WorldWideScience

Sample records for association learning

  1. Associative Learning in Invertebrates

    Science.gov (United States)

    Hawkins, Robert D.; Byrne, John H.

    2015-01-01

    This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron–motor neuron (SN–MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well. PMID:25877219

  2. Learning: from association to cognition.

    Science.gov (United States)

    Shanks, David R

    2010-01-01

    Since the very earliest experimental investigations of learning, tension has existed between association-based and cognitive theories. Associationism accounts for the phenomena of both conditioning and "higher" forms of learning via concepts such as excitation, inhibition, and reinforcement, whereas cognitive theories assume that learning depends on hypothesis testing, cognitive models, and propositional reasoning. Cognitive theories have received considerable impetus in regard to both human and animal learning from recent research suggesting that the key illustration of cue selection in learning, blocking, often arises from inferential reasoning. At the same time, a dichotomous view that separates noncognitive, unconscious (implicit) learning from cognitive, conscious (explicit) learning has gained favor. This review selectively describes key findings from this research, evaluates evidence for and against associative and cognitive explanatory constructs, and critically examines both the dichotomous view of learning as well as the claim that learning can occur unconsciously.

  3. Associative learning and animal cognition.

    Science.gov (United States)

    Dickinson, Anthony

    2012-10-05

    Associative learning plays a variety of roles in the study of animal cognition from a core theoretical component to a null hypothesis against which the contribution of cognitive processes is assessed. Two developments in contemporary associative learning have enhanced its relevance to animal cognition. The first concerns the role of associatively activated representations, whereas the second is the development of hybrid theories in which learning is determined by prediction errors, both directly and indirectly through associability processes. However, it remains unclear whether these developments allow associative theory to capture the psychological rationality of cognition. I argue that embodying associative processes within specific processing architectures provides mechanisms that can mediate psychological rationality and illustrate such embodiment by discussing the relationship between practical reasoning and the associative-cybernetic model of goal-directed action.

  4. Associative learning in biochemical networks.

    Science.gov (United States)

    Gandhi, Nikhil; Ashkenasy, Gonen; Tannenbaum, Emmanuel

    2007-11-07

    It has been recently suggested that there are likely generic features characterizing the emergence of systems constructed from the self-organization of self-replicating agents acting under one or more selection pressures. Therefore, structures and behaviors at one length scale may be used to infer analogous structures and behaviors at other length scales. Motivated by this suggestion, we seek to characterize various "animate" behaviors in biochemical networks, and the influence that these behaviors have on genomic evolution. Specifically, in this paper, we develop a simple, chemostat-based model illustrating how a process analogous to associative learning can occur in a biochemical network. Associative learning is a form of learning whereby a system "learns" to associate two stimuli with one another. Associative learning, also known as conditioning, is believed to be a powerful learning process at work in the brain (associative learning is essentially "learning by analogy"). In our model, two types of replicating molecules, denoted as A and B, are present in some initial concentration in the chemostat. Molecules A and B are stimulated to replicate by some growth factors, denoted as G(A) and G(B), respectively. It is also assumed that A and B can covalently link, and that the conjugated molecule can be stimulated by either the G(A) or G(B) growth factors (and can be degraded). We show that, if the chemostat is stimulated by both growth factors for a certain time, followed by a time gap during which the chemostat is not stimulated at all, and if the chemostat is then stimulated again by only one of the growth factors, then there will be a transient increase in the number of molecules activated by the other growth factor. Therefore, the chemostat bears the imprint of earlier, simultaneous stimulation with both growth factors, which is indicative of associative learning. It is interesting to note that the dynamics of our model is consistent with certain aspects of

  5. The Founding of the Learning Communities Association

    Science.gov (United States)

    Huerta, Juan Carlos

    2017-01-01

    Learning communities have reached the point in their growth that we now need a professional association to allow for more opportunities for participation in advancing learning communities. This is the story of the founding of the new Learning Communities Association.

