WorldWideScience

Sample records for assurance programs developed

  1. Development of a training assurance program

    International Nuclear Information System (INIS)

    Palchinsky, J.; Waylett, W.J. Jr.

    1987-01-01

    The nuclear industry has made a significant commitment to improve training through the implementation of accredited performance-based training programs. Senior management expects that human performance will improve as a result of significant resource allocations. How do they know if training is effective in achieving improved human performance? Florida Power and Light Company is developing a Training Assurance Program to track indicators of training performance and future trends. Integrating the company's Quality Improvement Program processes with systematic training processes is resulting in personnel functioning in a proactive mode and increased customer satisfaction with training performance

  2. Methods of Software Quality Assurance under a Nuclear Quality Assurance Program

    International Nuclear Information System (INIS)

    Kim, Jang Yeol; Lee, Young Jun; Cha, Kyung Ho; Cheon, Se Woo; Lee, Jang Soo; Kwon, Kee Choon

    2005-01-01

    This paper addresses a substantial implementation of a software quality assurance under a nuclear quality assurance program. The relationship of the responsibility between a top-level nuclear quality assurance program such as ASME/NQA-1 and its lower level software quality assurance is described. Software quality assurance activities and software quality assurance procedures during the software development life cycle are also described

  3. Plutonium immobilization project development and testing quality assurance program description - February 1999

    International Nuclear Information System (INIS)

    MacLean, L. M.; Ziemba, J.

    1999-01-01

    Lawrence Livermore National Laboratory Immobilization Development and Testing organization (LLNL ID and T) is a Participant in the Plutonium Immobilization Project (PIP). The LLNL D and T has lead responsibilities for form characterization and qualification, ceramic form development, process/equipment development with plutonium, and process systems testing and validation for both conversion and immobilization. This work must be performed in accordance with the graded approach of a Quality Assurance (QA) Program. A QA Program has been developed at LLNL to meet the requirements of the DOE/MD Quality Assurance Requirements. The LLNL QA Program consists of a Quality Assurance Program Description (QAPD) and Quality Implementing Procedures. These documents interface and are a subset of the overall PIP QA Program Documents. The PIP QA Program is described in the PIP ID and T QA Plan, PIP QAPD, and QA Procedures. Other Participant Organizations also must document and describe their PIP compliant QA Programs in a QAPD and implementing procedures. The purpose of this LLNL QAPD is to describe the organization, management processes, QA Controls for Grading, functional responsibilities, levels of authority, and interfaces for those managing, performing, and assessing the adequacy of work

  4. Development of a quality-assurance program for the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Minor, R.C.

    1981-01-01

    A quality assurance program was developed for TSTA with the attempt in mind to satisfy the developmental nature of the project. Numerous reviews replace strict guidelines because guidelines are one of the objectives of the project, not a basis for it. The reviews assure adequate technical consideration and avoid unilateral decisions. Other major requirements of the program plan include interfacing with another quality assurance organization, the assignment of responsibilities, and instructions for the preparation of SDD's. Areas of concern are, in general, budget related, and include receiving inspection and acceptance of items. A software program is only now being established

  5. How does one develop the right quality assurance program for waste management projects?

    International Nuclear Information System (INIS)

    Hedges, D.

    1988-01-01

    The quality assurance requirements in use today for radioactive waste facilities, geologic repositories and hazardous waste projects were developed initially for the nuclear power plant industry, and their intent is being applied to regulations and guidance documents to radioactive and hazardous waste programs. The wording of the Nuclear Regulatory Commission (NRC) quality assurance (QA) requirements in Appendix B of 10CFR50, the related guidance documents and the industry's ANSI/ASME NQA-1 were developed over a period of several years to address quality assurance for the design and construction of the complex and interactive systems to produce electrical power using nuclear fuel. Now, those same documents are the basis for the quality assurance requirements and guidance for waste management facilities and repositories. The intent of Appendix B of 10CFR50 and NQA-1 can easily be applied to waste projects providing one understands and uses the intent of the requirements. This paper describes the intent of existing QA requirements as they apply to radioactive and hazardous waste programs. Methods of ensuring that the quality assurance program design will be acceptable to DOE and regulatory agencies are illustrated

  6. How does one develop the right quality assurance program for waste management projects?

    International Nuclear Information System (INIS)

    Hedges, D.

    1988-01-01

    The quality assurance requirements in use today for radioactive waste facilities, geologic repositories and hazardous waste projects were developed initially for the nuclear power plant industry, and their intent is being applied by regulations and guidance documents to radioactive and hazardous waste programs. The wording of the NRC quality assurance requirements in Appendix B of 10CFR50, the related guidance documents and the industry's ANSI/ASME NQA-1 were developed over a period of several years to address quality assurance for the design and construction of the complex and interactive systems to produce electrical power using nuclear fuel. Now, those same documents are the basis for the quality assurance requirements and guidance for waste management facilities and repositories. The intent of Appendix B of 10CFR50 and NQA-1 can easily be applied to waste projects, providing one understands and uses the intent of the requirements. This paper describes the intent of existing QA requirements as they apply to radioactive and hazardous waste programs. Methods of ensuring that the quality assurance program design will be acceptable to DOE and regulatory agencies are illustrated

  7. The development of quality assurance program for cyberknife

    International Nuclear Information System (INIS)

    Jang, Ji Sun; Lee, Dong Han; Kang, Young Nam

    2006-01-01

    Standardization quality assurance (QA)program of Cyberknife for suitable circumstances in Korea has not been established. In this research, we investigated the development of QA program for Cyberknife and evaluation of the feasibility under applications. Considering the feature of constitution for systems and the therapeutic methodology of Cyberknife, the list of quality control (QC) was established and divided dependent on the each period of operations. And then all these developed QC lists were categorized into three groups such as basic QC, delivery specific QC, and patient specific QC based on the each purpose of QA. In order to verify the validity of the established QA program, this QC lists was applied to two Cyberknife centers. The acceptable tolerance was based on the undertaking inspection list from the Cyberknife manufacturer and the QC results during last three years of two Cyberknife centers in Korea. The acquired measurement results were evaluated for the analysis of the current QA status and the verification of the propriety for the developed QA program. The current QA status of two Cyberknife centers was evaluated from the accuracy of all measurements in relation with application of the established QA program. Each measurement result was verified having a good agreement within the acceptable tolerance limit of the developed QA program. It is considered that the developed QA program in this research could be established the standardization of QC methods for Cyberknife and confirmed the accuracy and stability for the image-guided stereotactic radiotherapy

  8. The Marshall Islands radioassay quality assurance program. An overview

    International Nuclear Information System (INIS)

    Hamilton, T.F.; Robison, W.L.; Kehl, S.; Stoker, A.C.; Conrado, C.L.

    2000-01-01

    An extensive quality assurance program to provide high quality data and assessments in support of the Marshall Islands Dose Assessment and Radioecology Program has been developed the Lawrence Livermore National Laboratory. Quality assurance objectives begin with the premise of providing integrated and cost-effective program support (to meet wide-ranging programmatic needs, scientific peer review, and build public confidence) and continue through from design and implementation of large-scale field programs, sampling and sample preparation, radiometric and chemical analyses, documentation of quality assurance/quality control practices, exposure assessments, and dose/risk assessments until publication. The basic structure of the radioassay quality assurance/quality control program can be divided into four essential elements: (1) sample and data integrity control, (2) instrument validation and calibration, (3) method performance testing, validation, development and documentation, and (4) periodic peer review and on-site assessments. While the quality assurance objectives are tailored towards a single research program and the evaluation of major exposure pathways/critical radionuclides pertinent to the Marshall Islands, quality assurance practices that are consistent with proposed criteria designed for laboratory accreditation were attempted to be developed. (author)

  9. Mixed Waste Integrated Program Quality Assurance requirements plan

    International Nuclear Information System (INIS)

    1994-01-01

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities

  10. Mixed Waste Integrated Program Quality Assurance requirements plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-15

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

  11. Assurance management program for the 30 Nova laser fusion project

    International Nuclear Information System (INIS)

    Levy, A.J.

    1983-01-01

    The Nova assurance management program was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management program. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project

  12. Development of a VMAT quality assurance program

    International Nuclear Information System (INIS)

    Silva, Ricardo Goulart da

    2013-01-01

    Modern radiation therapy keeps evolving and the technological changes include new imaging modalities, new patient immobilization devices and new treatment delivery systems. These advances have made it possible to reduce the dose to normal tissue structures and consequently minimize the risk of toxicity and morbidity, while allowing for dose escalation to the tumor volumes, potentially leading to improved locoregional control. Traditional IMRT techniques offer all of these features but the treatment session time is usually long, mainly for the head and neck cases. Currently, the VMAT technique is a reality in reference centers around the world. This technology has improved delivery efficiency over IMRT, decreasing the treatment application time, as this modality introduces extra degrees of freedom in the optimization process. The modulation of the radiation beams is achieved by simultaneous variation of dynamic parameters such as dose rate, gantry speed and leaves speed. The high level of complexity associated to the new treatment trends, inevitably, requires more accuracy and more rigorous quality assurance programs. The commissioning methods reported for the Varian RapidArc system were extended to an Elekta Synergy linear accelerator, using custom files built in the iComCAT software. Specific tests for the machine quality assurance are presented and also the dosimetric validation process applied to the Monaco treatment planning system. The MLC parameters, modeled by the Monte Carlo algorithm, were analyzed and the TG 119 tests were adapted for VMAT planning. In the end, a specific program developed for the VMAT technology for Elekta accelerators is presented. (author)

  13. Tritium systems test assembly quality assurance program

    International Nuclear Information System (INIS)

    Kerstiens, F.L.; Wilhelm, R.C.

    1986-07-01

    A quality assurance program should establish the planned and systematic actions necessary to provide adequate confidence that fusion facilities and their subsystems will perform satisfactorily in service. The Tritium Systems Test Assembly (TSTA) Quality Assurance Program has been designed to assure that the designs, tests, data, and interpretive reports developed at TSTA are valid, accurate, and consistent with formally specified procedures and reviews. The quality consideration in all TSTA activities is directed toward the early detection of quality problems, coupled with timely and positive disposition and corrective action

  14. Quality-Assurance Program Plan

    International Nuclear Information System (INIS)

    Kettell, R.A.

    1981-05-01

    This Quality Assurance Program Plan (QAPP) is provided to describe the Quality Assurance Program which is applied to the waste management activities conducted by AESD-Nevada Operations at the E-MAD Facility located in Area 25 of the Nevada Test Site. The AESD-Nevada Operations QAPP provides the necessary systematic and administrative controls to assure activities that affect quality, safety, reliability, and maintainability during design, procurement, fabrication, inspection, shipments, tests, and storage are conducted in accordance with established requirements

  15. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.T. II; Taylor, A.R. Jr. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  16. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    International Nuclear Information System (INIS)

    Heaton, H.T. II; Taylor, A.R. Jr.

    1993-01-01

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory

  17. Guidance for implementing an environmental, safety, and health-assurance program. Volume 15. A model plan for line organization environmental, safety, and health-assurance programs

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, A.C.; Trauth, C.A. Jr.

    1982-01-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This particular document presents a model operational-level ES and H Assurance Program that may be used as a guide by an operational-level organization in developing its own plan. The model presented here reflects the guidance given in the total series of 15 documents.

  18. Quality assurance program plan for the Reactor Research Experiment Programs (RREP)

    International Nuclear Information System (INIS)

    Pipher, D.G.

    1982-05-01

    This document describes the Quality Assurance Program plans which will be applied to tasks on Reactor Research Experiments performed on Sandia National Laboratories' reactors. The program provides for individual project or experiment quality plan development and allows for reasonable plan flexibility and maximum plan visibility. Various controls and requirements in this program plan are considered mandatory on all features which are identified as important to public health and safety (Level I). It is the intent of this document that the Quality Assurance program comprise those elements which will provide adequate assurance that all components, equipment, and systems of the experiments will perform as designed, and hence prevent delays and costs due to rejections or failures

  19. Department of Energy hazardous waste remedial actions program: Quality assurance program

    International Nuclear Information System (INIS)

    Horne, T.E.

    1988-01-01

    This paper describes the Quality Assurance Program developed for the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAP SCO). Key topics discussed include an overview of the HAZWRAP SCO mission and organization, the basic quality assurance program requirements and the requirements for the control of quality for the Department of Energy and Work for Others hazardous waste management programs, and the role of ensuring quality through the project team concept for the management of remedial response actions. The paper focuses on planning for quality assurance for this remedial waste management process from preliminary assessments of remedial sites to feasibility studies. Some observations concerning the control of quality during the implementation of remedial actions are presented. (2 refs.)

  20. The development of quality assurance program in Reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mohd Rizal Mamat; Mohamad Zaid Mohamad; Mohd Ridzuan Abdul Mutalib

    2007-01-01

    One of the trivial issues in the operation of Nuclear Reactor is the safety of the system. Worldwide publicity on a few nuclear accidents as well as the notorious Hiroshima and Nagasaki bombing has always bring about general public fear on anything related to nuclear. IAEA has always emphasized on the assurance of nuclear safety for all nuclear installations and activities. According to the IAEA safety guides, all research reactors are required to implement quality assurance programs to ensure the conduct of operations are in accordance with the safety standards required. This paper discusses the activities carried out toward the establishment of Quality Assurance Program for Reaktor TRIGA PUSPATI (RTP). (Author)

  1. National waste terminal storage program. Supplementary quality-assurance requirements

    International Nuclear Information System (INIS)

    Garland, D.L.

    1980-01-01

    The basic Quality Assurance Program Requirements standard for the National Waste Terminal Storage Program has been developed primarily for nuclear reactors and other fairly well established nuclear facilities. In the case of waste isolation, however, there are many ongoing investigations for which quality assurance practices and requirements have not been well defined. This paper points out these problems which require supplementary requirements. Briefly these are: (1) the language barrier, that is geologists and scientists are not familiar with quality assurance (QA) terminology; (2) earth sciences deal with materials that cannot be characterized as easily as metals or other materials that are reasonably homogeneous; (3) development and control of mathematical models and associated computer programs; (4) research and development

  2. Quality assurance in a large research and development laboratory

    International Nuclear Information System (INIS)

    Neill, F.H.

    1980-01-01

    Developing a quality assurance program for a large research and development laboratory provided a unique opportunity for innovative planning. The quality assurance program that emerged has been tailored to meet the requirements of several sponsoring organizations and contains the flexibility for experimental programs ranging from large engineering-scale development projects to bench-scale basic research programs

  3. Plutonium immobilization project development and testing technical project office quality assurance program description

    International Nuclear Information System (INIS)

    Gould, T.H.; MacLean, L.M.; Ziemba, J.M.

    1999-01-01

    The Plutonium Immobilization Project (PIP) is one of several fissile materials disposition projects managed by the Department of Energy (DOE) Office of Fissile Materials Disposition (OFMD). The PIP is expected to evolve from the current Development and Testing (D and T) effort, to design, to construction, and finally to operations. Overall management and technical management of the D and T effort resides at the Lead Laboratory, Lawrence Livermore National Laboratory (LLNL), through the LLNL Manager, Fissile Materials Disposition Program (FMDP). Day to day project activities are managed by the D and T Technical Project Office (TPO), which reports to the LLNL Manager, FMDP. The D and T TPO consists of the Technical Manager, the TPO Quality Assurance (QA) Program Manager, and TPO Planning and Support Staff. This Quality Assurance Program Description (QAPD) defines the QA policies and controls that will be implemented by these TPO personnel in their management of D and T activities. This QAPD is consistent with and responsive to the Department of Energy Fissile Materials Disposition Program Quality Assurance Requirements Document (FMDP QARD). As the Project and upper level requirement's documents evolve, this QAPD will be updated as necessary to accurately define and describe the QA Program and Management of the PIP. The TPO has a policy that all development and testing activities be planned, performed and assessed in accordance with its customer's requirements, needs and expectations, and with a commitment to excellence and continuous improvement. The TPO QAPD describes implementation requirements which, when completed, will ensure that the project development and testing activities conform to the appropriate QA requirements. For the program to be effective, the TPO QA Program Manager will ensure that each site participating in D and T activities has developed a QAPD, which meets the customer's requirements, and has a designated quality leader in place. These customer

  4. The Assessment, Development, Assurance Pharmacist's Tool (ADAPT) for ensuring quality implementation of health promotion programs.

    Science.gov (United States)

    Truong, Hoai-An; Taylor, Catherine R; DiPietro, Natalie A

    2012-02-10

    To develop and validate the Assessment, Development, Assurance Pharmacist's Tool (ADAPT), an instrument for pharmacists and student pharmacists to use in developing and implementing health promotion programs. The 36-item ADAPT instrument was developed using the framework of public health's 3 core functions (assessment, policy development, and assurance) and 10 essential services. The tool's content and usage was assessed and conducted through peer-review and initial validity testing processes. Over 20 faculty members, preceptors, and student pharmacists at 5 institutions involved in planning and implementing health promotion initiatives reviewed the instrument and conducted validity testing. The instrument took approximately 15 minutes to complete and the findings resulted in changes and improvements to elements of the programs evaluated. The ADAPT instrument fills a need to more effectively plan, develop, implement, and evaluate pharmacist-directed public health programs that are evidence-based, high-quality, and compliant with laws and regulations and facilitates documentation of pharmacists' contributions to public health.

  5. Quality assurance program. Topical report, GIBSAR-7

    International Nuclear Information System (INIS)

    1975-09-01

    The quality assurance program developed by Gibbs and Hill to satisfy the requirement that design, engineering, procurement, fabrication, and construction activities for nuclear power plants are performed in accordance with applicable codes, standards, and regulatory criteria is outlined. The program was developed to conform to the criteria of Appendix B to 10 CFR Part 50 and is presented in such a manner that each of the 18 criteria are individually set forth. The Gibbs and Hill program, implemented by the procedures of the corporate Quality Assurance Manual also follows the guidelines of the NRC Gray Book, WASH 1283, Rev. 1, May 24, 1974, and Green Book, WASH 1309, May 10, 1974. (auth)

  6. Overview of the Hanford Site Performance Assurance Program

    International Nuclear Information System (INIS)

    Duncan, M.R.; Billings, M.P.; Delvin, W.L.; Scott, D.D.; Weatherby, J.W.

    1991-01-01

    This paper reports on a safeguards and security performance assurance program which encompasses the routine and special activities carried out to assure that safeguards and security subsystems and components are operating in a effective and reliable manner. At the Hanford Site, performance assurance involves widely varied activities, e.g., force-on-force exercises, functional testing of security components, and limited scope performance testing of material control and accountability subsystems. These activities belong to one of four categories: performance testing, functional testing, inspection, and preventive maintenance. Using categories has aided in identifying and assessing the relevant contribution each activity makes to the performance assurance program. Efforts have progressed toward incorporating performance assurance activities into the assessment of protection effectiveness required for Master Safeguards and Security Agreement development and its associated verification and validation process

  7. Development and implementation of a quality assurance program for a hormonal contraceptive implant.

    Science.gov (United States)

    Owen, Derek H; Jenkins, David; Cancel, Aida; Carter, Eli; Dorflinger, Laneta; Spieler, Jeff; Steiner, Markus J

    2013-04-01

    The importance of the distribution of safe, effective and cost-effective pharmaceutical products in resource-constrained countries is the subject of increasing attention. FHI 360 has developed a program aimed at evaluating the quality of a contraceptive implant manufactured in China, while the product is being registered in an increasing number of countries and distributed by international procurement agencies. The program consists of (1) independent product testing; (2) ongoing evaluation of the manufacturing facility through audits and inspections; and (3) post-marketing surveillance. This article focuses on the laboratory testing of the product. The various test methods were chosen from the following test method compendia, the United States Pharmacopeia (USP), British Pharmacopeia (BP), International Organization for Standardization (ISO), the American Society for Testing and Materials (ASTM), or lot release tests mandated by Chinese regulatory requirements. Each manufactured lot is independently tested prior to its distribution to countries supported by this program. In addition, a more detailed annual testing program includes evaluation of the active ingredient (levonorgestrel), the final product and the packaging material. Over the first 4 years of this 5-year project, all tested lots met the established quality criteria. The quality assurance program developed for this contraceptive implant has helped ensure that a safe product was being introduced into developing country family planning programs. This program provides a template for establishing quality assurance programs for other cost-effective pharmaceutical products that have not yet received stringent regulatory approval and are being distributed in resource-poor settings. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The NASA Commercial Crew Program (CCP) Mission Assurance Process

    Science.gov (United States)

    Canfield, Amy

    2016-01-01

    In 2010, NASA established the Commercial Crew Program in order to provide human access to the International Space Station and low earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine the commercial providers transportation system complies with Programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted Hazard Reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100 percent of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (SMA) model does not support the nature of the Commercial Crew Program. To that end, NASA SMA is implementing a Risk Based Assurance (RBA) process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications. This paper will describe the evolution of the CCP Mission Assurance process from the beginning of the Program to its current incarnation. Topics to be covered include a short history of the CCP; the development of the Programmatic mission assurance requirements; the current safety review process; a description of the RBA process and its products and ending with a description of the Shared Assurance Model.

  9. Hanford Waste Vitrification Plant quality assurance program description: Overview and applications

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1990-12-01

    This document describes the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository. The Hanford Waste Vitrification Plant Quality Assurance Program is comprised of this Quality Assurance Program Description as well as the associated contractors' quality assurance programs. The objective of this Quality Assurance Program Description is to provide the Hanford Waste Vitrification Plant Project participants with guidance and direction for program implementation while satisfying the US Department of Energy Office of Civilian Radioactive Waste Management needs in repository licensing activities with regard to canistered waste forms. To accomplish this objective, this description will be prepared in three parts: Part 1 - Overview and applications document; Part 2 - Development and qualification of the canistered waste form; Part 3 - Production of canistered waste forms. Part 1 describes the background, strategy, application, and content of the Hanford Waste Vitrification Plant Quality Assurance Program. This Quality Assurance Program Description, when complete, is designed to provide a level of confidence in the integrity of the canistered waste forms. 8 refs

  10. Quality assurance program plan for Building 324

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides an overview of the quality assurance program for Building 324. This plan supersedes the PNNL Nuclear Facilities Quality Management System Description, PNL-NF-QMSD, Revision 2, dated March 1996. The program applies to the facility safety structures, systems, and components and to activities that could affect safety structures, systems, and components. Adherence to the quality assurance program ensures the following: US Department of Energy missions and objectives are effectively accomplished; Products and services are safe, reliable, and meet or exceed the requirements and expectations of the user; Hazards to the public, to Hanford Site and facility workers, and to the environment are minimized. The format of this Quality Assurance Program Plan is structured to parallel that of 10 CFR 83 0.120, Quality Assurance Requirements

  11. An operational health physics quality assurance program

    International Nuclear Information System (INIS)

    Costigan, S.A.; McAtee, J.L. III; Somers, W.M.; Huchton, R.L.

    1996-01-01

    DOE Order 5700.6C, Quality Assurance, stipulates QA requirements for all DOE activities. This order is now codified as 10CFR830.120, Nuclear Safety Management, Quality Assurance Requirements, which is applicable to DOE nuclear facilities. A Quality Assurance Management Plan (QAMP) was developed by the Health Physics Operations Group (ESH-1) at Los Alamos National Laboratory (LANL). The goal of the ESH-1 QAMP is to ensure that operational radiation protection activities meet the criteria outlined in DOE Order 5700.6C, DOE-ER-STD-6001-92 and 10CFR830.120. The ten required elements are QA Program, Personal Training and Qualifications, Quality Improvement, Documents and Records, Work Processes, Design, Procurement, Inspection and Acceptance Testing, Management Assessment and Independent Assessment. The QAMP has been useful for the development of QAMPs at nuclear facilities and has helped ensure uniformity of institutional requirements where Health Physics services are deployed to facilities. To implement a subset of QAMP requirements, a Quality Assurance Self-Evaluation Program (QASE) was established. This program provides a novel self-audit mechanism for the formal identification and correction of non-conforming items related to Operational Health Physics. Additionally, the QASE is a useful management tool for Radiological Control Technician Supervisors and staff and provides a tracking mechanism for ongoing problem areas. Data have been Collected for two calendar years on a number of concerns that fall into four general categories: radiological posting and labeling, instrumentation, monitoring requirements, and radiological documents/records

  12. Quality assurance records system for research and development activities in support of geologic repository programs

    International Nuclear Information System (INIS)

    Smith, J.W.; Ryder, D.E.

    1987-01-01

    The Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute for the Department of Energy, is conducting site-specific research for all three candidate sites for the first geologic high-level waste repository, as well as generic research for the second repository. In conjunction with this effort, PNL has developed a quality assurance (QA) program that is applicable to all organizations that are performing research and development (R and D) activities in support of the repository programs. This QA program meets the basic and supplemental requirements of ANSI/ASME NQA-1-1983 and the Nuclear Regulatory Commission (NRC) Review Plan for QA Programs for Site Characterization of High Level Nuclear Waste Repositories. A key part of this program is the handling of QA records that may ultimately support the licensing process for the repository. This paper describes a QA records system that is flexible enough to accommodate several types of research, such as paper studies, test method development, site characterization studies, software development, and hardware design. In addition, the QA records system is acceptable to a variety of sponsors who have licensing concerns. The QA procedures and their relation to the requirements are described. Most important is the discussion on the approaches used to assure that the records are organized such that the user can readily recreate or defend data, conclusions, and recommendations resulting from the research

  13. Quality assurance applied to an environmental surveillance program

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.; Eldridge, J.S.

    1977-01-01

    A discussion of a quality assurance program applied to environmental surveillance activities is presented. This includes the philosophy and concepts of quality assurance, along with a detailed assessment of the sources of uncertainty in a monitoring program. The role management must play for a successful program is also discussed, and the quality assurance program implemented at Oak Ridge National Laboratory is presented

  14. Quality assurance program for prototype stereotactic system developed for neptun 10 Pc linac

    International Nuclear Information System (INIS)

    Khoshbin Khoshnazar, A.R.; Bahreyni Toossi, M.T.; Hashemiyan, A.R.; Bahreyni Toossi, M.T.; Salek, R.

    2005-01-01

    A prototype stereotactic radiosurgery set was designed and constructed for a Neptun 10 Pc linac that is currently being used at Imam Reza hospital in Mashad. Materials and Methods: A complete quality assurance program was designed and performed for the constructed system including isocentric accuracy test, localization accuracy test, dose delivery accuracy test and leakage radiation test. Target simulator, control alignment device and plexiglass phantom which were parts of the developed hardware were used to fulfill quality assurance program. Results: The average isocentric shift resulted from the gantry rotation and couch turning were respectively obtained to be 1.4 and 2 mm. The average localization error in the three coordinates was found to be 2.2 mm. The total treatment uncertainty due to all of the probable errors in the system was equal to 4.32 mm. The dose delivery accuracy test was carried out, the result indicated a 3.7% difference between the given and measured dose. Conclusion: The quality assurance tests showed consistent performance of the constructed system within the accepted limits; however, some inconsistency might exist in certain cases. The safety of stereotactic radiosurgery system method is increased when the overall uncertainty is minimized nd the treatment of the lesions adjacent to critical organs is avoided

  15. A Quality Assurance Program for decommissioning

    International Nuclear Information System (INIS)

    Briggs, P.M.

    1986-01-01

    Defining the Quality Assurance Program for the US Department of Energy Shippingport Station Decommissioning Project (SSDP) was a unique opportunity because this is the first full-sized commercial nuclear power plant to be decommissioned. General Electric Company defined a Quality Assurance Program that provided adequate control, yet was stripped down to the essentials. The Program is designed to provide a flexible degree of monitoring of subcontractor work, built around a core of radiation safety monitoring, detailed planning, inspection and auditing, and operated with a minimum of dedicated personnel. This paper will concentrate on the traditional quality assurance activities, leaving radiation and environmental monitoring for other presentations

  16. Recommendations for quality assurance programs in nuclear medicine facilities. Radiation recommendations series

    International Nuclear Information System (INIS)

    Segal, P.; Hamilton, D.R.

    1984-10-01

    The publication provides the elements that should be considered by nuclear medicine facilities to improve their existing programs or develop new quality assurance programs. The important administrative aspects of quality assurance programs are stressed. Each facility is encouraged to adopt those elements of the recommended program that are appropriate to its individual needs and resources

  17. Quality assurance program for nuclear power plants

    International Nuclear Information System (INIS)

    Gamon, T.H.

    1976-02-01

    The Topical Report presented establishes and provides the basis for the Brown and Root Quality Assurance Program for Nuclear Power Plants from which the Brown and Root Quality Assurance Manual is prepared and implemented. The Quality Assurance Program is implemented by the Brown and Root Power Division during the design, procurement, and construction phases of nuclear power plants. The Brown and Root Quality Assurance Program conforms to the requirements of Nuclear Regulatory Commission Regulation 10 CFR 50, Appendix B; to approved industry standards such as ANSI N45.2 and ''Daughter Standards''; or to equivalent alternatives as indicated in the appropriate sections of the report

  18. Quality assurance program for nuclear power plants

    International Nuclear Information System (INIS)

    Gamon, T.H.

    1976-06-01

    This topical report establishes and provides the basis for the Brown and Root Quality Assurance Program for Nuclear Power Plants from which the Brown and Root Quality Assurance Manual is prepared and implemented. The Quality Assurance Program is implemented by the Brown and Root Power Division during the design, procurement, and construction phases of nuclear power plants. The Brown and Root Quality Assurance Program conforms to the requirements of Nuclear Regulatory Commission Regulation 10 CFR 50, Appendix B; to approved industry standards such as ANSI N45.2 and ''Daughter Standards''; or to equivalent alternatives as indicated in the appropriate sections of this report

  19. The assurance management program for the Nova laser fusion project

    International Nuclear Information System (INIS)

    Levy, A.J.

    1983-01-01

    In a well managed project, Quality Assurance is an integral part of the management activities performed on a daily basis. Management assures successful performance within budget and on schedule by using all the good business, scientific, engineering, quality assurance, and safety practices available. Quality assurance and safety practices employed on Nova are put in perspective by integrating them into the overall function of good project management. The Inertial Confinement Fusion (ICF) approach is explained in general terms. The laser ICF and magnetic fusion facilities are significantly different in that the laser system is used solely as a highly reliable energy source for performing plasma physics experiments related to fusion target development; by contrast, magnetic fusion facilities are themselves the experiments. The Nova project consists of a 10-beam, 74 cm aperture neodymium-glass laser experimental facility which is being constructed by the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy. Nova has a total estimated cost of $176M and will become operational in the Fall of 1984. The Nova laser will be used as the high energy driver for studying the regime of ignition for ICF. The Nova assurance management program was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management program. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project

  20. Quality assurance program description: Hanford Waste Vitrification Plant, Part 1

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the Department of Energy's Richland Field Office (DOE-RL) quality assurance (QA) program for the processing of high-level waste as well as the Vitrification Project Quality Assurance Program for the design and construction of the Hanford Waste Vitrification Plant (HWVP). It also identifies and describes the planned activities that constitute the required quality assurance program for the HWVP. This program applies to the broad scope of quality-affecting activities associated with the overall HWVP Facility. Quality-affecting activities include designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, inspecting, testing, maintaining, repairing, and modifying. Also included are the development, qualification, and production of waste forms which may be safely used to dispose of high-level radioactive waste resulting from national defense activities. The HWVP QA program is made up of many constituent programs that are being implemented by the participating organizations. This Quality Assurance program description is intended to outline and define the scope and application of the major programs that make up the HWVP QA program. It provides a means by which the overall program can be managed and directed to achieve its objectives. Subsequent parts of this description will identify the program's objectives, its scope, application, and structure

  1. NRC assessment of the high-level waste repository quality assurance program

    International Nuclear Information System (INIS)

    Kennedy, J.E.

    1987-01-01

    As part of its licensing responsibilities, the NRC is independently reviewing the DOE quality assurance program applied to the site characterization phase activities. Data collected and other information generated during this phase of the program will ultimately be used in a license application to demonstrate the suitability of one site for long-term isolation of waste. They must therefore fall under the quality assurance program to provide confidence in their adequacy. This NRC review consists of three main activities: development of staff guidance on quality assurance measures appropriate for site characterization activities; review of DOE QA plans and procedures; and audits and other reviews of the implementation of the program

  2. Quality assurance program plan for radionuclide airborne emissions monitoring

    International Nuclear Information System (INIS)

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented

  3. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1985-01-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses program to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  4. Characteristics quality system assurance of university programs

    Directory of Open Access Journals (Sweden)

    Lucian Ion Medar

    2011-03-01

    Full Text Available Quality assurance program of study requires time, dedication, effort, innovative thinking and creativity. Competitive research programs monitored by quality assurance system to create the desired results on the relationship between learning and teaching methods and assessment.

  5. Application of software quality assurance to a specific scientific code development task

    International Nuclear Information System (INIS)

    Dronkers, J.J.

    1986-03-01

    This paper describes an application of software quality assurance to a specific scientific code development program. The software quality assurance program consists of three major components: administrative control, configuration management, and user documentation. The program attempts to be consistent with existing local traditions of scientific code development while at the same time providing a controlled process of development

  6. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1984-10-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses progress to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  7. Quality assurance requirements and description for the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1992-01-01

    The Quality Assurance Requirements and Description (QARD) is the principal quality assurance document for the Civilian Radioactive Waste Management Program (Program). It establishes the minimum requirements for the Quality Assurance Program. The QARD contains regulatory requirements and program commitments necessary for the development of an effective quality assurance program. Quality assurance implementing documents must be based on, and consistent with, QARD requirements. The QARD applies to the following: (1) acceptance of spent nuclear fuel and high-level radioactive waste; (2) transport of spent nuclear fuel and high-level radioactive waste; (3) the Monitored Retrievable Storage (MRS) facility through application for an operating license; (4) Mined Geologic Disposal System (MGDS), including the site characterization activities (exploratory studies facility (ESF) and surface based testing), through application for an operating license; (5) the high-level-waste form from production through acceptance. Section 2.0 defines in greater detail criteria for determining work subject to QARD requirements. The QARD is organized into sections, supplements, appendices, and a glossary. The sections contain requirements that are common to all Program elements. The supplements contain requirements for specialized activities. The appendices contain requirements that are specific to an individual Program element. The glossary establishes a common vocabulary for the Quality Assurance Program

  8. Quality assurance program plan for radionuclide airborne emissions monitoring

    International Nuclear Information System (INIS)

    Boom, R.J.

    1995-12-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements

  9. A Review of Research and Practice on Professional Development School : Quality Assurance regarding to Development of Program for Advanced Teacher Education

    OpenAIRE

    小柳, 和喜雄

    2014-01-01

    Currently, studies have been made on quality assurance regarding to development of program for advanced teacher education, including in-service training and teacher training in Japan. If the enhancement of teaching practical skills training is requested at the graduate level, effective coordination between the local government and schools and universities to be a place for the practice becomes more and more important. In the flow of quality assurance of school education and teacher training, ...

  10. Quality assurance program plan fuel supply shutdown project

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1998-01-01

    This Quality Assurance Program plan (QAPP) describes how the Fuel Supply Shutdown (FSS) project organization implements the quality assurance requirements of HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) and the B and W Hanford Company Quality Assurance Program Plan (QAPP), FSP-MP-004. The QAPP applies to facility structures, systems, and components and to activities (e.g., design, procurement, testing, operations, maintenance, etc.) that could affect structures, systems, and components. This QAPP also provides a roadmap of applicable Project Hanford Policies and Procedures (PHPP) which may be utilized by the FSS project organization to implement the requirements of this QAPP

  11. Quality assurance program for isotopic power systems

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1982-12-01

    This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented

  12. Quality assurance program for isotopic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hannigan, R.L.; Harnar, R.R.

    1982-12-01

    This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented.

  13. What is the role of a project or program manager in implementing and maintaining a quality assurance program

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The task of managing a government-funded program has changed significantly from the days when a program manager managed the funds and depended on reports from a contractor to measure the program's progress. Today's manager of waste management program must be personally involved in every aspect of the program. The successful manager of a waste management program will lead the development of management controls to ensure successful accomplishment of project objectives. This paper describes the responsibilities of the project manager, the quality assurance staff and how they interface to develop and implement a quality assurance program for a waste management program

  14. Quality assurance program plan for SNF characterization support project

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Spent Nuclear Fuel Characterization Support Project. This QAPP has been developed specifically for the Spent Nuclear Fuel Characterization Support Project, per Letter of Instruction (LOI) from Duke Engineering and Services Company, letter No. DESH-9655870, dated Nov. 22, 1996. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP) and LOI. These activities include installation of sectioning equipment and furnace, surface and subsurface examinations, sectioning for metallography, and element drying and conditioning testing, as well as project related operations within the 327 facility as it relates to the specific activities of this project. General facility activities are covered in other appropriate QA-PPS. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping,1261 and HSRCM-1, Hanford Site Radiological Control Manual. The 327 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a Babcock and Wilcox Hanford Company (BVMC) managed facility. During this transition process existing procedures and documents will be utilized until replaced by BVMC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to IO CFR 830.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be utilized in support of this project and the subject organizations are

  15. Good manufacturing practice - quality assurance programs

    International Nuclear Information System (INIS)

    Masefield, John; Thompson, Steven

    1986-01-01

    The concept of good manufacturing practice (GMP) in the medical device industry requires the use of controlled methods and equipment in performing each step in the device manufacturing process. Quality assurance programs are used to maintain compliance with GMP requirements by prescribing the operating and control procedures to be used. The specific elements of a quality assurance program for the radiation sterilization of medical devices are described. (author)

  16. Quality assurance program preparation - review of requirements and plant systems - selection of program levels

    International Nuclear Information System (INIS)

    Asmuss, G.

    1980-01-01

    The establishment and implementation for a practicable quality assurance program for a nuclear power plant demands a detailed background in the field of engineering, manufacturing, organization and quality assurance. It will be demonstrated with examples to define and control the achievement of quality related activities during the phases of design, procurement, manufactoring, commissioning and operation. In general the quality assurance program applies to all items, processes and services important to safety of nuclear power plant. The classification for safety related and non-safety related items and services demonstrate the levels of quality assurance requirements. The lecture gives an introduction of QA Program preparation under the following topics: -Basic criteria and international requirements - Interaction of QA activities - Modular and product oriented QA programs - Structuring of organization for the QA program - Identification of the main quality assurance functions and required actions - Quality Assurance Program documentation - Documentation of planning of activities - Control of program documents - Definitions. (orig./RW)

  17. An institutional review board-based clinical research quality assurance program.

    Science.gov (United States)

    Lad, Pramod M; Dahl, Rebecca

    2013-01-01

    Despite the acknowledged importance of quality assurance in the clinical research process, the problem of how such a program should be implemented at the level of an academic teaching hospital or a similar institution has not been addressed in the literature. Despite the fact that quality assurance is expected in programs which certify and accredit Institutional Review Boards (IRBs), very little is known about the role of the IRB in programs of clinical research quality assurance. In this article we consider the definition of clinical research quality assurance, and describe a program designed to achieve it. The key elements of such a program are education at the site level, which has both mandatory and voluntary components, and an auditing and monitoring program, which reinforces the education on quality assurance. The role of the IRB in achieving the program goals and the organizational placement of the quality assurance program within the IRB structure and function are important items of discussion.

  18. Qality assurance program for biomedical radiography

    International Nuclear Information System (INIS)

    Korolyuk, I.P.; Gurvich, A.M.

    1986-01-01

    Essence and purposes of quality assurance program (QAP) in biomedical radiography of population are considered. This program can be determined as organizational and executive activity of radiological service personnel providing the necessary for diagnosis quality of investigation at minimum radiation loads to patients and personnel and the lowest cost of the investigation. QAP includes quality control of technical means and of investigation implementation. Attention is paid to means and methods of quality control. QAP organizational problems are discussed. Necessity of further investigations and technical developments in this direction is noted

  19. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification

    International Nuclear Information System (INIS)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program

  20. DOE'S remedial action assurance program

    International Nuclear Information System (INIS)

    Welty, C.G. Jr.; Needels, T.S.; Denham, D.H.

    1984-10-01

    The formulation and initial implementation of DOE's Assurance Program for Remedial Action are described. It was initiated in FY 84 and is expected to be further implemented in FY 85 as the activities of DOE's Remedial Action programs continue to expand. Further APRA implementation will include additional document reviews, site inspections, and program office appraisals with emphasis on Uranium Mill Tailings Remedial Action Program and Surplus Facilities Management Program

  1. Quality assurance programs from laboratories offering radiological protection services

    International Nuclear Information System (INIS)

    Marrero Garcia, M.; Prendes Alonso, M.; Jova Sed, L.; Morales Monzon, J.A.

    1998-01-01

    The implementation of an adequate program for quality assurance in institutions servicing radiological protection programs will become an additional tool to achieve security targets included in that program. All scientific and technical services offered by CPHR employ quality assurance systems

  2. Integrating quality assurance and research and development

    International Nuclear Information System (INIS)

    Dronkers, J.J.

    1985-01-01

    Quality assurance programs cannot be transferred from one organization to another without attention to existing cultures and traditions. Introduction of quality assurance programs constitutes a significant change and represents a significant impact on the organizational structure and operational mode. Quality assurance professionals are change agents, but do not know how to be effective ones. Quality assurance as a body of knowledge and experience can only become accepted when its practitioners become familiar with their role as change agents. 8 references

  3. Quality assurance program

    International Nuclear Information System (INIS)

    1977-07-01

    This topical report describes the Gibbs and Hill Quality Assurance Program and sets forth the methods to be followed in controlling quality-related activities performed by Gibbs and Hill and its contractors. The program is based on company experience in nuclear power and related work, and defines a system found effective in providing independent control of quality-related functions and documentation. The scope of the report covers activities involving nuclear safety-related structures, systems, and components covered by Gibbs and Hill' contractual obligation to the Utility Owner for each project

  4. Quality assurance in the nuclear test program

    International Nuclear Information System (INIS)

    Shearer, J.N.

    1979-01-01

    In February 1979 Test Program laid the ground work for a new quality assurance structure. The new approach was based on the findings and recommendations of the Ad Hoc QA Program Review panel, which are summarized in this report. The new structure places the responsibility for quality assurance in the hands of the line organizations, both in the programmatic and functional elements of the LLL matrix

  5. Quality assurance manual for the development of digital systems

    International Nuclear Information System (INIS)

    Lee, Cheol Kwon; Kwon, Kee Choon; You, Young Eun; Kim, Kwan Hyun; Park, Jung Woo; Park, Chan Seok

    2001-12-01

    A digital safety system is being developed by three companies under the Korea Nuclear I and C System R and D Program. This Quality Assurance Manual (QAM) is written to ensure the safety and reliability of the system and to meet the regulatory requirements associated with quality assurance. This QAM describes eighteen elements of quality assurance criteria required for the development of the system, which are coincident with the criteria specified in Nuclear Energy Laws and Enforcement Regulations of Nuclear Energy Laws and 10CFR50 Appendix B. This QAM is submitted to the regulatory body with other documents related to the quality assurance activities performed during the system development. And its safety, validity and fulfillment are reviewed and audited in the review process of topical report of the digital safety system

  6. Development and implementation of a comprehensive quality assurance program at a community endoscopy facility.

    Science.gov (United States)

    Hilsden, Robert Jay; Rostom, Alaa; Dubé, Catherine; Pontifex, Darlene; McGregor, S Elizabeth; Bridges, Ronald J

    2011-10-01

    Quality assurance (QA) is a process that includes the systematic evaluation of a service, institution of improvements and ongoing evaluation to ensure that effective changes were made. QA is a fundamental component of any organized colorectal cancer screening program. However, it should play an equally important role in opportunistic screening. Establishing the processes and procedures for a comprehensive QA program can be a daunting proposition for an endoscopy unit. The present article describes the steps taken to establish a QA program at the Forzani & MacPhail Colon Cancer Screening Centre (Calgary, Alberta) - a colorectal cancer screening centre and nonhospital endoscopy unit that is dedicated to providing colorectal cancer screening-related colonoscopies. Lessons drawn from the authors' experience may help others develop their own initiatives. The Global Rating Scale, a quality assessment and improvement tool developed for the gastrointestinal endoscopy services of the United Kingdom's National Health Service, was used as the framework to develop the QA program. QA activities include monitoring the patient experience through surveys, creating endoscopist report cards on colonoscopy performance, tracking and evaluating adverse events and monitoring wait times.

  7. Nuclear medicine quality assurance program in Argentina

    International Nuclear Information System (INIS)

    Levi de Cabrejas, Mariana; Arashiro, Jorge G.; Giannone, Carlos A.

    1999-01-01

    A two steps program has been implemented: the first one is the quality control of the equipment and the second one the development of standard procedures for clinical studies of patients. A training program for doctors and technicians of the nuclear medicine laboratories was carried out. Workshops on instrumentation and quality assurance in nuclear medicine have been organized in several parts of the country. A joint program of the CNEA and the University of Buenos Aires has trained medical physicists. A method has been established to evaluate the capability of the laboratories to produce high quality images and to follow up the implementation of the quality control program

  8. National Program of Quality Assurance in Radiotherapy in Cuba

    International Nuclear Information System (INIS)

    Alonso Samper, J. L.; Dominguez Hung, L.; Morales Lopez, J. L.; Alfonso Laguardia, R.; Garcia Yip, F.

    2001-01-01

    It tries on the establishment of a Quality Assurance Nacional System, a Quality Assurance Committee implemented in Cuba, and a Quality Auditory National Program implemented in Cuba to control and assure radiotherapy quality

  9. Operating and Assurance Program Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The LBL Operating and Assurance Program (OAP) is a management system and a set of requirements designed to maintain the level of performance necessary to achieve LBL`s programmatic and administrative objectives effectively and safely through the application of quality assurance and related conduct of operations and maintenance management principles. Implement an LBL management philosophy that supports and encourages continual improvement in performance and quality at the Laboratory. Provide an integrated approach to compliance with applicable regulatory requirements and DOE orders. The OAP is intended to meet the requirements of DOE Order 5700.6C, Quality Assurance. The Program also contains management system elements of DOE Orders 5480.19, Conduct of Operations Requirements for DOE Facilities; 5480.25, Safety of Accelerator Facilities; and 4330.4A, Maintenance Management Program, and is meant to integrate these elements into the overall LBL approach to Laboratory management. The requirements of this program apply to LBL employees and organizations, and to contractors and facility users as managed by their LBL sponsors. They are also applicable to external vendors and suppliers as specified in procurement documents and contracts.

