WorldWideScience

Sample records for associative star polymers

  1. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  2. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  3. Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components.

    Science.gov (United States)

    Glass, Joshua J; Li, Yang; De Rose, Robert; Johnston, Angus P R; Czuba, Ewa I; Khor, Song Yang; Quinn, John F; Whittaker, Michael R; Davis, Thomas P; Kent, Stephen J

    2017-04-12

    Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown. Herein, we used RAFT polymerization to prepare pyridyl disulfide (PDS)-functionalized star polymers with a methoxy-poly(ethylene glycol) brush corona and a fluorescently labeled cross-linked core using an arm-first method. PDS star polymers were examined for their interaction with primary human blood components: six separate white blood cell subsets, as well as red blood cells and platelets. Compared with control star polymers, thiol-reactive nanoparticles displayed enhanced association with white blood cells at 37 °C, particularly the phagocytic monocyte, granulocyte, and dendritic cell subsets. Platelets associated with more PDS than control nanoparticles at both 37 °C and on ice, but they were not activated in the duration examined. Association with red blood cells was minor but still enhanced with PDS nanoparticles. Thiol-reactive nanoparticles represent a useful strategy to target primary human immune cell subsets for improved nanoparticle delivery.

  4. Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topology

    DEFF Research Database (Denmark)

    Hietala, Sami; Strandman, Satu; Jarvi, Paula

    2009-01-01

    interaction. Polymers bearing shorter PS blocks gave gels with relatively long linear response followed by strain hardening before shear thinning while the longer PS blocks lead to formation of elastic but brittle gels with limited linear regime before shear thinning. Star-block copolymers showed more elastic...... behavior compared with a triblock copolymer of comparable molar mass and composition. In small-angle X-ray scattering measurements the increasing lengths of the PS blocks were observed to lead to a shift in the scattering maxima toward lower q-values. Both rheological and X-ray characterization showed...... that the thermal properties of the gels are changed by increasing the PS block lengths. Gels with short PS blocks soften upon heating at lower temperatures compared with the gels with longer PS blocks....

  5. Scaling exponents of star polymers

    OpenAIRE

    von Ferber, Christian; Holovatch, Yurij

    2002-01-01

    We review recent results of the field theoretical renormalization group analysis on the scaling properties of star polymers. We give a brief account of how the numerical values of the exponents governing the scaling of star polymers were obtained as well as provide some examples of the phenomena governed by these exponents. In particular we treat the interaction between star polymers in a good solvent, the Brownian motion near absorbing polymers, and diffusion-controlled reactions involving p...

  6. Photoluminescence of Conjugated Star Polymers

    Science.gov (United States)

    Ferguson, J. B.; Prigodin, N. V.; Epstein, A. J.; Wang, F.

    2000-10-01

    Higher dimensionality "star" polymers provide new properties beyond those found in their linear analogs. They have been used to improving electronic properties for nonlinear optics through exciton transfer and molecular antenna structures for example (M. Kawa, J. M. J. Frechet, Chem. Mater. 10, 286 (1998).). We report on photoluminescence properties of star polymers with a hyperbranched core (both hyperbranched phenlyene and hyperbranched triphenylamine) and polyhexylthiophene arms. The arm is a conjugated oligomer of polythiophene that has been investigated extensively for metallic like conductivity when doped as well as utilized in field effect transistors in its undoped form (A. Tsumara, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986).). The cores are respectively, a nonconjugated polymer in the case of hyperbranched phenlyene and a conjugated polymer in the case of hyperbranched triphenylamine. The photoluminesce spectrum (λ_max at 575 nm) is identical for both star polymers with the two electronically different hyperbranched cores and for linear polythiophene alone. We conclude the wave functions of the core and arms do not strongly interact to form states different from their individual states and excitons formed on the hyperbranched cores migrate to the lower bandgap polythiophene before recombining.

  7. Dynamical heterogeneity of star-polymers

    Science.gov (United States)

    Emamy, Hamed; Chremos, Alexandros; Douglas, Jack; Starr, Francis

    The formation of a glass is one of the most vital features of amorphous polymers. While this subject has been exhaustively studied for linear chain polymers, comparatively little is known about the glass formation of star polymers, one of the most important classes of branched polymers. Using molecular dynamics simulation methods, we study the dynamical heterogeneity of star-polymers. We characterize the cooperative nature of the dynamic properties melts via the non-Gaussian nature of displacements, four-point correlations, clusters of highly mobile monomers, and subsets of string-like monomer motion. We contrast the behavior to that of ordinary linear chains, considering the role of both number of arms and molecular weight. In doing so, we quantify the degree to which the topology of star polymer plays a role in dynamical heterogeneity.

  8. Scaling model for symmetric star polymers

    Science.gov (United States)

    Ramachandran, Ram; Rai, Durgesh K.; Beaucage, Gregory

    2010-03-01

    Neutron scattering data from symmetric star polymers with six poly (urethane-ether) arms, chemically bonded to a C-60 molecule are fitted using a new scaling model and scattering function. The new scaling function can describe both good solvent and theta solvent conditions as well as resolve deviations in chain conformation due to steric interactions between star arms. The scaling model quantifies the distinction between invariant topological features for this star polymer and chain tortuosity which changes with goodness of solvent and steric interaction. Beaucage G, Phys. Rev. E 70 031401 (2004).; Ramachandran R, et al. Macromolecules 41 9802-9806 (2008).; Ramachandran R, et al. Macromolecules, 42 4746-4750 (2009); Rai DK et al. Europhys. Lett., (Submitted 10/2009).

  9. Star polymer unimicelles on graphene oxide flakes.

    Science.gov (United States)

    Choi, Ikjun; Kulkarni, Dhaval D; Xu, Weinan; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2013-08-06

    We report the interfacial assembly of amphiphilic heteroarm star copolymers (PSnP2VPn and PSn(P2VP-b-PtBA)n (n = 28 arms)) on graphene oxide flakes at the air-water interface. Adsorption, spreading, and ordering of star polymer micelles on the surface of the basal plane and edge of monolayer graphene oxide sheets were investigated on a Langmuir trough. This interface-mediated assembly resulted in micelle-decorated graphene oxide sheets with uniform spacing and organized morphology. We found that the surface activity of solvated graphene oxide sheets enables star polymer surfactants to subsequently adsorb on the presuspended graphene oxide sheets, thereby producing a bilayer complex. The positively charged heterocyclic pyridine-containing star polymers exhibited strong affinity onto the basal plane and edge of graphene oxide, leading to a well-organized and long-range ordered discrete micelle assembly. The preferred binding can be related to the increased conformational entropy due to the reduction of interarm repulsion. The extent of coverage was tuned by controlling assembly parameters such as concentration and solvent polarity. The polymer micelles on the basal plane remained incompressible under lateral compression in contrast to ones on the water surface due to strongly repulsive confined arms on the polar surface of graphene oxide and a preventive barrier in the form of the sheet edges. The densely packed biphasic tile-like morphology was evident, suggesting the high interfacial stability and mechanically stiff nature of graphene oxide sheets decorated with star polymer micelles. This noncovalent assembly represents a facile route for the control and fabrication of graphene oxide-inclusive ultrathin hybrid films applicable for layered nanocomposites.

  10. Free Surface Relaxations of Star Shaped Polymer Films

    Energy Technology Data Exchange (ETDEWEB)

    Glynos, Emmanoui; Johnson, Kyle J.; Frieberg, Bradley R.; Chremos, Alexandros; Narayanan, Suresh; Sakellariou, Georgios; Green, Peter F.

    2017-11-28

    The surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 degrees above the bulk glass transition temperature Tgbulk. This behavior, exhibited by star-shaped polystyrenes (SPSs) with functionality f = 8-arms and molecular weights per arm Marm < Me (Me is the entanglement molecular weight), is shown by molecular dynamics simulations to be associated with a preferential localization of these macromolecules at the free surface. This new phenomenon is in notable contrast to that of linear chain polymer thin film systems where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk Tgbulk. Evidence of the slow surface dynamics, compared to the bulk, for temperatures well above Tg and at length and time scales not associated with the glass transition has not previously been reported for polymers

  11. Free Surface Relaxations of Star-Shaped Polymer Films

    Energy Technology Data Exchange (ETDEWEB)

    Glynos, Emmanouil; Johnson, Kyle J.; Frieberg, Bradley; Chremos, Alexandros; Narayanan, Suresh; Sakellariou, Georgios; Green, Peter F.

    2017-11-01

    The surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 K above the bulk glass transition temperature Tgbulk. This behavior, exhibited by star-shaped polystyrenes with functionality f=8 arms and molecular weights per arm Marmassociated with a preferential localization of these macromolecules at the free surface. This new phenomenon is in notable contrast to that of linear-chain polymer thin film systems, where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk Tgbulk. Evidence of the slow surface dynamics, compared to the bulk, for temperatures well above Tg and at length and time scales not associated with the glass transition has not previously been reported for polymers.

  12. Dual Functional Star Polymers for Lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Cosimbescu, Lelia; Robinson, Joshua W.; Zhou, Yan; Qu, Jun

    2016-09-12

    Star-shaped poly(alkyl methacrylate)s (PAMAs) with a 3-arm architecture were designed, prepared and their performance as a dual additive (viscosity index improver and friction modifier) for engine oils was evaluated. Furthermore, the structure-property relationships between macromolecular structure and lubricant performance were studied. Several co-polymers of dodecylmethacrylate with polar methacrylates in various amounts and various topologies, were synthesized as model compounds. Star polymers with a polar content of at least 10% effectively reduced the friction coefficient in both mixed and boundary lubrication regime only in block or tapered block topology. However, a polar content of 20% was efficient in reducing friction in both random and block topologies.

  13. Network formation and gelation in telechelic star polymers.

    Science.gov (United States)

    Wadgaonkar, Indrajit; Chatterji, Apratim

    2017-02-28

    We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.

  14. Nano-Star-Shaped Polymers for Drug Delivery Applications.

    Science.gov (United States)

    Yang, Da-Peng; Oo, Ma Nwe Nwe Linn; Deen, Gulam Roshan; Li, Zibiao; Loh, Xian Jun

    2017-09-12

    With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. STRUCTURE AND DYNAMICS OF IRREGULAR MULTIARM STAR POLYMERS

    Directory of Open Access Journals (Sweden)

    D.Vlassopoulos

    2002-01-01

    Full Text Available Melt properties of highly branched star polymers consisting of a 1,2-polybutadiene core and nearly 270 arms of 1,4-polybutadiene with varying sizes have been investigated using small angle X-ray scattering (SAXS and dynamic rheological measurements in the linear viscoelastic limit. Despite their difference in internal structure compared to the regular stars with 128 arms and spherical dendritic core, these polymers exhibit the same features: a liquid-like ordering resulting from their specific intramolecular monomer density distribution. This leads to a dual terminal viscoelastic relaxation, consisting of a fast arm relaxation and a slow structural relaxation mechanisms. Both modes conform quantitatively to the generic behaviour of multiarm star polymers, suggesting a universality of the behaviour of highly branched macromolecular objects.

  16. Coarse graining of star-polymer - colloid nanocomposites

    Science.gov (United States)

    Marzi, Daniela; Likos, Christos N.; Capone, Barbara

    2012-07-01

    We consider mixtures of self-avoiding multiarm star polymers with hard colloids that are smaller than the star polymer size. By employing computer simulations, and by extending previous theoretical approaches, developed for the opposite limit of small star polymers [A. Jusufi et al., J. Phys.: Condens. Matter 13, 6177 (2001), 10.1088/0953-8984/13/28/303], we coarse-grain the mixture by deriving an effective cross-interaction between the unlike species. The excellent agreement between theory and simulation for all size ratios examined demonstrates that the theoretical approaches developed for the colloidal limit can be successfully modified to maintain their validity also for the present case of the protein limit, in contrast to the situation for mixtures of colloids and linear polymers. We further analyze, on the basis of the derived interactions, the non-additivity parameter of the mixture as a function of size ratio and star functionality and delineate the regions in which we expect mixing as opposed to demixing behavior. Our results are relevant for the study of star-colloid nanocomposites and pave the way for further investigations of the structure and thermodynamics of the same.

  17. Coarse graining of star-polymer--colloid nanocomposites.

    Science.gov (United States)

    Marzi, Daniela; Likos, Christos N; Capone, Barbara

    2012-07-07

    We consider mixtures of self-avoiding multiarm star polymers with hard colloids that are smaller than the star polymer size. By employing computer simulations, and by extending previous theoretical approaches, developed for the opposite limit of small star polymers [A. Jusufi et al., J. Phys.: Condens. Matter 13, 6177 (2001)], we coarse-grain the mixture by deriving an effective cross-interaction between the unlike species. The excellent agreement between theory and simulation for all size ratios examined demonstrates that the theoretical approaches developed for the colloidal limit can be successfully modified to maintain their validity also for the present case of the protein limit, in contrast to the situation for mixtures of colloids and linear polymers. We further analyze, on the basis of the derived interactions, the non-additivity parameter of the mixture as a function of size ratio and star functionality and delineate the regions in which we expect mixing as opposed to demixing behavior. Our results are relevant for the study of star-colloid nanocomposites and pave the way for further investigations of the structure and thermodynamics of the same.

  18. Simulated Associating Polymer Networks

    Science.gov (United States)

    Billen, Joris

    Telechelic associating polymer networks consist of polymer chains terminated by endgroups that have a different chemical composition than the polymer backbone. When dissolved in a solution, the endgroups cluster together to form aggregates. At low temperature, a strongly connected reversible network is formed and the system behaves like a gel. Telechelic networks are of interest since they are representative for biopolymer networks (e.g. F-actin) and are widely used in medical applications (e.g. hydrogels for tissue engineering, wound dressings) and consumer products (e.g. contact lenses, paint thickeners). In this thesis such systems are studied by means of a molecular dynamics/Monte Carlo simulation. At first, the system in rest is studied by means of graph theory. The changes in network topology upon cooling to the gel state, are characterized. Hereto an extensive study of the eigenvalue spectrum of the gel network is performed. As a result, an in-depth investigation of the eigenvalue spectra for spatial ER, scale-free, and small-world networks is carried out. Next, the gel under the application of a constant shear is studied, with a focus on shear banding and the changes in topology under shear. Finally, the relation between the gel transition and percolation is discussed.

  19. CHAPTER 1. Miktoarm Star (µ-Star) Polymers: A Successful Story

    KAUST Repository

    Iatrou, Hermis

    2017-04-13

    The term miktoarm stars (coming from the Greek word μιτσ meaning mixed) was adopted in 1992 by our group for star polymers with either chemical (e.g., AB), molecular weight (e.g., AA′), topological (e.g., (AB)-junction-(BA)), or functional group (e.g., AA) asymmetry. The first μ-stars synthesized by anionic polymerization, on the one hand, guided polymer chemists working with other types of polymerization techniques towards this direction and, on the other hand, helped polymer physicists to carry out experiments and develop theories on the influence of the architecture on the morphology of block copolymers. Synthetic strategies based on anionic polymerization, as well as a few examples showing the influence of the miktoarm structure on the morphology of block copolymers, are reviewed in this chapter.

  20. Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers.

    Science.gov (United States)

    Ma, Kai; An, Zesheng

    2016-10-01

    A novel type of emulsion gel based on star-polymer-stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well-defined phenol-functionalized core-crosslinked star polymers are synthesized via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization and are used as stabilizers for oil-in-water emulsions. Horseradish-peroxidase-catalyzed polymerization of the phenol moieties in the presence of H2 O2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Neutron Star/Supernova Remnant Associations

    OpenAIRE

    Kaspi, V. M.

    1999-01-01

    The evidence for associations between neutron stars and supernova remnants is reviewed. After summarizing the situation for young radio pulsars, I consider the evidence from associations that young neutron stars can have properties very different from those of radio pulsars. This, though still controversial, shakes our simple perception of the Crab pulsar as prototypical of the young neutron star population.

  2. Thermodynamics of star polymer solutions: A coarse-grained study

    Science.gov (United States)

    Menichetti, Roberto; Pelissetto, Andrea; Randisi, Ferdinando

    2017-06-01

    We consider a coarse-grained (CG) model with pairwise interactions, suitable to describe low-density solutions of star-branched polymers of functionality f. Each macromolecule is represented by a CG molecule with (f + 1) interaction sites, which captures the star topology. Potentials are obtained by requiring the CG model to reproduce a set of distribution functions computed in the microscopic model in the zero-density limit. Explicit results are given for f = 6, 12, and 40. We use the CG model to compute the osmotic equation of state of the solution for concentrations c such that Φp=c /c*≲1 , where c* is the overlap concentration. We also investigate in detail the phase diagram for f = 40, identifying the boundaries of the solid intermediate phase. Finally, we investigate how the polymer size changes with c. For Φp≲0.3 , polymers become harder as f increases at fixed reduced concentration c /c*. On the other hand, for Φp≳0.3 , polymers show the opposite behavior: At fixed Φp, the larger the value of f, the larger their size reduction is.

  3. Self and collective dynamics of ordered star polymer solutions

    CERN Document Server

    Stellbrink, J; Monkenbusch, M; Richter, D; Ehlers, G; Schleger, P

    2002-01-01

    We investigated the dynamics of 18-arm polyisoprene star polymer solutions well above their overlap concentration c sup *. Combining neutron spin echo spectroscopy (NSE) and selective H/D labelling, we were able to separate inter- (collective) and intra-star (self) dynamics. Only at low Q-vectors do self and collective dynamics become discernible. Here, collective dynamics are found to be consistent with a colloidal approach resulting from star-star interactions. The collective short time diffusion coefficient D sub e sub f sub f is well described by the term D sub 0 /S(Q), with D sub 0 the diffusion coefficient at infinite dilution. At Q sub m , the peak position in the structure factor S(Q), no difference is observable between collective and self dynamics. For covering the slowed-down dynamics at Q sub m the time range of NSE was extended for the first time up to 350 ns using long wavelengths, lambda=19 A, at IN15 (ILL, Grenoble). We found that S(Q,t)/S(Q,0) relaxes into a concentration-dependent plateau. T...

  4. STAR POLYMER/WATER SOLUTIONS: NEW EXPERIMENTAL FINDINGS

    Directory of Open Access Journals (Sweden)

    C.Branca

    2002-01-01

    Full Text Available The purpose of the present work is to highlight a number of recent experimental results that have contributed significantly to the research area of star polymer. Firstly we will refer to a very impressive SANS work by J.Peyrelasse, C.Perreur, J.-P.Habas and J.Francois which is focused on the study of the structural properties of aqueous solutions of a star copolymer of PEO and PPO by Small Angle Neutron Scattering. Next, we will refer to some experimental advances reported in the work by R.Triolo, V.Arrighi, A.Triolo, P.Migliardo, S.Magazu, J.B.McClain, D.Betts, J.M.DeSimone, H.D.Middendorf, which deals with a study of some dynamical properties of PS-b-PFOA aggregates in supercritical CO2 by Quasi Elastic Neutron Scattering.

  5. Interferometry of binary stars using polymer optical fibres

    Science.gov (United States)

    Arregui, L.; Illarramendi, M. A.; Zubia, J.; Hueso, R.; Sánchez-Lavega, A.

    2017-07-01

    We show a laboratory experiment in which students can learn the use of interferometry as a valuable tool in astronomy. We detail experiments based on the use of the classic Michelson stellar interferometer able to reproduce the size of single stars and to characterize double star systems. Stellar sources, single and double, are reproduced by a laser light emerging from the circular end faces of one or two step-index polymer optical fibres. Light coming from the fibre end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference fringes. The measurement of the fringe visibilities allows us to estimate both the diameters of the simulated stars and the separation between them, with errors lower than 18% for a range of light sources that can recreate the apparent size of the outer Solar System planets Uranus and Neptune and the binary properties of the Alpha Centauri system. The exercises here described illustrate the optical principles of spatial interferometry and can be integrated into courses on astronomy, optics or space science, with close interaction between theory and experiment.

  6. Viscoelasticity, nonlinear shear start-up, and relaxation of entangled star polymers

    KAUST Repository

    Snijkers, Frank

    2013-07-23

    We report on a detailed rheological investigation of well-defined symmetric entangled polymer stars of low functionality with varying number of arms, molar mass of the arms, and solvent content. Emphasis is placed on the response of the stars in simple shear, during start-up, and for relaxation upon flow cessation. To reduce experimental artifacts associated with edge fracture (primarily) and wall slip, we employ a homemade cone-partitioned plate fixture which was successfully implemented in recent studies. Reliable data for these highly entangled stars could be obtained for Weissenberg numbers below 300. The appearance of a stress overshoot during start-up with a corresponding strain approaching a value of 2 suggests that in the investigated shear regime the stars orient but do not stretch. This is corroborated by the fact that the empirical Cox-Merx rule appears to be validated, within experimental error. On the other hand, the (shear) rate dependent steady shear viscosity data exhibit a slope smaller than the convective constraint release slope of -1 (for linear polymers) for the investigated range of rates. The broadness of the stress overshoot reflects the broad linear relaxation spectrum of the stars. The initial stress relaxation rate, reflecting the initial loss of entanglements due to the action of convective constraint release in steady shear flow, increases with Weissenberg number. More importantly, when compared against the relevant rates for comb polymers with relatively short arms, the latter are slower at larger Weissenberg numbers. At long times, the relaxation data are consistent with the linear viscoelastic data on these systems. © 2013 American Chemical Society.

  7. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion.

    Science.gov (United States)

    Totani, Masayasu; Ando, Tsuyoshi; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Kuroda, Kenichi; Tanihara, Masao

    2014-09-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78-88% relative to noncoated PET surface) and Escherichia coli (94-97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria.

  8. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    Science.gov (United States)

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  9. Role of hydrophilicity and length of diblock arms for determining star polymer physical properties.

    Science.gov (United States)

    Felberg, Lisa E; Brookes, David H; Head-Gordon, Teresa; Rice, Julia E; Swope, William C

    2015-01-22

    We present a molecular simulation study of star polymers consisting of 16 diblock copolymer arms bound to a small adamantane core by varying both arm length and the outer hydrophilic block when attached to the same hydrophobic block of poly-δ-valerolactone. Here we consider two biocompatible star polymers in which the hydrophilic block is composed of polyethylene glycol (PEG) or polymethyloxazoline (POXA) in addition to a polycarbonate-based polymer with a pendant hydrophilic group (PC1). We find that the different hydrophilic blocks of the star polymers show qualitatively different trends in their interactions with aqueous solvent, orientational time correlation functions, and orientational correlation between pairs of monomers of their polymeric arms in solution, in which we find that the PEG polymers are more thermosensitive compared with the POXA and PC1 star polymers over the physiological temperature range we have investigated.

  10. Disorder effects on the static scattering function of star branched polymers

    Directory of Open Access Journals (Sweden)

    V. Blavatska

    2012-10-01

    Full Text Available We present an analysis of the impact of structural disorder on the static scattering function of f-armed star branched polymers in d dimensions. To this end, we consider the model of a star polymer immersed in a good solvent in the presence of structural defects, correlated at large distances r according to a power law ~r-a. In particular, we are interested in the ratio g(f of the radii of gyration of star and linear polymers of the same molecular weight, which is a universal experimentally measurable quantity. We apply a direct polymer renormalization approach and evaluate the results within the double ϵ = 4 - d, δ = 4 - a-expansion. We find an increase of g(f with an increasing δ. Therefore, an increase of disorder correlations leads to an increase of the size measure of a star relative to linear polymers of the same molecular weight.

  11. STAR POLYMERS IN GOOD SOLVENTS FROM DILUTE TO CONCENTRATED REGIMES: CROSSOVER APPROACH

    Directory of Open Access Journals (Sweden)

    S.B.Kiselev

    2002-01-01

    Full Text Available An introduction is given to the crossover theory of the conformational and thermodynamic properties of star polymers in good solvents. The crossover theory is tested against Monte Carlo simulation data for the structure and thermodynamics of model star polymers. In good solvent conditions, star polymers approach a "universal" limit as N → ∞, however, there are two types of approach towards this limit. In the dilute regime, a critical degree of polymerization N* is found to play a similar role as the Ginzburg number in the crossover theory for critical phenomena in simple fluids. A rescaled penetration function is found to control the free energy of star polymer solutions in the dilute and semidilute regions. This equation of state captures the scaling behaviour of polymer solutions in the dilute/semidilute regimes and also performs well in the concentrated regimes, where the details of the monomer-monomer interactions become important.

  12. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    Science.gov (United States)

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe3O4 nanoparticles with ultrasmall sizes show good T1 or T1+T2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe3O4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe3O4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe3O4 nanoparticles coated with linear polymers, the Fe3O4 nanoparticles coated with star polymers (Fe3O4@GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe3O4@GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe3O4@GCP nanoparticles exhibited less cytotoxicity compared to the Fe3O4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T1 MRI contrast agent, and the MRI relaxivity of Fe3O4@GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe3O4@GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Structure analysis of adsorbed star-like polymers with GISAS and SFM

    CERN Document Server

    Wolkenhauer, M; Wunnicke, O; Stamm, M; Roovers, J; Krosigk, G V; Cubitt, R

    2002-01-01

    The lateral structures of dried adsorbed binary mixtures of star polymers were investigated. Blends of protonated and deuterated polybutadiene stars were prepared from cyclohexane solutions and adsorbed onto silicon substrates. The number of arms and the molecular weight of the arms was varied. With grazing incidence small angle scattering techniques (GISAS) and scanning force microscopy (SFM), different dominant in-plane length scales were determined. The morphology of these structures is dominated by blob-like structures created from single stars or agglomerates of star polymers. (orig.)

  14. Universal shape characteristics for the mesoscopic star-shaped polymer via dissipative particle dynamics simulations

    OpenAIRE

    Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu.; von Ferber, C.

    2017-01-01

    In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the bad, good and $\\theta$-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and ...

  15. Palladium N-Heterocyclic Carbene Precatalyst Site Isolated in the Core of a Star Polymer

    KAUST Repository

    Bukhriakov, Konstantin

    2015-10-02

    An approach for supporting a Pd-NHC complex on a soluble star polymer with nanoscale dimensions is described. The resulting star polymer catalyst exhibits excellent activity in cross-coupling reactions, is stable in air and moisture, and is easily recoverable and recyclable. These properties are distinct and unattainable with the small-molecule version of the same catalyst. © 2015 American Chemical Society.

  16. Determination of the interaction parameter and topological scaling features of symmetric star polymers in dilute solution

    KAUST Repository

    Rai, Durgesh K.

    2015-07-15

    Star polymers provide model architectures to understand the dynamic and rheological effects of chain confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear, Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good solvents. For symmetric star polymers, chain scaling can differ from ν=0.5(df=2) due to excluded volume, steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene stars in deuterated p-xylene.

  17. Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature

    Science.gov (United States)

    Chremos, Alexandros; Glynos, Emmanouil; Green, Peter F.

    2015-01-01

    Structural and dynamical properties of star melts have been investigated with molecular dynamics simulations of a bead-spring model. Star polymers are known to be heterogeneous, but a systematic simulation study of their properties in melt conditions near the glass transition temperature was lacking. To probe their properties, we have expanded from linear to star polymers the applicability of Dobkowski's chain-length dependence correlation function [Z. Dobkowski, Eur. Polym. J. 18, 563 (1982)]. The density and the isokinetic temperature, based on the canonical definition of the laboratory glass-transition, can be described well by the correlation function and a subtle behavior manifests as the architecture becomes more complex. For linear polymer chains and low functionality star polymers, we find that an increase of the arm length would result in an increase of the density and the isokinetic temperature, but high functionality star polymers have the opposite behavior. The effect between low and high functionalities is more pronounced for short arm lengths. Complementary results such as the specific volume and number of neighbors in contact provide further insights on the subtle relation between structure and dynamics. The findings would be valuable to polymer, colloidal, and nanocomposites fields for the design of materials in absence of solution with the desired properties.

  18. SANS structural characterization of fullerenol-derived star polymers in solutions

    CERN Document Server

    Jeng, U S; Wang, L Y; Chiang, L Y; Ho, D L; Han, C C

    2002-01-01

    We have studied the chain conformations of fullerenol-derived star polymers in two organic solvents using small-angle neutron scattering (SANS). The SANS results indicate that the six poly(urethane-ether) arms, chemically bonded on the fullerenol of the C sub 6 sub 0 -based star polymer, have a Gaussian chain conformation in toluene. However, these arms exhibit a pronounced excluded-volume effect in dimethylformamide solutions. We use a scattering model, with the polydispersity of the polymer taken into account, and a fractal model to extract the radius of gyration R sub g values and the persistence lengths of the C sub 6 sub 0 -star polymers in these two organic solutions. (orig.)

  19. Star Polymer-Drug Conjugates with pH-Controlled Drug Release and Carrier Degradation

    Directory of Open Access Journals (Sweden)

    H. Kostková

    2017-01-01

    Full Text Available In this study, we describe the design, synthesis, and physicochemical and preliminary biological characteristics of new biodegradable, high-molecular-weight (HMW drug delivery systems with star-like architectures bearing the cytotoxic drug doxorubicin (DOX attached by a hydrazone bond-containing spacer. The star polymers were synthesized by grafting semitelechelic N-(2-hydroxypropyl methacrylamide (HPMA copolymers on a 2,2-bis(hydroxymethylpropionic acid- (bis-MPA- based polyester dendritic core. The molecular weight of the star polymers ranged from 280 to 450 000 g/mol and could be adjusted by proper selection of the bis-MPA dendrimer generation and by considering the polymer to dendrimer molar ratio. The biodegradation of the polymer conjugates is based on the spontaneous slow hydrolysis of the dendritic core in neutral physiological conditions. Hydrazone spacers in the conjugates were fairly stable at neutral pH (7.4 mimicking blood stream conditions, and DOX was released from the conjugates under mild acidic conditions simulating the tumor cell microenvironment in endosomes and lysosomes (pH 5. Finally, we have shown the significant in vitro cytotoxicity of the star polymer-DOX conjugate on selected cancer cell lines with IC50 values almost comparable with that of the free drug and higher than that observed for a linear polymer-DOX conjugate with much lower molecular weight.

  20. Arm retraction dynamics of entangled star polymers: A forward flux sampling method study.

    Science.gov (United States)

    Zhu, Jian; Likhtman, Alexei E; Wang, Zuowei

    2017-07-28

    The study of dynamics and rheology of well-entangled branched polymers remains a challenge for computer simulations due to the exponentially growing terminal relaxation times of these polymers with increasing molecular weights. We present an efficient simulation algorithm for studying the arm retraction dynamics of entangled star polymers by combining the coarse-grained slip-spring (SS) model with the forward flux sampling (FFS) method. This algorithm is first applied to simulate symmetric star polymers in the absence of constraint release (CR). The reaction coordinate for the FFS method is determined by finding good agreement of the simulation results on the terminal relaxation times of mildly entangled stars with those obtained from direct shooting SS model simulations with the relative difference between them less than 5%. The FFS simulations are then carried out for strongly entangled stars with arm lengths up to 16 entanglements that are far beyond the accessibility of brute force simulations in the non-CR condition. Apart from the terminal relaxation times, the same method can also be applied to generate the relaxation spectra of all entanglements along the arms which are desired for the development of quantitative theories of entangled branched polymers. Furthermore, we propose a numerical route to construct the experimentally measurable relaxation correlation functions by effectively linking the data stored at each interface during the FFS runs. The obtained star arm end-to-end vector relaxation functions Φ(t) and the stress relaxation function G(t) are found to be in reasonably good agreement with standard SS simulation results in the terminal regime. Finally, we demonstrate that this simulation method can be conveniently extended to study the arm-retraction problem in entangled star polymer melts with CR by modifying the definition of the reaction coordinate, while the computational efficiency will depend on the particular slip-spring or slip-link model

  1. Highly fluorescent core-shell hybrid nanoparticles templated by a unimolecular star conjugated polymer for a biological tool.

    Science.gov (United States)

    Qiu, Feng; Zhu, Qi; Tong, Gangsheng; Zhu, Lijuan; Wang, Dali; Yan, Deyue; Zhu, Xinyuan

    2012-12-21

    Highly fluorescent core-shell hybrid nanoparticles were readily fabricated from the soft template of a unimolecular star conjugated polymer (HCP-star-PDMAEMA). Since the hyperbranched conjugated polymer (HCP) core was isolated by a silicon dioxide (SiO(2)) shell, HCP@SiO(2) with excellent optical properties was retained in the aqueous solution for potential application in biological imaging.

  2. Understanding constraint release in star/linear polymer blends

    KAUST Repository

    Shivokhin, M. E.

    2014-04-08

    In this paper, we exploit the stochastic slip-spring model to quantitatively predict the stress relaxation dynamics of star/linear blends with well-separated longest relaxation times and we analyze the results to assess the validity limits of the two main models describing the corresponding relaxation mechanisms within the framework of the tube picture (Doi\\'s tube dilation and Viovy\\'s constraint release by Rouse motions of the tube). Our main objective is to understand and model the stress relaxation function of the star component in the blend. To this end, we divide its relaxation function into three zones, each of them corresponding to a different dominating relaxation mechanism. After the initial fast Rouse motions, relaxation of the star is dominated at intermediate times by the "skinny" tube (made by all topological constraints) followed by exploration of the "fat" tube (made by long-lived obstacles only). At longer times, the tube dilation picture provides the right shape for the relaxation of the stars. However, the effect of short linear chains results in time-shift factors that have never been described before. On the basis of the analysis of the different friction coefficients involved in the relaxation of the star chains, we propose an equation predicting these time-shift factors. This allows us to develop an analytical equation combining all relaxation zones, which is verified by comparison with simulation results. © 2014 American Chemical Society.

  3. Hydrophilic Polymer-associated Ischemic Enterocolitis.

    Science.gov (United States)

    Chavez, Jesus A; Chen, Wei; Frankel, Wendy L; Arnold, Christina A

    2017-02-01

    Hydrophilic polymer coating of medical devices serves to lubricate the device and prevent device-related complications. The coating can be mechanically disrupted and result in downstream injury via presumed thromboembolism. This process has been reported in the brain, heart, lung, and skin, and has been replicated through animal studies and in vitro histologic processing of the polymer coating. We report the first description of hydrophilic polymer-associated ischemic enterocolitis in a series of 7 specimens (small bowel=2, colon=4, aortic thrombus=1) from 3 patients. We report a 4% incidence among all patients with an ischemic bowel resection between April 29, 2014 and August 8, 2016. All patients developed bowel ischemia within 1 day of aortic repair, and all bowel resection specimens showed polymers, mainly in the submucosal vessels in areas of extensive ischemia. The polymers appeared as basophilic, intravascular, serpiginous structures. In a patient who developed acute paralysis after the aortic repair, identical polymers were identified in the aortic thrombus and the ischemic bowel segment. We demonstrate that the polymers display an altered morphology over time and with various graft types, and that the degrading polymers are associated with a foreign body giant cell reaction. Special stains can aid in diagnosis, with the polymers turquoise on a colloidal iron stain, pink on von Kossa and mucicarmine stains, and pale blue on trichrome. Clinical follow-up was available up to 115 weeks: 1 patient died, and 2 are alive and well. In summary, we report a new diagnostic entity to be considered in the differential diagnosis of iatrogenic ischemic injuries in the gastrointestinal tract. Awareness of this entity is important to elucidate the cause of ischemia and to prevent misdiagnosis of the polymers and their associated giant cell reaction as a parasitic infection, granulomatous vasculitis, sarcoidosis, and idiopathic inflammatory bowel disease.

  4. Quantification of interaction and topological parameters of polyisoprene star polymers under good solvent conditions

    KAUST Repository

    Rai, Durgesh K.

    2016-05-05

    Mass fractal scaling, reflected in the mass fractal dimension df, is independently impacted by topology, reflected in the connectivity dimension c, and by tortuosity, reflected in the minimum dimension dmin. The mass fractal dimension is related to these other dimensions by df=cdmin. Branched fractal structures have a higher mass fractal dimension compared to linear structures due to a higher c, and extended structures have a lower dimension compared to convoluted self-avoiding and Gaussian walks due to a lower dmin. It is found, in this work, that macromolecules in thermodynamic equilibrium display a fixed mass fractal dimension df under good solvent conditions, regardless of chain topology. These equilibrium structures accommodate changes in chain topology such as branching c by a decrease in chain tortuosity dmin. Symmetric star polymers are used to understand the structure of complex macromolecular topologies. A recently published hybrid Unified scattering function accounts for interarm correlations in symmetric star polymers along with polymer-solvent interaction for chains of arbitrary scaling dimension. Dilute solutions of linear, three-arm and six-arm polyisoprene stars are studied under good solvent conditions in deuterated p-xylene. Reduced chain tortuosity can be viewed as steric straightening of the arms. Steric effects for star topologies are quantified, and it is found that steric straightening of arms is more significant for lower-molecular-weight arms. The observation of constant df is explained through a modification of Flory-Krigbaum theory for branched polymers.

  5. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Elizabeth Sánchez-Bustos

    2016-01-01

    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  6. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    Science.gov (United States)

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrochemical Interrogation of G3-Poly(propylene thiophenoimine Dendritic Star Polymer in Phenanthrene Sensing

    Directory of Open Access Journals (Sweden)

    Hlamulo R. Makelane

    2015-09-01

    Full Text Available A novel dendritic star-copolymer, generation 3 poly(propylene thiophenoimine (G3PPT-co-poly(3-hexylthiophene (P3HT star co-polymer on gold electrode (i.e., Au|G3PPT-co-P3HT was used as a sensor system for the determination of phenanthrene (PHE. The G3PPT-co-P3HT star co-polymer was synthesized via in situ electrochemical co-polymerization of generation 3 poly (propylene thiophenoimine and poly (3-hexylthiophene on gold electrode. 1HNMR spectroscopy was used to determine the regioregularity of the polymer composites, whereas Fourier transform infrared spectroscopy and scanning electron microscopy were used to study their structural and morphological properties. Au|G3PPT-co-P3HT in the absence of PHE, exhibited reversible electrochemistry attributable to the oligo (thiophene ‘pendants’ of the dendrimer. PHE produced an increase in the voltammetric signals (anodic currents due to its oxidation on the dendritic material to produce catalytic current, thereby suggesting the suitability of the Au|G3PPT-co-P3HT electrode as a PHE sensor. The electrocatalysis of PHE was made possible by the rigid and planar oligo-P3HT species (formed upon the oxidation of the oligo (thiophene pendants of the star-copolymer, which allowed the efficient capture (binding and detection (electrocatalytic oxidation of PHE molecules.

  8. Design and use of organic nanoparticles prepared from star-shaped polymers with reactive end groups.

    Science.gov (United States)

    Van Renterghem, Lieven M; Lammens, Mieke; Dervaux, Bart; Viville, Pascal; Lazzaroni, Roberto; Du Prez, Filip E

    2008-08-13

    Star-shaped poly(isobornyl acrylate) (PiBA) was prepared by atom transfer radical polymerization (ATRP) using multifunctional initiators. The optimal ATRP conditions were determined to minimize star-star coupling and to preserve high end group functionality (>90%). Star-shaped PiBA with a narrow polydispersity index was synthesized with 4, 6, and 12 arms and of varying molecular weight (10,000 to 100,000 g x mol(-1)) using 4 equiv of a Cu(I)Br/PMDETA catalyst system in acetone. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis, NMR spectroscopy, and size exclusion chromatography (SEC) confirmed their controlled synthesis. The bromine end group of each arm was then transformed to a reactive end group by a nucleophilic substitution with methacrylic acid or cinnamic acid (conversion >90%). These reactive star polymers were used to prepare PiBA nanoparticles by intramolecular polymerization of the end groups. The successful preparation of this new type of organic nanoparticles on a multigram scale was proven by NMR spectroscopy and SEC. Subsequently, they have been used as additives for linear, rubbery poly(n-butyl acrylate). Rheology measurements indicated that the viscoelastic properties of the resulting materials can be fine-tuned by changing the amount of incorporated nanoparticles (1-20 wt %), as a result of the entanglements between the nanoparticles and the linear polymers.

  9. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy.