  6. Non-associative versus associative learning by foraging predatory mites.

    Science.gov (United States)

    Schausberger, Peter; Peneder, Stefan

    2017-01-14

    Learning processes can be broadly categorized into associative and non-associative. Associative learning occurs through the pairing of two previously unrelated stimuli, whereas non-associative learning occurs in response to a single stimulus. How these two principal processes compare in the same learning task and how they contribute to the overall behavioural changes brought about by experience is poorly understood. We tackled this issue by scrutinizing associative and non-associative learning of prey, Western flower thrips Frankliniella occidentalis, by the predatory mite, Neoseiulus californicus. We compared the behaviour of thrips-experienced and -naïve predators, which, early in life, were exposed to either thrips with feeding (associative learning), thrips without feeding (non-associative learning), thrips traces on the surface (non-associative learning), spider mites with feeding (thrips-naïve) or spider mite traces on the surface (thrips-naïve). Thrips experience in early life, no matter whether associative or not, resulted in higher predation rates on thrips by adult females. In the no-choice experiment, associative thrips experience increased the predation rate on the first day, but shortened the longevity of food-stressed predators, a cost of learning. In the choice experiment, thrips experience, no matter whether associative or not, increased egg production, an adaptive benefit of learning. Our study shows that both non-associative and associative learning forms operate in foraging predatory mites, N. californicus. The non-rewarded thrips prey experience produced a slightly weaker, but less costly, learning effect than the rewarded experience. We argue that in foraging predatory mites non-associative learning is an inevitable component of associative learning, rather than a separate process.

  7. Learning Disabilities Association of America

    Science.gov (United States)

    ... provides the most current information on research, practice, theory, issues, and trends to broaden understanding and improve quality of life. Learn More If you are a parent or teacher of a child with a learning disability – or have learning disabilities yourself – you are not ...

  8. Temporal context and conditional associative learning

    Directory of Open Access Journals (Sweden)

    Braun Jochen

    2010-03-01

    Full Text Available Abstract Background We investigated how temporal context affects the learning of arbitrary visuo-motor associations. Human observers viewed highly distinguishable, fractal objects and learned to choose for each object the one motor response (of four that was rewarded. Some objects were consistently preceded by specific other objects, while other objects lacked this task-irrelevant but predictive context. Results The results of five experiments showed that predictive context consistently and significantly accelerated associative learning. A simple model of reinforcement learning, in which three successive objects informed response selection, reproduced our behavioral results. Conclusions Our results imply that not just the representation of a current event, but also the representations of past events, are reinforced during conditional associative learning. In addition, these findings are broadly consistent with the prediction of attractor network models of associative learning and their prophecy of a persistent representation of past objects.

  9. FILIAL IMPRINTING AND ASSOCIATIVE LEARNING - SIMILAR MECHANISMS

    NARCIS (Netherlands)

    van Kampen, Hendrik

    1993-01-01

    This paper reviews a series of experiments designed to investigate whether features characteristic for associative learning are also true of filial imprinting. Phenomena resembling blocking and overshadowing in associative learning may occur during imprinting on two different objects, but it is

  10. Prefrontal Dopamine in Associative Learning and Memory

    Science.gov (United States)

    Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063

  11. Associative learning for a robot intelligence

    CERN Document Server

    Andreae, John H

    1998-01-01

    The explanation of brain functioning in terms of the association of ideas has been popular since the 17th century. Recently, however, the process of association has been dismissed as computationally inadequate by prominent cognitive scientists. In this book, a sharper definition of the term "association" is used to revive the process by showing that associative learning can indeed be computationally powerful. Within an appropriate organization, associative learning can be embodied in a robot to realize a human-like intelligence, which sets its own goals, exhibits unique unformalizable behaviou

  12. Associative Cognitive CREED for Successful Grammar Learning

    Directory of Open Access Journals (Sweden)

    Andrias Tri Susanto

    2016-06-01

    Full Text Available This research article reports a qualitative study which was conducted to investigate ways successful EFL learners learned English grammar. The subjects of this research were eight successful EFL learners from six different countries in Asia: China, Indonesia, Japan, South Korea, Thailand, and Vietnam. The data was collected by interviewing each subject in person individually at an agreed time and place. The result showed that all the grammar learning processes described by the subjects were closely linked to the framework of Associative Cognitive CREED. There were also some contributing factors that could be integrally combined salient to the overall grammar learning process. However, interestingly, each subject emphasized different aspects of learning.