  10. Quality Assurance Program Description

    Energy Technology Data Exchange (ETDEWEB)

    Halford, Vaughn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryder, Ann Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Effective May 1, 2017, led by a new executive leadership team, Sandia began operating within a new organizational structure. National Technology and Engineering Solutions of Sandia (Sandia’s) Quality Assurance Program (QAP) was established to assign responsibilities and authorities, define workflow policies and requirements, and provide for the performance and assessment of work.

  11. Development and Implementation of a Comprehensive Quality Assurance Program at a Community Endoscopy Facility

    Directory of Open Access Journals (Sweden)

    Robert J Hilsden

    2011-01-01

    Full Text Available Quality assurance (QA is a process that includes the systematic evaluation of a service, institution of improvements and ongoing evaluation to ensure that effective changes were made. QA is a fundamental component of any organized colorectal cancer screening program. However, it should play an equally important role in opportunistic screening. Establishing the processes and procedures for a comprehensive QA program can be a daunting proposition for an endoscopy unit. The present article describes the steps taken to establish a QA program at the Forzani & MacPhail Colon Cancer Screening Centre (Calgary, Alberta – a colorectal cancer screening centre and nonhospital endoscopy unit that is dedicated to providing colorectal cancer screening-related colonoscopies. Lessons drawn from the authors’ experience may help others develop their own initiatives. The Global Rating Scale, a quality assessment and improvement tool developed for the gastrointestinal endoscopy services of the United Kingdom’s National Health Service, was used as the framework to develop the QA program. QA activities include monitoring the patient experience through surveys, creating endoscopist report cards on colonoscopy performance, tracking and evaluating adverse events and monitoring wait times.

  12. Quality assurance program plan for 324 Building B-Cell safety cleanout project (BCCP)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP-1131, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996. This QAPP has been developed specifically for the BCCP. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of decontaminating B-Cell and project related operations within the 324 Building as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations) are covered in the Building 324 QAPP. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping, and HSRCM-1, Hanford Site Radiological Control Manual, The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing, PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to 10 CFR 83 0.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be

  13. Measurement assurance program for LSC analyses of tritium samples

    International Nuclear Information System (INIS)

    Levi, G.D. Jr.; Clark, J.P.

    1997-01-01

    Liquid Scintillation Counting (LSC) for Tritium is done on 600 to 800 samples daily as part of a contamination control program at the Savannah River Site's Tritium Facilities. The tritium results from the LSCs are used: to release items as radiologically clean; to establish radiological control measures for workers; and to characterize waste. The following is a list of the sample matrices that are analyzed for tritium: filter paper smears, aqueous, oil, oily rags, ethylene glycol, ethyl alcohol, freon and mercury. Routine and special causes of variation in standards, counting equipment, environment, operators, counting times, samples, activity levels, etc. produce uncertainty in the LSC measurements. A comprehensive analytical process measurement assurance program such as JTIPMAP trademark has been implemented. The process measurement assurance program is being used to quantify and control many of the sources of variation and provide accurate estimates of the overall measurement uncertainty associated with the LSC measurements. The paper will describe LSC operations, process improvements, quality control and quality assurance programs along with future improvements associated with the implementation of the process measurement assurance program

  14. Implementing the AECL decommissioning quality assurance program at the Chalk River and Whiteshell Laboratories

    International Nuclear Information System (INIS)

    Colotelo, C.A.; Attas, E.M.; Stephens, M.E.

    2006-01-01

    This paper describes the approach and progress in developing, implementing and maintaining a quality assurance (QA) program for decommissioning at the nuclear facilities managed by Atomic Energy of Canada Limited (AECL). Decommissioning activities conducted by AECL are varied in nature, so the QA program must provide adequate flexibility, while maintaining consistency with accepted quality standards. Well-written documentation adhering to the applicable decommissioning standards is a key factor. Manager commitment and input during the writing of the documentation are also important to ensure relevance of the QA program and effectiveness of implementation. Training in the use of the quality assurance plan and procedures is vital to the understanding of the QA program. Beyond the training aspect there is a need for the quality assurance program to be supported by a QA subject expert who is able to advise the group in implementing the Quality Program with consistency over the range of decommissioning work activities and to provide continual assessment of the quality assurance program for efficiency and effectiveness, with a concomitant continuous improvement process. (author)

  15. Developing and Implementing a Quality Assurance Strategy for Electroconvulsive Therapy.

    Science.gov (United States)

    Hollingsworth, Jessa; Baliko, Beverly; McKinney, Selina; Rosenquist, Peter

    2018-04-17

    The literature provides scant guidance in effective quality assurance strategies concerning the use of electroconvulsive therapy (ECT) for the treatment of psychiatric conditions. Numerous guidelines are published that provide guidance in the delivery of care; however, little has been done to determine how a program or facility might ensure compliance to best practice for safety, tolerability, and efficacy in performing ECT. The objective of this project was to create a quality assurance strategy specific to ECT. Determining standards for quality care and clarifying facility policy were key outcomes in establishing an effective quality assurance strategy. An audit tool was developed utilizing quality criteria derived from a systematic review of ECT practice guidelines, peer review, and facility policy. All ECT procedures occurring over a 2-month period of May to June 2017 were retrospectively audited and compared against target compliance rates set for the facility's ECT program. Facility policy was adapted to reflect quality standards, and audit findings were used to inform possible practice change initiatives, were used to create benchmarks for continuous quality monitoring, and were integrated into regular hospital quality meetings. Clarification on standards of care and the use of clinical auditing in ECT was an effective starting point in the development of a quality assurance strategy. Audit findings were successfully integrated into the hospital's overall quality program, and recognition of practice compliance informed areas for future quality development and policy revision in this small community-based hospital in the southeastern United States. This project sets the foundation for a quality assurance strategy that can be used to help monitor procedural safety and guide future improvement efforts in delivering ECT. Although it is just the first step in creating meaningful quality improvement, setting clear standards and identifying areas of greatest

  16. Technical Excellence and Communication: The Cornerstones for Successful Safety and Mission Assurance Programs

    Science.gov (United States)

    Malone, Roy W.; Livingston, John M.

    2010-01-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center (MSFC) Safety and Mission Assurance (S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  17. Technical Excellence and Communication, the Cornerstones for Successful Safety and Mission Assurance Programs

    Science.gov (United States)

    Malone, Roy W.; Livingston, John M.

    2010-09-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center(MSFC) Safety and Mission Assurance(S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization’s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  18. Education for All in South Africa: Developing a National System for Quality Assurance.

    Science.gov (United States)

    Smith, William J.; Ngoma-Maema, Wendy Yolisa

    2003-01-01

    Draws on international research, policy, and practice relevant to quality assurance systems to analyze the development of a national framework for educational quality assurance in South Africa. Describes an emerging framework for quality assurance that encompasses evaluation of student achievement, quality audits and reviews, program and service…

  19. Basic Study of Establishment of Quality Assurance Processes to Develop an Integrated Quality Assurance System for Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    Lim, Byungki; Moon, Byeongsuk; Lee, Jae Kyoung

    2014-01-01

    An integrated quality assurance system has necessitated carrying out quality assurance programs in a systematic manner because the opportunities to expand business in overseas markets have increased since the export of a nuclear power plant to UAE in 2009. In this study, we use PDCA method to systematically analyze the quality assurance procedures that were used in previous projects for constructing nuclear power plants. We reached a classification system of quality assurance processes at each phase of nuclear power plant construction by integrating similar work related to quality such as planning, design, equipment manufacturing, construction and start-up. We also established a hierarchy of quality assurance processes to develop an integrated quality assurance system as a technology goal to be developed later. To obtain most updated quality assurance activities, a quality assurance process is structured by integrating similar works analyzed from quality assurance procedures through PDCA cycle method. At the implementation phase of Hierarchy of quality processes and sequence of processes for constructing nuclear power plant are established in this study. Integrated quality assurance system is to be developed by connecting organizations as well as stakeholders such as owners, Architect engineering, suppliers, contractors, and sub-contractors to carry out assigned work efficiently

  20. Basic Study of Establishment of Quality Assurance Processes to Develop an Integrated Quality Assurance System for Nuclear Power Plant Construction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Byungki; Moon, Byeongsuk; Lee, Jae Kyoung [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    An integrated quality assurance system has necessitated carrying out quality assurance programs in a systematic manner because the opportunities to expand business in overseas markets have increased since the export of a nuclear power plant to UAE in 2009. In this study, we use PDCA method to systematically analyze the quality assurance procedures that were used in previous projects for constructing nuclear power plants. We reached a classification system of quality assurance processes at each phase of nuclear power plant construction by integrating similar work related to quality such as planning, design, equipment manufacturing, construction and start-up. We also established a hierarchy of quality assurance processes to develop an integrated quality assurance system as a technology goal to be developed later. To obtain most updated quality assurance activities, a quality assurance process is structured by integrating similar works analyzed from quality assurance procedures through PDCA cycle method. At the implementation phase of Hierarchy of quality processes and sequence of processes for constructing nuclear power plant are established in this study. Integrated quality assurance system is to be developed by connecting organizations as well as stakeholders such as owners, Architect engineering, suppliers, contractors, and sub-contractors to carry out assigned work efficiently.

  1. Development and status of quality assurance for research and development in the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Cooper, R.B.; Sherman, G.R.; Truss, K.J.

    1989-01-01

    This paper discusses the application of quality assurance (QA) principles to the management of research and development. The authors describe formalized procedures necessary for conducting research. Also discussed are quality assurance procedures developed for a software development project and a geological field investigation

  2. Army Programs: Army Finance and Accounting Quality Assurance Program

    National Research Council Canada - National Science Library

    1988-01-01

    This regulation discusses the primary responsibilities of commanders and staff officers at installation and higher levels for execution of the Army Finance and Accounting Quality Assurance (QA) Program...

  3. The quality assurance program at K & S

    Energy Technology Data Exchange (ETDEWEB)

    Slowey, T.W. [AAPM Accredited Dosimetry Calibration Laboratory, Nashville, TN (United States)

    1993-12-31

    K & S operates the largest and one of the most comprehensive Accredited Dosimetry Calibration Laboratories (ADCLs) in the American Association of Physicists in Medicine (AAPM) secondary laboratory system. It offers calibrations covering energies from Grenz-Ray (0.03-mm Al) to cesium-137 and cobalt-60, brachytherapy source and well chamber calibrations for low-activity sources, and, recently, high-dose-rate iridium-192. The present Quality Assurance (QA) program at K & S began with the AAPM Guidelines for Accreditation (Task Group No. 22 and No. 3, 1989) and grew over the past 10 years to include all aspects of providing a private, self-supporting calibration service from a free-standing independent facility. Some aspects of the QA program were prompted by the requirements of the nuclear power industry while other parts were from national consensus standards or the experiences of staff. Redundancy and teamwork are the most important characteristics of this QA program. K & S has participated in a National Institute of Standards and Technology (NIST) measurement quality assurance (MQA) program since 1982, and, in recent years, an ADCL intralaboratory intercomparison was conducted by Task Group 3 of the Radiation Therapy Committee of the AAPM. One measure of the credibility of a QA program is consistent performance on the MQA program and the ADCL intercomparisons over the past 10 years. An equally important measure of the ability of a program to assure quality results is the frequency of reported errors.

  4. Bruce Power's nuclear pressure boundary quality assurance program requirements, implementation and transition

    International Nuclear Information System (INIS)

    Krane, J.C.

    2009-01-01

    The development of a full scope nuclear pressure boundary quality assurance program in Canada requires extensive knowledge of the structure and detailed requirements of codes and standards published by the Canadian Standards Association (CSA) and American Society of Mechanical Engineers (ASME). Incorporation into company governance documents and implementation of these requirements while managing the transition to more recent revisions of these codes and standards represents a significant challenge for Bruce Power, Canada's largest independent nuclear operator. This paper explores the key developments and innovative changes that are used to ensure successful regulatory compliance and effective implementation of the Bruce Power Pressure Boundary Quality Assurance Program. Challenges and mitigating strategies to sustain this large compliance based program at Bruce Power's 8 unit nuclear power plant site will also be detailed. (author)

  5. Exploration of reliability assurance program (RAP) for advanced nuclear power plant

    International Nuclear Information System (INIS)

    Chen Fang; Xu Rongbin

    2009-01-01

    This article describes the new requirements in US SRP on Reliability Assurance Program, inquires into the evolution of the reliability assurance requirements, and investigates the regulatory requirements on reliability assurance program for advanced reactors, it's main contents, and evaluation review practices and related issues, with the aim of enabling staff to understand be familiar and pay attention to this engineering program. This article may be as a reference for related workers. (authors)

  6. Quality Assurance Program description, Defense Waste Processing Facility (DWPF)

    International Nuclear Information System (INIS)

    Maslar, S.R.

    1992-01-01

    This document describes the Westinghouse Savannah River Company's (WSRC) Quality Assurance Program for Defense Waste Processing at the Savannah River Site (SRS). WSRC is the operating contractor for the US Department of Energy (DOE) at the SRS. The following objectives are achieved through developing and implementing the Quality Assurance Program: (1) Ensure that the attainment of quality (in accomplishing defense high-level waste processing objectives at the SRS) is at a level commensurate with the government's responsibility for protecting public health and safety, the environment, the public investment, and for efficiently and effectively using national resources. (2) Ensure that high-level waste from qualification and production activities conform to requirements defined by OCRWM. These activities include production processes, equipment, and services; and products that are planned, designed, procured, fabricated, installed, tested, operated, maintained, modified, or produced

  7. Development of a quality assurance system for radiotherapy

    International Nuclear Information System (INIS)

    Vroome, I.H. de; Leer, J.W.H.; Corver, R.

    1997-01-01

    Due to 1996 legislation in the Netherlands, every health care facility should have a quality assurance program. Because it is difficult to measure the quality of the product of care, a choice is made to focus on the process of care. For this purpose PACE was founded. (PACE is a Dutch acronym for Project ACcreditation) with as founding members: Public Health Insurance Council, TNO health research, 4 university hospitals and 4 large general hospitals. For in total 19 services and disciplines quality assurance standards where developed by groups in six of the hospitals. (author)

  8. The Role Of Quality Assurance Program For Safety Operation Of Nuclear Installations

    International Nuclear Information System (INIS)

    Harjanto, N.T.; Purwadi, K.P.; Boru, D.S.; Farida; Suharni

    2000-01-01

    Nuclear installations expose potential hazard of radiation, therefore in their construction, operation and maintenance, it is necessary to consider safety aspect, in which the safety requirements which has been determined must be met. One of the requirements that is absolutely needed is quality assurance, which covers arrangement of quality assurance program, organization and administration of the implementation of quality assurance, and supervision. Quality Assurance program is a guideline containing quality policies and basic determination on the realization of activities that effect the quality of equipment's and items used in the operation of nuclear installations in order that the operation of nuclear installation can run safety and in accordance with their design aims and operation limits. Quality Assurance Program includes document control, design control, supply control, control of equipment s and items, operation/process control, inspection and control of equipment test, and control of nonconformance and corrections. General system of nuclear installation operation is equipped with safety and supporting systems. These systems must apply the quality assurance program that cover control of activities in the systems. In the implementation of the quality assurance program, it is necessary to establish procedures, work guidelines/instructions, and quality recording that constitutes documents of quality system 2 nd , 3 th , and 4 th level after the quality assurance program. To ensure the effectivity and to prove whether the realization of the program has been pursuant to the determined requirements, an internal audit must be conducted accordingly

  9. Toward development of a comprehensive external quality assurance program for polyfunctional intracellular cytokine staining assays.

    Science.gov (United States)

    Staats, Janet S; Enzor, Jennifer H; Sanchez, Ana M; Rountree, Wes; Chan, Cliburn; Jaimes, Maria; Chan, Ray Chun-Fai; Gaur, Amitabh; Denny, Thomas N; Weinhold, Kent J

    2014-07-01

    The External Quality Assurance Program Oversight Laboratory (EQAPOL) Flow Cytometry Program assesses the proficiency of NIH/NIAID/DAIDS-supported and potentially other interested research laboratories in performing Intracellular Cytokine Staining (ICS) assays. The goal of the EQAPOL Flow Cytometry External Quality Assurance Program (EQAP) is to provide proficiency testing and remediation for participating sites. The program is not punitive; rather, EQAPOL aims to help sites identify areas for improvement. EQAPOL utilizes a highly standardized ICS assay to minimize variability and readily identify those sites experiencing technical difficulties with their assays. Here, we report the results of External Proficiency 3 (EP3) where participating sites performed a 7-color ICS assay. On average, sites perform well in the Flow Cytometry EQAP (median score is "Good"). The most common technical issues identified by the program involve protocol adherence and data analysis; these areas have been the focus of site remediation. The EQAPOL Flow Cytometry team is now in the process of expanding the program to 8-color ICS assays. Evaluating polyfunctional ICS responses would align the program with assays currently being performed in support of HIV immune monitoring assays. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Geologic software for nuclear waste repository studies: A quality assurance program

    International Nuclear Information System (INIS)

    Figuli, S.; English, S.L.

    1987-04-01

    This paper discusses a Quality Assurance (QA) program that Kent State University (KSU) has implemented for the development of geologic software. The software being developed at KSU will be used in the site characterization of nuclear waste repositories and must meet the requirements of federal regulations. This QA program addresses the development of models that will be used in the evaluation of the long-term climatic stability of three sites in the western US

  11. Quality Assurance program plan - plutonium stabilization and handling project W-460

    International Nuclear Information System (INIS)

    SCHULTZ, J.W.

    1999-01-01

    This Quality Assurance Program Plan (QAPP) identifies Project Quality Assurance (QA) program requirements for all parties participating in the design, procurement, demolition, construction, installation, inspection and testing for Project W-460

  12. Balancing compliance and cost when implementing a Quality Assurance program

    International Nuclear Information System (INIS)

    Pickering, S.Y.

    1997-12-01

    When implementing a Quality Assurance (QA) program, compliance and cost must be balanced. A QA program must be developed that hits the mark in terms of adequate control and documentation, but does not unnecessarily expand resources. As the Waste Isolation Pilot Plant (WIPP) has moved towards certification, Sandia National Laboratories has learned much about balancing compliance and costs. Some of these lessons are summarized here

  13. Quality Assurance Program Plan for TRUPACT-II Gas Generation Test Program

    International Nuclear Information System (INIS)

    2002-01-01

    The Gas Generation Test Program (GGTP), referred to as the Program, is designed to establish the concentration of flammable gases and/or gas generation rates in a test category waste container intended for shipment in the Transuranic Package Transporter-II (TRUPACT-II). The phrase 'gas generationtesting' shall refer to any activity that establishes the flammable gas concentration or the flammable gas generation rate. This includes, but is not limited to, measurements performed directly on waste containers or during tests performed on waste containers. This Quality Assurance Program Plan (QAPP) documents the quality assurance (QA) and quality control (QC) requirements that apply to the Program. The TRUPACT-II requirements and technical bases for allowable flammable gas concentration and gas generation rates are described in the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC).

  14. The Evolution of the NASA Commercial Crew Program Mission Assurance Process

    Science.gov (United States)

    Canfield, Amy C.

    2016-01-01

    In 2010, the National Aeronautics and Space Administration (NASA) established the Commercial Crew Program (CCP) in order to provide human access to the International Space Station and low Earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine that the Commercial Provider's transportation system complies with programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted hazard reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100% of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (S&MA) model does not support the nature of the CCP. To that end, NASA S&MA is implementing a Risk Based Assurance process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications.

  15. The role of the EPA radiation quality assurance program in the measurement quality assurance accreditation program for radioassay laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Grady, T.M. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    As the nature and extent of radiological contamination becomes better documented and more public, radioanalytical laboratories are faced with a constantly expanding variety of new and difficult analytical requirements. Concurrent with those requirements is the responsibility to provide customers, regulatory officials, or the public with defensible data produced in an environment of verifiable, controlled quality. To meet that need, a quality assurance accreditation program for radioassay laboratories has been proposed by the American National Standards Institute (ANSI). The standard will provide the organizational framework and functional requirements needed to assure the quality of laboratory outputs. Under the proposed program, the U.S. Environmental Protection Agency`s (EPA`s) Laboratory Intercomparison Program plays a key role as a reference laboratory. The current and proposed roles of the EPA Intercomparison Program are discussed, as are the functional relationships between EPA, the accreditating organization, and the service and monitoring laboratories.

  16. A pioneering application of NQA-1 quality assurance standards in the development of software

    International Nuclear Information System (INIS)

    Weisbin, A.N.

    1988-01-01

    The application of NQA-1 Quality Assurance Standards to computer software programs has been recent at the Oak Ridge National Laboratory. One reason for systematically applying quality assurance to computer software is the extensive use of results from computer programs. to characterize potential sites for nuclear waste repositories leading ultimately to important policy making decisions. Because data from these programs characterize the likely radioactivity profile for many hundreds of years, experimental validation is not feasible. The Sensitivity and Uncertainty Analysis Methods Development Project (SUAMDP) was developed to formulate and utilize efficient and comprehensive methods for determining sensitivities of calculated results with respect to changes in all input parameters. The computerized methodology was embodied in the Gradient Enhanced Software System (GRESS). Due to the fact that GRESS was to be used in the site characterization for waste storage, stringent NQA-1 requirements were imposed by the sponsor. A working relationship between the Oak Ridge National Laboratory (ORNL) Quality Department and the research scientists developing GRESS was essential in achieving understanding and acceptance of the quality assurance requirements as applied to the SUAMDP. The relationship resulted in the SUAMDP becoming the first software project at ORNL to develop a comprehensive NQA-1 Quality Assurance Plan; this plan now serves as a model for software quality assurance at ORNL. This paper describes the evolution of this plan and its impact on the application of quality assurance procedures to software

  17. Nevada Nuclear Waste Storage Investigations Quality-Assurance Program Plan: management and overview

    International Nuclear Information System (INIS)

    1981-10-01

    This Quality Assurance Program Plan (QAPP) defines the quality assurance program in effect for those activities of the Nevada Nuclear Waste Storage (NNWSI) that are directly controlled by: DOE/NV, the Technical Overview Contractor, and the Quality Assurance Overview Contractor. It is intended as a supplement to the NNWSI-QAP

  18. Measurement assurance program for FTIR analyses of deuterium oxide samples

    International Nuclear Information System (INIS)

    Johnson, S.R.; Clark, J.P.

    1997-01-01

    Analytical chemistry measurements require an installed criterion based assessment program to identify and control sources of error. This program should also gauge the uncertainty about the data. A self- assessment was performed of long established quality control practices against the characteristics of a comprehensive measurement assurance program. Opportunities for improvement were identified. This paper discusses the efforts to transform quality control practices into a complete measurement assurance program. The resulting program heightened the laboratory's confidence in the data it generated, by providing real-time statistical information to control and determine measurement quality

  19. The quality assurance program at K ampersand S

    International Nuclear Information System (INIS)

    Slowey, T.W.

    1993-01-01

    K ampersand S operates the largest and one of the most comprehensive Accredited Dosimetry Calibration Laboratories (ADCLs) in the American Association of Physicists in Medicine (AAPM) secondary laboratory system. It offers calibrations covering energies from Grenz-Ray (0.03-mm Al) to cesium-137 and cobalt-60, brachytherapy source and well chamber calibrations for low-activity sources, and, recently, high-dose-rate iridium-192. The present Quality Assurance (QA) program at K ampersand S began with the AAPM Guidelines for Accreditation (Task Group No. 22 and No. 3, 1989) and grew over the past 10 years to include all aspects of providing a private, self-supporting calibration service from a free-standing independent facility. Some aspects of the QA program were prompted by the requirements of the nuclear power industry while other parts were from national consensus standards or the experiences of staff. Redundancy and teamwork are the most important characteristics of this QA program. K ampersand S has participated in a National Institute of Standards and Technology (NIST) measurement quality assurance (MQA) program since 1982, and, in recent years, an ADCL intralaboratory intercomparison was conducted by Task Group 3 of the Radiation Therapy Committee of the AAPM. One measure of the credibility of a QA program is consistent performance on the MQA program and the ADCL intercomparisons over the past 10 years. An equally important measure of the ability of a program to assure quality results is the frequency of reported errors

  20. Application of quality assurance program to safety related aging equipment or components

    International Nuclear Information System (INIS)

    Papaiya, N.C.

    1990-01-01

    This paper addresses how quality assurance programs and their criteria are applied to safety related and aging equipment or components used in commercial nuclear plant applications. The QA Programs referred to are 10CFR50 Appendix B and EPRI NP-5652. The QA programs as applicable are applied to equipment/component aging qualification, preventive maintenance, surveillance testing and procurement engineering. The intent of this paper is not the technical issues, methods and research of aging. The paper addresses QA program's application to age-related equipment or components in safety related applications. Quality Assurance Program 10CFR50 Appendix B applies to all safety related aging components or equipment related to the qualification program and associated preventive maintenance and surveillance testing programs. Quality Assurance involvement with procurement engineering for age-related commercial grade items supports EPRI NP-5652 and assures that the dedicated OGI is equal to the item purchased as a basic component to 10CFR50 Appendix B requirements

  1. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  2. Quality Assurance Program Plan (QAPP) Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    ROBINSON, P.A.

    2000-01-01

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD

  3. The Belgian commitment to pharmaceutical quality: a model policy to improve quality assurance of medicines available through humanitarian and development programs.

    Science.gov (United States)

    Ravinetto, Raffaella; Roosen, Tim; Dujardin, Catherine

    2018-01-01

    Today, a combination of globalization of pharmaceutical production, lack of regulatory harmonization, and weakness of Medicines Regulatory Authorities, creates the "perfect conditions" for poor-quality medicine to circulate in the global market and to penetrate the less-regulated countries. Medicines regulation is the responsibility of the national regulatory authorities in the recipient country, but in the poorer countries, in practice, the responsibility of supply of quality-assured medicines is often taken by Non-Governmental Organizations and other implementers. But with some notable exceptions, many donors lack a pharmaceutical procurement policy with adequate quality requirements; and many implementers lack the skills and expertise needed to orient themselves in the complex web of global pharmaceutical supply. Thus, patients served by humanitarian or development programs may remain exposed to the risk of poor-quality medicines. When public money is used to purchase medicines for medical programs to be carried out overseas, adequate policies should be in place to assure that the same quality requirements are set that would be required for medicines marketed in the "donor" country. We will describe here a policy recently adopted in Belgium, i.e. the "Commitment to Quality Assurance for Pharmaceutical Products", signed in October 2017 by the Vice Prime Minister and Minister for Development Cooperation and 19 Belgian implementing agencies. By signing the new policy, the counterparts committed to ensure quality of medicines in the programs funded by Belgium's Official Development Assistance, and to build quality-assurance capacity in the recipient countries. Implementers are requested to integrate in their financing applications a section for pharmaceutical quality assurance, with a justified budget. They are also invited to consider how costs could be rationalized and mutualized by aligning the strengths of the various implementers. This model policy has the

  4. Quality assurance program application during the decommissioning phase of the Shoreham Nuclear Plant

    International Nuclear Information System (INIS)

    Patch, R.L.

    1993-01-01

    The application of Quality Assurance (QA) requirements for operating nuclear power plants has evolved over the last 30 years. QA programs started as good management practices and evolved to a process that is implemented integral to very detailed Probabilistic Risk Assessments (PRAs). QA programs for controlling activities during decommissioning of nuclear power plants are still in their infancy. Regulatory guidance is currently being developed, and much of what exists is in the form of draft guidance documents. In determining where to apply QA controls during decommissioning, a series of questions must be asked: Is there an existing regulatory commitment? (Safety related or safety significant activity); Are there any postulated accidents which need to be prevented or mitigated; What are the unacceptable risks; Are there other key factors, such as human performance issues and Industrial Safety Programs, to be considered? Which QA controls are needed and to what extent they should be applied must be evaluated on a case by case basis. How much QA to apply is usually a risk evaluation in itself. Can you afford not to apply a specific control? Can you afford to apply costly and rigorous quality control programs? These questions had to be answered at the Shoreham Nuclear Power Station (SNPS) in order to develop and implement an acceptable and effective Quality Assurance program. Exploring the SNPS open-quotes lessons learnedclose quotes on how to apply a quality assurance program during decommissioning is what the following discussion is about

  5. Quality assurance program plan for low-level waste at the WSCF Laboratory

    International Nuclear Information System (INIS)

    Morrison, J.A.

    1994-01-01

    The purpose of this document is to provide guidance for the implementation of the Quality Assurance Program Plan (QAPP) for the management of low-level waste at the Waste Sampling and Characterization Facility (WSCF) Laboratory Complex as required by WHC-CM-4-2, Quality Assurance Manual, which is based on Quality Assurance Program Requirements for Nuclear Facilities, NQA-1 (ASME)

  6. Quality Assurance in Gerontological and Geriatric Training Programs: The European Case

    Science.gov (United States)

    Politynska, Barbara; van Rijsselt, Rene J. T.; Lewko, Jolanta; Philp, Ian; Figueiredo, Daniella; De Sousa, Lilliana

    2012-01-01

    Quality assurance (QA) in gerontological and geriatric education programs is regarded as essential to maintain standards, strengthen accountability, improve readability of qualifications, and facilitate professional mobility. In this article the authors present a summary of international developments in QA and elaborate four international trends,…

  7. Nuclear quality assurance programs, their role and their impacts

    International Nuclear Information System (INIS)

    Lex, B.L.

    1978-01-01

    The major steps in the development of control and instrumentation design requirements for a nuclear station, the execution of the detailed design and the procurement, installation and start-up of the control equipment and systems are outlined. The principal quality assurance program requirements related to each of these steps are described and the impact of these requirements on the conduct of the work are examined. (author)

  8. Application of 5700.6B, quality assurance, to ES and H programs: Mound's approach and results

    International Nuclear Information System (INIS)

    Edling, D.A.

    1985-01-01

    Quality Assurance has always been integral to Mound's production and support operations. Weapons material and other designated material for WR programs are processed and controlled per the requirements of DOE/AL Quality Control Policy QC-1. Mound's non-WR activities, such as siting, design, construction, testing, operation, maintenance, development and production of materials, components, and systems, and acquisition of research and technology data are to be processed and controlled per the requirements of AL Order 5700.6. This paper presents an overview of the entire Quality Assurance Program at Mound and specifically addresses Mound's formal application of Quality Assurance to our comprehensive Environmental, Safety and Health (ES and H) Programs. 4 figures, 1 table

  9. Self–Evaluation of Distance Learning Study Program as a Part of Internal Quality Assurance

    Directory of Open Access Journals (Sweden)

    Radojka Krneta

    2012-02-01

    Full Text Available This paper features quality assurance of specific distance learning master study program through self-evaluation. This unique program involving e-learning as the program content, as well as delivery method, is presented in the paper from the aspects of its quality assurance. Student evaluation of this study program as a part of the internal quality assurance is performed at the end of every school year in the aim of its quality assurance. Results and conclusions of self-evaluation conducted in this school year by known SEVAQ+ evaluation tool are presented here.

  10. Hanford Waste Vitrification Plant Quality Assurance Program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1992-01-01

    This document describes the quality assurance (QA) program of the Hanford Waste Vitrification Plant (HWVP) Project. The purpose of the QA program is to control project activities in such a manner as to achieve the mission of the HWVP Project in a safe and reliable manner. A major aspect of the HWVP Project QA program is the control of activities that relate to high-level waste (HLW) form development and qualification. This document describes the program and planned actions the Westinghouse Hanford Company (Westinghouse Hanford) will implement to demonstrate and ensure that the HWVP Project meets the US Department of Energy (DOE) and ASME regulations. The actions for meeting the requirements of the Waste Acceptance Preliminary Specifications (WAPS) will be implemented under the HWVP product qualification program with the objective of ensuring that the HWVP and its processes comply with the WAPS established by the federal repository

  11. Hanford Waste Vitrification Plant quality assurance program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-12-01

    The US Department of Energy-Office of Civilian Radioactive Waste Management has been designated the national high-level waste repository licensee and the recipient for the canistered waste forms. The Office of Waste Operations executes overall responsibility for producing the canistered waste form. The Hanford Waste Vitrification Plant Project, as part of the waste form producer organization, consists of a vertical relationship. Overall control is provided by the US Department of Energy-Environmental Restoration and Waste Management Headquarters; with the US Department of Energy-Office of Waste Operations; the US Department of Energy- Headquarters/Vitrification Project Branch; the US Department of Energy-Richland Operations Office/Vitrification Project Office; and the Westinghouse Hanford Company, operations and engineering contractor. This document has been prepared in response to direction from the US Department of Energy-Office of Civilian Radioactive Waste Management through the US Department of Energy-Richland Operations Office for a quality assurance program that meets the requirements of the US Department of Energy. This document provides guidance and direction for implementing a quality assurance program that applies to the Hanford Waste Vitrification Plant Project. The Hanford Waste Vitrification Plant Project management commits to implementing the quality assurance program activities; reviewing the program periodically, and revising it as necessary to keep it current and effective. 12 refs., 6 figs., 1 tab

  12. Technology and Tool Development to Support Safety and Mission Assurance

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh

    2017-01-01

    The Assurance Case approach is being adopted in a number of safety-mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs) as put forth by the Agency's Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.

  13. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    International Nuclear Information System (INIS)

    Vance, L.M.

    1993-07-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site

  14. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vance, L.M.

    1993-07-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

  15. A strategy to develop and implement Canadian standards for quality assurance in radiation therapy

    International Nuclear Information System (INIS)

    1999-05-01

    In Canada, the Atomic Energy Control Board (AECB) regulates the limits of radiation exposure to the public and to workers in industry. In 1993, it discussed the fact that the safety of radiation therapy patients who receive medical exposures is not regulated [AE93]. The Group of Medical Advisors (GMA) to the AECB initiated a research contract to review quality assurance in Canadian radiation oncology centres and nuclear medicine departments. The review [MA95] revealed that the level of quality assurance in radiation therapy facilities varied across the country. As a result, the GMA undertook its own review of quality assurance in radiation therapy centres and made recommendations on how to achieve a uniform national system [MA98]. In response to the GMA report, the President of the AECB formed a Joint Working Group (JWG-11) to propose how Canadian Standards for Quality Assurance in Radiation Therapy could be developed and implemented. These national standards for quality assurance will serve as a common basis for establishing and evaluating quality assurance programs at individual radiation therapy centres. These standards should address the structure of quality assurance programs and quality assurance for radiation therapy equipment, personnel, and procedures. (author)

  16. Quality Assurance Program Plan for SFR Metallic Fuel Data Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, Timothy [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hlotke, John Daniel [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-07-05

    This document contains an evaluation of the applicability of the current Quality Assurance Standards from the American Society of Mechanical Engineers Standard NQA-1 (NQA-1) criteria and identifies and describes the quality assurance process(es) by which attributes of historical, analytical, and other data associated with sodium-cooled fast reactor [SFR] metallic fuel and/or related reactor fuel designs and constituency will be evaluated. This process is being instituted to facilitate validation of data to the extent that such data may be used to support future licensing efforts associated with advanced reactor designs. The initial data to be evaluated under this program were generated during the US Integral Fast Reactor program between 1984-1994, where the data includes, but is not limited to, research and development data and associated documents, test plans and associated protocols, operations and test data, technical reports, and information associated with past United States Nuclear Regulatory Commission reviews of SFR designs.

  17. Quality Assurance Program Plan for the Waste Sampling and Characterization Facility

    International Nuclear Information System (INIS)

    Grabbe, R.R.

    1995-01-01

    The objective of this Quality Assurance Plan is to provide quality assurance (QA) guidance, implementation of regulatory QA requirements, and quality control (QC) specifications for analytical service. This document follows the Department of Energy (DOE)-issued Hanford Analytical Services Quality Assurance Plan (HASQAP) and additional federal [10 US Code of Federal Regulations (CFR) 830.120] QA requirements that HASQAP does not cover. This document describes how the laboratory implements QA requirements to meet the federal or state requirements, provides what are the default QC specifications, and/or identifies the procedural information that governs how the laboratory operates. In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. This document also covers QA elements that are required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAPPs), (QAMS-004), and Interim Guidelines and Specifications for Preparing Quality Assurance Product Plans (QAMS-005) from the Environmental Protection Agency (EPA). A QA Index is provided in the Appendix A

  18. A pioneering application of NQA-1 quality assurance standards in the development of software

    International Nuclear Information System (INIS)

    Weisbin, A.N.

    1988-01-01

    One reason for systematically applying quality assurance to computer software is the extensive use of results from computer programs to characterize potential sited for nuclear waste repositories leading ultimately to important policy making decisions. Because data from these programs characterize the likely radioactivity profile for many hundreds of years, experimental validation is not feasible. The Sensitivity and Uncertainty Analysis Methods Development Project (SUAMDP) was developed to formulate and utilize efficient and comprehensive methods for determining sensitivities of calculated results with respect to changes in all input parameters. The computerized methodology was embodied in the Gradient Enhanced Software System (GRESS). Due to the fact that GRESS was to be used in the site characterization for waste storage, stringent NQA-1 requirements were imposed by the sponsor. A working relationship between the Oak Ridge National Laboratory (ORNL) Quality Department and the research scientists developing GRESS was essential in achieving understanding and acceptance of the quality assurance requirements as applied to the SUAMDP. The relationship resulted in the SUAMDP becoming the first software project at ORNL to develop a comprehensive NQA-1 Quality Assurance Plan; this plan now serves as a model for software quality assurance at ORNL. This paper describes the evolution of this plan and its impact on the application of quality assurance procedures to software. 2 refs

  19. Quality assurance program

    International Nuclear Information System (INIS)

    Brooks, G.L.

    The concept of levels of quality assurance as applied to CANDU-type nuclear power plant components, i.e. maintaining an appropriate cost/benefit ratio, is introduced. The design process itself has quality assurance features by virtue of multi-level review. (E.C.B.)

  20. Design and implementation of a quality assurance program for gamma cameras

    International Nuclear Information System (INIS)

    Montoya M, A.; Rodriguez L, A.; Trujillo Z, F. E.

    2010-09-01

    implementation of a quality assurance program in nuclear medicine allows obtain diagnostic images of excellent quality, the doses optimization imparted to the patients, an exposition decrease to the occupationally exposed personnel, and in general it allows to improve the service productivity. This proposal can be used to develop similar quality assurance programs in other facilities also it can to act like an antecedent for the normative proposal for the quality assurance of equipment s in nuclear medicine. (Author)

  1. Quality assurance management policies and requirements

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of this document is to: set forth overall, integrated quality assurance management policies and requirements for the entire Civilian Radioactive Waste Management Program; define management responsibilities for assuring quality; and provide a general framework for the development of more detailed quality assurance management policies and requirements by program, project, and contractor organizations

  2. Qualification of quality assurance program audit personnel for nuclear power plants - August 1980

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Appendix B, Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants, to 10 CFR Part 50, Domestic Licensing of Production and Utilization Facilities, establishes overall quality assurance requirements for the design, construction, and operation of safety-related structures, and components of nuclear power plants. Criterion XVIII, Audits, of Appendix B establishes requirements for conducting audits of the quality assurance program. This guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to qualification of quality assurance program audit personnel for nuclear power plants

  3. Application of principles of quality assurance recommended by ISO 9000 Standards to Regulatory Program

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres; Bilbao Alfonso, Alejandro Victor

    2001-01-01

    For several years, the necessity of applying the programs of quality assurance to the radiation protection activities has been highlighted; however there has been little progress in this direction, even in the philosophical and methodological development of the topic. The objective of this work is to transmit some recommendations of how the Regulatory Authorities of developing countries can organize the quality assurance system of their own activity, following the main precepts of the international standard series ISO 9000. In very tight synthesis it describes the importance that has the definition of a policy of quality for a Regulatory Authority, the quality objectives, the definition of the responsibilities and attributions in relation with quality assurance, and others elements of the ISO 9000, and how to apply it. (author)

  4. Assurance program for remedial action (APRA) microcomputer-operated bibliography management system

    International Nuclear Information System (INIS)

    Stenner, R.D.; Washburn, D.K.; Denham, D.H.

    1985-10-01

    Pacific Northwest Laboratory (PNL) provided technical assistance to the Office of Operational Safety (OOS) in developing their Assurance Program for Remedial Action (APRA). The APRA Bibliography Management System (BMS), a microcomputer-operated system designed to file, locate and retrieve project-specific bibliographic data, was developed to manage the documentation associated with APRA. The BMS uses APRABASE, a PNL-developed computer program written in dBASE II language, which is designed to operate using the commercially available dBASE II database software. The paper describes the APRABASE computer program, its associated subprograms, and the dBASE II APRA file. Although the BMS was designed to manage APRA-associated documents, it could be easily adapted for use in handling bibliographic data associated with any project

  5. Assurance Program for Remedial Action (APRA) microcomputer-operated bibliography management system

    International Nuclear Information System (INIS)

    Stenner, R.D.; Washburn, D.K.; Denham, D.H.

    1986-01-01

    Pacific Northwest Laboratory (PNL) provided technical assistance to the Office of Operational Safety (OOS) in developing their Assurance Program for Remedial Action (APRA). The APRA Bibliography Management System (BMS), a microcomputer-operated system designed to file, locate and retrieve project-specific bibliographic data, was developed to manage the documentation associated with APRA. The BMS uses APRABASE, a PNL-developed computer program written in dBASE II/sup (b)/ language, which is designed to operate using the commercially available dBASE II database software. This paper describes the APRABASE computer program, its associated subprograms, and the dBASE II APRA file. Although the BMS was designed to manage APRA-associated documents, it could be easily adapted for use in handling bibliographic data associated with any project

  6. Quality assurance program : bituminous concrete and central mix aggregates.

    Science.gov (United States)

    1980-01-01

    This report presents the results of a pilot quality assurance program initiated in the Richmond District in 1978. Under this program the producer's control tests are used for the acceptance of central mix aggregate and bituminous concrete and the Dep...

  7. Standard guide for establishing a quality assurance program for uranium conversion facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide provides guidance and recommended practices for establishing a comprehensive quality assurance program for uranium conversion facilities. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate health and safety practices and determine the applicability of regulatory limitations prior to use. 1.3 The basic elements of a quality assurance program appear in the following order: FUNCTION SECTION Organization 5 Quality Assurance Program 6 Design Control 7 Instructions, Procedures & Drawings 8 Document Control 9 Procurement 10 Identification and Traceability 11 Processes 12 Inspection 13 Control of Measuring and Test Equipment 14 Handling, Storage and Shipping 15 Inspection, Test and Operating Status 16 Control of Nonconforming Items 17 Corrective Actions 18 Quality Assurance Records 19 Audits 20 TABLE 1 NQA-1 Basic Requirements Relat...

  8. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Newsom, H.C.

    1999-01-01

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted

  9. 10 CFR 71.105 - Quality assurance program.

    Science.gov (United States)

    2010-01-01

    ... which functional compliance can be demonstrated by inspection or test; and (5) The quality history and... 10 Energy 2 2010-01-01 2010-01-01 false Quality assurance program. 71.105 Section 71.105 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Quality...

  10. Quality assurance FY 1995 site support program plan WBS 6.7.2.5

    International Nuclear Information System (INIS)

    Dell, L.D.

    1994-09-01

    This report is a summary of the quality assurance plan and program for the Westinghouse Hanford Company. The quality assurance plan verifies that the appropriate quality assurance programs and controls are applied to activities that affect quality related to work in: waste management; environmental activities (restoration, remediation, and monitoring); implementation of environmental, state, local, and federal regulations; tri-party agreement activities; facility operation and deactivation/transition to shutdown; new facility construction and operation

  11. Quality assurance FY 1995 site support program plan WBS 6.7.2.5

    Energy Technology Data Exchange (ETDEWEB)

    Dell, L.D.

    1994-09-01

    This report is a summary of the quality assurance plan and program for the Westinghouse Hanford Company. The quality assurance plan verifies that the appropriate quality assurance programs and controls are applied to activities that affect quality related to work in: waste management; environmental activities (restoration, remediation, and monitoring); implementation of environmental, state, local, and federal regulations; tri-party agreement activities; facility operation and deactivation/transition to shutdown; new facility construction and operation.

  12. Relevant aspects of a quality assurance program applied to a nuclear power plant operation

    International Nuclear Information System (INIS)

    Fernandez, J.C.

    1987-01-01

    The purpose of this work was to enumerate the most relevant subjects to be taken into account for the elaboration of a Quality Assurance Program aimed to regulate a nuclear power plant operation. At first, it was necessary to point out the relevance that implies the presence of a group of personnel, experienced in quality assurance with enough knowledge on the technical and organizing aspects of the plant. Other aspect to be taken into account was the contemplation of the international requirements, through the International Atomic Energy Agency and of the national requirements that each country had set up by the corresponding regulating agencies. These organizations pointed out the minimum rules that must be followed for the adequate and efficient execution of a program. The Quality Assurance Manual and the program and work procedures constituted the Quality Assurance Program which must be checked as regards its fulfillment by auditors and quality assurance supervisions. (Author)

  13. Requirements for an ES and H assurance program at the working levels of organization

    International Nuclear Information System (INIS)

    Tierney, M.S.; Ellingson, A.C.

    1979-07-01

    Means by which the disciplines of quality assurance (QA), reliability (R), and human factors (HF) might be used to the advantage of Environment, Safety, and Health (ES and H) programs are being investigated. A generalized model assurance program, based on QA, R, and HF principles but specifically tailored to ES and H program needs, has been developed. Current studies address implementation of the model assurance program at the working levels of organization. It appears that the only way practicability at the working level can be determined is by the case study method. The present study represents a first step in the application of such a procedure. An attempt was made to approach the question of practicability by first constructing a generic ES and H assurance plan for working-level organizations that is based upon the more widely-applied model plan and studies mentioned earlier. Then the elements of this generic working-level plan were compared with the practices of an existing R and D organization at Sandia Laboratories, Albuquerque. Some of the necessary steps were taken to convert these practices to those required by the generic plan in order to gain a measure of the feasibility, cost, and some of the possible benefits of such a conversion. Partial results of one case study are presented, and some generalizations that emerge regarding the structure of an idealized working-level ES and H plan are made

  14. Plutonium stabilization and handling quality assurance program plan

    International Nuclear Information System (INIS)

    Weiss, E.V.

    1998-01-01

    This Quality Assurance Program Plan (QAPP) identifies project quality assurance requirements for all contractors involved in the planning and execution of Hanford Site activities for design, procurement, construction, testing and inspection for Project W-460, Plutonium Stabilization and Handling. The project encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM

  15. Management assessments of Quality Assurance Program implementation effectiveness

    International Nuclear Information System (INIS)

    Snyder, D.A.