    Science.gov (United States)

    Etrych, Tomáš; Kovář, Lubomír; Strohalm, Jiří; Chytil, Petr; Ríhová, Blanka; Ulbrich, Karel

    2011-09-25

    Herein, new biodegradable star polymer-doxorubicin conjugates designed for passive tumor targeting were investigated, and their synthesis, physico-chemical characterization, drug release, biodegradation, biodistribution and in vivo anti-tumor efficacy are described. In the conjugates, the core formed by poly(amidoamine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin (Dox) attached by hydrazone bonds, which enabled intracellular pH-controlled drug release. The described synthesis facilitated the preparation of biodegradable polymer conjugates in a broad range of molecular weights (200-1000g/mol) while still maintaining low polydispersity (~1.7). The polymer grafts were attached to the dendrimers through either stable amide bonds or enzymatically or reductively degradable spacers, which enabled intracellular degradation of the high-molecular-weight polymer carrier to excretable products. Biodegradability tests in suspensions of EL4 T-cell lymphoma cells showed that the rate of degradation was much faster for reductively degradable conjugates (close to completion within 24h of incubation) than for conjugates linked via an enzymatically degradable oligopeptide GFLG sequence (slow degradation taking several days). This finding was likely due to the differences in steric hindrance in terms of the accessibility of the small molecule glutathione and the bulky enzyme cathepsin B to the polymer substrate. Regarding drug release, the conjugates were fairly stable in buffer at pH 7.4 (model of blood stream) but released doxorubicin under mild acidic conditions that model the tumor cell microenvironment. The star polymer-Dox conjugates exhibited significantly prolonged blood circulation and enhanced tumor accumulation in tumor-bearing mice, indicating the important role of the EPR effect in its anti-cancer activity. The star polymer conjugates showed prominently higher in vivo anti-tumor activities than

  10. Star polymer-drug conjugates with pH-controlled drug release and carrier degradation

    Czech Academy of Sciences Publication Activity Database

    Kostková, Hana; Schindler, Lucie; Kotrchová, Lenka; Kovář, Marek; Šírová, Milada; Kostka, Libor; Etrych, Tomáš

    2017-01-01

    Roč. 2017, 3 January (2017), s. 1-10, č. článku 8675435. ISSN 1687-4110 R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : star conjugate * HPMA copolymer * doxorubicin Subject RIV: CD - Macromolecular Chemistry; EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Microbiology (MBU-M) Impact factor: 1.871, year: 2016

  11. Photocrosslinkable Star Polymers via RAFT-Copolymerizations with N-Ethylacrylate-3,4-dimethylmaleimide

    Directory of Open Access Journals (Sweden)

    Philipp Vana

    2013-06-01

    Full Text Available This paper describes the Z-RAFT-star copolymerization of n-butyl acrylate (BA and N-isopropyl acrylamide (NIPAm, respectively, with N-ethylacrylate-3,4-dimethylmaleimide (1.1, a monomer carrying a UV-reactive unit that undergoes photocrosslinking. Addition of 1.1 slows down the polymerization rate both for BA and for NIPAm polymerization. Double star formation due to radical attack to the 3,4-dimethylmaleimide moiety was found in the case of BA. Dead polymer formation, presumably due to aminolysis as side-reaction, was pronounced in the NIPAm system. These two effects broadened the molar mass distributions, but did not impede the formation of functional star polymers. The composition of the copolymers as well as the reactivity ratios for the applied comonomers were determined via NMR spectroscopy (BA-co-1.1 r1.1 = 2.24 rBA = 0.95; NIPAm-co-1.1 r1.1 = 0.96 rNIPAm = 0.05. In both cases, the comonomer is consumed preferably in the beginning of the polymerization, thus forming gradient copolymer stars with the UV-reactive units being located in the outer sphere.

  12. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers

    Directory of Open Access Journals (Sweden)

    Lin Wu

    2011-01-01

    Full Text Available Reversible addition fragmentation chain transfer (RAFT synthesis and self-assembly of free-base porphyrin cored star polymers are reported. The polymerization, in the presence of a free-base porphyrin cored chain transfer agent (CTA-FBP, produced porphyrin star polymers with controlled molecular weights and narrow polydispersities for a number of monomers including N, N-dimethylacrylamide (DMA and styrene (St. Well-defined amphiphilic star block copolymers, P-(PS-PDMA4 and P-(PDMA-PS4 (P: porphyrin, were also prepared and used for self-assembly studies. In methanol, a selective solvent for PDMA, spherical micelles were observed for both block copolymers as characterized by TEM. UV-vis studies suggested star-like micelles were formed from P-(PS-PDMA4, while P-(PDMA-PS4 aggregated into flower-like micelles. Spectrophotometric titrations indicated that the optical response of these two micelles to external ions was a function of micellar structures. These structure-related properties will be used for micelle studies and functional material development in the future.

  13. NUMERICAL PATH-INTEGRATION CALCULATION OF TRANSPORT PROPERTIES OF STAR POLYMERS AND THETA-DLA AGGREGATES

    Directory of Open Access Journals (Sweden)

    M.L.Mansfield

    2002-01-01

    Full Text Available Although the calculation of transport properties of complex-shaped particles (Smoluchowski rate constants for diffusion-limited reactions, Stokes friction coefficient, virial coefficients for conductivity, viscosity and other transport properties is straightforward in principle, the accurate evaluation of these quantities for objects of general shape is a problem of classic difficulty. In the present paper, we illustrate a recently developed numerical path-integration method to estimate basic transport properties of representative complex-shaped objects having scientific and technological interest (i.e., star polymers and diffusion-limited aggregates without excluded volume interactions. The methodology applies to objects of essentially arbitrary shape and its validation for special geometries, where exact results are known, is described in a previous paper. Here we calculate the electrostatic capacity and electrical polarizability tensor of these model branched polymers and then exploit exact and approximate electrostatic-hydrodynamic property interrelations to estimate the Stokes translational friction coefficient and the virial coefficients for conductivity and shear viscosity (intrinsic conductivity and viscosity, respectively. Dimensionless ratios of these transport properties and equilibrium measures of particle size (radius of gyration are considered since these ratios are important experimentally in determining macromolecular topological structure and universality class. We also discuss and illustrate the influence of the branching architecture on the equilibrium charge distribution ("equilibrium measure" of these branched polymers where they are treated as conductors. An unexpected qualitative change in the charge distribution is found with increasing arm number in star polymers that may have important physical consequences.

  14. Planetary Systems Associated with Main-Sequence Stars.

    Science.gov (United States)

    Brown, H

    1964-09-11

    The luminosity function is used to estimate the number of invisible planet-like objects in the neighborhood of the sun, taking into account the likely chemical composition of planets in relation to the composition of main-sequence stars. There may be about 60 objects more massive than Mars for every visible star. An attempt is made to estimate the distribution of these planet-like cold bodies in relation to stars. It is suggested that stars, together with cold objects, were formed in clusters of bodies of random size distribution. Clusters averaging about 50 bodies each account for the observed distribution of frequencies of double and triple star systems relative to single stars. On this basis, virtually every star should have a planetary system associated with it. As a corollary, systems of cold bodies in which there are no luminous stars should be abundant. The possible distribution of planets around such stars has been studied, making use of the observed orbital characteristics of double star systems. It is concluded that favorable conditions for life processes may be far more abundant than has generally been thought possible.

  15. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes.

    Science.gov (United States)

    Dearnley, Megan; Reynolds, Nicholas P; Cass, Peter; Wei, Xiaohu; Shi, Shuning; Mohammed, A Aalam; Le, Tam; Gunatillake, Pathiraja; Tizard, Mark L; Thang, San H; Hinton, Tracey M

    2016-11-14

    The translation of siRNA into clinical therapies has been significantly delayed by issues surrounding the delivery of naked siRNA to target cells. Here we investigate siRNA delivery by cationic acrylic polymers developed by Reversible Addition-Fragmentation chain Transfer (RAFT) mediated free radical polymerization. We investigated cell uptake and gene silencing of a series of siRNA-star polymer complexes both in the presence and absence of a protein "corona". Using a multidisciplinary approach including quantitative nanoscale mechanical-atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis we have characterized the nanoscale morphology, stiffness, and surface charge of the complexes with and without the protein corona. This is one of the first examples of a comprehensive physiochemical analysis of siRNA-polymer complexes being performed alongside in vitro biological assays, allowing us to describe a set of desirable physical features of cationic polymer complexes that promote gene silencing. Multifaceted studies such as this will improve our understanding of structure-function relationships in nanotherapeutics, facilitating the rational design of polymer-mediated siRNA delivery systems for novel treatment strategies.

  16. Efficient and robust star polymer catalysts for living radical polymerization: cooperative activation in microgel-core reactors.

    Science.gov (United States)

    Terashima, Takaya; Nomura, Akihisa; Ouchi, Makoto; Sawamoto, Mitsuo

    2012-05-14

    Multifunctional microgel-core star polymers with ruthenium catalysts are designed as catalyst-bearing nanoreactors to improve activity, controllability, and functionality tolerance in living radical polymerization. Multifunctional ligands are efficiently incorporated into the core of star polymers by sequential tandem procedures: 1) ruthenium-catalyzed living radical polymerization, 2) in situ core hydrogenation, and 3) core-ruthenium removal. Typically, the star polymer ligands comprising multiple phosphines and amines within the core cooperatively enclose a ruthenium complex (>100 per core). As a result, the in-core pseudo hetero P,N-chelation of the ruthenium complexes not only showed high activity for methyl methacrylate but also high tolerance to unprotected methacrylic acid. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cooling of young neutron stars in GRB associated to supernovae

    Science.gov (United States)

    Negreiros, R.; Ruffini, R.; Bianco, C. L.; Rueda, J. A.

    2012-04-01

    Context. The traditional study of neutron star cooling has been generally applied to quite old objects such as the Crab Pulsar (957 years) or the central compact object in Cassiopeia A (330 years) with an observed surface temperature ~106 K. However, recent observations of the late (t = 108-109 s) emission of the supernovae (SNe) associated to GRBs (GRB-SN) show a distinctive emission in the X-ray regime consistent with temperatures ~107-108 K. Similar features have been also observed in two Type Ic SNe SN 2002ap and SN 1994I that are not associated to GRBs. Aims: We advance the possibility that the late X-ray emission observed in GRB-SN and in isolated SN is associated to a hot neutron star just formed in the SN event, here defined as a neo-neutron star. Methods: We discuss the thermal evolution of neo-neutron stars in the age regime that spans from ~1 min (just after the proto-neutron star phase) all the way up to ages atmosphere for young neutron stars. In this way we match the neo-neutron star luminosity to the observed late X-ray emission of the GRB-SN events: URCA-1 in GRB980425-SN1998bw, URCA-2 in GRB030329-SN2003dh, and URCA-3 in GRB031203-SN2003lw. Results: We identify the major role played by the neutrino emissivity in the thermal evolution of neo-neutron stars. By calibrating our additional heating source at early times to ~1012-1015 erg/g/s, we find a striking agreement of the luminosity obtained from the cooling of a neo-neutron stars with the prolonged (t = 108-109 s) X-ray emission observed in GRB associated with SN. It is therefore appropriate a revision of the boundary conditions usually used in the thermal cooling theory of neutron stars, to match the proper conditions of the atmosphere at young ages. The traditional thermal processes taking place in the crust might be enhanced by the extreme high-temperature conditions of a neo-neutron star. Additional heating processes that are still not studied within this context, such as e+e- pair creation by

  18. Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells

    Science.gov (United States)

    Zou, Yang; He, Zhicai; Zhao, Baofeng; Liu, Yuan; Yang, Chuluo; Wu, Hongbin; Cao, Yong

    2015-11-01

    Two star-shaped oligofluorenes with hexakis(fluoren-2-yl)benzene as core are designed and sythesized for interfacial materials in polymer solar cell. Diethanolamino groups are attached to the side chain of fluorene units for T0-OH and T1-OH to enable the alcohol solubility, and additional hydrophobic n-hexyl chains are also grafted on the increased fluorene arms for T1-OH. In conventional device with PCDTBT/PC71BM as active layer, a 50% enhanced PCE is obtained by incorporating T0-OH and T1-OH as the interlayer compared with device without interlayer. By optimizing the active material with PTB7 and with the inverted device structure, a maximum PCE of 9.30% is achieved, which is among the highest efficiencies for PTB7 based polymer solar cells. The work function of modified electrode, the surface morphology and the suraface properties are systematically studied. By modifying the structures of the star-shaped molecules, a balance between the hydrophobic and hydrophilic property is finely tuned, and thus facilitate the interlayer for high performance of PSCs.

  19. Fluorescent core-shell star polymers based bioassays for ultrasensitive DNA detection by surface plasmon fluorescence spectroscopy.

    Science.gov (United States)

    Feng, Chuan Liang; Yin, Meizhen; Zhang, Di; Zhu, Shenmin; Caminade, Anne Marie; Majoral, Jean Pierre; Müllen, Klaus

    2011-04-19

    Multilayers containing a perylene diimide labelled star polymers (FSP) donor adjacent to phosphorus dendrimer layer on a silver substrate were constructed by layer by layer (LBL) approach. Using Surface Plasmon Enhanced Fluorescence Spectroscopy (SPFS) technique, a time-resolved ultrasensitive and selective detection of DNA targets relying on enhanced optical fields associated with energy transfer (ET) were achieved under the excitation at 543 nm. The detection limit is about 8 orders of magnitude better than the achieved one under the excitation at 632 nm, which is ascribed to no energy transfer from the donor to the acceptor under the excitation at 632 nm, resulting in much weak detection signal in turn. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Transitional Disks Associated With Herbig Stars

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Lomax, J.; Hashimoto, J.; Currie, T.; Okamoto, Y.; Momose, M.; hide

    2015-01-01

    As part of the Strategic Exploration of Exoplanets and Disks with Subaru YSO survey, we have surveyed a number of Herbig B-F stars mainly at H-band using Polarimetric Differential Imaging + Angular differential imaging. Historically, Herbig stars have been sorted by the shape of the IR SEDs into those which can be fit by power laws over 1-200 micrometers (Meeus et al. 2001, group II), and those which can be interpreted as a power law + a blackbody component (Meeus group I) or as transitional or pre-transitional disks (Maaskant et al. 2013). Meeus group II disks, when imaged with HiCIAO show featureless disks with depolarization along the projection of the disk semi-minor axis (Kusakabe et al. 2012). This is what we had expected to see for the Meeus group I disks, except for the addition of wide gaps or central cavities. Instead we find wild diversity, suggesting that transitional disks are highly perturbed compared to Meeus group II disks. To date, similar structure continues to be observed as higher Strehl ratio imagery becomes available.

  1. Conformational and Structural Properties of High Functionality Dendrimer-like Star Polymers Synthesized from Living Polymerization Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pople, John A

    2001-03-22

    The design, synthesis and solution properties of dendritic-linear hybrid macromolecules is described. The synthetic strategy employs living ring-opening polymerization in combination with selective and quantitative organic transformations for the preparation of new molecular architectures similar to classical star polymers and dendrimers. The polymers were constructed from high molecular weight poly(e-caprolactone) initiated from the surface hydroxyl groups of dendrimers derived from bis(hydroxymethyl) propionic acid (bis-MPA) in the presence of stannous 2-ethyl hexanoate (Sn(Oct)2). In this way, star and hyperstar poly(e-caprolactones) were elaborated depending on the generation of dendrimer employed. The ROP from these hydroxy groups was found to be a facile process leading to controlled molecular weight, low dispersity products (Mw/Mn) < 1.15. In addition to the use of dendrimers as building blocks to star polymers, functional dendrons derived from bis-MPA were attached to chain ends of the star polymers, yielding structures that closely resemble that of the most advanced dendrimers. Measurements of the solution properties (hydrodynamic volume vs. molecular weight) on the dendritic-linear hybrids show a deviation from linearity, with a lower than expected hydrodynamic volume, analogous to the solution properties of dendrimers of high generation number. The onset of the deviation begins with the polymers initiated from the second generation dendrimer of bis-MPA and becomes more exaggerated with the higher generations. It was found that polymerization amplifies the nonlinear solution behavior of dendrimers. Small angle neutron scattering (SANS) measurements revealed that the radius of gyration scaled with arm functionality (f) as f 2/3, in accordance with the Daoud-Cotton model for many arm star polymer.

  2. Effect of oligonucleic acid (ONA) backbone features on assembly of ONA-star polymer conjugates: a coarse-grained molecular simulation study.

    Science.gov (United States)

    Condon, Joshua E; Jayaraman, Arthi

    2017-10-04

    Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (Tm) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (Ta) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA Tm in these systems, as the number of ONA-star polymer arms increase, the assembly temperature Ta increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.

  3. Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics

    KAUST Repository

    Zhang, Zhen

    2017-05-19

    Aggregation-induced emission (AIE) active core cross-linked multiarm star polymers, carrying polystyrene (PS), polyethylene (PE), or polyethylene-b-polycaprolactone (PE-b-PCL) arms, have been synthesized through an “arm-first” strategy, by atom transfer radical copolymerization (ATRP) of a double styrene-functionalized tetraphenylethene (TPE-2St) used as a cross-linker with linear arm precursors possessing terminal ATRP initiating moieties. Polyethylene macroinitiator (PE–Br) was prepared via the polyhomologation of dimethylsulfoxonium methylide with triethylborane followed by oxidation/hydrolysis and esterification of the produced PE–OH with 2-bromoisobutyryl bromide; polyethylene-block-poly(ε-caprolactone) diblock macroinitiator was derived by combining polyhomologation with ring-opening polymerization (ROP). All synthesized star polymers showed AIE-behavior either in solution or in bulk. At high concentration in good solvents (e.g., THF, or toluene) they exhibited low photoluminescence (PL) intensity due to the inner filter effect. In sharp contrast to the small molecule TPE-2St, the star polymers were highly emissive in dilute THF solutions. This can be attributed to the cross-linked structure of poly(TPE-2St) core which restricts the intramolecular rotation and thus induces emission. In addition, the PL intensity of PE star polymers in THF(solvent)/n-hexane(nonsolvent) mixtures, due to their nearly spherical shape, increased when the temperature decreased from 55 to 5 °C with a linear response in the range 40–5 °C.

  4. Thermoresponsive Delivery of Paclitaxel by β-Cyclodextrin-Based Poly(N-isopropylacrylamide) Star Polymer via Inclusion Complexation.

    Science.gov (United States)

    Song, Xia; Wen, Yuting; Zhu, Jing-Ling; Zhao, Feng; Zhang, Zhong-Xing; Li, Jun

    2016-12-12

    Paclitaxel (PTX), a hydrophobic anticancer drug, is facing several clinical limitations such as low bioavailability and drug resistance. To solve the problems, a well-defined β-cyclodextrin-poly(N-isopropylacrylamide) star polymer was synthesized and used as a nanocarrier to improve the water solubility and aim to thermoresponsive delivery of PTX to cancer cells. The star polymer was able to form supramolecular self-assembled inclusion complex with PTX via host-guest interaction at room temperature, which is below the low critical solution temperature (LCST) of the star polymer, significantly improving the solubilization of PTX. At body temperature (above LCST), the phase transition of poly(N-isopropylacrylamide) segments induced the formation of nanoparticles, which greatly enhanced the cellular uptake of the polymer-drug complex, resulting in efficient thermoresponsive delivery of PTX. In particular, the polymer-drug complex exhibited better antitumor effects than the commercial formulation of PTX in overcoming the multi-drug resistance in AT3B-1 cells.

  5. Stimulus-responsive hydrogels based on associative polymers

    DEFF Research Database (Denmark)

    Hietala, Sami; Hvilsted, Søren; Jankova Atanasova, Katja

    2008-01-01

    An important group of water soluble polymers are associative ones in which hydrophobic parts of the polymer molecules interact, self-assemble and enhance the viscosity of aqueous solutions even at low polymer concentrations. For many applications it would be beneficial to be able to combine...... the associative behaviour with stimuli-responsiveness. Suitable stimuli include for example temperature, pH, ionic strength or variation of polymer or additive concentration. Developments in the controlled radical polymerization methods has enabled versatile modification of polymer structures, which in tum...... enables design of novel associating polymers. Two different stimuli-responsive hydrogel systems will be discussed. Poly(N-isopropylacrylamide) (PNIPAM) has attracted attention due to its sharp and reversible transition behavior and well-defined demixing temperature in aqueous medium. This however only...

  6. Single-molecule imaging reveals topological isomer-dependent diffusion by 4-armed star and dicyclic 8-shaped polymers

    KAUST Repository

    Habuchi, Satoshi

    2015-04-21

    Diffusion dynamics of topological isomers of polymer molecules was investigated at the single-molecule level in a melt state by employing the fluorophore-incorporated 4-armed star and the corresponding doubly-cyclized, 8-shaped poly(THF) chains. While the single-molecule fluorescence imaging experiment revealed that the diffusion of the 4-armed star polymer was described by a single Gaussian distribution, the diffusion of the 8-shaped polymer exhibited a double Gaussian distribution behaviour. We reasoned that the two 8-shaped polymeric isomers have distinct diffusion modes in the melt state, although ensemble-averaged experimental methods cannot detect differences in overall conformational state of the isomers. The single-molecule experiments suggested that one of the 8-shaped polymeric isomer, having the horizontally oriented form, causes an efficient threading with the linear matrix chains which leads to the slower diffusion compared with the corresponding 4-armed star polymer, while the other 8-shaped polymeric isomer, having the vertically oriented form, displayed faster diffusion by the suppression of effective threading with the linear matrix chains due to its contracted chain conformation.

  7. Solvation of polymers as mutual association. II. Basic thermodynamic properties.

    Science.gov (United States)

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2013-04-28

    The theory of equilibrium solvation of polymers B by a relatively low molar mass solvent A, developed in the simplest form in Paper I, is used to explore some essential trends in basic thermodynamic properties of solvated polymer solutions, such as the equilibrium concentrations of solvated polymers AiB and free solvent molecules A, the mass distribution φ(AiB)(i) of solvated clusters, the extent of solvation of the polymer Φ(solv), the solvation transition lines T(solv)(φB(o)), the specific heat C(V), the osmotic second virial coefficient B2, phase stability boundaries, and the critical temperatures associated with closed loop phase diagrams. We discuss the differences between the basic thermodynamic properties of solvated polymers and those derived previously for hierarchical mutual association processes involving the association of two different species A and B into AB complexes and the subsequent polymerization of these AB complexes into linear polymeric structures. The properties of solvated polymer solutions are also compared to those for solutions of polymers in a self-associating solvent. Closed loop phase diagrams for solvated polymer solutions arise in the theory from the competition between the associative and van der Waals interactions, a behavior also typical for dispersed molecular and nanoparticle species that strongly associate with the host fluid. Our analysis of the temperature dependence of the second osmotic virial coefficient reveals that the theory must be generalized to describe the association of multiple solvent molecules with each chain monomer, and this complex extension of the present model will be developed in subsequent papers aimed at a quantitative rather than qualitative treatment of solvated polymer solutions.

  8. Star-Shaped Thermoresponsive Polymers with Various Functional Groups for Cell Sheet Engineering.

    Science.gov (United States)

    Sudo, Yu; Kawai, Ryuki; Sakai, Hideaki; Kikuchi, Ryohei; Nabae, Yuta; Hayakawa, Teruaki; Kakimoto, Masa-Aki

    2018-01-16

    This study demonstrates the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)-immobilized Petri dishes by drop-casting a star-shaped copolymer of hyperbranched polystyrene (HBPS) possessing PNIPAM arms (HBPS-g-PNIPAM) functionalized with polar groups. HBPS was synthesized via reversible addition-fragmentation chain transfer (RAFT) self-condensing vinyl polymerization (SCVP), and HBPS polymers with different terminal structures were prepared by changing the monomer structure. HBPS-g-PNIPAM was synthesized by the grafting of PNIPAM from each terminal of HBPS. To tune the cell adhesion and detachment properties, polar functional groups such as carboxylic acid and dimethylamino groups were introduced to HBPS-g-PNIPAM. Based on surface characterization using scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements, the advantage of the hyperbranched structure for the PNIPAM immobilization was evident in terms of the uniformity, stability, and thermoresponsiveness. Successful cell sheet harvesting was demonstrated on dishes coated with HBPS-g-PNIPAM. In addition, the cell adhesion and detachment properties could be tuned by the introduction of polar functional groups.

  9. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators

    DEFF Research Database (Denmark)

    Jankova, Katja Atanassova; Bednarek, Melania; Hvilsted, Søren

    2005-01-01

    Multifunctional initiators for atom transfer radical polymerization (ATRP) are prepared by converting ditrimethylolpropane with four hydroxyl groups, dipentaerythritol with six hydroxyl groups, and poly(3-ethyl-3-hydroxymethyl-oxetane) with similar to 11 hydroxyl groups to the corresponding 2......-bromoisobutyrates or 2-bromopropionates as obtained by reaction with acid bromides. Star polystyrene (PS) is produced by using these macroinitiators and neat styrene in a controlled manner by ATRP at 110 degrees C, employing the catalytic system CuBr and bipyridine. M. up to 51,000 associated with narrow molecular...

  10. A soluble star-shaped silsesquioxane-cored polymer-towards novel stabilization of pH-dependent high internal phase emulsions.

    Science.gov (United States)

    Xing, Yuxiu; Peng, Jun; Xu, Kai; Gao, Shuxi; Gui, Xuefeng; Liang, Shengyuan; Sun, Longfeng; Chen, Mingcai

    2017-08-30

    A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T10) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water. We explored the properties of the CMSQ/PDMA star-shaped polymer using the characteristic results of nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), dynamic light scattering (DLS), and zeta potential and conductivity measurements. The interfacial tension results showed that the CMSQ/PDMA star-shaped polymer reduced the interfacial tension between water and oil in a pH-dependent manner. Gelled high internal phase emulsions (HIPEs) including o/w and w/o types were formed in the pH ranges of 1.2-5.8 and 9.1-12.3 with the CMSQ/PDMA star-shaped polymer as a stabilizer, when the oil fractions were 80-90 vol% and 10-20 vol%, respectively. The soluble star-shaped polymer aggregated spontaneously to form a microgel that adsorbed to the two immiscible phases. Images of the fluorescently labeled polymers demonstrated that there was a star-shaped polymer in the continuous phase, and the non-Pickering stabilization based on the percolating network of the star-shaped polymer also contributed to the stabilization of the HIPE. This pH-dependent HIPE was prepared with a novel stabilization mechanism consisting of microgel adsorption and non-Pickering stabilization. Moreover, the preparation of HIPEs provided the possibility of their application in porous materials and responsive materials.

  11. Solvation of polymers as mutual association. I. General theory

    Science.gov (United States)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2013-04-01

    A Flory-Huggins (FH) type lattice theory of self-assembly is generalized to describe the equilibrium solvation of long polymer chains B by small solvent molecules A. Solvation is modeled as a thermally reversible mutual association between the polymer and a relatively low molar mass solvent. The FH Helmholtz free energy F is derived for a mixture composed of the A and B species and the various possible mutual association complexes AiB, and F is then used to generate expressions for basic thermodynamic properties of solvated polymer solutions, including the size distribution of the solvated clusters, the fraction of solvent molecules contained in solvated states (an order parameter for solvation), the specific heat (which exhibits a maximum at the solvation transition), the second and the third osmotic virial coefficients, and the boundaries for phase stability of the mixture. Special attention is devoted to the analysis of the "entropic" contribution χs to the FH interaction parameter χ of polymer solutions, both with and without associative interactions. The entropic χs parameter arises from correlations associated with polymer chain connectivity and disparities in molecular structure between the components of the mixture. Our analysis provides the first explanation of the longstanding enigma of why χs for polymer solutions significantly exceeds χs for binary polymer blends. Our calculations also reveal that χs becomes temperature dependent when interactions are strong, in sharp contrast to models currently being used for fitting thermodynamic data of associating polymer-solvent mixtures, where χs is simply assumed to be an adjustable constant based on experience with solutions of homopolymers in nonassociating solvents.

  12. Empirical Isochrones for Low Mass Stars in Nearby Young Associations

    Science.gov (United States)

    Herczeg, Gregory J.; Hillenbrand, Lynne A.

    2015-07-01

    Absolute ages of young stars are important for many issues in pre-main-sequence stellar and circumstellar evolution but long have been recognized as difficult to derive and calibrate. In this paper, we use literature spectral types and photometry to construct empirical isochrones in Hertzsprung-Russell diagrams for low mass stars and brown dwarfs in the η Cha, ɛ Cha, and TW Hya Associations and the β Pic and Tuc-Hor Moving Groups. A successful theory of pre-main-sequence evolution should match the shapes of the stellar loci for these groups of young stars. However, when comparing the combined empirical isochrones to isochrones predicted from evolutionary models, discrepancies lead to a spectral type (mass) dependence in stellar age estimates. Improved prescriptions for convection and boundary conditions in the latest models of pre-main-sequence evolution lead to a significantly improved correspondence between empirical and model isochrones, with small offsets at low temperatures that may be explained by observational uncertainties or by model limitations. Independent of model predictions, linear fits to combined stellar loci of these regions provide a simple empirical method to order clusters by luminosity with a reduced dependence on spectral type. Age estimates calculated from various sets of modern models that reproduce Li depletion boundary ages of the β Pic Moving Group also imply a ˜4 Myr age for the low mass members of the Upper Sco OB Association, which is younger than the 11 Myr age that has been recently estimated for intermediate and high mass members.

  13. Alkali/Surfactant/Polymer Flooding in the Daqing Oilfield Class II Reservoirs Using Associating Polymer

    Directory of Open Access Journals (Sweden)

    Ru-Sen Feng

    2013-01-01

    Full Text Available Hydrophobically modified associating polyacrylamide (HAPAM has good compatibility with the Daqing heavy alkylbenzene sulfonate surfactant. The HAPAM alkali/surfactant/polymer (ASP system can generate ultralow interfacial tension in a wide range of alkali/surfactant concentrations and maintain stable viscosity and interfacial tension for 120 days. The HAPAM ASP system has good injectivity for the Daqing class II reservoirs (100–300 × 10−3 μm2 and can improve oil recovery by more than 25% on top of water flooding. In the presence of both the alkali and the surfactant, the surfactant interacts with the associating groups of the polymer to form more micelles, which can significantly enhance the viscosity of the ASP system. Compared with using HPAM (Mw = 2.5 MDa, using HAPAM can reduce the polymer use by more than 40%.

  14. Anti-Lymphoma Efficacy Comparison of Anti-Cd20 Monoclonal Antibody-Targeted and Non-Targeted Star-Shaped Polymer-Prodrug Conjugates.

    Science.gov (United States)

    Lidický, Ondřej; Janoušková, Olga; Strohalm, Jiří; Alam, Mahmudul; Klener, Pavel; Etrych, Tomáš

    2015-11-04

    Here we describe the synthesis and biological properties of two types of star-shaped polymer-doxorubicin conjugates: non-targeted conjugate prepared as long-circulating high-molecular-weight (HMW) polymer prodrugs with a dendrimer core and a targeted conjugate with the anti-CD20 monoclonal antibody (mAb) rituximab (RTX). The copolymers were linked to the dendrimer core or to the reduced mAb via one-point attachment forming a star-shaped structure with a central antibody or dendrimer surrounded by hydrophilic polymer chains. The anticancer drug doxorubicin (DOX) was attached to the N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymer chain in star polymer systems via a pH-labile hydrazone linkage. Such polymer-DOX conjugates were fairly stable in aqueous solutions at pH 7.4, and the drug was readily released in mildly acidic environments at pH 5-5.5 by hydrolysis of the hydrazone bonds. The cytotoxicity of the polymer conjugates was tested on several CD20-positive or negative human cell lines. Similar levels of in vitro cytotoxicity were observed for all tested polymer conjugates regardless of type or structure. In vivo experiments using primary cell-based murine xenograft models of human diffuse large B-cell lymphoma confirmed the superior anti-lymphoma efficacy of the polymer-bound DOX conjugate when compared with the original drug. Targeting with RTX did not further enhance the anti-lymphoma efficacy relative to the non-targeted star polymer conjugate. Two mechanisms could play roles in these findings: changes in the binding ability to the CD-20 receptor and a significant loss of the immunological properties of RTX in the polymer conjugates.

  15. Anti-Lymphoma Efficacy Comparison of Anti-Cd20 Monoclonal Antibody-Targeted and Non-Targeted Star-Shaped Polymer-Prodrug Conjugates

    Directory of Open Access Journals (Sweden)

    Ondřej Lidický

    2015-11-01

    Full Text Available Here we describe the synthesis and biological properties of two types of star-shaped polymer-doxorubicin conjugates: non-targeted conjugate prepared as long-circulating high-molecular-weight (HMW polymer prodrugs with a dendrimer core and a targeted conjugate with the anti-CD20 monoclonal antibody (mAb rituximab (RTX. The copolymers were linked to the dendrimer core or to the reduced mAb via one-point attachment forming a star-shaped structure with a central antibody or dendrimer surrounded by hydrophilic polymer chains. The anticancer drug doxorubicin (DOX was attached to the N-(2-hydroxypropylmethacrylamide (HPMA-based copolymer chain in star polymer systems via a pH-labile hydrazone linkage. Such polymer-DOX conjugates were fairly stable in aqueous solutions at pH 7.4, and the drug was readily released in mildly acidic environments at pH 5–5.5 by hydrolysis of the hydrazone bonds. The cytotoxicity of the polymer conjugates was tested on several CD20-positive or negative human cell lines. Similar levels of in vitro cytotoxicity were observed for all tested polymer conjugates regardless of type or structure. In vivo experiments using primary cell-based murine xenograft models of human diffuse large B-cell lymphoma confirmed the superior anti-lymphoma efficacy of the polymer-bound DOX conjugate when compared with the original drug. Targeting with RTX did not further enhance the anti-lymphoma efficacy relative to the non-targeted star polymer conjugate. Two mechanisms could play roles in these findings: changes in the binding ability to the CD-20 receptor and a significant loss of the immunological properties of RTX in the polymer conjugates.

  16. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine Core and Poly(lactide Multiarms

    Directory of Open Access Journals (Sweden)

    Frida Román

    2017-02-01

    Full Text Available Multiarm star polymers, denoted PEIx-PLAy and containing a hyperbranched poly(ethyleneimine (PEI core of different molecular weights x and poly(lactide (PLA arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and dielectric relaxation spectroscopy (DRS. The glass transition temperature, Tg, is between 48 and 50 °C for all the PEIx-PLAy samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α′ in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub-Tg γ- and β-relaxations and the Vogel–Fulcher–Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the –OH groups of the poly(lactide chains, the β-relaxation with motions of the main chain of poly(lactide, the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α′-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell–Wagner–Sillars type ionic peak because the material may have nano-regions of different conductivity.

  17. Sterilization effects on starPEG coated polymer surfaces: characterization and cell viability.

    Science.gov (United States)

    Lleixà Calvet, Júlia; Grafahrend, Dirk; Klee, Doris; Möller, Martin

    2008-04-01

    Sterilization is frequently an issue for polymeric biomaterials including hydrogels, where autoclaving needs to be discarded, and gamma-irradiation and low temperature hydrogen peroxide gas plasma sterilization are already important alternatives. Coatings based on poly(ethylene glycol) are a well-known strategy to reduce unspecific protein interactions on biomaterial surfaces. Dense, ultrathin coatings of isocyanate terminated star-shaped poly(ethylene glycol) (starPEG) molecules have proven to be resistant to unspecific adsorption of proteins and enable direct biofunctionalization. The effectivity and stability of the starPEG coatings on poly(vinylidene fluoride) (PVDF) were studied after gamma-irradiation (normed dosis 25 kGy) and plasma sterilization (Sterrad 100S). The selected surface properties determined were: surface composition (X-ray photoelectron spectroscopy, XPS), wettability (sessile drop contact angle) and protein adsorption by fluorescence microscopy (Avidin-TexasRed, Bovine Serum Albumin-Rhodamin). Preliminary cell experiments with the cell line L929 were performed prior and after sterilization to investigate the cell repellence of the starPEG coatings as well as cell viability and specific cell adhesion on GRGDS-modified coatings. The starPEG coating undergoes a slight oxidation due to plasma and gamma-sterilization; this represents a minor variation confirmed by XPS and contact angle results. The non-sterilized starPEG and the plasma-sterilized coatings are protein repellent, however the protein adsorption on starPEG coated substrates is much stronger after gamma-sterilization for both avidin and bovine serum albumin. The cell experiments indicate that the starPEG coatings are appliable homogeneously by incubation and are non-cell adherent. Moreover, after both sterilization processes the starPEG coatings remain cell repellent and the GRGDS-modified coatings presented vital cells. Thus we conclude that the plasma sterilization is more convenient

  18. Is there an association between the high-risk medication star ratings and member experience CMS star ratings measures?

    Science.gov (United States)

    Erickson, Sara C; Leslie, R Scott; Patel, Bimal V

    2014-11-01

    Methods to achieve high star ratings for the High-Risk Medication (HRM) measure are thought to result in unintended consequences and to compromise several member experience measures that ultimately put at risk the plan sponsor's Medicare Part D Centers for Medicare Medicaid (CMS) star rating.  To determine if HRM scores are associated with relevant member experience measure scores.  This is a cross-sectional analysis utilizing CMS 2013 and 2014 plan star ratings reports (2011 and 2012 benefit year data) for Medicare Advantage prescription drug (MA-PD) plans and prescription drug plans (PDPs). Medicare contracts with complete data for all measures of interest in 2013 and 2014 star ratings reports were included (N = 443). Bivariate linear regressions were performed for each of 2 independent variables: (1) 2014 HRM score and (2) 2013 to 2014 change in HRM score. Dependent variables were the 2014 scores for "Getting Needed Prescription Drugs," "Complaints about Drug Plan," "Rating of Drug Plan," and "Members Choosing to Leave the Plan." The bivariate linear regressions demonstrated weak positive associations between the 2014 HRM score and each of the 2014 member experience measures that explained 0.5% to 4% (R2) of variance of these measures. The bivariate regressions for the 2013 to 2014 change in the HRM score and 2014 member experience measures of interest demonstrated associations accounting for 1% to 8% of variance (R2). The greatest associations were observed between each independent variable and the 2014 "Getting Needed Prescription Drugs" score with correlation coefficients of 0.21 and 0.29.  HRM star ratings and change in HRM star ratings are weakly correlated with member experience measures in concurrent measurement periods. Plan sponsors may be more aggressive in HRM utilization management, since it is unlikely to negatively impact CMS summary star ratings. 

  19. Effective Viscosity in Porous Media and Applicable Limitations for Polymer Flooding of an Associative Polymer

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2015-11-01

    Full Text Available Hydrophobically associating polyacrylamide (HAPAM is considered to be a promising candidate for polymer flooding because of its excellent apparent viscosifying capability. Compared with partially hydrolyzed polyacrylamide (HPAM, the resistance factor and residual resistance factor caused by HAPAM tend to be higher. However, the effective viscosity of HAPAM is lower than that of conventional polymer at a concentration of 2 000 mg/L. The dynamic retention capacity of HAPAM is about 2.3 times that of HPAM. The oil displacement efficiency of HAPAM is lower than that of conventional polymer at a concentration of 2 000 mg/L in the homogeneous sandpack model. The oil displacement efficiency of HAPAM is higher than that of HPAM only in the heterogeneous model (permeability ratio 2.8. Neither high nor low permeability ratios are good for the oil displacement efficiency of HAPAM.

  20. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine cores of different molecular weight and poly(ε–caprolactone arms

    Directory of Open Access Journals (Sweden)

    C. Acebo

    2015-09-01

    Full Text Available Multiarm star polymers, with a hyperbranched poly(ethyleneimine (PEI core and poly(ε-caprolactone (PCL arms end-capped with acetyl groups were synthesized by ring-opening polymerization of ε-caprolactone from PEI cores of different molecular weight. These star polymers were used as toughening agents for epoxy/anhydride thermosets. The curing process was studied by calorimetry, thermomechanical analysis and infrared spectroscopy. The final properties of the resulting materials were determined by thermal and mechanical tests. The addition of the star polymers led to an improvement up to 130% on impact strength and a reduction in the thermal stresses up to 55%. The structure and molecular weight of the modifier used affected the morphology of the resulting materials. Electron microscopy showed phase-separated morphologies with nano-sized fine particles well adhered to the epoxy/anhydride matrix when the higher molecular weight modifier was used.

  1. Star polymers: study of fluid-fluid transitions in a system with a repulsive ultrasoft-core

    CERN Document Server

    Verso, F L; Reatto, L

    2003-01-01

    We study a model for star polymers in solution which, in addition to the ultrasoft repulsive interaction of entropic origin, has an attractive interpolymer interaction at longer range. This attraction can arise from a suitable tuning of the solvent and solute properties. For this model we study the phase diagram using mean-field theory and two fluid-state theories, the modified hypernetted chain (MHNC) integral equation and the hierarchical reference theory, and we explore star polymers with a different number of arms f (f = 12, 24, 32, 40). All three theories give the same topology for the phase diagram in the presence of attraction. When the strength of the interaction is strong enough a fluid-fluid phase transition appears but the coexistence curve in the density-temperature (strength of attraction) bifurcates at a triple point into two lines of coexistence terminating at two critical points. This peculiar phase behaviour is related to the unusual form of the repulsive contribution V sub r sub e sub p (r):...

  2. Well-defined star-shaped conjugated macroelectrolytes as efficient electron-collecting interlayer for inverted polymer solar cells.

