a standard plant design certification can be obtained assuring licensability of the commercial ALMR prior to utility commitment of resources for the first full size commercial plant. (author)

  15. The role of project planning in project management

    OpenAIRE

    Klitsenko, A. I.; Клиценко, А. И.

    2013-01-01

    This article describes the importance of the process of project planning. The author gives irrefutable arguments concerning crucial role of project planning. This article presents the definition, objects and the main goal of project planning. The purpose of this article is to review such objects of project planning as project scope, risk and human resources. Данная статья описывает важность процесса проектного планирования. Автор дает неопровержимые доводы, касающиеся решающей роли проектн...

  16. Implementation of a quality assurance program for computerized treatment planning systems according to TRS 430

    International Nuclear Information System (INIS)

    This work presents the guidelines and necessary tests tom implement a quality assurance program for Eclipse 7.3.10 from Varian at Hospital das Clinicas, Sao Paulo University School of Medicine - Brazil, in accordance with the new IAEA publication TRS 430. The recommended tests for the TRS 430 air mainly classified into acceptance tests, commissioning (dosimetric and non-dosimetric tests), and routine tests. The IAEA document's recommendations are being implemented at the hospital for two Varian linear accelerators - Clinac 600C e Clinac 2100C. The acceptance tests verified 'hardware', integration of network systems, data transfer and 'software' parameters. The results obtained are in a good agreement with the manufacturer's specifications. Measurements of absolute dose in several set-ups were made for the commissioning dosimetric tests. These data were compared to the absolute doses determined by the TPS. The great majority of the tests showed 90% to 80% of the analyzed data in acceptance levels, with a good agreement between the experimental data and the data determined by the TPS. Only settings with asymmetric fields presented significant discords, showing the need for a more detailed inquiry for these settings. The non-dosimetric commissioning tests have also presented excellent results, with virtually all the system tools and general performance in compliance with TRS 430. The acceptance criteria have been applied for a comparison between the values of MUs generated by TPS and the calculated manually ones. The beams have been characterized for Eclipse with data transferred from CadPlan and with data from recommissioning of accelerators, so for these tests it was found a difference of at least 3% for the conformal field shape for the data originated in the beams of recommissioning and at least 4% for the data proceeded from CadPlan. The tolerance level established by TRS 430 for this setting was 3%. (author)

  17. Utilizing knowledge from prior plans in the evaluation of quality assurance

    International Nuclear Information System (INIS)

    Increased interest regarding sensitivity of pre-treatment intensity modulated radiotherapy and volumetric modulated arc radiotherapy (VMAT) quality assurance (QA) to delivery errors has led to the development of dose-volume histogram (DVH) based analysis. This paradigm shift necessitates a change in the acceptance criteria and action tolerance for QA. Here we present a knowledge based technique to objectively quantify degradations in DVH for prostate radiotherapy.Using machine learning, organ-at-risk (OAR) DVHs from a population of 198 prior patients’ plans were adapted to a test patient’s anatomy to establish patient-specific DVH ranges. This technique was applied to single arc prostate VMAT plans to evaluate various simulated delivery errors: systematic single leaf offsets, systematic leaf bank offsets, random normally distributed leaf fluctuations, systematic lag in gantry angle of the mutli-leaf collimators (MLCs), fluctuations in dose rate, and delivery of each VMAT arc with a constant rather than variable dose rate.Quantitative Analyses of Normal Tissue Effects in the Clinic suggests V75Gy dose limits of 15% for the rectum and 25% for the bladder, however the knowledge based constraints were more stringent: 8.48   ±   2.65% for the rectum and 4.90   ±   1.98% for the bladder. 19   ±   10 mm single leaf and 1.9   ±   0.7 mm single bank offsets resulted in rectum DVHs worse than 97.7% (2σ) of clinically accepted plans. PTV degradations fell outside of the acceptable range for 0.6   ±   0.3 mm leaf offsets, 0.11   ±   0.06 mm bank offsets, 0.6   ±   1.3 mm of random noise, and 1.0   ±   0.7° of gantry-MLC lag.Utilizing a training set comprised of prior treatment plans, machine learning is used to predict a range of achievable DVHs for the test patient’s anatomy. Consequently, degradations leading to statistical outliers may be identified. A

  18. Breckinridge Project, initial effort. Report VI. Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Report VI presents a comprehensive plan for the management of the Breckinridge Project. For the purpose of this report, the project work is divided into five major project phases: Development, Engineering, Procurement, Construction, and Operations. The results of the Development Phase (Initial Effort) of the project are discussed in Section 1.0. This phase of the project was performed under a Cooperative Agreement with US Department of Energy and has produced 43 volumes of documentation. Fifteen volumes contain information of proprietary nature for patented processes and are therefore classified as Limited Access; however, twenty-eight volumes are not classified and are suitable for public dissemination. This Project Management Plan is a volume of the unclassified documentation. The other twenty-seven volumes contain comprehensive data on technical, financial, and environmental aspects of the project. Each of the four remaining project phases is presented starting with the extensive planning that will be performed and continuing through to the execution and completion of each phase. The major roles of the Operator, Ashland Synthetic Fuels, Inc. (ASFI), and the Managing Contractor are defined. Although a contract has not yet been executed with a Managing Contractor, the procedures, controls, organization and management philosophy of Bechtel Petroleum, Inc., are presented in this report as being representative of those used by contractors in the business of performing the engineering, procurement, and construction of projects of this size and complexity. The organizational structures of the Operator and the Managing Contractor are described, with designation of key project team personnel by job description and organization charts. Provisions for cost, schedule, and material control are described.

  19. Pu-238 Supply Program Project Execution Plan

    International Nuclear Information System (INIS)

    This Pu-238 Supply Program Project Execution Plan (PEP) summarizes critical information and processes necessary to manage the program. The PEP is the primary agreement regarding planning and objectives between The Department of Energy Office of Nuclear Energy (DOE NE-75), Oak Ridge National Laboratory Site Office (OSO) and the Oak Ridge National Laboratory (ORNL). The acquisition executive (AE) will approve the PEP. The PEP is a living document that will be reviewed and revised periodically until the project is complete. The purpose of the project is to reestablish the capability to produce plutonium-238 (Pu-238) domestically. This capability consists primarily of procedures, processes, and design information, not capital assets. As such, the project is not subject to the requirements of DOE O 413.3B, but it will be managed using the project management principles and best practices defined there. It is likely that some capital asset will need to be acquired to complete tasks within the project. As these are identified, project controls and related processes will be updated as necessary. Because the project at its initiation was envisioned to require significant capital assets, Critical Decision 0 (CD-0) was conducted in accordance with DOE O 413.3B, and the mission need was approved on December 9, 2003, by William Magwood IV, director of the Office of Nuclear Energy (NE), Science and Technology, DOE. No date was provided for project start-up at that time. This PEP is consistent with the strategy described in the June 2010 report to Congress, Start-up Plan for Plutonium-238 Production for Radioisotope Power Systems.

  20. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  1. Spent Nuclear Fuel Project Document Management Plan

    International Nuclear Information System (INIS)

    The SNF Project Document Management Plan identifies and describes the currently available systems and processes for implementing and maintaining an effective document control and records management program. This program governs the methods by which documents are generated, released, distributed, maintained current, retired, and ultimately disposed

  2. Planning and commitment in cultural heritage projects

    NARCIS (Netherlands)

    Baarveld, M.Y.; Smit, M.; Dewulf, G.P.M.R.

    2013-01-01

    Purpose – The purpose of the study is to generate insights into the planning process for reusing cultural heritage within urban redevelopment projects and identifies barriers to and drivers for stakeholder commitment. Design/methodology/approach – Characteristics of five Dutch urban redevelopment

  3. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  4. Subjective risk assessment for planning conservation projects

    Science.gov (United States)

    Game, Edward T.; Fitzsimons, James A.; Lipsett-Moore, Geoff; McDonald-Madden, Eve

    2013-12-01

    Conservation projects occur under many types of uncertainty. Where this uncertainty can affect achievement of a project’s objectives, there is risk. Understanding risks to project success should influence a range of strategic and tactical decisions in conservation, and yet, formal risk assessment rarely features in the guidance or practice of conservation planning. We describe how subjective risk analysis tools can be framed to facilitate the rapid identification and assessment of risks to conservation projects, and how this information should influence conservation planning. Our approach is illustrated with an assessment of risks to conservation success as part of a conservation plan for the work of The Nature Conservancy in northern Australia. Risks can be both internal and external to a project, and occur across environmental, social, economic and political systems. Based on the relative importance of a risk and the level of certainty in its assessment we propose a series of appropriate, project level responses including research, monitoring, and active amelioration. Explicit identification, prioritization, and where possible, management of risks are important elements of using conservation resources in an informed and accountable manner.

  5. Subjective risk assessment for planning conservation projects

    International Nuclear Information System (INIS)

    Conservation projects occur under many types of uncertainty. Where this uncertainty can affect achievement of a project’s objectives, there is risk. Understanding risks to project success should influence a range of strategic and tactical decisions in conservation, and yet, formal risk assessment rarely features in the guidance or practice of conservation planning. We describe how subjective risk analysis tools can be framed to facilitate the rapid identification and assessment of risks to conservation projects, and how this information should influence conservation planning. Our approach is illustrated with an assessment of risks to conservation success as part of a conservation plan for the work of The Nature Conservancy in northern Australia. Risks can be both internal and external to a project, and occur across environmental, social, economic and political systems. Based on the relative importance of a risk and the level of certainty in its assessment we propose a series of appropriate, project level responses including research, monitoring, and active amelioration. Explicit identification, prioritization, and where possible, management of risks are important elements of using conservation resources in an informed and accountable manner. (letter)

  6. Sediment laboratory quality-assurance project: studies of methods and materials

    Science.gov (United States)

    Gordon, J.D.; Newland, C.A.; Gray, J.R.

    2001-01-01

    In August 1996 the U.S. Geological Survey initiated the Sediment Laboratory Quality-Assurance project. The Sediment Laboratory Quality Assurance project is part of the National Sediment Laboratory Quality-Assurance program. This paper addresses the fmdings of the sand/fme separation analysis completed for the single-blind reference sediment-sample project and differences in reported results between two different analytical procedures. From the results it is evident that an incomplete separation of fme- and sand-size material commonly occurs resulting in the classification of some of the fme-size material as sand-size material. Electron microscopy analysis supported the hypothesis that the negative bias for fme-size material and the positive bias for sand-size material is largely due to aggregation of some of the fine-size material into sand-size particles and adherence of fine-size material to the sand-size grains. Electron microscopy analysis showed that preserved river water, which was low in dissolved solids, specific conductance, and neutral pH, showed less aggregation and adhesion than preserved river water that was higher in dissolved solids and specific conductance with a basic pH. Bacteria were also found growing in the matrix, which may enhance fme-size material aggregation through their adhesive properties. Differences between sediment-analysis methods were also investigated as pan of this study. Suspended-sediment concentration results obtained from one participating laboratory that used a total-suspended solids (TSS) method had greater variability and larger negative biases than results obtained when this laboratory used a suspended-sediment concentration method. When TSS methods were used to analyze the reference samples, the median suspended sediment concentration percent difference was -18.04 percent. When the laboratory used a suspended-sediment concentration method, the median suspended-sediment concentration percent difference was -2

  7. Salt Repository Project. FY-84 technical project plan

    International Nuclear Information System (INIS)

    The FY 84 technical plans for the Salt Repository Project (SRP) are briefly presented. The objectives of the project in relation to the Civilian Radioactive Waste Management (CRWM) program are discused and the technical activities directed toward accomplishing these objectives are detailed. A budget is presented for each of the Level 2 Work Breakdown Structure Tasks (Systems, Waste Package, Site, Repository, Regulatory and Institutional, Test Facilities, Exploratory Shaft, Land Acquisition, and Program Management) in an appendix. An overall description, current status, and planned activities are presented for each of the subtasks which make up the above-mentioned Level 2 tasks. Milestones and their definitions for the plan year, as well as milestones for the outyears are also presented at this same subtask level for each subtask

  8. Salt Repository Project: FY 85 technical project plan

    International Nuclear Information System (INIS)

    The FY 85 technical plan for the Salt Repository Project is briefly presented. The objectives of the project in relation to the Civilian Radioactive Waste Management Program are discussed, and the technical activities directed toward accomplishing these objectives are detailed. A budget is presented for each of the Level 2 work breakdown structure tasks (Systems, Waste Package, Site, Repository, Regulatory and Institutional, Exploratory Shaft, Test Facilities, Land Acquisition, and Project Management) in the various sections. An overall description, current status, and planned activities are presented for each of the subtasks which make up the above-mentioned Level 2 tasks. A strategy diagram and a master schedule are included and each of the milestones is also listed chronologically in the sections

  9. Minimal Technologies Application Project: Planning and installation

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Hinchman, R.R.; Severinghaus, W.D.; Johnson, D.O.; Brent, J.J.

    1989-03-01

    Intensive and continuous tactical training during the last 35 years at the Hohenfels Training Area in West Germany has caused the loss of vegetative ground cover and has accelerated soil erosion rates, resulting in extensive environmental damage, safety hazards, and unrealistic training habitats. The objectives of this project are to develop and evaluate revegetation procedures for establishing adequate vegetative cover to control erosion at minimal costs and disruption to training activities. This project involved the development and installation of 12 revegetation procedures that combined four seedbed preparation methods and seeding options with three site-closure periods. In March 1987, the four seedbed preparation/seeding options and closure periods were selected, a study site design and location chosen, and specifications for the revegetation procedures developed. A German rehabilitation contractor attempted the specified seedbed preparation and seeding on the 13.5-ha site in June, but abnormally high rainfall, usually wet site conditions, and lack of adequate equipment prevented the contractor from completing six of the 12 planned procedures. Planning and execution of the project has nonetheless provided valuable information on the importance and use of soil analytical results, seed availability and cost data, contractor equipment requirements, and time required for planning future revegetation efforts. Continued monitoring of vegetative ground cover at the site for the next two years, combined with cost information, will provide necessary data to determine which of the six revegetation procedures is the most effective. These data will be used in planning future rehabilitation efforts on tactical training areas.

  10. Assessment of uncertainties in risk analysis of chemical establishments. The ASSURANCE project. Final summary report

    DEFF Research Database (Denmark)

    Lauridsen, K.; Kozine, Igor; Markert, Frank;

    2002-01-01

    This report summarises the results obtained in the ASSURANCE project (EU contract number ENV4-CT97-0627). Seven teams have performed risk analyses for the same chemical facility, an ammonia storage. The EC's Joint Research Centre at Ispra and RisøNational Laboratory co-ordinated the exercise and...... ranking among the adherents of the probabilistic approach. Breaking down the modelling of both frequencyand consequence assessments into suitably small elements and conducting case studies allowed identifying root causes of uncertainty in the final risk assessments. Large differences were found in both...... the frequency assessments and in the assessment ofconsequences. The report gives a qualitative assessment of the importance to the final calculated risk of uncertainties in assumptions made, in the data and the calculation methods used. This assessment can serve as a guide to areas where, in...