    1984-01-01

    This paper describes a method currently being used by UNC Nuclear Industries, Richland, Washington, to help assure the effectiveness of Quality Assurance (QA) Program implementation. Assessments are conducted annually by management in each department, and the results summarized to the president and his staff. The purpose of these assessments is to review the adequacy of the department's implementing procedures, training/instruction on implementing procedures, and procedure implementation effectiveness. The primary purpose is to assess effectiveness and take improvement action where the need is indicated. The QA organization provides only general guidance in conducting the assessments

  16. Measurement quality assurance

    International Nuclear Information System (INIS)

    Eisenhower, E.H.

    1988-01-01

    The quality of a radiation protection program can be no better than the quality of the measurements made to support it. In many cases, that quality is unknown and is merely implied on the basis of a calibration of a measuring instrument. If that calibration is inappropriate or is performed improperly, the measurement result will be inaccurate and misleading. Assurance of measurement quality can be achieved if appropriate procedures are followed, including periodic quality control actions that demonstrate adequate performance. Several national measurement quality assurance (MQA) programs are operational or under development in specific areas. They employ secondary standards laboratories that provide a high-quality link between the National Bureau of Standards and measurements made at the field use level. The procedures followed by these secondary laboratories to achieve MQA will be described, as well as plans for similar future programs. A growing general national interest in quality assurance, combined with strong specific motivations for MQA in the area of ionizing radiation, will provide continued demand for appropriate national programs. Such programs must, however, employ procedures that are cost effective and must be developed with participation by all affected parties

  17. Quality assurance program requirements (design and construction). Task RS 002-5. Revision 3

    International Nuclear Information System (INIS)

    1985-08-01

    This regulatory guide describes a method acceptable to the NRC staff for complying with regard to establishing and implementing the requisite quality assurance program for the design and construction of nuclear power plants. Guidance for the establishment and execution of quality assurance programs during operation and decommissioning of nuclear power plants have been or will be addressed in separate regulatory guides. Similarly, quality assurance provisions concerning fuel cycle facilities have been or will be addressed in separate regulatory guides

  18. Summary of development and recommendations for a quality assurance program for the procurement and manufacture of urban mass transit operating equipment and systems

    Science.gov (United States)

    Witkin, S. A.

    1976-01-01

    A viable quality program for the urban mass transit industry, and a management approach to ensure compliance with the program are outlined. Included are: (1) a set of guidelines for quality assurance to be imposed on transit authorities, and a management approach to ensure compliance with them; (2) a management approach to be used by the transit authorities (properties) for assuring compliance with the QA guidelines; and (3) quality assurance guidelines to be imposed by properties and umta for procurement of hardware and systems.

  19. 10 CFR 72.144 - Quality assurance program.

    Science.gov (United States)

    2010-01-01

    ... quality history and degree of standardization of the item. (d) The licensee, applicant for a license... 10 Energy 2 2010-01-01 2010-01-01 false Quality assurance program. 72.144 Section 72.144 Energy... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Quality...

  20. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  1. Analysis of a quality assurance program in diagnostic radiology

    International Nuclear Information System (INIS)

    Goethlin, J.H.

    1986-01-01

    Retake analysis before and after introduction of a quality assurance program showed a 45% reduction of the retake rate. The most important changes concerning equipment and organizing of labour were: (1) More detailed inspection of development machines and X-ray generators, (2) new cassettes and intensifying screens, (3) reduction of the number of film formats used, (4) information and instruction of personnel. Cost reductions and profit from increased examination rate amounted to 4.5% of the overall operating costs of the radiologic department. (author)

  2. Quality assurance program plan for cesium legacy project

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Cesium Legacy Project. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of cask transportation, project related operations within the 324 Building, and waste management as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations, Central Waste Complex Operations, etc.) are covered in other appropriate QAPPs. The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents

  3. Quality assurance program manual for nuclear power plants. Volume I. Policies

    International Nuclear Information System (INIS)

    1976-01-01

    The Consumers Power Company Quality Assurance Program Manual for Nuclear Power Plants consists of policies and procedures which comply with current NRC regulatory requirements and industry codes and standards in effect during the design, procurement, construction, testing, operation, refueling, maintenance, repair and modification activities associated with nuclear power plants. Specific NRC and industry documents that contain the requirements, including the issue dates in effect, are identified in each nuclear power plant's Safety Analysis Report. The requirements established by these documents form the basis for the Consumer Power Quality Assurance Program, which is implemented to control those structures, systems, components and operational safety actions listed in each nuclear power plant's Quality List (Q-List). As additional and revised requirements are issued by the NRC and professional organizations involved in nuclear activities, they will be reviewed for their impact on this manual, and changes will be made where considered necessary. CP Co 1--Consumers Power Company QA Program Topical Report is Volume I of this manual and contains Quality Assurance Program Policies applicable during all phases of nuclear power plant design, construction and operation

  4. Benefits of a good quality assurance program to an electric utility

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, W.J. (Detroit Edison, Detroit, MI (United States))

    1994-10-01

    A good quality assurance program at a coal mine or power plant should be timely and consistent. The quality analysis is accurate due to a complete sampling of the coal stream loaded into the unit train. The sample analysis is accurate because standardized testing procedures are applied. A good coal quality assurance program includes: coal quality analysis of the delivered coal; bias testing of mechanical coal samplers; dust control during coal handling; and freeze conditioning during the winter. 2 figs., 2 plates

  5. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  6. Laboratory quality assurance and its role in the safeguards analytical laboratory evaluation (SALE) program

    International Nuclear Information System (INIS)

    Delvin, W.L.; Pietri, C.E.

    1981-07-01

    Since the late 1960's, strong emphasis has been given to quality assurance in the nuclear industry, particularly to that part involved in nuclear reactors. This emphasis has had impact on the analytical chemistry laboratory because of the importance of analytical measurements in the certification and acceptance of materials used in the fabrication and construction of reactor components. Laboratory quality assurance, in which the principles of quality assurance are applied to laboratory operations, has a significant role to play in processing, fabrication, and construction programs of the nuclear industry. That role impacts not only process control and material certification, but also safeguards and nuclear materials accountability. The implementation of laboratory quality assurance is done through a program plan that specifies how the principles of quality assurance are to be applied. Laboratory quality assurance identifies weaknesses and deficiencies in laboratory operations and provides confidence in the reliability of laboratory results. Such confidence in laboratory measurements is essential to the proper evaluation of laboratories participating in the Safeguards Analytical Laboratory Evaluation (SALE) Program

  7. Auditing of quality assurance programs for nuclear power plants - September 1980 - (Rev.1)

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Appendix B, Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants, to 10 CFR Part 50, Domestic Licensing of Production and Utilization Facilities, establishes overall quality assurance requirements for the design, construction, and operation of structures, systems, and components of nuclear power plants important to safety. Criterion XVIII, Audits, of Appendix B to 10 CFR Part 50 establishes requirements for conducting audits of the quality assurance program. This guide describes a method acceptable to the NRC staff for complying with the Commission's regulations with regard to auditing of quality assurance programs for nuclear power plants. The Advisory Committee on Reactor Safeguards has been consulted concerning this guide and has concurred in the regulatory position

  8. Evaluation and recommendations on U.C. Lawrence Livermore Labortory Quality Assurance Program

    International Nuclear Information System (INIS)

    Carpenter, F.D.; Horner, M.H.

    1978-01-01

    A study was conducted of the University of California's Lawrence Livermore Laboratory Quality Assurance Program, which focused on training needs and recommendations tailored to the various on-going programs. Specific attention was directed to an assessment of the quality status for the MFTF facility and the capabilities of assigned quality project engineers. Conclusions and recommendations are presented which not only address the purpose of this study, but extend into other areas to provide insight and needs for a total cost effective application of a quality assurance program

  9. Quality Assurance Program Plan for the Environmental Restoration Program

    International Nuclear Information System (INIS)

    1992-01-01

    The United States Department of Energy (USDOE) has initiated the Environmental Restoration Program (ERP) in an effort to manage, control and remediate existing hazardous, toxic and radioactive wastes generated at the Portsmouth Gaseous Diffusion Plant (PORTS). This ERP Quality Assurance Program Plan (QAPP) is responsive to the PORTS ESH Division QAPP and the ES Environmental Restoration Division (ERD) QAPP. This QAPP establishes the policies, requirements and responsibilities by which an appropriate level of QA shall be implemented within the PORTS-ERP. All PORTS-ERP activities shall be conducted in accordance with the requirements of this document and/or of a project level document which is derivative of this document

  10. QUALITY ASSURANCE IN SECONDARY EDUCATION PROGRAME OF BANGLADESH OPEN UNIVERSITY: Present Status and Challenges

    Directory of Open Access Journals (Sweden)

    Zobaida AKHTER

    2008-04-01

    Full Text Available In the present day in national and international perspectives, quality is the top of most agendas. Quality of education has significant impact and invaluable contribution to the area of development. Recently, the SSC & HSC program of BOU have earned recognition of equivalency with the formal education sector, which has naturally raised the question of quality assurance of these programs By applying the quantitative method, the study has assessed the present status of the quality of SSC & HSC program of BOU and also put some recommendations to meet the challenges for further development.

  11. Quality assurance program description for shipping packages of radioactive material

    International Nuclear Information System (INIS)

    1978-01-01

    This quality assurance plan describes the quality assurance program at the Pacific Northwest Laboratory (PNL), for shipping packages of radioactive material. The purpose of this report is to describe how PNL will comply with the Code of Federal Regulations, Title 10, Part 71, Appendix E. In compliance with the instructions from the Nuclear Regulatory Commission (NRC), the 18 criteria from Appendix E are covered

  12. ERD UMTRA Project quality assurance program plan, Revision 7

    International Nuclear Information System (INIS)

    1995-09-01

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors

  13. Quality assurance and management

    International Nuclear Information System (INIS)

    Newcomb, W.E.

    1989-01-01

    This paper traces the evolution of the quality assurance program of an office of waste management development (OWTD). The program's needs and commitment are examined. The author reports on the role of program and technical managers in such a program

  14. Quality assurance consideration for cement-based grout technology programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Tallent, O.K.; Sams, T.L.; Delzer, D.B.

    1987-01-01

    Oak Ridge National Laboratory has developed and is continuing to refine a method of immobilizing low-level radioactive liquid wastes by mixing them with cementitious dry-solid blends. A quality assurance program is vital to the project because Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA) and state environmental regulations must be demonstrably met (the work must be defensible in a court of law). The end result of quality assurance (QA) is, by definition, a product of demonstrable quality. In the laboratory, this entails traceability, repeatability, and credibility. This paper describes the application of QA in grout technology development at Oak Ridge National Laboratory

  15. Software Quality Assurance Audits Guidebooks

    Science.gov (United States)

    1990-01-01

    The growth in cost and importance of software to NASA has caused NASA to address the improvement of software development across the agency. One of the products of this program is a series of guidebooks that define a NASA concept of the assurance processes that are used in software development. The Software Assurance Guidebook, NASA-GB-A201, issued in September, 1989, provides an overall picture of the NASA concepts and practices in software assurance. Second level guidebooks focus on specific activities that fall within the software assurance discipline, and provide more detailed information for the manager and/or practitioner. This is the second level Software Quality Assurance Audits Guidebook that describes software quality assurance audits in a way that is compatible with practices at NASA Centers.

  16. Quality Assurance of Joint Degree Programs from the Perspective of Quality Assurance Agencies: Experience in East Asia

    Science.gov (United States)

    Hou, Yung-Chi; Ince, Martin; Tsai, Sandy; Wang, Wayne; Hung, Vicky; Lin Jiang, Chung; Chen, Karen Hui-Jung

    2016-01-01

    Joint degree programs have gained popularity in East Asia, due to the growth of transnational higher education in the region since 2000. However, the external quality assurance (QA) and accreditation of joint degree programs is a challenge for QA agencies, as it normally involves the engagement of several institutions and multiple national…

  17. Design-reliability assurance program application to ACP600

    International Nuclear Information System (INIS)

    Zhichao, Huang; Bo, Zhao

    2012-01-01

    ACP600 is a newly nuclear power plant technology made by CNNC in China and it is based on the Generation III NPPs design experience and general safety goals. The ACP600 Design Reliability Assurance Program (D-RAP) is implemented as an integral part of the ACP600 design process. A RAP is a formal management system which assures the collection of important characteristic information about plant performance throughout each phase of its life and directs the use of this information in the implementation of analytical and management process which are specifically designed to meet two specific objects: confirm the plant goals and cost effective improvements. In general, typical reliability assurance program have 4 broad functional elements: 1) Goals and performance criteria; 2) Management system and implementing procedures; 3) Analytical tools and investigative methods; and 4) Information management. In this paper we will use the D-RAP technical and Risk-Informed requirements, and establish the RAM and PSA model to optimize the ACP600 design. Compared with previous design process, the D-RAP is more competent for the higher design targets and requirements, enjoying more creativity through an easier implementation of technical breakthroughs. By using D-RAP, the plants goals, system goals, performance criteria and safety criteria can be easier to realize, and the design can be optimized and more rational

  18. Summary report on the Solar Consumer Assurance Network (SOLCAN) Program Planning Task in the southern region

    Energy Technology Data Exchange (ETDEWEB)

    Browne, M. B. [comp.

    1981-03-15

    The goal of the SOLCAN Program Planning Task is to assist in the development, at the state and local levels, of consumer assurance approaches that will support the accelerated adoption and effective use of new products promoted by government incentives to consumers to meet our nation's energy needs. The task includes state-conducted evaluations and state SOLCAN meetings to identify consumer assurance mechanisms, assess their effectiveness, and identify and describe alternative means for strengthening consumer and industry assurance in each state. Results of the SOLCAN process are presented, including: a Solar Consumer Protection State Assessment Guide; State Solar Consumer Assurance Resources for Selected States; State Solar Consumer Protection Assessment Interviews for Florida; and state SOLCAN meeting summaries and participants. (LEW)

  19. Quality assurance program description. Topical report SDQAPD-1

    International Nuclear Information System (INIS)

    1975-01-01

    The topical report presented describes the SDG and E QA Program that is applied to the design, procurement, construction, and preoperational testing of nuclear power plants. The QA plan describes the SDG and E organizational structure for quality assurance; identifies the functions, duties, and responsibilities of key departments and individuals; describes interrelationships and interfaces among internal groups and external organizations; delineates program requirements, and prescribes methods of implementation. SDG and E Procedures and Directives provide detailed direction for accomplishment of program requirements in consonance with the methods specified in the QA Plan

  20. Electronic laboratory quality assurance program: A method of enhancing the prosthodontic curriculum and addressing accreditation standards.

    Science.gov (United States)

    Moghadam, Marjan; Jahangiri, Leila

    2015-08-01

    An electronic quality assurance (eQA) program was developed to replace a paper-based system and to address standards introduced by the Commission on Dental Accreditation (CODA) and to improve educational outcomes. This eQA program provides feedback to predoctoral dental students on prosthodontic laboratory steps at New York University College of Dentistry. The purpose of this study was to compare the eQA program of performing laboratory quality assurance with the former paper-based format. Fourth-year predoctoral dental students (n=334) who experienced both the paper-based and the electronic version of the quality assurance program were surveyed about their experiences. Additionally, data extracted from the eQA program were analyzed to identify areas of weakness in the curriculum. The study findings revealed that 73.8% of the students preferred the eQA program to the paper-based version. The average number of treatments that did not pass quality assurance standards was 119.5 per month. This indicated a 6.34% laboratory failure rate. Further analysis of these data revealed that 62.1% of the errors were related to fixed prosthodontic treatment, 27.9% to partial removable dental prostheses, and 10% to complete removable dental prostheses in the first 18 months of program implementation. The eQA program was favored by dental students who have experienced both electronic and paper-based versions of the system. Error type analysis can yield the ability to create customized faculty standardization sessions and refine the didactic and clinical teaching of the predoctoral students. This program was also able to link patient care activity with the student's laboratory activities, thus addressing the latest requirements of the CODA regarding the competence of graduates in evaluating laboratory work related to their patient care. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements.

  2. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements

  3. Quality assurance program in the External dosimetry laboratory of the CPHR

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.; Martinez H, E.; Cardenas H, J.

    2006-01-01

    From 1999 the Laboratory of External Dosimetry of the Radiation Protection and Hygiene Center comes applying in its service of personal dosimetry a Program of Quality Assurance. This program was designed according to the recommendations of national and international organizations as the National Assuring Office of the Republic of Cuba (ONARC), the International Standards Organization (ISO), the International Electro technique Commission (IEC) and the International Atomic Energy Agency (IAEA). In this work it is presented in a summarized way the operation of this Program of Quality Assurance which includes the administration and conservation of the results and the documentation of the service, the controls that are carried out to the equipment, the acceptance tests that are applied to the equipment and new dosemeters, the shipment and prosecution of the dosemeters, the evaluation, storage and conservation of the doses, the report of the results, the traceability and reproducibility of the measurements, the attention to the reclamations and the clients complaints and the internal and external audits to those that it undergoes periodically the laboratory. (Author)

  4. Overall quality assurance program requirements for nuclear power plants

    International Nuclear Information System (INIS)

    1992-09-01

    This standard contains the requirements for the owner's overall quality assurance program for a nuclear power plant. This program encompasses all phases of a nuclear power plant life cycle, including site evaluation, design, procurement, manufacturing, construction and installation, commissioning, operation, and decommissioning. It covers the activities associated with specifying, directing, and administering the work to be done during these phases, and the evaluation and integrated of the activities and programs of participants

  5. Quality assurance considerations in nuclear waste management

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1982-01-01

    Proper use of quality assurance will provide the basis for an effective management control system for nuclear waste management programs. Control is essential for achieving successful programs free from costly losses and failures and for assuring the public and regulators that the environment and health and safety are being protected. The essence of quality assurance is the conscientious use of planned and systematic actions, based on selecting and applying appropriate requirements from an established quality assurance standard. Developing a quality assurance program consists of using knowledge of the technical and managerial aspects of a project to identify and evaluate risks of loss and failure and then to select appropriate quality assurance requirements that will minimize the risks. Those requirements are integrated into the project planning documents and are carried out as specific actions during the life of the project

  6. National waste terminal storage repository in a bedded salt formation for spent unreprocessed fuel. Quality assurance program for licensing

    International Nuclear Information System (INIS)

    1978-12-01

    A National Waste Terminal Storage Repository, in bedded salt, for spent unreprocessed fuel is the subject of a conceptual design project which began in January 1977. This volume presents a preliminary quality assurance program to guide the license applicant in developing a detailed program that will be compatible with anticipated National Waste Terminal Storage (NWTSR2) contracting arrangements and provide the documentation required by regulatory bodies. This QA program is designed to provide confidence that the quality-related activities pertaining to safety-related structures, systems, and components will be identified and controlled. Specific responsibilities for quality-related activities are documented and assigned to personnel and organizations for the major phases of facility design and construction. These responsibilities encompass a broad range of activities and are addressed in this preliminary program. The quality assurance program elements are organized and discussed herein as follows: (1) quality assurance during design and construction; (2) the applicant (DOE); (3) siting contractor; (4) architect/engineer; (5) project field management; and (6) operations contractor

  7. Re-Imagining Program Development and Re-Engineering Program Design.

    Science.gov (United States)

    Currie, Geoffrey M; Thomas, Catherine J

    2018-05-03

    Program development and review is a central part of institutional and industry quality assurance. Traditional approaches, while well established, present a number of barriers that could undermine process integrity and quality outcomes. Here a new approach to program development and design is explored with the goal of enhancing outcomes for students and institutions. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Quality Assurance Program Plan for FFTF effluent controls. Revision 1

    International Nuclear Information System (INIS)

    Seamans, J.A.

    1995-01-01

    This Quality Assurance Program Plan is specific to environmental related activities within the FFTF Property Protected Area. The activities include effluent monitoring and Low Level Waste Certification

  9. Quality Assurance--Best Practices for Assessing Online Programs

    Science.gov (United States)

    Wang, Qi

    2006-01-01

    Educators have long sought to define quality in education. With the proliferation of distance education and online learning powered by the Internet, the tasks required to assess the quality of online programs become even more challenging. To assist educators and institutions in search of quality assurance methods to continuously improve their…

  10. Study on quality assurance for high-level radioactive waste disposal project (2). Quality assurance system for the site characterization phase in the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Takada, Susumu

    2006-01-01

    The objective of this report is to assist related organizations in the development of quality assurance systems for a high-level radioactive waste disposal system. This report presents detail information with which related organizations can begin the development of quality assurance systems at an initial phase of repository development for a high-level radioactive waste disposal program, including data qualification, model validation, systems and facilities for quality assurance (e.g., technical data management system, sample management facility, etc.), and QA program applicability (items and activities). These descriptions are based on information in QA program for the Yucca Mountain Project (YMP), such as the U.S. Department of Energy (DOE) Quality Assurance Requirements and Description (QARD), DOE/RW-0333P, quality implementing procedures, and reports implemented by the procedures. Additionally, this report includes some brief recommendations for developing of quality assurance systems, such as establishment of quality assurance requirements, measures for establishment of QA system. (author)

  11. Project Quality Assurance Plan for research and development services provided by Oak Ridge National Laboratory in support of the Westinghouse Materials Company of Ohio Operable Unit 1 Stabilization Development and Treatability Studies Program

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.

    1991-05-01

    This Project Quality Assurance Plan (PQAP) sets forth the quality assurance (QA) requirements that are applied to those elements of the Westinghouse Materials Company of Ohio (WMCO) Operable Unit 1 support at Oak Ridge National Laboratory (ORNL) project that involve research and development (R D) performed at ORNL. This is in compliance with the applicable criteria of 10 CFR Part 50, Appendix B, ANSI/ASME NQA-1, as specified by Department of Energy (DOE) Oak Ridge Operations (ORO) Order 5700.6B. For this application, NQA-1 is the core QA Program requirements document. QA policy, normally found in the requirements document, is contained herein. The requirements of this PQAP apply to project activities that affect the quality and reliability/credibility of research, development, and investigative data and documentation. These activities include the functions of attaining quality objectives and assuring that an appropriate QA program scope is established. The scope of activities affecting quality includes organization; personnel training and qualifications; design control; procurement; material handling and storage; operating procedures; testing, surveillance, and auditing; R D investigative activities and documentation; deficiencies; corrective actions; and QA record keeping. 12 figs.

  12. Quality Assurance Plans under the Renewable Fuel Standard Program

    Science.gov (United States)

    Quality Assurance Plan or (QAP) is a voluntary program where independent third-parties may audit and verify that RINs have been properly generated and are valid for compliance purposes. RINs verified under a QAP may be purchased by regulated parties.

  13. Using RUFDATA to guide a logic model for a quality assurance process in an undergraduate university program.

    Science.gov (United States)

    Sherman, Paul David

    2016-04-01

    This article presents a framework to identify key mechanisms for developing a logic model blueprint that can be used for an impending comprehensive evaluation of an undergraduate degree program in a Canadian university. The evaluation is a requirement of a comprehensive quality assurance process mandated by the university. A modified RUFDATA (Saunders, 2000) evaluation model is applied as an initiating framework to assist in decision making to provide a guide for conceptualizing a logic model for the quality assurance process. This article will show how an educational evaluation is strengthened by employing a RUFDATA reflective process in exploring key elements of the evaluation process, and then translating this information into a logic model format that could serve to offer a more focussed pathway for the quality assurance activities. Using preliminary program evaluation data from two key stakeholders of the undergraduate program as well as an audit of the curriculum's course syllabi, a case is made for, (1) the importance of inclusivity of key stakeholders participation in the design of the evaluation process to enrich the authenticity and accuracy of program participants' feedback, and (2) the diversification of data collection methods to ensure that stakeholders' narrative feedback is given ample exposure. It is suggested that the modified RUFDATA/logic model framework be applied to all academic programs at the university undergoing the quality assurance process at the same time so that economies of scale may be realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A quality assurance program for nuclear power reactor materials tests at the Ford nuclear reactor

    International Nuclear Information System (INIS)

    Burn, R.R.

    1989-01-01

    The University of Michigan Nuclear Reactor Laboratory Quality Assurance Program has been established to assure that materials testing services provided to electric utilities produce accurate results in accordance with industry standards, sound engineering practice, and customer requirements. The program was prepared to comply with applicable requirements of 10CFR50, Appendix B, of the Code of Federal Regulations and a standard of the American National Standards Institute (ANSI), N45.2. The paper discusses the quality assurance program applicability, organization, qualification and training of personnel, material identification and control, examination and testing, measuring and test equipment, nonconforming test equipment, records, audits, and distribution

  15. Quality Assurance Requirements and Description

    International Nuclear Information System (INIS)

    Ram Murthy

    2002-01-01

    The Quality Assurance Requirements and Description (QARD) is the principal Quality Assurance (QA) document for the Civilian Radioactive Waste Management Program (Program). It establishes the minimum requirements for the QA program [INTRODUCTION :1p2s (NOT A REQUIREMENT)]. The QARD contains regulatory requirements and program commitments necessary for the development of an effective QA program [INTRODUCTION :1p3s (NOT A REQUIREMENT)]. Implementing documents must be based on, and be consistent with the QARD. The QARD applies to the following: (1) Acceptance of spent nuclear fuel and high-level waste. (2) Transport of spent nuclear fuel and high-level waste. (3) Storage of spent nuclear fuel through receipt of storage cask certification or a facility operating license. (4) Monitored Geologic Repository, including the site characterization activities [Exploratory Studies Facility (ESF) and surface based testing], through receipt of an operating license. (5) High-level waste form development through qualification, production, and acceptance. (6) Characterization of DOE spent nuclear fuel, and conditioning through acceptance of DOE spent nuclear fuel. Section 2.0, Quality Assurance Program, defines in greater detail criteria for determining work subject to the QARD

  16. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    Fernandez, L.

    1995-01-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  17. Office of Civilian Radioactive Waste Management ensuring quality assurance in the waste management program

    International Nuclear Information System (INIS)

    Kehew, W.J.; Barrett, L.H.

    1991-01-01

    This paper focuses on the Quality Assurance (QA) program of the U.S. Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). It describes the objectives and philosophy of quality assurance and the plans and activities that OCRWM is undertaking to implement a fully qualified QA program prior to beginning new site characterization activities in Nevada. This paper outlines OCRWM's plan to implement and use a well-designed and effective QA program throughout all elements of the program. (author) 1 fig., 5 refs

  18. Utility QA viewpoint: Quality assurance program conforming to 10CFR50, Appendix B and 10CFR71, subpart H

    International Nuclear Information System (INIS)

    Grodi, D.L.

    1987-01-01

    The Nuclear Regulatory Commission issued IE Information Notice No. 84-50: ''Clarification of Scope of Quality Assurance Programs for Transport Packages Pursuant to 10CFR50, Appendix B, in June, 1984. The reason for this notice was to eliminate confusion applicable to the quality assurance provisions of Appendix B, 10CFR50 to certain transport packages for which a quality assurance program is required by 10 CFR 71. The purpose of this paper is to provide methodology for establishing, implementing and verifying that all 10CFR71, Subpart H requirements are met with the utility's NRC approved 10CFR50, Appendix B Quality Assurance Program when utilizing a contractor (with a NRC approved Quality Assurance Program for Radioactive Waste Packaging and Transport) providing the radioactive waste solidification, packaging and transport for the utility. Collectively (utility and contractor) the quality assurance programs will meet the applicable regulatory requirements without the necessity of the utility establishing a separate and specific quality assurance program for Packaging and Transport of Radioactive Waste

  19. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  20. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    International Nuclear Information System (INIS)

    Hall, L.R.

    1995-01-01

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1

  1. A quality assurance program in stereotactic radiosurgery using the gamma knife unit

    International Nuclear Information System (INIS)

    Stuecklschweiger, G.F.; Feichtinger, K.

    1998-01-01

    Because of the large single fraction dose in stereotactic radiosurgery it is important to guarantee a high geometric and dosimetric accuracy. The paper represent the quality assurance program for the Gamma Knife unit at the University Clinic of Neurosurgery in Graz. The program includes the following procedures: Timer control, mechanical radiation isocenter coincidence, trunnion centricity, helmet microswitches test, radiation output and relative helmet factors, dose profile verification, safety interlocks checks and software quality assurance. In summary, the mechanical accuracy and reproducibility of the Gamma Knife unit are [de

  2. Investigating the Availability of Quality Assurance Standards of Academic Programs in the Music Teacher Preparation Program- University of Jordan, from the Students’ Perspective

    Directory of Open Access Journals (Sweden)

    Nedal M. Nsairat

    2017-08-01

    Full Text Available This study aimed to find out how far quality assurance standards were applied in the music teacher preparation program at the University of Jordan, from the viewpoint of the students enrolled in the same program. The population of this study consisted of all the students (53 enrolled in the program , and majoring in music education and music performance. The study followed a descriptive analytical approach to collect the data. The study results revealed the extent of relevance of the BA program of preparing music teachers in the University of Jordan, which came as a result of applying each quality assurance standard in the program except the standard of facilities and equipment. In light of the findings, the study recommended that all those in charge of the educational process should pay more heed to certification programs of music teacher education. This should be done by designing and implementing programs to support this type of program, so as to be in conformity with quality assurance standards of music teacher education. Keywords: Preparation , Music teacher education , Standard , Quality assurance.

  3. Nova laser assurance-management system

    International Nuclear Information System (INIS)

    Levy, A.J.

    1983-01-01

    In a well managed project, Quality Assurance is an integral part of the management activities performed on a daily basis. Management assures successful performance within budget and on schedule by using all the good business, scientific, engineering, quality assurance, and safety practices available. Quality assurance and safety practices employed on Nova are put in perspective by integrating them into the overall function of good project management. The Nova assurance management system was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management system. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project

  4. The Rockford School of Medicine Undergraduate Quality Assurance Program

    Science.gov (United States)

    Barr, Daniel; And Others

    1976-01-01

    An undergraduate program of ambulatory care quality assurance is described which has been operational at the Rockford School of Medicine for three years. Focus is on involving students in peer review and related audit activities. Results of preliminary evaluation are reported and generalizations offered. (JT)

  5. [Extraction of management information from the national quality assurance program].

    Science.gov (United States)

    Stausberg, Jürgen; Bartels, Claus; Bobrowski, Christoph

    2007-07-15

    Starting with clinically motivated projects, the national quality assurance program has established a legislative obligatory framework. Annual feedback of results is an important means of quality control. The annual reports cover quality-related information with high granularity. A synopsis for corporate management is missing, however. Therefore, the results of the University Clinics in Greifswald, Germany, have been analyzed and aggregated to support hospital management. Strengths were identified by the ranking of results within the state for each quality indicator, weaknesses by the comparison with national reference values. The assessment was aggregated per clinical discipline and per category (indication, process, and outcome). A composition of quality indicators was claimed multiple times. A coherent concept is still missing. The method presented establishes a plausible summary of strengths and weaknesses of a hospital from the point of view of the national quality assurance program. Nevertheless, further adaptation of the program is needed to better assist corporate management.

  6. UMTRA technical assistance contractor quality assurance program plan

    International Nuclear Information System (INIS)

    1994-10-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements

  7. Development of an Instructional Quality Assurance Model in Nursing Science

    Science.gov (United States)

    Ajpru, Haruthai; Pasiphol, Shotiga; Wongwanich, Suwimon

    2011-01-01

    The purpose of this study was to develop an instructional quality assurance model in nursing science. The study was divided into 3 phases; (1) to study the information for instructional quality assurance model development (2) to develop an instructional quality assurance model in nursing science and (3) to audit and the assessment of the developed…

  8. Quality assurance in technology development for The Clinch River Breeder Reactor Plant Project

    International Nuclear Information System (INIS)

    Anderson, J.W.

    1980-01-01

    The Clinch River Breeder Reactor Plant Project is the nation's first large-scale demonstration of the Liquid Metal Fast Breeder Reactor (LMFBR) concept. The Project has established an overall program of plans and actions to assure that the plant will perform as required. The program has been established and is being implemented in accordance with Department of Energy Standard RDT F 2-2. It is being applied to all parts of the plant, including the development of technology supporting its design and licensing activity. A discussion of the program as it is applied to development is presented

  9. Implementation of a Quality Assurance Review System for the Scalable Development of Online Courses

    Science.gov (United States)

    Ozdemir, Devrim; Loose, Rich

    2014-01-01

    With the growing demand for quality online education in the US, developing quality online courses and online programs, and more importantly maintaining this quality, have been an inevitable concern for higher education institutes. Current literature on quality assurance in online education mostly focuses on the development of review models and…

  10. UMTRA Project Office quality assurance program plan. Revision 6

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors

  11. Energy Assurance Technical Training and Awareness Program/Energy Infrastructure Training and Analysis Center

    Energy Technology Data Exchange (ETDEWEB)

    Barbara McCabe

    2005-11-15

    This report covers the work completed during Year One (Year One has a 16 month project period) of a five- year Cooperative Agreement (DE-FC26-03NT41895) between the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) and the U. S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). This final technical report is being submitted, as required by the Cooperative Agreement, within 90 (calendar) days after the project period ends (December 31, 2004). The resources allocated to Year One of the Cooperative Agreement were adequate for the completion of the required deliverables. All deliverables have been completed and sent to AAD Document Control as directed in the cooperative agreement. The allocation for Year One required 20-25 trainers to be trained in each of five Train-the-Trainer courses and a total of 6,000 workers trained throughout the country. Through cost savings employed for the scheduling and conduct of Train-the-Trainer, instructor refreshers, and direct training classes, 3171 workers have been trained to date. This total incorporates 159 trainers and members from management, local, county, state and federal organizations identified in the Strategic Plan. The largest percentage of personnel trained is heavy equipment operators, and building engineers, which is the largest targeted population identified under this cooperative agreement. The OENHP, using existing curriculum as appropriate, has modified and developed new training modules that have been used to establish four different levels of training courses. The four courses are: (1) EA 500 Energy Assurance Train-the-Trainer, (2) EA 400 Energy Assurance Instructor Refresher, (3) EA 300 Energy Assurance, and (4) EA 100 Energy Assurance Awareness. Training modules cover topics, such as, but not limited to, facility vulnerability and vulnerability assessment, physical security- heating, ventilation, air conditioning, terrorism awareness, weapons of mass

  12. A program on quality assurance and dose calibration for radiation therapy units in Venezuela

    International Nuclear Information System (INIS)

    Padilla, M.C. de; Carrizales, L.; Diaz, J.; Gutt, F.; Cozman, A.

    1996-01-01

    The results of a five year program (1988-90-91-92-93) on quality assurance and dose calibration for 12 Cobalt-60 units from public hospitals, which represents 30% of total radiation therapy units in Venezuela, are presented. The remarkable improvement in the general performance of these units can be seen in the IAEA/WHO Postal TLD Intercomparison results which gave 100% within ± 5% in 1990 and 1992, while 63% in 1990 and 44% in 1992, with errors up to 37% were obtained for the participants not included in the program. The difference between the two groups lead the government to decrete through the Gaceta Oficial de la Republica de Venezuela, Resolution G-1397 on March 3, 1993, the quality assurance and dose calibration programs shall be established for all radiation therapy installations in Venezuela. The project for the standards was developed by the SSDL physicists and it was already approbated by the Health Ministry. It is expected that the Norms will enter into effect by the end of 1994. (author). 14 refs, 1 fig., 3 tabs

  13. A program on quality assurance and dose calibration for radiation therapy units in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, M.C. de; Carrizales, L; Diaz, J; Gutt, F; Cozman, A [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Lab. de Calibracion Dosimetrica

    1996-08-01

    The results of a five year program (1988-90-91-92-93) on quality assurance and dose calibration for 12 Cobalt-60 units from public hospitals, which represents 30% of total radiation therapy units in Venezuela, are presented. The remarkable improvement in the general performance of these units can be seen in the IAEA/WHO Postal TLD Intercomparison results which gave 100% within {+-} 5% in 1990 and 1992, while 63% in 1990 and 44% in 1992, with errors up to 37% were obtained for the participants not included in the program. The difference between the two groups lead the government to decrete through the Gaceta Oficial de la Republica de Venezuela, Resolution G-1397 on March 3, 1993, the quality assurance and dose calibration programs shall be established for all radiation therapy installations in Venezuela. The project for the standards was developed by the SSDL physicists and it was already approbated by the Health Ministry. It is expected that the Norms will enter into effect by the end of 1994. (author). 14 refs, 1 fig., 3 tabs.

  14. Importance of quality assurance in establishing nucleoelectric programs - Spanish experience

    International Nuclear Information System (INIS)

    Alvarez Buergo, L. de; Santoma Juncadella, L.

    1977-01-01

    One condition which must be fulfilled in order for a nucleoelectric station to be successfully introduced, in countries being developed, is to define and structure the necessary organizations which will carry out the programs and insure that the stations be reliable, safe and economical. The two basic organizations which should be defined and structured are: a) The Government organization, whose objective is to insure the health and safety of the public, by means of evaluation, revision and control of the projects and their future operation; and b) The Project Management organization, whose objective is to select the site and the prototype of the station to be installed as well as carry out the project in such a way that the stations produce the expected amount of energy at a competitive kwh price and so that the operation does not create undue or unacceptable risks for the public. The importance of the quality assurance on the job is analyzed to achieve the indicated objectives, specific missions are defined and the quality assurance is presented as the link between the binomial National Participation-Quality Demands. The Spanish experience, referring to the application of quality in its present nuclear program with about 6500 Mwe in the construction stage and another 15.000 Mwe in various study and contracting stages, is also analyzed [es

  15. Quality Assurance Planning for Region 9

    Science.gov (United States)

    The ultimate success of an environmental program or project depends on the quality of the environmental data collected and used in decision-making. EPA has developed guidances to help state and tribal governments develop Quality Assurance Program Plans.

  16. Development and status of data quality assurance program at NASA Langley research center: Toward national standards

    Science.gov (United States)

    Hemsch, Michael J.

    1996-01-01

    As part of a continuing effort to re-engineer the wind tunnel testing process, a comprehensive data quality assurance program is being established at NASA Langley Research Center (LaRC). The ultimate goal of the program is routing provision of tunnel-to-tunnel reproducibility with total uncertainty levels acceptable for test and evaluation of civilian transports. The operational elements for reaching such levels of reproducibility are: (1) statistical control, which provides long term measurement uncertainty predictability and a base for continuous improvement, (2) measurement uncertainty prediction, which provides test designs that can meet data quality expectations with the system's predictable variation, and (3) national standards, which provide a means for resolving tunnel-to-tunnel differences. The paper presents the LaRC design for the program and discusses the process of implementation.

  17. Quality assurance program plan for the radiological survey activities program: Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Ramos, S.J.; Berven, B.A.; Little, C.A.

    1986-08-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  18. Quality assurance program plan for the Radiological Survey Activities Program - Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Ramos, S.J.; Berven, B.A.; Little, C.A.

    1986-01-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  19. Core components of a comprehensive quality assurance program in anatomic pathology.

    Science.gov (United States)

    Nakhleh, Raouf E

    2009-11-01

    In this article the core components of a comprehensive quality assurance and improvement plan are outlined. Quality anatomic pathology work comes with focus on accurate, timely, and complete reports. A commitment to continuous quality improvement and a systems approach with a persistent effort helps to achieve this end. Departments should have a quality assurance and improvement plan that includes a risk assessment of real and potential problems facing the laboratory. The plan should also list the individuals responsible for carrying out the program with adequate resources, a defined timetable, and annual assessment for progress and future directions. Quality assurance monitors should address regulatory requirements and be organized by laboratory division (surgical pathology, cytology, etc) as well as 5 segments (preanalytic, analytic, postanalytic phases of the test cycle, turn-around-time, and customer satisfaction). Quality assurance data can also be used to evaluate individual pathologists using multiple parameters with peer group comparison.

  20. Elements of quality assurance in environmental surveillance

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1975-01-01

    Qualities of an environmental surveillance program requiring control or assurance are reviewed. Requirements of accuracy, reproducibility, sensitivity, acceptability, and time and cost effectiveness are qualities discussed. The controls applicable to sample collection, handling, chemical analysis, measurement and data presentation are identified and discussed as they pertain to environmental monitoring. Quality assurance program recommendations for developing and reporting environmental surveillance data are provided

  1. New techniques in quality assurance

    International Nuclear Information System (INIS)

    Fornicola, J.C.

    1987-01-01

    GPU Nuclear Corp. has a multifaceted quality assurance (QA) program. This program includes a comprehensive QA organization to help ensure its implementation. The QA organization employs various techniques in assuring quality at GPU Nuclear. These techniques not only include the typical QA/quality-control verification activities, i.e., QA engineering, quality control, and audits, but also include some new innovative techniques. Several new techniques have been developed for verifying activities. These techniques include monitoring and functional audits of safety systems. Several new techniques for assessing performance and adequacy and effectiveness of plant and QA programs, such as plant assessments and QA systems engineering evaluations, have also been developed. This paper provides an overview of these and other new techniques being employed by GPU Nuclear's QA organization

  2. Surviving or thriving: quality assurance mechanisms to promote innovation in the development of evidence-based parenting interventions.

    Science.gov (United States)

    Sanders, Matthew R; Kirby, James N

    2015-04-01

    Parenting interventions have the potential to make a significant impact to the prevention and treatment of major social and mental health problems of children. However, parenting interventions fail to do so because program developers pay insufficient attention to the broader ecological context that influences the adoption and implementation of evidence-based interventions. This context includes the professional and scientific community, end users, consumers, and broader sociopolitical environment within which parenting services are delivered. This paper presents an iterative stage model of quality assurance steps to guide ongoing research and development particularly those related to program innovations including theory building, intervention development, pilot testing, efficacy and effectiveness trials, program refinement, dissemination, and planning for implementation and political advocacy. The key challenges associated with each phase of the research and development process are identified. Stronger consumer participation throughout the entire process from initial program design to wider community dissemination is an important, but an often ignored part of the process. Specific quality assurance mechanisms are discussed that increase accountability, professional, and consumer confidence in an intervention and the evidence supporting its efficacy.

  3. Quality assurance program for surveillance of fast reactor mixed oxide fuel analytical chemistry

    International Nuclear Information System (INIS)

    Rein, J.E.; Zeigler, R.K.; Waterbury, G.R.; McClung, W.E.; Praetorius, P.R.; Delvin, W.L.

    1976-01-01

    An effective quality assurance program for the chemical analysis of nuclear fuel is essential to assure that the fuel will meet the strict chemical specifications required for optimum reactor performance. Such a program has been in operation since 1972 for the fuels manufactured for the Fast Flux Test Facility. This program, through the use of common quality control and calibration standards, has consistently provided high levels of agreement among laboratories in all areas of analysis. The paper presented gives a summary of the chemical specifications for the fuel and source material, an outline of the requirements for laboratory qualifications and the preparation of calibration and quality control materials, general administration details of the plan, and examples where the program has been useful in solving laboratory problems

  4. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activities and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities wihtin the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  5. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activitie and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities within the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  6. Experience in the implementation of quality assurance program and safety culture assessment of research reactor operation and maintenance

    International Nuclear Information System (INIS)

    Syarip; Suryopratomo, K.

    2001-01-01

    The implementation of quality assurance program and safety culture for research reactor operation are of importance to assure its safety status. It comprises an assessment of the quality of both technical and organizational aspects involved in safety. The method for the assessment is based on judging the quality of fulfillment of a number of essential issues for safety i.e. through audit, interview and/or discussions with personnel and management in plant. However, special consideration should be given to the data processing regarding the fuzzy nature of the data i.e. in answering the questionnaire. To accommodate this situation, the SCAP, a computer program based on fuzzy logic for assessing plant safety status, has been developed. As a case study, the experience in the assessment of Kartini research reactor safety status shows that it is strongly related to the implementation of quality assurance program in reactor operation and awareness of reactor operation staffs to safety culture practice. It is also shown that the application of the fuzzy rule in assessing reactor safety status gives a more realistic result than the traditional approach. (author)

  7. Quality Assurance for Operation of Nuclear Facilities

    International Nuclear Information System (INIS)

    Park, C. G.; Kwon, H. I.; Kim, K. H.; Oh, Y. W.; Lee, Y. G.; Ha, J. H.; Lim, N. J.

    2008-12-01

    This report describes QA activities performed within 'Quality Assurance for Nuclear facility project' and results thereof. Efforts were made to maintain and improve quality system of nuclear facilities. Varification activities whether quality system was implemented in compliance with requirements. QA department assisted KOLAS accredited testing and calibration laboratories, ISO 9001 quality system, establishment of QA programs for R and D, and carried out reviews and surveys for development of quality assurance technologies. Major items of this report are as follows : - Development and Improvement of QA Programs - QA Activities - Assessment of Effectiveness and Adequacy for QA Programs

  8. Analysis of an image quality assurance program

    International Nuclear Information System (INIS)

    Goethlin, J.H.; Alders, B.

    1985-01-01

    Reject film analysis before and after the introduction of a quality assurance program showed a 45% decrease in rejected films. The main changes in equipment and routines were: 1. Increased control of film processors and X-ray generators. 2. New film casettes and screens. 3. Decreased number of film sizes. 4. Information to and supervision of radiographing personnel. Savings in costs and increased income from an increased amount of out-patients corresponded to about 4.5% of the total cost of operating and maintaining the department. (orig.)

  9. Develpment of quality assurance manual for fabrication of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT.

  10. Develpment of quality assurance manual for fabrication of DUPIC fuel

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT

  11. Reliability assurance program for operational emergency ac power system

    International Nuclear Information System (INIS)

    Heineman, J.B.; Ragland, W.A.; Mueller, C.J.

    1985-01-01

    A comprehensive review of emergency ac power systems in nuclear generating plants (the vast majority of these plants contain redundant diesel generator systems) delineates several operational areas that can be improved by instituting a reliability assurance program (RAP), which initially upgrades the diesel generator performance and provides for ongoing monitoring and maintenance based upon alert levels

  12. Norwegian program of quality assurance in radiotherapy (KVIST) - Organisation, benefits and experience feedback

    International Nuclear Information System (INIS)

    Merete Olerud, H.; Levernes, S.; Hellebust, T.P.; Heikkela, I.E.; Bjerke, H.; Sundqvist, E.; Frykholm, G.