    Science.gov (United States)

    Xu, Weidong; Kan, Zhipeng; Ye, Tengling; Zhao, Li; Lai, Wen-Yong; Xia, Ruidong; Lanzani, Guglielmo; Keivanidis, Panagiotis E; Huang, Wei

    2015-01-14

    A star-shaped monodisperse conjugated macroelectrolyte grafted with cationic side chains, TrNBr, was designed, synthesized, and utilized as efficient electron-collecting cathode interlayers for inverted polymer solar cells. A neutral one composed of identical star-shaped conjugated backbone, TrOH, was also investigated for comparison. The surface properties and the function as interfacial layers on modulating the work function of bottom electrode (indium tin oxide) were systematically studied. Both interfacial electron-selective materials show strongly thickness-dependent performance for inverted polymer solar cells, and the best performance could be achieved via optimizing the thickness with 2.4 nm of TrNBr and 8.7 nm of TrOH. Parallel investigations of optimized TrNBr and TrOH interlayer in inverted architecture with active blend layer of poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) demonstrated a remarkable power conversion efficiency (PCE) enhancement (PCE of 4.88% for TrNBr and 4.74% for TrOH) in comparison with those of conventional noninverted devices using Ca/Al cathodes (3.94%) and inverted devices with sol-gel ZnO buffer layer (4.21%). In addition, the inverted devices using the TrNBr and TrOH interlayer exhibited improved device stability in contrast to conventional noninverted devices using Ca/Al cathodes.

  3. Linear, Star, and Comb Oxidation-Responsive Polymers: Effect of Branching Degree and Topology on Aggregation and Responsiveness.

    Science.gov (United States)

    d'Arcy, Richard; Gennari, Arianna; Donno, Roberto; Tirelli, Nicola

    2016-12-01

    Families of amphiphilic oxidation-responsive polymers (poly(ethylene glycol)-polysulfides) with different architectures (linear, 4, 6, and 8-armed stars and 10, 15, and 20-armed combs) and compositions (variable ethylene sulfide/propylene sulfide ratio) are prepared. In water, all the polymers assemble in spherical micelles, with critical micellar concentrations polymers. Triple-detection gel permeation chromatography (GPC) and asymmetric field flow fractionation (AFFF) with dynamic and static light scattering detection, respectively, show an increasing compaction of the polymeric coil and a strong reduction of the aggregation number with increasing degree of branching. The key finding of this study is that the kinetics of the oxidative response sharply depend on the branching; in particular, it is highlighted that the degree of branching influences the lag time before a response can be observed rather than the speed of the response itself, a phenomenon that is attributed to a branching-dependent solubility of the oxidant in the polysulfide matrix. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Association Between Medicare Summary Star Ratings for Patient Experience and Clinical Outcomes in US Hospitals

    Directory of Open Access Journals (Sweden)

    Stephen Trzeciak MD, MPH

    2016-03-01

    Full Text Available Objective: In 2015, the Centers for Medicare and Medicaid Services (CMS released new summary star ratings for US hospitals based on patient experience. We aimed to test the association between CMS patient experience star ratings and clinical outcomes. Methods: We analyzed risk-adjusted data for more than 3000 US hospitals from CMS Hospital Compare using linear regression. Results: We found that better patient experience was associated with favorable clinical outcomes. Specifically, a higher number of stars for patient experience had a statistically significant association with lower rates of many in-hospital complications. A higher patient experience star rating also had a statistically significant association with lower rates of unplanned readmissions to the hospital within 30 days. Conclusion: Better patient experience according to the CMS star ratings is associated with favorable clinical outcomes. These results support the inclusion of patient experience data in the framework of how hospitals are paid for services.

  5. A Study of Magnetic CP Stars in Open Clusters and Associations with the 6-m Telescope

    Science.gov (United States)

    Romanyuk, I. I.; Semenko, E. A.; Yakunin, I. A.; Kudryavtsev, D. O.

    2017-06-01

    The study of magnetic CP stars in groups of different ages allows us to obtain data on the origin and evolution of large-scale magnetic fields. We selected 17 groups for observation with the 6-m telescope. Here we draw first conclusions from the study of the Orion OB1 association. Six new magnetic stars in it are added to those seventeen that had been known earlier, ten more CP stars were suspected to have fields. A complex structure of the magnetic field in the star HD 34736 has been found, which is indicative of its fossil origin.

  6. Simulations and experiments of self-associating telechelic polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cass, M J; Heyes, D M [Division of Chemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Blanchard, R-L; English, R J [Centre for Water Soluble Polymers, North East Wales Institute of Higher Education, Plas Coch Campus, Mold Road, Wrexham LL11 2AW (United Kingdom)], E-mail: d.heyes@surrey.ac.uk, E-mail: englishr@newi.ac.uk

    2008-08-20

    A Brownian dynamics computer simulation study of a highly coarse-grained model of telechelic associating polymers has been carried out. In a critical concentration range the model produces the so-called 'loops-to-bridges' transition, thought to exist in the experimental systems, in which the two hydrophobic groups are in different micelles, thereby forming a highly interconnected, ultimately percolating, network. The fraction of bridged polymers produced by the model correlates well with the experimental viscosity at corresponding concentrations. The distribution of micelle sizes compares favorably with the predictions of the Meng-Russell free energy theory. The mean cluster size scales well with volume occupancy according to a simple mean-field theory. The stress relaxation function is a stretched exponential at short times and not too high concentrations but develops a longer time plateau in the percolation region, both in agreement with experiment. New experimental data for the concentration dependence of the self-diffusion coefficient, viscosity, elastic modulus and relaxation time of telechelic associative polymers are presented, which show broad qualitative agreement with the simulation data.

  7. Interfacial slip in entrained soap films containing associating hydrosoluble polymer.

    Science.gov (United States)

    Adelizzi, Eric A; Troian, Sandra M

    2004-08-31

    Frankel's law predicts that the thickness of a Newtonian soap film entrained at small capillary number scales as Ca2/3 provided the bounding surfaces are rigid. Previous studies have shown that soap films containing low concentrations of high molecular weight (Mw) polymer can exhibit strong deviations from this scaling at low Ca, especially for associating surfactant-polymer solutions. We report results of extensive measurements by laser interferometry of the entrained film thickness versus Ca for the associating pair SDS/PEO over a large range in polymer molecular weight. Comparison of our experimental results to predictions of hydrodynamic models based on viscoelastic behavior shows poor agreement. Modification of the Frankel derivation by an interfacial slip condition yields much improved agreement. These experiments also show that the slip length increases as where zeta = 0.58 +/- 0.07. This correlation is suggestive of the Tolstoi-Larsen prediction that the slip length increases in proportion to the characteristic size of the fluid constituent despite its original derivation for liquid-solid interfaces.

  8. Hydrophobically Associating Polymers As Rheology Modifiers Polymères hydrophobiquement associatifs comme modificateurs de rhéologie

    Directory of Open Access Journals (Sweden)

    Aubry T.

    2006-12-01

    Full Text Available Hydrophobically associating water-soluble polymers are essentially hydrophilic polymer chains containing a small number of strongly hydrophobic groups, distributed or located at some priviledged sites on the chains. In aqueous media, hydrophobic units tend to associate in order to minimize their exposure to water, leading to reversible intra- and intermolecular hydrophobic junction networks, at even very low polymer concentrations. Such temporary networks influence strongly the linear and nonlinear rheological properties of the solutions and make such polymers candidates as rheology modifiers in aqueous-based formulations such as drilling fluids. In this paper, we present the main rheological characteristics of hydrophobically associating water-soluble polymers, the influence of the presence of a surfactant on their rheological properties and the rheology of solutions containing a mixture of associating and non-associating water-soluble polymers. Les polymères hydrophobiquement associatifs solubles dans l'eau sont essentiellement des chaînes de polymères hydrophiles contenant un petit nombre de groupements fortement hydrophobes répartis ou situés sur certains sites privilégiés des chaînes. En milieux aqueux, les unités hydrophobes tendent à s'associer de manière à réduire leur exposition à l'eau, conduisant à des réticulations de jonctions hydrophobes intra et intermoléculaires réversibles, même à de très faibles concentrations en polymères. De tels réseaux temporaires influencent fortement les propriétés rhéologiques linéaires et non linéaires des solutions et font de tels polymères des candidats comme modificateurs de rhéologie dans des formulations à base d'eau telles que les fluides de forage. Dans cet article, nous étudions les principales propriétés rhéologiques de polymères hydrophobiquement associatifs solubles dans l'eau, l'influence de la présence d'un agent tensio-actif sur leurs propriétés rh

  9. Amino-functionalized alkaline clay with cationic star-shaped polymer as adsorbents for removal of Cr(VI) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yuanfeng, E-mail: panyf@gxu.edu.cn [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Cai, Pingxiong [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Farmahini-Farahani, Madjid [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3 (Canada); Li, Yiduo [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Hou, Xiaobang [School of Environmental Sci & Eng., North China Electric Power University, Baoding 071003 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3 (Canada)

    2016-11-01

    Highlights: • Four-arm cationic star-shaped copolymers were prepared via Atom Transfer Radical Polymerization (ATRP) with pentaerythritol. • Alkaline clay (AC) was immobilized with cationic star polymer (CSP). • CSP-immobilized AC was first used for Cr(VI) removal. • The adsorbent has a higher adsorption capacity than those reported elsewhere. - Abstract: Pentaerythritol (PER) was esterified with 2-bromoisobutyryl bromide to synthesize a four-arm initiator 4Br-PER for atom transfer radical polymerization (ATRP). Star-shaped copolymers (P(AM-co-DMAEMA){sub 4}, CSP) were prepared via ATRP using dimethyl aminoethyl methacrylate (DMAEMA) and acrylamide (AM) as comonomers, while Br-PER and CuBr/2,2′-bipyridine (BPY) as the initiator and the catalyst, respectively. The resulting four-arm initiator and star-shaped polymer (CSP) were characterized with FT-IR, {sup 1}H NMR and Ubbelohde viscometry. Alkaline clay (AC) was immobilized with CSPs to yield amino groups, and the cationic star polymer-immobilized alkaline clay (CSP-AC) was applied to remove Cr(VI) from the aqueous solution in batch experiments. Various influencing factors, including pH, contact time and immobilization amount of CSP on adsorption capacity of CSP-AC for Cr(VI) were also investigated. The results demonstrated that Cr(VI) adsorption was highly pH dependent. The optimized pH value was 4.0. The adsorption isotherms of the adsorbent fit the Langmuir model well, with the maximum adsorption capacity of 137.9 mg/g at 30 °C. The material should be a promising adsorbent for Cr(VI) removal, with the advantages of high adsorption capacity.

  10. Ultracompact HII regions associated with massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.O.S.

    1988-01-01

    This dissertation establishes the physical properties of ultracompact (UC) HII regions and investigates their interaction with the interstellar medium. UC HII regions are small photoionized nebulae produced by massive stars embedded in clouds of molecular gas and dust. New observations have been made using the Very Large Array (VLA) at cm wavelengths and single dish telescopes at mm wavelengths. Data were also collected from the Infrared Astronomical Satellite (IRAS) and from the literature. It is shown that UC HII regions have electron densities {approx gt} 10{sup 4} cm{sup {minus}3}, emission measures {approx gt} 10{sup 7} pc cm{sup {minus}6} and diameters {approx lt} .01 pc. The VLA was used at 2 and 6 cm to identify 75 UC HII regions. Radio continuum brightness distributions with 0.4 inch resolution are presented in the form of contour plots. At high angular resolution five different morphologies were seen: spherical or unresolved (43%), cometary (20%), core-halo (16%), shell (4%) and irregular or multiply peaked (17%). Cometary UC HII regions may be produced by the bow shock of a star moving supersonically through the molecular gas. The total number of UC HII regions found is inconsistent with a UC HII region lifetime of <3 {times} 10{sup 4} years. It is shown that UC HII regions have a characteristic FIR flux density distribution that is very different from typical entries in the IRAS Point Source Catalog. A two-color selection criterion based on the known UC HII regions is developed and when applied to the entire PSC a total of 1708 embedded OB star candidates are found.

  11. Not all stars form in clusters - measuring the kinematics of OB associations with Gaia

    Science.gov (United States)

    Ward, Jacob L.; Kruijssen, J. M. Diederik

    2018-01-01

    It is often stated that star clusters are the fundamental units of star formation and that most (if not all) stars form in dense stellar clusters. In this monolithic formation scenario, low density OB associations are formed from the expansion of gravitationally bound clusters following gas expulsion due to stellar feedback. N-body simulations of this process show that OB associations formed this way retain signs of expansion and elevated radial anisotropy over tens of Myr. However, recent theoretical and observational studies suggest that star formation is a hierarchical process, following the fractal nature of natal molecular clouds and allowing the formation of large-scale associations in-situ. We distinguish between these two scenarios by characterising the kinematics of OB associations using the Tycho-Gaia Astrometric Solution catalogue. To this end, we quantify four key kinematic diagnostics: the number ratio of stars with positive radial velocities to those with negative radial velocities, the median radial velocity, the median radial velocity normalised by the tangential velocity, and the radial anisotropy parameter. Each quantity presents a useful diagnostic of whether the association was more compact in the past. We compare these diagnostics to models representing random motion and the expanding products of monolithic cluster formation. None of these diagnostics show evidence of expansion, either from a single cluster or multiple clusters, and the observed kinematics are better represented by a random velocity distribution. This result favours the hierarchical star formation model in which a minority of stars forms in bound clusters and large-scale, hierarchically-structured associations are formed in-situ.

  12. Associated Polymers, Solvents and Doping Agents to Make Polyaniline Electrospinnable

    Science.gov (United States)

    Bertea, A.; Manea, L. R.; Bertea, A.; Hristian, L.

    2017-06-01

    Polyaniline (PANI) is a conductive polymer that has both metal (electrical, electronic, optical and magnetic properties) and polymer characteristics (low density, low-cost and resistance to chemicals). Polyaniline becomes a conductor by treatment with a dopant that acts by extracting electrons (oxidation) or by inserting electrons (reduction). The reduced solubility of PANI in all common solvents restricts its capacity to be electrospun into uniform fibers. The present paper reviews the methods to increase the solubility of PANI by blending it with other polymers and doping it with organic acids, highlighting the best polymer/solvent couples and doping agents.

  13. Unexpected differences between thermal and photoinitiated cationic curing of a diglycidyl ether of bisphenol A modified with a multiarm star poly(styrene-b-poly(ε-caprolactone polymer

    Directory of Open Access Journals (Sweden)

    J. M. Morancho

    2013-07-01

    Full Text Available The effect of adding a multiarm star poly(styrene-b-poly(ε-caprolactone polymer on the cationic thermal and photoinitiated curing of diglycidyl ether of bisphenol A was studied. This star-polymer decelerated the thermal curing of diglycidyl ether of bisphenol A and modified the final structure of the epoxy matrix. The photocuring was influenced significantly by the addition of the multiarm star. When the proportion of this modifier added was 5%, much more time was necessary for complete photocuring (160 min at 40ºC. In the presence of 10% of modifier, the degree of photocuring reached was very low (0.196 at 120°C. A subsequent thermal post-curing was necessary to cure completely the system. During photocuring in presence of poly(styrene-b-poly(ε-caprolactone, the formation of dormant species, which are reactivated when the temperature increases, takes places. The kinetics of the thermal curing and the photocuring was analyzed using an isoconversional method due to the complexity of the reactive process. Applying this method, it has been confirmed the dependence of activation energy on the degree of conversion. The fracture morphology analyzed by scanning electron microscopy exhibited a second phase originated during photocuring by the presence of the modifier.

  14. Preparation of pH-sensitive amphiphilic block star polymers, their self-assembling characteristics and release behavior on encapsulated molecules

    KAUST Repository

    Song, Xiaowan

    2016-05-28

    Poly(ethylene glycol) (PEG), a polymer with excellent biocompatibility, was widely used to form nanoparticles for drug delivery applications. In this paper, based on PEG, a series of pH-sensitive amphiphilic block star polymers of poly(ethylene glycol)-block-poly(ethoxy ethyl glycidyl ether) (PEG-b-PEEGE) with different hydrophobic length were synthesized by living anionic ring-opening polymerization method. The products were characterized using 1H NMR and gel permeation chromatography. These copolymers could self-assemble in aqueous solution to form micellar structure with controlled morphologies. Transmission electron microscopy showed that the nanoparticles are spherical or rodlike with different hydrophilic mass fractions. The pH response of polymeric aggregates from PEG-b-PEEGE was detected by fluorescence probe technique at different pH. A pH-dependent release behavior was observed and pH-responsiveness of PEG-b-PEEGE was affected by the hydrophobic block length. These results demonstrated that star-shaped polymers (PEG-b-PEEGE) are attractive candidates as anticancer drug delivery carriers. © 2016 Springer-Verlag Berlin Heidelberg

  15. INVERSION SYMMETRY, ARCHITECTURE AND DISPERSITY, AND THEIR EFFECTS ON THERMODYNAMICS IN BULK AND CONFINED REGIONS: FROM RANDOMLY BRANCHED POLYMERS TO LINEAR CHAINS, STARS AND DENDRIMERS

    Directory of Open Access Journals (Sweden)

    P.D.Gujrati

    2002-01-01

    Full Text Available Theoretical evidence is presented in this review that architectural aspects can play an important role, not only in the bulk but also in confined geometries by using our recursive lattice theory, which is equally applicable to fixed architectures (regularly branched polymers, stars, dendrimers, brushes, linear chains, etc. and variable architectures, i.e. randomly branched structures. Linear chains possess an inversion symmetry (IS of a magnetic system (see text, whose presence or absence determines the bulk phase diagram. Fixed architectures possess the IS and yield a standard bulk phase diagram in which there exists a theta point at which two critical lines C and C' meet and the second virial coefficient A2 vanishes. The critical line C appears only for infinitely large polymers, and an order parameter is identified for this criticality. The critical line C' exists for polymers of all sizes and represents phase separation criticality. Variable architectures, which do not possess the IS, give rise to a topologically different phase diagram with no theta point in general. In confined regions next to surfaces, it is not the IS but branching and monodispersity, which becomes important in the surface regions. We show that branching plays no important role for polydisperse systems, but become important for monodisperse systems. Stars and linear chains behave differently near a surface.

  16. Discovery of an X-ray star association in VI Cygni /Cyg OB2/

    Science.gov (United States)

    Harnden, F. R., Jr.; Branduardi, G.; Gorenstein, P.; Grindlay, J.; Rosner, R.; Topka, K.; Elvis, M.; Pye, J. P.; Vaiana, G. S.

    1979-01-01

    A group of six X-ray sources located within 0.4 deg of Cygnus X-3 has been discovered with the Einstein Observatory. These sources have been positively identified and five of them correspond to stars in the heavily obscured OB association VI Cygni. The optical counterparts include four of the most luminous O stars within the field of view and a B5 supergiant. These sources are found to have typical X-ray luminosities of 5 x 10 to the 33rd ergs/s, with temperatures of 10 to the 6.8th K and hydrogen column densities of 10 to the 22nd/sq cm, and therefore comprise a new class of low-luminosity galactic X-ray sources associated with early-type stars.

  17. Tuning the Solubility of Copper Complex in Atom Transfer Radical Self-Condensing Vinyl Polymerizations to Control Polymer Topology via One-Pot to the Synthesis of Hyperbranched Core Star Polymers

    Directory of Open Access Journals (Sweden)

    Zong-Cheng Chen

    2014-09-01

    Full Text Available In this paper, we propose a simple one-pot methodology for proceeding from atom transfer reaction-induced conventional free radical polymerization (AT-FRP to atom transfer self-condensing vinyl polymerization (AT-SCVP through manipulation of the catalyst phase homogeneity (i.e., CuBr/2,2'-bipyridine (CuBr/Bpy in a mixture of styrene (St, 4-vinyl benzyl chloride (VBC, and ethyl 2-bromoisobutyrate. Tests of the solubilities of CuBr/Bpy and CuBr2/Bpy under various conditions revealed that both temperature and solvent polarity were factors affecting the solubility of these copper complexes. Accordingly, we obtained different polymer topologies when performing AT-SCVP in different single solvents. We investigated two different strategies to control the polymer topology in one-pot: varying temperature and varying solvent polarity. In both cases, different fractions of branching revealed the efficacy of varying the polymer topology. To diversify the functionality of the peripheral space, we performed chain extensions of the resulting hyperbranched poly(St-co-VBC macroinitiator (name as: hbPSt MI with either St or tBA (tert-butyl acrylate. The resulting hyperbranched core star polymer had high molecular weights (hbPSt-g-PSt: Mn = 25,000, Đ = 1.77; hbPSt-g-PtBA: Mn = 27,000, Đ = 1.98; hydrolysis of the tert-butyl groups of the later provided a hyperbranched core star polymer featuring hydrophilic poly(acrylic acid segments.

  18. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  19. Quantifying Non-star-formation-associated 8 μm Dust Emission in NGC 628

    Science.gov (United States)

    Crocker, Alison F.; Calzetti, Daniela; Thilker, David A.; Aniano, Gonzalo; Draine, Bruce T.; Hunt, Leslie K.; Kennicutt, Robert C.; Sandstrom, Karin; Smith, J. D. T.

    2013-01-01

    Combining Hα and IRAC images of the nearby spiral galaxy NGC 628, we find that between 30% and 43% of its 8 μm dust emission is not related to recent star formation. Contributions from dust heated by young stars are separated by identifying H II regions in the Hα map and using these areas as a mask to determine the 8 μm dust emission that must be due to heating by older stars. Corrections are made for sub-detection-threshold H II regions, photons escaping from H II regions, and for young stars not directly associated with H II regions (i.e., 10-100 Myr old stars). A simple model confirms that this amount of 8 μm emission can be expected given dust and PAH absorption cross sections, a realistic star formation history, and the observed optical extinction values. A Fourier power spectrum analysis indicates that the 8 μm dust emission is more diffuse than the Hα emission (and similar to observed H I), supporting our analysis that much of the 8 μm-emitting dust is heated by older stars. The 8 μm dust-to-Hα emission ratio declines with galactocentric radius both within and outside of H II regions, probably due to a radial increase in disk transparency. In the course of this work, we have also found that intrinsic diffuse Hα fractions may be lower than previously thought in galaxies, if the differential extinction between H II regions and diffuse regions is taken into account.

  20. Effect of sodium dodecyl benzene sulfonate on water-soluble hydrophobically associating polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Dong, M. [University of Regina, Faculty of Engineering, Regina, SK (Canada); Guo, Y. [Southwest Petroleum Institute (China); Xiao, H. [University of New Brunswick, Dept. of Chemical Engineering, Fredericton, NB (Canada)

    2004-02-01

    Water-soluble polymers are widely used in oilfield operations such as drilling, flooding and profile modification. Using the fluorescence probe approach, this paper investigates the effect of sodium dodecyl benzene (SDBS) on the rheological characteristics of the modified hydrophobically associated polymer (HAP) aqueous solutions. Polymer surfactant interactions and formations of hydrophobic domains are also investigated. Results show that the presence of SDBS enhances the structure viscosity of the polymer solution and causes a competition between intra- and intermolecular interaction. Low concentration of SDBS resulted in the cross-linkage of the hydrophobic groups of polymers; high concentrations of SDBS tended to disrupt the associated structures. Fluorescent results showed the ability of SDBS to provide information on the microstructure of solutions, including the generation of microdomains which strengthened the viscosity of the polymer solutions. In low shear rate range, and with SDBS concentration of about 1.0x10{sup 3} mol/L, the polymer solution exhibited significant shear thickening when the HAP concentration ranged from a dilute regime to an entangled semi-dilute regime. Beyond this level of SDBS, the viscosity of the polymer decreased, due to the SDBS molecules inhibiting interactions between polymers by forming micelles around the hydrophobes, causing the disappearance of the intermolecular association, and the disruption of the cross-linking structure. It was concluded that with an achievable high viscosity this system showed high promise as an effective thickener for enhanced oil recovery. 10 refs., 4 figs.

  1. Chemical homogeneity in the Orion Association: Oxygen abundances of B stars

    Directory of Open Access Journals (Sweden)

    Lanz T.

    2012-02-01

    Full Text Available We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994. We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O = 8.78 and a small dispersion of ±0.05, dex which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994: A(O = 8.72 ± 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.

  2. Angular Momentum Evolution of Young Stars in the nearby Scorpius-Centaurus OB Association

    Science.gov (United States)

    Mellon, Samuel N.; Mamajek, Eric E.; Oberst, Thomas E.; Pecaut, Mark J.

    2017-07-01

    We report the results of a study of archival SuperWASP light curves for stars in Scorpius-Centaurus (Sco-Cen), the nearest OB association. We use SuperWASP time-series photometry to extract rotation periods for 189 candidate members of the Sco-Cen complex and verify that 162 of those are members of the classic Sco-Cen subgroups of Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC). This study provides the first measurements of rotation periods explicitly for large samples of pre-main-sequence (pre-MS) stars spanning the UCL and LCC subgroups. Our final sample of 157 well-characterized pre-MS stars spans ages of ˜10-20 Myr, spectral types of ˜F3-M0, and masses of M ≃ 0.3-1.5 {{ M }}⊙ {{N}}. For this sample, we find a distribution of stellar rotation periods with a median of P rot ≃ 2.4 days, an overall range of 0.2 P rot V2394 Oph is a heavily reddened (A V ≃ 5 mag) massive contact binary in the LDN 1689 cloud whose Gaia astrometry is clearly consistent with kinematic membership with the Ophiuchus star-forming region.

  3. The Birth of Massive Stars and Star Clusters

    OpenAIRE

    Tan, Jonathan C.

    2005-01-01

    In the present-day universe, it appears that most, and perhaps all, massive stars are born in star clusters. It also appears that all star clusters contain stars drawn from an approximately universal initial mass function, so that almost all rich young star clusters contain massive stars. In this review I discuss the physical processes associated with both massive star formation and with star cluster formation. First I summarize the observed properties of star-forming gas clumps, then address...

  4. Dynamics of microemulsions bridged with hydrophobically end-capped star polymers studied by neutron spin-echo.

    Science.gov (United States)

    Hoffmann, I; de Molina, Paula Malo; Farago, B; Falus, P; Herfurth, Christoph; Laschewsky, André; Gradzielski, M

    2014-01-21

    The mesoscopic dynamical properties of oil-in-water microemulsions (MEs) bridged with telechelic polymers of different number of arms and with different lengths of hydrophobic stickers were studied with neutron spin-echo (NSE) probing the dynamics in the size range of individual ME droplets. These results then were compared to those of dynamicic light scattering (DLS) which allow to investigate the dynamics on a much larger length scale. Studies were performed as a function of the polymer concentration, number of polymer arms, and length of the hydrophobic end-group. In general it is observed that the polymer bridging has a rather small influence on the local dynamics, despite the fact that the polymer addition leads to an increase of viscosity by several orders of magnitude. In contrast to results from rheology and DLS, where the dynamics on much larger length and time scales are observed, NSE shows that the linear polymer is more efficient in arresting the motion of individual ME droplets. This finding can be explained by a simple simulation, merely by the fact that the interconnection of droplets becomes more efficient with a decreasing number of arms. This means that the dynamics observed on the short and on the longer length scale depend in an opposite way on the number of arms and hydrophobic stickers.

  5. Enzyme-mimicking polymer brush-functionalized surface for combating biomaterial-associated infections

    Science.gov (United States)

    Jiang, Rujian; Xin, Zhirong; Xu, Shiai; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Yan, Shunjie; Luan, Shifang; Yin, Jinghua; Khan, Ather Farooq; Li, Yonggang

    2017-11-01

    Biomaterial-associated infections critically compromise the functionality and performance of the medical devices, and pose a serious threat to human healthcare. Recently, natural DNase enzyme has been recognized as a potent material to prevent bacterial adhesion and biofilm formation. However, the vulnerability of DNase dramatically limits its long-term performance in antibacterial applications. In this work, DNase-mimicking polymer brushes were constructed to mimic the DNA-cleavage activity as well as the macromolecular scaffold of the natural DNase. The bacteria repellent efficacy of DNase-mimicking polymer brush-functionalized surface was comparable to that of the DNase-functionalized surface. More importantly, due to their inherent stability, DNase-mimicking polymer brushes presented the much better performance in inhibiting bacterial biofilm development for prolonged periods of time, as compared to the natural DNase. The as-developed DNase-mimicking polymer brush-functionalized surface presents a promising approach to combat biomaterial-associated infections.

  6. Shear-Induced Heterogeneity in Associating Polymer Gels: Role of Network Structure and Dilatancy

    Science.gov (United States)

    Omar, Ahmad K.; Wang, Zhen-Gang

    2017-09-01

    We study associating polymer gels under steady shear using Brownian dynamics simulation to explore the interplay between the network structure, dynamics, and rheology. For a wide range of flow rates, we observe the formation of shear bands with a pronounced difference in shear rate, concentration, and structure. A striking increase in the polymer pressure in the gradient direction with shear, along with the inherently large compressibility of the gels, is shown to be a crucial factor in destabilizing homogeneous flow through shear-gradient concentration coupling. We find that shear has only a modest influence on the degree of association, but induces marked spatial heterogeneity in the network connectivity. We attribute the increase in the polymer pressure (and polymer mobility) to this structural reorganization.

  7. [Sea star (Asteroidea) association structures on the rocky reef in the Gulf of California, Mexico].

    Science.gov (United States)

    Reyes Bonilla, Héctor; González Azcárraga, Adriana; Rojas Sierra, Aracely

    2005-12-01

    Sea stars are invertebrates that play relevant roles in rocky and coral reefs: they occupy different levels in food webs and may act as top predators. There are numerous studies on taxonomy and biogeography of the class in the eastern tropical Pacific, but information about the attributes and composition of its assemblages is scant. The objectives of this study were the examination and comparison of asteroid community structure from four regions of the Gulf of California, Mexico, characterized by the presence of rocky reefs, and the search for possible associations between pairs of species. In August 2004 we visited four locations in the western gulf: Bahia de Los Angeles (29 degrees N), Santa Rosalia (27 degrees N), Loreto (26 degrees N) and La Paz (24 degrees N), and censuses sea stars using 50 m2 belt transects (N=93). Abundance and species richness was estimated, as well as diversity (H'), evenness (J') and taxonomic distinctness (delta*); then, all variables were compared among regions with analysis of variance. In addition, an ordination analysis was run looking for groups of locations with similar faunistic composition. Our results showed that Loreto Bay had the highest richness and abundance of asteroids, probably because it presents a large number of habitats and multiple food sources; these conditions seem to favor the occurrence of rare species and of detritivores. However, there were no significant interregional differences among ecological indices, nor we detected groups of locations singled out because of its species composition. Thus, community structure of sea stars in rocky areas of the Gulf of California is quite homogeneous and do not change with latitude. This is a consequence of the fact that all regions under analysis had the species Phataria unifascialis and Pharia pyramidatus as dominant in number. There were significant positive associations between three pairs of species: apparently competition is not particularly relevant to control sea

  8. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  9. Star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms: synthesis, drug delivery, and in vitro chemo/photodynamic therapy.

    Science.gov (United States)

    Ma, Dong; Liu, Zong-Hua; Zheng, Qian-Qian; Zhou, Xiao-Yan; Zhang, Yi; Shi, Yun-Feng; Lin, Jian-Tao; Xue, Wei

    2013-03-25

    A novel star-shaped polymer, porphyrin-poly(L-lysine) dendrons (PP-PLLD), is synthesized by the click reaction between azido-modified porphyrin and propargyl focal point poly(L-lysine) dendrons. Its chemical structure is characterized by (1) H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and gel permeation chromatography (GPC) is analyses etc. Due to its amphiphilic property, the obtained PP-PLLD has a low critical micelle concentration in an aqueous solution, and can load doxorubicin (DOX) with a loading amount of 64 μg mg(-1) . By in vitro toxicity assay, PP-PLLD has no dark cytotoxicity but has significant phototoxicity. Moreover, DOX-loaded PP-PLLD shows a higher cytotoxicity under the light condition than PP-PLLD or DOX alone, suggesting PP-PLLD has a potential application in combined photodynamic therapy and chemotherapy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photoenhanced gene transfection by a star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms.

    Science.gov (United States)

    Ma, Dong; Zhao, Yi; Zhou, Xiao-Yan; Lin, Qian-Ming; Zhang, Yi; Lin, Jian-Tao; Xue, Wei

    2013-09-01

    A star-shaped polymer (PP-PLLD) consisting of a porphyrin (PP) core and poly(L-lysine) dendron arms (PLLD) is synthesized by the click reaction, and its ability to deliver pEGFP is investigated in this paper. It is found that PP-PLLD has a good buffer capacity and can form compact complexes with pEGFP. In vitro assay indicates that PP-PLLD shows photoenhanced gene transfection efficiency. PP-PLLD consisting of only third generation PLLD shows a higher transfected cell number than PEI under a Xe lamp at the N/P ratio of 20, and meanwhile shows a neglectable cytotoxicity to HeLa cells. Therefore, PP-PLLD with suited irradiation is a promising nontoxic and photoinducible effective gene delivery strategy, which should be encouraged in gene therapy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. M Stars in the TW Hydra Association: A Chandra Large Program Survey

    Science.gov (United States)

    Punzi, Kristina; Kastner, Joel; Principe, David; Stelzer, Beate; Gorti, Uma; Pascucci, Illaria; Argiroffi, Costanza

    2018-01-01

    We have conducted a Cycle 18 Chandra Large Program survey of very cool members of the $\\sim$ 8 Myr-old TW Hydra Association (TWA) to extend our previous study of the potential connections between M star disks and X-rays (Kastner et al. 2016, AJ, 152, 3) to the extreme low-mass end of the stellar initial mass function. The spectral types of our targets extend down to the M/L borderline. Thus we can further investigate the potential connection between the intense X-ray emission from young, low-mass stars and the lifetimes of their circumstellar planet-forming discs, as well as better constrain the age at which coronal activity declines for stellar masses approaching the H-burning limit of $\\sim$ 0.08 M$_{\\odot}$. We present preliminary results from the Cycle 18 survey, including X-ray detection statistics and measurements of relative X-ray luminosities and coronal (X-ray) temperatures for those TWA stars detected by Chandra. This research is supported by SAO/CXC grant GO7-18002A and NASA Astrophysics Data Analysis program grants NNX12AH37G and NNX16AG13G to RIT.

  12. Associative polymers and physical gels derived from natural biopolymers; Polymeres associes et gels physiques derives de biopolymeres naturels

    Energy Technology Data Exchange (ETDEWEB)

    Muller, G.; Huguet, J.; Merle, L.; Grisel, M.; Picton, L.; Bataille, I.; Charpentier, D.; Glinel, K. [CNRS, Polymeres, Biopolymeres et Membranes, Universite de Rouen, 76 - Mont-Saint-Aignan (France)

    1997-04-01

    Polymers are largely used in oil-field operations where the control of rheology of aqueous phases ids of primary importance. Polymers systems showing high viscosity present many advantages as candidates for drilling muds. Associating polymers, i.e. polymers the hydrophilic main chains of which have been properly modified by introducing hydrophobic groups and weak physical ges are good examples of such systems. The different systems chosen to be studied are derived from natural biopolymers. They are: Alkyl derivatives issued from neutral (HEC) and ionic (CMC) cellulosic ether derivatives; alkyl and fluoro alkyl derivatives from neutral (Pull) and ionic (CMP) bacterial polysaccharide pullulane; weak physical gels resulting from complex formation between borate ions and the neutral fungal polysaccharide schizophyllan. The different results are given in tables and figures. (N.C.)

  13. NITROAROMATIC COMPOUND SENSING APPLICATION OF HEXA-ARMED DANSYL END-CAPPED POLY(epsilon-CAPROLACTONE STAR POLYMER WITH PHOSPHAZENE CORE

    Directory of Open Access Journals (Sweden)

    Merve DANDAN DOGANCI

    2016-09-01

    Full Text Available Hexa-armed dansyl end-capped poly(ε-caprolactone star polymer with phosphazene core (N3P3-(PCL-Dansyl6 was prepared in a two-step synthetic procedure including ring opening polymerization (ROP of ε-caprolactone (ε-CL and esterification reactions. The obtained fluorescence-active polymer was employed as a fluorescent probe towards certain nitroaromatic compounds (2,4,6-trinitrotoluene (TNT, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitrotoluene, 3-nitrotoluene, 2,4,6-trinitrophenol (picric acid, 2,4-dinitrophenol, 4-nitrophenol, and 1,2-dinitrobenzene. Fluorescence intensity of N3P3-(PCL-Dansyl6 was decreased gradually upon the addition of nitroaromatic compounds and the highest quenching efficiency was found to be 100% with TNT. Besides, N3P3-(PCL-Dansyl6 gave exceptionally selective response toward nitroaromatic compounds, even in the presence of toxic metal cations such as Pb2+, Co2+, Hg2+, Mn2+, Cd2+ and Zn2+.

  14. Star Excursion Balance Test Anterior Asymmetry Is Associated With Injury Status in Division I Collegiate Athletes.

    Science.gov (United States)

    Stiffler, Mikel R; Bell, David R; Sanfilippo, Jennifer L; Hetzel, Scott J; Pickett, Kristen A; Heiderscheit, Bryan C

    2017-05-01

    Study Design Retrospective cohort. Background Star Excursion Balance Test (SEBT) performance differs by sport in healthy collegiate athletes, and lower extremity injury rates also vary by sport, sex, and athletic exposure. The relationship between SEBT performance and injury risk has not been evaluated with consideration of these additional variables, which may be necessary to fully describe the relationship between SEBT performance and injury risk. Objectives To assess the association between preseason SEBT performance and noncontact injury occurrence to the knee or ankle in Division I collegiate athletes when controlling for sport, sex, and athletic exposure. Methods Star Excursion Balance Test performance, starting status, and injury status were reviewed retrospectively in National Collegiate Athletic Association Division I collegiate athletes from a single institution. A total of 147 athletes were healthy at the time of preseason SEBT testing and either remained healthy (n = 118) or sustained a noncontact injury to the knee or ankle (n = 29) during their sport's subsequent competitive season. Side-to-side asymmetries were calculated in each direction as the absolute difference in reach distance between limbs. Star Excursion Balance Test reach distances and asymmetries were compared between groups using multivariable regression, controlling for sport, sex, and athletic exposure (starter, nonstarter). Receiver operating characteristic curves were used to determine optimal sensitivity and specificity for significant models. Results When controlling for sport, sex, and athletic exposure, SEBT side-to-side asymmetry in the anterior direction, expressed as an absolute or normalized to limb length, discriminated between injured and noninjured athletes (area under the curve greater than 0.82). Conclusion Assessing side-to-side reach asymmetry in the anterior direction of the SEBT may assist in identifying collegiate athletes who are at risk for sustaining noncontact

  15. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    Energy Technology Data Exchange (ETDEWEB)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Nagayama, Takumi; Sunada, Kazuyoshi [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujisawa, Kenta [Department of Physics and Informatics, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512 (Japan); Nakano, Makoto [Faculty of Education and Welfare Science, Oita University, Oita 870-1192 (Japan); Sekido, Mamoru, E-mail: james@milkyway.sci.kagoshima-u.ac.jp [Kashima Space Research Center, National Institute of Information and Communications Technology, 893-1 Hirai, Kashima, Ibaraki 314-8501 (Japan)

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  16. Densovirus associated with sea-star wasting disease and mass mortality

    Science.gov (United States)

    Hewson, Ian; Button, Jason B.; Gudenkauf, Brent M.; Miner, Benjamin; Newton, Alisa L.; Gaydos, Joseph K.; Wynne, Janna; Groves, Cathy L.; Hendler, Gordon; Murray, Michael; Fradkin, Steven; Breitbart, Mya; Fahsbender, Elizabeth; Lafferty, Kevin D.; Kilpatrick, A. Marm; Miner, C. Melissa; Raimondi, Peter T.; Lahner, Lesanna L.; Friedman, Carolyn S.; Danielson, Stephen D.; Haulena, Martin; Marliave, Jeffrey; Burge, Colleen A.; Eisenlord, Morgan E.; Harvell, C. Drew

    2015-01-01

    Populations of at least 20 asteroid species on the Northeast Pacific Coast have recently experienced an extensive outbreak of sea-star (asteroid) wasting disease (SSWD). The disease leads to behavioral changes, lesions, loss of turgor, limb autotomy, and death characterized by rapid degradation (“melting”). Here, we present evidence from experimental challenge studies and field observations that link the mass mortalities to a densovirus (Parvoviridae). Virus-sized material (i.e., killed (i.e., control) virus-sized inoculum remained asymptomatic. Viral metagenomic investigations revealed the sea star-associated densovirus (SSaDV) as the most likely candidate virus associated with tissues from symptomatic asteroids. Quantification of SSaDV during transmission trials indicated that progression of SSWD paralleled increased SSaDV load. In field surveys, SSaDV loads were more abundant in symptomatic than in asymptomatic asteroids. SSaDV could be detected in plankton, sediments and in nonasteroid echinoderms, providing a possible mechanism for viral spread. SSaDV was detected in museum specimens of asteroids from 1942, suggesting that it has been present on the North American Pacific Coast for at least 72 y. SSaDV is therefore the most promising candidate disease agent responsible for asteroid mass mortality.