  11. Teaching Quality Assurance and Project Management to Undergraduate Computing Students in Pakistan

    CERN Document Server

    Mehmood, Zaigham

    2009-01-01

    Software Project Management (SPM) and Software Quality Assurance (SQA) are key components of undergraduate Computing programmes at educational establishments in Pakistan. Because of the nature of these subjects, there are a number of issues that need to be discussed and resolved so that the teaching becomes more effective, students learning experience is more enjoyable and their ability to be actively involved in SPM and SQA, after the completion of their studies, becomes further improved. In this paper, we discuss experience of teaching SPM and SQA at one particular institution in Islamabad Pakistan. Using this as a case study, we underline the students perspective, highlight the inherent issues and suggest ways to improve the delivery of these subjects. Since, the issues are mainly generic, the aim is to provide discussion and recommendations to benefit a wider computing community in academia.

  12. Business System Planning Project, Preliminary System Design

    International Nuclear Information System (INIS)

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time

  13. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

  14. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    International Nuclear Information System (INIS)

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards

  15. Nondosimetric quality assurance of radiotherapy treatment planning system using multi-leaf collimator beam geometry phantom

    International Nuclear Information System (INIS)

    Radiotherapy treatment planning system (RTPS) plays an important role in overall treatment delivery process. Nondosimetric quality assurance (QA) of the RTPS was carried out to assess the accuracy of nondosimetric parameters of the RTPS for regular/irregular fields obtained with jaws/multi-leaf collimator (MLC) using a dedicated MLC beam geometry phantom. Simulated radiation beams of field sizes 1 x 2 cm, 10 x 10 cm and 15 x 15 cm were created in RTPS using jaws for combinations of (i) 0° couch and gantry angles, and (ii) 323° gantry and 204° couch angles on computed tomography (CT) images of the phantom. Digitally reconstructed radiographs (DRR) for these setups were also generated. MLC co-ordinates were set in the RTPS corresponding to preset irregular field (formed by over travel of A or B bank of leaves) and resulting leaves positions were manually adjusted to fit the structures provided in the phantom. The dimensions of known geometries were measured and compared against the actual dimensions. The variation in measured and expected values of field sizes created by jaws was within 1.8 mm. In the case of DRR for 0° couch and gantry angles, the variation ranged from - 2.7 mm to 1.7 mm and for 204° couch and 323° gantry angles it was in the range of - 1.5-1.3 mm. The maximum variation between set leaf positions and manually adjusted positions for irregular field of MLC were found in the range of 2-4 mm. Nondosimetric QA of an RTPS was carried out, and results of the test provide confidence for its safe use for clinical practice. (author)

  16. THE PLANNING OF A CUSTOMER RELATIONSHIP MANAGEMENT PROJECT: REQUIREMENTS AND OPPORTUNITIES

    Directory of Open Access Journals (Sweden)

    Adriana OLARU

    2007-01-01

    Full Text Available After a brief presentation of the aspects regarding the planning of a customer relationship management (CRM project, we emphasize the factors that assure the success of such an approach. In order to obtain the attended results, an organization needs the best selection of the project manager and the most efficient teamwork, which implies employees from the company’s departments and also IT specialists. In the final part, we made appreciations concerning the efficiency of a CRM project and the opportunities created by its implementation.

  17. SRP [Salt Repository Project] configuration management plan

    International Nuclear Information System (INIS)

    This configuration management plan describes the organization, policies, and procedures that will be used on the Salt Repository Project (SRP) to implement the configuration management disciplines and controls. Configuration management is a part of baseline management. Baseline management is defined in the SRP Baseline Procedures Notebook and also includes cost and schedule baselines. Configuration management is a discipline applying technical and administrative direction and surveillance to identify and document the functional and physical characteristics of an item, to control changes to those characteristics, to record and report change processing and implementation status, and to audit the results. Configuration management is designed as a project management tool to determine and control baselines, and ensure and document all components of a project interface both physically and functionally. The purpose is to ensure that the product acquired satisfies the project's technical and operational requirements, and that the technical requirements are clearly defined and controlled throughout the development and acquisition process. 5 figs

  18. Breckinridge Project, initial effort. Report VII, Volume 4. Safety and health plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The Safety and Health Plan recognizes the potential hazards associated with the Project and has been developed specifically to respond to these risks in a positive manner. Prevention, the primary objective of the Plan, starts with building safety controls into the process design and continues through engineering, construction, start-up, and operation of the Project facilities and equipment. Compliance with applicable federal, state, and local health and safety laws, regulations, and codes throughout all Project phases is required and assured. The Plan requires that each major Project phase be thoroughly reviewed and analyzed to determine that those provisions required to assure the safety and health of all employees and the public, and to prevent property and equipment losses, have been provided. The Plan requires followup on those items or situations where corrective action needs were identified to assure that the action was taken and is effective. Emphasis is placed on loss prevention. Exhibit 1 provides a breakdown of Ashland Synthetic Fuels, Inc.'s (ASFI's) Loss Prevention Program. The Plan recognizes that the varied nature of the work is such as to require the services of skilled, trained, and responsible personnel who are aware of the hazards and know that the work can be done safely, if done correctly. Good operating practice is likewise safe operating practice. Training is provided to familiarize personnel with good operational practice, the general sequence of activities, reporting requirements, and above all, the concept that each step in the operating procedures must be successfully concluded before the following step can be safely initiated. The Plan provides for periodic review and evaluation of all safety and loss prevention activities at the plant and departmental levels.

  19. Continuous Integration and Quality Assurance: a case study of two open source projects

    Directory of Open Access Journals (Sweden)

    Jesper Holck

    2003-11-01

    Full Text Available A decentralized variant of continuous integration can be defined in terms of two fundamental rules: (1 Developers’ access to add contributions to the development version at any time, and (2 developers’ obligation to integrate their own contributions properly. Decentralized, continuous integration may adapt well to organizations where developers work relatively independently, as in many open source projects. The approach raises the issue of how these organizations can exercise central control, as attaining the benefits of continuous integration requires that contributions are useful and satisfy the project’s definition of successful integration. We have investigated the use of continuous integration in FreeBSD and Mozilla. Our account of quality assurance activities in the two open source projects distinguishes between Mintzberg’s three complementary forms of central control: Standardization and control of work output, work processes, and worker skills. Our study indicates that two major challenges face projects using decentralized, continuous integration: (1 To balance the access to add contributions against the need to stabilize and mature the software prior to a release, and (2 to consider the developers’ limited time and resources when interpreting their obligation to integrate their changes properly.

  20. 33 CFR 385.24 - Project Management Plans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Project Management Plans. 385.24... Processes § 385.24 Project Management Plans. (a) General requirements. (1) The Corps of Engineers and the... agencies, develop a Project Management Plan prior to initiating activities on a project. (2) The...

  1. A cost benefit review of applying quality assurance principles to project management of environmental cleanup programs

    International Nuclear Information System (INIS)

    This paper shows the cost/benefit mechanism used for applying the theory and practical aspects of QA principles as a management tool to project management of environmental cleanup projects. This includes reviewing and guidelines and requirements to determine the practical aspects of applying these requirements to environmental project management. Thus, there is a feedback loop for comparison of the cost/benefits of application of each stage of the project. The project's major stages include planning, environmental sampling, analysis of data samples, data/information management to include reporting, and follow- up, post-cleanup sampling with continued data management. A comparison is also made of the theory with the practical aspects of each of these stages

  2. Project Time Planning in Norwegian Construction Industry - An Empirical Study

    OpenAIRE

    Hoseini, Erfan

    2015-01-01

    Literatures investigation reveal that poor project planning is cited by many authors as a delay factor in the construction projects. Project planning have many different aspects and this research only addresses time aspect of project planning in the Norwegian construction industry. To capture the real word experience of experts in Norwegian construction industry and to find out the factors influencing project time planning, a survey questionnaire was conducted. The survey was distribute...

  3. Angra Neutrino Project: status and plans

    OpenAIRE

    Anjos, J. C.; Barbosa, A. F.; Funchal, R. Z.; Kemp, E.; Magnin, J.; H. Nunokawa(Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, C.P. 38071, 22452-970, Rio de Janeiro, Brazil); Peres, O.L.G.; Reyna, D.; Shellard, R. C.

    2005-01-01

    We present the status and plans of the Angra Project, a new nuclear reactor neutrino oscillation experiment, proposed to be built in Brazil at the Angra dos Reis nuclear reactor complex. This experiment is aimed to measure theta_13, the last unknown of the three neutrino mixing angles. Combining a high luminosity design, very low background from cosmic rays and careful control of systematic errors at the 1% level, we propose a high sensitivity multi-detector experiment, able to reach a sensit...

  4. N Area Final Project Program Plan

    International Nuclear Information System (INIS)

    The N Area Final Project Program Plan is issued for information and use by the U.S. Department of Energy (DOE), the Environmental Restoration Contractor (ERC) for the Hanford Site, and other parties that require workscope knowledge for the deactivation of N Reactor facilities and remediation of the 100-N Area. This revision to the program plan contains the updated critical path schedule to deactivate N Reactor and its supporting facilities, cleanout of the N Reactor Fuel Storage Basin (105-N Basin), and remediate the 100-N Area. This document reflects notable changes in the deactivation plan for N Reactor, including changes in deactivation status, the N Basin cleanout task, and 100-N Area remediation

  5. Appendix VI: KHNP staffing plan of construction site office: ULCHIN 5 and 6 construction project (ROK)

    International Nuclear Information System (INIS)

    KHNP, as an owner/operator organization, is responsible for all project activities including design, procurement, construction, and commissioning, for Korea's nuclear power plant (NPP) construction projects. Four separate functional offices of KHNP are set up to complete the construction management work. These offices are (1) home office, (2) field construction office, (3) field quality assurance office, and (4) field startup/commissioning office. This paper presents a staffing plan for the field construction office starting initial project implementation to final turnover to operations stages. It is recognized that the plan may not be applicable to other utility situations in terms of project management of site activity depending upon how the overall project contract is structured

  6. Guidance for implementing an environmental, safety and health assurance program. Volume 2. A model plan for environmental, safety and health staff audits and appraisals

    International Nuclear Information System (INIS)

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This document is concerned with ES and H audit and appraisal activities of an ES and H Staff Organization as they might be performed in an institution whose ES and H program is based upon the ES and H Assurance Program Standard. An annotated model plan for ES and H Staff audits and appraisals is presented and discussed

  7. Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans?

    International Nuclear Information System (INIS)

    Treatment plan quality assurance (QA) is important for clinical studies and for institutions aiming to generate near-optimal individualized treatment plans. However, determining how good a given plan is for that particular patient (individualized patient/plan QA, in contrast to running through a checklist of generic QA parameters applied to all patients) is difficult, time consuming and operator-dependent. We therefore evaluated the potential of RapidPlan, a commercial knowledge-based planning solution, to automate this process, by predicting achievable OAR doses for individual patients based on a model library consisting of historical plans with a range of organ-at-risk (OAR) to planning target volume (PTV) geometries and dosimetries. A 90-plan RapidPlan model, generated using previously created automatic interactively optimized (AIO) plans, was used to predict achievable OAR dose-volume histograms (DVHs) for the parotid glands, submandibular glands, individual swallowing muscles and oral cavities of 20 head and neck cancer (HNC) patients using a volumetric modulated (RapidArc) simultaneous integrated boost technique. Predicted mean OAR doses were compared with mean doses achieved when RapidPlan was used to make a new plan. Differences between the achieved and predicted DVH-lines were analyzed. Finally, RapidPlan predictions were used to evaluate achieved OAR sparing of AIO and manual interactively optimized plans. For all OARs, strong linear correlations (R2 = 0.94–0.99) were found between predicted and achieved mean doses. RapidPlan generally overestimated the amount of achievable sparing for OARs with a large degree of OAR-PTV overlap. RapidPlan QA using predicted doses alone identified that for 50 % (10/20) of the manually optimized plans, sparing of the composite salivary glands, oral cavity or composite swallowing muscles could be improved by at least 3 Gy, 5 Gy or 7 Gy, respectively, while this was the case for 20 % (4/20) AIO plans. These predicted gains

  8. 324 Building liquid waste handling and removal system project plan

    International Nuclear Information System (INIS)

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan

  9. Closure plan for the proposed Millennium Project

    International Nuclear Information System (INIS)

    A $2.2 billion expansion of the current oil sands operation has been proposed by Suncor Energy Inc. The expansion would more than double the productive capacity of the present facility. As part of the application for this expansion, called Project Millennium, a comprehensive closure plan has been developed and filed by the Corporation. The Plan includes a systematic evaluation of the area to be developed, a description of the development activities planned, and the goals and objectives of the Corporation in re-establishing the landforms and ecosystems concurrently with running the operation. The Plan envisages surface contouring as early as practicable during the mine development, soil reconstruction, and re-establishment of vegetation, surface drainage and wetlands. The Corporation undertakes to monitor the performance of the reclaimed areas based on landform performance, the impact of chemical constituents on the landscape and ecosystem sustainability. An annual monitoring report assessing herbaceous vegetation growth, major species composition, tree and shrub survival and growth rate, groundwater conditions, amount of precipitation, the utility of constructed wetlands for treatment of reclamation area seepage and runoff waters, and wildlife population changes, will be prepared annually. A future research program associated with the Reclamation and Closure Plan will also examine the effectiveness of the reclamation drainage system as fish habitat, and the potential of the proposed end-pit lake to provide a viable aquatic ecosystem. 8 refs., 2 figs

  10. Hanford Waste Vitrification Plant Project Plan

    International Nuclear Information System (INIS)

    A major mission of the US DOE is the permanent disposal of Hanford defense wastes by safe, environmentally acceptable, and cost effective methods which meet applicable regulations. The Hanford Waste Vitrification Plant (HWVP) Project was initiated to immobilize the Hanford high-level waste (HLW) and provide interim storage. The HWVP will vitrify the pre-treated HLW into borosilicate glass, cast the glass into stainless steel canisters, and store the canisters on site until they are shipped to a federal geologic repository. The HWVP project objective is to design, construct, and operate a facility for immobilizing defense high-level waste for storage. Technical objectives include using the Defense Waste Processing Facility designed plants systems or elements, where practical, and the exchange and review of information on plants in foreign countries. More definitive objectives for quality, reliability, environmental, and safety are provided in the HWVP Project Management Plan

  11. Project X Accelerator R and D Plan

    International Nuclear Information System (INIS)

    Project X is a high intensity proton facility conceived to support a world-leading program in neutrino and flavor physics over the next two decades at Fermilab. Project X is an integral part of the Fermilab Roadmap as described in the Fermilab Steering Group Report. Project X is based on an 8 GeV superconducting H-linac, paired with the existing (but modified) Main Injector and Recycler Ring, to provide in excess of 2 MW of beam power throughout the energy range 60-120 GeV, simultaneous with at least 100 kW of beam power at 8 GeV. The linac utilizes technology in common with the ILC over the energy range 0.6-8.0 GeV. Beam current parameters can be made identical to ILC resulting in identical rf generation and distribution systems. This alignment of ILC and Project X technologies allows for a shared development effort. The initial 0.6 GeV of the linac draws heavily on technology developed by Argonne National Laboratory for a facility for rare isotope beams. It is anticipated that the exact configuration and operating parameters of the linac will be defined through the R and D program and will retain alignment with the ILC plan as it evolves over this period. Utilization of the Recycler Ring as an H- stripper and accumulator ring is the key element that provides the flexibility to operate the linac with the same beam parameters as the ILC. The linac operates at 5 Hz with a total of 5.6 x 1013 H- ions delivered per pulse. H- are stripped at injection into the Recycler in a manner that 'paints' the beam both transversely and longitudinally to reduce space charge forces. Following the 1 ms injection, the orbit moves off the stripping foil and circulates for 200 msec, awaiting the next injection. Following three such injections a total of 1.7 x 1014 protons are transferred in a single turn to the Main Injector. These protons are then accelerated to 120 GeV and fast extracted to a neutrino target. The Main Injector cycle takes 1.4 seconds, producing approximately 2.3 MW