    2009-01-01

    In 2000, the Norwegian Radiation Protection Authority (N.R.P.A.) initiated work to develop a national quality assurance programme in radiotherapy. The program was named K.V.I.S.T.: i.e. Norwegian abbreviation of Quality Assurance in Radiotherapy (KValitetSikring STraleterapi). The programme is performed by the multidisciplinary K.V.I.S.T. Group and aims to stimulate collaboration by focussing on clinical, technical and administrative problems that can be addressed and solved on a national level. An important objective is to establish a positive attitude towards quality assurance and better communication between centres and the various professions and professionals involved in radiotherapy, i.e. the oncologists, medical physicists and radiation therapy technologists. Information is also provided to other stake holders such as health authorities, hospital administrators and patients. In 2007 radiotherapy in Norway represent 10 departments and forty accelerators. Since radiotherapy is given high priority in cancer care good quality assurance is required. The member of the K.V.I.S.T.-group are part time at N.R.P.A. and part time in different radiotherapy departments. Professionals with competencies within radiotherapy (R.T.) have permanent positions in a national public entity. The K.V.I.S.T.-group is multidisciplinary. The K.V.I.S.T.-group acts as a coordinating group for all type of national Q.A. projects. The recommendations/guidelines are developed by national consensus. The work is performed by the radiotherapy community it self, thus creating an atmosphere of ownership. (N.C.)

  13. Standard review plan for the review of environmental restoration remedial action quality assurance program plans

    International Nuclear Information System (INIS)

    1991-09-01

    This plan establishes both the scope of the review and the acceptance criteria to be utilized for the review of Quality Assurance Program Plans (QAPPs) developed in accordance with the requirements of DOE/RL-90-28. DOE/RL-90-28, the Environmental Restoration Remedial Action Quality Assurance Requirements Document (QARD) defines all quality assurance (QA) requirements governing activities that affect the quality of the Environmental Restoration Remedial Action (ERRA) program at the Hanford Site. These requirements are defined in three parts, Part 1 of Quality Management and Administration tasks, Part 2 for Environmental Data Operations, and Part 3 of the Design and Construction of items, systems, and facilities. The purpose of this document is to identify the scope of the review by the DOE Field Office, Richland staff, and establish the acceptance criteria (Parts 1, 2, and 3) that the DOE Field Office, Richland staff will utilize to evaluate the participant QAPPs. Use of the standard review plan will (1) help ensure that participant QAPPs contain the information required by DOE/RL-90-28, (2) aid program participant and DOE Field Office, Richland staff is ensuring that the information describing the participant's QAPP is complete, (3) help persons regarding DOE/RL- 90-28 to locate information, and (4) contribute to decreasing the time needed for the review process. In addition, the Standard Review Plan (SRP) ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate compliance of participant quality programs against DOE/RL-90-28

  14. Quality assurance program covering mixed waste disposal at the Nevada test site

    International Nuclear Information System (INIS)

    O'Neill, L.J.

    1989-01-01

    This paper discusses a quality assurance program that would satisfy the requirements and expectations of the U.S. Department of Energy, the EPA, and the state of Nevada. The author outlines the basic philosophy, concepts, and implementation of the program that would satisfy all three agencies

  15. B and W NPGD quality assurance program for nuclear equipment. Revision 1

    International Nuclear Information System (INIS)

    1975-03-01

    B and W's Quality Assurance Program (QAP) is described. The program is implemented through the Nuclear Power Generation Division (NPGD) and includes design, procurement, and manufacturing activities of NPGD and all its suppliers furnishing items in the B and W scope of supply including other Divisions/ Subsidiaries of B and W. These activities are controlled by including applicable quality assurance requirements, as described, in NPGD procurement documents imposed on its suppliers. Each supplier must then establish and/or maintain a documented QA Program to meet the requirements imposed by the procurement documents. Implementation of the suppliers' NPGD-approved QA Program is verified by NPGD through Audit and QC Surveillance activities. The position and relationships of the NPGD within the Company's corporate structure are described. An overview of the QAP describing its implementation, its operation, the controls imposed on all suppliers (both corporate and vendor) and site consulting activities is presented. (U.S.)

  16. The successful Chief Executive Officer understands quality assurance

    International Nuclear Information System (INIS)

    Hedges, D.

    1984-01-01

    The successful Chief Executive Officer (CEO) will have recognized the benefits of, and have implemented, a total quality assurance program. The quality assurance program will be adequately defined in policies and procedures such that managers and supervisors of each organizational element understand their primary and supporting roles in carrying out an effective quality assurance program. The traditional practice of having all quality assurance activities reside in a quality assurance organization will have been cast aside. Instead, the quality assurance activities necessary to achieve and assure the quality of the desired end product will have been defined and assigned to responsible organization elements. The quality assurance organization's primary role will be to define the total quality assurance program, insure that the achieving and assuring functions are assigned in policies and procedures, conduct training necessary to have management and supervisors understand the total quality assurance program, measure the effectiveness of the program and feedback measurement data for improvements in the program. The successful CEO will have implemented a quality assurance program that provides for a graded approach for application of the program based upon the importance of the intended use of the product or service. The successful CEO will rely heavily on the scheduled progress reports and assessments to measure the pulse of his organization's successes and improvement needs. This paper will describe suggested approaches for the Quality Assurance Manager to implement a quality assurance program which results in his corporation's CEO being a supporter of and a driving force in the implementation of the quality assurance program

  17. Development and Operation of a Voluntary Audit Program.

    Science.gov (United States)

    Murphy, Jerome R.

    This report describes a voluntary audit program implemented by the Educational Testing Service (ETS). The comprehensive audit program was developed to assure that all corporate programs adhere to the ETS Standards for Quality and Fairness. The standards address issues which relate to all ETS activities such as accountability, confidentiality of…

  18. Regulatory activities in gaining assurance of training program effectiveness in Canada

    International Nuclear Information System (INIS)

    Legare, Michele

    2003-01-01

    This presentation shows the regulator's point of view on evaluating a training program effectiveness. The mission of the Training Program Evaluation Section of the Canadian Atomic Energy Control Board is to obtain and document assurance that the training of NPP operators is effective in providing them with the knowledge and skills needed to become and remain competent. Proposals are made to be considered when drafting the IAEA guideline on evaluation of training program effectiveness

  19. Meeting the flow assurance challenges of deep water developments - from CAPEX development to field start up

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.M.; Feasey, N.D. [National Aluminium Company Ltd. (Nalco), Cheshire (United Kingdom); Afonso, M.; Silva, D. [NALCO Brasil Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    As oil accumulations in easily accessible locations around the world become less available developments in deeper water become a more common target for field development. Deep water projects, particularly sub sea development, present a host of challenges in terms of flow assurance and integrity. In this paper the focus will be on the chemical control of flow assurance challenges in hydrate control, scale control and wax/asphaltene control within deep water (>750 meter) developments. The opportunities for kinetic hydrate control vs. conventional thermodynamic hydrate control will be outlined with examples of where these technologies have been applied and the limitations that still exist. The development of scale control chemical formulations specifically for sub sea application and the challenges of monitoring such control programs will be highlighted with developments in real time and near real time monitoring. Organic deposit control (wax/asphaltene) will focus on the development of new chemicals that have higher activity but lower viscosity than currently used chemicals hence allowing deployment at colder temperatures and over longer distances. The factors that need to be taken into account when selecting chemicals for deep water application will be highlighted. Fluid viscosity, impact of hydrostatic head on injectivity, product stability at low temperature and interaction with other production chemicals will be reviewed as they pertain to effective flow assurance. This paper brings learning from other deep water basins with examples from the Gulf of Mexico, West Africa and Brazil, which will be used to highlight these challenges and some of the solutions currently available along with the technology gaps that exist. (author)

  20. SWiFT Software Quality Assurance Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  1. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Quality Assurance Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; R. Nims; K. J. Kvarfordt; C. Wharton

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 6 and 7, what constitutes its parts, and limitations of those processes.

  2. Revitalizing quality assurance

    International Nuclear Information System (INIS)

    Hawkins, F.C.

    1998-01-01

    The image of someone inspecting or auditing often comes to mind when people hear the term quality assurance. Although partially correct, this image is not the complete picture. The person doing the inspecting or auditing is probably part of a traditional quality assurance organization, but that organization is only one aspect of a properly conceived and effectively implemented quality assurance system whose goal is improved facility safety and reliability. This paper introduces the underlying philosophies and basic concepts of the International Atomic Energy Agency's new quality assurance initiative that began in 1991 as part of a broad Agency-wide program to enhance nuclear safety. The first product of that initiative was publication in 1996 of a new Quality Assurance Code 50-C/SG-Q and fourteen related Safety Guides. This new suite of documents provide the technical and philosophical foundation upon which Member States can base their quality assurance programs. (author)

  3. Success and failure of nuclear power plant Quality Assurance when applied to research and development activities

    International Nuclear Information System (INIS)

    Michels, R.D.; Stark, W.A.; Eberhart, C.F.

    1986-01-01

    Quality Assurance in some form or fashion has been practiced at research and development laboratories and facilities for quite some time. This quality assurance effort has largely been that of the scientist taking good notes as the experiment or observation is conducted to provide adequate documentation of the research and development effort. With the advent of the national laboratories participating in such projects as the Waste Isolation Project Plant (WIPP), Three Mile Island, and the National Waste Storage Program, a need for planned, systematic quality assurance for research and development activities has come into being. Based on experience evolved from nuclear power plant and facility construction, the government has chosen to utilize for these new projects the criteria developed for use in construction of power plants. While these criteria have worked reasonably well in the construction, maintenance, and operation of those nuclear plants, their application to research and development activities has not been an unqualified success. This paper compares and contrasts four criteria; surveillance, inspection, procurement, and calibration for application in the research and development situation, and nuclear power plants

  4. Success and failure of nuclear power plant Quality Assurance when applied to research and development activities

    Energy Technology Data Exchange (ETDEWEB)

    Michels, R.D.; Stark, W.A.; Eberhart, C.F.

    1986-01-01

    Quality Assurance in some form or fashion has been practiced at research and development laboratories and facilities for quite some time. This quality assurance effort has largely been that of the scientist taking good notes as the experiment or observation is conducted to provide adequate documentation of the research and development effort. With the advent of the national laboratories participating in such projects as the Waste Isolation Project Plant (WIPP), Three Mile Island, and the National Waste Storage Program, a need for planned, systematic quality assurance for research and development activities has come into being. Based on experience evolved from nuclear power plant and facility construction, the government has chosen to utilize for these new projects the criteria developed for use in construction of power plants. While these criteria have worked reasonably well in the construction, maintenance, and operation of those nuclear plants, their application to research and development activities has not been an unqualified success. This paper compares and contrasts four criteria; surveillance, inspection, procurement, and calibration for application in the research and development situation, and nuclear power plants.

  5. Environmental Restoration Remedial Action quality assurance requirements document

    International Nuclear Information System (INIS)

    1991-01-01

    This document defines the quality assurance requirements for the US Department of Energy-Richland Operations Office Environmental Restoration Remedial Action program at the Hanford Site. The Environmental Restoration Remedial Action program implements significant commitments made by the US Department of Energy in the Hanford Federal Facility Agreement and Consent Order entered into with the Washington State Department of Ecology and the US Environmental Protection Agency. This document combines quality assurance requirements from various source documents into one set of requirements for use by the US Department of Energy-Richland Operations Office and other Environmental Restoration Remedial Action program participants. This document will serve as the basis for developing Quality Assurance Program Plans and implementing procedures by the participants. The requirements of this document will be applied to activities affecting quality, using a graded approach based on the importance of the item, service, or activity to the program objectives. The Quality Assurance Program that will be established using this document as the basis, together with other program and technical documents, form an integrated management control system for conducting the Environmental Restoration Remedial Action program activities in a manner that provides safety and protects the environment and public health

  6. Development of quality assurance methods for low enriched fuel assemblies

    International Nuclear Information System (INIS)

    Woolstenhulme, N.E.; Moore, G.A.; Perez, D.M.; Wachs, D.M.

    2010-01-01

    As the Reduced Enrichment for Research and Test Reactors (RERTR) fuel development program has furthered the technology of low enriched uranium fuels, much effort has been expended to specify requirements, perform appropriate inspections, and to qualify experimental fuel plates and assemblies for irradiation. A great deal of consideration has been given to generate examinations and criteria that are both applicable to the unique fuel types being developed and consistent with industry practices for inspecting plate-type reactor fuel. Recent developments in quality assurance (QA) methodologies have given a heightened confidence in satisfactory fuel plate performance. At the same time, recommendations are given to further develop a system suitable for the testing and acceptance of production fuel elements containing low enriched uranium fuels. (author)

  7. A quality assurance program for ancillary high technology devices on a dual-energy accelerator

    International Nuclear Information System (INIS)

    Klein, Eric E.; Low, Daniel A.; Maag, Derek; Purdy, James A.

    1996-01-01

    Our facility has added high-technology ancillary devices to our dual-energy linear accelerator. After commissioning and acceptance testing of dual asymmetric jaws, dynamic wedge, portal imaging, and multileaf collimation (MLC), quality assurance programs were instituted. The programs were designed to be both periodic and patient specific when required. In addition, when dosimetric aspects were affected by these technologies, additional quality assurance checks were added. Positional accuracy checks (light and radiation) are done for both asymmetric jaws and MLC. Each patient MLC field is checked against the original simulation or digitally reconstructed radiographs. Off-axis factors and output checks are performed for asymmetric fields. Dynamic wedge transmission factors and profiles are checked periodically, and a patient diode check is performed for every new dynamic wedge portal. On-line imaging checks encompass safety checks along with periodic measurement of contrast and spatial resolution. The most important quality assurance activity is the annual review of proper operation and procedures for each device. Our programs have been successful in avoiding patient-related errors or device malfunctions. The programs are a team effort involving physicists, maintenance engineers, and therapists

  8. 10 CFR 71.37 - Quality assurance.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Quality assurance. 71.37 Section 71.37 Energy NUCLEAR... Package Approval § 71.37 Quality assurance. (a) The applicant shall describe the quality assurance program... quality assurance program that are applicable to the particular package design under consideration...

  9. Quality Assurance Program Plan Waste Management Federal Services of Hanford, Inc

    International Nuclear Information System (INIS)

    VOLKMAN, D.D.

    1999-01-01

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program

  10. Quality Assurance Project Plan Development Tool

    Science.gov (United States)

    This tool contains information designed to assist in developing a Quality Assurance (QA) Project Plan that meets EPA requirements for projects that involve surface or groundwater monitoring and/or the collection and analysis of water samples.

  11. Development of quality assurance for HLW disposal R and D in KAERI

    International Nuclear Information System (INIS)

    Hwang, Y. S.; Lee, J. O.; Lee, Y. M.; Kim, S. K.; Kang, C. H.

    2001-01-01

    To assure the credibility of R and D results and to systematically and effectively perform experiments and computations for the performance assessment of high-level radioactive disposal in Korea, the total quality assurance(QA) program is under development. To effectively manage the R and D's and perform decision makings so called WEB based AQ system is proposed based on the U.S.N.R.C. 10CFR50. The current proto-type QA system shall be extended to accommodate functionalities such as QA procedures, forms, and decision-making pathways. In parallel with the QA system, the technical data management (TDM) system is also applied to get probabilistic density functions (PDF's) required for probabilistic safety assessment (PSA). So-called SNL-NRC protocol was applied to construct the PDF for solubility limits of two nuclides

  12. Quality assurance program. Braun topical report 21

    International Nuclear Information System (INIS)

    1975-01-01

    The Quality Assurance (QA) policies and procedures described have been developed specifically for use in commercial nuclear projects. These policies and procedures are intended to provide assurance to Braun Management and the client that the plant will be safe, reliable, and operable, plus meet the requirements of the Nuclear Regulatory Commission, NRC. The Braun QA Manual provides QA procedures for (1) engineering and design, (2) procurement of materials, equipment, and services, and (3) construction and installation. The controls for safety-related systems established in the manual cover all phases of work from project inception to plant completion prior to operation by the owner. The manual standardizes Braun QA control procedures. These procedures are supplemented by Project QA Instructions prepared for each project. (U.S.)

  13. Darlington steam generator life assurance program

    International Nuclear Information System (INIS)

    Jelinski, E.; Dymarski, M.; Maruska, C.; Cartar, E.

    1995-01-01

    The Darlington Nuclear Generating Station belonging to Ontario Hydro is one of the most modern and advanced nuclear generating stations in the world. Four reactor units each generate 881 net MW, enough to provide power to a major city, and representing approximately 20% of the Ontario grid. The nuclear generating capacity in Ontario represents approximately 60% of the grid. In order to look after this major asset, many proactive preventative and predictive maintenance programs are being put in place. The steam generators are a major component in any power plant. World wide experience shows that nuclear steam generators require specialized attention to ensure reliable operation over the station life. This paper describes the Darlington steam generator life assurance program in terms of degradation identification, monitoring and management. The requirements for chemistry control, surveillance of process parameters, surveillance of inspection parameters, and the integration of preventative and predictive maintenance programs such as water lancing, chemical cleaning, RIHT monitoring, and other diagnostics to enhance our understanding of life management issues are identified and discussed. We conclude that we have advanced proactive activities to avoid and to minimize many of the problems affecting other steam generators. An effective steam generator maintenance program must expand the knowledge horizon to understand life limiting processes and to analyze and synthesize observations with theory. (author)

  14. Patient dosimetry quality assurance program with a commerical diode system

    International Nuclear Information System (INIS)

    Lee, P.C.; Sawicka, J.M.; Glasgow, G.P.

    1994-01-01

    The purpose was to evaluate a commercial silicone diode dosimeter for a patient dosimetry quality assurance program. The diode dosimeter was calibrated against an ion chamber, and percentage depth dose, linearity, anisotrophy, virtual source position, and field size factor studies were performed. Correction factors for lack of full scatter medium in the diode entrance and exit dose measurements were acquired. Dosimetry equations were proposed for calculation of dose delivered at isocenter. Diode dose accuracy and reproducibility were tested on phantom and on four patients. A patient dosimetry quality assurance program based on diode-measured dose was instituted and patient dose data were collected. Diode measured percentage depth dose and field factors agreed to within 3% with those measured with an ion chamber. The diode exhibited less than 1.7% angular dose anisotrophy and less than 0.5% nonlinearity up to 4 Gy. Diode dose measurements in phantom showed that the calculated doses differed from the prescribed dose by less than 1.%; the diode exhibited a daily dose reproducibility of better than 0.2%. On four selected patients, the measured dose reproducibility was 1.5%; the average calculated doses were all within ± 7% of the prescribed doses. For 33 of 40 patients treated with a 6 MW beam, measured doses were within ± 7% of the prescribed doses. For 11 out of 12 patients, a second repeat measurements yielded doses within ± 7% of the prescribed doses. The proposed diode-based patient dosimetry quality assurance program with dose tolerance at ± 7% is simple and feasible. It is capable of detecting certain serious treatment errors such as incorrect daily dose greater than 7%, incorrect wedge use, incorrect photon energy and patient setup errors involving some incorrect source-to-surface-distance vs. source-to-axis-distance treatments. 13 refs., 5 figs., 5 tabs

  15. Private sector delivery of health services in developing countries: a mixed-methods study on quality assurance in social franchises

    Science.gov (United States)

    2013-01-01

    Background Across the developing world health care services are most often delivered in the private sector and social franchising has emerged, over the past decade, as an increasingly popular method of private sector health care delivery. Social franchising aims to strengthen business practices through economies of scale: branding clinics and purchasing drugs in bulk at wholesale prices. While quality is one of the established goals of social franchising, there is no published documentation of how quality levels might be set in the context of franchised private providers, nor what quality assurance measures can or should exist within social franchises. The aim of this study was to better understand the quality assurance systems currently utilized in social franchises, and to determine if there are shared standards for practice or quality outcomes that exist across programs. Methods The study included three data sources and levels of investigation: 1) Self-reported program data; 2) Scoping telephone interviews; and 3) In-depth field interviews and clinic visits. Results Social Franchises conceive of quality assurance not as an independent activity, but rather as a goal that is incorporated into all areas of franchise operations, including recruitment, training, monitoring of provider performance, monitoring of client experience and the provision of feedback. Conclusions These findings are the first evidence to support the 2002 conceptual model of social franchising which proposed that the assurance of quality was one of the three core goals of all social franchises. However, while quality is important to franchise programs, quality assurance systems overall are not reflective of the evidence to-date on quality measurement or quality improvement best practices. Future research in this area is needed to better understand the details of quality assurance systems as applied in social franchise programs, the process by which quality assurance becomes a part of the

  16. Private sector delivery of health services in developing countries: a mixed-methods study on quality assurance in social franchises.

    Science.gov (United States)

    Schlein, Karen; De La Cruz, Anna York; Gopalakrishnan, Tisha; Montagu, Dominic

    2013-01-03

    Across the developing world health care services are most often delivered in the private sector and social franchising has emerged, over the past decade, as an increasingly popular method of private sector health care delivery. Social franchising aims to strengthen business practices through economies of scale: branding clinics and purchasing drugs in bulk at wholesale prices. While quality is one of the established goals of social franchising, there is no published documentation of how quality levels might be set in the context of franchised private providers, nor what quality assurance measures can or should exist within social franchises. The aim of this study was to better understand the quality assurance systems currently utilized in social franchises, and to determine if there are shared standards for practice or quality outcomes that exist across programs. The study included three data sources and levels of investigation: 1) Self-reported program data; 2) Scoping telephone interviews; and 3) In-depth field interviews and clinic visits. Social Franchises conceive of quality assurance not as an independent activity, but rather as a goal that is incorporated into all areas of franchise operations, including recruitment, training, monitoring of provider performance, monitoring of client experience and the provision of feedback. These findings are the first evidence to support the 2002 conceptual model of social franchising which proposed that the assurance of quality was one of the three core goals of all social franchises. However, while quality is important to franchise programs, quality assurance systems overall are not reflective of the evidence to-date on quality measurement or quality improvement best practices. Future research in this area is needed to better understand the details of quality assurance systems as applied in social franchise programs, the process by which quality assurance becomes a part of the organizational culture, and the components of

  17. Private sector delivery of health services in developing countries: a mixed-methods study on quality assurance in social franchises

    Directory of Open Access Journals (Sweden)

    Schlein Karen

    2013-01-01

    Full Text Available Abstract Background Across the developing world health care services are most often delivered in the private sector and social franchising has emerged, over the past decade, as an increasingly popular method of private sector health care delivery. Social franchising aims to strengthen business practices through economies of scale: branding clinics and purchasing drugs in bulk at wholesale prices. While quality is one of the established goals of social franchising, there is no published documentation of how quality levels might be set in the context of franchised private providers, nor what quality assurance measures can or should exist within social franchises. The aim of this study was to better understand the quality assurance systems currently utilized in social franchises, and to determine if there are shared standards for practice or quality outcomes that exist across programs. Methods The study included three data sources and levels of investigation: 1 Self-reported program data; 2 Scoping telephone interviews; and 3 In-depth field interviews and clinic visits. Results Social Franchises conceive of quality assurance not as an independent activity, but rather as a goal that is incorporated into all areas of franchise operations, including recruitment, training, monitoring of provider performance, monitoring of client experience and the provision of feedback. Conclusions These findings are the first evidence to support the 2002 conceptual model of social franchising which proposed that the assurance of quality was one of the three core goals of all social franchises. However, while quality is important to franchise programs, quality assurance systems overall are not reflective of the evidence to-date on quality measurement or quality improvement best practices. Future research in this area is needed to better understand the details of quality assurance systems as applied in social franchise programs, the process by which quality assurance

  18. Design reliability assurance program for Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Beom-Su; Han, Jin-Kyu; Na, Jang Hwan; Yoo, Kyung Yeong

    1997-01-01

    The Korean Next Generation Reactor (KNGR) project is to develop standardized nuclear power plant design for the construction of future nuclear power plants in Korea. The main purpose of the KNGR project is to develop the advanced nuclear power plants, which enhance safety and economics significantly through the incorporation of design concepts for severe accident prevention and mitigation, supplementary passive safety concept, simplification and application of modularization and so on. For those, Probabilistic Safety Assessment (PSA) and availability study will be performed at the early stage of the design, and the Design Reliability Assurance Program (D-RAP) is applied in the development of the KNGR to ensure that the safety and availability evaluated in the PSA and availability study at the early phase of the design is maintained through the detailed design, construction, procurement and operation of the plants. This paper presents the D-RAP concept that could be applied at the stage of the basic design of the nuclear power plants, based on the models for the reference plants and/or similar plants. 4 refs., 1 fig

  19. Quality Assurance of Non-Local Accounting Programs Conducted in Hong Kong

    Science.gov (United States)

    Cheng, Mei-Ai; Leung, Noel W.

    2014-01-01

    This study examines the current government policy and institutional practice on quality assurance of non-local accounting programs conducted in Hong Kong. Both international guidelines, national regulations and institutional frameworks in higher education and transnational higher education, and professional practice in accounting education are…

  20. Modernization of software quality assurance

    Science.gov (United States)

    Bhaumik, Gokul

    1988-01-01

    The customers satisfaction depends not only on functional performance, it also depends on the quality characteristics of the software products. An examination of this quality aspect of software products will provide a clear, well defined framework for quality assurance functions, which improve the life-cycle activities of software development. Software developers must be aware of the following aspects which have been expressed by many quality experts: quality cannot be added on; the level of quality built into a program is a function of the quality attributes employed during the development process; and finally, quality must be managed. These concepts have guided our development of the following definition for a Software Quality Assurance function: Software Quality Assurance is a formal, planned approach of actions designed to evaluate the degree of an identifiable set of quality attributes present in all software systems and their products. This paper is an explanation of how this definition was developed and how it is used.

  1. Painting for nuclear power stations and machinery and equipments according to quality assurance program of ANSI

    International Nuclear Information System (INIS)

    Fukuda, Shinzo; Tsuchiya, Yukikazu.

    1979-01-01

    Recently, painting for nuclear power stations is carried out with the paints made domestically, and these paints are tested and judged generally according to the items of performance evaluation decided by the American National Standard Institute. In Japan, there is no standard regarding the paints for nuclear power stations. Painting is very important process, and it is appropriate to introduce quality assurance program into it. In this paper, the contents of ANSI standard concerning the paints and painting for nuclear power stations are explained, and the outline of the painting of heat exchangers carried out in accordance with the quality assurance program in the Tamano Shipyard, Mitsui Shipbuilding and Engineering Co., Ltd., is described. The test items for evaluating the general performance of the paints, the testing method for evaluating the endurance at the time of an accident, the quality assurance for the paints used for the facilities handling radiation and others are explained. Various problems arise when the quality assurance program of ANSI is applied actually to painting. It is difficult to judge the quality of paints and painting with numerical values, and much efforts were required to establish the quality assurance organization. The conditions for painting, the handling of many documents, the measures to unsatisfactory painting and so on caused much difficulties. (Kako, I.)

  2. Quality assurance grading guidelines for research and development at DOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    Powell, T.B.; Morris, R.N.

    1993-01-01

    The quality assurance (QA) requirements for the US Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPs) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community.

  3. 200 area liquid effluent facility quality assurance program plan. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, N.J.

    1995-01-01

    Direct revision of Supporting Document WHC-SD-LEF-QAPP-001, Rev. 0. 200 Area Liquid Effluent Facilities Quality Assurance Program Plan. Incorporates changes to references in tables. Revises test to incorporate WHC-SD-LEF-CSCM-001, Computer Software Configuration Management Plan for 200 East/West Liquid Effluent Facilities

  4. Pilot program to assess proposed basic quality assurance requirements in the medical use of byproduct materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.; Nelson, K.; Meinhold, C.B. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    In January 1990, the Nuclear Regulatory Commission (NRC) proposed amendments to 10 CFR Part 35 that would require medical licensees using byproduct material to establish and implement a basic quality assurance program. A 60-day real-world trial of the proposed rules was initiated to obtain information beyond that generally found through standard public comment procedures. Volunteers from randomly selected institutions had opportunities to review the details of the proposed regulations and to implement these rules on a daily basis during the trial. The participating institutions were then asked to evaluate the proposed regulations based on their personal experiences. The pilot project sought to determine whether medical institutions could develop written quality assurance programs that would meet the eight performance-based objectives of proposed Section 35.35. In addition, the NRC wanted to learn from these volunteers if they had any recommendations on how the rule could be revised to minimized its cost and to clarify its objectives without decreasing its effectiveness. It was found that licensees could develop acceptable QA programs under a performance-based approach, that most licensee programs did meet the proposed objectives, and that most written QA plans would require consultations with NRC or Agreement State personnel before they would fully meet all objectives of proposed Section 35.35. This report describes the overall pilot program. The methodology used to select and assemble the group of participating licensees is presented. The various workshops and evaluation questionnaires are discussed, and detailed findings are presented. 7 refs.

  5. Pilot program to assess proposed basic quality assurance requirements in the medical use of byproduct materials

    International Nuclear Information System (INIS)

    Kaplan, E.; Nelson, K.; Meinhold, C.B.

    1991-10-01

    In January 1990, the Nuclear Regulatory Commission (NRC) proposed amendments to 10 CFR Part 35 that would require medical licensees using byproduct material to establish and implement a basic quality assurance program. A 60-day real-world trial of the proposed rules was initiated to obtain information beyond that generally found through standard public comment procedures. Volunteers from randomly selected institutions had opportunities to review the details of the proposed regulations and to implement these rules on a daily basis during the trial. The participating institutions were then asked to evaluate the proposed regulations based on their personal experiences. The pilot project sought to determine whether medical institutions could develop written quality assurance programs that would meet the eight performance-based objectives of proposed Section 35.35. In addition, the NRC wanted to learn from these volunteers if they had any recommendations on how the rule could be revised to minimized its cost and to clarify its objectives without decreasing its effectiveness. It was found that licensees could develop acceptable QA programs under a performance-based approach, that most licensee programs did meet the proposed objectives, and that most written QA plans would require consultations with NRC or Agreement State personnel before they would fully meet all objectives of proposed Section 35.35. This report describes the overall pilot program. The methodology used to select and assemble the group of participating licensees is presented. The various workshops and evaluation questionnaires are discussed, and detailed findings are presented. 7 refs

  6. Quality assurance handbook for measurement laboratories

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1984-10-01

    This handbook provides guidance in the application of quality assurance to measurement activities. It is intended to help those persons making measurements in applying quality assurance to their work activities by showing how laboratory practices and quality assurance requirements are integrated to provide control within those activities. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across all types of measurement laboratories. This handbook also can assist quality assurance personnel in understanding the relationships between laboratory practices and quality assurance requirements. The handbook is composed of three chapters and several appendices. Basic guidance is provided by the three chapters. In Chapter 1, the role of quality assurance in obtaining quality data and the importance of such data are discussed. Chapter 2 presents the elements of laboratory quality assurance in terms of practices that can be used in controlling work activities to assure the acquisition of quality data. Chapter 3 discusses the implementation of laboratory quality assurance. The appendices provide supplemental information to give the users a better understanding of the following: what is quality assurance; why quality assurance is required; where quality assurance requirements come from; how those requirements are interpreted for application to laboratory operations; how the elements of laboratory quality assurance relate to various laboratory activities; and how a quality assurance program can be developed

  7. 42 CFR 422.210 - Assurances to CMS.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Assurances to CMS. 422.210 Section 422.210 Public...) MEDICARE PROGRAM MEDICARE ADVANTAGE PROGRAM Relationships With Providers § 422.210 Assurances to CMS. (a) Assurances to CMS. Each organization will provide assurance satisfactory to the Secretary that the...

  8. Sequence Coding and Search System Backfit Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    Lovell, C.J.; Stepina, P.L.

    1985-03-01

    The Sequence Coding and Search System is a computer-based encoding system for events described in Licensee Event Reports. This data system contains LERs from 1981 to present. Backfit of the data system to include LERs prior to 1981 is required. This report documents the Quality Assurance Program Plan that EG and G Idaho, Inc. will follow while encoding 1980 LERs

  9. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). DOE plans to conduct experiments in the WIPP during a Test Phase of approximately 5 years. These experiments will be conducted to reduce the uncertainties associated with the prediction of several processes (e.g., gas generation) that may influence repository performance. The results of the experiments will be used to assess the ability of the WIPP to meet regulatory requirements for the long-term protection of human health and the environment from the disposal of TRU wastes. 37 refs., 25 figs., 18 tabs

  10. International Thermonuclear Experimental Reactor U.S. Home Team Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Sowder, W. K.

    1998-10-01

    The International Thermonuclear Experimental Reactor (ITER) project is unique in that the work is divided among an international Joint Central Team and four Home Teams, with the overall responsibility for the quality of activities performed during the project residing with the ITER Director. The ultimate responsibility for the adequacy of work performed on tasks assigned to the U.S. Home Team resides with the U.S. Home Team Leader and the U.S. Department of Energy Office of Fusion Energy (DOE-OFE). This document constitutes the quality assurance plan for the ITER U.S. Home Team. This plan describes the controls exercised by U.S. Home Team management and the Performing Institutions to ensure the quality of tasks performed and the data developed for the Engineering Design Activities assigned to the U.S. Home Team and, in particular, the Research and Development Large Projects (7). This plan addresses the DOE quality assurance requirements of 10 CFR 830.120, "Quality Assurance." The plan also describes U.S. Home Team quality commitments to the ITER Quality Assurance Program. The ITER Quality Assurance Program is based on the principles described in the International Atomic Energy Agency Standard No. 50-C-QA, "Quality Assurance for Safety in Nuclear Power Plants and Other Nuclear Facilities." Each commitment is supported with preferred implementation methodology that will be used in evaluating the task quality plans to be submitted by the Performing Institutions. The implementing provisions of the program are based on guidance provided in American National Standards Institute/American Society of Mechanical Engineers NQA-1 1994, "Quality Assurance." The individual Performing Institutions will implement the appropriate quality program provisions through their own established quality plans that have been reviewed and found to comply with U.S. Home Team quality assurance plan commitments to the ITER Quality Assurance Program. The extent of quality program provisions

  11. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). This experimental-waste characterization program is only one part of the WIPP Test Phase, both in the short- and long-term, to quantify and evaluate the characteristics and behavior of transuranic (TRU) wastes in the repository environment. Other parts include the bin-scale and alcove tests, drum-scale tests, and laboratory experiments. In simplified terms, the purpose of the Program is to provide chemical, physical, and radiochemical data describing the characteristics of the wastes that will be emplaced in the WIPP, while the remaining WIPP Test Phase is directed at examining the behavior of these wastes in the repository environment. 50 refs., 35 figs., 33 tabs

  12. A reference standard-based quality assurance program for radiology.

    Science.gov (United States)

    Liu, Patrick T; Johnson, C Daniel; Miranda, Rafael; Patel, Maitray D; Phillips, Carrie J

    2010-01-01

    The authors have developed a comprehensive radiology quality assurance (QA) program that evaluates radiology interpretations and procedures by comparing them with reference standards. Performance metrics are calculated and then compared with benchmarks or goals on the basis of published multicenter data and meta-analyses. Additional workload for physicians is kept to a minimum by having trained allied health staff members perform the comparisons of radiology reports with the reference standards. The performance metrics tracked by the QA program include the accuracy of CT colonography for detecting polyps, the false-negative rate for mammographic detection of breast cancer, the accuracy of CT angiography detection of coronary artery stenosis, the accuracy of meniscal tear detection on MRI, the accuracy of carotid artery stenosis detection on MR angiography, the accuracy of parathyroid adenoma detection by parathyroid scintigraphy, the success rate for obtaining cortical tissue on ultrasound-guided core biopsies of pelvic renal transplants, and the technical success rate for peripheral arterial angioplasty procedures. In contrast with peer-review programs, this reference standard-based QA program minimizes the possibilities of reviewer bias and erroneous second reviewer interpretations. The more objective assessment of performance afforded by the QA program will provide data that can easily be used for education and management conferences, research projects, and multicenter evaluations. Additionally, such performance data could be used by radiology departments to demonstrate their value over nonradiology competitors to referring clinicians, hospitals, patients, and third-party payers. Copyright 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  13. LANL Safeguards and Security Assurance Program. Revision 6

    International Nuclear Information System (INIS)

    1995-01-01

    The Safeguards and Security (S and S) Assurance Program provides a continuous quality improvement approach to ensure effective, compliant S and S program implementation throughout the Los Alamos National Laboratory. Any issues identified through the various internal and external assessments are documented, tracked and closed using the Safeguards and Security Issue Management Program. The Laboratory utilizes an integrated S and S systems approach to protect US Department of Energy (DOE) interests from theft or diversion of special nuclear material (SNM), sabotage, espionage, loss or theft of classified/controlled matter or government property, and other hostile acts that may cause unacceptable impacts on national security, health and safety of employees and the public, and the environment. This document explains the basis, scope, and conduct of the S and S process to include: self-assessments, issue management, risk assessment, and root cause analysis. It also provides a discussion of S and S topical areas, roles and responsibilities, process flow charts, minimum requirements, methodology, terms, and forms

  14. The quality assurance liaison: Combined technical and quality assurance support

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Day, J.L.

    1993-01-01

    This paper describes the role of the quality assurance liaison, the responsibilities of this position, and the evolutionary changes in duties over the last six years. The role of the quality assurance liaison has had a very positive impact on the Los Alamos Yucca Mountain Site Characterization (YW) quality assurance program. Having both technical and quality assurance expertise, the quality assurance liaisons are able to facilitate communications with scientists on quality assurance issues and requirements, thereby generating greater productivity in scientific investigations. The quality assurance liaisons help ensure that the scientific community knows and implements existing requirements, is aware of new or changing regulations, and is able to conduct scientific work within Project requirements. The influence of the role of the quality assurance liaison can be measured by an overall improvement in attitude of the staff regarding quality assurance requirements and improved job performance, as well as a decrease in deficiencies identified during both internal and external audits and surveillances. This has resulted in a more effective implementation of quality assurance requirements

  15. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  16. Quality assurance of nuclear medicine computer software

    International Nuclear Information System (INIS)

    Cradduck, T.D.

    1986-01-01

    Although quality assurance activities have become well established for the hardware found in nuclear medicine little attention has been paid to computer software. This paper outlines some of the problems that exist and indicates some of the solutions presently under development. The major thrust has been towards establishment of programming standards and comprehensive documentation. Some manufacturers have developed installation verification procedures which programmers are urged to use as models for their own programs. Items that tend to cause erroneous results are discussed with the emphasis for error detection and correction being placed on proper education and training of the computer operator. The concept of interchangeable data files or 'software phantoms' for purposes of quality assurance is discussed. (Author)

  17. Requirements for auditing of quality assurance programs for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Requirements and guidance are provided for establishing and implementing a system of internal and external audits of quality assurance programs for nuclear power plants, including the preparation, performance, reporting and follow-up of audits by both the auditing and the audited organizations. This standard is to be used in conjunction with ANSI N45.2

  18. Quality assurance program plan for the Site Physical and Electrical Calibration Services Lab. Revision 1

    International Nuclear Information System (INIS)

    Carpenter, C.A.

    1995-01-01

    This Quality Assurance Program Plan (QAPP) is organized to address WHC's implementation of quality assurance requirements as they are presented as interpretive guidance endorsed by the Department of Energy (DOE) Field Office, Richland DOE Order 5700.6C Quality Assurance. The quality assurance requirements presented in this plan will assure Measuring and Test Equipment (M and TE) are in conformance with prescribed technical requirements and that data provided by testing, inspection, or maintenance are valid. This QAPP covers all activities and work elements that are variously called QA, quality control, and quality engineering regardless of the organization performing the work. This QAPP identifies the QA requirements for planning, control, and documentation of operations, modifications, and maintenance of the WHC Site Physical and Electrical Calibration Services Laboratory. The primary function of the WHC Site Physical and Electrical Calibration Services Laboratory is providing calibration, standardization, or repair service of M and TE

  19. Quality assurance of radiation therapy machines

    International Nuclear Information System (INIS)

    Francois, P.

    2002-01-01

    Due to the modifications of components, to unexpected breakage of elements or to electronic dysfunctions, the performance of radiotherapy machines may decrease with age. Quality Assurance procedures and maintenance program are necessary to guarantee the performances. For linear accelerators, modus operandi of control tests and their frequency are based on regulations and recommendations widely published, that are presented here. Concerning accessories, especially those recently developed (multi-leaf collimators, dynamic wedges,...), recommendations remains to be defined. Simple tests are proposed. Concerning numerical imaging systems, widely used for three dimensional dosimetry, image quality and geometry controls must be performed with fantom tests. For portal imaging, a quality assurance program is proposed. A strict and complete Quality Assurance program is essential to guarantee quality and safety of the treatment. A regular control of linear accelerator is one of the important component of this program. It suppose the implementation of permanent tests procedures, periodically modified following technological progresses and treatment techniques. Measurements must be sensible to variations below the tolerance level defined during the installation process. The analysis of the variations of measurements with time are an objective criterion of quality. (author)

  20. Concept of Draft International Standard for a Unified Approach to Space Program Quality Assurance

    Science.gov (United States)

    Stryzhak, Y.; Vasilina, V.; Kurbatov, V.

    2002-01-01

    For want of the unified approach to guaranteed space project and product quality assurance, implementation of many international space programs has become a challenge. Globalization of aerospace industry and participation of various international ventures with diverse quality assurance requirements in big international space programs requires for urgent generation of unified international standards related to this field. To ensure successful fulfillment of space missions, aerospace companies should design and process reliable and safe products with properties complying or bettering User's (or Customer's) requirements. Quality of the products designed or processed by subcontractors (or other suppliers) should also be in compliance with the main user (customer)'s requirements. Implementation of this involved set of unified requirements will be made possible by creating and approving a system (series) of international standards under a generic title Space Product Quality Assurance based on a system consensus principle. Conceptual features of the baseline standard in this system (series) should comprise: - Procedures for ISO 9000, CEN and ECSS requirements adaptation and introduction into space product creation, design, manufacture, testing and operation; - Procedures for quality assurance at initial (design) phases of space programs, with a decision on the end product made based on the principle of independence; - Procedures to arrange incoming inspection of products delivered by subcontractors (including testing, audit of supplier's procedures, review of supplier's documentation), and space product certification; - Procedures to identify materials and primary products applied; - Procedures for quality system audit at the component part, primary product and materials supplier facilities; - Unified procedures to form a list of basic performances to be under configuration management; - Unified procedures to form a list of critical space product components, and unified

  1. The integrated performance evaluation program quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    EM's (DOE's Environmental Restoration and Waste Management) Integrated Performance Evaluation Program (IPEP) has the purpose of integrating information from existing PE programs with expanded QA activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting EM programs. The guidance addresses the goals of identifying specific PE sample programs and contacts, identifying specific requirements for participation in DOE's internal and external (regulatory) programs, identifying key issues relating to application and interpretation of PE materials for EM headquarters and field office managers, and providing technical guidance covering PE materials for site-specific activities. (PE) Performance Evaluation materials or samples are necessary for the quality assurance/control programs covering environmental data collection

  2. Regulatory viewpoint on nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    Tripp, L.E.

    1976-01-01

    Considerations of the importance of fuel quality and performance to nuclear safety, ''as low reasonably achievable'' release of radioactive materials in reactor effluents, and past fuel performance problems demonstrate the need for strong regulatory input, review and inspection of nuclear fuel quality assurance programs at all levels. Such a regulatory program is being applied in the United States of America by the US Nuclear Regulatory Commission. Quality assurance requirements are contained within government regulations. Guidance on acceptable methods of implementing portions of the quality assurance program is contained within Regulatory Guides and other NRC documents. Fuel supplier quality assurance program descriptions are reviewed as a part of the reactor licensing process. Inspections of reactor licensee control of their fuel vendors as well as direct inspections of fuel vendor quality assurance programs are conducted on a regularly scheduled basis. (author)

  3. Guidance for implementing an environmental, safety and health assurance program. Volume 2. A model plan for environmental, safety and health staff audits and appraisals

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1980-09-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This document is concerned with ES and H audit and appraisal activities of an ES and H Staff Organization as they might be performed in an institution whose ES and H program is based upon the ES and H Assurance Program Standard. An annotated model plan for ES and H Staff audits and appraisals is presented and discussed

  4. Criteria for designing an MRI quality assurance program. A multicenter trial

    International Nuclear Information System (INIS)

    Mascaro, L.; Baldassarri, A.M.

    1999-01-01

    The authors report the preliminary results of a multicenter trial aimed at defining methods, reference values and frequency of measurements for a magnetic resonance quality assurance program. In particular, they stress the definition of two attention levels (investigation and intervention) for image uniformity and signal-to-noise ratio (SNR) by means short-and long-term measurements [it

  5. Quality assurance measures applicable to IAEA anomaly and discrepancy resolution (ISPO Task D.52). Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Harms, N.L.; Smith, B.W.

    1984-11-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations comply with their commitments for the peaceful use of nuclear energy. This assurance is based on the capabilities of the IAEA safeguards program to detect diversion of nuclear material. Anomalies and discrepancies, which occur in the event of a diversion or concealment, are detected as part of the IAEA safeguards program. Anomalies and discrepancies normally result from innocent causes and it is the purpose of the resolution process to determine the significance of them. The IAEA is instituting quality assurance measures for the IAEA inspection process. This paper reviews the anomaly and discrepancy resolution process and describes quality control measures which are the basis for quality assurance. 13 references, 6 tables

  6. Measurement quality assurance for radioassay laboratories

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, D.E. [Yankee Atomic Environmental Laboratory, Boston, MA (United States)

    1993-12-31

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, {open_quotes}Measurement Quality Assurance For Radioassay Laboratories.{open_quotes} The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory`s specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations.

  7. Measurement quality assurance for radioassay laboratories

    International Nuclear Information System (INIS)

    McCurdy, D.E.

    1993-01-01

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, open-quotes Measurement Quality Assurance For Radioassay Laboratories.open-quotes The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory's specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations

  8. Study on quality assurance for high-level radioactive waste disposal project

    International Nuclear Information System (INIS)

    Takada, Susumu

    2005-01-01

    The U.S. Department of Energy (DOE) has developed comparatively detailed quality assurance requirements for the high-level radioactive waste disposal systems. Quality assurance is recognized as a key issue for confidence building and smooth implementation of the HLW program in Japan, and Japan is at an initial phase of repository development. Then the quality assurance requirements at site research and site selection, site characterization, and site suitability analysis used in the Yucca Mountain project were examined in detail and comprehensive descriptions were developed using flow charts. Additionally, the applicability to the Japan high-level radioactive waste disposal project was studied. The examination and study were performed for the following QA requirements: The requirements that have the relative importance at site research and site selection, site characterization, and site suitability analysis (such as planning and performing scientific investigations, sample control, data control, model development and use, technical report review, software control, and control of the electric management of data). The requirements that have the relative importance at the whole repository phases (such as quality assurance program, document control, and control of quality assurance records). (author)

  9. Hanford Tanks Initiative quality assurance implementation plan

    International Nuclear Information System (INIS)

    Huston, J.J.