  17. An Infrared Study of the Circumstellar Material Associated with the Carbon Star R Sculptoris

    Science.gov (United States)

    Hankins, M. J.; Herter, T. L.; Maercker, M.; Lau, R. M.; Sloan, G. C.

    2018-01-01

    The asymptotic giant branch (AGB) star R Sculptoris (R Scl) is one of the most extensively studied stars on the AGB. R Scl is a carbon star with a massive circumstellar shell (M shell ∼ 7.3 × 10‑3 M ⊙) that is thought to have been produced during a thermal pulse event ∼2200 years ago. To study the thermal dust emission associated with its circumstellar material, observations were taken with the Faint Object InfraRed CAMera for the SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 μm. Maps of the infrared emission at these wavelengths were used to study the morphology and temperature structure of the spatially extended dust emission. Using the radiative-transfer code DUSTY, and fitting the spatial profile of the emission, we find that a geometrically thin dust shell cannot reproduce the observed spatially resolved emission. Instead, a second dust component in addition to the shell is needed to reproduce the observed emission. This component, which lies interior to the dust shell, traces the circumstellar envelope of R Scl. It is best fit by a density profile with n ∝ r α , where α ={0.75}-0.25+0.45 and a dust mass of {M}d={9.0}-4.1+2.3× {10}-6 {M}ȯ . The strong departure from an r ‑2 law indicates that the mass-loss rate of R Scl has not been constant. This result is consistent with a slow decline in the post-pulse mass loss that has been inferred from observations of the molecular gas.

  18. Circumstellar carbonaceous material associated with late-type dusty WC Wolf-Rayet stars

    NARCIS (Netherlands)

    Chiar, JE; Tielens, AGGM

    2001-01-01

    We have studied the 5-8.5 mum infrared spectra of the late-type Wolf-Rayet stars WR 118, WR 112, and WR 104, the WN star WR 147, the B5 hypergiant Cygnus OB2 No. 12, and the Galactic center luminous blue variable Pistol Star using the Short Wavelength Spectrometer on the Infrared Space Observatory.

  19. Differential growth forms of the sponge Biemna fortis govern the abundance of its associated brittle star Ophiactis modesta

    Science.gov (United States)

    Dahihande, Azraj S.; Thakur, Narsinh L.

    2017-08-01

    Marine intertidal regions are physically stressful habitats. In such an environment, facilitator species and positive interactions mitigate unfavorable conditions to the benefit of less tolerant organisms. In sponge-brittle star association, sponges effectively shelter brittle stars from biotic and abiotic stresses. The sponge, Biemna fortis (Topsent, 1897) was examined from two intertidal regions Anjuna and Mhapan along the Central West Coast of India for associated brittle star Ophiactis modesta (Brock, 1888) during 2013-2014. The study sites varied in suspended particulate matter (SPM). B. fortis at the high SPM habitat (Anjuna) had partially buried growth form and at the low SPM habitat (Mhapan) had massive growth form. O. modesta was abundantly associated with the massive growth form (50-259 individuals per 500 ml sponge) but rarely occurred in association with partially buried growth form (6-16 individuals per 500 ml sponge). In laboratory choice assay O. modesta showed equal preference to the chemical cues from both the growth forms of B. fortis. In addition, O. modesta showed significant preference to B. fortis compared to other sympatric sponges. These observations highlight the involvement of chemical cues in host recognition by O. modesta. Massive growth forms transplanted to the high SPM habitat were unable to survive but partially buried growth forms transplanted to the low SPM habitat were able to survive. Differential growth forms of the host sponge B. fortis at different abiotic stresses affect the abundance of the associated brittle star O. modesta.

  20. [O II] nebular emission from Mg II absorbers: star formation associated with the absorbing gas

    Science.gov (United States)

    Joshi, Ravi; Srianand, Raghunathan; Petitjean, Patrick; Noterdaeme, Pasquier

    2017-10-01

    We present nebular emission associated with 198 strong Mg II absorbers at 0.35 ≤z ≤ 1.1 in the fibre spectra of quasars from the Sloan Digital Sky Survey. Measured [O II] luminosities (L_[O II]) are typical of sub-L⋆ galaxies with derived star formation rate (uncorrected for fibre losses and dust reddening) in the range of 0.5-20 M⊙ yr-1. Typically less than ∼3 per cent of the Mg II systems with rest equivalent width, W2796≥2Å, show L_[O II] ≥0.3 L^{\\star }_[O II]. The detection rate is found to increase with increasing W2796 and z. No significant correlation is found between W2796 and L_[O II] even when we restrict the samples to narrow z ranges. A strong correlation is seen between L_[O II] and z. While this is expected from the luminosity evolution of galaxies, we show that finite fibre size plays a very crucial role in this correlation. The measured nebular line ratios (like [O III]/[O II] and [O III]/H β) and their z evolution are consistent with those of galaxies detected in deep surveys. Based on the median stacked spectra, we infer the average metallicity (log Z ∼8.3), ionization parameter (log q∼7.5) and stellar mass (log (M/M⊙) ∼ 9.3). The Mg II systems with nebular emission typically have W2796 ≥2 Å, Mg II doublet ratio close to 1 and W(Fe II λ2600)/W2796∼0.5 as often seen in damped Ly α and 21-cm absorbers at these redshifts. This is the biggest reported sample of [O II] emission from Mg II absorbers at low-impact parameters ideally suited for probing various feedback processes at play in z ≤ 1 galaxies.

  1. Circumstellar carbonaceous material associated with late-type dusty WC Wolf-Rayet stars

    NARCIS (Netherlands)

    Chiar, JE; Tielens, AGGM; Peeters, E; Norris, RP; Stootman, FH

    2004-01-01

    Our own solar system and other planetary systems are composed of organic dust created in the outflows in dying stars. Here, we examine an unlikely source of carbonaceous material in interstellar space, the harsh environment of Wolf-Rayet (WR) stars. We have used spectroscopic data from the Short

  2. Rates of short-GRB afterglows in association with binary neutron star mergers

    Science.gov (United States)

    Saleem, M.; Pai, Archana; Misra, Kuntal; Resmi, L.; Arun, K. G.

    2018-03-01

    Assuming all binary neutron star (BNS) mergers produce short gamma-ray bursts, we combine the merger rates of BNS from population synthesis studies, the sensitivities of advanced gravitational wave (GW) interferometer networks, and of the electromagnetic (EM) facilities in various wavebands, to compute the detection rate of associated afterglows in these bands. Using the inclination angle measured from GWs as a proxy for the viewing angle and assuming a uniform distribution of jet opening angle between 3° and 30°, we generate light curves of the counterparts using the open access afterglow hydrodynamics package BOXFIT for X-ray, optical, and radio bands. For different EM detectors, we obtain the fraction of EM counterparts detectable in these three bands by imposing appropriate detection thresholds. In association with BNS mergers detected by five (three) detector networks of advanced GW interferometers, assuming a BNS merger rate of 0.6-774 Gpc-3 yr-1 from population synthesis models, we find the afterglow detection rates (per year) to be 0.04-53 (0.02-27), 0.03-36 (0.01-19), and 0.04-47 (0.02-25) in the X-ray, optical, and radio bands, respectively. Our rates represent maximum possible detections for the given BNS rate since we ignore effects of cadence and field of view in EM follow-up observations.

  3. The initial mass function for massive stars in the Magellanic Clouds. 3: Luminosity and mass functions for 14 OB associations

    Science.gov (United States)

    Hill, Robert J.; Madore, Barry F.; Freedman, Wendy L.

    1994-01-01

    We have used UBV photometry of stars in 14 associations in the Large and Small Magellanic Clouds (LMC/SMS) (Hill, Madore, & Freedman) to derive luminosity and mass functions for the most massive stars. The main-sequence luminosity functions for the associations are quite similar, having an average slope of s = 0.03 +/- 0.06. The mass functions for the associations have slopes that span similar ranges about a common mean for both the LMC and SMC and there is no strong evidence for a significant variation in the slopes from one association to another. Accordingly, metal abundance does not appear to have a strong effect on the initial mass function (IMF), at least for the range in metallicity observed between the Magellanic Clouds. The average slope of the IMF for the Magellanic Cloud associations is Gamma = -2.0 +/- 0.5 for M greater than 9 Solar Masses. The range in the derived slopes is more likely due to the large uncertainties associated with the calculations of the mass functions, rather than to real variations in the IMF. There may be some evidence for a decrease in the slope of the IMF at masses below 9 Solar Masses, but incompleteness and the larger photometric errors associated with the faintest stars make this conclusion tentative.

  4. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    Science.gov (United States)

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  5. Synthesis and characterization of associating polymers which contain siloxanes chains; Synthese et caracterisation de polymeres associatifs porteurs de groupes siloxanes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, V.

    1999-01-11

    Polymers that associate via physical interactions in solutions have received much attention as viscosifiers. Such associating polymers are now used in variety of applications due to their unique theological properties coating, food thickeners, paints, enhanced oil recovery, water treatment). They contain a hydrophilic main chain with hydrophobic side chain that is generally constituted of hydrocarbon or fluorocarbon groups. Novel copolymers with sites of association in aqueous solution were prepared by co-polymerizing acrylamide with an hydrophobic monomer containing siloxane parts. Rheological properties were studied as a function of polymer concentration, microstructure, shear rate and frequency in order to show intra intermolecular associations between the hydrophobic parts. The polymer solution viscosity increases as a function of the hydrophobic group content. Tests of adsorption show a high affinity of these copolymers with clay and the amount absorbed increase with the quantity of hydrophobic entities containing in the chain. These properties are enhanced compared to copolymers containing hydrocarbon chains. (authors) 456 refs.

  6. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    Science.gov (United States)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  7. The initial mass function for massive stars in the Magellanic Clouds. 2: Interstellar reddening toward 14 OB associations

    Science.gov (United States)

    Hill, Robert J.; Madore, Barry F.; Freedman, Wendy L.

    1994-01-01

    We have used UBV CCD photometry to determine the interstellar reddening toward 14 OB associations in the Magellanic Clouds. The two reddening-free indices available in the UBV system were used to obtain the reddening estimates. The mean color excesses of the associations range from E(B-V) = 0.01-0.26 mag in the Large Magellanic Cloud (LMC) and from E(B-V) = 0.06-0.25 mag in the Small Magellanic Cloud (SMC). We have modeled the observed scatter in the color excesses of individual stars within the associations and find that statisically significant differential reddening exists in at least some of the associations.

  8. Associative network based on cyclodextrin polymer: a model system for drug delivery.

    Science.gov (United States)

    Layre, Anne-Magali; Volet, Gisèle; Wintgens, Véronique; Amiel, Catherine

    2009-12-14

    Associative networks have been elaborated by mixing in aqueous media a cyclodextrin polymer to a dextran bearing adamantyl groups. The two polymers interact mainly via inclusion complexes between adamantyl groups and cyclodextrin cavities, as evidenced by the high complexation constants determined by isothermal titration microcalorimetry (approximately 10(4) L mol(-1)). Additional interaction mechanisms participating in the strength of the network, mainly hydrogen bonding and electrostatic interactions, are sensitive to the pH and ionic strength of the medium, as shown by pH-dependent rheological properties. The loading and release of an apolar model drug, benzophenone, has been studied at two pH values and different cyclodextrin polymer content. Slow releases have been obtained (10-12 days) with slower kinetics at pH 2 than at pH 7. Analysis of the experiments at pH 7 shows that drug release is controlled both by diffusion in the network and by inclusion complex interactions with cyclodextrin cavities.

  9. Where massive stars form - Associated radio H II regions and CO clouds in the northern Milky Way

    Science.gov (United States)

    Waller, W. H.; Clemens, D. P.; Sanders, D. B.; Scoville, N. Z.

    1987-01-01

    The sites of massive star formation in molecular clouds are investigated by comparing high-resolution radio surveys of molecular and ionized gas emission in the Milky Way. CO emission maps from the Massachusetts-Stony Brook survey of the first Galactic quadrant are used to locate, in l, b, and v, the molecular clouds associated with radio recombination-line H II regions. It is found that the radio H II regions are typically associated with giant molecular clouds (GMCs) with diameters of 20-60 pc and virial masses of 100,000 to a million solar masses. The radio H II regions appear preferentially concentrated toward the centers of the GMCs, contrary to the 'blister' picture of massive star formation on cloud surfaces.

  10. The effect of amphiphilic polymers on the association, morphology and photophysical properties of hypocrellin coordination polymer/fullerene assemblies.

    Science.gov (United States)

    Ou, Zhize; Liu, Guixia; Gao, Yunyan; Li, Shayu; Li, Huizhen; Li, Yi; Wang, Xuesong; Yang, Guoqiang; Wang, Xin

    2014-11-01

    The yttrium coordination polymer of pyrene modified hypocrellin A (Y(3+)-PyrHA) is synthesized and characterized. The methoxydiglycol malonate modified fullerene can be included in the cavity of Y(3+)-PyrHA in organic solution and buffer solution containing amphiphilic polymers, such as polyvinyl pyrrolidone (PVP), pluronic F127 and P123. The interaction between an amphiphilic polymer and Y(3+)-PyrHA plays an important role in controlling the size and morphology of Y(3+)-PyrHA/fullerene. TEM images of Y(3+)-PyrHA/fullerene in 1% F127 and P123 show nanoparticles in the size range 10-60 nm, while TEM images of Y(3+)-PyrHA/fullerene in 1% PVP display large-scale aggregation. Singlet oxygen is generated by irradiation of the polymer solution of Y(3+)-PyrHA/fullerene in the presence of oxygen. The electron paramagnetic resonance (EPR) spin trapping and 9,10-dimethoxyanthracene-2-sulfonic acid sodium salt (MAS) photooxidation results suggest that in 1% P123 solution Y(3+)-PyrHA/fullerene exhibits a higher singlet oxygen quantum yield than Y(3+)-PyrHA and the corresponding fullerene.

  11. Manager Factor Associated to the Compliance of Local Smoke-Free Regulation among Star Hotels in Badung District

    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Devhy

    2015-04-01

    Full Text Available Background and purpose: Smoke-free area regulation has been issued recently in Bali Province and Badung District. This study aimed to identify factors associated to the compliance of local smoke-free regulation in star hotel. Methods: This study was a cross-sectional analytic study conducted in Badung District from March to May 2014. Samples of numbered 104 hotels and the managers that selected using systematic random sampling. Compliance data collected through observation using the observation form and the data of managers through interviews using a structured questionnaire. Data were analyzed using chi-square test and poisson regression. Result: The results shows that the compliance of star hotel to local smoke-free regulation was low (15.4%. The concrete support of hotel managers was significantly associated with the compliance to smoke free regulation (PR=4.25; 95%CI: 1.03-17.58. The factors that not significantly associated to the compliance were the knowledge (PR=2.0; 95%CI: 0.8-4.9, attitude (PR=2.5; 95%CI: 0.8-8.2, and organization support (PR=1.8; 95%CI: 0.7-4.5. Furthermore the hotel compliance of managers who have smoking behavior was 0% while the managers without smoking behavior, the compliance was 19.5%. Conclusion: The compliance of star hotels in Badung District on the implementation of local smoke-free regulation was relatively low and the compliance was associated with the presence of concrete support of the hotel managers. Keywords: compliance, local smoke-free legislation, star hotel

  12. Designing a self-associated cationic polymer for enhanced compatibility, palatability, and gastric release of cefuroxime axetil.

    Science.gov (United States)

    Menjoge, Anupa R; Kulkarni, Mohan G

    2007-02-01

    Cefuroxime axetil (CA) has exhibited interactions with the polymers hydroxypropyl methylcellulose phthalate, cellulose acetate trimellitate, and Eudragit E resulting in the generation of unacceptable amounts of impurities and degradation. Formulations, which mask the bitter taste of CA and release it immediately in the stomach, have therefore not been possible. In an attempt to overcome the interaction with CA, we report a self-associated cationic polymer (NREP) containing methyl methacrylate (MMA), 2-hydroxy ethylmethacrylate (HEMA), and 4-vinyl pyridine (4-VP). The hydrogen bonding between the pyridine nitrogen and the hydroxyl groups of HEMA results in strong intrachain associations, prevents interactions between NREP and CA, and inhibits degradation of CA. This has been validated by differential scanning calorimetry, Fourier transform infrared spectroscopy, NMR, and high-performance liquid chromatography analysis. These self-associations restrict polymer chain motions, enhance biocompatibility, and lead to a higher Tg, which ensures that NREP does not become tacky in processes involving heat. The judicious choice of the hydrophobic and hydrophilic monomers renders the polymer hydrophobic enough as to mask the bitter taste of CA at near neutral pH. Incorporation of the basic monomer 4-VP ensures rapid dissolution of the polymer and release of CA at the acidic pH prevalent in the stomach. The work indicates an approach to design pH-sensitive polymers for dosage forms that meet the pharmacokinetic requirements of the drug.

  13. An ALMA survey for disks orbiting low-mass stars in the TW Hya Association

    Science.gov (United States)

    Rodriguez, David R.; van der Plas, Gerrit; Kastner, Joel H.; Schneider, Adam C.; Faherty, Jacqueline K.; Mardones, Diego; Mohanty, Subhanjoy; Principe, David

    2015-10-01

    We carried out an ALMA survey of 15 confirmed or candidate low-mass (M4-L0 and hence represent the extreme low end of the TWA's mass function. Our ALMA survey has yielded detections of 1.3 mm continuum emission around 4 systems (TWA 30B, 32, 33, and 34), suggesting the presence of cold dust grains. All continuum sources are unresolved. TWA 34 further shows 12CO(2-1) emission whose velocity structure is indicative of Keplerian rotation. Among the sample of known ~7-10 Myr-old star/disk systems, TWA 34, which lies just ~50 pc from Earth, is the lowest mass star thus far identified as harboring cold molecular gas in an orbiting disk.

  14. Development of a multilayered association polymer system for sequential drug delivery

    Science.gov (United States)

    Chinnakavanam Sundararaj, Sharath kumar

    As all the physiological processes in our body are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the primary objective of this research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. This particular device was designed aimed at the treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of the world population. This condition is caused by bacterial biofilm on the teeth, resulting in a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The polymers used for the fabrication of this multilayered device consists of cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion property of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. After the initial characterization of the CAPP system, the device was specifically modified to achieve sequential release of drugs aimed at the treatment of periodontitis. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. To obtain different erosion

  15. Utilizing renewable resources to create functional polymers: chitosan-based associative thickener.

    Science.gov (United States)

    Wu, Li-Qun; Embree, Heather D; Balgley, Brian M; Smith, Paul J; Payne, Gregory F

    2002-08-01

    There is a growing interest in utilizing renewable resources and exploiting biological reactions for environmentally friendly products and processes. We report the use of the enzyme tyrosinase to graft the natural phenol, catechin, onto the biopolymer chitosan. Chemical evidence for grafting was obtained by UV/visible spectrophotometry and electrospray mass spectrometry. Rheological measurements demonstrate that the catechin-modified chitosan behaves as an associative thickener. Specifically, the viscosity increases dramatically with concentration of this modified chitosan. Furthermore, when the catechin-modified chitosan is dissolved at low concentrations (0.6% w/w), steady shear measurements show shear thinning behavior, while oscillatory measurements show weak gel behavior. These results demonstrate the potential for utilizing renewable resources and biochemical processing to functionalize biopolymersto offertechnically useful properties. To suggest the relative environmental impacts of chitosan derivatives with existing water-soluble polymers, we used the framework of a life cycle assessment.

  16. Microanalysis of vitrous char and associated polymers: reference and ancient assemblages

    Science.gov (United States)

    Allue, E.; Bonnamy, S.; Courty, M. M.; Gispert I Guirado, F.

    2012-12-01

    Formation of vitrous char that occur in ancient charcoal assemblages have remained unsolved. Laboratory experiments refuted vitrification to resulting from high temperature charring of green or resinous wood. This puzzling problem has been refreshed by showing the association to the charcoal and vitrous char of plastics that were originally supposed to only be produced by petroleum industry. Extraction of similar polymers within geological glassy products from cosmic airbursts has suggested impact processes to possibly forming the carbonaceous polymorphs. The pulverisation at the ground in the Angles village (French Eastern Pyrenees) following the 2011 August 2nd high altitude meteor explosion of exotic debris with vitrous char and polymers, just alike the puzzling ones of the geological and archaeological records, has provided potential reference materials. We present here their microanalysis by Environmental SEM with EDS, Raman micro-spectrometry and FTIR, XRD, TEM, ICP-MS and isotope analyses. The characterization helps elucidating how the carbonaceous polymorphs formed by transient heating and transient high pressure of atmospheric aerosols. Under TEM the vesicular, dense, vitrous char show high structural organization with a dense pattern of nano-sized graphitized domains, metals and mineral inclusions. The coupled Raman-ESEM has allowed identifying a complex pattern at micro scales of ordered "D" peak at 1320-1350 cm-1 and the graphitic, ordered peak at 1576-1590 cm-1, in association to amorphous and poorly graphitic ordered carbon. The later occurs within plant cells that have been extracted from the dense vitrous char by performing controlled combustion under nitrogen up to 1000°C. In contrast, the brittle, vesicular vitrous char and the polymers encountered at the rear of the pulverised airburst debris reveal to be formed of agglutinated micro spherules of amorphous carbon with rare crystallized carbon nano-domains and scattered mineral inclusions. They

  17. Comparison of a thermo-associating matrix and a liquid polymer.

    Science.gov (United States)

    Kahlaoui, Nidhal; Barbier, Valessa; Duval, Marie-Alix; Lefebvre, Françoise; Sudor, Jan; Siebert, Rainer

    2007-01-01

    Capillary electrophoresis is still widely used for DNA sequencing. The quality of the replaceable sieving matrix is a key area for massive sequencing with regard to speed and efficiency. The T25 polymer has been tested extensively and compared to poly(N,N-dimethylacrylamide) (PDMA). In terms of peak resolution, both polymers perform similarly. On the other hand, the run time is much shorter with the T25 polymer.

  18. Functionalization at the central position of vinyl polymer chains: highly associable multipoint hydrogen bonds for complementary self-assemblies.

    Science.gov (United States)

    Lee, Sang-Ho; Ouchi, Makoto; Sawamoto, Mitsuo

    2014-02-01

    This paper deals with the precision introduction of a multiple hydrogen-bonding site of a high association constant at the central position of a vinyl polymer chain for complementary self-assemblies. The interactive site consists of an array of hydrogen donors (D) and acceptors (A) to induce a multiple and highly associable interaction with a complementary counterpart. A bifunctional initiator (Cl-DADDAD-Cl) for metal-catalyzed living radical polymerization is thus designed and synthesized to embed a "Hamilton receptor" (DADDAD) between two terminal chlorides (Cl). In the presence of a ruthenium complex, the dichloride gives controlled polymers (Cl∼∼∼DADDAD∼∼∼Cl, ∼ ∼ ∼: polymer backbone) of narrow molecular weight distributions (Mw/Mn MMA). The receptor-decorated polystyrene recognizes complementary associable molecules and polymers carrying an ADADA unit (ADADA-Anthracene and ADADA-PMMA) to form self-assemblies where the association constant is as high as K(ass) ≈ 8000 m(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  20. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  1. Surface deformation and seismic signatures associated with the eruption cycle of Lone Star Geyser, Yellowstone National Park

    Science.gov (United States)

    Gomez, F. G.; Johnson, H. E., III; LeWinter, A. L.; Finnegan, D. C.; Sandvol, E. A.; Nayak, A.; Hurwitz, S.

    2014-12-01

    Geysers are important subjects for studying processes involved with multi-phase eruptions. As part of a larger field effort, this study applies imaging geodesy and seismology to study eruptive cycles of the Lone Star Geyser in Yellowstone National Park. Lone Star Geyser is an ideal candidate for such study, as it erupts with a nearly regular period of approximately 3 hours. The geyser includes a 5 m diameter cone that rises 2 meters above the sinter terrace, and the entire system can be viewed from a nearby hillside. Fieldwork was accomplished during April 2014. Ground-based interferometric radar (GBIR) and terrestrial laser scanning (TLS) were used to image possible surface deformations associated with Lone Star Geyer's eruption cycles. Additional observations were provided by global positioning system (GPS) measurements and six broad-band seismometers deployed in the immediate vicinity of the geyser. The GBIR and TLS were deployed approximately 65 meters from the sinter cone of the geyser. The GBIR involves a ku-band radar (1.7 cm wavelength) that is sensitive to approximately half-millimeter changes in the line-of-sight distance. Radar images were acquired every minute for 3 or more eruptions per day. Temporally redundant, overlapping interferograms were used to improve the sensitivity and interpolate a minute-wise time series of line-of-sight displacement, and efforts were made to account for possible path-delay effects resulting from water vapor around the geyser cone. Repeat (every minute) high-speed TLS scans were acquired for multiple eruption cycles over the course of two-days. Resulting measurement point spacing on the sinter cone was ~3cm. The TLS point-clouds were geo-referenced using static surveyed reflectors and scanner positions. In addition to measuring ground deformation, filtering and classification of the TLS point cloud was used to construct a mask that allows radar interferometry to exclude non-ground areas (vegetation, snow, sensors

  2. Comb-like polymers inside nanoscale pores

    OpenAIRE

    Gay, Cyprien; Raphael, Elie

    2000-01-01

    A new method of polymer characterization, based on permeation studies using nanoscale pores, was recently proposed by Brochard and de Gennes. In the present paper, we study how this method, initially developped for star polymers can be extended to comb-like polymers.

  3. Star clusters

    NARCIS (Netherlands)

    Gieles, M.

    2006-01-01

    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of

  4. Hybrid stars

    Indian Academy of Sciences (India)

    from two classes of EOS's and discuss their implications. Keywords. Neutron stars; phase transition. It is generally believed that the evolutionary journey of a star after it has exhausted all its fuel culminates into the formation of a compact object in the form of a white dwarf, a neutron star or a black hole depending on its mass.

  5. Massive Stars

    Science.gov (United States)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  6. Stability of tubulin polymers formed with dideoxyguanosine nucleotides in the presence and absence of microtubule-associated proteins.

    Science.gov (United States)

    Hamel, E; del Campo, A A; Lin, C M

    1984-02-25

    We have examined the effects of dilution, Ca2+, reduced temperature, and triphosphate depletion on microtubules formed from purified tubulin, heat-treated microtubule-associated proteins (MAPs), and either GTP, 2',3'-dideoxyguanosine 5'-diphosphate (ddGDP), or 2',3'-dideoxyguanosine 5'-triphosphate (ddGTP). The stability of the polymer formed with tubulin plus ddGTP without MAPs was also examined. In all cases dilution resulted in rapid depolymerization of polymer until a new turbidity plateau was established. These experiments yielded estimates of the critical concentration of tubulin of 0.09 mg/ml with GTP plus MAPs, 0.04 mg/ml with either ddGDP or ddGTP plus MAPs, and 0.07 mg/ml with ddGTP minus MAPs. Addition of CaCl2 to polymer resulted in depolymerization of microtubules formed with either GTP or ddGDP plus MAPs; but both with and without MAPs the polymer formed with ddGTP was stable to Ca2+. The polymer formed with ddGTP minus MAPs was the most cold-labile, major depolymerization occurring at 25 degrees C. With MAPs, microtubules were progressively less cold-labile when formed with GTP, ddGDP, or ddGTP. Depolymerization with GTP was virtually complete at 15 degrees C, with ddGDP at 5 degrees C, and with ddGTP at 0 degrees C. Rapid triphosphate depletion was achieved with phosphofructokinase. GTP-formed tubules were rapidly and completely depolymerized at all GTP concentrations after the enzyme was added to the reaction mixture. Both with and without MAPs polymer formed with ddGTP was progressively more stable upon enzyme addition the higher the initial ddGTP concentration. At specific ddGTP concentrations, however, less depolymerization was observed following enzyme addition if MAPs were present. Microtubules formed with ddGDP plus MAPs were unaffected by phosphofructokinase addition. This comparison of the properties of microtubules formed with MAPs and either ddGDP or ddGTP demonstrates that their stability is enhanced rather than reduced following

  7. Factors associated with chronic depressive episodes: a preliminary report from the STAR-D project.

    Science.gov (United States)

    Gilmer, W S; Trivedi, M H; Rush, A J; Wisniewski, S R; Luther, J; Howland, R H; Yohanna, D; Khan, A; Alpert, J

    2005-12-01

    To identify baseline sociodemographic and clinical factors associated with a current chronic major depressive episode (MDE). Outpatients with major depressive disorder enrolled in 41 US primary or psychiatric care sites were divided into two groups based on self-report of current episode length ( or =24 months). Logistic regression models were used to identify factors associated with chronicity of current depressive episode. About 21.2% of 1380 subjects were in current, chronic MDEs. Older age, less education, lower income, no private insurance, unemployment, greater general medical illness burden, lower physical quality of life, concurrent generalized anxiety disorder, fewer prior episodes, and history of prior suicide attempts were all associated with chronic episodes. Blacks, Hispanics, and patients receiving care in primary as opposed to psychiatric care settings exhibited greater chronicity. Chronic depressive episodes are common and are associated with greater illness burden, comorbidity, socioeconomic disadvantage, and racial/ethnic minority status.

  8. Hydrophobically associated polymers for wettability alteration and enhanced oil recovery – Article review

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil and other petroleum products are crucial to the global economy today due to increasing energy demand approximately (∼1.5% per year and significant oil remaining after primary and secondary oil recovery (∼45–55% of original oil in place, OOIP, which accelerates the development of enhanced oil recovery (EOR technologies to maximize the recovered oil amount by non-conventional methods as polymer flooding. This review discusses enhanced oil recovery methods specially polymer flooding techniques and their effects on rock wettability alteration.

  9. What doesn’t kill them makes them stronger: an association between elongation factor 1-α overdominance in the sea star Pisaster ochraceus and “sea star wasting disease”

    Directory of Open Access Journals (Sweden)

    John P. Wares

    2016-03-01

    Full Text Available In recent years, a massive mortality event has killed millions of sea stars, of many different species, along the Pacific coast of North America. This disease event, known as ‘sea star wasting disease’ (SSWD, is linked to viral infection. In one affected sea star (Pisaster ochraceus, previous work had identified that the elongation factor 1-α locus (EF1A harbored an intronic insertion allele that is lethal when homozygous yet appears to be maintained at moderate frequency in populations through increased fitness for heterozygotes. The environmental conditions supporting this increased fitness are unknown, but overdominance is often associated with disease. Here, we evaluate populations of P. ochraceus to identify the relationship between SSWD and EF1A genotype. Our data suggest that there may be significantly decreased occurrence of SSWD in individuals that are heterozygous at this locus. These results suggest further studies are warranted to understand the functional relationship between diversity at EF1A and survival in P. ochraceus.

  10. The initial mass function for massive stars in the Magellanic Clouds. 1: UBV photometry and color-magnitude diagrams for 14 OB associations

    Science.gov (United States)

    Hill, Robert J.; Madore, Barry F.; Freedman, Wendy L.

    1994-01-01

    UBV charge coupled device (CCD) photometry has been obtained for 14 OB associations in the Magellanic Clouds using the University of Toronto's 0.6 m telescope and the Carnegie Institution of Washington's 1.0 m reflector, both on Las Campanas, Chile. The data are presented and used to construct color-magnitude diagrams for the purposes of investigating the massive-star content of the associations.

  11. Associative Flow Rule Used to Include Hydrostatic Stress Effects in Analysis of Strain-Rate-Dependent Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2004-01-01

    designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and the strain-rate dependence of the composite response are due primarily to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. By applying micromechanics techniques along with given fiber properties, one can also determine the effects of the hydrostatic stresses in the polymer on the overall composite deformation response. First efforts to account for the hydrostatic stress effects in the composite deformation applied purely empirical methods that relied on composite-level data. In later efforts, to allow polymer properties to be characterized solely on the basis of polymer data, researchers at the NASA Glenn Research Center developed equations to model the polymers that were based on a non-associative flow rule, and efforts to use these equations to simulate the deformation of representative polymer materials were reasonably successful. However, these equations were found to have difficulty in correctly analyzing the multiaxial stress states found in the polymer matrix constituent of a composite material. To correct these difficulties, and to allow for the accurate simulation of the nonlinear strain-rate-dependent deformation analysis of polymer matrix composites, in the efforts reported here Glenn researchers reformulated the polymer constitutive equations from basic principles using the concept of an associative flow rule. These revised equations were characterized and validated in an

  12. Star Wreck

    CERN Document Server

    Kusenko, A; Tinyakov, Peter G; Tkachev, Igor I; Kusenko, Alexander; Shaposhnikov, Mikhail; Tkachev, Igor I.

    1998-01-01

    Electroweak models with low-energy supersymmetry breaking predict the existence of stable non-topological solitons, Q-balls, that can be produced in the early universe. The relic Q-balls can accumulate inside a neutron star and gradually absorb the baryons into the scalar condensate. This causes a slow reduction in the mass of the star. When the mass reaches a critical value, the neutron star becomes unstable and explodes. The cataclysmic destruction of the distant neutron stars may be the origin of the gamma-ray bursts.

  13. Neutron Stars

    Science.gov (United States)

    Cottam, J.

    2007-01-01

    Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.

  14. RNA expression and disease tolerance are associated with a "keystone mutation" in the ochre sea star Pisaster ochraceus.

    Science.gov (United States)

    Chandler, V Katelyn; Wares, John P

    2017-01-01

    An overdominant mutation in an intron of the elongation factor 1-α (EF1A) gene in the sea star Pisaster ochraceus has shown itself to mediate tolerance to "sea star wasting disease", a pandemic that has significantly reduced sea star populations on the Pacific coast of North America. Here we use RNA sequencing of healthy individuals to identify differences in constitutive expression of gene regions that may help explain this tolerance phenotype. Our results show that individuals carrying this mutation have lower expression at a large contingent of gene regions. Individuals without this mutation also appear to have a greater cellular response to temperature stress, which has been implicated in the outbreak of sea star wasting disease. Given the ecological significance of P. ochraceus, these results may be useful in predicting the evolutionary and demographic future for Pacific intertidal communities.

  15. Structure and variability of symbiotic assemblages associated with feather stars (Crinoidea: Comatulida) Himerometra robustipinna

    Science.gov (United States)

    Britayev, T. A.; Beksheneva, L. F.; Deart, Yu. V.; Mekhova, E. S.

    2016-09-01

    The paper considers the influence of the geographical position and local conditions on the structure and abundance of symbiotic communities (SCs) associated with the crinoid Himerometra robustipinna. Two water areas at the coast of Vietnam (Nhatrang Bay and the Anthoy Archipelago; our data), Hansa Bay (Papua, New Guinea; Deyen et al., 2006), and the Great Barrier Reef (Australia; Fabricius and Dale, 1993) were compared. We found a similarity in the contribution from the main taxa to the structure of SCs between geographically distant water areas—Nhatrang Bay, Hansa Bay, and the Great Barrier Reef (GBR)—and strong differences between the two Vietnamese water areas. A possible reason for the differences in the SC structure in these water areas is not their geographical location, but the environmental conditions, which are more stable in the seaward part of Nhatrang Bay and less stable in the Anthoy Archipelago. The abundances of symbionts in the water areas of the coast of Vietnam are similar to each other and strongly different from Hansa Bay and the GBR. We suppose that a factor regulating the abundance of symbionts is their consumption by predatory fishes. A low abundance of fishes in the area of active coastal fishery (the coast of Vietnam) makes possible the existence of SCs with a high abundance. In Hansa Bay and the GBR where fishery pressure is low, a high number of predators leads to a low abundance of symbionts.

  16. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  17. Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells.

    Science.gov (United States)

    Chaudhary, Sumit; Lu, Haiwei; Müller, Astrid M; Bardeen, Christopher J; Ozkan, Mihrimah

    2007-07-01

    Since their discovery, carbon nanotubes (CNTs) have been considered to be promising candidates for polymer-based solar cells, but their functional incorporation and utilization in such devices have been limited due to processing bottlenecks. Here, we demonstrate the realization of controlled placement of a single-walled CNT (SWNT) monolayer network at four different positions in polymer-fullerene bulk-heterojunction (BHJ) solar cells. SWNTs were deposited by dip-coating from a hydrophilic suspension, and a very brief, largely nondestructive argon plasma treatment of the active layer was utilized for incorporation of a SWNT layer within or above it. We demonstrate that SWNTs on the hole-collection side of the active layer lead to an increase in power conversion efficiency (PCE) of the photovoltaic devices from 4 to 4.9% (under AM 1.5 G, 1.3 suns illumination). This is the highest reported PCE for polymer-based solar cells incorporating CNTs, upon consideration of expected scaling of device parameters for 1 sun illumination. We also observe that SWNTs deposited on the top of the active layer lead to major electro-optical changes in the device functionality, including an increased fluorescence lifetime of poly-3-hexylthiophene (P3HT).

  18. Ecology of blue straggler stars

    CERN Document Server

    Carraro, Giovanni; Beccari, Giacomo

    2015-01-01

    The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.

  19. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  20. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  1. Behavior of polymeric stars with fullerene core in aqueous solution: structural investigation by neutron and light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, V.T.; Toeroek, G.Gy.; Orlova, D.N.; Klyubin, V.V.; Arutyunyan, A.V.; Sibilev, A.I.; Nazarova, O.V.; Bokov, S.N.; Pavlov, G.M.; Panarin, E.F

    2004-07-15

    Star-shape derivatives of C{sub 60} with poly(N-vinylpyrrolidone) chains, grafted to C{sub 60}, were studied in aqueous solution by small-angle neutron scattering in the range of q=0.04-0.8 nm{sup -1} and dynamic light scattering. From SANS data we found the functionality of fullerene center n{approx}4. Really a star's gyration radius {approx}6 nm exceeded the Gaussian molecular size by {approx}40% and the volume was increased by the factor of 3. Such polymer shells make stars' interaction stronger leading to their association. Dynamic light scattering indicates the formation of extended associates ({approx}1000 nm in diameter) involving {approx}10% of stars.

  2. EVIDENCE FOR NON-STELLAR REST-FRAME NEAR-IR EMISSION ASSOCIATED WITH INCREASED STAR FORMATION IN GALAXIES AT z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Johannes U.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Nelson, Erica J.; Leja, Joel [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Brammer, Gabriel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Whitaker, Katherine E. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Franx, Marijn [Leiden Observatory, Leiden University, Leiden (Netherlands)

    2016-03-01

    We explore the presence of non-stellar rest-frame near-IR (2–5 μm) emission in galaxies at z ∼ 1. Previous studies identified this excess in relatively small samples and suggested that such non-stellar emission, which could be linked to the 3.3 μm polycyclic aromatic hydrocarbons feature or hot dust emission, is associated with an increased star formation rate (SFR). In this Letter, we confirm and quantify the presence of an IR excess in a significant fraction of galaxies in the 3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and without strong non-stellar near-IR emission, we find that galaxies with such emission are predominantly star-forming galaxies. Moreover, star-forming galaxies with an excess show increased mid- and far-IR and Hα emission compared to other star-forming galaxies without. While galaxies with a near-IR excess show a larger fraction of individually detected X-ray active galactic nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and Hα profiles, shows that AGNs are unlikely to be the dominant source of excess in the majority of galaxies. Our results suggest that non-stellar near-IR emission is linked to increased SFRs and is ubiquitous among star-forming galaxies. As such, the near-IR emission might be a powerful tool to measure SFRs in the era of the James Webb Space Telescope.

  3. Association of Centers for Medicare & Medicaid Services Overall Hospital Quality Star Rating With Outcomes in Advanced Laparoscopic Abdominal Surgery.

    Science.gov (United States)

    Koh, Christina Y; Inaba, Colette S; Sujatha-Bhaskar, Sarath; Nguyen, Ninh T

    2017-12-01

    The Centers for Medicare & Medicaid Services (CMS) recently released the Overall Hospital Quality Star Rating to help patients compare hospitals based on a 5-star scale. The star rating was designed to assess overall quality of the institution; thus, its validity toward specifically assessing surgical quality is unknown. To examine whether CMS high-star hospitals (HSHs) have improved patient outcomes and resource use in advanced laparoscopic abdominal surgery compared with low-star hospitals (LSHs). Using the University HealthSystem Consortium database (which includes academic centers and their affiliate hospitals) from January 1, 2013, through December 31, 2015, this administrative database observational study compared outcomes of 72 662 advanced laparoscopic abdominal operations between HSHs (4-5 stars) and LSHs (1-2 stars). The star rating includes 57 measures across 7 areas of quality. Patients who underwent advanced laparoscopic abdominal surgery, including bariatric surgery (sleeve gastrectomy, Roux-en-Y gastric bypass), colorectal surgery (colectomy, proctectomy), or hiatal hernia surgery (paraesophageal hernia repair, Nissen fundoplication), were included. Risk adjustment included exclusion of patients with major and extreme severity of illness. Main outcome measures included serious morbidity, in-hospital mortality, intensive care unit admissions, and cost. A total of 72 662 advanced laparoscopic abdominal operations were performed in patients at 66 HSHs (n = 38 299; mean [SD] age, 51.26 [15.25] years; 12 096 [31.5%] male and 26 203 [68.4%] female; 28 971 [75.6%] white and 9328 [24.4%] nonwhite) and 78 LSHs (n = 34 363; mean [SD] age, 49.77 [14.77] years; 9902 [28.8%] male and 24 461 [71.2%] female; 21 876 [67.6%] white and 12 487 [32.4%] nonwhite). The HSHs were observed to have fewer intensive care unit admissions (1007 [2.6%] vs 1711 [5.0%], P abdominal surgery. No significant difference was found in serious morbidity between HSHs and

  4. Application of polymer nanocomposites in the nanomedicine landscape: envisaging strategies to combat implant associated infections.