  13. Trial Outcome and Associative Learning Signals in the Monkey Hippocampus

    National Research Council Canada - National Science Library

    Wirth, Sylvia; Avsar, Emin; Chiu, Cindy C; Sharma, Varun; Smith, Anne C; Brown, Emery; Suzuki, Wendy A

    2009-01-01

    .... To study how hippocampal neurons convey information about reward and trial outcome during new associative learning, we recorded hippocampal neurons as monkeys learned novel object-place associations...

  14. Learned Interval Time Facilitates Associate Memory Retrieval

    Science.gov (United States)

    van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter

    2017-01-01

    The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…

  15. Paired-Associate Learning, Phoneme Awareness, and Learning to Read

    Science.gov (United States)

    Hulme, Charles; Goetz, Kristina; Gooch, Debbie; Adams, John; Snowling, Margaret J.

    2007-01-01

    We report two studies examining the relations among three paired-associate learning (PAL) tasks (visual-visual, verbal-verbal, and visual-verbal), phoneme deletion, and single-word and nonword reading ability. Correlations between the PAL tasks and reading were strongest for the visual-verbal task. Path analyses showed that both phoneme deletion…

  16. Grounding cognitive control in associative learning.

    Science.gov (United States)

    Abrahamse, Elger; Braem, Senne; Notebaert, Wim; Verguts, Tom

    2016-07-01

    Cognitive control covers a broad range of cognitive functions, but its research and theories typically remain tied to a single domain. Here we outline and review an associative learning perspective on cognitive control in which control emerges from associative networks containing perceptual, motor, and goal representations. Our review identifies 3 trending research themes that are shared between the domains of conflict adaptation, task switching, response inhibition, and attentional control: Cognitive control is context-specific, can operate in the absence of awareness, and is modulated by reward. As these research themes can be envisaged as key characteristics of learning, we propose that their joint emergence across domains is not coincidental but rather reflects a (latent) growth of interest in learning-based control. Associative learning has the potential for providing broad-scaled integration to cognitive control theory, and offers a promising avenue for understanding cognitive control as a self-regulating system without postulating an ill-defined set of homunculi. We discuss novel predictions, theoretical implications, and immediate challenges that accompany an associative learning perspective on cognitive control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Neuroimaging of Fear-Associated Learning

    Science.gov (United States)

    Greco, John A; Liberzon, Israel

    2016-01-01

    Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in fear-associated learning. PMID:26294108

  18. Categorical congruence facilitates multisensory associative learning.

    Science.gov (United States)

    Barenholtz, Elan; Lewkowicz, David J; Davidson, Meredith; Mavica, Lauren

    2014-10-01

    Learning about objects often requires making arbitrary associations among multisensory properties, such as the taste and appearance of a food or the face and voice of a person. However, the multisensory properties of individual objects usually are statistically constrained, such that some properties are more likely to co-occur than others, on the basis of their category. For example, male faces are more likely to co-occur with characteristically male voices than with female voices. Here, we report evidence that these natural multisensory statistics play a critical role in the learning of novel, arbitrary associative pairs. In Experiment 1, we found that learning of pairs consisting of human voices and gender-congruent faces was superior to learning of pairs consisting of human voices and gender-incongruent faces or of pairs consisting of human voices and pictures of inanimate objects (plants and rocks). In Experiment 2, we found that this "categorical congruency" advantage extended to nonhuman stimuli, as well-namely, to pairs of class-congruent animal pictures and vocalizations (e.g., dogs and barks) versus class-incongruent pairs (e.g., dogs and bird chirps). These findings suggest that associating multisensory properties that are statistically consistent with the various objects that we encounter in our daily lives is a privileged form of learning.

  19. Awake, Offline Processing during Associative Learning.

    Directory of Open Access Journals (Sweden)

    James K Bursley

    Full Text Available Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations.