    1998-01-01

    Hanford Tanks Initiative (HTI) Quality Assurance Implementation Plan for Nuclear Facilities defines the controls for the products and activities developed by HTI. Project Hanford Management Contract (PHMC) Quality Assurance Program Description (QAPD)(HNF-PRO599) is the document that defines the quality requirements for Nuclear Facilities. The QAPD provides direction for compliance to 10 CFR 830.120 Nuclear Safety Management, Quality Assurance Requirements. Hanford Tanks Initiative (HTI) is a five-year activity resulting from the technical and financial partnership of the US Department of Energy's Office of Waste Management (EM-30), and Office of Science and Technology Development (EM-50). HTI will develop and demonstrate technologies and processes for characterization and retrieval of single shell tank waste. Activities and products associated with HTI consist of engineering, construction, procurement, closure, retrieval, characterization, and safety and licensing

  10. Quality Assurance of Computer Programs for Photopeak Integration in Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj

    1978-01-01

    The purpose of a computer program for quantitative activation analysis is basically to produce information on the ratio of radioactive decays of a specific radio-nuclide observed by a detector from two alternative sources. It is assumed that at least one of the sources is known to contain...... the radionuclide in question, and qualitative analysis is therefore needed only to the extent that the decay characteristics of this radionuclide could be confused with those of other possible radionuclides, thus interfering with its determination. The quality of these computer programs can only be assured...

  11. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  12. Development of a quality assurance safety assessment database for near surface radioactive waste disposal

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, C. L.; Park, J. B.; Lee, E. Y.; Lee, Y. M.; Kang, C. H.; Zhou, W.; Kozak, M. W.

    2003-01-01

    A quality assurance safety assessment database, called QUARK (QUality Assurance program for Radioactive waste management in Korea), has been developed to manage both analysis information and parameter database for safety assessment of Low- and Intermediate-Level radioactive Waste (LILW) disposal facility in Korea. QUARK is such a tool that serves QA purposes for managing safety assessment information properly and securely. In QUARK, the information is organized and linked to maximize the integrity of information and traceability. QUARK provides guidance to conduct safety assessment analysis, from scenario generation to result analysis, and provides a window to inspect and trace previous safety assessment analysis and parameter values. QUARK also provides default database for safety assessment staff who construct input data files using SAGE(Safety Assessment Groundwater Evaluation), a safety assessment computer code

  13. Applying QA to nuclear-development programs

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1981-12-01

    The application of quality assurance (QA) principles to developmental programs is usually accomplished by tailoring or selecting appropriate requirements from large QA systems. Developmental work at Westinghouse Hanford Company (WHC) covers the complete range from basic research to in-core reactor tests. Desired requirements are selected from the 18 criteria in ANSI/ASME NQA Standard 1 by the cognizant program engineer in conjunction with the quality engineer. These referenced criteria assure that QA for the program is planned, implemented, and maintained. In addition, the WHC QA Manual provides four categories or levels of QA that are assigned to programs or components within the program. These categories are based on safety, reliability, and consequences of failure to provide a cost effective program

  14. Quality assurance program on the individual monitory service of the Protection Radiology Laboratory of the Universidade Federal de Pernambuco, Recife, PE (Brazil): preliminary results

    International Nuclear Information System (INIS)

    Antonino, Paulo H.D.; Filho, Joao A.; Silveira, Sueldo V.

    1996-01-01

    The current stage of the quality assurance program on the individual monitoring service of the Protection Radiology Laboratory of the Universidade Federal de Pernambuco, Recife, PE (Brazil) is presented. The program emphasizes the personnel training and its development is focused to meet national and international standards requirements

  15. Guidance for implementing an environmental, safety, and health assurance program. Volume 10. Model guidlines for line organization environmental, safety and health audits and appraisals

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1981-10-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. The Standard specifies that the operational level of an institution must have an internal assurance function, and this document provides guidance for the audit/appraisal portion of the operational level's ES and H program. The appendixes include an ES and H audit checklist, a sample element rating guide, and a sample audit plan for working level line organization internal audits

  16. Repository construction management and quality assurance

    International Nuclear Information System (INIS)

    Hood, F.C.

    1984-01-01

    An emphasis on preventive rather than reactive management is key to an efficient construction management operation. Development of contingency plans to deal with unexpected adverse conditions, e.g., brine pockets during mining operations, are an integral part of the management program to ensure project safety, quality, cost, schedule and environmental objectives are met. A viable quality assurance program with active management support will optimize management effectiveness in reaching project goals. With adequate planning and perceptive application of the proper management controls, Quality Assurance becomes an essential ingredient for efficiently managing a job because it has been built into the management system rather than being an uninvolved peripheral entity. 6 references, 3 figures

  17. Three-level approach to quality programs for research, development and production

    International Nuclear Information System (INIS)

    Davis, A.H.; Bussolini, P.L.; Geoffrion, R.R.

    1986-01-01

    A primary mission of the Los Alamos National Laboratory is to develop nuclear weapons systems for the Department of Defense. The activities included in this effort cover a broad spectrum, ranging from pure research to routine production. In order to provide a workable framework for a comprehensive quality assurance program for these varied activities, we have proposed a three-level structure of quality plans, corresponding to a rough classification of the weapons work into three general categories. These categories are: (1) research into materials and processes, and preliminary development; (2) design, development, and fabrication of prototype components; (3) routine production, analysis, or refinement activities. The first category requires a quality program to assure the validity, reliability, and retrievability of the information developed; this is accomplished by a conscientious application of what is generally recognized as good laboratory practice. The second category requires in addition a strong emphasis on design review and inspection. For the third category, a comprehensive quality program is appropriate

  18. Development of quality assurance requirements - an international comparison

    Energy Technology Data Exchange (ETDEWEB)

    Link, M [Siemens AG, Bereich Energieerzeugung (KWU), Erlangen (Germany); Mertz, W [Siemens AG, Bereich Energieerzeugung (KWU), Offenbach am Main (Germany)

    1993-12-01

    Total quality management strategy and the worldwide introduction of the DIN/ISO 9000 (EN 29 000) series of standards have given new impetus to traditional quality assurance. The most important change must surely be seen in the holistic approach of total quality management and its strict orientation towards customer requirements and satisfaction. International codes and standards for the nuclear industry will also have to be brought into line as part of the process of harmonizing quality assurance system standards. One possible approach is simply to specify a supplementary 'delta' of nuclear-specific requirements to be appended to the broad range of conventional requirements. It is a particular feature of quality-assured procedures in Germany that product and/or component related quality requirements and quality verifications are defined in the specifications of the architect engineer so that full implementation of the requirements from the design phase through to the manufacturing phase is assured. Looking at the development of the European Pressurized Water Reactor (EPR) and the elaboration of 'Common Rules', it is to be anticipated that a major step will be made toward international harmonization of safety criteria. (orig.)

  19. Development of quality assurance requirements - an international comparison

    International Nuclear Information System (INIS)

    Link, M.; Mertz, W.

    1993-01-01

    Total quality management strategy and the worldwide introduction of the DIN/ISO 9000 (EN 29 000) series of standards have given new impetus to traditional quality assurance. The most important change must surely be seen in the holistic approach of total quality management and its strict orientation towards customer requirements and satisfaction. International codes and standards for the nuclear industry will also have to be brought into line as part of the process of harmonizing quality assurance system standards. One possible approach is simply to specify a supplementary 'delta' of nuclear-specific requirements to be appended to the broad range of conventional requirements. It is a particular feature of quality-assured procedures in Germany that product and/or component related quality requirements and quality verifications are defined in the specifications of the architect engineer so that full implementation of the requirements from the design phase through to the manufacturing phase is assured. Looking at the development of the European Pressurized Water Reactor (EPR) and the elaboration of 'Common Rules', it is to be anticipated that a major step will be made toward international harmonization of safety criteria. (orig.) [de

  20. Application of quality assurance to scientific activities at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Delvin, W.L.; Farwick, D.G.

    1988-01-01

    The application of quality assurance to scientific activities has been an ongoing subject of review, discussion, interpretation, and evaluation within the nuclear community for the past several years. This paper provides a discussion on the natures of science and quality assurance and presents suggestions for integrating the two successfully. The paper shows how those actions were used at the Westinghouse Hanford Company to successfully apply quality assurance to experimental studies and materials testing and evaluation activities that supported a major project. An important factor in developing and implementing the quality assurance program was the close working relationship that existed between the assigned quality engineers and the scientists. The quality engineers, who had had working experience in the scientific disciplines involved, were able to bridge across from the scientists to the more traditional quality assurance personnel who had overall responsibility for the project's quality assurance program

  1. Role of quality assurance vs project manager's responsibility for waste projects

    International Nuclear Information System (INIS)

    Solecki, J.

    1989-01-01

    This paper takes a project manager's perspective and discusses the role of the quality assurance organization in the development, implementation and interface related to the QA program for waste projects. The author describes the role which the QA program plays in allowing project management to assure that the project manager knows what is placed in the repository and the characteristics of the surrounding environment meet closure requirements

  2. Three steps to a more successful quality assurance program

    International Nuclear Information System (INIS)

    Ferriss, W.E.

    1975-01-01

    The three steps that will be presented are by no means a cure-all for the variety of problems and challenges that a Quality Assurance (QA) Department is faced with in its role in the design and construction of a nuclear power plant. However, these steps are considered to be three of the most important ones in the realization of an effective and efficient QA program. Step 1. Awareness. With the multitude of people involved in activities that effect the resultant Quality of Design, Procurement, and Construction of a nuclear power plant, a concerted effort has been put forth at Bechtel to promote 'Quality Awareness'. This effort has resulted in presentations to thousands of engineers, buyers, superintendents, supervisors and many others to make them more aware of their role in the Quality program. These presentations cover the Quality criteria, organizations, manuals, and implementation responsibilities that constitute the Company Quality program. In addition to the above, many specialized courses covering inspection techniques, communications, auditing, problem solving, etc. have been given to the people involved in the Generic Quality Assurance functions. Step 2. Attitude. Nuclear Power Quality requirements are quite stringent and have presented additional requirements to engineers, buyers, and superintendents who have previously designed and constructed fossil fuel power plants. Logically there was a resistance to these new requirements and a number of attitudes had to be changed. The most effective way that we have found to accomplish this is through communications from top management expressing their support of the Quality Program. Step 3. Objective and economical compliance. With the increased awareness and a more positive attitude toward Quality requirements, Bechtel has been able to devote considerable effort on finding effective methods to comply with Quality requirements in the most economical way. The complete presentation will include several examples of

  3. Extending cluster lot quality assurance sampling designs for surveillance programs.

    Science.gov (United States)

    Hund, Lauren; Pagano, Marcello

    2014-07-20

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance on the basis of the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than simple random sampling. By applying survey sampling results to the binary classification procedure, we develop a simple and flexible nonparametric procedure to incorporate clustering effects into the LQAS sample design to appropriately inflate the sample size, accommodating finite numbers of clusters in the population when relevant. We use this framework to then discuss principled selection of survey design parameters in longitudinal surveillance programs. We apply this framework to design surveys to detect rises in malnutrition prevalence in nutrition surveillance programs in Kenya and South Sudan, accounting for clustering within villages. By combining historical information with data from previous surveys, we design surveys to detect spikes in the childhood malnutrition rate. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Position paper: recommendations for a digital mammography quality assurance program V4.0.

    Science.gov (United States)

    Heggie, J C P; Barnes, P; Cartwright, L; Diffey, J; Tse, J; Herley, J; McLean, I D; Thomson, F J; Grewal, R K; Collins, L T

    2017-09-01

    In 2001 the ACPSEM published a position paper on quality assurance in screen film mammography which was subsequently adopted as a basis for the quality assurance programs of both the Royal Australian and New Zealand College of Radiologists (RANZCR) and of BreastScreen Australia. Since then the clinical implementation of digital mammography has been realised and it has become evident that existing screen-film protocols were not appropriate to assure the required image quality needed for reliable diagnosis or to address the new dose implications resulting from digital technology. In addition, the advantages and responsibilities inherent in teleradiology are most critical in mammography and also need to be addressed. The current document is the result of a review of current overseas practice and local experience in these areas. At this time the technology of digital imaging is undergoing significant development and there is still a lack of full international consensus about some of the detailed quality control (QC) tests that should be included in quality assurance (QA) programs. This document describes the current status in digital mammography QA and recommends test procedures that may be suitable in the Australasian environment. For completeness, this document also includes a review of the QA programs required for the various types of digital biopsy units used in mammography. In the future, international harmonisation of digital quality assurance in mammography and changes in the technology may require a review of this document. Version 2.0 represented the first of these updates and key changes related to image quality evaluation, ghost image evaluation and interpretation of signal to noise ratio measurements. In Version 3.0 some significant changes, made in light of further experience gained in testing digital mammography equipment were introduced. In Version 4.0, further changes have been made, most notably digital breast tomosynthesis (DBT) testing and QC have

  5. USCEA/NIST measurement assurance programs for the radiopharmaceutical and nuclear power industries

    International Nuclear Information System (INIS)

    Golas, D.B.

    1993-01-01

    In cooperation with the U.S. Council for Energy Awareness (USCEA), the National Institute of Standards and Technology (NIST) supervises and administers two measurement assurance programs for radioactivity measurement traceability. One, in existence since the mid 1970s, provides traceability to suppliers of radiochemicals and radiopharmaceuticals, dose calibrators, and nuclear pharmacy services. The second program, begun in 1987, provides traceability to the nuclear power industry for utilities, source suppliers, and service laboratories. Each program is described, and the results of measurements of samples of known, but undisclosed activity, prepared at NIST and measured by the participants are presented

  6. USCEA/NIST measurement assurance programs for the radiopharmaceutical and nuclear power industries

    Energy Technology Data Exchange (ETDEWEB)

    Golas, D.B. [Council for Energy Awareness, Washington, DC (United States)

    1993-12-31

    In cooperation with the U.S. Council for Energy Awareness (USCEA), the National Institute of Standards and Technology (NIST) supervises and administers two measurement assurance programs for radioactivity measurement traceability. One, in existence since the mid 1970s, provides traceability to suppliers of radiochemicals and radiopharmaceuticals, dose calibrators, and nuclear pharmacy services. The second program, begun in 1987, provides traceability to the nuclear power industry for utilities, source suppliers, and service laboratories. Each program is described, and the results of measurements of samples of known, but undisclosed activity, prepared at NIST and measured by the participants are presented.

  7. Research and development quality assurance planning

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, P.B.

    1990-05-14

    Planning for quality assurance (QA) in research and development (R D) is like stealing eggs without waking up the chickens. The QA program should be as unobtrusive as possible. Researchers require a QA program that affords them an environment capable of supporting repeatable experiments with accurate data without unduly stifling their creative abilities. Careful advance planning ensures that the intensity of control provided by quality-related systems is commensurate with the importance and scope of the activities being performed. Good scientific practices applied to small bench-scale projects may require minimal additional controls. As projects increase in size and complexity the controls imposed through planning must, by necessity, be increased. Research and development QA planning, just like any other planning, involves all affected individuals. The application of control systems is determined by factors such as customer or sponsor requirements, the importance of an item or activity to the experiment's success, and the organizational complexity of the project. Many larger experiments are highly dependent on quality-related support activities such as calibration, engineering design, and inspection provided by organizations outside the R D group. Since, in most cases, the expense of support activities is taken directly from funds available for research, it is important for the researchers to be involved in the planning efforts to help determine and agree with the level of QA effort required. A single plan will often suffice for organizations engaged in large numbers of similar experiments. Complex experiments may require unique QA plans or additions to existing plans. Once implemented, the R D QA plans, like any others, require audits or surveillances and may require revisions if the scope of the experiment changes. 1 ref., 1 fig.

  8. Research and development quality assurance planning

    International Nuclear Information System (INIS)

    Hoke, P.B.

    1990-01-01

    Planning for quality assurance (QA) in research and development (R ampersand D) is like stealing eggs without waking up the chickens. The QA program should be as unobtrusive as possible. Researchers require a QA program that affords them an environment capable of supporting repeatable experiments with accurate data without unduly stifling their creative abilities. Careful advance planning ensures that the intensity of control provided by quality-related systems is commensurate with the importance and scope of the activities being performed. Good scientific practices applied to small bench-scale projects may require minimal additional controls. As projects increase in size and complexity the controls imposed through planning must, by necessity, be increased. Research and development QA planning, just like any other planning, involves all affected individuals. The application of control systems is determined by factors such as customer or sponsor requirements, the importance of an item or activity to the experiment's success, and the organizational complexity of the project. Many larger experiments are highly dependent on quality-related support activities such as calibration, engineering design, and inspection provided by organizations outside the R ampersand D group. Since, in most cases, the expense of support activities is taken directly from funds available for research, it is important for the researchers to be involved in the planning efforts to help determine and agree with the level of QA effort required. A single plan will often suffice for organizations engaged in large numbers of similar experiments. Complex experiments may require unique QA plans or additions to existing plans. Once implemented, the R ampersand D QA plans, like any others, require audits or surveillances and may require revisions if the scope of the experiment changes. 1 ref., 1 fig

  9. [eLearning-radiology.com--sustainability for quality assurance].

    Science.gov (United States)

    Ketelsen, D; Talanow, R; Uder, M; Grunewald, M

    2009-04-01

    The aim of the study was to analyze the availability of published radiological e-learning tools and to establish a solution for quality assurance. Substantial pubmed research was performed to identify radiological e-learning tools. 181 e-learning programs were selected. As examples two databases expanding their programs with external links, Compare (n = 435 external links) and TNT-Radiology (n = 1078 external links), were evaluated. A concept for quality assurance was developed by an international taskforce. At the time of assessment, 56.4 % (102 / 181) of the investigated e-learning tools were accessible at their original URL. A subgroup analysis of programs published 5 to 8 years ago showed significantly inferior availability to programs published 3 to 5 years ago (p eLearning-radiology.com was developed by the taskforce and published online. This tool allows authors to present their programs and users to evaluate the e-learning tools depending on several criteria in order to remove inoperable links and to obtain information about the complexity and quality of the e-learning tools. More than 50 % of investigated radiological e-learning tools on the Internet were not accessible after a period of 5 to 8 years. As a consequence, an independent, international tool for quality assurance was designed and published online under www.eLearning-radiology.com .

  10. MCNP trademark Software Quality Assurance plan

    International Nuclear Information System (INIS)

    Abhold, H.M.; Hendricks, J.S.

    1996-04-01

    MCNP is a computer code that models the interaction of radiation with matter. MCNP is developed and maintained by the Transport Methods Group (XTM) of the Los Alamos National Laboratory (LANL). This plan describes the Software Quality Assurance (SQA) program applied to the code. The SQA program is consistent with the requirements of IEEE-730.1 and the guiding principles of ISO 900

  11. Development of quality assurance procedures for production of sealed radiation source

    CERN Document Server

    Nam, J H; Cho, W K; Han, H S; Hong, S B; Kim, K H; Kim, S D; Lee, Y G; Lim, N J

    2001-01-01

    The quality assurance procedures for sealed radiation sources production using HANARO and RIPF have been developed. The detailed quality assurance procedures are essential to manage the whole work process effectively and ensure the quality of the produced sealed sources. Through applying this quality assurance procedures to the entire production works of the sealed radiation sources, it is expected that the quality of the products, the safety of the works and the satisfaction of the customers will be increased.

  12. Commissioning quality assurance at Pickering NGS

    International Nuclear Information System (INIS)

    Wieckowski, J.T.

    1983-05-01

    Ontario Hydro decided in 1978 to implement a formal quality assurance program applicable to commissioning and operation of nuclear generating stations. Pickering NGS is the first station to have the commissioning quality assurance (CQA) program applied to it. This paper outlines the scope, implementation, and evaluation of the CQA program as applied to Pickering Unit 5

  13. The RCPA Quality Assurance Program in Dermatopathology: A Retrospective Review.

    Science.gov (United States)

    Peck, Martyn; Beer, Trevor W; Badrick, Tony; Wood, Benjamin A

    2018-03-01

    To review the Royal College of Pathologists of Australasia (RCPA) Quality Assurance Program Dermatopathology module from 2005 to 2016 to assess diagnostic performance, changes over time, and areas of diagnostic difficulty. The computerized records of the RCPA Dermatopathology subspecialist module were reviewed. Cases were categorized into groups including nonneoplastic disorders, neoplasms, and cases with multiple diagnoses. The performance of participants over time in each of these categories and in more specific areas (including melanocytic and adnexal neoplasms) was assessed. Cases which showed high rates of discordant responses were specifically reviewed. One hundred sixteen cases circulated over 10 years were evaluated. The overall concordance rate was 77%, with a major discordance rate of 7%. There was a slightly higher concordance rate for neoplasms compared with nonneoplastic lesions (80% vs. 74%). Specific areas associated with lower concordance rates included classification of adnexal tumors and identification of multiple pathologies. A spindle cell nevus of Reed yielded a 40% discordance rate, with most misclassifications indicating melanoma. The RCPA quality assurance program module has circulated a wide range of common and uncommon cases to participants over the 12 years studied, highlighting a low but important rate of major discordant responses. Melanocytic lesions, hematolymphoid infiltrates, adnexal tumors, and identification of multiple pathologies are identified as areas worthy of particular attention in quality improvement activities.

  14. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  15. Software quality assurance (SQA) for Savannah River reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, C.M.

    1990-01-01

    Over the last 25 years, the Savannah River Site (SRS) has developed a strong Software Quality Assurance (SQA) program. It provides the information and management controls required of a high quality auditable system. The SRS SQA program provides the framework to meet the requirements in increasing regulation.

  16. An approach to applying quality assurance to nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Cooper, R.B.; Abel, R.

    1996-12-01

    An approach to developing and applying a quality assurance program for a nuclear fuel waste disposal facility is described. The proposed program would be based on N286-series standards used for quality assurance programs in nuclear power plants, and would cover all aspects of work across all stages of the project, from initial feasibility studies to final closure of the vault. A quality assurance manual describing the overall quality assurance program and its elements would be prepared at the outset. Planning requirements of the quality assurance program would be addressed in a comprehensive plan for the project. Like the QA manual, this plan would be prepared at the outset of the project and updated at each stage. Particular attention would be given to incorporating the observational approach in procedures for underground engineering, where the ability to adapt designs and mining techniques to changing ground conditions would be essential. Quality verification requirements would be addressed through design reviews, peer reviews, inspections and surveillance, equipment calibration and laboratory analysis checks, and testing programs. Regular audits and program reviews would help to assess the state of implementation, degree of conformance to standards, and effectiveness of the quality assurance program. Audits would be particularly useful in assessing the quality systems of contractors and suppliers, and in verifying the completion of work at the end of stages. Since a nuclear fuel waste disposal project would span a period of about 90 years, a key function of the quality assurance program would be to ensure the continuity of knowledge and the transfer of experience from one stage to another This would be achieved by maintaining a records management system throughout the life of the project, by ensuring that work procedures were documented and kept current with new technologies and practices, and by instituting training programs that made use of experience gained

  17. Mammography in public hospitals at Rio de Janeiro: a quality assurance program

    International Nuclear Information System (INIS)

    Briquet, C.; Coutinho, C.M.C.; Mota, H.C.; Tavares, E.

    1998-01-01

    This paper presents the preliminary results and the methodology followed by the implementation of a Quality Assurance Program in public hospitals at Rio de Janeiro. We observed that the main problems of image are due to the processing. None facility has a dedicated processor and the processor daily quality control is a concern not yet adopted. (Author)

  18. Quality assurance

    International Nuclear Information System (INIS)

    1996-01-01

    The main efforts of Nuclear Regulatory Authority of the Slovak Republic (NRA SR) was focused on support of quality assurance programmes development at responsible organizations Bohunice V-1 and V-v and Mochovce NPPs and their inspection. Development of the level two documentation of a partial quality assurance programme for NPP operation continued at Mochovce NPP. Most of documentation has been submitted to NRA SR for comments and approval. NRA SR invited a mission of French experts to Mochovce NPP to review preparation and performance of internal audits that would be beneficial for improvement in this kind activities at the NPP. Bohunice NPP continued in development of a partial quality assurance programme for operation. The Quality Assurance Programme submitted to NRA SR for approval. Based on a request of Bohunice NPPs, NRA SR consulted the draft quality assurance programme developed by Siemens for stage of the 'Basic Design' of V-1 NPP upgrading. The programme had not been submitted for approval to NRA SR prior to completion of works by Siemens. Based on an internal audit that had been performed, corrective measures were proposed to meet requirements on review and approval of suppliers quality assurance programmes. Requirements related to the quality assurance at nuclear installations were prepared to be incorporated into principles of a act on peaceful use of nuclear power in Slovak Republic

  19. Quality assurance in postgraduate pathology training the Dutch way: regular assessment, monitoring of training programs but no end of training examination.

    Science.gov (United States)

    van der Valk, Paul

    2016-01-01

    It might seem self-evident that in the transition from a supervised trainee to an independent professional who is no longer supervised, formal assessment of whether the trainee knows his/her trade well enough to function independently is necessary. This would then constitute an end of training examination. Such examinations are practiced in several countries but a rather heterogeneous situation exists in the EU countries. In the Netherlands, the training program is not concluded by a summative examination and reasons behind this situation are discussed. Quality assurance of postgraduate medical training in the Netherlands has been developed along two tracks: (1) not a single testing moment but continuous evaluation of the performance of the trainee in 'real time' situations and (2) monitoring of the quality of the offered training program through regular site-visits. Regular (monthly and/or yearly) evaluations should be part of every self-respecting training program. In the Netherlands, these evaluations are formative only: their intention is to provide the trainee a tool by which he or she can see whether they are on track with their training schedule. In the system in the Netherlands, regular site-visits to training programs constitute a crucial element of quality assurance of postgraduate training. During the site-visit, the position and perceptions of the trainee are key elements. The perception by the trainee of the training program, the institution (or department) offering the training program, and the professionals involved in the training program is explicitly solicited and systematically assessed. With this two-tiered approach high-quality postgraduate training is assured without the need for an end of training examination.

  20. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and the New Tenets for Cost Conscious Mission Assurance on Electrical, Electronic, and Electromechanical (EEE) Parts

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    The NEPP Program focuses on the reliability aspects of electronic devices (integrated circuits such as a processor in a computer). There are three principal aspects of this reliability: 1) Lifetime, inherent failure and design issues related to the EEE parts technology and packaging; 2) Effects of space radiation and the space environment on these technologies, and; 3) Creation and maintenance of the assurance support infrastructure required for mission success. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment, and to ensure that appropriate EEE parts research is performed to meet NASA mission assurance needs. NEPPs FY15 goals are to represent the NASA voice to the greater aerospace EEE parts community including supporting anti-counterfeit and trust, provide relevant guidance to cost-effective missions, aid insertion of advanced (and commercial) technologies, resolve unexpected parts issues, ensure access to appropriate radiation test facilities, and collaborate as widely as possible with external entities. In accordance with the changing mission profiles throughout NASA, the NEPP Program has developed a balanced portfolio of efforts to provide agency-wide assurance for not only traditional spacecraft developments, but also those in-line with the new philosophies emerging worldwide. In this presentation, we shall present an overview of this program and considerations for EEE parts assurance as applied to cost conscious missions.

  1. Nuclear quality assurance: indoctrination and training

    International Nuclear Information System (INIS)

    Sternberg, A.

    1977-01-01

    Quality Assurance is defined as ''all the planned and systematic actions necessary to provide adequate confidence that a structure, system or component will perform satisfactorily in service''. Within Public Service Electric and Gas Company (PSEandG) Quality Assurance, a discipline which involves everyone within the company, is considered. In order to economically and effectively communicate this discipline throughout the concerned areas of the Company so that involved personnel are made fully aware of the complete scope of their tasks, a detailed comprehensive indoctrination and training program has been developed and implemented. 3 refs

  2. 21 CFR 1000.55 - Recommendation for quality assurance programs in diagnostic radiology facilities.

    Science.gov (United States)

    2010-04-01

    ... facilities where more than one department operates x-ray equipment, to the chief medical officer of the..., improved image quality, and/or financial savings will compensate for the resources required for the program... generally be delegated a basic quality assurance role by the practitioner in charge. Responsibility for...

  3. The application of statistical process control in linac quality assurance

    International Nuclear Information System (INIS)

    Li Dingyu; Dai Jianrong

    2009-01-01

    Objective: To improving linac quality assurance (QA) program with statistical process control (SPC) method. Methods: SPC is applied to set the control limit of QA data, draw charts and differentiate the random and systematic errors. A SPC quality assurance software named QA M ANAGER has been developed by VB programming for clinical use. Two clinical cases are analyzed with SPC to study daily output QA of a 6MV photon beam. Results: In the clinical case, the SPC is able to identify the systematic errors. Conclusion: The SPC application may be assistant to detect systematic errors in linac quality assurance thus it alarms the abnormal trend to eliminate the systematic errors and improves quality control. (authors)

  4. Islay development flow assurance challenges

    Energy Technology Data Exchange (ETDEWEB)

    Helingoe, Mark; Greder, Hugues

    2010-07-01

    The Islay field is located in the Northern North Sea UK sector in the vicinity of the Alwyn Platforms. This gas condensate Brent structure is planned to be developed subsea with first gas in 2011. The main development challenge for this HPHT field comes from the early expected formation water production which is the source of major hydrate related flow assurance issues. As continuous inhibition is not feasible, Total has progressed a development scenario based on seabed conditioning prior to pipe laying so that water can be collected and temporarily inhibited at specific low points after a shut-down. It is also intended to heat trace the pipeline as a back-up solution to avoid hydrate formation. Heat tracing has so far never been implemented in Subsea developments. The Islay pilot could open the path to a new hydrate management philosophy for future developments. (Author)

  5. Changing the image of quality assurance in research and development

    International Nuclear Information System (INIS)

    Melroy, P.E.

    1988-01-01

    The traditional image of quality assurance (QA) in a research and development (R and D) institution has been that of paper work. QA was often perceived as focusing on documentation rather than on contributions to productive work. The recent emphasis on regulation by outside groups and independent verification of QA systems has created an opportunity to reevaluate and change this image. The desired change is to create an understanding that when properly utilized, QA is essential to good project management and fully contributes to the success of technical programs. The change is being accomplished by sharpening the definition of QA systems of improved understanding by line organizations, developing a project QA in a structure that allows selective use of the NQA-1 standard, formation of a graded approach that simplifies QA for R and D projects, and an intense campaign to communicate the value of QA to laboratory personnel

  6. Directory of Certificates of Compliance for Radioactive Materials Packages: Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages

    International Nuclear Information System (INIS)

    1993-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  7. How does the culture of medical group practices influence the types of programs used to assure quality of care?

    Science.gov (United States)

    Kaissi, Amer; Kralewski, John; Curoe, Ann; Dowd, Bryan; Silversmith, Janet

    2004-01-01

    It is widely acknowledged that the culture of medical group practices greatly influences the quality of care, but little is known about how cultures are translated into specific types of programs focused on quality. This study explores this issue by assessing the influence of the organizational culture on these types of programs in medical group practices in the upper Midwest. Data were obtained from two surveys of medical group practices. The first survey was designed to assess the culture of the practice using a nine-dimension instrument developed previously. The second survey was designed to obtain organizational structure data including the programs identified by the literature as important to the quality of care in medical practices. Completed surveys were obtained from eighty-eight medical groups. The relationship of the group practice culture to structural programs focused on quality of care was analyzed using logistic regression equations. Several interesting patterns emerged. As expected, practices with a strong information culture favor electronic data systems and formal programs that provide comparative or evidence-based data to enhance their clinical practices. However, those with a quality-centered culture appear to prefer patient satisfaction surveys to assess the quality of their care, while practices that are more business-oriented rely on bureaucratic strategies such as benchmarking and physician profiling. Cultures that emphasize the autonomy of physician practice were negatively (but not at a statistically significant level) associated with all the programs studied. Practices with a highly collegial culture appear to rely on informal peer review mechanisms to assure quality rather than any of the structural programs included in this analysis. This study suggests that the types of quality programs that group practices develop differ according to their cultures. Consequently, it is important for practice administrators and medical directors to

  8. The Royal College of Pathologists of Australasia Quality Assurance Program: Immunohistochemistry Breast Marker Audit Overview 2005-2015.

    Science.gov (United States)

    Haffajee, Zenobia Ayesha Mohamed; Kumar, Beena; Francis, Glenn; Peck, Martyn; Badrick, Tony

    2017-11-20

    The Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP) Anatomical Pathology provides a comprehensive External Quality Assurance (EQA) exercise to review the reporting of immunohistochemistry (IHC) and in-situ hybridization (ISH) breast markers through an audit of clinical results. The aim of this exercise was to provide information regarding the quality of breast marker testing within clinical laboratories from 2005 to 2015. This comprehensive audit included estrogen, progesterone, and HER2 marker reporting. This was an important quality assurance activity established in response to ongoing difficulties experienced in laboratories in this area of testing.

  9. THE IMPORTANCE OF A SUCCESSFUL QUALITY ASSURANCE (QA) PROGRAM FROM A RESEARCH MANAGER'S PERSPECTIVE

    Science.gov (United States)

    The paper discusses the Air Pollution Prevention and Control Division's Quality Assurance (QA) program and the approaches used to meet QA requirements in the Division. The presentation is a technical manager's perspective of the Division's requirements for and approach to QA in i...

  10. 10 CFR 76.93 - Quality assurance.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Quality assurance. 76.93 Section 76.93 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.93 Quality assurance. The Corporation shall establish, maintain, and execute a quality assurance program satisfying each of...

  11. Norwegian program of quality assurance in radiotherapy (KVIST) - Organisation, benefits and experience feedback;Programme norvegien d'assurance qualite dans la radiotherapie (KVIST) - Organisation, benefices et retour d'experience

    Energy Technology Data Exchange (ETDEWEB)

    Merete Olerud, H. [Oslo Univ., Autorite Norvegienne de Radioprotection, Osteras, Institut de Physique et Biophysique (Norway); Levernes, S. [Oslo Univ., Centre Hospitalier, Autorite Norvegienne de Radioprotection, Osteras - DNR, Montebello (Norway); Hellebust, T.P. [Autorite Norvegienne de Radioprotection, Osteras, Centre Hospitalier, DNR, Montebello (Norway); Heikkela, I.E. [Autorite Norvegienne de Radioprotection, Osteras D.C., Johannessen, Centre Hospitalier Universitaire - Ulleval, Oslo (Norway); Bjerke, H. [Autorite Norvegienne de Radioprotection, Osteras, Rekstad BL, Centre Hospitalier Universitaire - Ulleval, Oslo (Norway); Sundqvist, E. [Programme Radiographie, Faculte de la Sante, Oslo, College Universitaire, Oslo (Norway); Frykholm, G. [Oslo Univ., Centre Hospitalier Universitaire, Autorite Norvegienne de Radioprotection, Osteras, St.Olav, Trondheim (Norway)

    2009-12-15

    In 2000, the Norwegian Radiation Protection Authority (N.R.P.A.) initiated work to develop a national quality assurance programme in radiotherapy. The program was named K.V.I.S.T.: i.e. Norwegian abbreviation of Quality Assurance in Radiotherapy (KValitetSikring STraleterapi). The programme is performed by the multidisciplinary K.V.I.S.T. Group and aims to stimulate collaboration by focussing on clinical, technical and administrative problems that can be addressed and solved on a national level. An important objective is to establish a positive attitude towards quality assurance and better communication between centres and the various professions and professionals involved in radiotherapy, i.e. the oncologists, medical physicists and radiation therapy technologists. Information is also provided to other stake holders such as health authorities, hospital administrators and patients. In 2007 radiotherapy in Norway represent 10 departments and forty accelerators. Since radiotherapy is given high priority in cancer care good quality assurance is required. The member of the K.V.I.S.T.-group are part time at N.R.P.A. and part time in different radiotherapy departments. Professionals with competencies within radiotherapy (R.T.) have permanent positions in a national public entity. The K.V.I.S.T.-group is multidisciplinary. The K.V.I.S.T.-group acts as a coordinating group for all type of national Q.A. projects. The recommendations/guidelines are developed by national consensus. The work is performed by the radiotherapy community it self, thus creating an atmosphere of ownership. (N.C.)

  12. 10 CFR 63.142 - Quality assurance criteria.

    Science.gov (United States)

    2010-01-01

    ... planned and periodic audits to verify compliance with all aspects of the quality assurance program and to... 10 Energy 2 2010-01-01 2010-01-01 false Quality assurance criteria. 63.142 Section 63.142 Energy... REPOSITORY AT YUCCA MOUNTAIN, NEVADA Quality Assurance § 63.142 Quality assurance criteria. (a) Introduction...

  13. UMTRA technical assistance contractor Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    Pehrson, P.

    1993-01-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAC Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements. The key to ensuring compliance with this directive is a two-step professional approach: utilize the quality system in all areas of activity, and generate a personal commitment from all personnel to provide quality service. The quality staff will be experienced, trained professionals capable of providing maximum flexibility to Project goal attainment. Such flexibility will enable the staff to be more cost effective and to further improve communication and coordination. To provide control details, this QAPP will be supplemented by approved standard operating procedures that provide requirements for performing the various TAC quality-related activities. These procedures shall describe applicable design input and document control activities and documentation

  14. Quality assurance in radiodiagnosis

    International Nuclear Information System (INIS)

    Ghilardi Netto, T.; Sao Paulo Univ., Ribeirao Preto

    1983-01-01

    The following topics are dealt with: 1) the importance of the application of a quality assurance program in radiodiagnosis, with its main consequences : improvement of imaging quality, reduction of the patient expossure rate, cost reduction and 2) how to introduce the quality assurance control in the radiodiagnostic area. (M.A.) [pt

  15. SoftCopy Display Quality Assurance Program at Texas Children's Hospital.

    Science.gov (United States)

    Ly, Catherine Kim

    2002-01-01

    With growing dependence on picture archiving and communication systems for viewing images, a quality assurance program to monitor the condition of workstation displays has become increasingly important. At present there is no universally accepted program for PACS, but there are groups such as DICOM Working Group 11 of the ACR-NEMA and AAPM Task Group 18 that are working on image quality guidelines for interpretation from soft-copy displays. Texas Children's Hospital (TCH) is developing our own quality assurance program. Data is being collected to determine the appropriate frequency of calibration, the useful life of the displays, appropriate manufacturers, and model-dependent limits on maximum and minimum luminance (black level), symptoms of degradation, and monitor cleanliness. Our system includes a variety of monitors manufactured by Sun, AFP, Siemens, Image Systems, Barco, and Orwin. We are presently collecting data on individual monitor luminance functions but have not yet initiated service calls based on deviation from the DICOM Part 14 Grayscale Display Function (GSDF). The GSDF was intended to produce a grayscale in which driving levels produce changes in luminance that are perceptually equivalent throughout the entire luminance range for a specific test target. Our data is based on measurements of luminance from a digital Society of Motion Picture and Television Engineers (SMPTE) test pattern, which is a standard used by many other institutions. TCH's biomedical engineer measures luminance data each month from the display of the SMPTE pattern and record the results in a spreadsheet. The engineer also makes subjective evaluations of sharpness, geometric distortion, and artifacts. When a monitor's luminance falls outside of arbitrary 10% limits of maximum or minimum luminance, then a service call is placed to the vendor. The luminance check by the biomedical engineer is used to verify both routine and unscheduled calibrations. In addition to the monthly

  16. Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Battersby, C.; Dickson, R.; Jennings, R.; Kimmons, J.; Kozlowski, M. R.; Maricle, S.; Mouser, R.; Runkel, M.; Schwartz, S.; Sheehan, L. M.; Weinzapfel, C.

    1998-01-01

    The Laser Program at LLNL has developed automated facilities for damage testing optics up to 1 meter in diameter. The systems were developed to characterize the statistical distribution of localized damage performance across large-aperture National Ignition Facility optics. Full aperture testing is a key component of the quality assurance program for several of the optical components. The primary damage testing methods used are R:1 mapping and raster scanning. Automation of these test methods was required to meet the optics manufacturing schedule. The automated activities include control and diagnosis of the damage-test laser beam as well as detection and characterization of damage events

  17. Nursing Quality Assurance: The Wisconsin System

    Science.gov (United States)

    Hover, Julie; Zimmer, Marie J.

    1978-01-01

    Evaluation model guidelines for hospital departments of nursing to use in their nursing quality assurance programs are presented as developed in Wisconsin. Four essential components of the Wisconsin outcome evaluation system are criteria, assessment, standards, and improvement of care. Sample tests and charts are included in the article. (MF)

  18. Software quality assurance for safety analysis and risk management at the Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Toffer, H.; Crowe, R.D.

    1991-01-01

    As part of its Reactor Operations Improvement Program at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC), in cooperation with the Westinghouse Hanford Company, has developed and implemented quality assurance for safety-related software for technical programs essential to the safety and reliability of reactor operations. More specifically, the quality assurance process involved the development and implementation of quality standards and attendant procedures based on industry software quality standards. These procedures were then applied to computer codes in reactor safety and probabilistic risk assessment analyses. This paper provides a review of the major aspects of the WSRC safety-related software quality assurance. In particular, quality assurance procedures are described for the different life cycle phases of the software that include the Requirements, Software Design and Implementation, Testing and Installation, Operation and Maintenance, and Retirement Phases. For each phase, specific provisions are made to categorize the range of activities, the level of responsibilities, and the documentation needed to assure the control of the software. The software quality assurance procedures developed and implemented are evolutionary in nature, and thus, prone to further refinements. These procedures, nevertheless, represent an effective controlling tool for the development, production, and operation of safety-related software applicable to reactor safety and probabilistic risk assessment analyses

  19. Quality assurance in the measurement of internal radioactive contamination and dose assessment and the United States Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Bhatt, Anita

    2016-01-01

    The Quality Assurance for analytical measurement of internal radioactive contamination and dose assessment in the United States (US) is achieved through the US Department of Energy (DOE) Laboratory Accreditation Program (DOELAP) for both Dosimetry and Radio bioassay laboratories for approximately 150,000 radiation workers. This presentation will explain the link between Quality Assurance and the DOELAP Accreditation process. DOELAP is a DOE complex-wide safety program that ensures the quality of worker radiation protection programs. DOELAP tests the ability of laboratories to accurately measure and quantify radiation dose to workers and assures the laboratories quality systems are capable of defending and sustaining their measurement results. The United States Law in Title 10 of the Code of Federal Regulations 835 requires that personnel Dosimetry and Radio bioassay programs be tested and accredited

  20. Technical assistance to Department of Energy/Office of Operational Safety Assurance Program for remedial action

    International Nuclear Information System (INIS)

    Denham, D.H.; Cross, F.T.; Kennedy, W.E. Jr.; Marks, S.; Soldat, J.K.; Stenner, R.D.

    1986-01-01

    This project was initiated in FY 1984 to provide technical assistance to the Department of Energy (DOE), Office of Operational Safety (OOS) in developing and implementing its Assurance Program for Remedial Action (APRA), i.e., overview of the DOE remedial action programs. During this second year of the project,* the technical assistance included report and procedure reviews, and assistance with conducting the Uranium Mill Tailings Remedial Action Program (UMTRAP) Office (DOE/AL) appraisal. This included participation in preappraisal visits to UMTRAP sites in Canonsburg, Pennsylvania; Grand Junction, Colorado; and Salt Lake City, Utah. Pacific Northwest Laboratory (PNL) also transferred the PNL-developed document review software to the Oak Ridge Associated Universities (ORAU) staff in Grand Junction, Colorado, in anticipation of future document reviews by the ORAU staff. Other accomplishments have included publication of two formal documents and three project reports, preparation and presentation of five topical reports at national and international meetings, two foreign trip reports, and comments on proposed draft standards of the Environmental Protection Agency (40 CFR 193). The project manager has also participated on National Council on Radiation Protection and Measurements (NCRP) and American Society for Testing and Materials (ASTM) subcommittees developing decommissioning standards, as well as International Atomic Energy Agency (IAEA) advisory groups developing environmental monitoring guidelines

  1. Quality assurance on the Idaho National Engineering Laboratory Buried Waste Program

    International Nuclear Information System (INIS)

    Rasmussen, T.L.

    1989-01-01

    This paper discusses the clean-up of an Idaho National Engineering Laboratory (INEL) site utilized for disposal of transuranic contaminated waste from 1954 until 1970. The author presents requirements of the environmental protection statutes that have generated quality assurance requirements in addition to those historically implemented as a part of facility design, construction and operation. A hierarchy of program guidance quality documentation and procedures is discussed. Data qualification and computer database management are identified as requirements

  2. Quality Assurance of ARM Program Climate Research Facility Data

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, RA; Kehoe, KE; Sonntag, KL; Bahrmann, CP; Richardson, SJ; Christensen, SW; McCord, RA; Doty, DJ; Wagener, Richard [BNL; Eagan, RC; Lijegren, JC; Orr, BW; Sisterson, DL; Halter, TD; Keck, NN; Long, CN; Macduff, MC; Mather, JH; Perez, RC; Voyles, JW; Ivey, MD; Moore, ST; Nitschke, DL; Perkins, BD; Turner, DD

    2008-03-01

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

  3. Quality Assurance of ARM Program Climate Research Facility Data

    International Nuclear Information System (INIS)

    Peppler, R.A.; Kehoe, K.E.; Sonntag, K.L.; Bahramann, C.P.; Richardson, S.J.; Christensen, S.W.; McCord, R.A.; Doty, D.J.; Wagener, R.; Eagan, R.C.; Lijegren, J.C.; Orr, B.W.; Sisterson, D.L.; Halter, T.D.; Keck, N.N.; Long, C.N.; Macduff, M.C.; Mather, J.H.; Perez, R.C.; Voyles, J.W.; Ivey, M.D.; Moore, S.T.; Nitschke, D.L.; Perkins, B.D.; Turner, D.D.

    2008-01-01

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and characterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented

  4. Implementation of quality assurance in the manufacture of radiation measuring instruments

    International Nuclear Information System (INIS)

    Erath, W.; Maushart, R.

    1993-01-01

    Contrary to a general belief, quality assurance in an instrument manufacturing plant comprises considerably more than the testing of instruments and components. Quality assurance programs according to the ISO 9000 standards are part of the general quality policy of a company, comprising management, manufacturing, sales, and service. A description of the quality assurance research and development is given, and the practical execution with regard to calibration of contamination monitors is pointed out in detail. (orig.) [de

  5. Revision of Krsko NPP Quality Assurance Plan

    International Nuclear Information System (INIS)

    Biscan, R.; Fifnja, I.; Kavsek, D.