    Science.gov (United States)

    Dwivedi, Poushpi; Narvi, Shahid S; Tewari, Ravi P

    2013-12-16

    This review article presents an overview of the potential biomedical application of polymer nanocomposites arising from different chemistries, compositions, and constructions. The interaction between the chosen matrix and the filler is of critical importance. The existing polymer used in the biomedical arena includes aliphatic polyesters such as polylactide (PLA), poly(ε-caprolactone) (PCL), poly(p-dioxanone) (PPDO), poly(butylenes succinate) (PBS), poly(hydroxyalkanoate)s, and natural biopolymers such as starch, cellulose, chitin, chitosan, lignin, and proteins. The nanosized fillers utilized to fabricate the nanocomposites are inorganic, organic, and metal particles such as clays, magnetites, hydroxyapatite, nanotubes chitin whiskers, lignin, cellulose, Au, Ag, Cu, etc. These nanomaterials are taking root in a variety of diverse healthcare applications in the sector of nanomedicine including the domain of medical implants and devices. Despite sterilization and aseptic procedures the use of these biomedical devices and prosthesis to improve the patient's 'quality of life' is facing a major impediment because of bacterial colonization causing nosocomial infection, together with the multi-drug-resistant 'super-bugs' posing a serious threat to its utility. This paper discusses the current efforts and key research challenges in the development of self-sterilizing nanocomposite biomaterials for potential application in this area.

  5. Carbon Stars

    Indian Academy of Sciences (India)

    Abstract. In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  8. Catch a Star 2008!

    Science.gov (United States)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners

  9. Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin.

    Science.gov (United States)

    Fresques, Tara; Zazueta-Novoa, Vanesa; Reich, Adrian; Wessel, Gary M

    2014-04-01

    Echinodermata is a diverse phylum, a sister group to chordates, and contains diverse organisms that may be useful to understand varied mechanisms of germ-line specification. We tested 23 genes in development of the sea star Patiria miniata that fall into five categories: (1) Conserved germ-line factors; (2) Genes involved in the inductive mechanism of germ-line specification; (3) Germ-line associated genes; (4) Molecules involved in left-right asymmetry; and (5) Genes involved in regulation and maintenance of the genome during early embryogenesis. Overall, our results support the contention that the posterior enterocoel is a source of the germ line in the sea star P. miniata. The germ line in this organism appears to be specified late in embryogenesis, and in a pattern more consistent with inductive interactions amongst cells. This is distinct from the mechanism seen in sea urchins, a close relative of the sea star clad. We propose that P. miniata may serve as a valuable model to study inductive mechanisms of germ-cell specification and when compared with germ-line formation in the sea urchin S. purpuratus may reveal developmental transitions that occur in the evolution of inherited and inductive mechanisms of germ-line specification. Copyright © 2013 Wiley Periodicals, Inc.

  10. STARS: A Year in Review

    Science.gov (United States)

    Association for the Advancement of Sustainability in Higher Education, 2011

    2011-01-01

    The Sustainability Tracking, Assessment & Rating System[TM] (STARS) is a program of AASHE, the Association for the Advancement of Sustainability in Higher Education. AASHE is a member-driven organization with a mission to empower higher education to lead the sustainability transformation. STARS was developed by AASHE with input and insight from…

  11. Biodegradable Polymers

    OpenAIRE

    Isabelle Vroman; Lan Tighzert

    2013-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  12. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    in Alpha Cen A with the CORALIE spectrograph on the 1.2-m Swiss telescope at the ESO La Silla observatory. Several "eigenmodes" appear as high peaks in the frequency interval between 1.7 and 3 mHz; they correspond to oscillation periods in the range from 5 to 10 min. A very similar pattern is observed in the Sun. The data from five nights of observations were then searched to detect any changes of velocity and hence, oscillations. Astronomers use sophisticated mathematical methods for this kind of analysis, and normally present their results in terms of a "power spectrum" ( PR Photo 23b/01 ). It displays the "intensity" of oscillations at different frequencies, that is, of different periods; particularly high "peaks" indicate a "real" oscillation of that frequency. The comb of peaks visible between 2-3 mHz is the unambiguous and typical signature of solar-like oscillations . This frequency corresponds to a period of about 7 minutes, close to the well-known 5-minute oscillations of our Sun. This is in full agreement with expectations from theoretical models of the two stars. Continued detailed modeling of these new results will further improve the associated determination of the mass, radius, age, chemical composition and other properties of Alpha Cen A . This result is another proof of the excellent performance of the CORALIE spectrograph, providing extremely accurate measurements without the present investigation would have been impossible. Models of stellar interiors Our current understanding of stellar interiors is severely limited by lack of detailed and accurate observations of stars other than the Sun. In technical terms, for a complete description of the conditions inside a star, we need detailed knowledge of at least five stellar parameters (mass, age, initial content of helium and heavier elements, and a parameter describing the convection). However, in most cases, only two stellar properties can be measured directly (the temperature and the luminosity), so

  13. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    Science.gov (United States)

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Effect of Branching (Star Architecture) on Poly(d,l-lactide) (PDLLA) Degradation and Drug Delivery.

    Science.gov (United States)

    Burke, Jason; Donno, Roberto; d'Arcy, Richard; Cartmell, Sarah; Tirelli, Nicola

    2017-03-13

    This study focuses on the comparative evaluation of star (branched) and linear poly(l,d-lactic acid) (PDLLA) as degradable materials employed in controlled release. The polymers were prepared via ring-opening polymerization initiated by decanol (linear), pentaerythritol (4-armed star) and dipentaerythritol (6-armed star), and processed both in the form of films and nanoparticles. Independent of the length or number of their arms, star polymers degrade slower than linear polymers, possibly through a surface (vs bulk) mechanism. Further, the release of a model drug (atorvastatin) followed zero-order-like kinetics for the branched polymers, and first-order kinetics for linear PDLLA. Using NHOst osteoblastic cells, both linear and star polymers were devoid of any significant toxicity and released atorvastatin in a bioavailable form; cell adhesion was considerably lower on star polymer films, and the slower release from their nanoparticles appeared to be beneficial to avoid atorvastatin overdosing.

  15. Super Star Clusters

    Science.gov (United States)

    O'Connell, R. W.

    1994-05-01

    Super star clusters represent an extreme in the star formation process. They are very luminous, compact objects with L_V > 10(6) L_{V,sun} and diameters = 100 times higher than normal OB associations and clusters in ``giant H II regions''. Prior to HST about a dozen such objects had been identified in nearby galaxies, but at ground-based resolution they are nearly point sources. We review recent HST observations of individual super star clusters in NGC 1140, 1569, and 1705. They have half-light radii of only 2--3.5 pc, and some show evidence of substructure which should be resolvable with the repaired HST. After allowing for age differences, the surface brightness of NGC 1569-A is over 65 times higher than the core of 30 Doradus in the LMC and 1200 times higher than the mean rich LMC star cluster. In some cases, the energy released by the clusters into their surroundings is sufficient to drive galaxy-wide winds. Their properties make super star clusters good analogues of young globular clusters. In some, though not all, cases super star clusters appear to form in the aftermath of a merger or accretion event. The most impressive examples are the clusters detected by HST in NGC 1275 and 7252, one of which has the extraordinary luminosity ~ 6 times 10(8) L_{V,sun}. M82 affords a nearby view of a post-interaction system. HST imaging has identified over 80 super star clusters in its central regions with mean luminosities of ~ 3 times 10(6) L_{V,sun}. Their close packing and signs of interaction with the well-known supernova-driven wind suggest that they do not evolve independently. Super cluster evolution in starbursts is probably a collective phenomenon.

  16. The Astounding Stars.

    Science.gov (United States)

    Montgomery, Angela; And Others

    1983-01-01

    Studying about stellar constellations provides children with an opportunity to learn about ancient myths and mathematics at the same time. An interdisciplinary teaching unit combines information about myths associated with the zodiac signs and instructions for plotting the coordinates of stars. (PP)

  17. Superfluidity in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Shaham, J.

    1980-01-01

    The possible role played by superfluid neutrons in the dynamics of neutron stars is discussed, with attention given to vortex structure and dynamics, the modes of the free vortex lattice, and the pinning of crustal vortices. Some effects associated with the interior superfluid state of neutron stars are discussed, including (1) the macroscopic post-glitch time scales, resulting from coupling between normal and superfluid components, (2) glitches due to unpinning events or to crust breaking by pinning vortices, (3) possible long-term modulation in rotation period, resulting from vortex coherent modes, and (4) gyroscopic effects of pinned vorticity.

  18. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    Science.gov (United States)

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  20. Stars Underground

    CERN Multimedia

    Jean Leyder

    1996-01-01

    An imaginary voyage in time where we were witness of the birth of the universe itself, the time of the Big-Bang 15 billion years ago. Particules from the very first moments of time : protons, neutrons and electrons, and also much more energetic one. These particules are preparing to interact collider and generating others which will be the birth to the stars ........

  1. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nano- metric inorganic compounds, the properties of polymers improve and hence this has a lot of applications depending upon the inorganic material present in the polymers. Sol- vent casting is one of the easiest ...

  2. Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Isabelle Vroman

    2009-04-01

    Full Text Available Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources or from biological resources (renewable resources. In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  3. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  4. Subcutaneous tissue reaction and cytotoxicity of polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene blends associated with natural polymers.

    Science.gov (United States)

    Marques, Leonardo; Holgado, Leandro A; Simões, Rebeca D; Pereira, João D A S; Floriano, Juliana F; Mota, Lígia S L S; Graeff, Carlos F O; Constantino, Carlos J L; Rodriguez-Perez, Miguel A; Matsumoto, Mariza; Kinoshita, Angela

    2013-10-01

    Cytotoxicity and subcutaneous tissue reaction of innovative blends composed by polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene associated with natural polymers (natural rubber and native starch) forming membranes were evaluated, aiming its applications associated with bone regeneration. Cytotoxicity was evaluated in mouse fibroblasts culture cells (NIH3T3) using trypan blue staining. Tissue response was in vivo evaluated by subcutaneous implantation of materials in rats, taking into account the presence of necrosis and connective tissue capsule around implanted materials after 7, 14, 21, 28, 35, 60, and 100 days of surgery. The pattern of inflammation was evaluated by histomorphometry of the inflammatory cells. Chemical and morphological changes of implanted materials after 60 and 100 days were evaluated by Fourier transform infrared (FTIR) absorption spectroscopy and scanning electron microscopy (SEM) images. Cytotoxicity tests indicated a good tolerance of the cells to the biomaterial. The in vivo tissue response of all studied materials showed normal inflammatory pattern, characterized by a reduction of polymorphonuclear leukocytes and an increase in mononuclear leukocytes over the time (p < 0.05 Kruskal-Wallis). On day 60, microscopic analysis showed regression of the chronic inflammatory process around all materials. FTIR showed no changes in chemical composition of materials due to implantation, whereas SEM demonstrated the delivery of starch in the medium. Therefore, the results of the tests performed in vitro and in vivo show that the innovative blends can further be used as biomaterials. Copyright © 2013 Wiley Periodicals, Inc.

  5. Expression of bovine genes associated with local and systemic immune response to infestation with the Lone Star tick, Amblyomma americanum.

    Science.gov (United States)

    Brannan, Jaime L; Riggs, Penny K; Olafson, Pia U; Ivanov, Ivan; Holman, Patricia J

    2014-10-01

    The Lone Star tick, Amblyomma americanum Linnaeus 1758 (Acari; Ixodidae), causes considerable production losses to the southern U.S. cattle industry due to reduced weight, infertility, secondary infections at bite wound sites, damaged hides, and potentially death, as these ticks tend to infest livestock in large numbers. Increasing environmental concerns, along with the potential for chemical residue in food products, have led to more emphasis on alternative tick control strategies, such as selective breeding practices and anti-tick vaccines. To enable progress toward these goals, a better understanding of bovine host immune mechanisms elicited by ticks is needed. In this study, 7 calves were phenotyped as susceptible, moderately resistant, or highly resistant to adult A. americanum ticks. Tick bite-site biopsies and blood leukocytes were collected at multiple time points throughout 3 successive tick infestations. Gene expression at tick bite-site biopsies was assessed by microarray analysis over 3 time points for each phenotype group. Quantitative reverse transcriptase-PCR expression analysis evaluated 11 candidate genes in tick bite-site biopsies, and 6 in blood leukocytes. Regression curve estimates calculated from the expression values generated by qRT-PCR in tick bite-sites identified correlations between several candidate genes. Increased expression of IGHG1, IL6, IL1α, and IL1RN in bovine tick bite-site biopsies suggests that Th2 differentiation may be important for the local bovine response to A. americanum ticks. Strong correlations in expression for IL1α and IL1β, for IL1α and IL1RN, and for IL1α and TLR4 were found in biopsies from the tick-resistant phenotypes. The up-regulation of IL12 and IL23 in blood leukocytes from Lone Star tick-infested calves of all phenotypes suggests a possible systemic recruitment of memory T cells. This study provides novel insight concerning the bovine immune response to Lone Star ticks and a basis for future

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  7. Symmetrization of the Berezin Star Product and Multiple Star Product Method

    OpenAIRE

    Wakatsuki, Kazunori

    2000-01-01

    We construct a multiple star product method and by using this method, show that integral forms of some star products can be written in terms of the path-integral. This method can be applied to some examples. Especially, the associativity of the skew-symmetrized Berezin star product proposed in \\cite{SW}, is recovered in large $N$ limit of the multiple star product. We also derive the path integral form of the Kontsevich star product from the multiple Moyal star product. This paper includes so...

  8. Rainbow's Stars

    OpenAIRE

    Garattini, Remo; Mandanici, Gianluca

    2016-01-01

    In recent years, a growing interest in the equilibrium of compact astrophysical objects like white dwarf and neutron stars has been manifested. In particular, various modifications due to Planck-scale energy effects have been considered. In this paper we analyze the modification induced by gravity’s rainbow on the equilibrium configurations described by the Tolman–Oppenheimer–Volkoff (TOV) equation. Our purpose is to explore the possibility that the rainbow Planck-scale deformation of space-t...

  9. A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS-CENTAURUS OB ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Pecaut, Mark J.; Mamajek, Eric E.; Bubar, Eric J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2012-02-20

    We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types {approx}F4 and {approx}F2, respectively. An analysis of the A-type stars shows US reaching the main sequence at about spectral type {approx}A3. (3) The median ages for the pre-main-sequence members of UCL and LCC are 16 Myr and 17 Myr, respectively, in agreement with previous studies, however we find that (4) Upper Sco is much older than previously thought. The luminosities of the F-type stars in US are typically a factor of {approx}2.5 less luminous than predicted for a 5 Myr old population for four sets of evolutionary tracks. We re-examine the evolutionary state and isochronal ages for the B-, A-, and G-type Upper Sco members, as well as the evolved M supergiant Antares, and estimate a revised mean age for Upper Sco of 11 {+-} 1 {+-} 2 Myr (statistical, systematic). Using radial velocities and Hipparcos parallaxes we calculate a lower limit on the kinematic expansion age for Upper Sco of >10.5 Myr (99% confidence). However, the data are statistically consistent with no expansion. We reevaluate the inferred masses for the known

  10. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery.

    Science.gov (United States)

    Yang, You Qiang; Zhao, Bin; Li, Zhen Dong; Lin, Wen Jing; Zhang, Can Yang; Guo, Xin Dong; Wang, Ju Fang; Zhang, Li Juan

    2013-08-01

    A series of amphiphilic 4- and 6-armed star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (4/6AS-PCL-b-PDEAEMA-b-PPEGMA) were developed by a combination of ring opening polymerization and continuous activators regenerated by electron transfer atom transfer radical polymerization. The critical micelle concentration values of the star co-polymers in aqueous solution were extremely low (2.2-4.0mgl(-1)), depending on the architecture of the co-polymers. The self-assembled blank and doxorubicin (DOX)-loaded three layer micelles were spherical in shape with an average size of 60-220nm determined by scanning electron microscopy and dynamic light scattering. The in vitro release behavior of DOX from the three layer micelles exhibited pH-dependent properties. The DOX release rate was significantly accelerated by decreasing the pH from 7.4 to 5.0, due to swelling of the micelles at lower pH values caused by the protonation of tertiary amine groups in DEAEMA in the middle layer of the micelles. The in vitro cytotoxicity of DOX-loaded micelles to HepG2 cells suggested that the 4/6AS-PCL-b-PDEAEMA-b-PPEGMA micelles could provide equivalent or even enhanced anticancer activity and bioavailability of DOX and thus a lower dosage is sufficient for the same therapeutic efficacy. The results demonstrate that the pH-sensitive multilayer micelles could have great potential application in delivering hydrophobic anticancer drugs for improved cancer therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Really Hot Stars

    Science.gov (United States)

    2003-04-01

    " object (a white dwarf, a neutron star, or a black hole) and the other an "ordinary" star can produce an intense X-ray emission. This happens because the compact object is so dense and massive that it siphons off matter from its companion star - astronomers refer to this as an accretion process, sometimes also called "stellar cannibalism". When the "stolen" matter approaches the compact object, it gradually heats up and may reach temperatures of millions of degrees. It then emits X-rays. At the same time, ultraviolet radiation is also emitted, which may produce high excitation regions in the surrounding nebula. This scenario can also explain the association of HeII nebulae with ultraluminous X-ray sources in other galaxies. VLT observations of highly excited nebulae in the MCs Observations of a number of highly excited nebulae in the Magellanic Clouds were carried out by a team composed of Belgian and American astronomers [1] in January 2002, by means of the FORS1 multi-mode instrument at the 8.2-m VLT MELIPAL telescope. Detailed images were obtained through various special optical filters - they bring into light the complex structure of these nebulae and reveal for the first time the exact morphology of the high excitation zones. Some of exposures have been combined to produce the colour photos shown in PR Photos 09a-d/03. Here, the blue colour traces the exceptional HeII emission, whilst the red and green correspond to the more common nebular emissions from atomic hydrogen and doubly-ionized oxygen, respectively. All four nebulae shown were found to be associated with very hot stars. They carry rather prosaic names: BAT99-2 and BAT99-49, AB7 and N44C Star #2 [2]. The first three of these objects contain some of the highly evolved massive stars, of the so-called Wolf-Rayet (WR) type, while the fourth is an mid-age massive star, of type O. Massive stars, with masses more than 20 times that of the Sun, are very bright (100,000 to 10 million times brighter than the Sun

  12. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  13. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  14. When stars collide

    NARCIS (Netherlands)

    Glebbeek, E.; Pols, O.R.

    2007-01-01

    When two stars collide and merge they form a new star that can stand out against the background population in a star cluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have

  15. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    strongly reinforce our current understanding of heavy element nucleosynthesis. But detecting the element Lead is not easy - the expected spectral lines of Lead in stellar spectra are relatively weak, and they are blended with many nearby absorption lines of other elements. Moreover, bona-fide, low-metallicity AGB stars appear to be extremely rare in the solar neighborhood . But if the necessary observations are so difficult, how is it then possible to probe nucleosynthesis in low-metallicity AGB stars? CH-stars in binary systems ESO PR Photo 26a/01 ESO PR Photo 26a/01 [Preview - JPEG: 350 x 400 pix - 232k] [Normal - JPEG: 700 x 800 pix - 616k] Caption : One of the three Lead stars, HD 196944 that was analyzed in the present research programme (at the center of the field). This star lies about 1600 light years away in the constellation Aquarius. At magnitude 9, it is not visible to the unaided eye, but easily seen through a small amateur telescope. Still, the detailed spectroscopic study reported in this Press release that revealed a high abundance of Lead in this star required a 4-m class telescope. This DSS-image are copyright by the UK SERC/PPARC (Particle Physics and Astronomy Research Council, formerly Science and Engineering Research Council), the Anglo-Australian Telescope Board and the Association of Universities for Research in Astronomy (AURA). The spikes seen in this photo are an optical effect in the telescope. In a determined effort in this direction, a team of Belgian and French astronomers [1] decided to try to detect the presence of Lead in some "CH-stars" [4] that are located about 1600 light-years away, high above the main plane of our Milky Way Galaxy. Over-abundance of some heavy elements has been observed in some "CH-stars". But CH-stars are not very luminous and have not yet evolved to the AGB phase. Hence they are totally unable to produce heavy elements. So how can there be heavy elements in the CH-stars? This mystery was solved when it was realized

  16. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    Science.gov (United States)

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  17. Supramolecular Polymers

    Science.gov (United States)

    Stupp, S. I.; Keser, M.; Huggins, K. E.; Tew, G.; Li, L. S.; Whitaker, C.

    1997-03-01

    An interesting target in polymer science is to find pathways to highly regular supramolecular units with dimensions similar to those of high molar mass linear or hyperbranched polymers. These units lack a polymeric backbone but could serve as precursors to shape invariant covalent polymers analogous to folded proteins. We are pursuing access to these polymers with designed molecules programmed to assemble into nanostructures of regular shape and dimension. We have discovered systems of miniaturized triblock copolymers that yield supramolecular polymers. These supramolecular polymers are shaped as mushroom nanostructures, and form materials with interesting surface and optical properties. Molecular modeling indicates that a balance of aggregation and hard core repulsive forces among structural units may be responsible for the formation of these supramolecular polymers.

  18. Massive stars. A chemical signature of first-generation very massive stars.

    Science.gov (United States)

    Aoki, W; Tominaga, N; Beers, T C; Honda, S; Lee, Y S

    2014-08-22

    Numerical simulations of structure formation in the early universe predict the formation of some fraction of stars with several hundred solar masses. No clear evidence of supernovae from such very massive stars has, however, yet been found in the chemical compositions of Milky Way stars. We report on an analysis of a very metal-poor star SDSS J001820.5-093939.2, which possesses elemental-abundance ratios that differ significantly from any previously known star. This star exhibits low [α-element Fe] ratios and large contrasts between the abundances of odd and even element pairs, such as scandium/titanium and cobalt/nickel. Such features have been predicted by nucleosynthesis models for supernovae of stars more than 140 times as massive as the Sun, suggesting that the mass distribution of first-generation stars might extend to 100 solar masses or larger. Copyright © 2014, American Association for the Advancement of Science.

  19. The Destructive Birth of Massive Stars and Massive Star Clusters

    Science.gov (United States)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  20. A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset

    KAUST Repository

    Francis, Raju

    2015-12-29

    © 2015 Springer-Verlag Berlin Heidelberg A polystyrene-block-polyisoprene ((PS-b-PI)3) star polymer was synthesized by photochemical reversible addition fragmentation chain transfer (RAFT) polymerization. The obtained star polymer was epoxidized and used as a toughening agent in an epoxy thermoset. The incorporation of the epoxidized star polymer resulted in the formation of nanostructures and it was fixed by a crosslinking reaction. The formation of nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation. The mechanical properties such as toughness and tensile strength were considerably increased due to the nanostructures formed by reactive blending.

  1. The Origin Billions Star Survey: Galactic Explorer

    Science.gov (United States)

    2006-10-18

    using OBSS. 3.2. The Milky Way, Galactic Structure, Local Group, Local Supercluster, Dark Matter, and Cosmology 3.2.1. The Local Velocity Field of the... gravitationally bound clusters. OB associations contain the most massive stars in the local part of the Galaxy and are therefore of paramount importance for the...since most of the stars with life-bearing planets may have been formed in gravitationally unbound as- sociations. It is possible that massive star

  2. B- and A-type Stars in the Taurus-Auriga Star-forming Region

    Science.gov (United States)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-07-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), τ Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  3. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    Science.gov (United States)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  4. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  5. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  6. Lifestyles of the Stars.

    Science.gov (United States)

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  7. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  8. Compactness of Neutron Stars.

    Science.gov (United States)

    Chen, Wei-Chia; Piekarewicz, J

    2015-10-16

    Recent progress in the determination of both masses and radii of neutron stars is starting to place stringent constraints on the dense matter equation of state. In particular, new theoretical developments together with improved statistical tools seem to favor stellar radii that are significantly smaller than those predicted by models using purely nucleonic equations of state. Given that the underlying equation of state must also account for the observation of 2M⊙ neutron stars, theoretical approaches to the study of the dense matter equation of state are facing serious challenges. In response to this challenge, we compute the underlying equation of state associated with an assumed mass-radius template similar to the "common radius" assumption used in recent studies. Once such a mass-radius template is adopted, the equation of state follows directly from the implementation of Lindblom's algorithm; assumptions on the nature or composition of the dense stellar core are not required. By analyzing mass-radius profiles with a maximum mass consistent with observation and common radii in the 8-11 km range, a lower limit on the stellar radius of a 1.4M⊙ neutron star of RNS≳10.7  km is required to prevent the equation of state from violating causality.

  9. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  10. Variable Star Search Using ROTSE3 Data

    Science.gov (United States)

    Ferrante, Farley; Kehoe, Robert

    2012-10-01

    I present results of a variable star search using data from the Robotic Optical Transient Search Experiment 3 (ROTSE3) telescopes. Variable stars fluctuate in magnitude as seen from Earth due either to changes in the star's luminosity or to changes in the amount of the star's light that reaches Earth. My research is focused on analysis of the time variation of optical light output as recorded in ROTSE 3 images. Specifically, I am attempting to identify short-period variable candidates such as delta Scuti stars, eclipsing binary stars, and contact binary stars. Amplitude variations for these classes of variables are on the order of one magnitude with periods on the order of two to five hours. The ROTSE3 telescope sensitivity holds the promise of significantly extending our reach to dimmer objects than previous searches and I will report on the confirmed discovery of a previously unidentified contact binary star in the constellation Sagittarius. This contact binary is now listed in the International Variable Star Index (VSX) maintained by the American Association of Variable Star Observers (AAVSO).

  11. Branched polymers on branched polymers

    OpenAIRE

    Durhuus, Bergfinnur; Jonsson, Thordur

    1996-01-01

    We study an ensemble of branched polymers which are embedded on other branched polymers. This is a toy model which allows us to study explicitly the reaction of a statistical system on an underlying geometrical structure, a problem of interest in the study of the interaction of matter and quantized gravity. We find a phase transition at which the embedded polymers begin to cover the basis polymers. At the phase transition point the susceptibility exponent $\\gamma$ takes the value 3/4 and the ...

  12. Conducting Polymers

    Indian Academy of Sciences (India)

    potential of the monomer would be less than that of the dimer, which would in turn be less than that of the polymer. Hence, the polymer generated by this oxidative .... glucose and galactose biosensors based on a silicon chip employing polypyrrole have in fact been developed by several companies. These types of sensors ...

  13. Conducting Polymers

    Indian Academy of Sciences (India)

    polymer backbone), exhibit semiconducting behavior. The discovery of dopingl led to a further dramatic increase in the conductivity of such conjugated polymers to values as ..... CERF's Comments on Modem Science. • If it's incomprehensible, it's mathematics. • If it doesn't make sense, it's either economics or psychology.

  14. Polymers & People

    Science.gov (United States)

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  15. Enigma of Runaway Stars Solved

    Science.gov (United States)

    1997-01-01

    bow shocks of compressed matter, which look very much like the bow wave around a boat crossing the ocean. They are of the same physical nature as a bow shock created by a jet-fighter in the air. The explanation is similar: when an OB-runaway star plows through the interstellar medium (a very thin mixture of gas and dust particles) with supersonic velocity [3], interstellar matter is swept up in a bow shock. Stars of low velocity do not create bow shocks. Thus, the detection of a bow shock around a particular OB star indicates that it must have a supersonic velocity, thereby securely identifying it as a runaway star, even if its velocity has not been measured directly. Runaway stars come from stellar groups When a star's direction of motion in space is known, it is possible to reconstruct its previous path and, even more interestingly, to find the place where the star originally came from. It turns out that the paths of many OB-runaways can be traced back to socalled OB-associations , that is groups of 10 to 100 OB-type stars which are located in the spiral arms of our galaxy. About fifty OB-associations are known in the Milky Way. In fact, the majority of all known OB stars are members of an OB-association. Therefore, it is not very surprising that OB-runaway stars should also originate from OB-associations. This is also how they got their name: at some moment, they apparently left the association in which they were formed. The ejection mechanism But why were the OB-runaway stars kicked out of the OB-association and how did they achieve such high speeds? One possibility is that some OB stars in an OB-association are ejected due to strong gravitational effects at the time of close encounters between the members of the group. Complicated computer simulations show that this is in principle possible. Nevertheless, since many years, most astronomers think that a more likely scenario is that of violent supernova explosions, first proposed in 1961 by Adriaan Blaauw. Stellar

  16. Novel Complex Polymers with Carbazole Functionality by Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2012-01-01

    Full Text Available This review summarizes recent advances in the design and synthesis of novel complex polymers with carbazole moieties using controlled radical polymerization techniques. We focus on the polymeric architectures of block copolymers, star polymers, including star block copolymers and miktoarm star copolymers, comb-shaped copolymers, and hybrids. Controlled radical polymerization of N-vinylcarbazole (NVC and styrene and (methacrylate derivatives having carbazole moieties is well advanced, leading to the well-controlled synthesis of complex macromolecules. Characteristic optoelectronic properties, assembled structures, and three-dimensional architectures are briefly introduced.

  17. Novel hydrophobic associated polymer based nano-silica composite with core–shell structure for intelligent drilling fluid under ultra-high temperature and ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Hui Mao

    2015-02-01

    Full Text Available Micro-nano-based drilling fluid has attracted a strong interest due to its attractive properties, and micro-nano composite materials have great potential for developing intelligent drilling fluid. In this study a novel hydrophobic associated polymer based nano-silica composite with core–shell structure was prepared and characterized by PSD, SEM, TEM and ESEM. The results showed that the composite, as a micro-nano drilling fluid additive, possessed excellent properties such as thermal stability, rheology, fluid loss and lubricity. Especially, it could plug the formation effectively and improve the pressure bearing capability of formation significantly.

  18. NuSTAR discovery of a young, energetic pulsar associated with the luminous gamma-ray source Hess J1640-465

    DEFF Research Database (Denmark)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.

    2014-01-01

    We report the discovery of a 206 ms pulsar associated with the TeV γ-ray source HESS J1640-465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640-4631 lies within the shell-type supernova remnant (SNR) G338.3-0.0, and coincides with an X-ray point source....... For the measured distance of 12 kpc to G338.3-0.0, the 0.2-10 TeV luminosity of HESS J1640-465 is 6% of the pulsar's present . The Fermi source 1FHL J1640.5-4634 is marginally coincident with PSR J1640-4631, but we find no γ-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data....... The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640-465, provided that the pulsar's braking index is n ≈ 2, and that its initial spin period was P ~ 15 ms....

  19. Millisecond phenomena in mass accreting neutron stars

    NARCIS (Netherlands)

    van der Klis, M.; Cohen, L.

    2007-01-01

    The past twelve years have seen the discovery, with NASA's Rossi X-ray Timing Explorer (RXTE), of several long-predicted phenomena associated with the accretion of matter onto a neutron star in a binary (double) star system. These phenomena are observed in the strong X-ray emission produced by these

  20. The STAR project: context, objectives and approaches

    NARCIS (Netherlands)

    Furse, M.; Hering, D.; Moog, O.; Verdonschot, P.F.M.; Johnson, R.K.; Brabec, K.; Gritzalis, K.; Buffagni, A.; Pinto, P.; Friberg, N.; Murray-Bligh, J.; Kokes, J.; Alber, R.; Usseglio-Polatera, P.; Haase, P.; Sweeting, R.; Bis, B.; Szoszkiewicz, K.; Soszka, H.; Springe, G.; Sporka, F.; Krno, I.

    2006-01-01

    STAR is a European Commission Framework V project (EVK1-CT-2001-00089). The project aim is to provide practical advice and solutions with regard to many of the issues associated with the Water Framework Directive. This paper provides a context for the STAR research programme through a review of the

  1. Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers

    Science.gov (United States)

    Wu, David

    At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration

  2. Suspensions of polymer-grafted nanoparticles with added polymers-Structure and effective pair-interactions.

    Science.gov (United States)

    Chandran, Sivasurender; Saw, Shibu; Kandar, A K; Dasgupta, C; Sprung, M; Basu, J K

    2015-08-28

    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP:PS size ratios, ξ = 0.14 and 2.76 (where, ξ = Mg/Mm, Mg and Mm being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with ξ = 0.14 could be modeled reasonably well, while the structure of blends with ξ = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with ξ = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with ξ = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to

  3. Tracing Star Formation and Molecular Cloud Evolution with Pre-main Sequence Stars in the SMC

    Science.gov (United States)

    Johnson, L. Clifton; SMIDGE Team

    2018-01-01

    The Southwest Bar region in the Small Magellanic Cloud (SMC) contains star-forming molecular clouds sampling a wide range of evolutionary states: from quiescent pre-star-forming regions to evolved HII region hosts. We use deep, panchromatic, high spatial resolution Hubble Space Telescope imaging obtained as part of the SMIDGE survey (PI: K. Sandstrom) to identify young, pre-main sequence stars that trace recent and ongoing star formation within these clouds. We characterize a color-selected sample (and Hα line-emitting subsample) of pre-main sequence stars via SED fitting and analyze their association with the local ISM, inferred from observations of CO and dust emission. These low-mass stars serve as robust star formation tracers not tied to massive stars (e.g., Hα-based star formation rate estimates) in SMC star-forming regions, where low dust-to-gas ratios allow optical detections even in gas-rich embedded regions. We demonstrate pre-main sequence stars' ability to trace molecular cloud evolution within the Southwest Bar and across the SMC, and discuss future synergies between optical Hubble Space Telescope observations and near/mid-IR James Webb Space Telescope observations.

  4. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  5. Star Formation in IC 348

    Science.gov (United States)

    Herbst, W.

    2008-12-01

    A review of work on the small, compact, nearby young cluster IC 348 is given. This region is particularly important because it is well surveyed at a variety of wavelengths and intermediate in nature between dense clusters and loose associations. Its earliest type star is B5 and it contains a few hundred stellar members as well as some brown dwarfs, protostars, Herbig-Haro objects and starless sub-mm cores. The total mass of its components is ˜90 M_⊙, most of which is in the form of pre-main sequence stars. Perhaps the biggest challenge to work on the cluster is the relatively high and variable extinction (A_v=3D1-7 mag). Studies to date have provided particularly valuable insights into the initial mass function, disk lifetimes, stellar rotation properties, X-ray properties, outflows and substructure of the cluster. Results on the stellar component include the following: 1) the initial mass function matches that for field stars in the stellar and brown dwarf regimes, 2) the fraction of stars with disks is probably normal for the cluster's age, 3) the rotation properties match those of the Orion Nebula Cluster and are significantly different, in the sense of slower rotation, than NGC 2264, 4) the X-ray properties of the stars appear normal for T Tauri stars. There is a ridge of high extinction that lies ˜10 arcmin (0.9 pc in projection) to the southwest of IC 348 and contains about a dozen Class 0 and I protostars as well as some Herbig Haro objects and sub-mm cores. This region, which also contains the "Flying Ghost Nebula" and the well-studied object HH 211, clearly signals that star formation in this part of the Perseus dark clouds is not yet finished. An extensive kinematical study involving both proper motions and radial velocities for the 400 members of the cluster would be most desirable.

  6. Superflares on solar-type stars.

    Science.gov (United States)

    Maehara, Hiroyuki; Shibayama, Takuya; Notsu, Shota; Notsu, Yuta; Nagao, Takashi; Kusaba, Satoshi; Honda, Satoshi; Nogami, Daisaku; Shibata, Kazunari

    2012-05-16

    Solar flares are caused by the sudden release of magnetic energy stored near sunspots. They release 10(29) to 10(32) ergs of energy on a timescale of hours. Similar flares have been observed on many stars, with larger 'superflares' seen on a variety of stars, some of which are rapidly rotating and some of which are of ordinary solar type. The small number of superflares observed on solar-type stars has hitherto precluded a detailed study of them. Here we report observations of 365 superflares, including some from slowly rotating solar-type stars, from about 83,000 stars observed over 120 days. Quasi-periodic brightness modulations observed in the solar-type stars suggest that they have much larger starspots than does the Sun. The maximum energy of the flare is not correlated with the stellar rotation period, but the data suggest that superflares occur more frequently on rapidly rotating stars. It has been proposed that hot Jupiters may be important in the generation of superflares on solar-type stars, but none have been discovered around the stars that we have studied, indicating that hot Jupiters associated with superflares are rare.

  7. Unexplained Brightening of Unusual Star

    Science.gov (United States)

    1997-01-01

    particular, with just two exceptions, its orbital period is longer than those of all 150 such systems known. Yet another possibility would be the nova phenomenon which is due to a sudden nuclear explosion in the atmosphere of the white dwarf. But in such cases, the brightness increase is much larger than observed here. Future investigations Consequently, it is at this moment not yet possible to understand the nature of the observed brightening of the AKO 9 binary system. Although it is one of the best observed close binary systems within any globular cluster, the available observations will have to be complemented during future investigations before the responsible mechanism may be identified. More information about this research project A provisional report about this work will be presented on January 15, 1997, at the semi-annual meeting of the American Astronomical Association in Toronto, Canada. Notes: [1] The group consists of Georges Meylan (ESO, Garching, Germany), Dante Minniti (Lawrence Livermore National Laboratory, Livermore, USA), Carlton Pryor (Rutgers Univ., Piscataway, USA), E. Sterl Phinney (Caltech, Pasadena, USA), Bruce Sams (Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany), Chris G. Tinney (Anglo-Australian Observatory, Epping, Australia). [2] The phenomenon of core collapse is reminiscent of the `red-giant phase' of stellar evolution when - towards the end of its life - the outer layers of a star begin to expand while its central regions contract. [3] This corresponds to 10 6 stars/pc 3 and 0.1 stars/pc 3 , respectively. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  8. Polymer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  9. Organometallic Polymers.

    Science.gov (United States)

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  10. 'Polaris, Mark Kummerfeldt's Star, and My Star.'

    Science.gov (United States)

    McLure, John W.

    1984-01-01

    In most astronomy courses, descriptions of stars and constellations reveal the western European origins of the astronomers who named them. However, it is suggested that a study of non-western views be incorporated into astronomy curricula. Descriptions of various stars and constellations from different cultures and instructional strategies are…

  11. ENERGY STAR Certified Computers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.1 ENERGY STAR Program Requirements for Computers that are effective as of June 2, 2014....

  12. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  13. ENERGY STAR Certified Dehumidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Dehumidifiers that are effective as of October...

  14. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  15. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  16. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  17. Star operations and Pullbacks

    OpenAIRE

    Fontana, Marco; Park, Mi Hee

    2003-01-01

    In this paper we study the star operations on a pullback of integral domains. In particular, we characterize the star operations of a domain arising from a pullback of ``a general type'' by introducing new techniques for ``projecting'' and ``lifting'' star operations under surjective homomorphisms of integral domains. We study the transfer in a pullback (or with respect to a surjective homomorphism) of some relevant classes or distinguished properties of star operations such as $v-, t-, w-, b...

  18. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    2015-06-01

    High-molecular-weight star polymer drug nanocarriers intended for the treatment and/or visualisation of solid tumours were synthesised, and their physico-chemical and preliminary in vitro biological properties were determined. The water-soluble star polymer carriers were prepared by the grafting of poly(amido amine) (PAMAM) dendrimers by hetero-telechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, synthesised by the controlled radical Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation. The well-defined star copolymers with Mw values ranging from 2 · 10(5) to 6 · 10(5) showing a low dispersity (approximately 1.2) were prepared in a high yield. A model anticancer drug, doxorubicin, was bound to the star polymer through a hydrazone bond, enabling the pH-controlled drug release in the target tumour tissue. The activated polymer arm ends of the star copolymer carrier enable a one-point attachment for the targeting ligands and/or a labelling moiety. In this study, the model TAMRA fluorescent dye was used to prove the feasibility of the polymer carrier visualisation by optical imaging in vitro. The tailor-made structure of the star polymer carriers should facilitate the synthesis of targeted polymer-drug conjugates, even polymer theranostics, for simultaneous tumour drug delivery and imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. NuSTAR Discovery Of A Young, Energetic Pulsar Associated with the Luminous Gamma-Ray Source HESS J1640-465

    Science.gov (United States)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.; Gelfand, J. D.; Harrison, F. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, J. C.; Kaspi, V. M.; hide

    2014-01-01

    We report the discovery of a 206 ms pulsar associated with the TeV gamme-ray source HESS J1640-465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640-4631 lies within the shelltype supernova remnant (SNR) G338.3-0.0, and coincides with an X-ray point source and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative P = 9.758(44) × 10(exp -13), yielding a spin-down luminosity E = 4.4 × 10(exp 36) erg s(exp -1), characteristic age tau(sub c) if and only if P/2 P = 3350 yr, and surface dipole magnetic field strength B(sub s) = 1.4×10(exp 13) G. For the measured distance of 12 kpc to G338.3-0.0, the 0.2-10 TeV luminosity of HESS J1640-465 is 6% of the pulsar's present E. The Fermi source 1FHL J1640.5-4634 is marginally coincident with PSR J1640-4631, but we find no gamma-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data. The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640-465, provided that the pulsar's braking index is n approximately equal to 2, and that its initial spin period was P(sub 0) approximately 15 ms.