  12. Project X Accelerator R&D Plan

    Energy Technology Data Exchange (ETDEWEB)

    2008-01-31

    Project X is a high intensity proton facility conceived to support a world-leading program in neutrino and flavor physics over the next two decades at Fermilab. Project X is an integral part of the Fermilab Roadmap as described in the Fermilab Steering Group Report. Project X is based on an 8 GeV superconducting H-linac, paired with the existing (but modified) Main Injector and Recycler Ring, to provide in excess of 2 MW of beam power throughout the energy range 60-120 GeV, simultaneous with at least 100 kW of beam power at 8 GeV. The linac utilizes technology in common with the ILC over the energy range 0.6-8.0 GeV. Beam current parameters can be made identical to ILC resulting in identical rf generation and distribution systems. This alignment of ILC and Project X technologies allows for a shared development effort. The initial 0.6 GeV of the linac draws heavily on technology developed by Argonne National Laboratory for a facility for rare isotope beams. It is anticipated that the exact configuration and operating parameters of the linac will be defined through the R&D program and will retain alignment with the ILC plan as it evolves over this period. Utilization of the Recycler Ring as an H{sup -} stripper and accumulator ring is the key element that provides the flexibility to operate the linac with the same beam parameters as the ILC. The linac operates at 5 Hz with a total of 5.6 x 10{sup 13} H{sup -} ions delivered per pulse. H{sup -} are stripped at injection into the Recycler in a manner that 'paints' the beam both transversely and longitudinally to reduce space charge forces. Following the 1 ms injection, the orbit moves off the stripping foil and circulates for 200 msec, awaiting the next injection. Following three such injections a total of 1.7 x 10{sup 14} protons are transferred in a single turn to the Main Injector. These protons are then accelerated to 120 GeV and fast extracted to a neutrino target. The Main Injector cycle takes 1

  13. A process for establishing a financial assurance plan for LLW disposal facilities

    International Nuclear Information System (INIS)

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided

  14. A process for establishing a financial assurance plan for LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  15. Salt Repository Project transportation program plan

    International Nuclear Information System (INIS)

    The Salt Repository Project (SRP) has the responsibility to develop a comprehensive transportation program plan (TrPP) that treats the transportation of workers, supplies, and high-level radioactive waste to the site and the transportation of salt, low-level, and transuranic wastes from the site. The TrPP has developed a systematic approach to transportation which is directed towards satisfying statutes, regulations, and directives and is guided by a hierarchy of specific functional requirements, strategies, plans, and reports. The TrPP identifies and develops the planning process for transportation-related studies and provides guidance to staff in performing and documenting these activities. The TrPP also includes an explanation of the responsibilities of the organizational elements involved in these transportation studies. Several of the report chapters relate to identifying routes for transporting nuclear waste to the site. These include a chapter on identifying an access corridor for a new rail route leading to the site, identifying and evaluating emergency-response preparedness capabilities along candidate routes in the state, and identifying alternative routes from the state border, ports, or in-state reactors to the site. The TrPP also includes plans for identifying salt disposal routes and a discussion of repository/transportation interface requirements. 89 refs., 6 figs

  16. Quality-assurance plan and field methods for quality-of-water activities, U.S. Geological Survey, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Water-quality activities at the Idaho National Engineering Laboratory (INEL) Project Office are part of the US Geological Survey's (USGS) Water Resources Division (WRD) mission of appraising the quantity and quality of the Nation's water resources. The purpose of the Quality Assurance Plan (QAP) for water-quality activities performed by the INEL Project Office is to maintain and improve the quality of technical products, and to provide a formal standardization, documentation, and review of the activities that lead to these products. The principles of this plan are as follows: (1) water-quality programs will be planned in a competent manner and activities will be monitored for compliance with stated objectives and approaches; (2) field, laboratory, and office activities will be performed in a conscientious and professional manner in accordance with specified WRD practices and procedures by qualified and experienced employees who are well trained and supervised, if or when, WRD practices and procedures are inadequate, data will be collected in a manner that its quality will be documented; (3) all water-quality activities will be reviewed for completeness, reliability, credibility, and conformance to specified standards and guidelines; (4) a record of actions will be kept to document the activity and the assigned responsibility; (5) remedial action will be taken to correct activities that are deficient

  17. Quality-assurance plan and field methods for quality-of-water activities, U.S. Geological Survey, Idaho National Engineering Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mann, L.J.

    1996-10-01

    Water-quality activities at the Idaho National Engineering Laboratory (INEL) Project Office are part of the US Geological Survey`s (USGS) Water Resources Division (WRD) mission of appraising the quantity and quality of the Nation`s water resources. The purpose of the Quality Assurance Plan (QAP) for water-quality activities performed by the INEL Project Office is to maintain and improve the quality of technical products, and to provide a formal standardization, documentation, and review of the activities that lead to these products. The principles of this plan are as follows: (1) water-quality programs will be planned in a competent manner and activities will be monitored for compliance with stated objectives and approaches; (2) field, laboratory, and office activities will be performed in a conscientious and professional manner in accordance with specified WRD practices and procedures by qualified and experienced employees who are well trained and supervised, if or when, WRD practices and procedures are inadequate, data will be collected in a manner that its quality will be documented; (3) all water-quality activities will be reviewed for completeness, reliability, credibility, and conformance to specified standards and guidelines; (4) a record of actions will be kept to document the activity and the assigned responsibility; (5) remedial action will be taken to correct activities that are deficient.

  18. Need of patient-specific quality assurance and pre-treatment verification program for special plans in radiotherapy

    International Nuclear Information System (INIS)

    Accuracy in planned radiation dose delivery in cancer treatments becomes necessary in the advent of complex treatment delivery options with newer technology using medical linear accelerators, which makes patient management very crucial. Treatment outcome in an individual patient therefore depends on the professional involvement of staff and execution accuracy of planned procedure. Therefore, this article has addressed an important problem. International Atomic Energy Agency (IAEA) and International Commission on Radiological Protection (ICRP) reported mis-administrations of radiation dose, the nature of their occurrence and complexity of situations. Lack of adequate quality assurance (QA) program or failure in their routine applications, complacency in attention, lack of knowledge, overconfidence, pressures of time, lack of resources and failures in communication are some of the general human causes of errors. A recent report enumerated misadministration of radiation doses under the heading 'harming instead of healing' delivery of wrong doses in small field treatment plans with stereotactic equipment' was mostly highlighted

  19. 300 Area Revitalization Project Management Plan

    International Nuclear Information System (INIS)

    The 300 Area Revitalization Team has been tasked with the responsibility to develop an integrated path forward for the 300 Area, as part of a commitment stemming from the 300 Area Disposition Workshop that was held on March 17, 1998. The integrated path forward that is needed must ensure that budget, schedule, and work scopes are complementary between the Programs that are involved in the 300Area. This Project Management Plan (PMP) defines the roles and responsibilities, and the overall approach, to development of a prioritized schedule for 300 Area activities that will achieve the end-state condition

  20. Site characterization quality assurance for the California LLRW Disposal Site Project

    International Nuclear Information System (INIS)

    In December of 1985 US Ecology was chosen as the license designee for the State of California's low-level radioactive waste disposal facility. In early 1987, three candidate sites were selected for characterization studies in preparation for identifying the preferred site. The geotechnical characterization activities along with studies of the ecological and archaeological attributes, as well as assessments of the socio-economic impacts and cultural resources all provide input towards selection of the proposed site. These technical studies in conjunction with comments from local citizen committees and other interested parties are used as a basis for determining the proposed site for which full site characterization as required by California licensing requirements are undertaken. The purpose of this paper is to present an overview of the program for Quality Assurance and Quality Control for the site characterization activities on the California LLRW Disposal Site Project. The focus is on three major perspectives: The composite QA Program and two of the primary characterization activities, the geotechnical and the meteorological investigations

  1. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    International Nuclear Information System (INIS)

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions. (paper)

  2. Quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, B.M.; Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the quality assurance and quality control practices of Hanford Site environmental monitoring and surveillance programs. Samples are analyzed according to documented standard analytical procedures. This section discusses specific measures taken to ensure quality in project management, sample collection, and analytical results.

  3. Business System Planning Project, Alternatives Analysis

    International Nuclear Information System (INIS)

    The CHG Chief Information Officer (CIO) requested a study of alternatives to the current business system computing environment. This Business Systems Planning (BSP) Project Alternatives Analysis document presents an analysis of the current Project Controls, Work Management, and Business Management systems environment and alternative solutions that support the business functions. The project team has collected requirements and priorities from stakeholders in each business area and documented them in the BSP System Requirements Specification (SRS), RPP-6297. The alternatives analysis process identifies and measures possible solutions in each of the business process areas against the requirements as documented in the SRS. The team gathered input from both internal and external sources to identify and grade the possible solutions. This document captures the results of that activity and recommends a suite of software products. This study was to select the best product based on how well the product met the requirements, not to determine the platform or hardware environment that would be used. Additional analysis documentation can be found in BSP project files

  4. A global quality assurance system for personalized radiation therapy treatment planning for the prostate (or other sites)

    Science.gov (United States)

    Nwankwo, Obioma; Sihono, Dwi Seno K.; Schneider, Frank; Wenz, Frederik

    2014-09-01

    likely dose that OARs will receive before treatment planning. This prospective knowledge could be used to implement a global quality assurance system for personalized radiation therapy treatment planning.

  5. A global quality assurance system for personalized radiation therapy treatment planning for the prostate (or other sites)

    International Nuclear Information System (INIS)

    likely dose that OARs will receive before treatment planning. This prospective knowledge could be used to implement a global quality assurance system for personalized radiation therapy treatment planning. (paper)

  6. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training

  7. Plans of the German Radiology Society and the Professional Association for Quality Assurance in Mammography

    International Nuclear Information System (INIS)

    A high level of quality is an unequivocal prerequisite for obtaining the highest possible accuracy in symptomatic patients and for reproducing the results concerning mortality reduction, which were obtained in large screening trials. Present deficiencies in Germany are due to legal regulations, which have not been updated and which are thus below European standard. Furthermore, the quality assurance program has not proven sufficiently effective for mammography. In order to promote mammographic quality assurance, the German Roentgen Society proposes an accreditation program. The accreditation, which concerns (A.) mammographic technique and positioning and (B.) mammographic reporting is not obligatory, but will allow acquisition of special official certificates, which may support the patients to find doctors who perform and read mammograms with high quality and expertise. The accreditation shall be performed by personel and/or institutions who are specifically trained surveyed. (orig.)

  8. Evaluation of financial assurance alternatives of licensees

    International Nuclear Information System (INIS)

    The Uranium and Thorium Mining Regulations of the Atomic Energy Control Act require that applicants/licensees indicate to the AECB what financial assurance plans they have made to fund the decommissioning plan they propose to put in place. We have determined through our own business knowledge from other projects, as well as information provided by contacts in the banking, accounting, legal, investment and insurance communities, what financial assurance plans might be available. We have tabulated these alternatives, included explanations of how each might be implemented, and recorded advantages and disadvantages of each alternative to both the AECB and the applicant/licensee. In addition we have ranked the alternatives in order of most suitable to least suitable, from the AECB's perspective. Although these financial assurance mechanisms have been tabulated with a view to decommissioning of a uranium mine, they could be used in other licence or business arrangements that require financial assurance. (author). 3 tabs., 1 fig

  9. Quality assurance in a large research and development laboratory

    International Nuclear Information System (INIS)

    Developing a quality assurance program for a large research and development laboratory provided a unique opportunity for innovative planning. The quality assurance program that emerged has been tailored to meet the requirements of several sponsoring organizations and contains the flexibility for experimental programs ranging from large engineering-scale development projects to bench-scale basic research programs

  10. The Quality Assurance Project assists the vitamin A capsule program in Antique Province, Philippines.

    Science.gov (United States)

    Blumenfeld, S

    1994-01-01

    Vitamin A deficiency remains an important problem in some parts of the Philippines. The Department of Health, with assistance from the Helen Keller Institute (HKI), established a vitamin A supplementation program in Antique Province providing for the administration of vitamin A capsules to malnourished children. Although the HKI cut off its assistance in 1992, continuation of the capsule supplementation program was an element of the National Nutrition Plan for 1992-96, and remains an element of the Antique Provincial health services program under the Philippines' devolved health services scheme. The Quality Assurance Program (QAP) in May 1993 began helping the Provincial Health Office improve the quality of the vitamin A program. A systems analysis was first undertaken to identify significant deviations from provider performance standards which had been adapted by the province from Nutrition Service guidelines. Many problems were observed, including lack of knowledge of the high-priority categories of children, incomplete counseling, and frequent mistakes in determining children's nutritional status. The provincial health office staff recommended that six of the province's seventeen municipalities participate in the quality improvement effort. The intent of the QAP staff was not only to help the provincial staff improve the quality of its vitamin A program by resolving some immediate operational problems, but to provide the health care workers with a quality improvement experience that they would intuitively transfer to other programs for which they were responsible. The coaching/facilitating approach of modern quality management allowed health workers to explore their own approaches to solving the problems chosen. PMID:12319096

  11. Quality assurance in Spain and its transfer to nuclear projects in Latin America

    International Nuclear Information System (INIS)

    The Spanish nuclear programme is included in the National Energy Plan approved by parliament in 1979. It is anticipated that there will be some 11,000MW(e) of installed power around 1987. The programme is intended to ensure the availability of sources for coping with the demand for electric power and at the same time to increase national participation through the transfer of technology. In the first generation of Spanish nuclear power plants, built between 1964 and 1972 (one PWR, one BWR and one GCR), national participation in terms of value added was less than 30%. The contribution of engineering and industry was modest, with few incentives because of the diversity of the plants. The second generation consists of seven units (six PWRs and one BWR) which are in an advanced stage of construction. National participation has been extensive, exceeding 60% in real terms. Quality assurance has been the decisive instrument in the assimilation of technology, since it was a process of learning by doing, i.e. knowledge was obtained in the fabrication of goods and the performance of services of proven quality, which presupposed a multiplying factor in development. The transfer of technology achieved is the result of several concurrent circumstances, such as the creation of incentives on the part of the Government or the willingness of the supplier to make the technology available. But what is needed above all is the development in industry of a mental attitude geared to the restructuring of organizational systems and to the acquisition of the necessary equipment. For all this, however, there is a lack of training. The efforts made in this direction have been extensive and useful experience has been gained; this is being transmitted to various countries which have sent over 200 engineers to Spain

  12. A hierarchical approach to multi-project planning under uncertainty.

    OpenAIRE

    Leus, R; Wullink, G; Hans, E.W.; Herroelen, W.

    2007-01-01

    We survey several viewpoints on the management of the planning complexity of multi-project organisations under uncertainty. A positioning framework is proposed to distinguish between different types of project-driven organisations, which is meant to aid project management in the choice between the various existing planning approaches. We discuss the current state of the art of hierarchical planning approaches both for traditional manufacturing and for project environments. We introduce a gene...