    2012-01-01

    International standards from nuclear power plant operation area are being frequently upgraded and revised in accordance with the continuous improvement philosophy. This philosophy applies also to the area of Quality Assurance, which has also undergone significant improvement since the early 1950s. Besides just nuclear industry, there are also other international quality standards that are being continuously developed and revised, bringing needs for upgrades also in the nuclear application. Since the beginning of Krsko NPP construction, the overall Quality Assurance program and its applicable procedures were in place to assure that all planned and systematic actions necessary to provide adequate confidence that an item or service will satisfy given requirements to quality, are in place. The overall requirements for quality as one of the major objectives for Krsko NPP operation are also set forth in the Updated Safety Analyses Report, the document that serves as a base for operating license. During more than 30 years of Krsko NPP operation, the quality requirements and related documents were revised and upgraded in several attempts. The latest revision 6 of QD-1, Quality Assurance Plan was issued during the year 2011. The bases for the revision were: Changes of the Slovenian regulatory requirements (ZVISJV, JV5, JV9?), Changes of Krsko NPP licensing documents (USAR section 13?), SNSA inspection requirements, Changes of international standards (IAEA, ISO?), Conclusions of first PSR, Implementation of ISO standards in Krsko NPP (ISO14001, ISO17025), Changes of plant procedures, etc. One of the most obvious changes was the enlargement of the QA Plan scope to cover interdisciplinary areas defined in the plant management program MD-1, such as Safety culture, Self-assessment, Human performance, Industrial Safety etc. The attachment of the QA Plan defining relationships between certain standards was also updated to provide matrix for better correlation of requirements of

  6. 24 CFR 232.630 - Assurance of completion.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES MORTGAGE INSURANCE FOR NURSING HOMES, INTERMEDIATE CARE FACILITIES, BOARD AND CARE HOMES, AND ASSISTED... Fire Safety Equipment Special Requirements § 232.630 Assurance of completion. If the property upon...

  7. Development of a Program on quality assurance in radiotherapy and radiology

    International Nuclear Information System (INIS)

    Tovar, Julio

    2000-01-01

    In this paper the development of a program of QA in radiotherapy and radiology is described. The objectives, resources, manpower and the cooperation between the IAEA and the Direccion General de Energia are outlined

  8. A Method for Developing Standard Patient Education Program.

    Science.gov (United States)

    Lura, Carolina Bryne; Hauch, Sophie Misser Pallesgaard; Gøeg, Kirstine Rosenbeck; Pape-Haugaard, Louise

    2018-01-01

    In Denmark, patients being treated on Haematology Outpatients Departments get instructed to self-manage their blood sample collection from Central Venous Catheter (CVC). However, this is a complex and risky procedure, which can jeopardize patient safety. The aim of the study was to suggest a method for developing standard digital patient education programs for patients in self-administration of blood samples drawn from CVC. The Design Science Research Paradigm was used to develop a digital patient education program, called PAVIOSY, to increase patient safety during execution of the blood sample collection procedure by using videos for teaching as well as procedural support. A step-by-step guide was developed and used as basis for making the videos. Quality assurance through evaluation with a nurse was conducted on both the step-by-step guide and the videos. The quality assurance evaluation of the videos showed; 1) Errors due to the order of the procedure can be determined by reviewing the videos despite that the guide was followed. 2) Videos can be used to identify errors - important for patient safety - in the procedure, which are not identifiable in a written script. To ensure correct clinical content of the educational patient system, health professionals must be engaged early in the development of content and design phase.

  9. John F. Kennedy Space Center, Safety, Reliability, Maintainability and Quality Assurance, Survey and Audit Program

    Science.gov (United States)

    1994-01-01

    This document is the product of the KSC Survey and Audit Working Group composed of civil service and contractor Safety, Reliability, and Quality Assurance (SR&QA) personnel. The program described herein provides standardized terminology, uniformity of survey and audit operations, and emphasizes process assessments rather than a program based solely on compliance. The program establishes minimum training requirements, adopts an auditor certification methodology, and includes survey and audit metrics for the audited organizations as well as the auditing organization.

  10. Implementation of quality assurance in the nuclear industry of Republic of Korea

    International Nuclear Information System (INIS)

    Voin, V.

    1985-10-01

    This paper describes the assistance supplied by FRAMEX to achieve establishment and implementation of Quality Assurance Program by Korean Manufacturers. But to assure that equipment purchased in KOREA complies with the procurement documents, technical assistance has been provided to transfer proven, reliable know-how and technology. At this stage of the project, we can say that the total support which is available for the Korean manufacturers is efficient. We have the adequate confidence that the quality of the equipment conforms to predetermined requirements and that it will perform satisfactorily in service. Experienced and qualified personnel in Quality Assurance is now available in KOREA for the development of Korean nuclear program

  11. A three-level approach to quality programs for research, development, and production

    International Nuclear Information System (INIS)

    Davis, A.H.; Bussolini, P.L.; Geoffrion, R.R.

    1986-01-01

    A primary mission of the Los Alamos National Laboratory is to develop nuclear weapons systems for the Department of Defense. The activities included in this effort cover a broad spectrum ranging from pure research to routine production. In order to provide a workable framework for a comprehensive quality assurance program for these varied activities, the authors have proposed a three-level structure of quality plans, corresponding to a rough classification of the weapons work into three general categories. These categories are: 1) research into materials and processes, and preliminary development; 2) design, development, and fabrication of prototype components; 3) routine production, analysis, or refinement activities. The first category requires a quality program to assure the validity, reliability, and retrievability of the information developed; this is accomplished by a conscientious application of what is generally recognized as good laboratory practice. The second category requires in addition a strong emphasis on design review and inspection. For the third category, a comprehensive quality program is appropriate, following the general guidelines of NQA-1

  12. Nevada Nuclear Waste Storage Investigations: Quality Assurance Plan

    International Nuclear Information System (INIS)

    1980-08-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) were established by DOE/NV to evaluate the geohydrologic setting and underground rock masses of the Nevada Test Site (NTS) and contiguous areas to determine whether a suitable site exists for constructing a repository for isolating highly radioactive solid wastes. Since the results of these evaluations will impact possible risks to public health and safety, a quality assurance program which conforms to the criteria given in the Code of Federal Regulations is needed to control the quality aspects of the work. This Quality Assurance Plan (QAP) describes the general quality assurance program for the overall NNWSI project under which the quality assurance programs of the individual participating organizations and support contractors are to operate. The details of how each of these groups will meet the criteria will differ among participating organizations and support contractors, and those details are given in the QAPP's listed in Appendix A. It is the purpose of this plan to show the commonality of quality assurance programs in effect within the project and to define how each element fits into the entire picture to give total quality assurance coverage for the NNWSI Project

  13. Programs and analytical methods for the U.S. Geological Survey acid-rain quality-assurance project. Water Resources Investigation

    International Nuclear Information System (INIS)

    See, R.B.; Willoughby, T.C.; Brooks, M.H.; Gordon, J.D.

    1990-01-01

    The U.S. Geological Survey operates four programs to provide external quality-assurance of wet deposition monitoring by the National Atmospheric Deposition Program and the National Trends Network. An intersite-comparison program assesses the precision and bias of onsite determinations of pH and specific conductance made by site operators. A blind-audit program is used to assess the effect of routine sample-handling procedures and transportation on the precision and bias of wet-deposition data. An interlaboratory-comparison program is used to assess analytical results from three or more laboratories, which routinely analyze wet-deposition samples from the major North American networks, to determine if comparability exists between laboratory analytical results and to provide estimates of the analytical precision of each laboratory. A collocated-sampler program is used to estimate the precision of wet/dry precipitation sampling throughout the National Atmospheric Deposition Program and the National Trends Network, to assess the variability of diverse spatial arrays, and to evaluate the impact of violations of specific site criteria. The report documents the procedures and analytical methods used in these four quality-assurance programs

  14. [Standardization in laboratory hematology by participating in external quality assurance programs].

    Science.gov (United States)

    Nazor, Aida; Siftar, Zoran; Flegar-Mestrić, Zlata

    2011-09-01

    Since 1985, Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, has been participating in the International External Quality Assessment Scheme for Hematology (IEQAS-H) organized by the World Health Organization (WHO). Owing to very good results, in 1987 the Department received a certificate of participation in this control scheme. Department has been cooperating in the external quality assessment program in laboratory hematology which has been continuously performed in Croatia since 1986 by the Committee for External Quality Assessment Schemes under the auspices of the Croatian Society of Medical Biochemists and School of Pharmacy and Biochemistry, University of Zagreb. Nowadays, 186 medical biochemical laboratories are included in the National External Quality Assessment program, which is performed three times per year. Our Department has participated in the international projects of the European Committee for External Quality Assurance Programs in Laboratory Medicine (EQALM).

  15. QA [Quality Assurance] role in advanced energy activities: Towards an /open quotes/orthodox/close quotes/ Quality Program: Canonizing the traditions at Fermilab

    International Nuclear Information System (INIS)

    Bodnarczuk, M.W.

    1988-02-01

    After a brief description of the goal of Fermi National Accelerator Laboratory (Fermilab) this paper poses and answers three questions related to Quality Assurance (QA) at the Laboratory. First, what is the difference between 'orthodox' and 'unorthodox' QA and is there a place for 'orthodox' QA at a laboratory like Fermilab? Second, are the deeper philosophical and cultural frameworks of high-energy physics acommodating or antagonistic to an 'orthodox' QA Program? Finally, faced with the task of developing an institutional QA program for Fermilab where does one begin? The paper is based on experience with the on-going development and implementation of an institutional QA Program at Fermilab. 10 refs

  16. A quality assurance program for radiotherapy centers in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, G.Y.; Lee, H.K.; Park, K.J.; Oh, H.J.

    2002-01-01

    Recognizing the importance of quality assurance in radiotherapy and the need to make access to radiation standards traceable to the international measurement system to every radiotherapy center, the KFDA, as a national secondary standard dosimetry laboratory (SSDL), has started a quality assurance program from 1999. This program was initiated by tele-survey to all radiotherapy centers regarding general information about their radiotherapists, medical physicists, type of equipment, dosimeters, etc. This provided the KFDA with a data file and led to links between the KFDA and the clinics. In 1999 a national quality assurance program for ensuring dosimetry accuracy has been performed by on-site dosimetry for 4 60 Co γ ray, 47 high-energy photon beams used in 43 centers. During the audits, the procedure followed by the KFDA was to measure the outputs of the LINAC(6 MV) and Co-60 teletherapy units in terms of absorbed dose to water for fixed dose (2 Gy) in water phantom (only one phantom used in this on-site visit). For all the case, the measurements are carried out in a water phantom according to the IAEA recommended code of practice. The distributions of deviations in total audit are given. The results showed deviations varying between -7.11% and 8.38%. KFDA follow up the large deviated radiotherapy centers. The traceability to SSDL is a major factor of deviation between KFDA measurement dose and clinics quoted dose. The correction for air density (temperature and pressure) is a factor that sometimes introduces errors. Most of the clinics do not calibrate their own barometers and sometimes rely on the air pressure that is quoted during measurements by local metrological offices. In one case, the barometer and thermometer of the clinic were deviating from KFDA instruments by about 10 mmHg and 2, respectively even if the temperature was measured in air. In one case, about 4% of output variation with gantry head angle (horizontal vs. vertical). In the past two years the

  17. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    1993-01-01

    Lawrence Berkeley Laboratory's Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department's activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A

  18. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    2006-01-01

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs

  19. Training, Quality Assurance Factors, and Tools Investigation: a Work Report and Suggestions on Software Quality Assurance

    Science.gov (United States)

    Lee, Pen-Nan

    1991-01-01

    Previously, several research tasks have been conducted, some observations were obtained, and several possible suggestions have been contemplated involving software quality assurance engineering at NASA Johnson. These research tasks are briefly described. Also, a brief discussion is given on the role of software quality assurance in software engineering along with some observations and suggestions. A brief discussion on a training program for software quality assurance engineers is provided. A list of assurance factors as well as quality factors are also included. Finally, a process model which can be used for searching and collecting software quality assurance tools is presented.

  20. Project Specific Quality Assurance Plan

    International Nuclear Information System (INIS)

    Pedersen, K.S.

    1995-01-01

    This Quality Assurance Project Plan (QAPP) identifies the Westinghouse Hanford Co. (WHC) Quality Assurance (QA) program requirements for all contractors involved in the planning and execution of the design, construction, testing and inspection of the 200 Area Effluent BAT/AKART Implementation, Project W-291

  1. Opinion of gastroenterologists towards quality assurance in endoscopy.

    Science.gov (United States)

    de Jonge, Vincent; Kuipers, Ernst J; van Leerdam, Monique E

    2011-03-01

    Quality assurance has become an important issue. Many societies are adopting quality assurance programs in order to monitor and improve quality of care. To assess the opinion of gastroenterologists towards quality assurance on the endoscopy department. A survey was sent to all gastroenterologists (n=319) in the Netherlands. It assessed their opinion on a quality assurance program for endoscopy units, including its design, logistics, and content. 200 gastroenterologists (63%) completed the questionnaire. 95% had a positive opinion towards quality assurance and 67% supposed an increase in quality. 28% assumed a negative impact on the time available for patient contact by introducing a quality assurance program and 35% that the capacity would decrease. A negative attitude towards disclosure of results to insurance companies (23%) and media (53%) was reported. Female gastroenterologists were less positive to share the results with other stakeholders (pquality measurements were assessment of complications (97%), standardised reporting (96%), and adequate patient information (95%). Gastroenterologists have a positive attitude towards quality assurance. However, concerns do exist about time investment and disclosure of results to others. Information provision and procedure characteristics were considered the most important aspects of quality assurance. Copyright © 2010 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  2. Quality assurance applied to Radiological Protection Program of CPHR - Centro de Proteccion Y Higiene de las Radiaciones

    International Nuclear Information System (INIS)

    Marrero Garcia, M.; Jova Sed, L.; Domenech Nieves, H.; Hernandez Sainz, A.

    2001-01-01

    The quality assurance in establishment that use ionizing radiation sources, is according to international recommendations of radiation protection programs. This work intends to present the experience of the Centro de Proteccion y Higiene de las Radiaciones (CPHR), in the implementation of requirements of quality in their Radiological Protection Program

  3. Westinghouse Water Reactor Divisions quality assurance plan

    International Nuclear Information System (INIS)

    1977-09-01

    The Quality Assurance Program used by Westinghouse Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements. This program satisfies the NRC Quality Assurance Criteria, 10CFR50 Appendix B, to the extent that these criteria apply to safety related NSSS equipment. Also, it follows the regulatory position provided in NRC regulatory guides and the requirements of ANSI Standard N45.2.12 as identified in this Topical Report

  4. Has quality assurance outlived its usefulness

    International Nuclear Information System (INIS)

    Goldenberg, N.

    1989-01-01

    This paper explores the impact that better management and increased productivity will have on the need for, and role of, quality assurance in the future. The author discusses criticisms of existing quality assurance programs

  5. Quality Assurance Program Plan for Project W-379: Spent Nuclear Fuels Canister Storage Building Projec

    International Nuclear Information System (INIS)

    Duncan, D.W.

    1995-01-01

    This document describes the Quality Assurance Program Plan (QAPP) for the Spent Nuclear Fuels (SNF) Canister Storage Building (CSB) Project. The purpose of this QAPP is to control project activities ensuring achievement of the project mission in a safe, consistent and reliable manner

  6. Organizing safety: conditions for successful information assurance programs.

    Science.gov (United States)

    Collmann, Jeff; Coleman, Johnathan; Sostrom, Kristen; Wright, Willie

    2004-01-01

    Organizations must continuously seek safety. When considering computerized health information systems, "safety" includes protecting the integrity, confidentiality, and availability of information assets such as patient information, key components of the technical information system, and critical personnel. "High Reliability Theory" (HRT) argues that organizations with strong leadership support, continuous training, redundant safety mechanisms, and "cultures of high reliability" can deploy and safely manage complex, risky technologies such as nuclear weapons systems or computerized health information systems. In preparation for the Health Insurance Portability and Accountability Act (HIPAA) of 1996, the Office of the Assistant Secretary of Defense (Health Affairs), the Offices of the Surgeons General of the United States Army, Navy and Air Force, and the Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command sponsored organizational, doctrinal, and technical projects that individually and collectively promote conditions for a "culture of information assurance." These efforts include sponsoring the "P3 Working Group" (P3WG), an interdisciplinary, tri-service taskforce that reviewed all relevant Department of Defense (DoD), Miliary Health System (MHS), Army, Navy and Air Force policies for compliance with the HIPAA medical privacy and data security regulations; supporting development, training, and deployment of OCTAVE(sm), a self-directed information security risk assessment process; and sponsoring development of the Risk Information Management Resource (RIMR), a Web-enabled enterprise portal about health information assurance.

  7. Quality assurance inspections for shipping and storage containers

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, H.M.; Roberts, G.D.; Bryce, J.H. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-04-01

    This is a guide for conducting quality assurance inspections of transportation packaging and dry spent fuel storage system suppliers. (Suppliers are defined as designers, fabricators, distributors, users or owners of those packaging and storage systems.) This guide may be used during inspection to determine regulatory compliance with 10 CFR, Part 71, Subpart H; 10 CFR, Part 72, Subpart G; 10 CFR, Part 21; and supplier`s quality assurance program commitments. It was developed to provide a structured, consistent approach to inspections. The guidance therein provides a framework for evaluation of transportation packaging and dry spent fuel storage systems quality assurance programs. Inspectors are provided with the flexibility to adapt the methods and concepts to meet inspection requirements for the particular facility. The method used in the guide treats each activity at a facility as a separate performance element and combines the activities within the framework of an ``inspection tree.``The method separates each performance element into several areas for inspection and identifies guidelines, based on regulatory requirements, to qualitatively evaluate each area. This guide also serves as a field manual to facilitate quality assurance inspection activities. This guide replaces an earlier one, NUREG/CR-5717 (Packing Supplier Inspection Guide). This replacement guide enhances the inspection activities for transportation packagings and adds the dry spent fuel storage system quality assurance inspection activities.

  8. Quality assurance inspections for shipping and storage containers

    International Nuclear Information System (INIS)

    Stromberg, H.M.; Roberts, G.D.; Bryce, J.H.

    1996-04-01

    This is a guide for conducting quality assurance inspections of transportation packaging and dry spent fuel storage system suppliers. (Suppliers are defined as designers, fabricators, distributors, users or owners of those packaging and storage systems.) This guide may be used during inspection to determine regulatory compliance with 10 CFR, Part 71, Subpart H; 10 CFR, Part 72, Subpart G; 10 CFR, Part 21; and supplier's quality assurance program commitments. It was developed to provide a structured, consistent approach to inspections. The guidance therein provides a framework for evaluation of transportation packaging and dry spent fuel storage systems quality assurance programs. Inspectors are provided with the flexibility to adapt the methods and concepts to meet inspection requirements for the particular facility. The method used in the guide treats each activity at a facility as a separate performance element and combines the activities within the framework of an ''inspection tree.''The method separates each performance element into several areas for inspection and identifies guidelines, based on regulatory requirements, to qualitatively evaluate each area. This guide also serves as a field manual to facilitate quality assurance inspection activities. This guide replaces an earlier one, NUREG/CR-5717 (Packing Supplier Inspection Guide). This replacement guide enhances the inspection activities for transportation packagings and adds the dry spent fuel storage system quality assurance inspection activities

  9. eLearning-radiology.com. Sustainability for quality assurance

    International Nuclear Information System (INIS)

    Ketelsen, D.; Talanow, R.; Uder, M.; Grunewald, M.

    2009-01-01

    Purpose: The aim of the study was to analyze the availability of published radiological e-learning tools and to establish a solution for quality assurance. Materials and Methods: Substantial pubmed research was performed to identify radiological e-learning tools. 181 e-learning programs were selected. As examples two databases expanding their programs with external links, Compare (n = 435 external links) and TNT-Radiology (n = 1078 external links), were evaluated. A concept for quality assurance was developed by an international taskforce. Results: At the time of assessment, 56.4 % (102/181) of the investigated e-learning tools were accessible at their original URL. A subgroup analysis of programs published 5 to 8 years ago showed significantly inferior availability to programs published 3 to 5 years ago (p < 0.01). The analysis of external links showed 49.2 % and 61.0 % accessible links for the programs Compare (published 2003) and TNT-Radiology (published 2006), respectively. As a consequence, the domain www.eLearning-radiology.com was developed by the taskforce and published online. This tool allows authors to present their programs and users to evaluate the e-learning tools depending on several criteria in order to remove inoperable links and to obtain information about the complexity and quality of the e-learning tools. (orig.)

  10. Optimization of radio-therapeutic treatment and the program of quality assurance in ionizing radiation therapy

    International Nuclear Information System (INIS)

    Rosca, A.; Bahnarel, I.; Coretchi, L.

    2015-01-01

    The Program of Quality Assurance (PQA) in Ionizing Radiation Therapy (IRT) addresses the most important problems of assuring the quality of IRT utilization in the treatment of patients with neoplasm. In this context, the IRT value grows considerably, hence the implementation of PQA is of great significance. The study concentrates on a detailed description of the PQA as concerns the activity involving IRT devices applied in the IRT departments (rooms) of public medical/sanitary institutions, science research institutions etc., where IRT is employed using technogenic sources and ionizing radiation generators. For the performing of the study, annual statistics reports about the activity of the IRT, and data of Cancer Registry of the Oncologic Institute of the Republic of Moldova were analyzed. The work also includes an in-depth description of the personnel categories involved in PQA, possible errors in radiotherapy, the responsibilities of the bioengineer in this program, importance of source calibration, the impact of the quality control in PQA, the role of topometric training, the interaction between the medical and technical personnel and the patient. Optimization of IRT is very important and necessary in the Republic of Moldova. PQA incontestably contributes to reducing specialist's errors in planning correct treatment, dictates the need of team work and proper delegation of the responsibilities in co-optation of other professionals, performance of duty of bioengineering, the influence of quality control of profile installations, meaning accurate topographic planning, applying several methods of work, quality assurance program assuming the major importance. (authors)

  11. Quality assurance requirements for packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    Barker, R.F.; MacDonald, C.E.; Doda, R.J.

    1978-01-01

    This paper discusses the new quality assurance regulations of the Nuclear Regulatory Commission (NRC) for packaging and transportation of radioactive materials. These regulations became effective on October 18, 1977. Background information concerning these regulations and packaging and transportation history is included. The quality assurance program is described with indications of how it is composed of general (administrative) provisions which must meet the 18 quality assurance criteria and be approved by the NRC; specific provisions which appear in the DOT and NRC regulations and in the individual package design approval; and other specific procedures which are not required by regulations but which are necessary for the proper control of quality. The quality assurance program is to be developed using a graded approach for the application of pertinent criteria and optimizing the required degree of safety and control efforts involved in achieving this level of safety. The licensee-user is responsible for all phases of quality assurance for packaging activities including: design, manufacture, test, use, maintenance and repair. The package design phase is considered to be particularly important in producing adequate safety in operational activities concerning packaging and transportation of radioactive materials

  12. Examination of fast reactor fuels, FBR analytical quality assurance standards and methods, and analytical methods development: irradiation tests. Progress report, April 1--June 30, 1976, and FY 1976

    International Nuclear Information System (INIS)

    Baker, R.D.

    1976-08-01

    Characterization of unirradiated and irradiated LMFBR fuels by analytical chemistry methods will continue, and additional methods will be modified and mechanized for hot cell application. Macro- and microexaminations will be made on fuel and cladding using the shielded electron microprobe, emission spectrograph, radiochemistry, gamma scanner, mass spectrometers, and other analytical facilities. New capabilities will be developed in gamma scanning, analyses to assess spatial distributions of fuel and fission products, mass spectrometric measurements of burnup and fission gas constituents and other chemical analyses. Microstructural analyses of unirradiated and irradiated materials will continue using optical and electron microscopy and autoradiographic and x-ray techniques. Analytical quality assurance standards tasks are designed to assure the quality of the chemical characterizations necessary to evaluate reactor components relative to specifications. Tasks include: (1) the preparation and distribution of calibration materials and quality control samples for use in quality assurance surveillance programs, (2) the development of and the guidance in the use of quality assurance programs for sampling and analysis, (3) the development of improved methods of analysis, and (4) the preparation of continuously updated analytical method manuals. Reliable analytical methods development for the measurement of burnup, oxygen-to-metal (O/M) ratio, and various gases in irradiated fuels is described

  13. High-Assurance Software: LDRD Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hulette, Geoffrey Compton

    2014-06-01

    This report summarizes our work on methods for developing high-assurance digital systems. We present an approach for understanding and evaluating trust issues in digital systems, and for us- ing computer-checked proofs as a means for realizing this approach. We describe the theoretical background for programming with proofs based on the Curry-Howard correspondence, connect- ing the field of logic and proof theory to programs. We then describe a series of case studies, intended to demonstrate how this approach might be adopted in practice. In particular, our stud- ies elucidate some of the challenges that arise with this style of certified programming, including induction principles, generic programming, termination requirements, and reasoning over infinite state spaces.

  14. Development and oversight of ethical health promotion quality assurance and evaluation activities involving human participants.

    Science.gov (United States)

    Sainsbury, Peter

    2015-12-01

    This paper considers the role of ethics and ethics review processes in the development of health promotion quality assurance and evaluation activities involving human participants. The Australian National Health and Medical Research Council (NHMRC) National Statement on Ethical Conduct in Human Research and associated documents provide the framework for the ethical conduct and independent review of research (including quality assurance and evaluation) involving humans in Australia. Identifying the level of risk to which participants may be exposed by participation in quality assurance and evaluation activities is essential for health promotion workers undertaking such activities. Organisations can establish processes other than review by a Human Research Ethics Committee for negligible and low risk research activities. Health promotion quality assurance and evaluation activities often involve negligible and low risk to participants. Seven triggers that indicate the need for ethics review of quality assurance and evaluation activities and a procedural checklist for developing ethical quality assurance and evaluation activities are provided. Health promotion workers should be familiar with the NHMRC's National Statement on Ethical Conduct in Human Research. When ethical considerations underpin the planning and conduct of all quality assurance and evaluation from the very beginning, the activity is the better for it, independent 'ethics approval' can mostly be secured without much trouble and workers' frustration levels are reduced. So what? Health promotion quality assurance and evaluation activities must be ethically justified. Health promotion workers should be familiar with the NHMRC's National Statement on Ethical Conduct in Human Research and should use it when developing health promotion quality assurance and evaluation activities.

  15. Quality assurance in mammography and the DQM program

    International Nuclear Information System (INIS)

    Rimondi, O.; Giambaccini, M.; Marziani, M.

    1991-01-01

    The aim of the optimization program for mammography (DQM) in Italy is to achieve the best compromise between image quality and dose to patient. 272 centers agreed to the second phase of the program, from February 1987 to January 1990. Exposure, half-value layer (HVL) and focal spot size were measured according to the same methods employed in the first phase of the DQM program (1985), while image quality was evaluated by means of a new performance phantom. The average exposure was 0.96 R (2.48x10 -4 C/Kg); in 173 (64.3%) centers exposure was 5 R (12.9x10 -4 C/Kg). In every center the average whole-breast dose to a reference organ (5cm thick, composed of 50% fat +50% water) was calculated on the basis of entrance exposure, HVL, and focus-skin distance; in 63.2% of the centers doses <0.15 cGy were employed. The results allowed dose and image quality to be correlated in order to divide the centers (using a film-screen system) into groups with a different efficiency level: in 101 centers dose and image quality were good, in 64 centers too high a dose was employed, 66 centers image quality was poor, and in 38 centers dose was too high and image quality was poor. It must be stressed that the DQM program can play its role only if each center carries out its Quality Assurance activity after the methods recommended by the World Health Organization

  16. Quality Assurance "Down Under": Market Access and Product Differentiation

    OpenAIRE

    John D. Lawrence

    2002-01-01

    Australia and New Zealand are major beef producing countries and major beef exporters. Unlike the case in the United States, where less than 10 percent of beef is exported, approximately 60 percent of Australia's and 85 percent of New Zealand's beef production is exported. Because of their dependency on a diverse set of export customers, these two countries are developing quality assurance programs that differentiate their beef in the global market and assure individual customers that the pro...

  17. Manufacturing and quality assurance for the MFTF superconductor core

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Johnston, J.E.; Waide, P.A.; Zeitlin, B.A.; Smith, G.B.; Nelson, C.T.

    1979-01-01

    A total of 55,000 m of multifilamentary Nb-Ti superconductor in minimum lengths of 380 m are required for the Mirror Fusion Test Facility. This conductor is a large cross-section monolith and, as such, has presented several new manufacturing challenges. In addition, a monolith requires more stringent quality assurance procedures than braids or cables. This paper describes the manufacturing steps and the quality assurance program which have been developed for the MFTF superconductor core

  18. Quality assurance of civil works during the construction of the nuclear power plant Unit II Angra dos Reis in Brazil

    International Nuclear Information System (INIS)

    Nellessen, H.G.

    1980-01-01

    The lecture summarizes the structure of the applied Quality Assurance Manual, which is subdivided into three sections: (1) Quality Assurance Program, (2) General Proceedings and (3) Inspection Programs. Since the power plant was designed according to DIN standards but supervision and construction are being performed following ASTM or Brazilian standards, the Quality Assurance Manual and the Quality Assurance organization were developed specifically for the Angra-Site. The applied system is illustrated by practical examples of pile foundations. Quality Assurance supervision and flow charts showing the interaction of the quality control organization. (orig.)

  19. Reducing the risk of failure: Software Quality assurance standards and methods

    International Nuclear Information System (INIS)

    Elphick, J.; Cope, H.

    1992-01-01

    An effective Software Quality Assurance (SQA) program provides an overall approach to software engineering and the establishment of proven methods for the production of reliable software. And, in the authors experience, the overall costs for the software life are diminished with the application of quality methods. In their experience, the issues for implementing quality standards and practices are many. This paper addresses those issues as well as the lessons learned from developing and implementing a number of software quality assurance programs. Their experience includes the development and implementation of their own NRC accepted SQA program and an SQA program for an engineering software developer, as well as developing SQA procedures, standards, and methods for utilities, medical and commercial clients. Some of the issues addressed in this paper are: setting goals and defining quality; applying the software life cycle; addressing organizational issues; providing flexibility and increasing productivity; producing effective documentation; maintaining quality records; Imposing software configuration management; conducting reviews, audits, and controls; verification and validation; and controlling software procurement

  20. GSFC Safety and Mission Assurance Organization

    Science.gov (United States)

    Kelly, Michael P.

    2010-01-01

    This viewgraph presentation reviews NASA Goddard Space Flight Center's approach to safety and mission assurance. The contents include: 1) NASA GSFC Background; 2) Safety and Mission Assurance Directorate; 3) The Role of SMA-D and the Technical Authority; 4) GSFC Mission assurance Requirements; 5) GSFC Systems Review Office (SRO); 6) GSFC Supply Chain Management Program; and 7) GSFC ISO9001/AS9100 Status Brief.

  1. 42 CFR 423.153 - Drug utilization management, quality assurance, and medication therapy management programs (MTMPs).

    Science.gov (United States)

    2010-10-01

    ... PRESCRIPTION DRUG BENEFIT Cost Control and Quality Improvement Requirements § 423.153 Drug utilization... 42 Public Health 3 2010-10-01 2010-10-01 false Drug utilization management, quality assurance, and medication therapy management programs (MTMPs). 423.153 Section 423.153 Public Health CENTERS FOR MEDICARE...

  2. Quality assurance plan, Westinghouse Water Reactor Divisions

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The Quality Assurance Program used by Westinghouse Nuclear Energy Systems Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements.

  3. Summary report of the Department of Energy, Division of Operational and Environmental Safety: Quality Assurance Programs 1 through 4

    International Nuclear Information System (INIS)

    Welford, G.A.; Fisenne, I.M.; Sanderson, C.

    1978-01-01

    Analytical Laboratories which provide environmental monitoring data for assessment of radioactive contamination, under the Department of Energy (DOE) Contract, were requested to participate in a Quality Assurance Program. The Environmental Measurements Laboratory (EML) was asked to prepare intercomparison samples for radionuclide analysis of soil, water, air filters, tissue ash, and vegetation ash for distribution to the Analytical Laboratories. Samples were collected in the environment of DOE facilities, since only water and air samples could be conveniently spiked. A set of 6 to 8 samples is distributed quarterly to about 28 laboratories. EML performed multiple analyses on the samples, however, the results are considered intercomparisons not standards. This report summarizes the program and evaluates the data for Quality Assurance Programs (QAP) from 1 through 4

  4. Financial assurances

    International Nuclear Information System (INIS)

    Paton, R.F.

    1990-01-01

    US Ecology is a full service waste management company. The company operates two of the nation's three existing low-level radioactive waste (LLRW) disposal facilities and has prepared and submitted license applications for two new LLRW disposal facilities in California and Nebraska. The issue of financial assurances is an important aspect of site development and operation. Proper financial assurances help to insure that uninterrupted operation, closure and monitoring of a facility will be maintained throughout the project's life. Unfortunately, this aspect of licensing is not like others where you can gauge acceptance by examining approved computer codes, site performance standards or applying specific technical formulas. There is not a standard financial assurance plan. Each site should develop its requirements based upon the conditions of the site, type of design, existing state or federal controls, and realistic assessments of future financial needs. Financial assurances at U.S. Ecology's existing sites in Richland, Washington, and Beatty, Nevada, have been in place for several years and are accomplished in a variety of ways by the use of corporate guarantees, corporate capital funds, third party liability insurance, and post closure/long-term care funds. In addressing financial assurances, one can divide the issue into three areas: Site development/operations, third party damages, and long-term care/cleanup

  5. 222-S Laboratory Quality Assurance Plan. Revision 1

    International Nuclear Information System (INIS)

    Meznarich, H.K.

    1995-01-01

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document

  6. Quality Assurance Program Plan for the radiological survey activities program --- Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Knott, R.R.; Little, C.A.

    1991-08-01

    The Pollutant Assessments Group (PAG) at the Grand Junction Office (GJO), Colorado, of Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude these sites from UMTRAP based on whether the on-site residual radioactive material (if any) originated from the former mill sites, and radiation levels on-site are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the Quality Assurance Plan (QAP) for the PAG in conducting all activities related to UMTRAP. All quality assurance provisions given by the DOE, DOE/UMTRA and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the PAG/UMTRA QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups. 11 refs., 6 figs., 3 tabs

  7. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  8. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    International Nuclear Information System (INIS)

    Fishler, B.

    2011-01-01

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  9. Quality assurance in the project of RECH-2 research reactor

    International Nuclear Information System (INIS)

    Goycolea Donoso, C.; Nino de Zepeda Schele, A.

    1989-01-01

    The implantation of a Quality Assurance Program for the design, supply, construction, installation, and testing of the RECH-2 research reactor, is described in this paper. The obtained results, demonstrate that a Quality Assurance Program constitutes a suitable mean to assure that the installation complies with the safety and reliability requirements. (author)

  10. A Concept of Operations for an Integrated Vehicle Health Assurance System

    Science.gov (United States)

    Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.

    2013-01-01

    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.

  11. Quality assurance of nuclear energy

    International Nuclear Information System (INIS)

    1994-12-01

    It consists of 14 chapters, which are outline of quality assurance of nuclear energy, standard of quality assurance, business quality assurance, design quality assurance, purchase quality assurance, production quality assurance, a test warranty operation warranty, maintenance warranty, manufacture of nuclear power fuel warranty, computer software warranty, research and development warranty and quality audit.

  12. 2. Product quality control and assurance system

    International Nuclear Information System (INIS)

    1990-01-01

    Product quality control and assurance are dealt with in relation to reliability in nuclear power engineering. The topics treated include product quality control in nuclear power engineering, product quality assurance of nuclear power plant equipment, quality assurance programs, classification of selected nuclear power equipment, and standards relating to quality control and assurance and to nuclear power engineering. Particular attention is paid to Czechoslovak and CMEA standards. (P.A.). 2 figs., 1 tab., 12 refs

  13. 45 CFR 86.4 - Assurance required.

    Science.gov (United States)

    2010-10-01

    ... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Introduction § 86.4 Assurance required. (a) General. Every application for Federal financial assistance for any education... Director of such assurance. (b) Duration of obligation. (1) In the case of Federal financial assistance...

  14. 40 CFR 5.115 - Assurance required.

    Science.gov (United States)

    2010-07-01

    ... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Introduction § 5.115 Assurance... that applications for Federal financial assistance or awards of Federal financial assistance contain... official of such assurance. (b) Duration of obligation. (1) In the case of Federal financial assistance...

  15. 28 CFR 54.115 - Assurance required.

    Science.gov (United States)

    2010-07-01

    ... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Introduction § 54.115 Assurance... that applications for Federal financial assistance or awards of Federal financial assistance contain... official of such assurance. (b) Duration of obligation. (1) In the case of Federal financial assistance...

  16. Implementation of Good Clinical Laboratory Practice (GCLP) guidelines within the External Quality Assurance Program Oversight Laboratory (EQAPOL).

    Science.gov (United States)

    Todd, Christopher A; Sanchez, Ana M; Garcia, Ambrosia; Denny, Thomas N; Sarzotti-Kelsoe, Marcella

    2014-07-01

    The EQAPOL contract was awarded to Duke University to develop and manage global proficiency testing programs for flow cytometry-, ELISpot-, and Luminex bead-based assays (cytokine analytes), as well as create a genetically diverse panel of HIV-1 viral cultures to be made available to National Institutes of Health (NIH) researchers. As a part of this contract, EQAPOL was required to operate under Good Clinical Laboratory Practices (GCLP) that are traditionally used for laboratories conducting endpoint assays for human clinical trials. EQAPOL adapted these guidelines to the management of proficiency testing programs while simultaneously incorporating aspects of ISO/IEC 17043 which are specifically designed for external proficiency management. Over the first two years of the contract, the EQAPOL Oversight Laboratories received training, developed standard operating procedures and quality management practices, implemented strict quality control procedures for equipment, reagents, and documentation, and received audits from the EQAPOL Central Quality Assurance Unit. GCLP programs, such as EQAPOL, strengthen a laboratory's ability to perform critical assays and provide quality assessments of future potential vaccines. © 2013.

  17. The ARPANSA quality assurance program for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Baldas, J.; Ivanov, Z.

    2003-01-01

    Full text: The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) conducts a radiopharmaceutical quality assurance test program in which radiopharmaceuticals used in nuclear medicine in Australia are tested for compliance with specifications. Where the radiopharmaceutical is the subject of a monograph in the British Pharmacopoeia or the European Pharmacopoeia, then the specifications given in these Pharmacopoeias are adopted. Where a monograph is only available in the US Pharmacopoeia, then this specification is generally adopted. In other cases the specifications quoted have been adopted by this Agency. Animal biodistribution testing was discontinued in 1997 due to resource limitation. Samples for testing were obtained through commercial channels. All technetium-99m cold kits were reconstituted according to the directions in the package insert using Sodium Pertechnetate [ 99m Tc] injection. The results of testing conducted by the ARPANSA during 1984-1999 are summarised. A significant cause of failure to meet full specifications has been due to non-compliance of the vial/package labels. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  18. Developing a meaningful QA trend analysis program

    International Nuclear Information System (INIS)

    Sternberg, A.

    1987-01-01

    A trend analysis program is being developed by the nuclear quality assurance (NQA) department at Public Service Electric and Gas Company, adapted from the principles advocated by W. Edwards Deming using statistical process control methods. It deals with identifying performance indicators that monitor the activities of a process considering both inputs and outputs, determining whether the process is stable or unstable, taking actions accordingly, and continuing to monitor the process with the objective of continual improvement of quality

  19. Poster - 09: A MATLAB-based Program for Automated Quality Assurance of a Prostate Brachytherapy Ultrasound System

    Energy Technology Data Exchange (ETDEWEB)

    Poon, Justin; Sabondjian, Eric; Sankreacha, Raxa [University of British Columbia, Dept. of Physics and Astronomy, Vancouver, BC (Canada); Trillium Health Partners – Credit Valley Hospital, Peel Regional Cancer Centre, Mississauga, ON, Trillium Health Partners – Credit Valley Hospital, Peel Regional Cancer Centre, Mississauga, ON, Trillium Health Partners – Credit Valley Hospital, Peel Regional Cancer Centre, Mississauga, ON (Canada); University of Toronto, Dept. of Radiation Oncology, Toronto, ON (Canada)

    2016-08-15

    Purpose: A robust Quality Assurance (QA) program is essential for prostate brachytherapy ultrasound systems due to the importance of imaging accuracy during treatment and planning. Task Group 128 of the American Association of Physicists in Medicine has recommended a set of QA tests covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, and template/electronic grid alignment. Making manual measurements on the ultrasound system can be slow and inaccurate, so a MATLAB program was developed for automation of the described tests. Methods: Test images were acquired using a BK Medical Flex Focus 400 ultrasound scanner and 8848 transducer with the CIRS Brachytherapy QA Phantom – Model 045A. For each test, the program automatically segments the inputted image(s), makes the appropriate measurements, and indicates if the test passed or failed. The program was tested by analyzing two sets of images, where the measurements from the first set were used as baseline values. Results: The program successfully analyzed the images for each test and determined if any action limits were exceeded. All tests passed – the measurements made by the program were consistent and met the requirements outlined by Task Group 128. Conclusions: The MATLAB program we have developed can be used for automated QA of an ultrasound system for prostate brachytherapy. The GUI provides a user-friendly way to analyze images without the need for any manual measurement, potentially removing intra- and inter-user variability for more consistent results.

  20. Poster - 09: A MATLAB-based Program for Automated Quality Assurance of a Prostate Brachytherapy Ultrasound System

    International Nuclear Information System (INIS)

    Poon, Justin; Sabondjian, Eric; Sankreacha, Raxa

    2016-01-01

    Purpose: A robust Quality Assurance (QA) program is essential for prostate brachytherapy ultrasound systems due to the importance of imaging accuracy during treatment and planning. Task Group 128 of the American Association of Physicists in Medicine has recommended a set of QA tests covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, and template/electronic grid alignment. Making manual measurements on the ultrasound system can be slow and inaccurate, so a MATLAB program was developed for automation of the described tests. Methods: Test images were acquired using a BK Medical Flex Focus 400 ultrasound scanner and 8848 transducer with the CIRS Brachytherapy QA Phantom – Model 045A. For each test, the program automatically segments the inputted image(s), makes the appropriate measurements, and indicates if the test passed or failed. The program was tested by analyzing two sets of images, where the measurements from the first set were used as baseline values. Results: The program successfully analyzed the images for each test and determined if any action limits were exceeded. All tests passed – the measurements made by the program were consistent and met the requirements outlined by Task Group 128. Conclusions: The MATLAB program we have developed can be used for automated QA of an ultrasound system for prostate brachytherapy. The GUI provides a user-friendly way to analyze images without the need for any manual measurement, potentially removing intra- and inter-user variability for more consistent results.

  1. Medical aspects of quality assurance in the United States

    International Nuclear Information System (INIS)

    Hanks, G.E.

    1997-01-01

    Three powerful national programs have been developed, and their acceptance and utilization in the United States have been accelerated by the recent development of managed competition. The first program was a model quality assurance program for day to day use in an individual radiation oncology facility. In addition to maintaining the physical aspects of the department, the medical side includes indicator items in patient evaluation and treatment and other measures that are periodically monitored. The entire process is comprehensive and is accepted by the Joint Commission on Hospital Accreditation as being satisfactory evidence of ongoing quality assurance and quality improvement. The second program was the development of a set of standards for radiation oncology in the United States. These standards were developed in the past and have recently been expanded into a more comprehensive document that describes the appropriate performance by this specialty. The third program was a Practice Accreditation program. The Practice Accreditation program is an on-site review of structure and processes of patient care by a radiation oncologist and data manager. This intense on-site review generated data that is then compared to similar facilities and to national averages to judge the adequacy of patient management in the facility. We have observed recently that various managed care programs require this practice accreditation before their patients can be treated in contracting facilities. Lastly, the Council of the American College of Radiology has made some extremely positive statements in support of improving radiation oncology practice, and the positive effects of these council resolutions can be clearly shown on the practice

  2. 22 CFR 146.115 - Assurance required.

    Science.gov (United States)

    2010-04-01

    ... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Introduction § 146.115 Assurance required. (a... applications for Federal financial assistance or awards of Federal financial assistance contain, be accompanied... assurance. (b) Duration of obligation. (1) In the case of Federal financial assistance extended to provide...

  3. 49 CFR 25.115 - Assurance required.

    Science.gov (United States)

    2010-10-01

    ... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Introduction § 25.115 Assurance required. (a... applications for Federal financial assistance or awards of Federal financial assistance contain, be accompanied... assurance. (b) Duration of obligation. (1) In the case of Federal financial assistance extended to provide...

  4. 22 CFR 229.115 - Assurance required.

    Science.gov (United States)

    2010-04-01

    ... PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Introduction § 229.115 Assurance required. (a... applications for Federal financial assistance or awards of Federal financial assistance contain, be accompanied... assurance. (b) Duration of obligation. (1) In the case of Federal financial assistance extended to provide...

  5. 45 CFR 605.5 - Assurances required.

    Science.gov (United States)

    2010-10-01

    ... ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE General Provisions § 605.5 Assurances required. (a) Assurances. Recipients of Federal financial assistance to which... purpose for which Federal financial assistance is extended or for another purpose involving the provision...

  6. Quality assurance for hammer forgings

    International Nuclear Information System (INIS)

    Potthast, E.