  20. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  1. Superfluid neutron stars

    OpenAIRE

    Langlois, David

    2001-01-01

    Neutron stars are believed to contain (neutron and proton) superfluids. I will give a summary of a macroscopic description of the interior of neutron stars, in a formulation which is general relativistic. I will also present recent results on the oscillations of neutron stars, with superfluidity explicitly taken into account, which leads in particular to the existence of a new class of modes.

  2. Nonassociative Weyl star products

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, V.G.; Vassilevich, D.V. [CMCC-Universidade Federal do ABC, Santo André, SP (Brazil)

    2015-09-16

    Deformation quantization is a formal deformation of the algebra of smooth functions on some manifold. In the classical setting, the Poisson bracket serves as an initial conditions, while the associativity allows to proceed to higher orders. Some applications to string theory require deformation in the direction of a quasi-Poisson bracket (that does not satisfy the Jacobi identity). This initial condition is incompatible with associativity, it is quite unclear which restrictions can be imposed on the deformation. We show that for any quasi-Poisson bracket the deformation quantization exists and is essentially unique if one requires (weak) hermiticity and the Weyl condition. We also propose an iterative procedure that allows one to compute the star product up to any desired order.

  3. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  4. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Nikolaos Stergioulas

    1998-06-01

    Full Text Available Because of the information they can yield about the equation of state of matter at extremely high densities and because they are one of the more possible sources of detectable gravitational waves, rotating relativistic stars have been receiving significant attention in recentyears. We review the latest theoretical and numerical methods for modeling rotating relativistic stars, including stars with a strong magnetic field and hot proto-neutron stars. We also review nonaxisymmetric oscillations and instabilities in rotating stars and summarize the latest developments regarding the gravitational wave-driven (CFS instability in both polar and axial quasi-normal modes.

  5. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  6. Delocalization in polymer models

    CERN Document Server

    Jitomirskaya, S Yu; Stolz, G

    2003-01-01

    A polymer model is a one-dimensional Schroedinger operator composed of two finite building blocks. If the two associated transfer matrices commute, the corresponding energy is called critical. Such critical energies appear in physical models, an example being the widely studied random dimer model. Although the random models are known to have pure-point spectrum with exponentially localized eigenstates for almost every configuration of the polymers, the spreading of an initially localized wave packet is here proven to be at least diffusive for every configuration.

  7. Spectrophotometry of Symbiotic Stars

    Science.gov (United States)

    Boyd, David

    2017-06-01

    Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionises the nebula producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  8. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... is often desirable. Such data is also needed to develop sophisticated multiscale models that can later be used for predicting the flow behavior and molecular dynamics of supramolecular networks.This thesis focuses on the experimental rheological study of two class of supramolecularpolymers namely: (a...

  9. StarGuides Plus

    Science.gov (United States)

    Heck, A.

    StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields. This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas. The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on. Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, energetics, environment, geodesy, geophysics, information handling, management, mathematics, meteorology, optics, physics, remote sensing, and so on, are also covered where appropriate. After some thirty years in continuous compilation, verification and updating, StarGuides Plus currently gathers together some 6,000 entries from 100 countries. The information is presented in a clear, uncluttered manner for direct and easy use. For each entry, all practical data are listed: city, postal and electronic-mail addresses, telephone and fax numbers, URLs for WWW access, foundation years, numbers of members and/or numbers of staff, main activities, publications titles (with frequencies, ISS-Numbers and circulations), names and geographical coordinates of observing sites, names of planetariums, awards (prizes and/or distinctions) granted, etc. The entries are listed alphabetically in each country. An exhaustive index gives a breakdown not only by different designations and

  10. Antimocrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  11. Stent Polymers: Do They Make a Difference?

    Science.gov (United States)

    Rizas, Konstantinos D; Mehilli, Julinda

    2016-06-01

    The necessity of polymers on drug-eluting stent (DES) platforms is dictated by the need of an adequate amount and optimal release kinetic of the antiproliferative drugs for achieving ideal DES performance. However, the chronic vessel wall inflammation related to permanent polymer persistence after the drug has been eluted might trigger late restenosis and stent thrombosis. Biodegradable polymers have the potential to avoid these adverse events. A variety of biodegradable polymer DES platforms have been clinically tested, showing equal outcomes with the standard-bearer permanent polymer DES within the first year of implantation. At longer-term follow-up, promising lower rates of stent thrombosis have been observed with the early generation biodegradable polymer DES platforms compared to first-generation DES. Whether this safety benefit still persists with newer biodegradable polymer DES generations against second-generation permanent polymer DES needs to be explored. © 2016 American Heart Association, Inc.

  12. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  13. Massive Star and Star Cluster Formation

    OpenAIRE

    Tan, Jonathan C.

    2006-01-01

    I review the status of massive star formation theories: accretion from collapsing, massive, turbulent cores; competitive accretion; and stellar collisions. I conclude the observational and theoretical evidence favors the first of these models. I then discuss: the initial conditions of star cluster formation as traced by infrared dark clouds; the cluster formation timescale; and comparison of the initial cluster mass function in different galactic environments.

  14. Dark stars: a review.

    Science.gov (United States)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  15. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  16. Conducting Polymers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Conducting Polymers - From a Laboratory Curiosity to the Market Place. S Ramakrishnan. Volume 16 Issue 12 December 2011 pp 1254-1265. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Polymer Microneedles

    NARCIS (Netherlands)

    Yeshurun, Yehoshua; Hefetz, Meir; Berenschot, Johan W.; de Boer, Meint J.; Altpeter, Dominique; Boom, Garrit; Boom, G.

    2003-01-01

    A method for producing microneedles. The method including disposing a first layer of a radiation sensitive polymer on to a working surface and selectively irradiating the first layer such that the first layer has at least one irradiated region and at least one non-irradiated region. The method also

  18. Sodium Laser Guide Star Adaptive Optics Imaging Polarimetry of Herbig Ae/Be Stars

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, M D; Graham, J R; Lloyd, J P; Kalas, P; Gates, E L; Gavel, D T; Pennington, D M; Max, C E

    2004-01-08

    The future of high-resolution ground-based optical and infrared astronomy requires the successful implementation of laser guide star adaptive optics systems. We present the first science results from the Lick Observatory sodium beacon laser guide star system. By coupling this system to a near-infrared (J;H;Ks bands) dual-channel imaging polarimeter, we achieve very high sensitivity to light scattered in the circumstellar enviroment of Herbig Ae/Be stars on scales of 100-300 AU. Observations of LkH{alpha} 198 reveal a highly polarized, biconical nebula 10 arcseconds in diameter (6000 AU) . We also observe a polarized jet-like feature associated with the deeply embedded source LkH{alpha} 198-IR. The star LkH{alpha} 233 presents a narrow, unpolarized dark lane dividing its characteristic butterfly-shaped polarized reflection nebulosity. This linear structure is oriented perpendicular to an optical jet and bipolar cavity and is consistent with the presence of an optically thick circumstellar disk blocking our direct view of the star. These data suggest that the evolutionary picture developed for the lower-mass T Tauri stars is also relevant to the Herbig Ae/Be stars and demonstrate the ability of laser guide star adaptive optics systems to obtain scientific results competitive with natural guide star adaptive optics or space-based telescopes.

  19. Isolated Neutron Stars

    Directory of Open Access Journals (Sweden)

    Popov S.

    2010-10-01

    Full Text Available Several aspects related to astrophysics of isolated neutron stars are discussed. We start with an introduction into the “new zoo” of young isolated neutron stars. In addition to classical radio pulsars, now we know several species (soft gamma-ray repeators, anomalous X-ray pulsars, central compact objects in supernova remnants, close-by cooling neutron stars - aka “Magnificent seven”, - RRATs, and some others. All these types are briefly discussed. In the second lecture a description of magneto-rotational evolution of neutron stars is given. Finally, in the third lecture we discuss population synthesis of isolated neutron stars. In some details we discuss population synthesis of young isolated radio pulsars and young close-by cooling neutron stars.

  20. Torsional oscillations of strange stars

    Directory of Open Access Journals (Sweden)

    Mannarelli Massimo

    2014-01-01

    Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  1. Effect of polymers associated with N and K fertilizer sources on Dendrathema grandiflorum growth and K, Ca and Mg relations

    Directory of Open Access Journals (Sweden)

    Sita Regiane Cristina Marcato

    2005-05-01

    Full Text Available This study was conducted to evaluate the effect of polymer used with different nitrogen and potassium sources on the growth and nutrition of chrysanthemum (Dendranthema grandiforum, var. "Virginal" and on chemical characteristics of substrate. Two substrates were evaluated: 1 composite with 50 % organic soil, 45 % sand, and 5 % composted tobacco; 2 plow layer soil (0-20 cm depth; red oxisol typical dystrophic. The experimental design was a factorial (4x2x2 and included four polymer rates (0, 1, 2, and 4 g kg-1of substrate, two nitrogen ((NH42SO4 and (H2N2CO, and two potassium (KCl and K2SO4 sources. Dry biomass, flower number, and concentration of K, Ca, and Mg were evaluated. Inverse relationships between polymer rates and plant biomass, macronutrient uptake were noticed, regardless substrate or nutrient source.O polímero agrícola tem um grande potencial de uso como condicionador de solo para produção de mudas. Contudo, pouco conhecimento existe sobre seu uso e interação com fertilizantes.Visando avaliar o efeito do polímero com diferentes fontes de abubações nitrogenadas e potássicas, no crescimento e nutrição do crisântemo (var. "Virginal" e características químicas dos substratos, um experimento foi montado. A instalação foi em casa de vegetação da Empresa CONSPIZZA HIDROSSEMEADURA Ltda., situada no município de Colombo-PR, no verão de 2001. Dois substratos foram testados: 1 composto de 50% de solo orgânico, 45% de areia e 5% de fumo compostado; 2 camada superficial (0-20cm de um LATOSSOLO VERMELHO Distrófico típico, do município de Ponta Grossa. O delineamento experimental foi em blocos ao acaso, com 5 repetições, em esquema fatorial 4x2x2, sendo 4 doses de polímero (0; 1; 2 e 4g kg-1 de substrato, 2 fontes nitrogenadas [(NH42SO4 e (H2N2CO] e duas fontes potássicas (KCl e K2SO4, respectivamente. Determinou-se massa seca de ramos, folhas e teores de K, Ca e Mg. Os substratos foram avaliados quanto aos teores de K

  2. Star Cluster Buzzing With Pulsars

    Science.gov (United States)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  3. Hierarchical Star Formation with Young Stellar Clusters with LEGUS

    Science.gov (United States)

    Grasha, Kathryn; Calzetti, Daniela

    2018-01-01

    We present findings on using young star clusters to trace the unbound hierarchical star-forming structures in nearby galaxies drawn from the Legacy ExtraGalactic UV Survey (LEGUS) program. LEGUS is a cycle 21 Hubble Space Telescope Treasury program designed to characterization the link between star formation of individual stars, stellar clusters and associations on parsec scales, and that of galaxy disks on kiloparsec scales. We find that star clusters are strongly clustered with respect to each other and that the spatial clustering disappears rapidly across all galaxies for ages as young as a few tens of Myr. This indicates that most, if not all, recent star formation occurs within rapidly dispersing hierarchical complexes. The observed correlations are consistent with arising in a turbulent-driven interstellar medium. We also present recent investigations of correlating CO gas to the star clusters to better understand the environmental connection between gas and recent star formation. We find a clear excess of young star clusters being spatially located near their natal molecular gas, disassociating in as little as 4-6 Myr. Lastly, we find that the spatial clustering of GMCs is significantly suppressed compared to that of star clusters. This suggests that GMCs must produce more than one star cluster, improving our ability to link the products of star formation to the properties of natal gas from which they originate.

  4. The Theatre of stars

    Science.gov (United States)

    Cavedon, M.; Peri, F.

    Planetariums are special instruments in education and didactics of Astronomy and Astrophysics. Since 1930 the Planetarium of Milan, the most important planetarium in Italy, has played a fundamental role in outreach to the public. Italian tradition always preferred didactics in ``live'' lessons. Now technology expands the potential of the star projector and the theatre of stars is a real window on the universe, where you can travel among the stars and galaxies, to reach the boundaries of space and time.

  5. Why Stars Matter

    OpenAIRE

    Ajay K. Agrawal; John McHale; Alex Oettl

    2014-01-01

    The growing peer effects literature pays particular attention to the role of stars. We decompose the causal effect of hiring a star in terms of the productivity impact on: 1) co-located incumbents and 2) new recruits. Using longitudinal university department-level data we report that hiring a star does not increase overall incumbent productivity, although this aggregate effect hides offsetting effects on related (positive) versus unrelated (negative) colleagues. However, the primary impact co...

  6. Report of the Scientific Committee of the Spanish Agency for Food Safetyand Nutrition (AESAN) on the risks associated with the consumption of Chinese star anise

    OpenAIRE

    Spanish Agency for Consumer Affairs, Food Safety and Nutrition

    2010-01-01

    In recent years, there have been cases of intoxications in infants attributable to the administration of infusions prepared with the fruit of Chinese star anise or eight-horned anise (Illicium verum). Its chemical composition includes the presence of essential oil containing high concentrations of anethole (7590%) and, among other components, sesquiterpenic lactones that may give rise to neurotoxic effects. In nature, there is another species with a similar morphology and ...

  7. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  8. Strange Nonchaotic Stars

    Science.gov (United States)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  9. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  10. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  11. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  12. Dissipative particle dynamics studies of doxorubicin-loaded micelles assembled from four-arm star triblock polymers 4AS-PCL-b-PDEAEMA-b-PPEGMA and their pH-release mechanism.

    Science.gov (United States)

    Nie, Shu Yu; Sun, Yao; Lin, Wen Jing; Wu, Wen Sheng; Guo, Xin Dong; Qian, Yu; Zhang, Li Juan

    2013-10-31

    Dissipative particle dynamics (DPD) simulation was applied to investigate the microstructures of the micelles self-assembled from pH-sensitive four-arm star triblock poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (4AS-PCL-b-PDEAEMA-b-PPEGMA). In the optimized system, the micelles have a core-mesosphere-shell three-layer structure. The drug-loading process and its distribution at different formulations in the micelles were studied. The results show that DOX molecules distributed in the core and the interface between the core and the mesosphere, suggesting the potential encapsulation capacity of DOX molecules. More drugs were loaded in the micelles with the increase in DOX, and the size of micelles became larger. However, some openings start to generate on the PEG shell when the DOX reaches a certain concentration. By changing the pH values of the system, different morphologies of the micelles were acquired after the pH-sensitive blocks PDEAEMA were protonated, the mechanism of which was also analyzed through correlating functions. The results indicated that the sudden increase in solubility parameter of the pH-sensitive blocks and the swelling of the micelles were the key factors on the change of morphologies. Furthermore, with the decrease in pH value, the number and size of the cracks on the surface of the micelles were larger, which may have a direct effect on the drug release. In conclusion, 4AS-PCL-b-PDEAEMA-b-PPEGMA has great promising applications in delivering hydrophobic anticancer drugs for improved cancer therapy.

  13. Horizontal Branch stars as AmFm/HgMn stars

    OpenAIRE

    Michaud, G.; Richer, J.

    2008-01-01

    Recent observations and models for horizontal branch stars are briefly described and compared to models for AmFm stars. The limitations of those models are emphasized by a comparison to observations and models for HgMn stars.

  14. Multicompartmental Microcapsules from Star Copolymer Micelles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  15. Synthesis and supramolecular assembly of biomimetic polymers

    Science.gov (United States)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic

  16. Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars.

    Science.gov (United States)

    Holm, Regina; Weber, Benjamin; Heller, Philipp; Klinker, Kristina; Westmeier, Dana; Docter, Dominic; Stauber, Roland H; Barz, Matthias

    2017-06-01

    Star-like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three-arm star-like polypept(o)ide (polysarcosine-block-polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth-like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star-like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N-carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (Xn = 25, 50, 100), Poisson-like molecular weight distributions, and low dispersities (Đ = 1.06-1.15). Star-like polypept(o)ides display a hydrodynamic radius of 5 nm (μ2 star-like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10(-3) m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson-like molecular weight distributions and low dispersities (Đ = 1.05-1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Merging strangeon stars

    Science.gov (United States)

    Lai, Xiao-Yu; Yu, Yun-Wei; Zhou, En-Ping; Li, Yun-Yang; Xu, Ren-Xin

    2018-02-01

    The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation (and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae (i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally, the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 102 ‑ 103 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors (e.g., Advanced LIGO) and X-ray telescopes (e.g., the Chinese HXMT satellite and eXTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.

  18. The complex lives of star clusters

    CERN Document Server

    Stevenson, David

    2015-01-01

    As with the author’s recent books Extreme Explosions and Under a Crimson Sun, the complex topic of star clusters is broken down and made accessible with clear links to other areas of astronomy in a language which the non-specialist can easily read and enjoy. The full range of a star cluster's lifespan is depicted, as both globular and open clusters are tracked from birth to eventual death. Why is it some are dense conglomerates of stars while others are looser associations? Are the young, brilliant clusters seen in neighboring galaxies such as the Large Magellanic Cloud, M33 or M82 analogous to the ancient globulars seen in the Milky Way? How will these clusters change as their stars wane and die? More interestingly, how does living in a dense star cluster affect the fates of the stars and any attendant planets that accompany them?   Star clusters form many of the most dazzling objects in the astronomers’ catalogs. Many amateur astronomers are interested in exploring how these objects are created and wh...

  19. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  20. Phthalocyanine polymers

    Science.gov (United States)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    A method of forming 4,4',4'',4''' -tetraamino phthalocyanines involves reducing 4,4',4'',4''' -tetranitro phthalocyanines, polymerizing the metal tetraamino phthalocyanines with a tetracarboxylic dianhydride (preferably aromatic) or copolymerizing with a tetracarboxylic dianhydride and a diamine (preferably also aromatic) to produce amic acids which are then dehydrocyclized to imides. Thermally and oxidatively stable polymers result which form tough, flexible films, varnishes, adhesives, and fibers.

  1. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  2. Star Trek in the Schools

    Science.gov (United States)

    Journal of Aerospace Education, 1977

    1977-01-01

    Describes specific educational programs for using the Star Trek TV program from kindergarten through college. For each grade level lesson plans, ideas for incorporating Star Trek into future classes, and reports of specific programs utilizing Star Trek are provided. (SL)

  3. QCM-D studies on polymer behavior at interfaces

    CERN Document Server

    Liu, Guangming

    2014-01-01

    QCM-D Studies on Polymer Behavior at Interfaces reviews the applications of quartz crystal microbalance with dissipation (QCM-D) in polymer research, including the conformational change of grafted polymer chains, the grafting kinetics of polymer chains, the growth mechanism of polyelectrolyte multilayers, and the interactions between polymers and phospholipid membranes. It focuses on how QCM-D can be applied to the study of polymer behavior at various solid-liquid interfaces. Moreover, it clearly reveals the physical significance of the changes in frequency and dissipation associated with the different polymer behaviors at the interfaces.

  4. Hadrons in compact stars

    Indian Academy of Sciences (India)

    volving Bose–Einstein condensates of antikaons within relativistic models. Also, the structures of non-rotating neutron stars are calculated using this EoS. 2. Hadrons in cold and dense medium. At normal nuclear matter density, neutron star matter mainly consists of neutrons, protons and electrons. The particle population is ...

  5. ENERGY STAR Certified Telephones

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Telephony (cordless telephones and VoIP telephones) that are effective as of October 1, 2014. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=phones.pr_crit_phones

  6. Science Through ARts (STAR)

    Science.gov (United States)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  7. Neutron Stars: Formation and Structure

    OpenAIRE

    Kutschera, Marek

    1998-01-01

    A short introduction is given to astrophysics of neutron stars and to physics of dense matter in neutron stars. Observed properties of astrophysical objects containing neutron stars are discussed. Current scenarios regarding formation and evolution of neutron stars in those objects are presented. Physical principles governing the internal structure of neutron stars are considered with special emphasis on the possible spin ordering in the neutron star matter.

  8. Are Pulsars Bare Strange Stars?

    Science.gov (United States)

    Xu, R. X.; Qiao, G. J.; Zhang, B.

    It is believed that pulsars are neutron stars or strange stars with crusts. However we suggest here that pulsars may be bare strange stars (i.e., strange stars without crust). Due to rapid rotation and strong emission, young strange stars produced in supernova explosions should be bare when they act as radio pulsars. Because of strong magnetic field, two polar-crusts would shield the polar caps of an accreting strange star. Such a suggestion can be checked by further observations.

  9. Magnetic Fields of Massive Stars

    OpenAIRE

    Lundin, Andreas

    2010-01-01

    This paper is an introduction to the subject of magnetic fields on stars, with a focus on hotter stars. Basic astrophysical concepts are explained, including: spectroscopy, stellar classification, general structure and evolution of stars. The Zeeman effect and how absorption line splitting  is used to detect and measure magnetic fields is explained. The properties of a prominent type of magnetic massive star, Ap-stars, are delved into. These stars have very stable, global, roughly dipolar mag...

  10. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  11. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  12. How Stars Form

    Science.gov (United States)

    McKee, Christopher F.

    2017-01-01

    Stars are the atoms of the universe. The process by which stars form is at the nexus of astrophysics since they are believed to be responsible for the re-ionization of the universe, they created the heavy elements, they play a central role in the formation and evolution of galaxies, and their formation naturally leads to the formation of planets. Whereas early work on star formation was based on the assumption that it is a quiescent process, it is now believed that turbulence plays a dominant role. In this overview, I shall discuss the evolution of our understanding of how stars form and current ideas about the stellar initial mass function and the rate of star formation.

  13. Star spot location estimation using Kalman filter for star tracker.

    Science.gov (United States)

    Liu, Hai-bo; Yang, Jian-kun; Wang, Jiong-qi; Tan, Ji-chun; Li, Xiu-jian

    2011-04-20

    Star pattern recognition and attitude determination accuracy is highly dependent on star spot location accuracy for the star tracker. A star spot location estimation approach with the Kalman filter for a star tracker has been proposed, which consists of three steps. In the proposed approach, the approximate locations of the star spots in successive frames are predicted first; then the measurement star spot locations are achieved by defining a series of small windows around each predictive star spot location. Finally, the star spot locations are updated by the designed Kalman filter. To confirm the proposed star spot location estimation approach, the simulations based on the orbit data of the CHAMP satellite and the real guide star catalog are performed. The simulation results indicate that the proposed approach can filter out noises from the measurements remarkably if the sampling frequency is sufficient. © 2011 Optical Society of America

  14. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  15. Massive runaway stars in the Large Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    2010-09-01

    The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (˜ 100 km s-1) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birthplaces at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach is, however, complicated by the long distance to the LMC, which makes accurate proper motion measurements difficult. We used an alternative approach for solving the problem (first applied for Galactic field stars), based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion, thereby determining their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars that have been proposed as candidate runaway stars. Using archival Spitzer Space Telescope data, we found a bow shock associated with one of our programme stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ≃ 120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star-forming complex. We discuss implications of our findings for the

  16. Wolf-Rayet stars as gamma-ray burst progenitors

    NARCIS (Netherlands)

    Langer, N.|info:eu-repo/dai/nl/304829498; van Marle, A. -J; Yoon, S.C.|info:eu-repo/dai/nl/266576753

    2010-01-01

    It became clear in the last few years that long gamma-ray bursts are associated with the endpoints of massive star evolution. They occur in star forming regions at cosmological distances (Jakobsson et al., 2005), and are associated with supernova-type energies. The collapsar model explains gamma-ray

  17. The Neutron Star Interior Composition Explorer

    Science.gov (United States)

    Gendreau, Keith C.

    2008-01-01

    The Neutron star Interior Composition Explorer (NICE) will be a Mission of Opportunity dedicated to the study of neutron stars, the only places in the universe where all four fundamental forces of nature are simultaneously in play. NICE will explore the exotic states of matter within neutron stars, revealing their interior and surface compositions through rotation resolved X-ray spectroscopy. Absolute time-referenced data will allow NICE to probe the extreme physical environments associated with neutron stars, leveraging observations across the electromagnetic spectrum to answer decades-old questions about one of the most powerful cosmic accelerators known. Finally, NICE will definitively measure stabilities of pulsars as clocks, with implications for navigation, a pulsar-based timescale, and gravitational-wave detection. NICE will fly on the International Space Station, while GLAST is on orbit and post-RXTE, and will allow for the discovery of new high-energy pulsars and provide continuity in X-ray timing astrophysics.

  18. "Catch a Star !"

    Science.gov (United States)

    2002-05-01

    ESO and EAAE Launch Web-based Educational Programme for Europe's Schools Catch a star!... and discover all its secrets! This is the full title of an innovative educational project, launched today by the European Southern Observatory (ESO) and the European Association for Astronomy Education (EAAE). It welcomes all students in Europe's schools to an exciting web-based programme with a competition. It takes place within the context of the EC-sponsored European Week of Science and Technology (EWST) - 2002 . This unique project revolves around a web-based competition and is centred on astronomy. It is specifically conceived to stimulate the interest of young people in various aspects of this well-known field of science, but will also be of interest to the broad public. What is "Catch a Star!" about? [Go to Catch a Star Website] The programme features useful components from the world of research, but it is specifically tailored to (high-)school students. Younger participants are also welcome. Groups of up to four persons (e.g., three students and one teacher) have to select an astronomical object - a bright star, a distant galaxy, a beautiful comet, a planet or a moon in the solar system, or some other celestial body. Like detectives, they must then endeavour to find as much information as possible about "their" object. This information may be about the position and visibility in the sky, the physical and chemical characteristics, particular historical aspects, related mythology and sky lore, etc. They can use any source available, the web, books, newspaper and magazine articles, CDs etc. for this work. The group members must prepare a (short) summarising report about this investigation and "their" object, with their own ideas and conclusions, and send it to ESO (email address: eduinfo@eso.org). A jury, consisting of specialists from ESO and the EAAE, will carefully evaluate these reports. All projects that are found to fulfill the stipulated requirements, including a

  19. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  20. Making star teams out of star players.

    Science.gov (United States)

    Mankins, Michael; Bird, Alan; Root, James

    2013-01-01

    Top talent is an invaluable asset: In highly specialized or creative work, for instance, "A" players are likely to be six times as productive as "B" players. So when your company has a crucial strategic project, why not multiply all that firepower and have a team of your best performers tackle it? Yet many companies hesitate to do this, believing that all-star teams don't work: Big egos will get in the way. The stars won't be able to work with one another. They'll drive the team Leader crazy. Mankins, Bird, and Root of Bain & Company believe it's time to set aside that thinking. They have seen all-star teams do extraordinary work. But there is a right way and a wrong way to organize them. Before you can even begin to assemble such a team, you need to have the right talent management practices, so you hire and develop the best people and know what they're capable of. You have to give the team appropriate incentives and leaders and support staffers who are stars in their own right. And projects that are ill-defined or small scale are not for all-star teams. Use them only for critical missions, and make sure their objectives are clear. Even with the right setup, things can still go wrong. The wise executive will take steps to manage egos, prune non-team-players, and prevent average coworkers from feeling completely undervalued. She will also invest a lot of time in choosing the right team Leader and will ask members for lots of feedback to monitor how that leader is doing.

  1. Pseudosynchronization of Heartbeat Stars

    Science.gov (United States)

    Zimmerman, Mara; Thompson, Susan E.; Hambleton, Kelly; Fuller, Jim; Shporer, Avi; Isaacson, Howard T.; Howard, Andrew; Kurtz, Donald

    2016-01-01

    A type of eccentric binary star that undergoes extreme dynamic tidal forces, known as Heartbeat stars, were discovered by the Kepler Mission. As the two stars pass through periastron, the tidal distortion causes unique brightness variations. Short period, eccentric binary stars, like these, are theorized to pseudosynchronize, or reach a rotational frequency that matches the weighted average orbital angular velocity of the system. This pseudosynchronous rate, as predicted by Hut (1981), depends on the binary's orbital period and eccentricity. We tested whether sixteen heartbeat stars have pseudosynchronized. We measure the rotation rate from obvious spot signatures in the light curve. We measure the eccentricity by fitting the light curve using PHOEBE and are actively carrying out a radial velocity monitoring program with Keck/HIRES in order to improve these orbital parameters. Our initial results show that while most heartbeat stars appear to have pseudosynchronized we find stars with rotation frequencies both longer and shorter than this rate. We thank the SETI Institute REU program, the NSF, and the Kepler Guest Observer Program for making this work possible.

  2. Dense Axion Stars.

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  3. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  4. Combining living anionic polymerization with branching reactions in an iterative fashion to design branched polymers.

    Science.gov (United States)

    Higashihara, Tomoya; Sugiyama, Kenji; Yoo, Hee-Soo; Hayashi, Mayumi; Hirao, Akira

    2010-06-16

    This paper reviews the precise synthesis of many-armed and multi-compositional star-branched polymers, exact graft (co)polymers, and structurally well-defined dendrimer-like star-branched polymers, which are synthetically difficult, by a commonly-featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well-defined target branched polymers. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  6. Hyperons in neutron stars

    Directory of Open Access Journals (Sweden)

    Tetsuya Katayama

    2015-07-01

    Full Text Available Using the Dirac–Brueckner–Hartree–Fock approach, the properties of neutron-star matter including hyperons are investigated. In the calculation, we consider both time and space components of the vector self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of baryons is partly taken into account. We obtain the maximum neutron-star mass of 2.08M⊙, which is consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body force for hyperons in matter.

  7. Infrared spectroscopy of stars

    Science.gov (United States)

    Merrill, K. M.; Ridgway, S. T.

    1979-01-01

    This paper reviews applications of IR techniques in stellar classification, studies of stellar photospheres, elemental and isotopic abundances, and the nature of remnant and ejected matter in near-circumstellar regions. Qualitative IR spectral classification of cool and hot stars is discussed, along with IR spectra of peculiar composite star systems and of obscured stars, and IR characteristics of stellar populations. The use of IR spectroscopy in theoretical modeling of stellar atmospheres is examined, IR indicators of stellar atmospheric composition are described, and contributions of IR spectroscopy to the study of stellar recycling of interstellar matter are summarized. The future of IR astronomy is also considered.

  8. Rotational modulation of spots and plages on RSCVn stars

    Science.gov (United States)

    Bryne, P. B.; Doyle, J. G.; Andrews, A. D.; Butler, C. J.; Marstad, N. C.; Linsky, J. L.; Simon, T.; Rodono, M.; Catalano, S.; Blanco, C.

    1984-07-01

    Observations of three RS CVn stars made with the IUE satellite are presented. Emission line fluxes are found to vary in anti-phase with the stars' optical variations. The authors interpret these correlations in terms of large-scale spots in the stellar photospheres with overlying magnetic loops, giving rise to non-thermal heating of the layers above the spots. Evidence of nonthermal gas motions is also presented which appear to be associated with the most active regions of the stars.

  9. Tunable Optical Polymer Systems

    National Research Council Canada - National Science Library

    Jenekhe, S. A; Bard, Allen J; Chen, S. H; Hammond, P. T; Rothberg, L. J

    2004-01-01

    .... The synthesis and properties of new electrochromic polymers are described. Electrochromic devices incorporating conjugated polymers have been fabricated and found to be durable past 100,000 cycles...

  10. Dance of the double stars

    Energy Technology Data Exchange (ETDEWEB)

    Theokas, A.

    1985-09-19

    The paper concerns pairs of stars orbiting one another. The evolutionary path model for close binary stars, involving a mass transfer of gases between the stars, is described. The life history of a single star; cataclysmic variables; the algol paradox, matter and lagranges' point; x-ray binaries and bursters; and pulsars; are all briefly discussed.

  11. Observational Effects of Strange Stars

    OpenAIRE

    Lu, T.

    1998-01-01

    In this talk, after briefly reviewing some historical remarks concerning strange stars, the achievements in physics and dynamical behavior of strange stars are discussed. Especially, various observational effects in distinguishing strange stars from neutron stars such as mechanical effects, cooling effects, phase transition and related interesting phenomena are stressed.

  12. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

    Science.gov (United States)

    Blake, Anthony W; Marcus, Susan E; Copeland, James E; Blackburn, Richard S; Knox, J Paul

    2008-06-01

    A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.

  13. From Commodity Polymers to Functional Polymers

    OpenAIRE

    Tao Xiang,; Ling-Ren Wang; Lang Ma; Zhi-Yuan Han; Rui Wang; Chong Cheng; Yi Xia; Hui Qin; Chang-Sheng Zhao

    2014-01-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outs...

  14. Interferometric star tracker Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to develop a high accuracy version of its interferometric star tracker capable of meeting the milli-arcsecond-level pointing...

  15. Principles of star formation

    CERN Document Server

    Bodenheimer, Peter H

    2011-01-01

    Understanding star formation is one of the key fields in present-day astrophysics. This book treats a wide variety of the physical processes involved, as well as the main observational discoveries, with key points being discussed in detail. The current star formation in our galaxy is emphasized, because the most detailed observations are available for this case. The book presents a comparison of the various scenarios for star formation, discusses the basic physics underlying each one, and follows in detail the history of a star from its initial state in the interstellar gas to its becoming a condensed object in equilibrium. Both theoretical and observational evidence to support the validity of the general evolutionary path are presented, and methods for comparing the two are emphasized. The author is a recognized expert in calculations of the evolution of protostars, the structure and evolution of disks, and stellar evolution in general. This book will be of value to graduate students in astronomy and astroph...

  16. STAR: Copperhead interface

    OpenAIRE

    Cahill, Thomas Everett

    1981-01-01

    Approved for public release; distribution is unlimited This thesis provides the general design logic for a computer representation of the Field Artillery's precision guided munition- Copperhead. The design has been specifically structured to enable its integration into the Simulation of Tactical Alternative Responses (STAR) model. (STAR is a stochastic force-on-force combat simulation.) Routines and events are developed which portray the target identification, target selection, firing a...

  17. Lithium synthesis in low metallicity AGB stars

    Science.gov (United States)

    Iwamoto, Nobuyuki

    2008-05-01

    We evolve thermally pulsing AGB star models in the mass range of 1-8 Msolar. The metallicity of the models is assumed to be [Fe/H]~=-3. Mass loss is taken into account to investigate the abundance patterns of the yields ejected from the AGB models. In the 1 and 2 Msolar AGB models hot bottom burning (HBB) does not take place at the base of the convective envelope during interpulse phases, but the low-mass models produce 7Li in an H-flash event. The occurrence of this event is associated with the ingestion of protons from the overlying H-rich envelope into the He-flash driven convective shell during thermal pulse phase. The resulting 7Li abundances are higher than the primordial one based on the analysis of the WMAP data. The present investigation also confirms the efficient production of 7Li by the HBB in the intermediate-mass (4-8 Msolar) AGB stars. If these AGB stars belong to a binary system with a low-mass companion, mass loss from the primary AGB star transfers the materials enriched in 7Li to the surface of the secondary star and makes the surface composition Li-rich. The formation of the Li-rich stars, however, strongly depends on the mass loss history and binary separation. The nucleosynthesis of the other light elements up to the phosphorus is also followed until the end of the AGB phase. We find that the yields of the low metallicity AGB stars well reproduce the abundance patterns of extremely metal-poor stars.

  18. Characterizing bursty star formation

    Science.gov (United States)

    Emami, Najmeh

    2018-01-01

    An ongoing area of research in galaxy evolution is the efficiency of star formation as a function of galaxy halo mass. At low mass, it is believed that supernova feedback can expel gas from the galaxy and shut down star formation. However, there are still significant uncertainties in how the momentum/energy of the supernova couple with the gas and the efficiency with which it drives winds. Particularly uncertain are the parameters of the resulting bursts of star formation —amplitudes, durations, and periods — with important implications for interpreting observations of dwarf galaxies. Some hydrodynamical simulations predict order of magnitude bursts (and quenching) on very short (indicators of dwarf galaxies (H-alpha and ultraviolet luminosities) that trace star formation on different time scales (~5 Myr and ~20 Myr, respectively), as well as their relation to the average galaxies of similar stellar mass, to better constrain the parameters of the star formation bursts. We find that the burst amplitude increases with decreasing stellar mass, with amplitudes ranging two orders of magnitude at stellar masses of 10^7. We also find that the star formation is quenched very rapidly, with e-folding times less than 10 Myr in galaxies with stellar masses less than 10^(7.5). We conclude by comparing our results to recent hydrodynamical simulations and discussing the effects of stochastic sampling of the stellar initial mass function.

  19. Star-Shaped Polyacrylates: Highly Functionalized Architectures via CuAAC Click Conjugation.

    Science.gov (United States)

    Lammens, Mieke; Fournier, David; Fijten, Martin W M; Hoogenboom, Richard; Prez, Filip Du

    2009-12-01

    Well-defined functional star-shaped polymer structures with up to 29 arms have been successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and click chemistry. First, azide end-functionalized poly(isobornyl acrylate) (PiBA) star-shaped polymers were prepared by successive ATRP and bromine substitution. Subsequently, alkyne end-functionalized molecules and polymers were introduced onto the star-shaped PiBA bearing pendant azide moieties by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The possibilities and limits for the CuAAC on such highly branched polyacrylates are described. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gamma rays from star-forming regions

    OpenAIRE

    Gustavo E. Romero

    2008-01-01

    Star-forming regions have been tentatively associated with gamma-ray sources since the early days of the COS B satellite. After the Compton Gamma-Ray Observatory, the statistical evidence for such an association has became overwhelming. Recent results from Cherenkov telescopes indicate that some high-energy sources are produced in regions of active star formation like Cygnus OB2 and Westerlund 2. In this paper I will briefly review what kind of stellar objects can produce gamma-ray emission i...

  1. Collapsing Enormous Stars

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    One of the big puzzles in astrophysics is how supermassive black holes (SMBHs) managed to grow to the large sizes weve observed in the very early universe. In a recent study, a team of researchers examines the possibility that they were formed by the direct collapse of supermassive stars.Formation MysterySMBHs billions of times as massive as the Sun have been observed at a time when the universe was less than a billion years old. But thats not enough time for a stellar-mass black hole to grow to SMBH-size by accreting material so another theory is needed to explain the presence of these monsters so early in the universes history. A new study, led by Tatsuya Matsumoto (Kyoto University, Japan), poses the following question: what if supermassive stars in the early universe collapsed directly into black holes?Previous studies of star formation in the early universe have suggested that, in the hot environment of these primordial times, stars might have been able to build up mass much faster than they can today. This could result in early supermassive stars roughly 100,000 times more massive than the Sun. But if these early stars end their lives by collapsing to become massive black holes in the same way that we believe massive stars can collapse to form stellar-mass black holes today this should result in enormously violent explosions. Matusmoto and collaborators set out to model this process, to determine what we would expect to see when it happens!Energetic BurstsThe authors modeled the supermassive stars prior to collapse and then calculated whether a jet, created as the black hole grows at the center of the collapsing star, would be able to punch out of the stellar envelope. They demonstrated that the process would work much like the widely-accepted collapsar model of massive-star death, in which a jet successfully punches out of a collapsing star, violently releasing energy in the form of a long gamma-ray burst (GRB).Because the length of a long GRB is thought to

  2. Neutrino Processes in Neutron Stars

    Directory of Open Access Journals (Sweden)

    Kolomeitsev E.E.

    2010-10-01

    interaction effects can be included within the Green’s function formalism. Softening of the pion mode with an baryon density increase is explicitly incorporated. We show examples of inconsistencies in calculations without inclusion of medium effects. Then we demonstrate calculations of different reaction rates in non-superfluid nuclear matter with taking into account medium effects. Many new reaction channels are open up in the medium and should be analyzed. Part IV: We discuss the neutrino production reactions in superfluid nuclear systems. The reaction rates of processes associated with the pair breaking and formation are calculated. Special attention is focused on the gauge invariance and the exact fulfillment of the Ward identities for the vector current. Finally we present comparison of calculations of neutron star cooling performed within nuclear medium cooling scenario with the available data.

  3. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture

    Science.gov (United States)

    Sun, Hao; Kabb, Christopher P.; Dai, Yuqiong; Hill, Megan R.; Ghiviriga, Ion; Bapat, Abhijeet P.; Sumerlin, Brent S.