  20. Visual associative learning in wood ants.

    Science.gov (United States)

    Fernandes, A Sofia D; Buckley, Christopher L; Niven, Jeremy E

    2018-02-07

    Wood ants are a model system for studying visual learning and navigation. They can forage for food and navigate to their nests effectively by forming memories of visual features in their surrounding environment. Previous studies of freely behaving ants have revealed many of the behavioural strategies and environmental features necessary for successful navigation. However, little is known about the exact visual properties of the environment that animals learn or the neural mechanisms that allow them to achieve this. As a first step towards addressing this, we developed a classical conditioning paradigm for visual learning in harnessed wood ants that allows us to control precisely the learned visual cues. In this paradigm, ants are fixed and presented with a visual cue paired with an appetitive sugar reward. Using this paradigm, we found that visual cues learnt by wood ants through Pavlovian conditioning are retained for at least 1 h. Furthermore, we found that memory retention is dependent upon the ants' performance during training. Our study provides the first evidence that wood ants can form visual associative memories when restrained. This classical conditioning paradigm has the potential to permit detailed analysis of the dynamics of memory formation and retention, and the neural basis of learning in wood ants. © 2018. Published by The Company of Biologists Ltd.

  1. Neural associative memory with optimal Bayesian learning.

    Science.gov (United States)

    Knoblauch, Andreas

    2011-06-01

    Neural associative memories are perceptron-like single-layer networks with fast synaptic learning typically storing discrete associations between pairs of neural activity patterns. Previous work optimized the memory capacity for various models of synaptic learning: linear Hopfield-type rules, the Willshaw model employing binary synapses, or the BCPNN rule of Lansner and Ekeberg, for example. Here I show that all of these previous models are limit cases of a general optimal model where synaptic learning is determined by probabilistic Bayesian considerations. Asymptotically, for large networks and very sparse neuron activity, the Bayesian model becomes identical to an inhibitory implementation of the Willshaw and BCPNN-type models. For less sparse patterns, the Bayesian model becomes identical to Hopfield-type networks employing the covariance rule. For intermediate sparseness or finite networks, the optimal Bayesian learning rule differs from the previous models and can significantly improve memory performance. I also provide a unified analytical framework to determine memory capacity at a given output noise level that links approaches based on mutual information, Hamming distance, and signal-to-noise ratio.

  2. Multisensory Perception as an Associative Learning Process

    Directory of Open Access Journals (Sweden)

    Kevin eConnolly

    2014-09-01

    Full Text Available Suppose that you are at a live jazz show. The drummer begins a solo. You see the cymbal jolt and you hear the clang. But in addition seeing the cymbal jolt and hearing the clang, you are also aware that the jolt and the clang are part of the same event. Casey O’Callaghan (forthcoming calls this awareness intermodal feature binding awareness. Psychologists have long assumed that multimodal perceptions such as this one are the result of a subpersonal feature binding mechanism (see Vatakis and Spence, 2007, Kubovy and Schutz, 2010, Pourtois et al., 2000, and Navarra et al., 2012. I present new evidence against this. I argue that there is no automatic feature binding mechanism that couples features like the jolt and the clang together. Instead, when you experience the jolt and the clang as part of the same event, this is the result of an associative learning process. The cymbal’s jolt and the clang are best understood as a single learned perceptual unit, rather than as automatically bound. I outline the specific learning process in perception called unitization, whereby we come to chunk the world into multimodal units. Unitization has never before been applied to multimodal cases. Yet I argue that this learning process can do the same work that intermodal binding would do, and that this issue has important philosophical implications. Specifically, whether we take multimodal cases to involve a binding mechanism or an associative process will have impact on philosophical issues from Molyneux’s question to the question of how active or passive we consider perception to be.

  3. Multisensory perception as an associative learning process.

    Science.gov (United States)

    Connolly, Kevin

    2014-01-01

    Suppose that you are at a live jazz show. The drummer begins a solo. You see the cymbal jolt and you hear the clang. But in addition seeing the cymbal jolt and hearing the clang, you are also aware that the jolt and the clang are part of the same event. Casey O'Callaghan (forthcoming) calls this awareness "intermodal feature binding awareness." Psychologists have long assumed that multimodal perceptions such as this one are the result of a automatic feature binding mechanism (see Pourtois et al., 2000; Vatakis and Spence, 2007; Navarra et al., 2012). I present new evidence against this. I argue that there is no automatic feature binding mechanism that couples features like the jolt and the clang together. Instead, when you experience the jolt and the clang as part of the same event, this is the result of an associative learning process. The cymbal's jolt and the clang are best understood as a single learned perceptual unit, rather than as automatically bound. I outline the specific learning process in perception called "unitization," whereby we come to "chunk" the world into multimodal units. Unitization has never before been applied to multimodal cases. Yet I argue that this learning process can do the same work that intermodal binding would do, and that this issue has important philosophical implications. Specifically, whether we take multimodal cases to involve a binding mechanism or an associative process will have impact on philosophical issues from Molyneux's question to the question of how active or passive we consider perception to be.