    1984-01-01

    The quality assurance program introduced by Arbed Saarstahl and laid down in a quality assurance manual is described. A particular attention is attached thereby both to quality practice proper and to a reliable flow of information amongst all the persons involved. The production and test sequence schedules of the hammer forging plant are illustrated by the example of a forged valve housing for nuclear power plants. These schedules specify not only the forging process in the individual production stages but also the workpiece contour after each working operation, the heat treatment, the furnace charging, and the inspection of finished parts. The formalization of the tests is designed both to promote the customer's trust towards the supplier and to prevent the formal operations involved from hindering further technical development. (orig.) [de

  7. Management services, quality assurance, and safety

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Broad technical and administrative support for the programmatic research and development activities of the Fusion Energy Division is provided by the Management Services Section and by the division's quality assurance (QA) and safety programs. Support is provided through effective communication with division programmatic staff and through the coordination of resources from disciplines outside the division. The QA activity in the division emphasizes the development and documentation of a QA program that conforms to national standards, the review and approval of engineering documents, supplier surveillance, identification and documentation of nonconforming items, audits, and QA assessments/plans. The division's safety activities include a formal safety program, emergency planning activities, and environmental protection services. Efforts devoted to the removal of hazardous wastes from division facilities were expanded during 1986

  8. Developments in amphibian captive breeding and reintroduction programs.

    Science.gov (United States)

    Harding, Gemma; Griffiths, Richard A; Pavajeau, Lissette

    2016-04-01

    Captive breeding and reintroduction remain high profile but controversial conservation interventions. It is important to understand how such programs develop and respond to strategic conservation initiatives. We analyzed the contribution to conservation made by amphibian captive breeding and reintroduction since the launch of the International Union for Conservation of Nature (IUCN) Amphibian Conservation Action Plan (ACAP) in 2007. We assembled data on amphibian captive breeding and reintroduction from a variety of sources including the Amphibian Ark database and the IUCN Red List. We also carried out systematic searches of Web of Science, JSTOR, and Google Scholar for relevant literature. Relative to data collected from 1966 to 2006, the number of species involved in captive breeding and reintroduction projects increased by 57% in the 7 years since release of the ACAP. However, there have been relatively few new reintroductions over this period; most programs have focused on securing captive-assurance populations (i.e., species taken into captivity as a precaution against extinctions in the wild) and conservation-related research. There has been a shift to a broader representation of frogs, salamanders, and caecilians within programs and an increasing emphasis on threatened species. There has been a relative increase of species in programs from Central and South America and the Caribbean, where amphibian biodiversity is high. About half of the programs involve zoos and aquaria with a similar proportion represented in specialist facilities run by governmental or nongovernmental agencies. Despite successful reintroduction often being regarded as the ultimate milestone for such programs, the irreversibility of many current threats to amphibians may make this an impractical goal. Instead, research on captive assurance populations may be needed to develop imaginative solutions to enable amphibians to survive alongside current, emerging, and future threats. © 2015

  9. Quality Assurance Grading Guidelines for Research and Development at DOE Facilities (DOE Order 5700.6C)

    Energy Technology Data Exchange (ETDEWEB)

    Powell, T.B.

    1992-01-01

    The quality assurance (QA) requirements for the U.S. Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPs) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community.

  10. SU-F-T-169: A Periodic Quality Assurance Program for a Spot-Scanning Proton Treatment Facility

    International Nuclear Information System (INIS)

    Mundy, D; Tryggestad, E; Beltran, C; Furutani, K; Gilson, G; Ito, S; Johnson, J; Kruse, J; Remmes, N; Tasson, A; Whitaker, T; Herman, M

    2016-01-01

    Purpose: To develop daily and monthly quality assurance (QA) programs in support of a new spot-scanning proton treatment facility using a combination of commercial and custom equipment and software. Emphasis was placed on efficiency and evaluation of key quality parameters. Methods: The daily QA program was developed to test output, spot size and position, proton beam energy, and image guidance using the Sun Nuclear Corporation rf-DQA™3 device and Atlas QA software. The program utilizes standard Atlas linear accelerator tests repurposed for proton measurements and a custom jig for indexing the device to the treatment couch. The monthly QA program was designed to test mechanical performance, image quality, radiation quality, isocenter coincidence, and safety features. Many of these tests are similar to linear accelerator QA counterparts, but many require customized test design and equipment. Coincidence of imaging, laser marker, mechanical, and radiation isocenters, for instance, is verified using a custom film-based device devised and manufactured at our facility. Proton spot size and position as a function of energy are verified using a custom spot pattern incident on film and analysis software developed in-house. More details concerning the equipment and software developed for monthly QA are included in the supporting document. Thresholds for daily and monthly tests were established via perturbation analysis, early experience, and/or proton system specifications and associated acceptance test results. Results: The periodic QA program described here has been in effect for approximately 9 months and has proven efficient and sensitive to sub-clinical variations in treatment delivery characteristics. Conclusion: Tools and professional guidelines for periodic proton system QA are not as well developed as their photon and electron counterparts. The program described here efficiently evaluates key quality parameters and, while specific to the needs of our facility

  11. SU-F-T-169: A Periodic Quality Assurance Program for a Spot-Scanning Proton Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, D; Tryggestad, E; Beltran, C; Furutani, K; Gilson, G; Ito, S; Johnson, J; Kruse, J; Remmes, N; Tasson, A; Whitaker, T; Herman, M [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To develop daily and monthly quality assurance (QA) programs in support of a new spot-scanning proton treatment facility using a combination of commercial and custom equipment and software. Emphasis was placed on efficiency and evaluation of key quality parameters. Methods: The daily QA program was developed to test output, spot size and position, proton beam energy, and image guidance using the Sun Nuclear Corporation rf-DQA™3 device and Atlas QA software. The program utilizes standard Atlas linear accelerator tests repurposed for proton measurements and a custom jig for indexing the device to the treatment couch. The monthly QA program was designed to test mechanical performance, image quality, radiation quality, isocenter coincidence, and safety features. Many of these tests are similar to linear accelerator QA counterparts, but many require customized test design and equipment. Coincidence of imaging, laser marker, mechanical, and radiation isocenters, for instance, is verified using a custom film-based device devised and manufactured at our facility. Proton spot size and position as a function of energy are verified using a custom spot pattern incident on film and analysis software developed in-house. More details concerning the equipment and software developed for monthly QA are included in the supporting document. Thresholds for daily and monthly tests were established via perturbation analysis, early experience, and/or proton system specifications and associated acceptance test results. Results: The periodic QA program described here has been in effect for approximately 9 months and has proven efficient and sensitive to sub-clinical variations in treatment delivery characteristics. Conclusion: Tools and professional guidelines for periodic proton system QA are not as well developed as their photon and electron counterparts. The program described here efficiently evaluates key quality parameters and, while specific to the needs of our facility

  12. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    International Nuclear Information System (INIS)

    Gone, J.K.; Wang, T.W.

    2000-01-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  13. Quality assurance program for determining the radioactivity in environmental samples at the Institute of Nuclear Energy Research in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Gone, J.K. [TRR-II Project Team, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Wang, T.W. [Division of Health Physics, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China)

    2000-05-01

    Interest in determining radioactivity in environmental samples has increased considerably in recent years after the Chernobyl accident in 1986. Environmental monitoring programs have been set up in different countries to measure the trace amount of radionuclides in the environment, and quality of the analytical results on these samples is important because the regulation and safety concerns. A good quality assurance program is essential to provide accurate information for the regulatory body and environmentalists to set proper reactions to protect the environment, and a good analytical result is also important for scientists to determine the transfer of radionuclides between environmental matrices. The Institute of Nuclear Energy Research (lNER) in Taiwan has been working on radionuclide analysis in environmental samples for years, and it's environmental media radioanalytical laboratory (EMRAL) has recently upgraded its quality assurance program for the international standard ISO/lEC guide 25 requirements. The general requirements of lSO/lEC guide 25 has been adapted by the Chinese National Laboratory Accreditation (CNLA) of Taiwan, and CNLA is also a member of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Laboratory Accreditation Cooperation (APLAC). This paper summarizes the quality assurance program of lNER's EMRAL. It covers both management and technical sections. These sections have ensured the quality of INER's EMRAL, and they can be applied to different laboratories in the future. (author)

  14. Risk assessment in the DOE Assurance Program for Remedial Action

    International Nuclear Information System (INIS)

    Marks, S.; Cross, F.T.; Denham, D.H.; Kennedy, W.E.; Stenner, R.D.

    1985-08-01

    This document provides information obtained during the performance of risk assessment tasks in support of the Assurance Program for Remedial Action (APRA) sponsored by the Office of Operational Safety of the Department of Energy. We have presented a method for the estimation of projected health effects at properties in the vicinity of uranium mill tailing piles due to transported tailings or emissions from the piles. Because radon and radon daughter exposure is identified as the principal factor contributing to health effects at such properties, the basis for estimating lung cancer risk as a result of such exposure is discussed in detail. Modeling of health risk due to a secondary pathway, ingestion of contaminated, home-grown food products, is also discussed since it is a potentially important additional source of exposure in certain geographic locations. Risk assessment methods used in various mill tailings reports are reviewed. The protocols for radiological surveys conducted in DOE-sponsored remedial action programs are critically reviewed with respect to their relevance to the needs of health risk estimation. The relevance of risk assessment to the APRA program is discussed briefly

  15. The study on the quality assurance of performance assessment for the disposal system

    International Nuclear Information System (INIS)

    Fusaeda, Shigeki; Yanagisawa, Ichiro; Katsurai, Kiyomichi; Ueda, Noriaki; Takeishi, Masayuki; Ida, Toshio; Imamura, Naoko

    1999-02-01

    The purpose of performance assessment of the geological disposal system in the second progress report is to quantitatively evaluate the performance in the near-field. For this purpose, validation of performance models and quality assurance of data used in the performance assessment are important technical subjects. To achieve the subjects, the quality of the procedure of analysis work and data acquisition work must be assured in addition to the quality assurance of data, models and analysis codes. In addition, to assure results of the performance assessment by integrating these qualities is an important matter. The following studies have been performed in order to improve the computer environment for controlling the quality information relating to the performance assessment, and to develop the integrated quality assurance system which can give reliability of the results of the performance assessment in the second progress report. (1) The study of quality assurance framework. In order to assure reliability of MESHNOTE3, we have carried out validation analysis based on experimental data and insite data. And we have revised the quality assurance manual in order to be applicable to preparing documents. We have carried out validation analysis/planning based on the experimental data which is acquired from 'Measurement of Apparent Diffusion Coefficient of 99 Tc in Compacted Bentonite with Fe powder', and confirmed validity of MESHNOTE3. We have added a postscript on the management of analysis documents to the quality assurance manual. (2) The development of the quality assurance computer system. In order to improve reliability of the analysis results and to efficiently use the quality assurance program, the quality assurance computer system on the basis of analysis management system CAPASA has been improved as follows. Database for radionuclide transport calculations that can control geometry of engineered barriers, data relating to glass dissolution and dose rate

  16. Design and implementation of a quality assurance program for gamma cameras; Diseno e implementacion de un programa de aseguramiento de calidad para camaras gamma

    Energy Technology Data Exchange (ETDEWEB)

    Montoya M, A.; Rodriguez L, A. [Instituto Nacional de Cancerologia, Departamento de Medicina Nuclear, Av. San Fernando No. 22, Col. Seccion XVI, 14080 Mexico D. F. (Mexico); Trujillo Z, F. E., E-mail: montoya-moreno@hotmail.co [Hospital Regional de Alta Especialidad de Oaxaca, Area de Fisica Medica, Aldama s/n, Paraje El Tule, 71256 San Bartolo Coyotepec, Oaxaca (Mexico)

    2010-09-15

    implementation of a quality assurance program in nuclear medicine allows obtain diagnostic images of excellent quality, the doses optimization imparted to the patients, an exposition decrease to the occupationally exposed personnel, and in general it allows to improve the service productivity. This proposal can be used to develop similar quality assurance programs in other facilities also it can to act like an antecedent for the normative proposal for the quality assurance of equipment s in nuclear medicine. (Author)

  17. Development of a Reliability Program approach to assuring operational nuclear safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques used in other high technology industries is being formulated for potential application in the nuclear power industry. Research findings are discussed. The reliability methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed with several reliability concepts (e.g., quantitative reliability goals, reliability centered maintenance) appearing to be directly transferable. Other tasks in the RP development effort involved the benchmarking and evaluation of the existing nuclear regulations and practices relevant to safety/reliability integration. A review of current risk-dominant issues was also conducted using results from existing probabilistic risk assessment studies. The ongoing RP development tasks have concentrated on defining a RP for the operating phase of a nuclear plant's lifecycle. The RP approach incorporates safety systems risk/reliability analysis and performance monitoring activities with dedicated tasks that integrate these activities with operating, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the RP

  18. Developing Quality Assurance Processes for Image-Guided Adaptive Radiation Therapy

    International Nuclear Information System (INIS)

    Yan Di

    2008-01-01

    Quality assurance has long been implemented in radiation treatment as systematic actions necessary to provide adequate confidence that the radiation oncology service will satisfy the given requirements for quality care. The existing reports from the American Association of Physicists in Medicine Task Groups 40 and 53 have provided highly detailed QA guidelines for conventional radiotherapy and treatment planning. However, advanced treatment processes recently developed with emerging high technology have introduced new QA requirements that have not been addressed previously in the conventional QA program. Therefore, it is necessary to expand the existing QA guidelines to also include new considerations. Image-guided adaptive radiation therapy (IGART) is a closed-loop treatment process that is designed to include the individual treatment information, such as patient-specific anatomic variation and delivered dose assessed during the therapy course in treatment evaluation and planning optimization. Clinical implementation of IGART requires high levels of automation in image acquisition, registration, segmentation, treatment dose construction, and adaptive planning optimization, which brings new challenges to the conventional QA program. In this article, clinical QA procedures for IGART are outlined. The discussion focuses on the dynamic or four-dimensional aspects of the IGART process, avoiding overlap with conventional QA guidelines

  19. Quality assurance for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Marinello, Ginette

    2008-01-01

    The topics discussed include, among others, the following: Quality assurance program; Image guided radiotherapy; Commissioning and quality assurance; Check of agreement between visual and displayed scales; quality controls: electronic portal imaging device (EPID), MV-kV and kV-kV, cone-beam CT (CBCT), patient doses. (P.A.)

  20. U.S. Department of Energy, Carlsbad Area Office quality assurance program document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of TRU waste, and establishing an effective system for management of TRU waste from generation to disposal. To help in fulfilling this mission and to ensure that risks and environmental impacts are identified and minimized, and that safety, reliability, and performance are optimized, CAO`s policy is to establish and maintain an effective quality assurance (QA) program that supports compliance with applicable Federal, State, and local regulations, and DOE orders and requirements. This document establishes QA program requirements for all programs, projects, and activities sponsored by CAO.

  1. Development, implementation and quality assurance of biokinetic models within CONRAD

    International Nuclear Information System (INIS)

    Nosske, D.; Birchall, A.; Blanchardon, E.; Breustedt, B.; Giussani, A.; Luciani, A.; Oeh, U.; Lopez, M. A.

    2008-01-01

    The work of the Task Group 5.2 'Research Studies on Biokinetic Models' of the CONRAD project is presented. New biokinetic models have been implemented by several European institutions. Quality assurance procedures included intercomparison of the results as well as quality assurance of model formulation. Additionally, the use of the models was examined leading to proposals of tuning parameters. Stable isotope studies were evaluated with respect to their implications to the new models, and new biokinetic models were proposed on the basis of their results. Furthermore, the development of a biokinetic model describing the effects of decorporation of actinides by diethylenetriaminepentaacetic acid treatment was initiated. (authors)

  2. Quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, B.M.; Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the quality assurance and quality control practices of Hanford Site environmental monitoring and surveillance programs. Samples are analyzed according to documented standard analytical procedures. This section discusses specific measures taken to ensure quality in project management, sample collection, and analytical results.

  3. Quality assurance

    International Nuclear Information System (INIS)

    Gillespie, B.M.; Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the quality assurance and quality control practices of Hanford Site environmental monitoring and surveillance programs. Samples are analyzed according to documented standard analytical procedures. This section discusses specific measures taken to ensure quality in project management, sample collection, and analytical results

  4. Directory of certificates of compliance for radioactive materials packages. Volume 3, Revision 14: Report of NRC approved quality assurance programs for radioactive materials packages

    International Nuclear Information System (INIS)

    1994-10-01

    This directory contains a Report of NRC Approved Packages (Volume 1), Certificates of Compliance (Volume 2), and a Report of NRC Approved Quality Assurance Programs for Radioactive Materials Packages (Volume 3). The purpose of this directory is to make available a convenient source of information on Quality Assurance Programs and Packagings which have been approved by the US Nuclear Regulatory Commission. Shipments of radioactive material utilizing these packagings must be in accordance with the provisions of 49 CFR section 173.471 and 10 CFR Part 71, as applicable. In satisfying the requirements of Section 71.12, it is the responsibility of the licensees to insure themselves that they have a copy of the current approval and conduct their transportation activities in accordance with an NRC approved quality assurance program

  5. 40 CFR 194.22 - Quality assurance.

    Science.gov (United States)

    2010-07-01

    ... General Requirements § 194.22 Quality assurance. (a)(1) As soon as practicable after April 9, 1996, the Department shall adhere to a quality assurance program that implements the requirements of ASME NQA-1-1989... elicitation used to support applications for certification or re-certification of compliance; (vi) Design of...

  6. The FELIX program of experiments and code development

    International Nuclear Information System (INIS)

    Turner, L.R.

    1983-01-01

    An experimental program and test bed called FELIX (Fusion Electromagnetic Induction Experiment) which is under construction at Argonne National Laboratory is described. The facility includes the following facilities; (a) a sizable constant field, analogous to a tokamak toroidal field or the confining field of a mirror reactor, (b) a pulsed field with a sizable rate of change, analogous to a pulsed poloidal field or to the changing field of a plasma disruption, perpendicular to the constant field, and (c) a sufficiently large volume to assure that large, complex test pieces can be tested, and that the forces, torques, currents, and field distortions which are developed are large enough to be measured accurately. The development of the necessary computer codes and the experimental program are examined. (U.K.)

  7. A process for establishing a financial assurance plan for LLW disposal facilities

    International Nuclear Information System (INIS)

    Smith, P.

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided

  8. A process for establishing a financial assurance plan for LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  9. Assuring Quality Control of Clinical Education in Multiple Clinical Affiliates.

    Science.gov (United States)

    Davis, Judith A.

    A plan was developed to assure equivalency of clinical education among the medical laboratory technician (MLT) programs affiliated with Sandhills Community College. The plan was designed by faculty to monitor the quality of clinical courses offered by the clinical affiliates. The major strategies were to develop competencies, slide/tape modules, a…

  10. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  11. Quality assurance

    International Nuclear Information System (INIS)

    Cante; Feger; Genevray; Hennion; Moneyron; Monneyron; Normand; Rastoin; Silberstein; Vaujour.

    1976-01-01

    The general principles of quality assurance and their applications within the French industrial and commercial regulations are presented. The conditions for the practical application of quality assurance to the different stages of the life of a nuclear power station (design, development, operation) are considered and a special mention is made of nuclear fuels and liquid sodium cooled reactors [fr

  12. Development of an evidence-based approach to external quality assurance for breast cancer hormone receptor immunohistochemistry: comparison of reference values.

    Science.gov (United States)

    Makretsov, Nikita; Gilks, C Blake; Alaghehbandan, Reza; Garratt, John; Quenneville, Louise; Mercer, Joel; Palavdzic, Dragana; Torlakovic, Emina E

    2011-07-01

    External quality assurance and proficiency testing programs for breast cancer predictive biomarkers are based largely on traditional ad hoc design; at present there is no universal consensus on definition of a standard reference value for samples used in external quality assurance programs. To explore reference values for estrogen receptor and progesterone receptor immunohistochemistry in order to develop an evidence-based analytic platform for external quality assurance. There were 31 participating laboratories, 4 of which were previously designated as "expert" laboratories. Each participant tested a tissue microarray slide with 44 breast carcinomas for estrogen receptor and progesterone receptor and submitted it to the Canadian Immunohistochemistry Quality Control Program for analysis. Nuclear staining in 1% or more of the tumor cells was a positive score. Five methods for determining reference values were compared. All reference values showed 100% agreement for estrogen receptor and progesterone receptor scores, when indeterminate results were excluded. Individual laboratory performance (agreement rates, test sensitivity, test specificity, positive predictive value, negative predictive value, and κ value) was very similar for all reference values. Identification of suboptimal performance by all methods was identical for 30 of 31 laboratories. Estrogen receptor assessment of 1 laboratory was discordant: agreement was less than 90% for 3 of 5 reference values and greater than 90% with the use of 2 other reference values. Various reference values provide equivalent laboratory rating. In addition to descriptive feedback, our approach allows calculation of technical test sensitivity and specificity, positive and negative predictive values, agreement rates, and κ values to guide corrective actions.

  13. Handbook of software quality assurance techniques applicable to the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.L.; Wilburn, N.P.

    1987-08-01

    Pacific Northwest Laboratory is conducting a research project to recommend good engineering practices in the application of 10 CFR 50, Appendix B requirements to assure quality in the development and use of computer software for the design and operation of nuclear power plants for NRC and industry. This handbook defines the content of a software quality assurance program by enumerating the techniques applicable. Definitions, descriptions, and references where further information may be obtained are provided for each topic.

  14. Handbook of software quality assurance techniques applicable to the nuclear industry

    International Nuclear Information System (INIS)

    Bryant, J.L.; Wilburn, N.P.

    1987-08-01

    Pacific Northwest Laboratory is conducting a research project to recommend good engineering practices in the application of 10 CFR 50, Appendix B requirements to assure quality in the development and use of computer software for the design and operation of nuclear power plants for NRC and industry. This handbook defines the content of a software quality assurance program by enumerating the techniques applicable. Definitions, descriptions, and references where further information may be obtained are provided for each topic

  15. Development and implementation of an analytical quality assurance plan at the Hanford site

    International Nuclear Information System (INIS)

    Kuhl-Klinger, K.J.; Taylor, C.D.; Kawabata, K.K.

    1995-08-01

    The Hanford Analytical Services Quality Assurance Plan (HASQAP) provides a uniform standard for onsite and offsite laboratories performing analytical work in support of Hanford Site environmental cleanup initiatives. The Hanford Site is a nuclear site that originated during World War 11 and has a legacy of environmental clean up issues. In early 1993, the need for and feasibility of developing a quality assurance plan to direct all analytical activities performed to support environmental cleanup initiatives set forth in the Hanford Federal Facility Agreement and Consent Order were discussed. Several group discussions were held and from them came the HASQAP. This document will become the quality assurance guidance document in a Federal Facility Agreement and Consent Order. This paper presents the mechanics involved in developing a quality assurance plan for this scope of activity, including the approach taken to resolve the variability of quality control requirements driven by numerous regulations. It further describes the consensus building process and how the goal of uniting onsite and offsite laboratories as well as inorganic, organic, and radioanalytic disciplines under a common understanding of basic quality control concepts was achieved

  16. TU-F-CAMPUS-I-05: Semi-Automated, Open Source MRI Quality Assurance and Quality Control Program for Multi-Unit Institution

    International Nuclear Information System (INIS)

    Yung, J; Stefan, W; Reeve, D; Stafford, RJ

    2015-01-01

    Purpose: Phantom measurements allow for the performance of magnetic resonance (MR) systems to be evaluated. Association of Physicists in Medicine (AAPM) Report No. 100 Acceptance Testing and Quality Assurance Procedures for MR Imaging Facilities, American College of Radiology (ACR) MR Accreditation Program MR phantom testing, and ACR MRI quality control (QC) program documents help to outline specific tests for establishing system performance baselines as well as system stability over time. Analyzing and processing tests from multiple systems can be time-consuming for medical physicists. Besides determining whether tests are within predetermined limits or criteria, monitoring longitudinal trends can also help prevent costly downtime of systems during clinical operation. In this work, a semi-automated QC program was developed to analyze and record measurements in a database that allowed for easy access to historical data. Methods: Image analysis was performed on 27 different MR systems of 1.5T and 3.0T field strengths from GE and Siemens manufacturers. Recommended measurements involved the ACR MRI Accreditation Phantom, spherical homogenous phantoms, and a phantom with an uniform hole pattern. Measurements assessed geometric accuracy and linearity, position accuracy, image uniformity, signal, noise, ghosting, transmit gain, center frequency, and magnetic field drift. The program was designed with open source tools, employing Linux, Apache, MySQL database and Python programming language for the front and backend. Results: Processing time for each image is <2 seconds. Figures are produced to show regions of interests (ROIs) for analysis. Historical data can be reviewed to compare previous year data and to inspect for trends. Conclusion: A MRI quality assurance and QC program is necessary for maintaining high quality, ACR MRI Accredited MR programs. A reviewable database of phantom measurements assists medical physicists with processing and monitoring of large datasets

  17. TU-F-CAMPUS-I-05: Semi-Automated, Open Source MRI Quality Assurance and Quality Control Program for Multi-Unit Institution

    Energy Technology Data Exchange (ETDEWEB)

    Yung, J; Stefan, W; Reeve, D; Stafford, RJ [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Phantom measurements allow for the performance of magnetic resonance (MR) systems to be evaluated. Association of Physicists in Medicine (AAPM) Report No. 100 Acceptance Testing and Quality Assurance Procedures for MR Imaging Facilities, American College of Radiology (ACR) MR Accreditation Program MR phantom testing, and ACR MRI quality control (QC) program documents help to outline specific tests for establishing system performance baselines as well as system stability over time. Analyzing and processing tests from multiple systems can be time-consuming for medical physicists. Besides determining whether tests are within predetermined limits or criteria, monitoring longitudinal trends can also help prevent costly downtime of systems during clinical operation. In this work, a semi-automated QC program was developed to analyze and record measurements in a database that allowed for easy access to historical data. Methods: Image analysis was performed on 27 different MR systems of 1.5T and 3.0T field strengths from GE and Siemens manufacturers. Recommended measurements involved the ACR MRI Accreditation Phantom, spherical homogenous phantoms, and a phantom with an uniform hole pattern. Measurements assessed geometric accuracy and linearity, position accuracy, image uniformity, signal, noise, ghosting, transmit gain, center frequency, and magnetic field drift. The program was designed with open source tools, employing Linux, Apache, MySQL database and Python programming language for the front and backend. Results: Processing time for each image is <2 seconds. Figures are produced to show regions of interests (ROIs) for analysis. Historical data can be reviewed to compare previous year data and to inspect for trends. Conclusion: A MRI quality assurance and QC program is necessary for maintaining high quality, ACR MRI Accredited MR programs. A reviewable database of phantom measurements assists medical physicists with processing and monitoring of large datasets

  18. 7 CFR 90.102 - Quality assurance review.

    Science.gov (United States)

    2010-01-01

    ... procedures; (3) A review of records for the calibration and maintenance of equipment; (4) A review of records..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS INTRODUCTION Quality Assurance § 90.102 Quality assurance review. (a) Each laboratory performing tests and...

  19. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    Science.gov (United States)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IV&V) Program, with Software Assurance Research Program support, extracted FM architectures across the IV&V portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IV&V projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management. The identification of particular FM architectures, visibility, and associated IV&V techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. Additionally, the role FM has with regard to strengthened security requirements, with potential to advance overall asset protection of flight software systems, is being addressed with the development of an adverse conditions database encompassing flight software vulnerabilities. Capitalizing on the established framework, this TR suite provides assurance capability for a variety of FM architectures and varied development approaches. Research results are being disseminated across NASA, other agencies, and the

  20. Clinical pharmacology quality assurance program: models for longitudinal analysis of antiretroviral proficiency testing for international laboratories.

    Science.gov (United States)

    DiFrancesco, Robin; Rosenkranz, Susan L; Taylor, Charlene R; Pande, Poonam G; Siminski, Suzanne M; Jenny, Richard W; Morse, Gene D

    2013-10-01

    Among National Institutes of Health HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals. Drug assay data are, in turn, entered into study-specific data sets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis, and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semiannual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1) assess the precision and accuracy of concentrations reported by individual CPLs and (2) determine factors associated with round-specific and long-term assay accuracy, precision, and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21) drug concentration results reported for clinical trial samples by multiple CPLs). Using the Clinical Laboratory Improvement Act acceptance of meeting criteria for ≥2/3 consecutive rounds, all 10 laboratories that participated in 3 or more rounds per analyte maintained Clinical Laboratory Improvement Act proficiency. Significant associations were present between magnitude of error and CPL (Kruskal-Wallis P Kruskal-Wallis P < 0.001).

  1. Solid, low-level radioactive waste certification program

    International Nuclear Information System (INIS)

    Grams, W.H.

    1991-11-01

    The Hanford Site solid waste treatment, storage, and disposal facilities accept solid, low-level radioactive waste from onsite and offsite generators. This manual defines the certification program that is used to provide assurance that the waste meets the Hanford Site waste acceptance criteria. Specifically, this program defines the participation and responsibilities of Westinghouse Hanford Company Solid Waste Engineering Support, Westinghouse Hanford Company Quality Assurance, and both onsite and offsite waste generators. It is intended that waste generators use this document to develop certification plans and quality assurance program plans. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved in providing assurance that generators have implemented a waste certification program. This assurance involves review and approval of generator certification plans, and review of generator's quality assurance program plans to ensure that they address all applicable requirements. The document also details the Westinghouse Hanford Company Waste Management Audit and Surveillance Program. 5 refs

  2. Quality assurance for packaging of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Gustafson, L.D.

    1986-01-01

    The Department of Energy (DOE) has required for many years that quality assurance programs be established and implemented for the packaging of radioactive and hazardous materials. This paper identifies various requirement principles and related actions involved in establishing effective quality assurance for packaging of radioactive and hazardous materials. A primary purpose of these quality assurance program activities is to provide assurance that the packaging and transportation of hazardous materials, which includes radioactive and fissile materials, are in conformance with appropriate governmental regulations. Applicable regulations include those issued by the Nuclear Regulatory Commission (NRC), the Department of Transportation (DOT), and the Environmental Protection Agency (EPA). DOE Order 5700.6A establishes that quality assurance requirements are to be applied in accordance with national consensus standards where suitable ones are available. In the nuclear area, ANSI/ASME NQA-1 is the preferred standard

  3. Assurance of Learning and Study Abroad: A Case Study

    Science.gov (United States)

    Rexeisen, Richard J.; Al-Khatib, Jamal

    2009-01-01

    Most academic programs are now held accountable for measuring student-learning outcomes. This article reports the results of an assurance of learning (AOL) project designed to measure the impact of study abroad on the development of ethical reasoning, intercultural sensitivity, and environmental attitudes. The Association to Advance Collegiate…

  4. Online self-assessment as a quality assurance tool in higher professional education

    NARCIS (Netherlands)

    Prof. Rene Butter

    2014-01-01

    Theme: Quality Assurance in Higher Education An online tool was developed for (potential) students to assess the congruence between the characteristics of an educational program and student preferences (Butter & Van Raalten, 2010)

  5. Quality assurance grading guidelines for research and development at DOE facilities. DOE Order 5700.6C

    Energy Technology Data Exchange (ETDEWEB)

    Powell, T.B.; Morris, R.N.

    1992-10-01

    The quality assurance (QA) requirements for the US Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPS) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community. This report discusses order 5700.6C in relation to research with DOE.

  6. Independent oversight review of the Department of Energy Quality Assurance Program for suspect/counterfeit parts. Revision 1

    International Nuclear Information System (INIS)

    1996-05-01

    To address the potential threat that suspect/counterfeit parts could pose to DOE workers and the public, the Office of the Deputy Assistant Secretary for Oversight initiated a number of activities beginning in mid-1995. Oversight placed increased emphasis on the field's quality assurance-suspect/counterfeit parts programs during safety management evaluations, in keeping with the Office of Environment, Safety and Health (EH) oversight responsibilities, which include oversight of the Department's quality assurance (QA) programs. In addition, Oversight reviewed relevant policy documents and occurrence reports to determine the nature and magnitude of the problem within the Department. The results of that review, contained in an Office of Oversight report, Independent Oversight Analysis of Suspect/Counterfeit Parts Within the Department of Energy (November 1995), indicate a lack of consistency and comprehensiveness in the Department's QA-suspect/counterfeit parts program. A detailed analysis of the causes and impacts of the problem was recommended. In response, this review was initiated to determine the effectiveness of the Department's QA program for suspect/counterfeit parts. This study goes beyond merely assessing and reporting the status of the program, however. It is the authors intention to highlight the complex issues associated with suspect/counterfeit parts in the Department today and to present approaches that DOE managers might consider to address these issues

  7. Independent oversight review of the Department of Energy Quality Assurance Program for suspect/counterfeit parts. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    To address the potential threat that suspect/counterfeit parts could pose to DOE workers and the public, the Office of the Deputy Assistant Secretary for Oversight initiated a number of activities beginning in mid-1995. Oversight placed increased emphasis on the field`s quality assurance-suspect/counterfeit parts programs during safety management evaluations, in keeping with the Office of Environment, Safety and Health (EH) oversight responsibilities, which include oversight of the Department`s quality assurance (QA) programs. In addition, Oversight reviewed relevant policy documents and occurrence reports to determine the nature and magnitude of the problem within the Department. The results of that review, contained in an Office of Oversight report, Independent Oversight Analysis of Suspect/Counterfeit Parts Within the Department of Energy (November 1995), indicate a lack of consistency and comprehensiveness in the Department`s QA-suspect/counterfeit parts program. A detailed analysis of the causes and impacts of the problem was recommended. In response, this review was initiated to determine the effectiveness of the Department`s QA program for suspect/counterfeit parts. This study goes beyond merely assessing and reporting the status of the program, however. It is the authors intention to highlight the complex issues associated with suspect/counterfeit parts in the Department today and to present approaches that DOE managers might consider to address these issues.

  8. A quality assurance program for the on-board imager[reg

    International Nuclear Information System (INIS)

    Yoo, Sua; Kim, Gwe-Ya; Hammoud, Rabih

    2006-01-01

    To develop a quality assurance (QA) program for the On-Board Imager (OBI) system and to summarize the results of these QA tests over extended periods from multiple institutions. Both the radiographic and cone-beam computed tomography (CBCT) mode of operation have been evaluated. The QA programs from four institutions have been combined to generate a series of tests for evaluating the performance of the On-Board Imager. The combined QA program consists of three parts: (1) safety and functionality (2) geometry, and (3) image quality. Safety and functionality tests evaluate the functionality of safety features and the clinical operation of the entire system during the tube warm-up. Geometry QA verifies the geometric accuracy and stability of the OBI/CBCT hardware/software. Image quality QA monitors spatial resolution and contrast sensitivity of the radiographic images. Image quality QA for CBCT includes tests for Hounsfield Unit (HU) linearity, HU uniformity, spatial linearity, and scan slice geometry, in addition. All safety and functionality tests passed on a daily basis. The average accuracy of the OBI isocenter was better than 1.5 mm with a range of variation of less than 1 mm over 8 months. The average accuracy of arm positions in the mechanical geometry QA was better than 1 mm, with a range of variation of less than 1 mm over 8 months. Measurements of other geometry QA tests showed stable results within tolerance throughout the test periods. Radiographic contrast sensitivity ranged between 2.2% and 3.2% and spatial resolution ranged between 1.25 and 1.6 lp/mm. Over four months the CBCT images showed stable spatial linearity, scan slice geometry, contrast resolution (1%; 6 lp/cm). The HU linearity was within ±40 HU for all measurements. By combining test methods from multiple institutions, we have developed a comprehensive, yet practical, set of QA tests for the OBI system. Use of the tests over extended periods show that the OBI system has reliable mechanical

  9. Hyperthermia quality assurance

    International Nuclear Information System (INIS)

    Shrivastava, P.N.; Paliwal, B.R.

    1984-01-01

    Hyperthermia Physics Center (HPC) operating under contract with the National Cancer Institute is developing a Quality Assurance program for local and regional hyperthermia. The major clinical problem in hyperthermia treatments is that they are extremely difficult to plan, execute, monitor and reproduce. A scientific basis for treatment planning can be established only after ensuring that the performance of heat generating and temperature monitoring systems are reliable. The HPC is presently concentrating on providing uniform NBS traceable calibration of thermometers and evaluation of reproducibility for power generator operation, applicator performance, phanta compositions, system calibrations and personnel shielding. The organizational plan together with recommended evaluation measurements, procedures and criteria are presented

  10. 41 CFR 101-4.115 - Assurance required.

    Science.gov (United States)

    2010-07-01

    ... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Introduction § 101-4.115 Assurance... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Assurance required. 101-4.115 Section 101-4.115 Public Contracts and Property Management Federal Property Management Regulations...

  11. Quality assurance for health and environmental chemistry: 1986

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Moss, W.D.; Phillips, M.B.; O'Malley, B.T.

    1987-11-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group at the Los Alamos National Laboratory. The philosophy, methodology, and computing resources used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1986. 27 refs., 3 figs

  12. Developing Quality Assurance Culture for Sustainable University Education in Nigeria

    Science.gov (United States)

    Ibara, Emmanuel Chisa

    2015-01-01

    The relevance of any university education depends on quality parameters that should be specified, adhered to and sustained. The development of quality assurance culture in Nigerian university education is imperative, considering the fact that globalization, mobility of labour, competition and the quest for best practices have subjected…

  13. Quality Assurance for Higher Education Franchising.

    Science.gov (United States)

    Yorke, Mantz

    1993-01-01

    The practice of "franchising" higher education programs, or provision of educational programs through vendors, is examined as it occurs in the United Kingdom as a result of recent educational policy changes. A set of principles for assuring the quality of such programs is proposed. (MSE)

  14. Quality assurance during site construction

    International Nuclear Information System (INIS)

    Dommke, J.; Jurgutat, H.

    1980-01-01

    During the time of planing and construction of a nuclear power plant, the following proceeding is approved: - the deliverer of a nuclear power plant provides the reports fixing the quality assurance program, it means that he is responsible to write the safety analysis report, the specifications for the erection of the components, the working manuals and specifications for testing (eg nondestr. testing) - the manufacturing of components or systems will be controlled by an own independent quality assurance group, provided that this group was checked by the quality assurance group of the applicant - the TUeV with its independent assessors will fix the requirements relating to quality assurance in its assessment. On this basis the examination of the applicants specifications, working manuals, testing specifications will be done. The efficiency of quality assurance at the manufacturer and at the applicant will be checked by the TUeV specialists by considering specifications of modifications, repairs or tolerances. A mean point of the quality assurance in Germany is the dynamic adjustment, of an action on the latest state of engineering or science. If there exists a change of rules or guidelines, the quality assurance requirements have to be fit on this state in so far as it is feasible from the technical point of view. (orig./RW)

  15. Efficient quality assurance programs in radiology and nuclear medicine in Oestergoetland (Sweden)

    International Nuclear Information System (INIS)

    Sandborg, M.; Althen, J. N.; Gustafsson, A.

    2010-01-01

    Owners of imaging modalities using ionising radiation should have a documented quality assurance (QA) program, as well as methods to justify new radiological procedures to ensure safe operation and adequate clinical image quality. This includes having a system for correcting divergences, written imaging protocols, assessment of patient and staff absorbed doses and a documented education and training program. In this work, how some aspects on QA have been implemented in the County of Oestergoetland in Sweden, and efforts to standardise and automate the process as an integrated part of the radiology and nuclear medicine QA programs were reviewed. Some key performance parameters have been identified by a Swedish task group of medical physicists to give guidance on selecting relevant QA methods. These include low-contrast resolution, image homogeneity, automatic exposure control, calibration of air kerma-area product metres and patient-dose data registration in the radiological information system, as well as the quality of reading stations and of the transfer of images to the picture archive and communication system. IT-driven methods to automatically assess patient doses and other data on all examinations are being developed and evaluated as well as routines to assess clinical image quality by use of European quality criteria. By assessing both patient absorbed doses and clinical image quality on a routine basis, the medical physicists in our region aim to be able to spend more time on imaging optimisation and less time on periodic testing of the technical performance of the equipment, particularly on aspects that show very few divergences. The role of the Medical Physics Expert is rapidly developing towards a person doing advanced data-analysis and giving scientific support rather than one performing mainly routine periodic measurements. It is concluded that both the European Council directive and the rapid development towards more complex diagnostic imaging systems

  16. Improving safety of personnel exposed to disinfectants by introducing an Endoscopy Quality Assurance Program

    OpenAIRE

    Ahmed Gado; Basel Ebeid; Aida Abdelmohsen; Anthony Axon

    2014-01-01

    Background: Chemical disinfection is the most commonly used method in gastrointestinal endoscopy reprocessing. The main problem with chemical disinfection is that it is potentially harmful to humans. Risk assessment of employees using toxic substances is recommended and the control of exposure to these substances is required. In 2003, an endoscopy quality-assurance program was instituted in a secondary care governmental hospital in Egypt. Aim: The aim of the study was to assess the risk to...

  17. [Laparoscopic "fast-track" sigmoidectomy for diverticulitis disease in Germany. Results of a prospective quality assurance program].

    Science.gov (United States)

    Tsilimparis, N; Haase, O; Wendling, P; Kipfmüller, K; Schmid, M; Engemann, R; Schwenk, W

    2010-09-01

    The natural course of sigmoid colon diverticulitis during conservative therapy and the assessment of the perioperative morbidity after sigmoid colon resection are differently evaluated by surgeons and gastroenterologists. The "fast-track" rehabilitation accelerates the reconvalescence and reduces the rate of postoperative general complications after colorectal surgery. The results of the laparoscopic "Fast-track" sigmoidectomy should be examined within a quality assurance program to better evaluate the perioperative risks following surgical management of diverticulitis. A prospective data collection within the voluntary quality assurance program "fast-track" Kolon II was performed. All participating clinics agreed on a multimodal, evidence-based standard perioperative treatment in terms of a "fast-track" rehabilitation for elective operations for sigmoid diverticulitis. Data from 846 patients undergoing laparoscopic "fast-track" sigmoid colon resection in 23 surgical departments in Germany were collected and evaluated. The mean age of the patients was 63 years (range 23 - 91). 203 patients (24 %) had severe co-morbidities (ASA classification III - IV). A conversion to conventional open surgery was necessary in 51 cases (6 %). Complications occurred in 93 patients (11 %). 76 patients suffered a surgical complication (8.9 %) and 32 patients (3.8 %) a general complication. Two patients died postoperatively due to multi-organ failure following anastomotic leaks. The patients took solid food in median on day 1 after surgery (range, 0 - 5) and passed stool on day 2 (range, 0 - 22). Predefined discharge criteria (free of pain on oral medication, normal oral feeding, stool) were met on day 4 (range, 1 - 58) and the patients were discharged on day 7 (range, 3 - 72). The 30-day re-admission rate was 3.9 %. Patients undergoing laparoscopic "fast-track" sigmoidectomy had a low rate of general complications and had a rapid reconvalescence with a short postoperative in

  18. Quality assurance procedures for the IAEA Department of Safeguards Twin Minolta Camera Surveillance System

    International Nuclear Information System (INIS)

    Geoffrion, R.R.; Bussolini, P.L.; Stark, W.A.; Ahlquist, A.J.; Sanders, K.E.; Rubinstein, G.

    1986-01-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations are complying with nuclear safeguards treaties. In one aspect of the program, the Department of Safeguards has developed a twin Minolta camera photo surveillance systems program to assure itself and the international community that material handling is accomplished according to safeguards treaty regulations. The camera systems are positioned in strategic locations in facilities such that objective evidence can be obtained for material transactions. The films are then processed, reviewed, and used to substantiate the conclusions that nuclear material has not been diverted. Procedures have been developed to document and aid in: 1) the performance of activities involved in positioning of the camera system; 2) installation of the systems; 3) review and use of the film taken from the cameras

  19. Development and operation of a quality assurance system for deviations from standard operating procedures in a clinical cell therapy laboratory.

    Science.gov (United States)

    McKenna, D; Kadidlo, D; Sumstad, D; McCullough, J

    2003-01-01

    Errors and accidents, or deviations from standard operating procedures, other policy, or regulations must be documented and reviewed, with corrective actions taken to assure quality performance in a cellular therapy laboratory. Though expectations and guidance for deviation management exist, a description of the framework for the development of such a program is lacking in the literature. Here we describe our deviation management program, which uses a Microsoft Access database and Microsoft Excel to analyze deviations and notable events, facilitating quality assurance (QA) functions and ongoing process improvement. Data is stored in a Microsoft Access database with an assignment to one of six deviation type categories. Deviation events are evaluated for potential impact on patient and product, and impact scores for each are determined using a 0- 4 grading scale. An immediate investigation occurs, and corrective actions are taken to prevent future similar events from taking place. Additionally, deviation data is collectively analyzed on a quarterly basis using Microsoft Excel, to identify recurring events or developing trends. Between January 1, 2001 and December 31, 2001 over 2500 products were processed at our laboratory. During this time period, 335 deviations and notable events occurred, affecting 385 products and/or patients. Deviations within the 'technical error' category were most common (37%). Thirteen percent of deviations had a patient and/or a product impact score > or = 2, a score indicating, at a minimum, potentially affected patient outcome or moderate effect upon product quality. Real-time analysis and quarterly review of deviations using our deviation management program allows for identification and correction of deviations. Monitoring of deviation trends allows for process improvement and overall successful functioning of the QA program in the cell therapy laboratory. Our deviation management program could serve as a model for other laboratories in

  20. The Jefferson Lab Quality Assurance Program for the SNS Superconducting Linac Construction Project

    International Nuclear Information System (INIS)

    Joseph Ozelis

    2003-01-01

    As part of a multi-laboratory collaboration, Jefferson Lab is currently engaged in the fabrication, assembly, and testing of 23 cryomodules for the superconducting linac portion of the Spallation Neutron Source (SNS) being built at Oak Ridge National Laboratory. As with any large accelerator construction project, it is vitally important that these components be built in a cost effective and timely manner, and that they meet the stringent performance requirements dictated by the project specifications. A comprehensive Quality Assurance (QA) program designed to help accomplish these goals has been implemented as an inherent component of JLab's SNS construction effort. This QA program encompasses the traditional spectrum of component performance, from incoming parts inspection, raw materials testing, through to sub-assembly and finished article performance evaluation

  1. Developing cross-sectoral quality assurance for cataract surgery in the statutory quality assurance program of the German health care system: Experiences and lessons learned.

    Science.gov (United States)

    Bramesfeld, Anke; Pauletzki, Jürgen; Behrenz, Lars; Szecsenyi, Joachim; Willms, Gerald; Broge, Björn

    2015-08-01

    Since 2001, statutory external quality assurance (QA) for hospital care has been in place in the German health system. In 2009, the decision was taken to expand it to cross-sectoral procedures. This novel and unprecedented form of national QA aims at (1) making the quality procedures comparable that are provided both in inpatient and outpatient care, (2) following-up outcomes of hospital care after patients' discharge and (3) measuring the quality of complex treatment chains across interfaces. As a pioneer procedure a QA procedure in cataract surgery QA was developed. Using this as an example, challenges of cross-sectoral QA are highlighted. These challenges relate, in particular, to three technical problems: triggering cases for documentation, following-up patients' after hospital discharge, and the burden of documentation in outpatient care. These problems resulted finally in the haltering of the development of the QA procedure. However, the experiences gained with this first development of cross-sectoral QA inspired the reorientation and further development of the field in Germany. Future cross-sectoral QA will rigorously aim at keeping burden of documentation small. It will draw data for QA mainly at three sources: routine data, patient surveys and peer reviews using indicators. Policy implications of this reorientation are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Quality assurance in Hanford site defense waste operations

    International Nuclear Information System (INIS)

    Wojtasek, R.D.