    2017-08-01

    Macromolecular architecture plays a pivotal role in determining the properties of polymers. When designing polymers for specific applications, it is not only the size of a macromolecule that must be considered, but also its shape. In most cases, the topology of a polymer is a static feature that is inalterable once synthesized. Using reversible-covalent chemistry to prompt the disconnection of chemical bonds and the formation of new linkages in situ, we report polymers that undergo dramatic topological transformations via a process we term macromolecular metamorphosis. Utilizing this technique, a linear amphiphilic block copolymer or hyperbranched polymer undergoes 'metamorphosis' into comb, star and hydrophobic block copolymer architectures. This approach was extended to include a macroscopic gel which transitioned from a densely and covalently crosslinked network to one with larger distances between the covalent crosslinks when heated. These architectural transformations present an entirely new approach to 'smart' materials.

  4. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H.Y.

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  5. Strömgren and Hß photometry of O and B type stars in star-forming regions. II. Moneceros OB2, Canis Major OB1 and Collinder 121

    DEFF Research Database (Denmark)

    Kaltcheva, N.T.; Olsen, Erik Heyn; Clausen, J.V.

    1999-01-01

    Stars: Early-type - Galaxy: Open clusters and associations: Individual: Mon OB2, CMa OB1, Col 121......Stars: Early-type - Galaxy: Open clusters and associations: Individual: Mon OB2, CMa OB1, Col 121...

  6. From Commodity Polymers to Functional Polymers

    Science.gov (United States)

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-01-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications. PMID:24710333

  7. STARS: A Campus-Wide Integrated Continuous Planning Opportunity

    Science.gov (United States)

    Martin, Richard J.

    2011-01-01

    In this article, the author talks about Sustainability Tracking, Assessment and Rating System or "STARS," a tool currently available that aims to help a campus answer the "how" and "how hard" questions. Created by AASHE (the Association for the Advancement of Sustainability in Higher Education), STARS presents guidelines and suggestions (based on…

  8. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  9. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  10. Super paramagnetic iron oxide nanoparticle modified mancozeb imprinted polymer

    Science.gov (United States)

    Kumar, Sunil; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    An electrochemical sensor for detection of mancozeb from soil and vegetable sample using molecularly imprinted star polymer modified with iron oxide nanoparticles (SPIONs) is described in this work. We have prepared SPIONS by hydrothermal method and modified with vinyl silane to introduce double bond at their surface. The vinyl group modified SPIONs were used to form mancozeb imprinted star polymer (ISP). The ISPs have specific recognition ability high adsorption capacity towards their template molecule and could be easily extracted from complex matrices using a simple magnet. The prepared polymer was well characterized by field emissive scanning electron microscopy (FE-SEM). Under the optimum condition, the prepared sensor shows good response for mancozeb in the range of 5.96 to 222.39 µg L-1 (detection limit=0.98 µg L-1). The proposed sensors have highly selective for detection of mancozeb in soil and vegetable samples also.

  11. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  12. Synthesis and Characterization of Well-Defined Regular Star Polyisoprenes with 3, 4, 6 and 8 Arms

    KAUST Repository

    Ratkanthwar, Kedar R.

    2013-01-01

    Three series of regular well-defined star polyisoprenes (PIs) with 3, 4 and 6 arms (each series: same arm molecular weight) have been synthesized by anionic polymerization high vacuum techniques and chlorosilane chemistry. In addition, three linear PIs with practically the double arm molecular weight of the corresponding series (2-arm star PIs) have been synthesized, as well as one 8-arm star PI. All intermediate (arms) and final (stars) products have been characterized by size exclusion chromatography (SEC), SEC-multi-angle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. The Tg of the star PIs was determined by differential scanning calorimetry. These model polymeric materials are essential for polymer physics and polymer physical chemistry in order to establish the structure/property relationships.

  13. A DYING STAR IN GLOBULAR CLUSTER

    Science.gov (United States)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  14. Stars a very short introduction

    CERN Document Server

    King, Andrew

    2012-01-01

    Stars: A Very Short Introduction looks at how stars live, producing all the chemical elements beyond helium, and how they die, leaving remnants such as black holes. Every atom of our bodies has been part of a star. Our very own star, the Sun, is crucial to the development and sustainability of life on Earth. Understanding stars is key to understanding the galaxies they inhabit, the existence of planets, and the history of our entire Universe. This VSI explores the science of stars, the mechanisms that allow them to form, the processes that allow them to shine, and the results of their death.

  15. Lithium in LMC carbon stars

    OpenAIRE

    Hatzidimitriou, D.; Morgan, D. H.; Cannon, R. D.; Croke, B. F. W.

    2003-01-01

    Nineteen carbon stars that show lithium enrichment in their atmospheres have been discovered among a sample of 674 carbon stars in the Large Magellanic Cloud. Six of the Li-rich carbon stars are of J-type, i.e. with strong 13C isotopic features. No super-Li-rich carbon stars were found. The incidence of lithium enrichment among carbon stars in the LMC is much rarer than in the Galaxy, and about five times more frequent among J-type than among N-type carbon stars. The bolometric magnitudes of ...

  16. Genome-wide association mapping in winter barley for grain yield and culm cell wall polymer content using the high-throughput CoMPP technique.

    Directory of Open Access Journals (Sweden)

    Andrea Bellucci

    Full Text Available A collection of 112 winter barley varieties (Hordeum vulgare L. was grown in the field for two years (2008/09 and 2009/10 in northern Italy and grain and straw yields recorded. In the first year of the trial, a severe attack of barley yellow mosaic virus (BaYMV strongly influenced final performances with an average reduction of ~ 50% for grain and straw harvested in comparison to the second year. The genetic determination (GD for grain yield was 0.49 and 0.70, for the two years respectively, and for straw yield GD was low in 2009 (0.09 and higher in 2010 (0.29. Cell wall polymers in culms were quantified by means of the monoclonal antibodies LM6, LM11, JIM13 and BS-400-3 and the carbohydrate-binding module CBM3a using the high-throughput CoMPP technique. Of these, LM6, which detects arabinan components, showed a relatively high GD in both years and a significantly negative correlation with grain yield (GYLD. Overall, heritability (H2 was calculated for GYLD, LM6 and JIM and resulted to be 0.42, 0.32 and 0.20, respectively. A total of 4,976 SNPs from the 9K iSelect array were used in the study for the analysis of population structure, linkage disequilibrium (LD and genome-wide association study (GWAS. Marker-trait associations (MTA were analyzed for grain yield and cell wall determination by LM6 and JIM13 as these were the traits showing significant correlations between the years. A single QTL for GYLD containing three MTAs was found on chromosome 3H located close to the Hv-eIF4E gene, which is known to regulate resistance to BaYMV. Subsequently the QTL was shown to be tightly linked to rym4, a locus for resistance to the virus. GWAs on arabinans quantified by LM6 resulted in the identification of major QTLs closely located on 3H and hypotheses regarding putative candidate genes were formulated through the study of gene expression levels based on bioinformatics tools.

  17. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  18. On the mechanism of gas transport in rigid polymer membranes

    NARCIS (Netherlands)

    Hensema, E.R.; Hensema, E.R.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1993-01-01

    Conventional polymers are compared as gas separation membrane materials with tailormade polymers. The increased permeability of the latter are due to their higher free volume available for gas transport. The increased free volume is associated with the rigidity polymer backbone. Free volume is

  19. Giant star seismology

    Science.gov (United States)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  20. Dynamical Boson Stars

    Directory of Open Access Journals (Sweden)

    Steven L. Liebling

    2012-05-01

    Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  1. Collapse of axion stars

    Energy Technology Data Exchange (ETDEWEB)

    Eby, Joshua [Department of Physics, University of Cincinnati,2600 Clifton Ave, Cincinnati, OH, 45221 (United States); Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL, 60510 (United States); Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L.C.R. [Department of Physics, University of Cincinnati,2600 Clifton Ave, Cincinnati, OH, 45221 (United States)

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.

  2. Dynamical boson stars

    Science.gov (United States)

    Liebling, Steven L.; Palenzuela, Carlos

    2017-11-01

    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  3. Dynamical boson stars.

    Science.gov (United States)

    Liebling, Steven L; Palenzuela, Carlos

    2017-01-01

    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  4. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  5. Pulsating Star Mystery Solved

    Science.gov (United States)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  6. Stability of multiplanetary systems in star clusters

    Science.gov (United States)

    Cai, Maxwell Xu; Kouwenhoven, M. B. N.; Portegies Zwart, Simon F.; Spurzem, Rainer

    2017-10-01

    Most stars form in star clusters and stellar associations. However, only about ˜1 per cent of the presently known exoplanets are found in these environments. To understand the roles of star cluster environments in shaping the dynamical evolution of planetary systems, we carry out direct N-body simulations of four planetary system models in three different star cluster environments with respectively N = 2k, 8k and 32k stars. In each cluster, an ensemble of initially identical planetary systems are assigned to solar-type stars with ˜1 M⊙ and evolved for 50 Myr. We found that following the depletion of protoplanetary discs, external perturbations and planet-planet interactions are two driving mechanisms responsible for the destabilization of planetary systems. The planet survival rate varies from ˜95 per cent in the N = 2k cluster to ˜60 per cent in the N = 32k cluster, which suggests that most planetary systems can indeed survive in low-mass clusters, except in the central regions. We also find that planet ejections through stellar encounters are cumulative processes, as only ˜3 per cent of encounters are strong enough to excite the eccentricity by Δe ≥ 0.5. Short-period planets can be perturbed through orbit crossings with long-period planets. When taking into account planet-planet interactions, the planet ejection rate nearly doubles, and therefore multiplicity contributes to the vulnerability of planetary systems. In each ensemble, ˜0.2 per cent of planetary orbits become retrograde due to random directions of stellar encounters. Our results predict that young low-mass star clusters are promising sites for next-generation planet surveys, yet low planet detection rates are expected in dense globular clusters such as 47 Tuc. Nevertheless, planets in denser stellar environments are likely to have shorter orbital periods, which enhance their detectability.

  7. General Relativity&Compact Stars

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  8. A Real Shooting Star

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light. The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years. As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake. Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence. Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its 'whale of a tail' can be

  9. Synthetic guide star generation

    Science.gov (United States)

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  10. Compact boson stars

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Betti [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany); Kleihaus, Burkhard; Kunz, Jutta [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Schaffer, Isabell, E-mail: i.schaffer@jacobs-university.de [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany)

    2012-07-24

    We consider compact boson stars that arise for a V-shaped scalar field potential. They represent a one parameter family of solutions of the scaled Einstein-Gordon equations. We analyze the physical properties of these solutions and determine their domain of existence. Along their physically relevant branch emerging from the compact Q-ball solution, their mass increases with increasing radius. Employing arguments from catastrophe theory we argue that this branch is stable, until the maximal value of the mass is reached. There the mass and size are on the order of magnitude of the Schwarzschild limit, and thus the spiraling respectively oscillating behaviour, well known for compact stars, sets in.

  11. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  12. Isolating Triggered Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Elizabeth J.; Arnold, Jacob A.; /UC, Irvine; Zentner, Andrew R.; /KICP, Chicago /Chicago U., EFI; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo

    2007-09-12

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to 'field' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than 'field' galaxies is primarily a selection effect. We use our simulations to devise a means to select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N= 2 halos) and to select a control sample of isolated galaxies (N= 1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M{sub B,j} {le} -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5 %) of these L* and sub-L* galaxies in isolated 50 (30) h{sup -1} kpc pairs exhibit star formation that is boosted by a factor of {approx}> 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. Our orbit models suggest that 12% (16%) of 50 (30) h{sup -1} kpc close pairs that are isolated according to our definition have had a close ({le} 30 h{sup -1} kpc) pass within the last Gyr. Thus, the data are broadly consistent with a scenario in which most or all close passes of isolated pairs result in triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding

  13. The formation of stars

    CERN Document Server

    Stahler, Steven W

    2008-01-01

    This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text f

  14. Dynamics of dissipative multifluid neutron star cores

    NARCIS (Netherlands)

    Haskell, B.; Andersson, N.; Comer, G.L.

    2012-01-01

    We present a Newtonian multifluid formalism for superfluid neutron star cores, focusing on the additional dissipative terms which arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids." The problem is of direct astrophysical interest as the

  15. Probing neutron star physics using accreting neutron stars

    NARCIS (Netherlands)

    Patruno, A.

    2010-01-01

    We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars

  16. PV Ceph: Young Star Caught Speeding?

    OpenAIRE

    Goodman, Alyssa A.; Arce, Hector G.

    2004-01-01

    Three independent lines of evidence imply that the young star PV Ceph is moving at roughly 20 km/s through the interstellar medium. The first, and strongest, suggestion of motion comes from the geometry of the HH knots in the "giant" Herbig-Haro (HH) flow associated with PV Ceph. Bisectors of lines drawn between pairs of knots at nearly equal distances from PV Ceph imply an E-W motion of the source, and a plasmon model fit to the knot positions gives a good fit of 22 km/s motion for the star....

  17. Fullerene-containing polymeric stars in bulk and solution by neutron spin-echo

    CERN Document Server

    Lebedev, V T; Toeroek, G; Cser, L; Bershtein, V A; Zgonnik, V N; Melenevskaya, E Y; Vinogradova, L V

    2002-01-01

    Stars with C sub 6 sub 0 fullerene core and poly (styrene) (PS) arms have been studied in benzene and in the bulk by neutron spin echo (NSE). Behaviours of stars (six arms, each with a mass M=5.10 sup 3) at momentum transfer q=0.2-0.6 nm sup - sup 1 in the time range t=0.01-20 ns at temperatures T=20-60 C were compared with dynamics of free PS chains. Displaying depressed molecular mobility, the stars did not obey the usual dynamic Zimm or Rouse model. The fullerene polymer interaction at a specific molecular architecture results in oscillating dynamics. (orig.)

  18. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  19. UX Ori-Type Stars

    Science.gov (United States)

    Grinin, V.

    2017-06-01

    The brief review of the properties of the UX Ori type stars is presented. A special attention is given to the results of the Crimean program of the multi-year photometric and polarimetric observations of these stars.

  20. ENERGY STAR Certified Commercial Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Dishwashers that are effective as of...

  1. ENERGY STAR Certified Commercial Ovens

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Ovens that are effective as of...

  2. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  3. ENERGY STAR Certified Water Coolers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Water Coolers that are effective as of February...

  4. ENERGY STAR Certified Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 and Version 3.1 ENERGY STAR Program Requirements for Water Heaters that are effective...

  5. ENERGY STAR Certified Imaging Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Imaging Equipment that are effective as of...

  6. ENERGY STAR Certified Commercial Griddles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Commercial Griddles that are effective as of May...

  7. ENERGY STAR Certified Residential Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.0 ENERGY STAR Program Requirements for Residential Dishwashers that are effective as of...

  8. ENERGY STAR Certified Roof Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.3 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1,...

  9. ENERGY STAR Certified Audio Video

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Audio Video Equipment that are effective as of...

  10. ENERGY STAR Certified Vending Machines

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are...

  11. ENERGY STAR Certified Enterprise Servers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.1 ENERGY STAR Program Requirements for Enterprise Servers that are effective as of...

  12. ENERGY STAR Certified Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.2 ENERGY STAR Program Requirements for Water Heaters that are effective April 16, 2015....

  13. ENERGY STAR Certified Ceiling Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1,...

  14. ENERGY STAR Certified Pool Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Pool Pumps that are effective as of February 15,...

  15. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2003-01-01

    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  16. Comparing P-stars with Observations

    OpenAIRE

    Cea, Paolo

    2007-01-01

    P-stars are compact stars made of up and down quarks in $\\beta$-equilibrium with electrons in a chromomagnetic condensate. P-stars are able to account for compact stars as well as stars with radius comparable with canonical neutron stars. We compare p-stars with different available observations. Our results indicate that p-stars are able to reproduce in a natural manner several observations from isolated and binary pulsars.

  17. StarLogo TNG

    Science.gov (United States)

    Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel

    Computational approaches to science are radically altering the nature of scientific investigatiogn. Yet these computer programs and simulations are sparsely used in science education, and when they are used, they are typically “canned” simulations which are black boxes to students. StarLogo The Next Generation (TNG) was developed to make programming of simulations more accessible for students and teachers. StarLogo TNG builds on the StarLogo tradition of agent-based modeling for students and teachers, with the added features of a graphical programming environment and a three-dimensional (3D) world. The graphical programming environment reduces the learning curve of programming, especially syntax. The 3D graphics make for a more immersive and engaging experience for students, including making it easy to design and program their own video games. Another change to StarLogo TNG is a fundamental restructuring of the virtual machine to make it more transparent. As a result of these changes, classroom use of TNG is expanding to new areas. This chapter is concluded with a description of field tests conducted in middle and high school science classes.

  18. Seven star pharmacists

    OpenAIRE

    Galea, Gauden

    2007-01-01

    The seven star pharmacist is care-giver, decision-maker, communicator, manager, life-long-learner, teacher and leader.1 Implicit in these roles is that of health promoter. The pharmacist’s continuing relationship with the client, the community-based practice, and multiple entry points for counselling make the pharmacist a leader in health care.

  19. Magnetic Dynamos and Stars

    Energy Technology Data Exchange (ETDEWEB)

    Eggleton, P P

    2007-02-15

    Djehuty is a code that has been developed over the last five years by the Lawrence Livermore National Laboratory (LLNL), from earlier code designed for programmatic efforts. Operating in a massively parallel environment, Djehuty is able to model entire stars in 3D. The object of this proposal was to continue the effort to introduce magneto-hydrodynamics (MHD) into Djehuty, and investigate new classes of inherently 3D problems involving the structure, evolution and interaction of stars and planets. However, towards the end of the second year we discovered an unexpected physical process of great importance in the evolution of stars. Consequently for the third year we changed direction and concentrated on this process rather than on magnetic fields. Our new process was discovered while testing the code on red-giant stars, at the 'helium flash'. We found that a thin layer was regularly formed which contained a molecular-weight inversion, and which led therefore to Rayleigh-Taylor instability. This in turn led to some deeper-than-expected mixing, which has the property that (a) much {sup 3}He is consumed, and (b) some {sup 13}C is produced. These two properties are closely in accord with what has been observed over the last thirty years in red giants, whereas what was observed was largely in contradiction to what earlier theoretical models predicted. Thus our new 3D models with Djehuty explain a previously-unexplained problem of some thirty years standing.

  20. Asteroseismology of Pulsating Stars

    Indian Academy of Sciences (India)

    The success of helioseismology is due to its capability of measuring -mode oscillations in the Sun. This allows us to extract information on the internal structure and rotation of the Sun from the surface to the core. Similarly, asteroseismology is the study of the internal structure of the stars as derived from stellar oscillations.

  1. Trek to the Stars

    Science.gov (United States)

    Rubinstein, Robert E.

    1977-01-01

    "Star Trek", which was aired on television for three years, brought the creatures and conflicts of the "outer reaches" of space into our living rooms. Here its new episodes and reruns are analyzed by elementary students as part of a social studies/elementary science curriculum. (Author/RK)

  2. Seismology of active stars

    NARCIS (Netherlands)

    Hekker, S.; García, R.A.

    2012-01-01

    In this review we will discuss the current standing and open questions of seismology in active stars. With the longer photometric time series data that are, and will become, available from space-missions such as Kepler we foresee significant progress in our understanding of stellar internal

  3. Sleeping under the stars

    Science.gov (United States)

    Zirkel, Jack

    Sherlock Holmes and Dr. Watson went on a camping trip. As they lay down for the night, Holmes said, “Watson, look up at the sky and tell me what you see.”Watson:“! see millions and millions of stars.”

  4. The evolution of massive stars

    Science.gov (United States)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  5. Orbits of four double stars

    Directory of Open Access Journals (Sweden)

    Novaković B.

    2006-01-01

    Full Text Available We present orbits of four double stars. Orbits of stars WDS 23516+4205 = ADS 17050 and WDS 18239+5848 = ADS 11336 were calculated for the first time. Orbits of double stars WDS 02022+3643 = ADS 1613 and WDS 18443+3940 = ADS 11635 were revised. We have also determined their masses, dynamical parallaxes and ephemerides.

  6. On the conversion of neutron stars into quark stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe

    2014-03-01

    Full Text Available The possible existence of two families of compact stars, neutron stars and quark stars, naturally leads to a scenario in which a conversion process between the two stellar objects occurs with a consequent release of energy of the order of 1053 erg. We discuss recent hydrodynamical simulations of the burning process and neutrino diffusion simulations of cooling of a newly formed strange star. We also briefly discuss this scenario in connection with recent measurements of masses and radii of compact stars.

  7. X-ray emission from T Tauri stars in the Lupus 3 star-forming region

    Science.gov (United States)

    Gondoin, P.

    2006-08-01

    Aims.In this paper, I present analysis results of an {XMM-Newton} observation of the Lupus 3 region that contains a high proportion of young low mass (M Methods: .The detection of X-ray sources in 0.5 to 4.5 keV images of the Lupus 3 core was performed using the standard source detection method of the {XMM-Newton} Science Analysis Software. The detected sources were correlated with a list of Herbig-Haro objects and Hα emission stars that contains mainly classical T Tauri stars, with a catalogue of weak-line T Tauri Stars and with a recent list of new low-mass members of the Lupus 3 dark cloud found in a visible-light spectroscopic survey at the center of the Lupus 3 star-forming core. The light curves and spectra of the brightest X-ray sources with known T Tauri star counterparts were analysed. Results: .One hundred and two X-ray sources were detected in the 30´ diameter field-of-view of the EPIC cameras, of which 25 have visible or near-IR counterparts that are known as pre-main sequence stars. Their X-ray luminosity ranges from 3 × 1028 to 3 × 1030 erg s-1. Two of these objects with mass estimates lower than 0.075 M⊙ have an X-ray luminosity of about 4-7 × 1028 erg s-1, comparable with that of flaring young brown dwarfs. A linear correlation is found between the X-ray luminosity and the mass or volume of the stars that is qualitatively expected from some models of distributed turbulent dynamos. The EPIC spectra of the X-ray brightest sources can be fitted using optically thin plasma emission models with two components at temperatures in the ranges 3-9 × 106 K and 1-50 × 107 K, respectively. The large emission measure of hot plasma may be caused by disruptions of magnetic fields associated with an intense flaring activity, while the X-ray emission from the "cool" plasma components may result from solar-type active regions. The emission measures of the plasma components are of the order of 1052 cm-3, typical of the values expected from coronal plasmas in T

  8. Star-crossed? The association of the 5-HTTLPR s allele with season of birth in a healthy female population, and possible consequences for temperament, depression and suicide.

    Science.gov (United States)

    Gonda, Xenia; Fountoulakis, Konstantinos N; Csukly, Gabor; Dome, Peter; Sarchiapone, Marco; Laszik, Andras; Bedi, Katalin; Juhasz, Gabriella; Siamouli, Melina; Rudisch, Tibor; Molnar, Eszter; Pap, Dorottya; Bagdy, Gyorgy; Rihmer, Zoltan

    2012-12-20

    Birth season has well-known effects on neuropsychiatric disorders, and may also influence genotype distribution by possibly influencing chance of conception via parental idiosyncratic conception patterns or survival of foetuses or infants. The 5-HTTLPR is associated with phenomena including affective temperaments or suicide which are also associated with birth season. Our aim was to investigate the association of 5-HTTLPR genotype and birth season in a healthy female population. Birth date and 5-HTTLPR genotype was determined for 327 psychiatrically healthy women. The association between presence of s allele and time of birth was analysed using generalized linear models. A significant association between s allele frequency and time of birth was detected. S allele carrier frequency was marginally significantly higher in July borns and significantly lower in autumn borns. We investigated an adult sample so genotype frequency data do not reflect birth frequencies. Our sample consisted exclusively of females. There is no clear explanation for the observed association, although idiosyncratic parental conception patterns, the association of 5-HTTLPR with sudden infant/intrauterine death, or other s allele-mediated behaviours may play a role. Our results are strikingly parallel with earlier data reporting a higher risk of completed suicide in July borns, and higher scores of July borns and lower scores of autumn borns on certain affective temperament scales, both of which are also associated with the s allele of 5-HTTLPR. Thus our results may add to the growing body of evidence regarding the etiological background of affective disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Fingerprinting polymer microarrays.

    Science.gov (United States)

    Tourniaire, Guilhem; Diaz-Mochon, Juan J; Bradley, Mark

    2009-08-01

    The incubation of "polymer microarrays" with labelled proteins and carbohydrates demonstrated polymer selective binding, giving an approach to cellular fingerprinting and offering a possible alternative to current arraying platforms for partitioning and analysis of complex cellular components.

  10. Mechanical Properties of Polymers.

    Science.gov (United States)

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  11. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    polymerized in a controlled manner with carrier monomers of historically proven biocompatible polymers. The carrier polymers, the loading of ribavirin as well as the size of the polymer were varied systematically with the aid of an automated synthesis platform. These polymers were tested in a cellular assay...... of reversible-addition-fragmentation chain transfer polymerization, which not only controls the size of polymer, but also allows the introduction of a terminal amine on the polymer which can be used for further conjugation. This has allowed for not only fluorescent labeling of the polymer, but also protein......The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...

  12. Anion exchange polymer electrolytes

    Science.gov (United States)

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  13. Star identification methods, techniques and algorithms

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This book summarizes the research advances in star identification that the author’s team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and othe...

  14. Neutron stars and quark stars: Two coexisting families of compact stars?

    OpenAIRE

    Schaffner-Bielich, J.

    2006-01-01

    The mass-radius relation of compact stars is discussed with relation to the presence of quark matter in the core. The existence of a new family of compact stars with quark matter besides white dwarfs and ordinary neutron stars is outlined.

  15. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement.

  16. A deep near-infrared spectroscopic survey of the Scutum-Crux arm for Wolf-Rayet stars

    Science.gov (United States)

    Rosslowe, C. K.; Crowther, Paul A.

    2018-01-01

    We present a New Technology Telescope/Son-of-Isaac spectroscopic survey of infrared selected Wolf-Rayet (WR) candidates in the Scutum-Crux spiral arm (298° ≤ l ≤ 340°, |b| ≤ 0.5°. We obtained near-IR spectra of 127 candidates, revealing 17 WR stars - a ∼13 per cent success rate - of which 16 are newly identified here. The majority of the new WR stars are classified as narrow-lined WN5-7 stars, with two broad-lined WN4-6 stars and three WC6-8 stars. The new stars, with distances estimated from previous absolute magnitude calibrations, have no obvious association with the Scutum-Crux arm. Refined near-infrared (YHJK) classification criteria based on over a hundred Galactic and Magellanic Cloud WR stars, providing diagnostics for hydrogen in WN stars, plus the identification of WO stars and intermediate WN/C stars. Finally, we find that only a quarter of WR stars in the survey region are associated with star clusters and/or H II regions, with similar statistics found for luminous blue variables (LBVs) in the Milky Way. The relative isolation of evolved massive stars is discussed, together with the significance of the co-location of LBVs and WR stars in young star clusters.

  17. POLYMER CONCRETE CREEP

    OpenAIRE

    Yu. М. Borisov; I. S. Surovtsev; Yu. B. Potapov

    2012-01-01

    Problem statement. It is well known that creep is the tendency of a solid material to move slowly or deform permanently under the influence of stresses. The aim of the paper is to study the process of creep in polymer concretes. Results and conclusions. It is shown that creep in polymer concrete occurs according to the same pattern as in many other polymer composites with the elastic core. Equations which indirectly es-tablish the relation between complete deformations of polymer concrete, in...

  18. Modeling semiflexible polymer networks

    OpenAIRE

    Broedersz, Chase P.; MacKintosh, Fred C.

    2014-01-01

    Here, we provide an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, crosslinked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks o...

  19. Biopolymers Versus Synthetic Polymers

    OpenAIRE

    Florentina Adriana Cziple; António J. Velez Marques

    2008-01-01

    This paper present an overview of important synthetic and natural polymers with emphasis on polymer structure, the chemistry of polymer formation. an introduction to polymer characterization. The biodegradation process can take place aerobically and anaerobically with or without the presence of light. These factors allow for biodegradation even in landfill conditions which are normally inconducive to any degradation. The sheeting used to make these packages differs...

  20. Biodegradable Polymers for Microencapsulation of Drugs

    Directory of Open Access Journals (Sweden)

    K. Park

    2005-01-01

    Full Text Available Drug delivery has become increasingly important mainly due to the awareness of the difficulties associated with a variety of old and new drugs. Of the many polymeric drug delivery systems, biodegradable polymers have been used widely as drug delivery systems because of their biocompatibility and biodegradability. The majority of biodegradable polymers have been used in the form of microparticles, from which the incorporated drug is released to the environment in a controlled manner. The factors responsible for controlling the drug release rate are physicochemical properties of drugs, degradation rate of polymers, and the morphology and size of microparticles. This review discusses the conventional and recent technologies for microencapsulation of the drugs using biodegradable polymers. In addition, this review presents characteristics and degradation behaviors of biodegradable polymers which are currently used in drug delivery.

  1. The interstellar medium, expanding nebulae and triggered star formation theory and simulations

    CERN Document Server

    Bisbas, Thomas G

    2016-01-01

    This brief brings together the theoretical aspects of star formation and ionized regions with the most up-to-date simulations and observations. Beginning with the basic theory of star formation, the physics of expanding HII regions is reviewed in detail and a discussion on how a massive star can give birth to tens or hundreds of other stars follows. The theoretical description of star formation is shown in simplified and state-of-the-art numerical simulations, describing in a more clear way how feedback from massive stars can trigger star and planet formation. This is also combined with spectacular images of nebulae taken by talented amateur astronomers. The latter is very likely to stimulate the reader to observe the structure of nebulae from a different point of view, and better understand the associated star formation therein.

  2. Conjugated polymer-porphyrin complexes for organic electronics.

    Science.gov (United States)

    Andernach, Rolf E; Rossbauer, Stephan; Ashraf, Raja S; Faber, Hendrik; Anthopoulos, Thomas D; McCulloch, Iain; Heeney, Martin; Bronstein, Hugo A

    2015-04-27

    We present the synthesis of novel conjugated polymer-porphyrin complexes for use in organic electronics. Linear and star-shaped platinated porphyrins were attached to regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) arms to investigate whether porphyrin stacking and increased dimensionality can be used to control polymer morphology. The novel materials display similar optical properties to P3HT, but give higher mobilities when used in organic field-effect transistors. Atomic force microscopy measurements show that incorporation of only a small amount of porphyrin into the conjugated polymer backbone leads to increased aggregation. These materials demonstrate that polymer morphology and performance can be tuned and enhanced effectively through the use of conjugatively linked porphyrins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

    Science.gov (United States)

    Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B

    2017-12-26

    Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermosetting Phthalocyanine Polymers

    Science.gov (United States)

    Fohlen, G.; Parker, J.; Achar, B.

    1985-01-01

    Group of phthalocyanine polymers resist thermal degradation. Polymers expected semiconducting. Principal applications probably in molded or laminated parts that have to withstand high temperatures. Polymers made from either of two classes of monomer: Bisphthalonitriles with imide linkages or Bisphthalonitriles with ester-imide linkages.

  5. Modeling semiflexible polymer networks

    NARCIS (Netherlands)

    Broedersz, C.P.; MacKintosh, F.C.

    2014-01-01

    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have

  6. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  7. Dead Star Rumbles

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Composite of Supernova Remnant Cassiopeia A This Spitzer Space Telescope composite shows the supernova remnant Cassiopeia A (white ball) and surrounding clouds of dust (gray, orange and blue). It consists of two processed images taken one year apart. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Blue represents an earlier time and orange, a later time. These observations illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago. Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia. An infrared echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. This apparent motion can be seen here by the shift in colored dust clumps. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars. This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons. Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen. The earlier Spitzer image was taken on November 30, 2003, and the later, on December 2, 2004.

  8. What Determines Star Formation Rates?

    Science.gov (United States)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  9. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  10. THE HERBIG BE STAR V1818 ORI AND ITS ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hsin-Fang; Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States); Hillenbrand, Lynne, E-mail: hchiang@ifa.hawaii.edu, E-mail: reipurth@ifa.hawaii.edu [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-03-15

    The little-studied Herbig Be star V1818 Ori is located in the direction of the southern L1641 cloud and the Mon R2 star-forming complex, and is most likely associated with the latter at a distance of ∼900 pc. A high-resolution spectrum is consistent with a spectral type around B7 V, with lines of Hα, the red Ca ii triplet, and several forbidden lines in emission. An All Sky Automated Survey V-band light curve spanning 9 yr reveals major variability with deep absorption episodes reminiscent of the UX Orionis stars. We have searched for additional young stars clustering around V1818 Ori using grism images and the 2MASS and Wide-field Infrared Survey Explorer catalogs, and have found almost two dozen fainter stars with evidence of youth. Direct images show that the bright star IRAS 05510–1025, only about 3 arcmin from V1818 Ori, is surrounded by a reflection nebula, indicating its association with a molecular cloud. A spectrum of the star shows no emission-lines, and it is found to be a close binary with late B and early G type components. Its radial velocity indicates that it is an interloper, accidentally passing through the cloud and not physically associated with V1818 Ori.

  11. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  12. Fire-safe polymers and polymer composites

    Science.gov (United States)

    Zhang, Huiqing

    The intrinsic relationships between polymer structure, composition and fire behavior have been explored to develop new fire-safe polymeric materials. Different experimental techniques, especially three milligram-scale methods---pyrolysis-combustion flow calorimetry (PCFC), simultaneous thermal analysis (STA) and pyrolysis GC/MS---have been combined to fully characterize the thermal decomposition and flammability of polymers and polymer composites. Thermal stability, mass loss rate, char yield and properties of decomposition volatiles were found to be the most important parameters in determining polymer flammability. Most polymers decompose by either an unzipping or a random chain scission mechanism with an endothermic decomposition of 100--900 J/g. Aromatic or heteroaromatic rings, conjugated double or triple bonds and heteroatoms such as halogens, N, O, S, P and Si are the basic structural units for fire-resistant polymers. The flammability of polymers can also be successfully estimated by combining pyrolysis GC/MS results or chemical structures with TGA results. The thermal decomposition and flammability of two groups of inherently fire-resistant polymers---poly(hydroxyamide) (PHA) and its derivatives, and bisphenol C (BPC II) polyarylates---have been systematically studied. PHA and most of its derivatives have extremely low heat release rates and very high char yields upon combustion. PHA and its halogen derivatives can completely cyclize into quasi-polybenzoxazole (PBO) structures at low temperatures. However, the methoxy and phosphate derivatives show a very different behavior during decomposition and combustion. Molecular modeling shows that the formation of an enol intermediate is the rate-determining step in the thermal cyclization of PHA. BPC II-polyarylate is another extremely flame-resistant polymer. It can be used as an efficient flame-retardant agent in copolymers and blends. From PCFC results, the total heat of combustion of these copolymers or blends

  13. Pulsating stars harbouring planets

    Directory of Open Access Journals (Sweden)

    Moya A.

    2013-04-01

    Full Text Available Why bother with asteroseismology while studying exoplanets? There are several answers to this question. Asteroseismology and exoplanetary sciences have much in common and the synergy between the two opens up new aspects in both fields. These fields and stellar activity, when taken together, allow maximum extraction of information from exoplanet space missions. Asteroseismology of the host star has already proved its value in a number of exoplanet systems by its unprecedented precision in determining stellar parameters. In addition, asteroseismology allows the possibility of discovering new exoplanets through time delay studies. The study of the interaction between exoplanets and their host stars opens new windows on various physical processes. In this review I will summarize past and current research in exoplanet asteroseismology and explore some guidelines for the future.

  14. Shooting Star Experiment

    Science.gov (United States)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the sun's energy and use the energy for inexpensive space Propulsion Research. Pictured is an engineering model (Pathfinder III) of the Shooting Star Experiment (SSE). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflections of the engineering model under extreme conditions, such as the coldness of deep space and the hotness of the sun as well as vacuum. This thermal vacuum test was performed at the X-Ray Calibration Facility because of the size of the test article and the capabilities of the facility to simulate in-orbit conditions

  15. Hyperons and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Vidaña, Isaac [Centro de Física Computacional, Department of Physics, University of Coimbra, PT-3004-516 Coimbra (Portugal)

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  16. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  17. Historical Variable Star Catalogs

    OpenAIRE

    Pagnotta, Ashley; Graur, Or; Murray, Zachary; Kruk, Julia; Christie-Dervaux, Lucien; Chen, Dong Yi

    2015-01-01

    Slides from my talk during one of the Historical Astronomy Division sessions at AAS 225 in Seattle, WA (January 2015). A brief history of the variable star catalogs Henrietta Swan Leavitt and Cecilia Payne-Gaposchkin assembled at Harvard, and the update to them that some of our students at AMNH have done.(Figshare only previews the first few slides. Download the PDF to see all of them!)

  18. Which Stars Go BOOM?

    Science.gov (United States)

    Kalirai, Jason

    2014-10-01

    Intermediate mass stars with M = 6 to 10 Msun will end their lives by either losing mass quiescently and forming massive white dwarfs or by exploding as core collapse type II supernovae. The critical mass separating these two stellar evolution channels is not only a fundamental threshold of stellar astrophysics, but is a crucial ingredient to generate reliable galaxy evolution simulations. Given the steepness of the stellar IMF, small changes in the critical mass directly affects chemical evolution scenarios, energetics, and feedback relations. Although most astronomers reference the critical mass at M = 8 Msun, there is a lack of robust theoretical or observational confirmation of this number. We propose to measure the critical mass directly by verifying the end products of stellar evolution in four rich, young, co-eval stellar populations. With ages of 25 to 60 Myr and total stellar masses >10,000 Msun, the Magellanic Cloud globular clusters NGC 1818, NGC 330, NGC 1805, and NGC 2164 have present-day main-sequence turnoff masses of M = 6.2, 7.2, 8.5, and 9.8 Msun, respectively. Existing photometry verifies that each cluster has a rich upper main sequence of massive stars, and therefore would have formed dozen(s) of stars above the present day turnoff. If those stars did not explode as core collapse supernovae, they will populate a clear blue white dwarf cooling sequence. Our experiment uses the full power, wavelength coverage, and resolution of HST/WFC3 to detect these cooling sequences in high-precision, UV-sensitive color-magnitude diagrams.

  19. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  20. Bolt Star®

    OpenAIRE

    ECT Team, Purdue

    2016-01-01

    Two electricians and an engineer, experienced in building wood templates for light pole base construction, saw an opportunity to make the process safer, less costly and more efficient. The result is the BOLT STAR® reusable bolt template, manufactured by Construction Innovations LLC of Sacramento, California. Bolt Star holds four anchor bolts and conduits in place while supporting the rebar cage during the concrete pour of a light pole base foundation. The tool replaces an inefficient, wastefu...

  1. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  2. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  3. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  4. Dark neutron stars

    Science.gov (United States)

    Jones, P. B.

    2017-06-01

    There is good evidence that electron-positron pair formation is not present in that section of the pulsar open magnetosphere, which is the source of coherent radio emission, but the possibility of two-photon pair creation in an outer gap remains. Calculation of transition rates for this process based on measured whole-surface temperatures, combined with a survey of γ-ray, X-ray and optical luminosities, expressed per primary beam lepton, shows that few Fermi-LAT pulsars have significant outer-gap pair creation. For radio-loud pulsars with positive polar-cap corotational charge density and an ion-proton plasma, there must be an outward flow of electrons from some other part of the magnetosphere to maintain a constant net charge on the star. In the absence of pair creation, it is likely that this current is the source of GeV γ-emission observed by the Fermi-LAT and its origin is in the region of the outer gap. With negative polar-cap corotational charge density, the compensating current in the absence of pair creation can consist only of ions or protons. These neutron stars are likely to be radio-quiet, have no observable γ-emission, and hence can be described as dark neutron stars.

  5. What are the stars?

    CERN Document Server

    Srinivasan, Ganesan

    2014-01-01

    The outstanding question in astronomy at the turn of the twentieth century was: What are the stars and why are they as they are? In this volume, the story of how the answer to this fundamental question was unravelled is narrated in an informal style, with emphasis on the underlying physics. Although the foundations of astrophysics were laid down by 1870, and the edifice was sufficiently built up by 1920, the definitive proof of many of the prescient conjectures made in the 1920s and 1930s came to be established less than ten years ago. This book discusses these recent developments in the context of discussing the nature of the stars, their stability and the source of the energy they radiate.  Reading this book will get young students excited about the presently unfolding revolution in astronomy and the challenges that await them in the world of physics, engineering and technology. General readers will also find the book appealing for its highly accessible narrative of the physics of stars.  “... The reade...

  6. RNAV STAR Procedural Adherence

    Science.gov (United States)

    Stewart, Michael J.; Matthews, Bryan L.