  4. Associative learning in a harvestman (Arachnida, Opiliones).

    Science.gov (United States)

    dos Santos, Gilson Costa; Hogan, Jerry A; Willemart, Rodrigo Hirata

    2013-11-01

    Associative learning has been demonstrated in many species of invertebrates, but has not been studied in arachnids, except for some spiders and a whip-spider. Herein, we tested the ability of a Neotropical harvestman, Discocyrtus invalidus (Arachnida, Opiliones) to associate a shelter with a chemical stimulus. We used an arena with a white light at the top and two openings on the floor, one giving access to a dark shelter and the other one closed with a mesh. Filter paper with different chemicals (mate or green tea) surrounded both openings. A harvestman (n=37) was released in the arena and its behavior recorded. The procedure was repeated for 14 consecutive days with each individual. We found that harvestmen got faster at finding the refuge, became less exploratory and tended to move toward the open shelter as the days passed. We conclude that the animals learned to associate the chemical stimulus with the shelter. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The clinical associate curriculum . the learning theory underpinning ...

    African Journals Online (AJOL)

    Drawing on the theories and practices of authentic learning, self-directed learning, whole-brain learning and collaborative learning, the curriculum has been transformed. The potential of this curriculum extends beyond the formal education part of the programme . into clinical associate practice, healthcare practice and, ...

  6. Acute psychophysiological stress impairs human associative learning.

    Science.gov (United States)

    Ehlers, M R; Todd, R M

    2017-11-01

    Addiction is increasingly discussed asa disorder of associative learning processes, with both operant and classical conditioning contributing to the development of maladaptive habits. Stress has long been known to promote drug taking and relapse and has further been shown to shift behavior from goal-directed actions towards more habitual ones. However, it remains to be investigated how acute stress may influence simple associative learning processes that occur before a habit can be established. In the present study, healthy young adults were exposed to either acute stress or a control condition half an hour before performing simple classical and operant conditioning tasks. Psychophysiological measures confirmed successful stress induction. Results of the operant conditioning task revealed reduced instrumental responding under delayed acute stress that resembled behavioral responses to lower levels of reward. The classical conditioning experiment revealed successful conditioning in both experimental groups; however, explicit knowledge of conditioning as indicated by stimulus ratings differentiated the stress and control groups. These findings suggest that operant and classical conditioning are differentially influenced by the delayed effects of acute stress with important implications for the understanding of how new habitual behaviors are initially established. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    National Research Council Canada - National Science Library

    Tang, Shao-Jun

    2006-01-01

    Learning disabilities severely deteriorate the life of many NFI patients. However, the pathogenic process for NFI-associated learning disabilities has not been fully understood and an effective therapy is not available...

  8. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    National Research Council Canada - National Science Library

    Tang, Shao-Jun

    2008-01-01

    Learning disabilities severely deteriorate the life of many NF1 patients. However, the pathogenic process for NF1-associated learning disabilities has not been fully understood and an effective therapy is not available...

  9. A Functional Genomic Analysis of NF1-Associated Learning Disabilities

    National Research Council Canada - National Science Library

    Tang, Shao-Jun

    2007-01-01

    Learning disabilities severely deteriorate the life of many NF1 patients. However, the pathogenic process for NF1-associated learning disabilities has not been fully understood and an effective therapy is not available...

  10. Associative learning and the control of human dietary behavior.

    Science.gov (United States)

    Brunstrom, Jeffrey M

    2007-07-01

    Most of our food likes and disliked are learned. Relevant forms of associative learning have been identified in animals. However, observations of the same associative processes are relatively scarce in humans. The first section of this paper outlines reasons why this might be the case. Emphasis is placed on recent research exploring individual differences and the importance or otherwise of hunger and contingency awareness. The second section briefly considers the effect of learning on meal size, and the author revisits the question of how learned associations might come to influence energy intake in humans.