  13. Project Plan for Vertical Lift Machine

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, G F

    2002-08-05

    This document describes the Project Plan for the development and manufacture of a Vertical Lift Machine. It is assumed by this project plan that the Vertical Lift Machine will be developed, designed, manufactured, and tested by a qualified vendor. LLNL will retain review and approval authority for each step given in this project plan. The Vertical Lift Machine is a single linear axis positioning device capable of lifting objects vertically at controlled rates and positioning them repeatedly at predetermined heights, in relation to other objects suspended from above, for high neutron multiplication experiments. Operation of the machine during the experiments is done remotely. The lift mechanism shall accommodate various platforms (tables) that support the objects to be raised. A frame will support additional subassemblies from above such that the lower subassembly can be raised close to and/or interface with those above. The structure must be stiff and motion of the table linear such that radial alignment is maintained (e.g. concentricity). The safe position for the Vertical Lift Machine is the lift mechanism fully retracted with the subassemblies fully separated. The machine shall reside in this position when not in use. It must return to this safe condition from any position upon failure of power sources, open safety interlocks, or operator initiated SCRAM. The Vertical Lift Machine shall have the capability of return to the safe position with no externally applied power. The Vertical Lift Machine shall have dual operator interfaces, one near the machine and another located in a remote control room. Conventional single key, key-lock switching shall be implemented to lock out the control interface not in use. The interface at the machine will be used for testing and ''dry running'' experimental setup(s) with inert subassemblies (i.e. Setup Mode). The remote interface shall provide full control and data recording capability (i.e. Assembly Mode

  14. Project Plan for Vertical Lift Machine

    International Nuclear Information System (INIS)

    This document describes the Project Plan for the development and manufacture of a Vertical Lift Machine. It is assumed by this project plan that the Vertical Lift Machine will be developed, designed, manufactured, and tested by a qualified vendor. LLNL will retain review and approval authority for each step given in this project plan. The Vertical Lift Machine is a single linear axis positioning device capable of lifting objects vertically at controlled rates and positioning them repeatedly at predetermined heights, in relation to other objects suspended from above, for high neutron multiplication experiments. Operation of the machine during the experiments is done remotely. The lift mechanism shall accommodate various platforms (tables) that support the objects to be raised. A frame will support additional subassemblies from above such that the lower subassembly can be raised close to and/or interface with those above. The structure must be stiff and motion of the table linear such that radial alignment is maintained (e.g. concentricity). The safe position for the Vertical Lift Machine is the lift mechanism fully retracted with the subassemblies fully separated. The machine shall reside in this position when not in use. It must return to this safe condition from any position upon failure of power sources, open safety interlocks, or operator initiated SCRAM. The Vertical Lift Machine shall have the capability of return to the safe position with no externally applied power. The Vertical Lift Machine shall have dual operator interfaces, one near the machine and another located in a remote control room. Conventional single key, key-lock switching shall be implemented to lock out the control interface not in use. The interface at the machine will be used for testing and ''dry running'' experimental setup(s) with inert subassemblies (i.e. Setup Mode). The remote interface shall provide full control and data recording capability (i.e. Assembly Mode). The control system

  15. Flow assurance

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, O.C.; Dong, C. [Schlumberger-Doll Research Center, Cambridge, MA (United States); Elshahawi, H. [Shell Exploration and Production Company, The Hague (Netherlands)

    2008-07-01

    This study emphasized the need for considering flow assurance for producing oil and gas, particularly in high cost areas such as deepwater. Phase behaviour studies, sticking propensities, and interfacial interactions have been investigated in many laboratory studies using asphaltenes, wax, hydrates, organic and inorganic scale, and even diamondoids. However, the spatial variation of reservoir fluids has received little attention, despite the fact that it is one of the most important factors affecting flow assurance. This issue was difficult to address in a systematic way in the past because of cost constraints. Today, reservoir fluid variation and flow assurance can be considered at the outset of a project given the technological advances in downhole fluid analysis. This study described the origins of reservoir fluid compositional variations and the controversies surrounding them. It also described the indispensable chemical analytical technology. The impact of these reservoir fluid compositional variations on flow assurance considerations was also discussed. A methodology that accounts for these variations at the outset in flow assurance evaluation was also presented.

  16. SU-C-BRD-01: Multi-Centre Collaborative Quality Assurance Program for IMRT Planning and Delivery: Year 3 Results

    International Nuclear Information System (INIS)

    Purpose: A multi-centre quality assurance program was developed to enable quality improvement by coupling measurement of intensity modulated radiotherapy (IMRT) planning and delivery performance for site-specific planning exercises with diagnostic testing. The third year of the program specifically assessed the quality of spine stereotactic body radiotherapy (SBRT) planning and delivery amongst the participating centres. Methods: A spine SBRT planning exercise (24 Gy in 2 fractions) was created and completed by participants prior to an on-site visit. The delivery portion of the on-site visit included spine SBRT plan delivery and diagnostic testing, which included portal image acquisition for quantification of phantom positioning error and multi-leaf collimator (MLC) calibration accuracy. The measured dose was compared to that calculated in the treatment planning system (TPS) using 3%/2mm composite analysis and 3%/3mm gamma analysis. Results: Fourteen institutions participated, creating 17 spine SBRT plans (15 VMAT and 2 IMRT). Three different TPS, two beam energies (6 MV and 6 MV FFF), and four MLC designs from two linac vendors were tested. Large variation in total monitor units (MU) per plan (2494–6462 MU) and dose-volume parameters was observed. The maximum point dose in the plans ranged from 116–149% and was dependent upon the TPS used. Pass rates for measured to planned dose comparison ranged from 89.4–100% and 97.3–100% for 3%/2mm and 3%/3mm criteria respectively. The largest measured MLC error did Result in one of the poorer pass rates. No direct correlation between phantom positioning error and pass rates overall. Conclusion: Significant differences were observed in the planning exercise for some plan and dose-volume parameters based on the TPS used. Standard evaluation criteria showed good agreement between planned and measured dose for all participants, however on an individual plan basis, diagnostic tests were able to identify contributing

  17. SU-C-BRD-01: Multi-Centre Collaborative Quality Assurance Program for IMRT Planning and Delivery: Year 3 Results

    Energy Technology Data Exchange (ETDEWEB)

    McNiven, A; Jaffray, D; Letourneau, D [Princess Margaret Cancer Centre and Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: A multi-centre quality assurance program was developed to enable quality improvement by coupling measurement of intensity modulated radiotherapy (IMRT) planning and delivery performance for site-specific planning exercises with diagnostic testing. The third year of the program specifically assessed the quality of spine stereotactic body radiotherapy (SBRT) planning and delivery amongst the participating centres. Methods: A spine SBRT planning exercise (24 Gy in 2 fractions) was created and completed by participants prior to an on-site visit. The delivery portion of the on-site visit included spine SBRT plan delivery and diagnostic testing, which included portal image acquisition for quantification of phantom positioning error and multi-leaf collimator (MLC) calibration accuracy. The measured dose was compared to that calculated in the treatment planning system (TPS) using 3%/2mm composite analysis and 3%/3mm gamma analysis. Results: Fourteen institutions participated, creating 17 spine SBRT plans (15 VMAT and 2 IMRT). Three different TPS, two beam energies (6 MV and 6 MV FFF), and four MLC designs from two linac vendors were tested. Large variation in total monitor units (MU) per plan (2494–6462 MU) and dose-volume parameters was observed. The maximum point dose in the plans ranged from 116–149% and was dependent upon the TPS used. Pass rates for measured to planned dose comparison ranged from 89.4–100% and 97.3–100% for 3%/2mm and 3%/3mm criteria respectively. The largest measured MLC error did Result in one of the poorer pass rates. No direct correlation between phantom positioning error and pass rates overall. Conclusion: Significant differences were observed in the planning exercise for some plan and dose-volume parameters based on the TPS used. Standard evaluation criteria showed good agreement between planned and measured dose for all participants, however on an individual plan basis, diagnostic tests were able to identify contributing

  18. Single-Shell Tank (SST) Interim Stabilization Project Plan

    International Nuclear Information System (INIS)

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline

  19. Single-shell tank interim stabilization project plan

    International Nuclear Information System (INIS)

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline

  20. Single Shell Tank (SST) Interim Stabilization Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    VLADIMIROFF, D.T.; BOYLES, V.C.

    2000-05-22

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  1. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-05-11

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  2. Standard Review Plan for the review of financial assurance mechanisms for decommissioning under 10 CFR Parts 30, 40, 70, and 72

    International Nuclear Information System (INIS)

    Standard Review Plan (SRP) for the Review of Financial Assurance Mechanisms for Decommissioning under 10 CFR Parts 30, 40, 70 and 72, is prepared for the guidance of Nuclear Regulatory Commission staff reviewers in performing reviews of applications from material licensees affected by the decommissioning regulations established June 27, 1988 (53FR24018). The principal purpose of the SRP is to assure the quality and uniformity of staff reviews and to present a base from which to evaluate the financial assurance aspects of the applications. The SRP identifies who performs the review, the matters that are reviewed, the basis for the review, how the review is performed, and the conclusions that are sought

  3. Repository construction management and quality assurance

    International Nuclear Information System (INIS)

    An emphasis on preventive rather than reactive management is key to an efficient construction management operation. Development of contingency plans to deal with unexpected adverse conditions, e.g., brine pockets during mining operations, are an integral part of the management program to ensure project safety, quality, cost, schedule and environmental objectives are met. A viable quality assurance program with active management support will optimize management effectiveness in reaching project goals. With adequate planning and perceptive application of the proper management controls, Quality Assurance becomes an essential ingredient for efficiently managing a job because it has been built into the management system rather than being an uninvolved peripheral entity. 6 references, 3 figures

  4. Business System Planning Project System Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    NELSON, R.E.

    2000-09-08

    The purpose of the Business Systems Planning Project System Requirements Specification (SRS) is to provide the outline and contents of the requirements for the CH2M HILL Hanford Group, Inc. (CHG) integrated business and technical information systems. The SRS will translate proposed objectives into the statement of the functions that are to be performed and data and information flows that they require. The requirements gathering methodology will use (1) facilitated group requirement sessions; (2) individual interviews; (3) surveys; and (4) document reviews. The requirements will be verified and validated through coordination of the technical requirement team and CHG Managers. The SRS document used the content and format specified in Lockheed Martin Services, Inc. Organization Standard Software Practices in conjunction with the Institute of Electrical and Electronics Engineers Standard 8340-1984 for Systems Requirements Documents.

  5. SU-E-T-546: Use of Implant Volume for Quality Assurance of Low Dose Rate Brachytherapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, D; Kolar, M [Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH (United States)

    2014-06-01

    Purpose: To analyze the application of volume implant (V100) data as a method for a global check of low dose rate (LDR) brachytherapy plans. Methods: Treatment plans for 335 consecutive patients undergoing permanent seed implants for prostate cancer and for 113 patients treated with plaque therapy for ocular melanoma were analyzed. Plaques used were 54 COMS (10 to 20 mm, notched and regular) and 59 Eye Physics EP917s with variable loading. Plots of treatment time x implanted activity per unit dose versus v100 ^.667 were made. V100 values were obtained using dose volume histograms calculated by the treatment planning systems (Variseed 8.02 and Plaque Simulator 5.4). Four different physicists were involved in planning the prostate seed cases; two physicists for the eye plaques. Results: Since the time and dose for the prostate cases did not vary, a plot of implanted activity vs V100 ^.667 was made. A linear fit with no intercept had an r{sup 2} = 0.978; more than 94% of the actual activities fell within 5% of the activities calculated from the linear fit. The greatest deviations were in cases where the implant volumes were large (> 100 cc). Both COMS and EP917 plaque linear fits were good (r{sup 2} = .967 and .957); the largest deviations were seen for large volumes. Conclusions: The method outlined here is effective for checking planning consistency and quality assurance of two types of LDR brachytherapy treatment plans (temporary and permanent). A spreadsheet for the calculations enables a quick check of the plan in situations were time is short (e.g. OR-based prostate planning)

  6. SU-E-T-546: Use of Implant Volume for Quality Assurance of Low Dose Rate Brachytherapy Treatment Plans

    International Nuclear Information System (INIS)

    Purpose: To analyze the application of volume implant (V100) data as a method for a global check of low dose rate (LDR) brachytherapy plans. Methods: Treatment plans for 335 consecutive patients undergoing permanent seed implants for prostate cancer and for 113 patients treated with plaque therapy for ocular melanoma were analyzed. Plaques used were 54 COMS (10 to 20 mm, notched and regular) and 59 Eye Physics EP917s with variable loading. Plots of treatment time x implanted activity per unit dose versus v100 ^.667 were made. V100 values were obtained using dose volume histograms calculated by the treatment planning systems (Variseed 8.02 and Plaque Simulator 5.4). Four different physicists were involved in planning the prostate seed cases; two physicists for the eye plaques. Results: Since the time and dose for the prostate cases did not vary, a plot of implanted activity vs V100 ^.667 was made. A linear fit with no intercept had an r2 = 0.978; more than 94% of the actual activities fell within 5% of the activities calculated from the linear fit. The greatest deviations were in cases where the implant volumes were large (> 100 cc). Both COMS and EP917 plaque linear fits were good (r2 = .967 and .957); the largest deviations were seen for large volumes. Conclusions: The method outlined here is effective for checking planning consistency and quality assurance of two types of LDR brachytherapy treatment plans (temporary and permanent). A spreadsheet for the calculations enables a quick check of the plan in situations were time is short (e.g. OR-based prostate planning)

  7. Quality control and quality assurance of nuclear analytical techniques. Thematic planning of QC/QA in technical co-operations. Report of the external participants

    International Nuclear Information System (INIS)

    In areas of trade, health, safety, and environmental protection users of a laboratory's analytical results, for example by governments and private institutions, are increasingly requiring demonstrable proof of the reliability and credibility of the laboratory's analytical results using internationally accepted standards. This is so that the products and the decisions based on these laboratory results will be accepted in the respective national and international communities. These requirements are being imposed, for example by the European Community and others, for products to be imported and can be a significant barrier to trade, especially for developing nations. In addition to this there is a growing need for these laboratories to operate efficiently and effectively to reduce internal waste, to provide reports on time in an economical manner and to become self supporting. The need for change is global and this proposal is for the Agency to pursue a thematic plan for the implementation of quality assurance as partners in development with the selected laboratories using nuclear analytical techniques. This report describes a model project for this thematic approach to confirm the models immediate benefits as well as facilitating long-term sustainability of member states' laboratories. The model is thematic in that it is also applicable to all other projects for which the credibility and reliability of the results of a laboratory's processes and results must be demonstrated. This model project provides a cost effective approach for protecting the Agency's investment in these laboratories and strengthening the ability of these national institutions to define, organize, and manage the application of nuclear technology in their respective countries. This pilot project consists of (1) determining the general levels of knowledge and application of quality assurance principles (as delineated in ISO Guide 25) in the responding laboratories; (2) selecting a trail group of

  8. Kilowatt isotope power system. Phase II plan. Volume V. Safety, quality assurance and reliability

    International Nuclear Information System (INIS)

    The development of a Kilowatt Isotope Power System (KIPS) was begun in 1975 for the purpose of satisfying the power requirements of satellites in the 1980's. The KIPS is a 238PuO2-fueled organic Rankine cycle turbine power system to provide a design output of 500 to 2000 W. Included in this volume are: launch and flight safety considerations; quality assurance techniques and procedures to be followed through system fabrication, assembly and inspection; and the reliability program made up of reliability prediction analysis, failure mode analysis and criticality analysis

  9. Project financing. Financial planning model (FINPLAN)

    International Nuclear Information System (INIS)

    The ''Project Financing'' approach is summarized here in terms of four phases: Establishing a gross operating surplus profile on the basis of the lifetime of the loan, on reasonably pessimistic assumptions; Discounting; Establishing the security ratio; Calculating the guarantee value of the project. However, these broad principles cannot be applied to nuclear activities without significant adaptation. The reasons for this are stated as well as other factors of relevance in the nuclear case. At the request of the Agency, CREDIT LYONNAIS has prepared a financial planning model (FINPLAN) adapted to the nuclear sector and permitting, on the basis of input of the WASP model, measurement of the probable financial consequences of investment decisions. FINPLAN and WASP are not interactive but a successive study can be made of the alternative orders of power plant construction considered by WASP to be close to the economic and physical optimum. FINPLAN takes into account both local and foreign estimated inflation rates (on which the investment sum and the operational costs will depend) as well as fluctuations in parity (foreign currency/local currency) and will automatically calculate annual profits and losses in exchange. The model cannot, however, make an exhaustive analysis of the financial criteria. It is simply an auxiliary tool for decision making

  10. South Bay Salt Ponds Restoration Project : Final Data Acquisition Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document provides the Data Acquisition Plan for the South Bay Salt Pond Restoration Project. The purpose of the Data Acquisition Plan is to guide the...