    2017-01-01

    In this exploratory archival study we mined the performance of 24 major US airports area navigation standard terminal arrival routes (RNAV STARs) over the preceding three years. Overlaying radar track data on top of RNAV STAR routes provided a comparison between aircraft flight paths and the waypoint positions and altitude restrictions. NASA Ames Supercomputing resources were utilized to perform the data mining and processing. We investigated STARs by lateral transition path (full-lateral), vertical restrictions (full-lateral/full-vertical), and skipped waypoints (skips). In addition, we graphed altitudes and their frequencies of occurrence for altitude restrictions. Full-lateral compliance was generally greater than Full-lateral/full-vertical, but the delta between the rates was not always consistent. Full-lateral/full-vertical usage medians of the 2016 procedures ranged from 0 in KDEN (Denver) to 21 in KMEM (Memphis). Waypoint skips ranged from 0 to nearly 100 for specific waypoints. Altitudes restrictions were sometimes missed by systemic amounts in 1000 ft. increments from the restriction, creating multi-modal distributions. Other times, altitude misses looked to be more normally distributed around the restriction. This work is a preliminary investigation into the objective performance of instrument procedures and provides a framework to track how procedural concepts and design intervention function. In addition, this tool may aid in providing acceptability metrics as well as risk assessment information.

  7. "europe Towards the Stars"

    Science.gov (United States)

    1995-06-01

    spectrograph, fitted with the associated detector). In the instrument documentation, you describe the instrument, its design, construction and the test results." A Future Space Mission - Designing an on-board Instrument. "You design an instrument for a future space mission to the outer Solar System. The purpose is to carry out observations of Pluto and Transneptunian Objects. Describe the design, the physical/chemical principles of the instrument and the observations to be made with it. Give examples of some possible results." Theory - Looking into the Future. "You describe a stable planetary system around another star. Your report contains a description of the conditions (inner structure, composition, surface features, atmosphere) of the planets. What are the technical requirements for observing this system from the Earth? Which kind of observations of these objects can be done with available instruments?" None of these subjects are easy to treat, but experience has shown that thanks to very dedicated teachers, the teaching of astronomy takes place at a surprisingly high level at many of Europe's schools. The establishment of the European Association for Astronomy Education (EAAE) last year has also resulted in a Europe-wide, increasing interest in these matters and many EAAE members actively promote the present contest and participate in the organisation. Many good entries are therefore expected. The participation is open to pupils in their last or second-to-last year before baccalaureate. In each country, a National Committee has been established that will organise the contest and evaluate the responses. In most cases, the closing date is early October 1995, and the national award ceremonies will take place in early November. Detailed information about this programme may be obtained from the National Committees at the addresses below. A VISIT TO ESO The members of the winning teams from each country will be invited to spend an exciting and informative week at the ESO

  8. Be Stars in M31

    Science.gov (United States)

    Peters, Matthew L.; Wisniewski, John; Choi, Yumi; Williams, Ben; Lomax, Jamie; Bjorkman, Karen; Durbin, Meredith; Johnson, Lent Cliff; Lewis, Alexia; Lutz, Julie; Sigut, Aaron; Wallach, Aislynn; Dalcanton, Julianne

    2018-01-01

    We identify Be candidate stars in M31 using two-epoch F625W + F658N photometry from HST/ACS+WFC3 combined with the Panchromatic Hubble Andromeda Treasury (PHAT) Catalog. Using the PHAT catalog allows us to extract stellar parameters such as surface temperature and gravity, thereby allowing us to identify the main sequence B type stars in the field of view. Be candidate stars are identified by comparing their HST narrow-band Hα excess magnitudes with that predicted by Kurucz spectra. We find 314 Be candidate stars out of 5699 B + Be candidate stars (5.51%) in our first epoch and 301 Be candidate stars out of 5769 B + Be candidate stars (5.22%) in our second epoch. Our Be fraction, while lower than that of the SMC, LMC, and MW, is possibly consistent with the fact the M31 has a higher metallicity than the other galaxies because Be fraction varies inversely with metallicity. We note that earlier spectral types have the largest Be fraction, and that the Be fraction strictly declines as the spectral type increases to later types. We then match our Be candidate stars with clusters, establishing that 39 of 314 are cluster stars in epoch one and 36 of 301 stars are cluster stars in epoch two. We assign ages, using the cluster age to characterize cluster Be candidate stars and star formation histories to characterize field Be candidate stars. Finally, we determine which Be candidate stars exhibited disk loss or disk growth between epochs, finding that, of the Be stars that did not show source confusion or low SNR in one of the epochs, 65 / 265 (24.5%) showed disk loss or renewal, while 200 / 265 (75.5%) showed only small changes in Hα excess. Our research provides context for the parameters of candidate Be stars in M31, which will be useful in further determining the nature of Be stars. This paper was supported by a grant from STScI via GO-13857.

  9. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  10. Advanced polymers in medicine

    CERN Document Server

    Puoci, Francesco

    2014-01-01

    The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.

  11. Star Poly(N-isopropylacrylamide Tethered to Polyhedral Oligomeric Silsesquioxane (POSS Nanoparticles by a Combination of ATRP and Click Chemistry

    Directory of Open Access Journals (Sweden)

    Shiao-Wei Kuo

    2012-01-01

    Full Text Available New star poly(N-isopropylacrylamide-b-polyhedral oligomeric silsesquioxane (PNIPAm-b-POSS copolymers were synthesized from octa-azido functionalized POSS (N3-POSS and alkyne-PNIPAm, which was prepared using an alkyne-functionalized atom transfer radical polymerization (ATRP initiator (propargyl 2-bromo-2-methylpropionamide, via click chemistry. These star PNIPAm-b-POSS copolymers undergo a sharp coil-globule transition in water at above 32°C changing from a hydrophilic state below this temperature to a hydrophobic state above it, which is similar to linear PNIPAm homopolymers. More interestingly, we found that these star polymers exhibited strong blue photoluminescence in water above a lower critical solution temperature (LCST. This photoluminescence was likely due to the constrained geometric freedom and relatively rigid structure caused by intramolecular hydrogen bonding within the star PNIPAm polymers, which exhibit an intrinsic fluorescent behavior.

  12. First stars X. The nature of three unevolved carbon-enhanced metal-poor stars

    DEFF Research Database (Denmark)

    Sivarani, T.; Beers, T.C.; Bonifacio, P.

    2006-01-01

    Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov.......Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov....

  13. Star centroiding error compensation for intensified star sensors.

    Science.gov (United States)

    Jiang, Jie; Xiong, Kun; Yu, Wenbo; Yan, Jinyun; Zhang, Guangjun

    2016-12-26

    A star sensor provides high-precision attitude information by capturing a stellar image; however, the traditional star sensor has poor dynamic performance, which is attributed to its low sensitivity. Regarding the intensified star sensor, the image intensifier is utilized to improve the sensitivity, thereby further improving the dynamic performance of the star sensor. However, the introduction of image intensifier results in star centroiding accuracy decrease, further influencing the attitude measurement precision of the star sensor. A star centroiding error compensation method for intensified star sensors is proposed in this paper to reduce the influences. First, the imaging model of the intensified detector, which includes the deformation parameter of the optical fiber panel, is established based on the orthographic projection through the analysis of errors introduced by the image intensifier. Thereafter, the position errors at the target points based on the model are obtained by using the Levenberg-Marquardt (LM) optimization method. Last, the nearest trigonometric interpolation method is presented to compensate for the arbitrary centroiding error of the image plane. Laboratory calibration result and night sky experiment result show that the compensation method effectively eliminates the error introduced by the image intensifier, thus remarkably improving the precision of the intensified star sensors.

  14. New proper motions of pre-main sequence stars in Taurus-Auriga

    OpenAIRE

    Frink, S.; Roeser, S.; Neuhaeuser, R.; Sterzik, M. F.

    1997-01-01

    We present proper motions of 72 T Tauri stars located in the central region of Taurus-Auriga. These proper motions are taken from a new proper motion catalogue called STARNET. Our sample comprises 17 classical T Tauri stars and 55 weak-line T Tauri stars, most of the latter discovered by ROSAT. 53 stars had no proper motion measurement before. Kinematically, 62 of these stars are members of the association. A velocity dispersion of less than 2-3 km/s is found which is dominated by the errors ...

  15. Decreased food intake rather than zinc deficiency is associated with changes in plasma leptin, metabolic rate, and activity levels in zinc deficient rats( small star, filled).

    Science.gov (United States)

    Gaetke, Lisa M.; Frederich, Robert C.; Oz, Helieh S.; McClain, Craig J.

    2002-04-01

    This study investigated the hypothesis that the reduced food intake and poor weight gain in zinc deficient rats is due to: increased plasma leptin concentration, increased physical activity and/or increased metabolic rate. Weanling rats were assigned to three groups: controls fed ad libitum (C), zinc deficient (ZD), and pair-fed controls (PF), and tested in a metabolic chamber and activity monitor at baseline and weekly for four weeks. At the end of the study, all groups were compared for differences in plasma leptin concentrations. ZD and PF animals had markedly reduced food intake and weight gain. ZD had reduced stereotypic and locomotor activity compared to PF animals and both groups demonstrated an abolished peri-nocturnal activity spike and were much less active than controls. This was associated with a reduced total metabolic rate by day 30: ZD (0.73 +/- 0.07 kcal/hr, p = 0.0001) and PF (0.83 +/- 0.06 kcal/hr, p = 0.0001) groups vs. controls (1.82 +/- 0.09 kcal/hr). Plasma leptin concentrations in ZD (1.55 +/- 0.06 &mgr;g/L) were lower than controls (2.01 +/- 0.18 &mgr;g/L, p rats were associated with decreased food intake rather than zinc deficiency. The reduced food intake and poor weight gain observed in zinc deficient rats could not be explained by elevated leptin concentrations, hypermetabolism, or increased activity. Low serum leptin concentrations, hypometabolism, and decreased activity are more likely the result of the anorexia of zinc deficiency.

  16. The physics of neutron stars.

    Science.gov (United States)

    Lattimer, J M; Prakash, M

    2004-04-23

    Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.

  17. Astrophysics of Collapsing Axion Stars

    Science.gov (United States)

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L. C. R.

    2017-01-01

    Axion stars are condensed states of large numbers of axion particles, bound by self-gravitation and quantum self-interactions. The mass of weakly bound axion stars is limited by gravitational stability, with condensates exceeding the maximum mass subject to collapse. During the collapse process, the axion density increases and higher-order self-interactions become increasingly relevant. By taking these terms into account, we provide evidence that in spite of a leading attractive interaction, collapsing axion stars stabilize in a dense state which is larger than its Schwarzschild radius, and so do not form black holes. During the last moments of collapse, number changing processes take place in the axion star with a very large rate, leading to emission of many highly energetic axions which escape from galaxies and galaxy clusters. Finally, if axion stars are a significant fraction of cold dark matter, then frequent collisions with each other or with ordinary stars could catalyze this collapse process as well.

  18. A Photometric Method for Discovering Extremely Metal Poor Stars

    Science.gov (United States)

    Miller, Adam

    2015-01-01

    I present a new non-parametric machine-learning method for predicting stellar metallicity ([Fe/H]) based on photometric colors from the Sloan Digital Sky Survey (SDSS). The method is trained using a large sample of ~150k stars with SDSS spectra and atmospheric parameter estimates (Teff, log g, and [Fe/H]) from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g 2, corresponding to the stars for which the SSPP estimates are most reliable, the method is capable of predicting [Fe/H] with a typical scatter of ~0.16 dex. This scatter is smaller than the typical uncertainty associated with [Fe/H] measurements from a low-resolution spectrum. The method is suitable for the discovery of extremely metal poor (EMP) stars ([Fe/H] 50%), but low efficiency (E ~ 10%), samples of EMP star candidates can be generated from the sources with the lowest predicted [Fe/H]. To improve the efficiency of EMP star discovery, an alternative machine-learning model is constructed where the number of non-EMP stars is down-sampled in the training set, and a new regression model is fit. This alternate model improves the efficiency of EMP candidate selection by a factor of ~2. To test the efficacy of the model, I have obtained low-resolution spectra of 56 candidate EMP stars. I measure [Fe/H] for these stars using the well calibrated Ca II K line method, and compare our spectroscopic measurements to those from the machine learning model. Once applied to wide-field surveys, such as SDSS, Pan-STARRS, and LSST, the model will identify thousands of previously unknown EMP stars.

  19. Star product realizations of kappa-Minkowski space

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur; Sitarz, Andrzej

    2013-01-01

    We define a family of star products and involutions associated with κ -Minkowski space. Applying corresponding quantization maps we show that these star products restricted to a certain space of Schwartz functions have isomorphic Banach algebra completions. For two particular star products...... it is demonstrated that they can be extended to a class of polynomially bounded smooth functions allowing a realization of the full Hopf algebra structure on κ -Minkowski space. Furthermore, we give an explicit realization of the action of the κ -Poincaré algebra as an involutive Hopf algebra on this representation...... of κ -Minkowski space and initiate a study of its properties....

  20. A minimum column density of 1 g cm(-2) for massive star formation.

    Science.gov (United States)

    Krumholz, Mark R; McKee, Christopher F

    2008-02-28

    Massive stars are very rare, but their extreme luminosities make them both the only type of young star we can observe in distant galaxies and the dominant energy sources in the Universe today. They form rarely because efficient radiative cooling keeps most star--forming gas clouds close to isothermal as they collapse, and this favours fragmentation into stars of one solar mass or lower. Heating of a cloud by accreting low-mass stars within it can prevent fragmentation and allow formation of massive stars, but the necessary properties for a cloud to form massive stars-and therefore where massive stars form in a galaxy--have not yet been determined. Here we show that only clouds with column densities of at least 1 g cm(-2) can avoid fragmentation and form massive stars. This threshold, and the environmental variation of the stellar initial mass function that it implies, naturally explain the characteristic column densities associated with massive star clusters and the difference between the radial profiles of Halpha and ultraviolet emission in galactic disks. The existence of a threshold also implies that the initial mass function should show detectable variation with environment within the Galaxy, that the characteristic column densities of clusters containing massive stars should vary between galaxies, and that star formation rates in some galactic environments may have been systematically underestimated.

  1. Synthesis of β-cyclodextrin-Based Star Block Copolymers with Thermo-Responsive Behavior

    Directory of Open Access Journals (Sweden)

    Agnes Wycisk

    2015-05-01

    Full Text Available Star polymers are one example of three-dimensional macromolecules containing several arms with similar molecular weight connected to a central core. Due to their compact structure and their enhanced segment density in comparison to linear polymers of the same molecular weight, they have attracted significant attention during recent years. The preparation of block-arm star copolymers with a permanently hydrophilic block and an “environmentally” sensitive block, which can change its nature from hydrophilic to hydrophobic, leads to nanometer-sized responsive materials with unique properties. These polymers are able to undergo a conformational change or phase transition as a reply to an external stimulus resulting in the formation of core–shell nanoparticles, which further tend to aggregate. Star-shaped copolymers with different cores were synthesized via atom transfer radical polymerization (ATRP. The core-first method chosen as synthetic strategy allows good control over the polymer architecture. First of all the multifunctional initiators were prepared by esterification reaction of the hydroxyl groups with 2-chloropropionyl chloride. Using β-cyclodextrin as core molecules, which possess a well-defined number of functional groups up to 21, allows defining the number of arms per star polymer. In order to prepare stimuli-responsive multi-arm copolymers, containing a stimuli-responsive (poly(N-isopropylacrylamide (PNIPAAm and a non-responsive block (poly(N,N-dimethylacrylamide (PDMAAm, consecutive ATRP was carried out. The polymers were characterized intensively using NMR spectroscopy and size exclusion chromatography (SEC, whereas the temperature-depending aggregation behavior in aqueous solution was determined via turbidimetry and differential scanning calorimetry (DSC.

  2. First stars evolution and nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bahena, D. [Institute of Astronomy of the Academy of Sciences, Bocni II 1401, 14131 Praha 4, (Czech Republic); Klapp, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Dehnen, H. [Fachbereich Physik, Universitat Konstanz, 78457 Konstanz (Germany)]. e-mail: bahen@hotmail.com

    2007-12-15

    The first stars in the universe were massive and luminous with typical masses M {>=} 100M. Metal-free stars have unique physical characteristics and exhibit high effective temperatures and small radii. These so called Population III stars were responsible for the initial enrichment of the intergalactic medium with heavy elements. In this work, we study the structure, evolution and nucleosynthesis of 100, 200, 250 and 300M galactic and pregalactic Population III mass losing stars with metallicities Z 10{sup -6} and Z = 10{sup -9}, during the hydrogen and helium burning phases. Using a stellar evolution code, a system of 10 structure and evolution equations together with boundary conditions, and a set of 30 nuclear reactions, are solved simultaneously, obtaining the star's structure, evolution, isotopic abundances and their ratios. Motivated by recent stability analysis, almost all very massive star (VMS) calculations during the past few years have been performed with no mass loss. However, it has recently been claimed that VMS should have strong mass loss. We present in this work new VMS calculations that includes mass loss. The main difference between zero-metal and metal-enriched stars lies in the nuclear energy generation mechanism. For the first stars, nuclear burning proceeds in a non-standard way. Since Population III stars can reach high central temperatures, this leads to the first synthesis of primary carbon through the 3 {alpha} reaction activating the CNO-cycles. Zero-metal stars produce light elements, such as He, C, N and O. Thus, very massive pregalactic Population III stars experienced self-production of C, either at the zero-age main sequence or in later phases of central hydrogen burning. In advanced evolutionary phases, these stars contribute to the chemical enrichment of the intergalactic medium through supernova explosions. (Author)

  3. Massive star clusters in galaxies.

    Science.gov (United States)

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  4. The Astrophysics of Emission-Line Stars

    CERN Document Server

    Kogure, Tomokazu

    2007-01-01

    Many types of stars show conspicuous emission lines in their optical spectra. These stars are broadly referred to as emission line stars. Emission line stars are attractive to many people because of their spectacular phenomena and their variability. The Astrophysics of Emission Line Stars offers general information on emission line stars, starting from a brief introduction to stellar astrophysics, and then moving toward a broad overview of emission line stars including early and late type stars as well as pre-main sequence stars. Detailed references have been prepared along with an index for further reading.

  5. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY (United States); Adamo, A.; Messa, M. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Aloisi, A.; Bright, S. N.; Lee, J. C.; Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Cook, D. O. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Kahre, L. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kim, H. [Gemini Observatory, La Serena (Chile); Krumholz, M. R., E-mail: kgrasha@astro.umass.edu [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2017-06-10

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  6. Space Science in Action: Stars [Videotape].

    Science.gov (United States)

    1999

    This videotape recording shows students the many ways scientists look at the stars and how they can use what they see to answer questions such as What are stars made of?, How far away are they?, and How old are the stars? Students learn about the life span of stars and the various stages they pass through from protostar to main sequence star to…

  7. The Star Formation History of RCW 36

    NARCIS (Netherlands)

    Ellerbroek, L. E.; Kaper, L.; Bik, A.; Maaskant, K. M.; Podio, L.; Carciofi, A.; Rivinius, Th.

    2012-01-01

    Recent studies of massive-star forming regions indicate that they can contain multiple generations of young stars. These observations suggest that star formation in these regions is sequential and/or triggered by a previous generation of (massive) stars. Here we present new observations of the star

  8. The birth of star clusters

    CERN Document Server

    2018-01-01

    All stars are born in groups. The origin of these groups has long been a key question in astronomy, one that interests researchers in star formation, the interstellar medium, and cosmology. This volume summarizes current progress in the field, and includes contributions from both theorists and observers. Star clusters appear with a wide range of properties, and are born in a variety of physical conditions. Yet the key question remains: How do diffuse clouds of gas condense into the collections of luminous objects we call stars? This book will benefit graduate students, newcomers to the field, and also experienced scientists seeking a convenient reference.

  9. Fragmentation in massive star formation.

    Science.gov (United States)

    Beuther, Henrik; Schilke, Peter

    2004-02-20

    Studies of evolved massive stars indicate that they form in a clustered mode. During the earliest evolutionary stages, these regions are embedded within their natal cores. Here we present high-spatial-resolution interferometric dust continuum observations disentangling the cluster-like structure of a young massive star-forming region. The derived protocluster mass distribution is consistent with the stellar initial mass function. Thus, fragmentation of the initial massive cores may determine the initial mass function and the masses of the final stars. This implies that stars of all masses can form via accretion processes, and coalescence of intermediate-mass protostars appears not to be necessary.

  10. QPO Constraints on Neutron Stars

    Science.gov (United States)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  11. The Spacelab IPS Star Simulator

    Science.gov (United States)

    Wessling, Francis C., III

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  12. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  13. Rotation of Giant Stars

    Science.gov (United States)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  14. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  15. Stars of heaven

    CERN Document Server

    Pickover, Clifford A

    2004-01-01

    Do a little armchair space travel, rub elbows with alien life forms, and stretch your mind to the furthest corners of our uncharted universe. With this astonishing guidebook, you don't have to be an astronomer to explore the mysteries of stars and their profound meaning for human existence. Clifford A. Pickover tackles a range of topics from stellar evolution to the fundamental reasons why the universe permits life to flourish. He alternates sections that explain the mysteries of the cosmos with sections that dramatize mind-expanding concepts through a fictional dialog between futuristic human

  16. Study of polymer dispersed liquid crystal film based on amphiphilic polymer matrix

    OpenAIRE

    Ahmad, Farzana; Jamil, Muhammad; Jeon, Young Jae

    2014-01-01

    Polymer dispersed liquid crystal (PDLC) films’ morphologies and electro-optical properties have been mostly investigated on the method of polymerization, rate of reaction, the relative amount, characteristic, and temperature of the LC/monomer mixtures; in chorus with the molecular associations existing among the LC, monomer molecules and with the glass. In this effort the molecular associations of polymer matrix having hydrophilic and hydrophobic characteristics are considered with the LC. He...

  17. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  18. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  19. A Star is Born!-The Formation Process of Stars

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 8. A Star is Born! - The Formation Process of Stars. Indira Dey. General Article Volume 5 Issue 8 August 2000 pp 22-25. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/005/08/0022-0025 ...

  20. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  1. Al-Sufi's Investigation of Stars, Star Clusters and Nebulae

    Science.gov (United States)

    Hafez, Ihsan; Stephenson, F. R.; Orchiston, W.

    2011-01-01

    The distinguished Arabic astronomer, Al-Sufi (AD 903-986) is justly famous for his Book of the Fixed Stars, an outstanding Medieval treatise on astronomy that was assembled in 964. Developed from Ptolemy's Algamest, but based upon al-Sufi's own stellar observations, the Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. Among other things, this major work contains 55 astronomical tables, plus star charts for 48 constellations. For the first time a long-overdue English translation of this important early work is in active preparation. In this paper we provide biographical material about Al-Sufi and the contents of his Book of the Fixed Stars, before examining his novel stellar magnitude system, and his listing of star clusters and nebulae (including the first-ever mention of the Great Nebula in Andromeda).

  2. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  3. Stars and Planets

    Science.gov (United States)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  4. Polymer Conformation under Confinement

    Directory of Open Access Journals (Sweden)

    Stavros Bollas

    2017-02-01

    Full Text Available The conformation of polymer chains under confinement is investigated in intercalated polymer/layered silicate nanocomposites. Hydrophilic poly(ethylene oxide/sodium montmorillonite, PEO/Na+-MMT, hybrids were prepared utilizing melt intercalation with compositions where the polymer chains are mostly within the ~1 nm galleries of the inorganic material. The polymer chains are completely amorphous in all compositions even at temperatures where the bulk polymer is highly crystalline. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR is utilized to investigate the conformation of the polymer chains over a broad range of temperatures from below to much higher than the bulk polymer melting temperature. A systematic increase of the gauche conformation relatively to the trans is found with decreasing polymer content both for the C–C and the C–O bonds that exist along the PEO backbone indicating that the severe confinement and the proximity to the inorganic surfaces results in a more disordered state of the polymer.

  5. Antioxidant Stabilisation of Polymers

    Science.gov (United States)

    Shlyapnikov, Yurii A.

    1981-06-01

    Physicochemical aspects of the stabilisation of polymers are discussed. Attention is paid mainly to the aging and stabilisation of polymers under processing conditions. Topics considered are the kinetics and mechanism of the high-temperature oxidation of polymers, critical phenomena in the inhibited oxidation of polymers, the theory of synergism and antagonism among antioxidants, the reasons for differences in efficiency of antioxidants, and certain aspects of the relation between the efficiency of antioxidants and their molecular structure. A list of 132 references is included.

  6. Characterisation of polymers, 1

    CERN Document Server

    Crompton, Roy

    2008-01-01

    This essential guide to Polymer Characterisation is a complete compendium of methodologies that have evolved for the determination of the chemical composition of polymers. This 478-page book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. Volume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different m

  7. Biopolymers Versus Synthetic Polymers

    Directory of Open Access Journals (Sweden)

    Florentina Adriana Cziple

    2008-10-01

    Full Text Available This paper present an overview of important synthetic and natural polymers with emphasis on polymer structure, the chemistry of polymer formation. an introduction to polymer characterization. The biodegradation process can take place aerobically and anaerobically with or without the presence of light. These factors allow for biodegradation even in landfill conditions which are normally inconducive to any degradation. The sheeting used to make these packages differs significantly from other “degradable plastics” in the market as it does not attempt to replace the current popular materials but instead enhances them by rendering them biodegradable.

  8. Discovery of X-ray pulsations from a massive star.

    Science.gov (United States)

    Oskinova, Lidia M; Nazé, Yael; Todt, Helge; Huenemoerder, David P; Ignace, Richard; Hubrig, Swetlana; Hamann, Wolf-Rainer

    2014-06-03

    X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star ξ(1) CMa. This star is a variable of β Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.

  9. Measuring the basic parameters of neutron stars using model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, V.F. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Kazan Federal University, Kazan (Russian Federation); Poutanen, J. [University of Turku, Tuorla Observatory, Department of Physics and Astronomy, Piikkioe (Finland); KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Klochkov, D.; Werner, K. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany)

    2016-02-15

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)

  10. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  11. A Path to Soluble Molecularly Imprinted Polymers

    Science.gov (United States)

    Verma, Abhilasha; Murray, George M.

    2011-01-01

    Molecular imprinting is a technique for making a selective binding site for a specific chemical. The technique involves building a polymeric scaffold of molecular complements containing the target molecule. Subsequent removal of the target leaves a cavity with a structural “memory” of the target. Molecularly imprinted polymers (MIPs) can be employed as selective adsorbents of specific molecules or molecular functional groups. In addition, sensors for specific molecules can be made using optical transduction through lumiphores residing in the imprinted site. We have found that the use of metal ions as chromophores can improve selectivity due to selective complex formation. The combination of molecular imprinting and spectroscopic selectivity can result in sensors that are highly sensitive and nearly immune to interferences. A weakness of conventional MIPs with regard to processing is the insolubility of crosslinked polymers. Traditional MIPs are prepared either as monoliths and ground into powders or are prepared in situ on a support. This limits the applicability of MIPs by imposing tedious or difficult processes for their inclusion in devices. The size of the particles hinders diffusion and slows response. These weaknesses could be avoided if a means were found to prepare individual macromolecules with crosslinked binding sites with soluble linear polymeric arms. This process has been made possible by controlled free radical polymerization techniques that can form pseudo-living polymers. Modern techniques of controlled free radical polymerization allow the preparation of block copolymers with potentially crosslinkable substituents in specific locations. The inclusion of crosslinkable mers proximate to the binding complex in the core of a star polymer allows the formation of molecularly imprinted macromolecules that are soluble and processable. Due to the much shorter distance for diffusion, the polymers exhibit rapid responses. This paper reviews the methods

  12. The first optical spectra of Wolf-Rayet stars in M101 revealed with Gemini/GMOS

    Science.gov (United States)

    Pledger, J. L.; Shara, M. M.; Wilde, M.; Crowther, P. A.; Long, K. S.; Zurek, D.; Moffat, A. F. J.

    2018-01-01

    Deep narrow-band Hubble Space Telescope (HST) imaging of the iconic spiral galaxy M101 has revealed over a thousand new Wolf-Rayet (WR) candidates. We report spectrographic confirmation of 10 He II-emission line sources hosting 15 WR stars. We find WR stars present at both sub- and super-solar metallicities with WC stars favouring more metal-rich regions compared to WN stars. We investigate the association of WR stars with H II regions using archival HST imaging and conclude that the majority of WR stars are in or associated with H II regions. Of the 10 emission lines sources, only one appears to be unassociated with a star-forming region. Our spectroscopic survey provides confidence that our narrow-band photometric candidates are in fact bona fide WR stars, which will allow us to characterize the progenitors of any core-collapse supernovae that erupt in the future in M101.

  13. Magnetic Fields of Neutron Stars

    Science.gov (United States)

    Konar, Sushan

    2017-09-01

    This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.

  14. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  15. Opdriftsbaserede modeller for Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten

    Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...

  16. ENERGY STAR Certified Ceiling Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=ceiling_fans.pr_crit_ceiling_fans

  17. Pulsations in Subdwarf B Stars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Subdwarf B stars play a significant role in close binary evolution and in the hot star content of old stellar populations, in particular in giant elliptical galaxies. While the question of their origin poses several problems for stellar evolution theory, one of their most fascinating properties is the presence of ...

  18. The STAR-RICH Detector

    CERN Document Server

    Lasiuk, B; Braem, André; Cozza, D; Davenport, M; De Cataldo, G; Dell'Olio, L; Di Bari, D; Di Mauro, A; Dunlop, J C; Finch, E; Fraissard, Daniel; Franco, A; Gans, J; Ghidini, B; Harris, J W; Horsley, M; Kunde, G J; Lasiuk, B; Lesenechal, Y; Majka, R D; Martinengo, P; Morsch, Andreas; Nappi, E; Paic, G; Piuz, François; Posa, F; Raynaud, J; Salur, S; Sandweiss, J; Santiard, Jean-Claude; Satinover, J; Schyns, E M; Smirnov, N; Van Beelen, J; Williams, T D; Xu, Z

    2002-01-01

    The STAR-RICH detector extends the particle idenfication capabilities of the STAR spectrometer for charged hadrons at mid-rapidity. It allows identification of pions and kaons up to ~3 GeV/c and protons up to ~5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.

  19. The STAR-RICH Detector

    OpenAIRE

    Andrés, Yu; Braem, André; Cozza, D; Davenport, M; De Cataldo, G; Dell'Olio, L; Di Bari, D; Di Mauro, A.; Dunlop, J C; Finch, E; Fraissard, Daniel; Franco, A; Gans, J.; Ghidini, B.; Harris, J.W.

    2001-01-01

    The STAR-RICH detector extends the particle idenfication capabilities of the STAR spectrometer for charged hadrons at mid-rapidity. It allows identification of pions and kaons up to ~3 GeV/c and protons up to ~5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.

  20. A Handbook of Double Stars

    Science.gov (United States)

    Crossley, Edward; Gledhill, Joseph; Wilson, James M.

    2011-11-01

    Preface; Part I. Historical, and Descriptive of Instruments and Methods: 1. Historical introduction; 2. The Equatorial: its construction and adjustments; 3. Some account of the Equatorials which have been used by double-star observers; 4. The micrometer; 5. Methods of observing double stars; Part II. On the Calculation of the Orbit of a Binary Star: 1. Introduction; 2. Example of an orbit worked by a graphical method; 3. Dr. Doberck's example of an orbit worked by analytical methods; 4. On relative rectilinear motion; 5. On the effect of proper motion and parallax on the observed position angles and distance of an optically double star; 6. On the errors of observation and the combination of observations; Part III. The Catalogue and Measures: Introductory remarks; A catalogue of binary and other double starts deserving of attention; Lists of measures, with historical notes, etc.; Supplementary list of measures; Appendix; Additional notes to measures; Binary stars classified; Note on systematic errors in the measures of angle and distance of double stars; Part IV. Bibliography: A. Some of the most important works and papers on double stars; B. Some papers on the micrometer; C. Some papers on the colours of double stars; Additional notes; Corrections 1880.

  1. Measuring the Sizes of Stars

    Indian Academy of Sciences (India)

    Stars, other than the Sun, appear to our unaided eyes aspoints of light. Large telescopes show an image whose sizeis dictated by refractive index irregularities in the Earth's atmosphere.The size of this blurring is much greater than thatof the star, and hence it is difficult to measure the stellar size.Fizeau showed how one ...

  2. Physics of Neutron Star Crusts.

    Science.gov (United States)

    Chamel, Nicolas; Haensel, Pawel

    2008-01-01

    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  3. Magnetic fields in Neutron Stars

    NARCIS (Netherlands)

    Viganò, D.; Pons, J.A.; Miralles, J.A.; Rea, N.; Cenarro, A.J.; Figueras, F.; Hernández-Monteagudo, J.; Bueno, T.; Valdivielso, L.

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing

  4. KAON CONDENSATION IN NEUTRON STARS.

    Energy Technology Data Exchange (ETDEWEB)

    RAMOS,A.; SCHAFFNER-BIELICH,J.; WAMBACH,J.

    2001-04-24

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed.

  5. Carbon Stars T. Lloyd Evans

    Indian Academy of Sciences (India)

    T. Lloyd Evans. SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews,. Fife KY16 9SS, UK. ...... magnitude of the parent galaxy. The carbon stars are of two types, the ..... individual stars by different techniques and disagreements continued into more recent times. Lambert et al. (1986) ...

  6. ENERGY STAR Certified Residential Freezers

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are effective as of September 15, 2014. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=refrig.pr_crit_refrigerators

  7. Magnetic monopoles and neutron stars

    Science.gov (United States)

    Bonnardeau, Michel

    1981-01-01

    A magnetic monopole in the interstellar medium can be accelerated near a neutron star by its huge magnetic field. It would acquire an energy of ~1020 eV and collide with the star surface. We consider the possibility of the production of secondary monopoles and antimonopoles by this incident monopole interacting with the star material. These secondary monopoles are also accelerated by the magnetic field, and it is shown that they can produce other secondary monopoles, and so on, giving an avalanche of monopoles. This process, which could be effective for monopoles with a mass up to ~105 GeV/c2, would lead to the extinction of the star magnetic field. Furthermore, the number of secondary monopoles injected in the interstellar medium is high enough for some of them to interact with other neutron stars. The avalanche phenomenon would then propagate from neutron star to neutron star until all of them in the Galaxy are demagnetized, and this within a time scale of ~105 years. Highly magnetized neutron stars are observed, therefore, (i) either the density of magnetic monopoles in the interstellar medium is strikingly low (many orders of magnitude below the present upper limits) or (ii) the magnetic monopoles do not produce secondary monopoles while interacting with matter, above a certain level which is determined.

  8. ENERGY STAR Certified Vending Machines

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are effective as of March 1, 2013. A detailed listing of key efficiency criteria are available at

  9. Stars For Citizens With Urban Star Parks and Lighting Specialists

    Science.gov (United States)

    Grigore, Valentin

    2015-08-01

    General contextOne hundred years ago, almost nobody imagine a life without stars every night even in the urban areas. Now, to see a starry sky is a special event for urban citizens.It is possible to see the stars even inside cities? Yes, but for that we need star parks and lighting specialists as partners.Educational aspectThe citizens must be able to identify the planets, constellations and other celestial objects in their urban residence. This is part of a basic education. The number of the people living in the urban area who never see the main constellations or important stars increase every year. We must do something for our urban community.What is an urban star park?An urban public park where we can see the main constellations can be considered an urban star park. There can be organized a lot of activities as practical lessons of astronomy, star parties, etc.Classification of the urban star parksA proposal for classification of the urban star parks taking in consideration the quality of the sky and the number of the city inhabitants:Two categories:- city star parks for cities with parks for cities with > 100.000 inhabitantsFive levels of quality:- 1* level = can see stars of at least 1 magnitude with the naked eyes- 2* level = at least 2 mag- 3* level = at least 3 mag- 4* level= at least 4 mag- 5* level = at least 5 magThe urban star urban park structure and lighting systemA possible structure of a urban star park and sky-friend lighting including non-electric illumination are descripted.The International Commission on IlluminationA description of this structure which has as members national commissions from all over the world.Dark-sky activists - lighting specialistsNational Commissions on Illumination organize courses of lighting specialist. Dark-sky activists can become lighting specialists. The author shows his experience in this aspect as a recent lighting specialist and his cooperation with the Romanian National Commission on Illumination working for a

  10. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  11. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward......Stars and their corresponding protoplanetary disks form in different environments of Giant Molecular Clouds. By carrying state-of-the art zoom-simulations with the magnetohydrodynamical code ramses, I investigated the accretion process around young stars that are embedded in such different...... for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...

  12. Physics of primordial star formation

    Science.gov (United States)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.

  13. Grand unification of neutron stars.

    Science.gov (United States)

    Kaspi, Victoria M

    2010-04-20

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  14. Dark stars in Starobinsky's model

    Science.gov (United States)

    Panotopoulos, Grigoris; Lopes, Ilídio

    2018-01-01

    In the present work we study non-rotating dark stars in f (R ) modified theory of gravity. In particular, we have considered bosonic self-interacting dark matter modeled inside the star as a Bose-Einstein condensate, while as far as the modified theory of gravity is concerned we have assumed Starobinsky's model R +a R2. We solve the generalized structure equations numerically, and we obtain the mass-to-ratio relation for several different values of the parameter a , and for two different dark matter equation-of-states. Our results show that the dark matter stars become more compact in the R-squared gravity compared to general relativity, while at the same time the highest star mass is slightly increased in the modified gravitational theory. The numerical value of the highest star mass for each case has been reported.

  15. Delta isobars in neutron stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe

    2015-01-01

    Full Text Available The appearance of delta isobars in beta-stable matter is regulated by the behavior of the symmetry energy at densities larger than saturation density. We show that by taking into account recent constraints on the density derivative of the symmetry energy and the theoretical and experimental results on the excitations of delta isobars in nuclei, delta isobars are necessary ingredients for the equations of state used for studying neutron stars. We analyze the effect of the appearance of deltas on the structure of neutron stars: as in the case of hyperons, matter containing delta is too soft for allowing the existence of 2M⊙ neutron stars. Quark stars on the other hand, could reach very massive configurations and they could form from a process of conversion of hadronic stars in which an initial seed of strangeness appears through hyperons.

  16. Star fruit toxicity: a cause of both acute kidney injury and chronic kidney disease: a report of two cases

    OpenAIRE

    Abeysekera, R. A.; S. Wijetunge; N. Nanayakkara; Wazil, A.W.M.; Ratnatunga, N. V. I.; T. Jayalath; Medagama, A.

    2015-01-01

    Background Star fruit (Averrhoa carambola) is commonly consumed as a herbal remedy for various ailments in tropical countries. However, the dangers associated with consumption of star fruit are not commonly known. Although star fruit induced oxalate nephrotoxicity in those with existing renal impairment is well documented, reports on its effect on those with normal renal function are infrequent. We report two unique clinical presentation patterns of star fruit nephrotoxicity following consump...

  17. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    Science.gov (United States)

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Populations of Be stars: stellar evolution of extreme stars

    Science.gov (United States)

    Martayan, Christophe; Rivinius, Thomas; Baade, Dietrich; Hubert, Anne-Marie; Zorec, Jean

    2011-07-01

    Among the emission-line stars, the classical Be stars known for their extreme properties are remarkable. The Be stars are B-type main sequence stars that have displayed at least once in their life emission lines in their spectrum. Beyond this phenomenological approach some progresses were made on the understanding of this class of stars. With high-technology techniques (interferometry, adaptive optics, multi-objects spectroscopy, spectropolarimetry, high-resolution photometry, etc) from different instruments and space mission such as the VLTI, CHARA, FLAMES, ESPADONS-NARVAL, COROT, MOST, SPITZER, etc, some discoveries were performed allowing to constrain the modeling of the Be stars stellar evolution but also their circumstellar decretion disks. In particular, the confrontation between theory and observations about the effects of the stellar formation and evolution on the main sequence, the metallicity, the magnetic fields, the stellar pulsations, the rotational velocity, and the binarity (including the X-rays binaries) on the Be phenomenon appearance is discussed. The disks observations and the efforts made on their modeling is mentioned. As the life of a star does not finish at the end of the main sequence, we also mention their stellar evolution post main sequence including the gamma-ray bursts. Finally, the different new results and remaining questions about the main physical properties of the Be stars are summarized and possible ways of investigations proposed. The recent and future facilities (XSHOOTER, ALMA, E-ELT, TMT, GMT, JWST, GAIA, etc) and their instruments that may help to improve the knowledge of Be stars are also briefly introduced.

  19. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  20. Polymer Electronics, Quo Vadis?

    NARCIS (Netherlands)

    Chiechi, Ryan C.; Hummelen, Jan C.

    2012-01-01

    At the heart of polymer electronics lies more than three decades of research into conjugated polymers. The future of these materials is intimately tied to the development of organic photovoltaic (OPV) devices that can compete with traditional, inorganic devices in efficiency and cost. In addition to