    1989-01-01

    This paper discusses quality assurance as an integral part of conducting waste management operations. The storage, treatment, and disposal of radioactive and non- radioactive hazardous wastes at Hanford are described. The author reports that quality assurance programs provide confidence that storage, treatment, and disposal facilities and systems perform as intended. Examples of how quality assurance is applied to Hanford defense waste operations are presented

  3. Benchmarks and Quality Assurance for Online Course Development in Higher Education

    Science.gov (United States)

    Wang, Hong

    2008-01-01

    As online education has entered the main stream of the U.S. higher education, quality assurance in online course development has become a critical topic in distance education. This short article summarizes the major benchmarks related to online course development, listing and comparing the benchmarks of the National Education Association (NEA),…

  4. Transuranic Waste Characterization Quality Assurance Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-30

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  5. Transuranic Waste Characterization Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    1995-01-01

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes

  6. [Topic identification for cross-sectoral quality assurance in stroke and TIA treatment].

    Science.gov (United States)

    Meyer, Sven; Willms, Gerald; Broge, Björn; Szecsenyi, Joachim

    2016-10-01

    The development of cross-sectoral quality assurance programs usually requires extensive topic identification. Illustrated by the complex processes of care for stroke and transient ischemic attacks (TIAs), a method for comprehensive topic identification is presented. The first step involves a thorough literature search in terms of systematic reviews, health technology assessments, guidelines, studies into healthcare delivery and the use of specific instruments. Routine data as well as epidemiologic studies are used to analyze the reality of service provision. In addition, experts are consulted to gain expertise concerning deficits of care, approaches to quality assurance and experience with existing quality assurance programs. Furthermore individual patient experiences are collected to add the patients' perceptions of care. Because of the limitation on the regulatory scope of Book V of the German Social Code, which, in this case, was necessary, another source of information was the legal framework and its impact on rescue chain, acute treatment and rehabilitation. Existent quality management systems, accreditations and quality assurance programs in prevention, acute treatment and rehabilitation have been searched in order to avoid any overlap with existing measures. After identifying a total of 71 quality targets according to deficits of care, recommendations for care and expert opinions in primary and secondary prevention, rescue chain, acute treatment, rehabilitation and supply of assistive equipment and therapies, respectively, the usability of instruments was tested. These instruments included case documentation, patient surveys and routine data. 14 quality targets proved to be reproducible by these instruments and were included in the recommendations for a cross-sectoral quality assurance program for stroke and TIA. Copyright © 2016. Published by Elsevier GmbH.

  7. TU-FG-201-12: Designing a Risk-Based Quality Assurance Program for a Newly Implemented Y-90 Microspheres Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Vile, D; Zhang, L; Cuttino, L; Kim, S; Palta, J [Virginia Commonwealth University, Richmond, VA (United States)

    2016-06-15

    Purpose: To create a quality assurance program based upon a risk-based assessment of a newly implemented SirSpheres Y-90 procedure. Methods: A process map was created for a newly implemented SirSpheres procedure at a community hospital. The process map documented each step of this collaborative procedure, as well as the roles and responsibilities of each member. From the process map, different potential failure modes were determined as well as any current controls in place. From this list, a full failure mode and effects analysis (FMEA) was performed by grading each failure mode’s likelihood of occurrence, likelihood of detection, and potential severity. These numbers were then multiplied to compute the risk priority number (RPN) for each potential failure mode. Failure modes were then ranked based on their RPN. Additional controls were then added, with failure modes corresponding to the highest RPNs taking priority. Results: A process map was created that succinctly outlined each step in the SirSpheres procedure in its current implementation. From this, 72 potential failure modes were identified and ranked according to their associated RPN. Quality assurance controls and safety barriers were then added for failure modes associated with the highest risk being addressed first. Conclusion: A quality assurance program was created from a risk-based assessment of the SirSpheres process. Process mapping and FMEA were effective in identifying potential high-risk failure modes for this new procedure, which were prioritized for new quality assurance controls. TG 100 recommends the fault tree analysis methodology to design a comprehensive and effective QC/QM program, yet we found that by simply introducing additional safety barriers to address high RPN failure modes makes the whole process simpler and safer.

  8. TU-FG-201-12: Designing a Risk-Based Quality Assurance Program for a Newly Implemented Y-90 Microspheres Procedure

    International Nuclear Information System (INIS)

    Vile, D; Zhang, L; Cuttino, L; Kim, S; Palta, J

    2016-01-01

    Purpose: To create a quality assurance program based upon a risk-based assessment of a newly implemented SirSpheres Y-90 procedure. Methods: A process map was created for a newly implemented SirSpheres procedure at a community hospital. The process map documented each step of this collaborative procedure, as well as the roles and responsibilities of each member. From the process map, different potential failure modes were determined as well as any current controls in place. From this list, a full failure mode and effects analysis (FMEA) was performed by grading each failure mode’s likelihood of occurrence, likelihood of detection, and potential severity. These numbers were then multiplied to compute the risk priority number (RPN) for each potential failure mode. Failure modes were then ranked based on their RPN. Additional controls were then added, with failure modes corresponding to the highest RPNs taking priority. Results: A process map was created that succinctly outlined each step in the SirSpheres procedure in its current implementation. From this, 72 potential failure modes were identified and ranked according to their associated RPN. Quality assurance controls and safety barriers were then added for failure modes associated with the highest risk being addressed first. Conclusion: A quality assurance program was created from a risk-based assessment of the SirSpheres process. Process mapping and FMEA were effective in identifying potential high-risk failure modes for this new procedure, which were prioritized for new quality assurance controls. TG 100 recommends the fault tree analysis methodology to design a comprehensive and effective QC/QM program, yet we found that by simply introducing additional safety barriers to address high RPN failure modes makes the whole process simpler and safer.

  9. Multicenter Collaborative Quality Assurance Program for the Province of Ontario, Canada: First-Year Results

    International Nuclear Information System (INIS)

    Létourneau, Daniel; McNiven, Andrea; Jaffray, David A.

    2013-01-01

    Purpose: The objective of this work was to develop a collaborative quality assurance (CQA) program to assess the performance of intensity modulated radiation therapy (IMRT) planning and delivery across the province of Ontario, Canada. Methods and Materials: The CQA program was designed to be a comprehensive end-to-end test that can be completed on multiple planning and delivery platforms. The first year of the program included a head-and-neck (H and N) planning exercise and on-site visit to acquire dosimetric measurements to assess planning and delivery performance. A single dosimeter was used at each institution, and the planned to measured dose agreement was evaluated for both the H and N plan and a standard plan (linear-accelerator specific) that was created to enable a direct comparison between centers with similar infrastructure. Results: CQA program feasibility was demonstrated through participation of all 13 radiation therapy centers in the province. Planning and delivery was completed on a variety of infrastructure (treatment planning systems and linear accelerators). The planning exercise was completed using both static gantry and rotational IMRT, and planned-to-delivered dose agreement (pass rates) for 3%/3-mm gamma evaluation were greater than 90% (92.6%-99.6%). Conclusions: All centers had acceptable results, but variation in planned to delivered dose agreement for the same planning and delivery platform was noted. The upper end of the range will provide an achievable target for other centers through continued quality improvement, aided by feedback provided by the program through the use of standard plans and simple test fields

  10. Maintenance quality assurance peer exchange 2.

    Science.gov (United States)

    2009-04-01

    This report documents a comprehensive study of twenty three maintenance quality assurance : (MQA) programs throughout the United States and Canada. The policies and standards of : each program were synthesized to create a general assessment on the co...

  11. An Application Example Analysis of Quality Assurance Program for STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) Project

    International Nuclear Information System (INIS)

    Jung, Minhwan; Gam, Dayoung; Eoh, Jae-Hyuk; Jeong, Ji-Young

    2015-01-01

    KAERI has been conducting various basic R and D activities in the field of nuclear technology. In addition, KAERI is now participating in the Generation IV International Forum (GIF), preparing for the development of key technologies for Generation IV nuclear energy system, including Sodium cooled Fast Reactor (SFR) development. All of the key technologies for SFR development need an appropriate level of QA activities to achieve the GIF safety and performance objectives. Therefore, QA activities have been conducted as an essential part of the national SFR project. As a result, QAM (Quality Assurance Manual) and QAP (Quality Assurance Procedures) have been developed for the SFR project, which are based on ASME NQA-1, KEPIC QAP and the GIF Quality Management System Guidelines. In this work, the introduction background and application examples of the QA program for the STELLA project were investigated. Application of the QA for the STELLA project has great significance because the QA has been mainly applied for the nuclear power plant area in operation, which helps ensure the reliability of the test data and completeness of the research performance. Nevertheless, developing more appropriate QA procedures remains a major task because some parts of them are not applicable to the Na-experiment

  12. An Application Example Analysis of Quality Assurance Program for STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) Project

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Minhwan; Gam, Dayoung; Eoh, Jae-Hyuk; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    KAERI has been conducting various basic R and D activities in the field of nuclear technology. In addition, KAERI is now participating in the Generation IV International Forum (GIF), preparing for the development of key technologies for Generation IV nuclear energy system, including Sodium cooled Fast Reactor (SFR) development. All of the key technologies for SFR development need an appropriate level of QA activities to achieve the GIF safety and performance objectives. Therefore, QA activities have been conducted as an essential part of the national SFR project. As a result, QAM (Quality Assurance Manual) and QAP (Quality Assurance Procedures) have been developed for the SFR project, which are based on ASME NQA-1, KEPIC QAP and the GIF Quality Management System Guidelines. In this work, the introduction background and application examples of the QA program for the STELLA project were investigated. Application of the QA for the STELLA project has great significance because the QA has been mainly applied for the nuclear power plant area in operation, which helps ensure the reliability of the test data and completeness of the research performance. Nevertheless, developing more appropriate QA procedures remains a major task because some parts of them are not applicable to the Na-experiment.

  13. Environmental restoration remedial action quality assurance requirements document

    International Nuclear Information System (INIS)

    Cote, R.F.

    1991-01-01

    The environmental Restoration Remedial Action Quality Assurance Requirements Document (DOE/RL 90-28) defines the quality assurance program requirements for the US Department of Energy-Richland Field Office Environmental Restoration Remedial Action Program at the Hanford Site, Richland, Washington. This paper describes the objectives outlined in DOE/RL 90-28. The Environmental Restoration Remedial Action Program implements significant commitments made by the US Department of Energy in the Hanford Federal Facility Agreement and Consent Order entered into with the Washington State Department of Ecology and the US Environmental Protection Agency

  14. Quality assurance in military medical research and medical radiation accident management.

    Science.gov (United States)

    Hotz, Mark E; Meineke, Viktor

    2012-08-01

    The provision of quality radiation-related medical diagnostic and therapeutic treatments cannot occur without the presence of robust quality assurance and standardization programs. Medical laboratory services are essential in patient treatment and must be able to meet the needs of all patients and the clinical personnel responsible for the medical care of these patients. Clinical personnel involved in patient care must embody the quality assurance process in daily work to ensure program sustainability. In conformance with the German Federal Government's concept for modern departmental research, the international standard ISO 9001, one of the relevant standards of the International Organization for Standardization (ISO), is applied in quality assurance in military medical research. By its holistic approach, this internationally accepted standard provides an excellent basis for establishing a modern quality management system in line with international standards. Furthermore, this standard can serve as a sound basis for the further development of an already established quality management system when additional standards shall apply, as for instance in reference laboratories or medical laboratories. Besides quality assurance, a military medical facility must manage additional risk events in the context of early recognition/detection of health risks of military personnel on deployment in order to be able to take appropriate preventive and protective measures; for instance, with medical radiation accident management. The international standard ISO 31000:2009 can serve as a guideline for establishing risk management. Clear organizational structures and defined work processes are required when individual laboratory units seek accreditation according to specific laboratory standards. Furthermore, international efforts to develop health laboratory standards must be reinforced that support sustainable quality assurance, as in the exchange and comparison of test results within

  15. MHD magnet technology development program summary, September 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  16. MHD magnet technology development program summary, September 1982

    International Nuclear Information System (INIS)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references

  17. Monitoring Compliance to Promote Quality Assurance: Development of a Mental Health Clinical Chart Audit Tool in Belize, 2013.

    Science.gov (United States)

    Winer, Rachel A; Bennett, Eleanor; Murillo, Illouise; Schuetz-Mueller, Jan; Katz, Craig L

    2015-09-01

    Belize trained psychiatric nurse practitioners (PNPs) in the early 1990s to provide mental health services throughout the country. Despite overwhelming success, the program is limited by lack of monitoring, evaluation, and surveillance. To promote quality assurance, we developed a chart audit tool to monitor mental healthcare delivery compliance for initial psychiatric assessment notes completed by PNPs. After reviewing the Belize Health Information System electronic medical record system, we developed a clinical audit tool to capture 20 essential components for initial assessment clinical notes. The audit tool was then piloted for initial assessment notes completed during July through September of 2013. One hundred and thirty-four initial psychiatric interviews were audited. The average chart score among all PNPs was 9.57, ranging from 3 to 15. Twenty-three charts-or 17.2%-had a score of 14 or higher and met a 70% compliance benchmark goal. Among indicators most frequently omitted included labs ordered and named (15.7%) and psychiatric diagnosis (21.6%). Explicit statement of medications initiated with dose and frequency occurred in 47.0% of charts. Our findings provide direction for training and improvement, such as emphasizing the importance of naming labs ordered, medications and doses prescribed, and psychiatric diagnoses in initial assessment clinical notes. We hope this initial assessment helps enhance mental health delivery compliance by prompting creation of BHIS templates, development of audits tools for revisit follow-up visits, and establishment of corrective actions for low-scoring practitioners. These efforts may serve as a model for implementing quality assurance programming in other low resource settings.

  18. Quality assurance for health and environmental chemistry: 1989

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Koski, N.L.; Jones, E.A.; Phillips, M.B.; O'Malley, B.T.

    1990-12-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1989. 38 refs., 8 figs., 3 tabs

  19. Clinical quality assurance in radiation oncology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A quality assurance program in radiation oncology monitors and evaluates any departmental functions which have an impact on patient outcome. The ultimate purpose of the program is to maximize health benefit to the patient without a corresponding increase in risk. The foundation of the program should be the credo: at least do no harm, usually do some good and ideally realize the greatest good. The steep dose response relationships for tumor control and complications require a high degree of accuracy and precision throughout the entire process of radiation therapy. It has been shown that failure to control local disease with radiation may result in decreased survival and may increase the cost of care by a factor of 3. Therefore, a comprehensive quality assurance program which seeks to optimize dose delivery and which encompasses both clinical and physics components, is needed

  20. Quality Assurance in Higher Technical Education and the Context of Youth Empowerment for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Olufunmilayo T. Iyunade, Ph.D

    2014-06-01

    Full Text Available Recent empirical evidences on higher technical education at a national scale focused on the relevance, student’s poor perception, low enrolment and progression rates, and the growing impact of globalization on the management of higher technical and vocational education with little or no reference point to the factor of quality assurance. This paper therefore correlates quality assurance factors in higher technical education and the context of youth empowerment for sustainable development. A survey of public technical colleges was done in Ogun State. From an estimate population of 637 final year students and 28 instructors and management staff, a simple of 376 students and 17 instructors and management staff were selected using the stratify random sampling technique. A 4-point rating scale validated questionnaires tagged: ‘Higher Technical Education, Youth Empowerment and Sustainable Development Scale (HTEYESDS (r=0.79, complemented with focus Group Discussion (FGD was used for data collection. Three research questions were raised and answered. Data were analysed using descriptive and inferential statistics of Pearson correlation, multiple regression and analysis of variance at 0.05 apha level. Results showed that poor quality assurance limits the capacity of higher technical education in the empowerment of youth for sustainable development (82.6%. Quality assurance factors significantly correlated with higher technical education in the empowerment of youth for sustainable development (r=0.188; P < 0.05. It was therefore recommended that government should neither neglect nor compromise the factors of quality assurance in higher technical education as they predicts youth empowerment drive in the system.

  1. 12: Assuring the quality of critical software

    International Nuclear Information System (INIS)

    Jacky, J.; Kalet, I.

    1987-01-01

    The authors recommend quality assurance procedures for radiation therapy software. Software quality assurance deals with preventing, detecting and repairing programming errors. Error detection difficulties are most severe in computer-based control systems, for example therapy machine control systems, because it may be impossible for users to confirm correct operation while treatments are in progress, or to intervene if things go wrong. Software quality assurance techniques observed in other industries in which public safety is at risk are reviewed. In some of these industries software must be approved or certified before it can be used. Approval is subject to technical reviews and audits by experts other than the program authors. The main obstacles to adoption of these techniques in the radiation therapy field are costs, lack of familiarity and doubts regarding efficacy. 18 refs

  2. Faculty Development and Quality Assurance in the EU ERAMIS Project

    Directory of Open Access Journals (Sweden)

    Agathe Merceron

    2012-07-01

    Full Text Available The aim of the ERAMIS project is to create a
    network of Masters degrees “Informatics as a Second
    Competence” in nine beneficiary universities of Kazakhstan,
    Kyrgyzstan and Russia. This contribution presents how
    faculty development is organized and quality assurance
    implemented inside this project.

  3. An overview of quality assurance

    International Nuclear Information System (INIS)

    Morris, I.T.

    1983-01-01

    A good quality assurance program seeks to minimise radiation exposure and maximise image quality. Factors considered are equipment performance, films and screens, film processing, viewing conditions and film repeats

  4. Lessons learned from development and quality assurance of software systems at the Halden Project

    International Nuclear Information System (INIS)

    Bjorlo, T.J.; Berg, O.; Pehrsen, M.; Dahll, G.; Sivertsen, T.

    1996-01-01

    The OECD Halden Reactor Project has developed a number of software systems within the research programmes. These programmes have comprised a wide range of topics, like studies of software for safety-critical applications, development of different operator support systems, and software systems for building and implementing graphical user interfaces. The systems have ranged from simple prototypes to installations in process plants. In the development of these software systems, Halden has gained much experience in quality assurance of different types of software. This paper summarises the accumulated experience at the Halden Project in quality assurance of software systems. The different software systems being developed at the Halden Project may be grouped into three categories. These are plant-specific software systems (one-of-a-kind deliveries), generic software products, and safety-critical software systems. This classification has been found convenient as the categories have different requirements to the quality assurance process. In addition, the experience from use of software development tools and proprietary software systems at Halden, is addressed. The paper also focuses on the experience gained from the complete software life cycle, starting with the software planning phase and ending with software operation and maintenance

  5. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  6. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    2007-01-01

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, 'Quality Assurance Requirements', ANSI/ASQC E4-2004, 'Quality Systems for Environmental Data and Technology Programs - Requirements with Guidance for Use', and ISO 14001-2004, 'Environmental Management Systems', have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, 'Quality Assurance Program', identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, 'QA Program Implementation', identifies the TAC organizations that have responsibility for implementing the QA

  7. Developing an effective toxicology/quality assurance partnership. Improving quality, compliance, and cooperation.

    Science.gov (United States)

    Usher, R W

    1995-12-01

    Toxicology and Quality Assurance (QA) at Eli Lilly and Company are well integrated, yet still independent organizations that are aligned with the same overall business objective: to efficiently deliver a high-quality product to the customer. One of the keys to success has been the implementation of a monitoring/metric and trend analysis program of key work processes that are central to the delivery of final product. Our metrics program indicates that the multiple changes that we have made have resulted in a higher quality product. This paper will discuss the practical changes we have made as a part of our Total Quality journey. This article is based solely on the authors' experiences while at Eli Lilly and Company.

  8. Office of Geologic Repositories quality assurance plan for high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    1986-08-01

    This document sets forth geologic repository program-wide quality assurance program requirements and defines management's quality assurance responsibilities for the Office of Geologic Repositories and its projects. (LM)

  9. 76 FR 26341 - Medicaid Program; Methods for Assuring Access to Covered Medicaid Services

    Science.gov (United States)

    2011-05-06

    ... as part of their broader efforts to ``assure that payments are consistent with efficiency, economy... but not limited to, the beneficiaries' health care needs and characteristics, State or local service... care case management). Increasingly, States are developing service delivery models that emphasize...

  10. Project officer's perspective: quality assurance as a management tool.

    Science.gov (United States)

    Heiby, J

    1993-06-01

    Advances in the management of health programs in less developed countries (LDC) have not kept pace with the progress of the technology used. The US Agency for International Development mandated the Quality Assurance Project (QAP) to provide quality improvement technical assistance to primary health care systems in LDCs while developing appropriate quality assurance (QA) strategies. The quality of health care in recent years in the US and Europe focused on the introduction of management techniques developed for industry into health systems. The experience of the QAP and its predecessor, the PRICOR Project, shows that quality improvement techniques facilitate measurement of quality of care. A recently developed WHO model for the management of the sick child provides scientifically based standards for actual care. Since 1988, outside investigators measuring how LDC clinicians perform have revealed serious deficiencies in quality compared with the program's own standards. This prompted developed of new QA management initiatives: 1) communicating standards clearly to the program staff; 2) actively monitoring actual performance corresponds to these standards; and 3) taking action to improve performance. QA means that managers are expected to monitor service delivery, undertake problem solving, and set specific targets for quality improvement. Quality improvement methods strengthen supervision as supervisors can objectively assess health worker performance. QA strengthens the management functions that support service delivery, e.g., training, records management, finance, logistics, and supervision. Attention to quality can contribute to improved health worker motivation and effective incentive programs by recognition for a job well done and opportunities for learning new skills. These standards can also address patient satisfaction. QA challenges managers to aim for the optimal level of care attainable.

  11. Quality assurance and quality control of nuclear engineering during construction phase

    International Nuclear Information System (INIS)

    Zhang Zhihua; Deng Yue; Liu Yaoguang; Xu Xianqi; Zhou Shan; Qian Dazhi; Zhang Yang

    2007-01-01

    The quality assurance (QA) and quality control (QC) is a very important work in the nuclear engineering. This paper starts with how to establish quality assurance system of nuclear engineering construction phase, then introduces several experiments and techniques such as the implementation of quality assurance program, the quality assurance and quality control of contractors, the quality surveillance and control of supervisory companies, quality assurance audit and surveillance of builders. (authors)

  12. Strategic Employee Development (SED) Program

    Science.gov (United States)

    Nguyen, Johnny; Guevara (Castano), Nathalie; Thorpe, Barbara; Barnett, Rebecca

    2017-01-01

    As with many other U.S. agencies, succession planning is becoming a critical need for NASA. The primary drivers include (a) NASAs higher-than-average aged workforce with approximately 50 of employees eligible for retirement within 5 years; and (b) employees who need better developmental conversations to increase morale and retention. This problem is particularly concerning for Safety Mission Assurance (SMA) organizations since they traditionally rely on more experienced engineers and specialists to perform their organizations functions.In response to this challenge, the Kennedy Space Center (KSC) SMA organization created the Strategic Employee Development (SED) program. The SED programs goal is to provide a proactive method to counter the primary drivers by creating a deeper bench strength and providing a more comprehensive developmental feedback experience for the employee. The SED is a new succession planning framework that enables customization to any organization, and in this case, specifically for an SMA organization. This is accomplished via the identification of key positions, the corresponding critical competencies, and a process to help managers have relevant and meaningful development conversations with the workforce. As a result of the SED, several tools and products were created that allows management to make better strategic workforce decisions. Although there are opportunities for improvement for the SED program, the most important impact has been on the quality of developmental discussions for employees.

  13. Quality Assurance Framework Implementation Guide for Isolated Community Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Esterly, Sean R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baring-Gould, Edward I. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burman, Kari A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Greacen, Chris [Independent Consultant (United States)

    2017-08-15

    This implementation guide is a companion document to the 'Quality Assurance Framework for Mini-Grids' technical report. This document is intended to be used by one of the many stakeholder groups that take part in the implementation of isolated power systems. Although the QAF could be applied to a single system, it was designed primarily to be used within the context of a larger national or regional rural electrification program in which many individual systems are being installed. This guide includes a detailed overview of the Quality Assurance Framework and provides guidance focused on the implementation of the Framework from the perspective of the different stakeholders that are commonly involved in expanding energy development within specific communities or regions. For the successful long-term implementation of a specific rural electrification program using mini-grid systems, six key stakeholders have been identified that are typically engaged, each with a different set of priorities 1. Regulatory agency 2. Governmental ministry 3. System developers 4. Mini-utility 5. Investors 6. Customers/consumers. This document is broken into two distinct sections. The first focuses on the administrative processes in the development and operation of community-based mini-grid programs, while the second focuses on the process around the installation of the mini-grid project itself.

  14. Tool Use Within NASA Software Quality Assurance

    Science.gov (United States)

    Shigeta, Denise; Port, Dan; Nikora, Allen P.; Wilf, Joel

    2013-01-01

    As space mission software systems become larger and more complex, it is increasingly important for the software assurance effort to have the ability to effectively assess both the artifacts produced during software system development and the development process itself. Conceptually, assurance is a straightforward idea - it is the result of activities carried out by an organization independent of the software developers to better inform project management of potential technical and programmatic risks, and thus increase management's confidence in the decisions they ultimately make. In practice, effective assurance for large, complex systems often entails assessing large, complex software artifacts (e.g., requirements specifications, architectural descriptions) as well as substantial amounts of unstructured information (e.g., anomaly reports resulting from testing activities during development). In such an environment, assurance engineers can benefit greatly from appropriate tool support. In order to do so, an assurance organization will need accurate and timely information on the tool support available for various types of assurance activities. In this paper, we investigate the current use of tool support for assurance organizations within NASA, and describe on-going work at JPL for providing assurance organizations with the information about tools they need to use them effectively.

  15. Department of Energy Operation Quality Assurance Program for the Waste Isolation Pilot Plant (WIPP) Project (Carlsbad, New Mexico)

    International Nuclear Information System (INIS)

    1987-12-01

    The purpose of this plan is to describe the Quality Assurance (QA)reverse arrow Program to be established and implemented by the US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Project Office (WPO) and by the Project Participants: the Scientific Advisor (Sandia National Laboratory) and the Management and Operating Contractor (Westinghouse Electric Corporation). This plan addresses the Pre-Operational and Operational phases of the WIPP Project not addressed under the construction phase. This plan also requires the QA Programs for DOE and Project Participants to be structured so as to comply with this plan and ANSI-ASME NQA-1. The prime responsibility for Operational Quality Assurance rests with the DOE WIPP Project Office and is implemented through the combined efforts of the Scientific Advisor and the Management and Operating Contractor. Overviews of selected operational and testing activities will be are conducted in accordance with prescribed requirements and that adequate documentation of these activities is maintained. 4 figs

  16. Quality assurance in nuclear medicine

    International Nuclear Information System (INIS)

    Paras, P.

    1978-01-01

    Quality assurance practices must be followed throughout the entire nuclear medicine process, from the initial decision to perform a particular procedure, through the interpretation and reporting of the results. The various parameters that can be defined and measured in each area must be monitored by quality control tests to assure the excellence of the total nuclear medicine process. The presentation will discuss each of the major areas of nuclear medicine quality control and their interaction as a part of the entire system. Quality control testing results and recommendations for measurements of radioactivity distribution will be described with emphasis on imaging equipment and dose calibrating instrumentation. The role of the health physicist in a quality assurance program will be stressed. (author)

  17. Commissioning quality assurance for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-09-01

    This standard contains the requirements for the quality assurance program applicable to the commissioning phase of a nuclear power plant. This standard embodies the relevant quality assurance requirements of CSA Standard CAN3-N286.0, and is the governing Standard for commissioning quality assurance activities in the event of any conflicting requirements. This Standard applies to the commissioning of safety-related equipment, systems, and structures as identified by the owner. It may be applied to other equipment, systems, and structures at the discretion of the owner. 1 fig.

  18. Commissioning quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    1986-09-01

    This standard contains the requirements for the quality assurance program applicable to the commissioning phase of a nuclear power plant. This standard embodies the relevant quality assurance requirements of CSA Standard CAN3-N286.0, and is the governing Standard for commissioning quality assurance activities in the event of any conflicting requirements. This Standard applies to the commissioning of safety-related equipment, systems, and structures as identified by the owner. It may be applied to other equipment, systems, and structures at the discretion of the owner. 1 fig

  19. Cooperative Communications for Wireless Information Assurance: Secure Cooperative Communications and Testbed Development

    National Research Council Canada - National Science Library

    Li, Xiaohua

    2007-01-01

    ..., and have invented a new cooperative OFDM transmission scheme to combat transmission asynchronism. They are helpful to the development of future physical-layer wireless information assurance techniques as well as the cooperative communication techniques...

  20. Regulating and Quality-Assuring VET: International Developments. Research Report

    Science.gov (United States)

    Misko, Josie

    2015-01-01

    The opening-up of the market for education and training, including vocational education and training (VET), has increased the importance of regulation and quality assurance mechanisms in ensuring the integrity of qualifications. This report investigates approaches to the regulation and quality assurance of vocational education and training in a…

  1. Assuring quality in high-consequence engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Marcey L.; Kolb, Rachel R.

    2014-03-01

    In high-consequence engineering organizations, such as Sandia, quality assurance may be heavily dependent on staff competency. Competency-dependent quality assurance models are at risk when the environment changes, as it has with increasing attrition rates, budget and schedule cuts, and competing program priorities. Risks in Sandia's competency-dependent culture can be mitigated through changes to hiring, training, and customer engagement approaches to manage people, partners, and products. Sandia's technical quality engineering organization has been able to mitigate corporate-level risks by driving changes that benefit all departments, and in doing so has assured Sandia's commitment to excellence in high-consequence engineering and national service.

  2. R D software quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Hood, F.C.

    1991-10-01

    Research software quality assurance (QA) requirements must be adequate to strengthen development or modification objectives, but flexible enough not to restrict creativity. Application guidelines are needed for the different kinds of research and development (R D) software activities to assure project objectives are achieved.

  3. Isotopic and other techniques for organic micronutrient analysis and development of quality assurance procedures. Report of a consultants meeting

    International Nuclear Information System (INIS)

    2001-01-01

    The Nutritional and Health Related Environmental Studies Section (NAHRES), Division of Human Health at the IAEA has been very active in supporting activities related to measurement problems of both organic and inorganic nutrients faced by several developing countries. In preparation of a systematic approach to help the needy developing countries, a new initiative under 'Nutritional Metrology in Practice' has been initiated for the years 2002 and 2003. As a first step, a small group of consultants was sought to advice the Agency on the current methodological status related to nutrient measurements. The consultants who participated in the meeting were: Dr. Katherine E. Sharpless, Dr. Paul M. Finglas, Dr. Clive West and Dr. Tee E. Siong. Recognizing the double burden of under- and overnutrition in developing countries, the following nutrients were selected as priority under the Nutritional Metrology program: vitamin A and carotenoids, folate, vitamins B 1 , B 2 , B 6 , and B 12 . The capabilities for the analyses of these nutrients in foods and serum vary extensively among the developing countries. This refers to availability of expertise, equipment, and quality control programs in these countries. Of particular interest to the Agency is the use of isotopic methods to measure these nutrients since several nutritional monitoring programmes are likely to seek this technology for future projects supported by the IAEA. There is therefore an urgent need for enhancing capabilities in these countries. This group of experts assessed the current status of quality assurance programs, training and quality control materials available for measurement of vitamin A and Beta-carotene, folate, vitamin B 1 , B 2 , B 6 and vitamin B 12 in food/serum/plasma and made their recommendations for future work in these areas: (i) extend/establish quality assurance programs for vitamin A/carotenoids and folate for food and blood analyses in developing countries; (ii) establish training linkages

  4. QAM: PROPOSED MODEL FOR QUALITY ASSURANCE IN CBSS

    Directory of Open Access Journals (Sweden)

    Latika Kharb

    2015-08-01

    Full Text Available Component-based software engineering (CBSE / Component-Based Development (CBD lays emphasis on decomposition of the engineered systems into functional or logical components with well-defined interfaces used for communication across the components. Component-based software development approach is based on the idea to develop software systems by selecting appropriate off-the-shelf components and then to assemble them with a well-defined software architecture. Because the new software development paradigm is much different from the traditional approach, quality assurance for component-based software development is a new topic in the software engineering research community. Because component-based software systems are developed on an underlying process different from that of the traditional software, their quality assurance model should address both the process of components and the process of the overall system. Quality assurance for component-based software systems during the life cycle is used to analyze the components for achievement of high quality component-based software systems. Although some Quality assurance techniques and component based approach to software engineering have been studied, there is still no clear and well-defined standard or guidelines for component-based software systems. Therefore, identification of the quality assurance characteristics, quality assurance models, quality assurance tools and quality assurance metrics, are under urgent need. As a major contribution in this paper, I have proposed QAM: Quality Assurance Model for component-based software development, which covers component requirement analysis, component development, component certification, component architecture design, integration, testing, and maintenance.

  5. Quality assurance in materials and construction

    Science.gov (United States)

    2007-06-01

    This review is a product of the FHWA 2006, National Review Program (NRP). Quality Assurance (QA) was selected for review in 2006 because the program was ranked as one of the top five areas of interest for review by FHWA. Over the last 10 years an ave...

  6. Quality assurance in plant engineering

    International Nuclear Information System (INIS)

    Ohsumi, Morimichi

    1977-01-01

    Quality assurance is defined as the intentional and systematic activity carried out to obtain such reliability that the functions of nuclear power generating plants are demonstrated during the plant operation, and the section in charge has the role to organize, adjust and communicate so that the related sections can work smoothly. There are many documents concerning the quality assurance, such as quality assurance basic program, quality assurance manual, quality control plan and its manual and many specifications, etc. The content of the quality assurance is different for every step of plant planning such as at inquiry and order receiving, and prior to manufacturing, for example, inspection specification being decided for the material and the welded parts of classified pipings at the step of order receiving. Document management, engineering schedule and the custody of quality records are also quality assurance activities. Design management is controlled step by step; plant planning including safety analysis, overall layout plan, conceptual design of buildings, aseismatic design guide, heat balance and so on, system design mainly with system description, piping design including piping specification, standard dimensions of edge preparation, piping and valve lists, inspection manual, etc., detailed design, standardization of piping and design review, etc. are explained. The management of the intermediate between soft and hard parts consists of the quality check for material manufacturers and shipment inspection, etc. (Nakai, Y.)

  7. A quality assurance program of simulators in radiotherapy. Pt. 2. Extent and results of long-term quality assurance tests on a therapy simulator

    International Nuclear Information System (INIS)

    Mueller-Sievers, K.; Kober, B.

    1997-01-01

    Background: Since 1990 we follow a quality assurance program with periodical tests of functional performance values of a 16-year-old simulator. Material and Method: For this purpose we adopted and modified German standards for quality assurance on linear accelerators and international standards elaborated for simulators (International Electrotechnical Commission). The tests are subdivided into daily visual checks (light field indication, optical distance indicator, isocentre-indicating devices, indication of gantry and collimator angles) and monthly and annually tests of relevant simulator parameters. Some important examples demonstrate the small variation of parameters over 6 years: Position of the light field centre when rotating the collimator, diameter of the isocentre circle when rotating the gantry, accuracy of the isocentre indication device, and coincidence of light field and simulated radiation field. Results: As an important result we can state, that by these rigid periodic tests it was possible to detect and compensate deteriorations of simulators quality rapidly. Conclusions: Technical improvements and specific calling-in of maintenance personnel whenever felt appropriate provided performance characteristics of our old simulator which are required by international recommendations as a basis for modern radiotherapy. (orig.) [de

  8. Development of Knowledge Management Model for Developing the Internal Quality Assurance in Educational Opportunity Expansion Schools

    Science.gov (United States)

    Pradabpech, Pipat; Chantarasombat, Chalard; Sriampai, Anan

    2015-01-01

    This research for: 1) to study the current situation and problem in KM, 2) to develop the KM Model, and 3) to evaluate the finding usage of the KM Model for developing the Internal Quality Assurance of Educational Opportunity Expansion Schools. There were 3 Phases of research implementation. Phase 1: the current situation and problem in KM, was…

  9. [Strategies and development of quality assurance and control in the ELSA-Brasil].

    Science.gov (United States)

    Schmidt, Maria Inês; Griep, Rosane Härter; Passos, Valéria Maria; Luft, Vivian Cristine; Goulart, Alessandra Carvalho; Menezes, Greice Maria de Souza; Molina, Maria del Carmen Bisi; Vigo, Alvaro; Nunes, Maria Angélica

    2013-06-01

    The ELSA-Brasil (Estudo Longitudinal de Saúde do Adulto - Brazilian Longitudinal Study for Adult Health) is a cohort study composed of 15,105 adults followed up in order to assess the development of chronic diseases, especially diabetes and cardiovascular disease. Its size, multicenter nature and the diversity of measurements required effective and efficient mechanisms of quality assurance and control. The main quality assurance activities (those developed before data collection) were: careful selection of research instruments, centralized training and certification, pretesting and pilot studies, and preparation of operation manuals for the procedures. Quality control activities (developed during data collection and processing) were performed more intensively at the beginning, when routines had not been established yet. The main quality control activities were: periodic observation of technicians, test-retest studies, data monitoring, network of supervisors, and cross visits. Data that estimate the reliability of the obtained information attest that the quality goals have been achieved.

  10. Seeking legitimacy for new assurance forms: The case of assurance on sustainability reporting

    NARCIS (Netherlands)

    O'Dwyer, B.; Owen, D.; Unerman, J.

    2011-01-01

    Based on the development of a more refined conception of legitimacy than has been used in prior audit/assurance and sustainability accounting research, this paper analyses how the legitimation processes adopted by sustainability assurance practitioners in a large professional services firm have

  11. Specified assurance level sampling procedure

    International Nuclear Information System (INIS)

    Willner, O.

    1980-11-01

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level

  12. Quality Assurance Program: Argonne peer review activities for the salt host-rock portion of the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Edgar, D.E.

    1986-01-01

    This Quality Assurance (QA) Program sets forth the methods, controls, and procedures used to ensure that the results of Argonne National Laboratory's peer review activities are consistently of the highest quality and responsive to Salt Repository Project Office's needs and directives. Implementation of the QA procedures described herein establishes an operational framework so that task activities are traceable and the activities and decisions that influence the overall quality of the peer review process and results are fully documented. 56 refs., 5 figs., 6 tabs

  13. Quality Assurance of Ultrasonic Diagnosis in Breast

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Soo Young; Kim, Hong Dae [Hallym University, Kangnam Sacred Heart Hospital, Seoul (Korea, Republic of)

    2006-06-15

    Sonography is a subjective diagnostic method which is highly dependent on the experience of the operator and the equipment quality which requires real-time adjustments. Breast screening examination currently consists of clinical examination and mammography. Breast sonography, either supplementary to mammography or independently, is indicated for the dense breast, especially in younger women. Breast sonography is especially applicable for Korean women because of the denser breast parenchyma and the approximately 10-year younger incidence rate of breast cancer of Korean women compared to western women. To avoid unnecessary breast biopsy because of the high rate of false positive lesions in breast parenchyma, which is different from other body organs such as the liver or the kidney, a quality assurance program for breast sonography is essential. The quality assurance of breast ultrasound involves quality assurance of the equipment, imaging display and acquisition of clinical images, personnel qualifications and other aspects such as unification of lexicon, guideline of diagnostic examination and reporting system; US BI-RAD reporting system, assessment items and organization, education program, medical audit, certification issues, and medicolegal issues. A breast sonographic quality assurance system should be established before a scheme to initiate governmental medical insurance for breast sonography

  14. Quality Assurance of Ultrasonic Diagnosis in Breast

    International Nuclear Information System (INIS)

    Chung, Soo Young; Kim, Hong Dae

    2006-01-01

    Sonography is a subjective diagnostic method which is highly dependent on the experience of the operator and the equipment quality which requires real-time adjustments. Breast screening examination currently consists of clinical examination and mammography. Breast sonography, either supplementary to mammography or independently, is indicated for the dense breast, especially in younger women. Breast sonography is especially applicable for Korean women because of the denser breast parenchyma and the approximately 10-year younger incidence rate of breast cancer of Korean women compared to western women. To avoid unnecessary breast biopsy because of the high rate of false positive lesions in breast parenchyma, which is different from other body organs such as the liver or the kidney, a quality assurance program for breast sonography is essential. The quality assurance of breast ultrasound involves quality assurance of the equipment, imaging display and acquisition of clinical images, personnel qualifications and other aspects such as unification of lexicon, guideline of diagnostic examination and reporting system; US BI-RAD reporting system, assessment items and organization, education program, medical audit, certification issues, and medicolegal issues. A breast sonographic quality assurance system should be established before a scheme to initiate governmental medical insurance for breast sonography

  15. Analysis of a comprehensive quality assurance program with computer-enhanced monitors

    International Nuclear Information System (INIS)

    Arenson, R.L.; Mintz, M.C.; Goldstein, E.; Stevens, J.F.; Jovais, C.

    1987-01-01

    The authors' quality assurance (QA) program provides communication pathways among its constituent committees, which include patient care, professional review, medical staff, missed case, quality control, safety, and management committees. The QA monitors are based on data from these committees but also include data from the information management system, such as patient delays, contrast reactions, incidents, complications, time-flow analyses, film library retrieval, cancellations, missing reports, and missing clinical data. Committee data include complaints, missed diagnoses, patient identification problems, and equipment failure. The QA monitors have now been incorporated into summary reports as part of their computer networks. A systematic method for follow-up ensures corrective action and documentation. Examples of improved quality of care resulting from this approach includes reductions in delays for report signature and in repeat films

  16. Development in the Preparation and the Quality Assurance of Radiopharmaceuticals for Clinical Uses

    International Nuclear Information System (INIS)

    Sangsuriyan, Jatupol; Paramatikul, Nipawan; Daengprasert, Moleepan; Pumkem, Sudkaneung; Sriwiang, Wiranee; Minsakorn, Naparat

    2011-06-01

    Full text: Radiopharmaceutical preparation technologies and a specific quality assurance system were developed. The kit formulation and the processing of a MDP kit, were developed as a model. NaCl was added as a bulking agent and the kit was filled with N 2 -gas at a slightly negative pressure before stoppering. The product quality tests met all quality control requirements and at least 1 year shelf life was reported. An EC kit and an ECD kit were also developed from the synthesis of starting materials with successful results. 99m T c-Hynic TOC, a neuroendocrine diagnostic agent, was developed both in the form of kit formulation and unit dose preparation for patients. The quality assurance systems for the Hynic-TOC kit and the unit dose preparation were set up and the technologies were taken into implementation by Radioisotope Center, TINT, as routine services

  17. Chapter 8: Quality assurance

    International Nuclear Information System (INIS)

    2001-01-01

    The main efforts of Nuclear Regulatory Authority of the Slovak Republic (UJD) have been focused on inspection of quality assurance programmes of Slovak Power Stations, plc. and its daughter companies at Bohunice and Mochovce. Two quality assurance inspections in the area of periodical in service inspections (V-2 units) and tests of selected equipment (NPP V-2 units) and operation control (V-1 units) has been performed at NPPs Bohunice. One violation of decree on quality assurance of selected equipment has been found in the area of documentation archiving. The inspection concerning the implementation of quality assurance programme for operation of NPP Mochovce in the area of operation control has been performed focused on safety aspects of operation, operational procedures, control of operational events and feedback from operational experience. The results of this inspection were positive. Inspection of implementation of quality assurance programme for operation of radioactive waste repository (RU RAW) at the Mochovce location has been performed focused on receiving of containers, with radioactive wastes, containers handling, radiation monitoring, activities of documentation control and radiation protection at the repository site. No serious deficiencies have been found out. Also one inspection of experimental nuclear installations of VUJE Trnava at Jaslovske Bohunice site has been performed focused on procurement control, quality audits, documentation and quality records control when performing activities at experimental nuclear installations. The activity on development of internal quality assurance system continued. The implementation of this system will assure quality and effective fulfilment enlarged tasks of UJD with limited resources for its activity. The analyses of possible use of existing internal administrative control documentation as a basis for future quality system procedures was performed in co-operation with an external specialised organisation. The

  18. Methodology for establishing of a control and assurance program on a Radiology Department of a university hospital

    International Nuclear Information System (INIS)

    Almeida, Carlos Domingues de; Almeida, Carlos Eduardo de

    1995-01-01

    The purpose of this work is to present a proposal of a quality assurance program developed for a typical diagnostic radiology department of a University Hospital. The aim of this program is to reduce the number of films lost due to several kinds of problems, equipment malfunction, incorrect selection of the physical parameters of the X-ray equipment, poor conditions of the film ecrans and chassis, excessive temperature fluctuations on the processor, personnel training and organizational related aspects. The preliminary results shows that the main causes of problems are film overexposure, film under exposure, unexposed films taken back to the dark room, inadequate positioning of the film in the couch, inadequate positioning of the patient and the X-ray processor in addition to others of minor importance. It is very important to emphasize that the data acquisition methodology must contemplate a professional posture of respect for those involved in the procedures and as result of this one would expect their active participation in the program. As result of the first year of study, this program has demonstrated that the annual losses in the department studied are over US$ 125.000,00 and the goal of this program now is to reduce this figure to an acceptable number, US$40.000,00 a reasonable value for a large diagnostic radiology facility. (author). 6 refs., 4 figs

  19. Software quality assurance - seven years experience

    International Nuclear Information System (INIS)

    Malsbury, J.A.

    1987-01-01

    This paper describes seven years experience with software quality assurance at PPPL. It covers the early attempts of 1980 and 1981 to establish software quality assurance; the first attempt of 1982 to develop a complete software quality assurance plan; the significant modifications of this plan in 1985; and the future. In addition, the paper describes the role of the Quality Assurance organization within each plan. The scope of this paper is limited to discussions of the software development procedures used in the seven year period. Other software quality topics, such as configuration control or problem identification and resolution, are not discussed

  20. Operations Program Plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1990-09-01

    This document, Revision 4 of the Operations Program Plan, has been developed as the seven-year master plan for operating of the Waste Isolation Pilot Plant (WIPP). Subjects covered include public and technical communications; regulatory and environmental programs; startup engineering; radiation handling, surface operations, and underground operations; waste certification and waste handling; transportation development; geotechnical engineering; experimental operations; engineering program; general maintenance; security program; safety, radiation, and regulatory assurance; quality assurance program; training program; administration activities; management systems program; and decommissioning. 243 refs., 19 figs., 25 tabs. (SM)