  11. 7 CFR 1219.50 - Budgets, programs, plans, and projects.

    Science.gov (United States)

    2010-01-01

    ... of appropriate programs, plans, or projects for advertising, sales promotion, other promotion, and... HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information... promotion, industry information, consumer information, and related research programs, plans, and...

  12. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  13. A protocol for the commissioning and quality assurance of new planning computers

    International Nuclear Information System (INIS)

    Any new radiotherapy planning system needs to be thoroughly tested. Besides checking the accuracy of the algorithm by comparing plans done on the system with measurements done in a phantom, it is desirable for the user to compare the new equipment with a tried and tested system before it is used clinically. To test our recently purchased planning systems, a protocol was developed for running a comparison between these and our existing planning computer, an IGE RTPLAN. A summary of the test protocol that was developed is as follows: (1) A series of plans is created on the old system, to include at least one plan of each common type. The series includes at least one plan with a bone inhomogeneity, and one with an air or lung inhomogeneity, and these plans are computed both with and without inhomogeneity correction. Point dose calculations are made for a number of positions on each plan, including the dose at the centre of the treatment volume. (2) Each of these plans is reproduced as accurately as possible on the new system using the original CT data and patient outlines. (3) The old and new plans, including those with and without inhomogeneity correction are overlaid and compared using the following criteria: (a) how well the volumes of interest coincide, (b) how accurately the positions of the points of interest are reproduced, (c) the doses at the points of interest, (d) the distances between the isodoses defining the dose plateau, (e) the maximum displacement between the corresponding pairs of isodoses in the dose gradient around the tumour. The protocol has been used to test two systems: the (newly developed) Siemens Axiom and the Helax TMS (running on a DEC Alpha). A summary of the results obtained will be presented. These were sufficient to show up several minor problems, particularly in the Axiom system

  14. Reforming Project Management: The Role of Planning, Execution and Controlling

    OpenAIRE

    Koskela, Lauri; Howell, Greg

    2001-01-01

    In this paper, we focus on the need for reforming the role of plans, execution (or action) and control in project management. We argue that the present style of project management, as described in the Guide to the Project Management Body of Knowledge (PMBOK Guide) of PMI, is based on two underlying theories in this regard: management-as-planning (for planning and execution) and the thermostat model (for control). Unfortunately, both theories can be shown to be heroically simplistic and insuff...

  15. Final Report Project Activity Task ORD-FY04-002 Nevada System of Higher Education Quality Assurance Program

    Energy Technology Data Exchange (ETDEWEB)

    Smiecinski, Amy; Keeler, Raymond; Bertoia, Julie; Mueller, Terry; Roosa, Morris; Roosa, Barbara

    2008-03-07

    The principal purpose of DOE Cooperative Agreement DE-FC28-04RW12232 is to develop and continue providing the public and the U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) with an independently derived, unbiased body of scientific and engineering data concerning the study of Yucca Mountain as a potential high-level radioactive waste repository. Under this agreement, the Nevada System of Higher Education (NSHE), formerly the University and Community College System of Nevada (UCCSN), performs scientific or engineering research, and maintains and fosters collaborative working relationships between government and academic researchers. In performing these activities, the NSHE has already developed and implemented a Quality Assurance (QA) program, which was accepted by the DOE Office of Quality Assurance, under the previous Cooperative Agreement Number DE-FC28-98NV12081. The following describes the objectives of Project Activity 002 “Quality Assurance Program” under cooperative agreement DE-FC28-04RW12232. The objective of this QA program was to assure that data produced under the cooperative agreement met the OCRWM QA Requirements and Description (QARD) requirements for quality-affecting (Q) data. The QA Program was written to address specific QARD requirements historically identified and incorporated in Q activities to the degree appropriate for the nature, scope, and complexity of the activity. Additional QARD requirements were integrated into the program when required to complete a specific activity. NSHE QA staff developed a detailed matrix to address each QARD element, identifying the applicable requirements and specifying where each requirement is addressed in the QA program procedures, or identify requirements as “not applicable” to the QA program. Controlled documents were prepared in the form of QA procedures (QAPs) and implementing procedures (IPs). NSHE identified new QAPs and IPs when needed. NSHE PIs

  16. Specified assurance level sampling procedure

    International Nuclear Information System (INIS)

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level

  17. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  18. Project Management Plan (PMP) for Work Management Implementation

    Energy Technology Data Exchange (ETDEWEB)

    SHIPLER, C.E.

    2000-01-13

    The purpose of this document is to provide a project plan for Work Management Implementation by the River Protection Project (RPP). Work Management is an information initiative to implement industry best practices by replacing some Tank Farm legacy system

  19. Project Management Plan (PMP) for Work Management Implementation

    International Nuclear Information System (INIS)

    The purpose of this document is to provide a project plan for Work Management Implementation by the River Protection Project (RPP). Work Management is an information initiative to implement industry best practices by replacing some Tank Farm legacy system

  20. Systems Engineering Management Plan. Volume 5 of the MRS Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP).

  1. Sensitivity of gamma analysis method for the evaluation of pre-treatment quality assurance of IMRT plans using portal dosimetry

    International Nuclear Information System (INIS)

    To evaluate the sensitivity of gamma analysis method for the evaluation of pre treatment quality assurance of IMRT plans using portal dosimetry. We had generated two sets of portal dosimetry QA plans of six IMRT plans with 33 fields for varian clinic iX (6 MV photons) equipped with millennium MLC 120 and portal dosimetry, in which one set of plans calculated without changing dose and the other set of plans calculated with intentionally introduced 3% dose difference. All these plans were delivered and acquired portal image. Area gamma index were analysed with and without applied lateral shifts by 1 mm increment to portal doors with 3 mm 3% criteria as well as 2 mm 3% and 1 mm 3% criteria. Their results are tabulated and compared with generated and analysed dynalog files. Average area gamma passing rate with criteria 3 % and 3 mm, 3 % and 2 mm and 3% and 1 mm was 99.25±0.75, 96.7±0.84 and 89.8±3.1 respectively. Average area gamma passing rate of laterally shifted portal dose by 1 mm, 2 mm, 3 mm was 97.68±0.8318, 93.98±1.65 and 87.9±1.627. The compared central axis point dose of 3% error introduced predicted dose and measured dose was -1.64±1.7%. From the dynalog files the average % of counts of less than 1 mm error of mlc position at the time of beam delivery was 95.628±4.1% and more than 2 mm leaf position error was not recorded. We conclude that the Varian portal dosimetry (aS-1000) tool is very sensible tool with lesser than 3% 3 mm error. It's a very effective tool to evaluate IMRT patient specific QA with 3 mm 3% criteria. (author)

  2. Guidelines for the iMARINE Project Quality Plan

    OpenAIRE

    Bosio, Catherine; Zoppi, Franco

    2011-01-01

    The objective of this report to define the guidelines for the Quality Plan established for the iMarine project. This report focuses on several activities of the project, trying to ensure the achievement of concrete and efficient results. The different activities of the project are governed by a number of procedures and guidelines described in different project documents: Annex I to the Grant Agreement (Description of Work), Consortium Agreement, individual work package work plans, etc. This d...

  3. Improving Quality Assurance with CDIO Self-Evaluation: Experiences From a Nordic Project

    DEFF Research Database (Denmark)

    Kontio, Juha; Roslöf, Janne; Edström, Kristina; Naumann, Sara; Hussmann, Peter Munkebo; Schrey-Niemenmaa, Katriina; karhu, Markku

    2012-01-01

    strengthening the cooperation of HEIs in quality assurance (QA) and disseminating good practices of QA. The framework of development is based on the CDIO approach and the CDIO self-evaluation process. The main results are a detailed definition of the self-evaluation process, well-documented self-evaluations of...

  4. A Description of the European Pharmacy Education and Training Quality Assurance Project

    Directory of Open Access Journals (Sweden)

    Jeffrey Atkinson

    2013-05-01

    Full Text Available The European Union directive on sectoral professions emphasizes the fact that pharmacists working in member states should possess the competences required for their professional practice; the directive does not, however, describe such competences in detail. The “Quality Assurance in European Pharmacy Education and Training—PHAR-QA” consortium, funded by the European Union, will define such competences and establish a quality assurance system based on them. This will facilitate the tuning of the pharmacy education and training required to produce competent pharmacists in the different member states. PHAR-QA will (1 establish a network of participating pharmacy departments, (2 survey existing quality assurance systems used, and (3 develop competences through iterative interaction with partners. The European Association of Faculties of Pharmacy will use the harmonized competences produced as a basis for the creation of a quality assurance agency for European pharmacy education and training. PHAR-QA will impact on staff and students of European departments; the final stake-holder will be the European patient who will benefit from better pharmaceutical services and better medications.

  5. Verification of methodology for QUASAR phantoms used for quality assurance of non dosimetric parameters of 3D treatment planning systems

    International Nuclear Information System (INIS)

    In cooperation with 6 radiotherapeutic workplaces, Czech methodology for quality assurance of non-dosimetric parameters with QUASAR phantoms was verified. None of checked treatment planning systems (TPS) showed heavy problem that would be a reason for demotion of TPS from clinical process although sometimes the tolerances were exceeded. The verification of methodology caused the tolerance modification in some reasoned cases against the original value that was recommended in the methodology made by phantom producer. Deviations that exceed recommended tolerance needn't necessarily indicate wrong function of TPS. Often the measurement of dimensions and distances with software tools or structures contouring is very subjective. It is highly important to aim attention to accuracy while contouring volumes in TPS. In any case the users should know limitations and drifts of their TPS. (authors)

  6. Sensemaking in Enterprise Resource Planning Project Deescalation: An Empirical Study

    Science.gov (United States)

    Battleson, Douglas Aloys

    2013-01-01

    Enterprise resource planning (ERP) projects, a type of complex information technology project, are very challenging and expensive to implement. Past research recognizes that escalation, defined as the commitment to a failing course of action, is common in such projects. While the factors that contribute to escalation (e.g., project conditions,…

  7. Tank waste remediation system privatization Phase 1 infrastructure, project W-519, project execution plan

    International Nuclear Information System (INIS)

    This Project Execution Plan (PEP) defines the overall strategy, objectives, and contractor management requirements for the execution phase of Project W-519 (98-D403), Privatization Phase 1 Infrastructure Support, whose mission is to effect the required Hanford site infrastructure physical changes to accommodate the Privatization Contractor facilities. This plan provides the project scope, project objectives and method of performing the work scope and achieving objectives. The plan establishes the work definitions, the cost goals, schedule constraints and roles and responsibilities for project execution. The plan also defines how the project will be controlled and documented

  8. Project plan international atomic energy agency (IAEA) safeguards project plutonium finishing plant; TOPICAL

    International Nuclear Information System (INIS)

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) International Atomic Energy Agency (IAEA) project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the PFP Integrated Project Management Plan (PMP), HNF-3617,Rev. 0. This project plan is the top-level definitive project management document for the PFP IAEA project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the IAEA project. Any deviations to the document must be authorized through the appropriate change control process

  9. Project Plan For Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project

    International Nuclear Information System (INIS)

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation

  10. Poster — Thur Eve — 32: Stereotactic Body Radiation Therapy for Peripheral Lung Lesion: Treatment Planning and Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Shuying; Oliver, Michael; Wang, Xiaofang [Northeast Cancer Centre, Health Sciences North, Sudbury, Ontario (Canada)

    2014-08-15

    Stereotactic body radiation therapy (SBRT), due to its high precision for target localizing, has become widely used to treat tumours at various locations, including the lungs. Lung SBRT program was started at our institution a year ago. Eighteen patients with peripheral lesions up to 3 cm diameter have been treated with 48 Gy in 4 fractions. Based on four-dimensional computed tomography (4DCT) simulation, internal target volume (ITV) was delineated to encompass the respiratory motion of the lesion. A margin of 5 mm was then added to create the planning target volume (PTV) for setup uncertainties. There was no expansion from gross tumour volume (GTV) to clinical target volume (CTV). Pinnacle 9.6 was used as the primary treatment planning system. Volumetric modulated arc therapy (VMAT) technique, with one or two coplanar arcs, generally worked well. For quality assurance (QA), each plan was exported to Eclipse 10 and dose calculation was repeated. Dose volume histograms (DVHs) of the targets and organs at risk (OARs) were then compared between the two treatment planning systems. Winston-Lutz tests were carried out as routine machine QA. Patient-specific QA included ArcCheck measurement with an insert, where an ionization chamber was placed at the centre to measure dose at the isocenter. For the first several patients, and subsequently for the plans with extremely strong modulation, Gafchromic film dosimetry was also employed. For each patient, a mock setup was scheduled prior to treatments. Daily pre- and post-CBCT were acquired for setup and assessment of intra-fractional motion, respectively.

  11. Poster — Thur Eve — 32: Stereotactic Body Radiation Therapy for Peripheral Lung Lesion: Treatment Planning and Quality Assurance

    International Nuclear Information System (INIS)

    Stereotactic body radiation therapy (SBRT), due to its high precision for target localizing, has become widely used to treat tumours at various locations, including the lungs. Lung SBRT program was started at our institution a year ago. Eighteen patients with peripheral lesions up to 3 cm diameter have been treated with 48 Gy in 4 fractions. Based on four-dimensional computed tomography (4DCT) simulation, internal target volume (ITV) was delineated to encompass the respiratory motion of the lesion. A margin of 5 mm was then added to create the planning target volume (PTV) for setup uncertainties. There was no expansion from gross tumour volume (GTV) to clinical target volume (CTV). Pinnacle 9.6 was used as the primary treatment planning system. Volumetric modulated arc therapy (VMAT) technique, with one or two coplanar arcs, generally worked well. For quality assurance (QA), each plan was exported to Eclipse 10 and dose calculation was repeated. Dose volume histograms (DVHs) of the targets and organs at risk (OARs) were then compared between the two treatment planning systems. Winston-Lutz tests were carried out as routine machine QA. Patient-specific QA included ArcCheck measurement with an insert, where an ionization chamber was placed at the centre to measure dose at the isocenter. For the first several patients, and subsequently for the plans with extremely strong modulation, Gafchromic film dosimetry was also employed. For each patient, a mock setup was scheduled prior to treatments. Daily pre- and post-CBCT were acquired for setup and assessment of intra-fractional motion, respectively

  12. 78 FR 54949 - Major Project Financial Plan Guidance

    Science.gov (United States)

    2013-09-06

    ... TRANSPORTATION Federal Highway Administration Major Project Financial Plan Guidance AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice; Request for comments. SUMMARY: This notice requests comments on draft Major Project Financial Plan Guidance outlining the procedures the FHWA will follow when reviewing...

  13. Mizunami Underground Research Laboratory project. Plan for fiscal year 2008

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2008 fiscal year plan based on the MIU Master Plan updated in 2002, 1) Investigation Plan, 2) Construction Plan, 3) Research Collaboration Plan, etc. (author)

  14. Mizunami Underground Research Laboratory project. Plan for fiscal year 2009

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase. This document presents the following 2009 fiscal year plan based on the MIU Master Plan updated in 2002, 1) Investigation Plan, 2) Construction Plan, 3) Research Collaboration Plan, etc. (author)

  15. A semi-automated tool for treatment plan-quality evaluation and clinical trial quality assurance

    Science.gov (United States)

    Wang, Jiazhou; Chen, Wenzhou; Studenski, Matthew; Cui, Yunfeng; Lee, Andrew J.; Xiao, Ying

    2013-07-01

    The goal of this work is to develop a plan-quality evaluation program for clinical routine and multi-institutional clinical trials so that the overall evaluation efficiency is improved. In multi-institutional clinical trials evaluating the plan quality is a time-consuming and labor-intensive process. In this note, we present a semi-automated plan-quality evaluation program which combines MIMVista, Java/MATLAB, and extensible markup language (XML). More specifically, MIMVista is used for data visualization; Java and its powerful function library are implemented for calculating dosimetry parameters; and to improve the clarity of the index definitions, XML is applied. The accuracy and the efficiency of the program were evaluated by comparing the results of the program with the manually recorded results in two RTOG trials. A slight difference of about 0.2% in volume or 0.6 Gy in dose between the semi-automated program and manual recording was observed. According to the criteria of indices, there are minimal differences between the two methods. The evaluation time is reduced from 10-20 min to 2 min by applying the semi-automated plan-quality evaluation program.

  16. A semi-automated tool for treatment plan-quality evaluation and clinical trial quality assurance

    International Nuclear Information System (INIS)

    The goal of this work is to develop a plan-quality evaluation program for clinical routine and multi-institutional clinical trials so that the overall evaluation efficiency is improved. In multi-institutional clinical trials evaluating the plan quality is a time-consuming and labor-intensive process. In this note, we present a semi-automated plan-quality evaluation program which combines MIMVista, Java/MATLAB, and extensible markup language (XML). More specifically, MIMVista is used for data visualization; Java and its powerful function library are implemented for calculating dosimetry parameters; and to improve the clarity of the index definitions, XML is applied. The accuracy and the efficiency of the program were evaluated by comparing the results of the program with the manually recorded results in two RTOG trials. A slight difference of about 0.2% in volume or 0.6 Gy in dose between the semi-automated program and manual recording was observed. According to the criteria of indices, there are minimal differences between the two methods. The evaluation time is reduced from 10–20 min to 2 min by applying the semi-automated plan-quality evaluation program. (note)

  17. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  18. Improving of Quality Control and Quality Assurance in 14C and 3H Laboratory; Participation in the IAEA Model Project

    International Nuclear Information System (INIS)

    Full text: Users of laboratory's analytical results are increasingly requiring demonstrable proofs of the reliability and credibility of the results using internationally accepted standards, because the economic, ecological, medical and legal decisions based on laboratory results need to be accepted nationally and internationally. Credibility, respect and opportunities of the laboratories are improved when objective evidence on the reliability and quality of the results can be given. This is achieved through inculcation of a quality culture through definition of well-defined procedures and controls and operational checks characteristic of quality assurance and quality control (Q A/QC). IAEA launched in 1999 a two-and-a-half year model project entitled Quality Control and Quality Assurance of Nuclear Analytical Techniques with participation of laboratories using alpha, beta and/or gamma spectrometry from CEE and NIS countries. The project started to introduce and implement QA principles in accordance with the ISO-17025 guide, leading eventually to a level at which the QA system is self-sustainable and might be appropriate for formal accreditation or certification by respective national authorities. Activities within the project consist of semi-annual reports, two training workshops, two inspection visits of the laboratories by IAEA experts and proficiency tests. The following topics were considered: organisation requirements, acceptance criteria and non-conformance management of QC, internal and external method validation, statistical analyses and uncertainty evaluation, standard operation procedures and quality manual documentation. 14C and 3H Laboratory of the Rudjer Boskovic Institute has been one of ten laboratories participating in the Project. In the Laboratory all the procedures required in the quality control were included implicitly, while during the Model Project much effort has been devoted to elaboration of explicit documentation. Since the beginning of

  19. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    International Nuclear Information System (INIS)

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  20. Project plan remove special nuclear material from PFP project plutonium finishing plant; TOPICAL

    International Nuclear Information System (INIS)

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove Special Nuclear Material (SNM) Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617,Rev. 0. This project plan is the top-level definitive project management document for PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Remove SNM Materials project. Any deviations to the document must be authorized through the appropriate change control process

  1. Yakima fisheries project spring chinook supplementation monitoring plan

    International Nuclear Information System (INIS)

    The Yakima Fisheries Project (YFP), a key element in the Northwest Power Planning Council's Fish and Wildlife Program, has been in planning for more than ten years. It was initially conceived as, and is still intended to be, a multipurpose project. Besides increasing fish production in the Yakima basin, it is also intended to yield information about supplementation that will be of value to the entire Columbia basin, and hopefully the entire region. Because of this expectation of increased knowledge resulting from the project, a large and comprehensive monitoring program has always been seen as an integral part of the project. Throughout 1996 the Monitoring Implementation and Planning Team (MIPT), an interdisciplinary group of biologists who have worked on the project for several years, worked to develop a comprehensive spring chinook monitoring plan for the project. The result is the present document

  2. Ontological Models to Support Planning Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Automation and autonomy technologies, such as automated planning software, are key elements in realizing the vision for space exploration. A fundamental requirement...

  3. Ontological Models to Support Planning Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Automation and autonomy technologies, such as automated planning software, are key elements in realizing the vision for space exploration. However, the major...

  4. Rapid Automated Mission Planning System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an automated UAS mission planning system that will rapidly identify emergency (contingency) landing sites, manage contingency routing,...

  5. Validation of a treatment plan-based calibration method for 2D detectors used for treatment delivery quality assurance

    International Nuclear Information System (INIS)

    Purpose: Dosimetry using film, CR, electronic portal imaging, or other 2D detectors requires calibration of the raw image data to obtain dose. Typically, a series of known doses are given to the detector, the raw signal for each dose is obtained, and a calibration curve is created. This calibration curve is then applied to the measured raw signals to convert them to dose. With the advent of IMRT, film dosimetry for quality assurance has become a routine and labor intensive part of the physicist's day. The process of calibrating the film or other 2D detector takes time and additional film or images for performing the calibration, and comes with its own source of errors. This article studies a new methodology for the relative dose calibration of 2D imaging detectors especially useful for IMRT QA, which relies on the treatment plan dose image to provide the dose information which is paired with the raw QA image data after registration of the two images (plan-based calibration). Methods: Validation of the accuracy and robustness of the method is performed on ten IMRT cases performed using EDR2 film with conventional and plan-based calibration. Also, for each of the ten cases, a 5 mm registration error was introduced and the Gamma analysis was reevaluated. In addition, synthetic image tests were performed to test the limits of the method. The Gamma analysis is used as a measure of dosimetric agreement between plan and film for the clinical cases and a dose difference metric for the synthetic cases. Results: The QA image calibrated by the plan-based method was found to more accurately match the treatment plan doses than the conventionally calibrated films and also to reveal dose errors more effectively when a registration error was introduced. When synthetic acquired images were systematically studied, localized and randomly placed dose errors were correctly identified without excessive falsely passing or falsely failing pixels, unless the errors were concentrated in a

  6. Project Marketing Strategies: Pell-Mell Or Planned ?

    OpenAIRE

    F. Mazet; Cova, B

    1992-01-01

    After the development of the traditional approach in project marketing described in the literature, this paper first illustrates the resistance of practitioners towards approaches calling for a shift from "pell-mell practices" to ones which prone strategic planning. Such planned strategies proved to be difficult to implement due to the very complex and dynamic nature of project activities. The paper then, shows the dilemma faced by project marketing today : combining anticipation and flexibil...

  7. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  8. A comparison of measurement techniques for quality assurance of RapidArc treatment plans

    Science.gov (United States)

    Konieczny, Jeff

    A new form of intensity modulated radiation therapy (IMRT) using the Varian RapidArc® treatment system has the potential to improve cancer treatments by delivering comparable dose distributions as TomoTherapy ®1 at a rate that is 5 to 15 times faster 2. The goal of this thesis was to compare the sensitivity of an electronic portal imaging device (EPID), film, and the ArcCheck™ device as tools for evaluation of IMRT treatments. To accomplish this, we introduced systematic errors in MLC leaf position and perform theoretical and experimental evaluations. The comparisons were made by analyzing changes in the gamma function as systematic MLC gap errors were introduced into the patient treatment plan. To study this, dynamic prostate Rapidarc™ plans were developed in Eclipse™ using the RANDO anthropomorphic phantom. After the plans were developed, the files were exported in DICOM-RT (Digital Imaging and Communications in Medicine — Radiation Therapy) format, and a program was written to modify the MLC leaf position. The files were imported back into Eclipse and recalculated using simulated film, EPID, and ArcCheck phantoms. Before measuring the plans with the devices, each instrument was calibrated and repeatability tests were performed to determine the variation in a single plan. After the delivery of the same plan eight times, film was found to have the largest variation in average gamma of 0.31 ± 0.13. When the setup was not moved in between measurements, the ArcCheck and EPID had significantly smaller variations in average gamma of 0.10 ± 0.04 and 0.07 ± 0.03 respectively. When the setup was moved and realigned in between measurements, the average gamma variation was found to be 0.22 ± 0.10 and 0.11 ± 0.05 for the ArcCheck and EPID. As a result of the higher variation, it was decided that testing should be performed without moving the detector during the course of the measurements. Film, unfortunately, had to be changed in between tests, which resulted

  9. Finance and supply management project execution plan

    Energy Technology Data Exchange (ETDEWEB)

    BENNION, S.I.

    1999-02-10

    As a subproject of the HANDI 2000 project, the Finance and Supply Management system is intended to serve FDH and Project Hanford major subcontractor with financial processes including general ledger, project costing, budgeting, and accounts payable, and supply management process including purchasing, inventory and contracts management. Currently these functions are performed with numerous legacy information systems and suboptimized processes.

  10. Project gnome decontamination and decommissioning plan

    International Nuclear Information System (INIS)

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  11. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  12. SU-E-P-05: Is Routine Treatment Planning System Quality Assurance Necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Alaei, P [University of Minnesota, Minneapolis, MN (United States)

    2014-06-01

    Purpose: To evaluate the variation of dose calculations using a treatment planning system (TPS) over a two year period and assessment of the need for TPS QA on regular intervals. Methods: Two phantoms containing solid water and lung- and bone-equivalent heterogeneities were constructed in two different institutions for the same brand treatment planning system. Multiple plans, consisting of photons and electron beams, including IMRT and VMAT ones, were created and calculated on the phantoms. The accuracy of dose computation in the phantoms was evaluated at the onset by dose measurements within the phantoms. The dose values at up to 24 points of interest (POI) within the solid water, lung, and bone slabs, as well as mean doses to several regions of interest (ROI), were re-calculated over a two-year period which included two software upgrades. The variations in POI and ROI dose values were analyzed and evaluated. Results: The computed doses vary slightly month-over-month. There are noticeable variations at the times of software upgrade, if the upgrade involves remodeling and/or re-commissioning of the beams. The variations are larger in certain points within the phantom, usually in the buildup region or near interfaces, and are almost non-existent for electron beams. Conclusion: Routine TPS QA is recommended by AAPM and other professional societies, and is often required by accreditation organizations. The frequency and type of QA, though, is subject to debate. The results presented here demonstrate that the frequency of these tests could be at longer intervals than monthly. However, it is essential to perform TPS QA at the time of commissioning and after each software upgrade.

  13. SU-E-P-05: Is Routine Treatment Planning System Quality Assurance Necessary?

    International Nuclear Information System (INIS)

    Purpose: To evaluate the variation of dose calculations using a treatment planning system (TPS) over a two year period and assessment of the need for TPS QA on regular intervals. Methods: Two phantoms containing solid water and lung- and bone-equivalent heterogeneities were constructed in two different institutions for the same brand treatment planning system. Multiple plans, consisting of photons and electron beams, including IMRT and VMAT ones, were created and calculated on the phantoms. The accuracy of dose computation in the phantoms was evaluated at the onset by dose measurements within the phantoms. The dose values at up to 24 points of interest (POI) within the solid water, lung, and bone slabs, as well as mean doses to several regions of interest (ROI), were re-calculated over a two-year period which included two software upgrades. The variations in POI and ROI dose values were analyzed and evaluated. Results: The computed doses vary slightly month-over-month. There are noticeable variations at the times of software upgrade, if the upgrade involves remodeling and/or re-commissioning of the beams. The variations are larger in certain points within the phantom, usually in the buildup region or near interfaces, and are almost non-existent for electron beams. Conclusion: Routine TPS QA is recommended by AAPM and other professional societies, and is often required by accreditation organizations. The frequency and type of QA, though, is subject to debate. The results presented here demonstrate that the frequency of these tests could be at longer intervals than monthly. However, it is essential to perform TPS QA at the time of commissioning and after each software upgrade

  14. Tank waste information network system II (TWINS2) year 2000 compliance assurance plan

    International Nuclear Information System (INIS)

    The scope of this plan includes the Tank Waste Information Network System II (TWINS2) that contains the following major components: Tank Characterization Database (TCD), Tank Vapor Database (TVD), Data Source Access (DSA), automated Tank Characterization Report, Best-Basis Inventory Model (BBIM), and Tracker (corrective action tracking) function. The automated Tank Characterization Report application currently in development also will reside on-the TWINS system as will the BBIM. Critical inputs to TWINS occur from the following databases: Labcore and SACS. Output does not occur from TWINS to these two databases

  15. Tank waste information network system II (TWINS2) year 2000 compliance assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.R.

    1998-04-16

    The scope of this plan includes the Tank Waste Information Network System II (TWINS2) that contains the following major components: Tank Characterization Database (TCD), Tank Vapor Database (TVD), Data Source Access (DSA), automated Tank Characterization Report, Best-Basis Inventory Model (BBIM), and Tracker (corrective action tracking) function. The automated Tank Characterization Report application currently in development also will reside on-the TWINS system as will the BBIM. Critical inputs to TWINS occur from the following databases: Labcore and SACS. Output does not occur from TWINS to these two databases.

  16. Physical and biological pretreatment quality assurance of the head and neck cancer plan with the volumetric modulated arc therapy

    Science.gov (United States)

    Park, So-Hyun; Lee, Dong-Soo; Lee, Yun-Hee; Lee, Seu-Ran; Kim, Min-Ju; Suh, Tae-Suk

    2015-09-01

    The aim of this work is to demonstrate both the physical and the biological quality assurance (QA) aspects as pretreatment QA of the head and neck (H&N) cancer plan for the volumetric modulated arc therapy (VMAT). Ten H&N plans were studied. The COMPASS® dosimetry analysis system and the tumor control probability (TCP) and the normal tissue complication probability (NTCP) calculation free program were used as the respective measurement and calculation tools. The reliability of these tools was verified by a benchmark study in accordance with the TG-166 report. For the physical component of QA, the gamma passing rates and the false negative cases between the calculated and the measured data were evaluated. The biological component of QA was performed based on the equivalent uniform dose (EUD), TCP and NTCP values. The evaluation was performed for the planning target volumes (PTVs) and the organs at risks (OARs), including the eyes, the lens, the parotid glands, the esophagus, the spinal cord, and the brainstem. All cases had gamma passing rates above 95% at an acceptance tolerance level with the 3%/3 mm criteria. In addition, the false negative instances were presented for the PTVs and OARs. The gamma passing rates exhibited a weak correlation with false negative cases. For the biological QA, the physical dose errors affect the EUD and the TCP for the PTVs, but no linear correlation existed between them. The EUD and NTCP for the OARs were shown the random differences that could not be attributed to the dose errors from the physical QA. The differences in the EUD and NTCP between the calculated and the measured results were mainly demonstrated for the parotid glands. This study describes the importance and the necessity of improved QA to accompany both the physical and the biological aspects for accurate radiation treatment.

  17. Technical program plan, Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included

  18. Technical program plan, Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included. (DC)

  19. Coupling system design and project planning: discussion on a bijective link between system and project structures

    OpenAIRE

    Vareilles, Elise; Coudert, Thierry; Aldanondo, Michel; Geneste, Laurent; Abeille, Joël

    2012-01-01

    This article discuss the architecture of an integrated model able to support the coupling between a system design process and a project planning process. The project planning process is in charge of defining, planning and controlling the system design project. A benchmarking analysis carried out with fifteen companies belonging to the world competitiveness cluster, Aerospace Valley, has highlighted a lack of models, processes and tools for aiding the interactions between the two environmen...

  20. Comprehensive Evaluation of Large Infrastructure Project Plan with ANP

    Institute of Scientific and Technical Information of China (English)

    HAN Chuan-feng; CHEN Jian-ye

    2005-01-01

    Analytic Network Process(ANP) was used in comprehensive evaluation of large infrastructure project plan. A model including social economy, ecological environment, and resources was established with ANP method. The evaluation pattern of hierarchy structure and comprehensive evaluation method for quantity and quality of large infrastructure project were put forward, which provides an effective way to evaluate the large infrastructure project plan. Quantitative analysis indicated that the internal dependence relation of hierarchy structure has influence on ranking results of plan. It is suggested that considering the internal relation can helps managers make effective decisions.

  1. Salt repository project site study plan for water resources: Revision 1

    International Nuclear Information System (INIS)

    The Site Study Plan for Water Resources describes a field program consisting of surface-water and ground-water characterization. The surface-water studies will determine the drainage basin characteristics (i.e., topography, soils, land use), hydrometeorology, runoff to streams and playas, and surface-water quality (i.e., offsite pollution sources in playa lakes and in streams). The environmental ground-water studies will focus on ground-water quality characterization. The site study plan describes for each study the need for the study, study design, data management and use, schedule of proposed activities, and quality assurance. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Projects Requirements Document. 78 refs., 8 figs., 5 tabs

  2. Low Energy Mission Planning Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low Energy Mission Planning Toolbox is designed to significantly reduce the resources and time spent on designing missions in multi-body gravitational...

  3. HTI retrieval demonstration project execution plan

    International Nuclear Information System (INIS)

    This plan describes the process for demonstrating the retrieval of difficult Hanford tank waste forms utilizing commercial technologies and the private sector to conduct the operations. The demonstration is to be conducted in Tank 241-C-106

  4. Airport Ground Resource Planning Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort undertakes the creation of an Airport Ground Resource Planning (AGRP) tool. Little or no automation is currently available to support airport ground...

  5. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  6. Software Verification and Validation Plan Activities, 2011 -- SAPHIRE 8 Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Kurt G. Vedros; Curtis L. Smith

    2011-09-01

    SV&V Updates through FY11 An official update was released in February 2011. This update was to add a new automated test, to revise the SV&V wording to indicate the operational life cycle that SAPHIRE 8 has entered, and to provide design documentation for Inspection Planning Reports (which evolved into the Plant Risk Information e-Book (PRIB)) and Analysis Speed Improvements. Another update to the SV&V will be released in conjunction with this report in September 2011 to include the following: two new automated tests, the inclusion of metrics into the testing regime and references to the addition of the Preliminary Design Review and Critical Design Review processes.

  7. A planning and scheduling system for the LHC project

    CERN Document Server

    Bachy, Gérard; Tarrant, M

    1995-01-01

    The purpose of this paper is to present modern ways to manage time, resources and progress in a large-scale project. Over the last ten years, new project management techniques and tools have appeared such as concurrent engineering, Continuous Acquisition Lifecycle Support (CALS) and Engineering Data Management System (EDMS). The world downturn of the early 90s influenced project management: increasing constraints on time and budget and more external direction on spending that, for example, requires sophisticated sub-contracting practises. However, the evolution of the software and hardware market makes project control tools cheaper and easier to use. All project groups want to have their scope of work considered as complete projects and to control them themselves. This has several consequences on project staff behaviour concerning project control, and has to be taken into account in every planning process designed today. The system described will be at the heart of the planning and scheduling procedures issue...

  8. Spent Nuclear Fuel Project Configuration Management Plan

    International Nuclear Information System (INIS)

    This document is a rewrite of the draft ''C'' that was agreed to ''in principle'' by SNF Project level 2 managers on EDT 609835, dated March 1995 (not released). The implementation process philosphy was changed in keeping with the ongoing reengineering of the WHC Controlled Manuals to achieve configuration management within the SNF Project

  9. Software Configuration Management Plan for the K West Basin Integrated Water Treatment System (IWTS) - Project A.9

    International Nuclear Information System (INIS)

    This document provides a configuration control plan for the software associated with the operation and control of the Integrated Water Treatment System (IWTS). It establishes requirements for ensuring configuration item identification, configuration control, configuration status accounting, defect reporting and resolution of computer software. It is written to comply with HNF-SD-SNF-CM-001, Spent Nuclear Fuel Configuration Management Plan (Forehand 1998) and HNF-PRO-309 Computer Software Quality Assurance Requirements, and applicable sections of administrative procedure CM-6-037-00, SNF Project Process Automation Software and Equipment

  10. Interim guidance on the Standard Review Plan for the review of financial assurance mechanisms for decommissioning under 10 CFR Parts 30, 40, and 70

    International Nuclear Information System (INIS)

    Interim Guidance on the Standard Review Plan (SRP) for the Review of Financial Assurance Mechanisms for Decommissioning under 10 CFR Parts 30, 40, and 70 is prepared for the guidance of Nuclear Regulatory Commission staff reviewers in performing reviews of applications from material licensees affected by the decommissioning regulations established June 27, 1988 (53FR24018). The principal purpose of the SRP is to assure the quality and uniformity of staff reviews and to present a base from which to evaluate the financial assurance aspects of the applications. NUREG-1337, identifies who performs the review, the matters that are reviewed, the basis of the review, how the review is performed, and the conclusions that are sought. 3 refs

  11. The Single And Multi Project Approach To Planning And Scheduling

    DEFF Research Database (Denmark)

    Andersson, Niclas

    2008-01-01

    with the challenging coordination of the work of several actors. The project planning and scheduling should, from the subcontractor’s perspective, allow for scope and flexibility so that the subcontractor can reallocate its resources at will between its ongoing projects and thereby optimise its own production. However...... projects carried out by the management on site. This paper explains the single and multi project perspective on construction planning and scheduling represented by the main and the subcontractors and further, it describes how the prevailing scheduling method of today, i.e. the critical path method, conduce...

  12. PLANNING PROCESS, BETWEEN EXPERT PROJECT AND COLLECTIVE ACTION

    OpenAIRE

    Thibault, Serge; Verdelli, Laura

    2009-01-01

    texte présenté au colloque annuel de l'AESOP Foundations, planning theory and method, planning and complexity - 24th AESOP Annual Conference, Finland The content of this paper concerns some recent evolutions of the planning process in France. Analyzing two study cases, we'll show that today, two types of process are coexisting and, in a way, confronting. The first one corresponds to the "classic" plan for which the project is the principal stage of a linear process. This linear plan is org...

  13. South Bay Salt Pond Restoration Project : Phase 1 monitoring plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This SBSP Restoration Project Monitoring Plan provides methods to document the effect of restoration on important elements such as mercury uptake, and water and...

  14. Professionalisering ontwikkelteam NID Duaal - Planning verdere taken in het project

    OpenAIRE

    Hoogveld, Bert; Ebrecht, Diny

    2011-01-01

    Hoogveld, A. W. M., & Ebrecht, D. (2011, 22 November). Professionalisering ontwikkelteam NID Duaal - Planning verdere taken in het project. Presentatie tijdens training Hogeschool Zuyd. September-November, 2011, Heerlen, Nederland: CELSTEC, Open Universiteit.

  15. Letter of Intent for River Protection Project (RPP) Characterization Program: Process Engineering and Hanford Analytical Services and Characterization Project Operations and Quality Assurance

    International Nuclear Information System (INIS)

    The Characterization Project level of success achieved by the River Protection Project (RPP) is determined by the effectiveness of several organizations across RPP working together. The requirements, expectations, interrelationships, and performance criteria for each of these organizations were examined in order to understand the performances necessary to achieve characterization objectives. This Letter of Intent documents the results of the above examination. It formalizes the details of interfaces, working agreements, and requirements for obtaining and transferring tank waste samples from the Tank Farm System (RPP Process Engineering, Characterization Project Operations, and RPP Quality Assurance) to the characterization laboratory complex (222-S Laboratory, Waste Sampling and Characterization Facility, and the Hanford Analytical Service Program) and for the laboratory complex analysis and reporting of analytical results

  16. Quality Assurance Plan for the Upper East Fork Poplar Creek Characterization Area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    This quality assurance plan summarizes requirements for conducting work on the Upper East 9 Fork Poplar Creek (UEFPC) Characterization Area (CA). The reader is referred to the Expanded Task Work Agreement for Upper East Fork Poplar Creek Characterization Area, Remedial Investigation/Feasibility Study (RI/FS) for details regarding the activities, roles, and responsibilities summarized here. UEFPC is designated a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site and thus requires a remedial investigation (RI) and a feasibility study (FS). The RI objectives are to evaluate the nature and extent of known and suspected contaminates, to provide data to perform baseline ecological and human health risk assessments, and to support development and evaluation of remedial alternatives for the FS,. Existing data will be used as much as possible. Additional sampling may be required to fill data gaps. The goal of the RI is to prioritize the major sources of contaminants to exit pathways and to understand their characteristics for risk characterization and development of remedial alternatives. The FS objectives are to investigate technologies and develop and evaluate alternatives based on 2031 CERCLA guidance

  17. Stability and resource allocation in project planning

    OpenAIRE

    Leus, Roel; Herroelen, Willy

    2002-01-01

    The majority of resource-constrained project scheduling efforts assumes perfect information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule is executed. In reality, project activities are subject to considerable uncertainty, which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects a given baseline schedule against activity duration variability. A ...

  18. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  19. Non-Profit/Higher Education Project Management Series: The Project Plan

    Science.gov (United States)

    Burgher, Karl E.; Snyder, Michael

    2012-01-01

    This is the second installment of the AACRAO management series focusing on project management in the academy. In this article, the authors focus on white papers (often called charters, briefs, or fact sheets) and their partner, the work plan. The work plan is a detailed document that defines each aspect of a project. It is often preceded by a…

  20. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  1. QUEST2: Release 1: Project plan deliverable set

    International Nuclear Information System (INIS)

    This Project Management Plan combines the project management deliverables from the P+ methodology which are applicable to Release 1 of the QUEST2 work. This consolidation reflects discussions with WHC QA regarding an appropriate method for ensuring that P+ deliverables fulfill the intent of WHC-CM-3-10 and QR-19

  2. IAIMS at Columbia: a strategic plan and model project.

    OpenAIRE

    Hendrickson, G L; Anderson, R K; Levy, R I

    1986-01-01

    This report describes the Integrated Academic Information Management System (IAIMS) prototype project at the Columbia-Presbyterian Medical Center, the factors that led to the selection of this particular project, and the planning for its implementation. The lessons learned to date and implications for the library are summarized.

  3. Projects of Strategic Action Plan of S&T Innovation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In July 2001, CAS decided to shift the focus of the current Knowledge Innovation Program (KIP) onto research projects designed to meet the country's strategic needs, and Iaunched the strategic action plan of innovation (SAPI). Under the SAPI, CAS organized the implementation of seven major projects in 2001.The followings are their profiles.

  4. QUEST2: Release 1: Project plan deliverable set

    Energy Technology Data Exchange (ETDEWEB)

    Braaten, F.D.

    1995-02-10

    This Project Management Plan combines the project management deliverables from the P+ methodology which are applicable to Release 1 of the QUEST2 work. This consolidation reflects discussions with WHC QA regarding an appropriate method for ensuring that P+ deliverables fulfill the intent of WHC-CM-3-10 and QR-19.

  5. Pyramid Project: An Exemplary Staff Development Plan.

    Science.gov (United States)

    Ardmore City Schools, OK.

    The Ardmore, Oklahoma, School District developed the 3-year Pyramid Project to implement the following recommendations of the Sid W. Richardson Foundation Study of exemplary programs for high ability students: (1) broaden the process for assessing student abilities, (2) adopt continuous progress and appropriate pacing, (3) cultivate students'…

  6. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  7. Planning for Preservation during Mass Digitization Projects

    Science.gov (United States)

    Teper, Jennifer Hain; Shaw, Emily F.

    2011-01-01

    In anticipation of current and future mass digitization projects in which the University of Illinois at Urbana-Champaign's Library will participate, the Library's Conservation Unit began to gather data on the "scannability" of our general book collections to anticipate potential effects on conservation and preservation work flows. The findings…

  8. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  9. SU-E-T-261: Plan Quality Assurance of VMAT Using Fluence Images Reconstituted From Log-Files

    International Nuclear Information System (INIS)

    Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator (MLC) shapes. One of the main problem in the plan quality assurance is dosimetric errors associated with leaf-positional errors are difficult to analyze because they vary with MU delivered and leaf number. In this study, we calculated integrated fluence error image (IFEI) from log-files and evaluated plan quality in the area of all and individual MLC leaves scanned. Methods: The log-file reported the expected and actual position for inner 20 MLC leaves and the dose fraction every 0.25 seconds during prostate VMAT on Elekta Synergy. These data were imported to in-house software that developed to calculate expected and actual fluence images from the difference of opposing leaf trajectories and dose fraction at each time. The IFEI was obtained by adding all of the absolute value of the difference between expected and actual fluence images corresponding. Results: In the area all MLC leaves scanned in the IFEI, the average and root mean square (rms) were 2.5 and 3.6 MU, the area of errors below 10, 5 and 3 MU were 98.5, 86.7 and 68.1 %, the 95 % of area was covered with less than error of 7.1 MU. In the area individual MLC leaves scanned in the IFEI, the average and rms value were 2.1 – 3.0 and 3.1 – 4.0 MU, the area of errors below 10, 5 and 3 MU were 97.6 – 99.5, 81.7 – 89.5 and 51.2 – 72.8 %, the 95 % of area was covered with less than error of 6.6 – 8.2 MU. Conclusion: The analysis of the IFEI reconstituted from log-file was provided detailed information about the delivery in the area of all and individual MLC leaves scanned

  10. Big rock point restoration project BWR major component removal, packaging and shipping - planning and experience

    International Nuclear Information System (INIS)

    The Big Rock Point boiling water reactor (BWR) at Charlevoix, MI was permanently shut down on August 29th 1997. In 1999 BNFL Inc.'s Reactor Decommissioning Group (RDG) was awarded a contract by Consumers Energy (CECo) for the Big Rock Point (BRP) Major Component Removal (MCR) project. BNFL Inc. RDG has teamed with MOTA, Sargent and Lundy and MDM Services to plan and execute MCR in support of the facility restoration project. The facility restoration project will be completed by 2005. Key to the success of the project has been the integration of best available demonstrated technology into a robust and responsive project management approach, which places emphasis on safety and quality assurance in achieving project milestones linked to time and cost. To support decommissioning of the BRP MCR activities, a reactor vessel (RV) shipping container is required. Discussed in this paper is the design and fabrication of a 10 CFR Part 71 Type B container necessary to ship the BRP RV. The container to be used for transportation of the RV to the burial site was designed as an Exclusive Use Type B package for shipment and burial at the Barnwell, South Carolina (SC) disposal facility. (author)

  11. Single Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    DEFIGH PRICE, C.

    2000-09-20

    In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover.

  12. Single-Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval

    International Nuclear Information System (INIS)

    In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover

  13. Spent Nuclear Fuel project systems engineering management plan

    International Nuclear Information System (INIS)

    The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

  14. Pre-Project planning of Capital Facilities at NASA

    OpenAIRE

    Barrow, Benjamin John

    1999-01-01

    This thesis details the development of a NASA specific Project Definition Rating Index (PDRI) tool. This tool is to be used as a checklist for determining the necessary steps to follow in defining project scope and as a means to monitor progress and assess scope definition completeness at various stages during the NASA Pre-Project Planning process. This thesis also describes and identifies specific points in the NASA Capital Facility Programming Cycle for the performance of PDRI assessments ...

  15. Uranium mill tailings remedial action project real estate management plan

    International Nuclear Information System (INIS)

    This plan summarizes the real estate requirements of the US Department of Energy's (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence

  16. Experience in the application of NUSS and Canadian quality assurance standards for overseas CANDU projects

    International Nuclear Information System (INIS)

    The Canadian QA standards - the CSA Z299 series for manufacture, which first appeared in 1975, and the CSA N286 series for all other phases of plant life which appeared in 1979, have been based on experience with the CANDU reactor program. The CSA Technical Committee responsible for issue and for updating the two series have a direct liaison with the IAEA Technical Review Committee for Quality Assurance. Ontario Hydro, which has a substantial commitment to nuclear power using CANDU reactors, has played a large part in the Canadian QA standards program. Atomic Energy of Canada Limited has also taken a major part in the development of CSA QA standards. As a main contractor the Company has supplied CANDU plants in Canada and to Argentina, South Korea and Romania. Because of the compatibility of the Canadian QA standards used, the Embalse plant in Argentina and the Wolsung 1 plant in Korea, are essentially in compliance with NUSS QA standards. The plant under construction at Cernavoda in Romania similarly follows Canadian QA standards

  17. Siberian Chemical Combine laboratory project work plan, fiscal year 1999

    International Nuclear Information System (INIS)

    The Siberian Chemical Combine (SKhK), Laboratory Project Work Plan (Plan) is intended to assist the US Laboratory Project Team, and Department of Energy (DOE) staff with the management of the FY99 joint material protection control and accounting program (MPC and A) for enhancing nuclear material safeguards within the Siberian Chemical Combine. The DOE/Russian/Newly Independent States, Nuclear Material Task Force, uses a project work plan document for higher-level program management. The SKhK Plan is a component of the Russian Defense related Sites' input to that document. In addition, it contains task descriptions and a Gantt Chart covering the FY99 time-period. This FY99 window is part of a comprehensive, Project Status Gantt Chart for tasking and goal setting that extends to the year 2003. Secondary and tertiary levels of detail are incorporated therein and are for the use of laboratory project management. The SKhK Plan is a working document, and additions and modifications will be incorporated as the MPC and A project for SKhK evolves

  18. Siberian Chemical Combine laboratory project work plan, fiscal year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, R.E.; Acobyan, R.; Shropsire, R.

    1998-12-31

    The Siberian Chemical Combine (SKhK), Laboratory Project Work Plan (Plan) is intended to assist the US Laboratory Project Team, and Department of Energy (DOE) staff with the management of the FY99 joint material protection control and accounting program (MPC and A) for enhancing nuclear material safeguards within the Siberian Chemical Combine. The DOE/Russian/Newly Independent States, Nuclear Material Task Force, uses a project work plan document for higher-level program management. The SKhK Plan is a component of the Russian Defense related Sites` input to that document. In addition, it contains task descriptions and a Gantt Chart covering the FY99 time-period. This FY99 window is part of a comprehensive, Project Status Gantt Chart for tasking and goal setting that extends to the year 2003. Secondary and tertiary levels of detail are incorporated therein and are for the use of laboratory project management. The SKhK Plan is a working document, and additions and modifications will be incorporated as the MPC and A project for SKhK evolves.

  19. Reduction of radiation area project plan

    International Nuclear Information System (INIS)

    This plan deals with the overall reduction of outdoor surface radiation areas under Rockwell's jurisdiction. Four basic alternatives are identified which will reduce and/or stabilize radiation areas until long-term disposal decisions are made: (1) continued routine surveillance and maintenance; (2) reduction or elimination of effluent discharges; (3) improved site stabilization; and (4) site removal. The four major transport mechanisms at Hanford that are the primary forces for contamination spread are identified as wind, animal transport, concentration and dispersal by plants, and transport resulting from human activities

  20. Integrated monitoring plan for the Hanford groundwater monitoring project

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  1. Basic Study of Establishment of Quality Assurance Processes to Develop an Integrated Quality Assurance System for Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    An integrated quality assurance system has necessitated carrying out quality assurance programs in a systematic manner because the opportunities to expand business in overseas markets have increased since the export of a nuclear power plant to UAE in 2009. In this study, we use PDCA method to systematically analyze the quality assurance procedures that were used in previous projects for constructing nuclear power plants. We reached a classification system of quality assurance processes at each phase of nuclear power plant construction by integrating similar work related to quality such as planning, design, equipment manufacturing, construction and start-up. We also established a hierarchy of quality assurance processes to develop an integrated quality assurance system as a technology goal to be developed later. To obtain most updated quality assurance activities, a quality assurance process is structured by integrating similar works analyzed from quality assurance procedures through PDCA cycle method. At the implementation phase of Hierarchy of quality processes and sequence of processes for constructing nuclear power plant are established in this study. Integrated quality assurance system is to be developed by connecting organizations as well as stakeholders such as owners, Architect engineering, suppliers, contractors, and sub-contractors to carry out assigned work efficiently

  2. The RHIC project -- Status and plans

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider (RHIC) Project is in the 4th year of an estimated 8 year construction cycle at Brookhaven National Laboratory. The accelerator complex is designed to collide a variety of ion species at center-of-mass energies up to 100 GeV/nucleon in a two ring superconducting structure. Industrial magnet production is in progress as well as the other accelerator systems. This presentation will outline the status of the construction effort, near and long term goals

  3. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  4. Crawler Acquisition and Testing Demonstration Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFIGH-PRICE, C.

    2000-10-23

    If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support final design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler

  5. Crawler Acquisition and Testing Demonstration Project Management Plan

    International Nuclear Information System (INIS)

    If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support final design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler

  6. Project summary plan for HTGR recycle reference facility

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example.

  7. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  8. Impact of dose rate on accuracy of intensity modulated radiation therapy plan delivery using the pretreatment portal dosimetry quality assurance and setting up the workflow at hospital levels

    OpenAIRE

    Karunakaran Kaviarasu; N Arunai Nambi Raj; Krishna Murthy, K.; A Ananda Giri Babu; Bhaskar Laxman Durga Prasad

    2015-01-01

    The aim of this study was to examine the impact of dose rate on accuracy of intensity modulated radiation therapy (IMRT) plan delivery by comparing the gamma agreement between the calculated and measured portal doses by pretreatment quality assurance (QA) using electronic portal imaging device dosimetry and creating a workflow for the pretreatment IMRT QA at hospital levels. As the improvement in gamma agreement leads to increase in the quality of IMRT treatment delivery, gamma evaluation was...

  9. 49 CFR 633.27 - Implementation of a project management plan.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Implementation of a project management plan. 633... TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.27 Implementation of a project management plan. (a) Upon approval of a project management plan...

  10. 49 CFR 633.25 - Contents of a project management plan.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Contents of a project management plan. 633.25... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.25 Contents of a project management plan. At a minimum, a recipient's project management plan shall...

  11. Project management plan for the 105-C Reactor interim safe storage project. Revision 1

    International Nuclear Information System (INIS)

    In 1942, the Hanford Site was commissioned by the US Government to produce plutonium. Between 1942 and 1955, eight water-cooled, graphite-moderated reactors were constructed along the Columbia River at the Hanford Site to support the production of plutonium. The reactors were deactivated from 1964 to 1971 and declared surplus. The Surplus Production Reactor Decommissioning Project (BHI 1994b) will decommission these reactors and has selected the 105-C Reactor to be used as a demonstration project for interim safe storage at the present location and final disposition of the entire reactor core in the 200 West Area. This project will result in lower costs, accelerated schedules, reduced worker exposure, and provide direct benefit to the US Department of Energy for decommissioning projects complex wide. This project sets forth plans, organizational responsibilities, control systems, and procedures to manage the execution of the Project Management Plan for the 105-C Reactor Interim Safe Storage Project (Project Management Plan) activities to meet programmatic requirements within authorized funding and approved schedules. The Project Management Plan is organized following the guidelines provided by US Department of Energy Order 4700.1, Project Management System and the Richland Environmental Restoration Project Plan (DOE-RL 1992b)

  12. Single-shell tank interim stabilization project plan

    International Nuclear Information System (INIS)

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE's Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  13. Final Report for the Soboba Strategic Tribal Energy Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Kim [EPA Specialist

    2013-09-17

    In 2011 the Tribe was awarded funds from the Department of Energy to formulate the Soboba Strategic Tribal Energy Plan. This will be a guiding document used throughout the planning of projects focused on energy reduction on the Reservation. The Soboba Strategic Tribal Energy Plan's goal is to create a Five Year Energy Plan for the Soboba Band of Luiseno Indians in San Jacinto, California. This plan will guide the decision making process towards consistent progress leading to the Tribal goal of a 25% reduction in energy consumption in the next five years. It will additionally outline energy usage/patterns and will edentify areas the Tribe can decrease energy use and increase efficiency. The report documents activities undertaken under the grant, as well as incldues the Tribe's strategif energy plan.

  14. Energy Strategic Planning & Self-Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Greg Retzlaff

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  15. Six month progress report on the Waste Package Project at the University of Nevada, Las Vegas, July 1991--January 1992: Management, quality assurance and overview

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1991-12-31

    The progress of the waste package project at the University of Nevada, Las Vegas was the subject of this report. It covered aspects of management and quality assurance, container design, application of ASME Pressure Vessel Codes, structural analysis of containers, design of rock tunnels for storage, and heat transfer phenomena. (MB)

  16. Six month progress report on the Waste Package Project at the University of Nevada, Las Vegas, July 1991--January 1992: Management, quality assurance and overview

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1991-01-01

    The progress of the waste package project at the University of Nevada, Las Vegas was the subject of this report. It covered aspects of management and quality assurance, container design, application of ASME Pressure Vessel Codes, structural analysis of containers, design of rock tunnels for storage, and heat transfer phenomena. (MB)

  17. Planning of Resources for Construction Project

    OpenAIRE

    Sýkorová, Lenka

    2013-01-01

    Bakalářská práce se zabývá popisem procesu plánování zdrojů projektu výstavby. Teoretická část je zaměřena na seznámení čtenáře se základními pojmy projektového řízení, principy zdrojového, nákladového a časového plánování a jejich uplatnění v praxi. Praktická část obsahuje aplikování uvedených principů na příkladu konkrétního projektu výstavby Podnikatelského inkubátoru ve slovenském pohraničním městě Komárno. Bachelor thesis deals with describing the process of planning of resources for ...

  18. Meteorological Monitoring Plan for the Nevada Nuclear Waste Storage Investigations Project, Yucca Mountain site

    International Nuclear Information System (INIS)

    The Yucca Mountain monitoring network will consist of four 10-meter towers and one 60-meter tower each instrumented to collect data on wind speed, wind direction, sigma theta, ambient temperature, and relative humidity. In addition, the 60-meter tower will include instrumentation to measure net radiation (solar and terrestrial), atmospheric turbulence, precipitation, and other meteorological parameters that will be discussed later in this Meteorological Monitoring Plan (MMP). The monitoring stations are scheduled to be installed and fully operational by the end of September 1985. SAIC will assist DOE in developing station design and in final equipment selection and will be responsible for installation, maintenance, data reduction, and quality assurance activities. The following sections of this MMP provide a general project description, the specifics of the monitoring program, and the practices that will be employed to ensure the validity of the collected data

  19. Sampling and analysis plan for the 100-D Ponds voluntary remediation project

    International Nuclear Information System (INIS)

    This Sampling and Analysis Plan (SAP) describes the sampling and analytical activities which will be performed to support closure of the 100-D Ponds Resource Conservation and Recovery Act (RCRA) treatment, storage, and/or disposal (TSD) unit. This SAP includes the Field Sampling Plan (FSP) presented in Section 2.0, and the Quality Assurance Project Plan (QAPjP) described in Section 3.0. The FSP defines the sampling and analytical methodologies to be performed, and the QAPjP provides or includes information on the requirements for precision, accuracy, representativeness, comparability, and completeness of the analytical data. This sampling and analysis plan was developed using the Environmental Protection Agency's Seven-Step Data Quality Objectives (DQO) Guidance (EPA, 1994). The purpose of the DQO meetings was (1) to identify the contaminants of concern and their cleanup levels under the Washington State Model Toxics Control Act (MTCA, WAC-173-340) Method B, and (2) to determine the number and locations of samples necessary to verify that the 100-D Ponds meet the cleanup criteria. The data collected will be used to support RCRA closure of this TSD unit

  20. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    International Nuclear Information System (INIS)

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site