  11. The development of associate learning in school age children.

    Science.gov (United States)

    Harel, Brian T; Pietrzak, Robert H; Snyder, Peter J; Thomas, Elizabeth; Mayes, Linda C; Maruff, Paul

    2014-01-01

    Associate learning is fundamental to the acquisition of knowledge and plays a critical role in the everyday functioning of the developing child, though the developmental course is still unclear. This study investigated the development of visual associate learning in 125 school age children using the Continuous Paired Associate Learning task. As hypothesized, younger children made more errors than older children across all memory loads and evidenced decreased learning efficiency as memory load increased. Results suggest that age-related differences in performance largely reflect continued development of executive function in the context of relatively developed memory processes.

  12. LEARNING AND ASSOCIATED PHENOMENA IN INVERTEBRATES.

    Science.gov (United States)

    LEARNING, INVERTEBRATES , ADAPTATION(PHYSIOLOGY), BEHAVIOR, PARAMECIUM, ANNELIDA, CEPHALOPODA, CRUSTACEA, HYMENOPTERA, GANGLIA, NERVE CELLS, CONDITIONED RESPONSE, EMBRYOS, BIOLOGY, SYMPOSIA, UNITED KINGDOM.

  13. The Association between Learning Styles and Perception of Teaching Quality

    Science.gov (United States)

    Jepsen, Denise M.; Varhegyi, Melinda M.; Teo, Stephen T. T.

    2015-01-01

    Purpose: Although learning styles and teaching quality have been studied separately, the association between the association between the two has yet to be identified. The purpose of this paper is to establish the relationship between students' learning styles with students' perceptions of teaching quality. Design/methodology/approach: The study…

  14. Two Ways of Learning Brand Associations

    NARCIS (Netherlands)

    S.M.J. van Osselaer (Stijn); C. Janiszewski (Chris)

    2001-01-01

    textabstractFour studies show that consumers have not one but two distinct learning processes that allow them to use brand names and other product features to predict consumption benefits. The first learning process is a relatively unfocused process in which all stimulus elements get

  15. The endocannabinoid system and associative learning and memory in zebrafish.

    Science.gov (United States)

    Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard

    2015-09-01

    In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Learning a keying sequence you never executed: Evidence for independent associative and motor chunk learning

    NARCIS (Netherlands)

    Verwey, Willem B.; Wright, David L.

    2014-01-01

    A substantial amount of research has addressed how people learn and control movement sequences. Recent results suggested that practice with discrete key pressing sequences results in two types of sequence learning: associative learning and motor chunk development (Verwey & Abrahamse, 2012). In the

  17. The role of association in early word-learning

    Directory of Open Access Journals (Sweden)

    Scott P Johnson

    2012-08-01

    Full Text Available Word-learning likely involves a multiplicity of components, some domain-general, others domain-specific. Against the background of recent studies that suggest that word-learning is domain-specific, we investigated the associative component of word-learning. Seven- and 14-month-old infants viewed a pair of events in which a monkey or a truck moved back and forth, accompanied by a sung syllable or a tone, matched for pitch. Following habituation, infants were presented with displays in which the visual-auditory pairings were preserved or switched, and looked longer at the switch events when exposure time was sufficient to learn the intermodal association. At 7 months, performance on speech and tones conditions was statistically identical; at 14 months, infants had begun to favor speech. Thus, the associative component of word-learning does not appear (in contrast to rule-learning, Marcus et al., 2007 to initially privilege speech.

  18. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  19. Working memory and reward association learning impairments in obesity.

    Science.gov (United States)

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Molecular circuits for associative learning in single-celled organisms.

    Science.gov (United States)

    Fernando, Chrisantha T; Liekens, Anthony M L; Bingle, Lewis E H; Beck, Christian; Lenser, Thorsten; Stekel, Dov J; Rowe, Jonathan E

    2009-05-06

    We demonstrate how a single-celled organism could undertake associative learning. Although to date only one previous study has found experimental evidence for such learning, there is no reason in principle why it should not occur. We propose a gene regulatory network that is capable of associative learning between any pre-specified set of chemical signals, in a Hebbian manner, within a single cell. A mathematical model is developed, and simulations show a clear learned response. A preliminary design for implementing this model using plasmids within Escherichia coli is presented, along with an alternative approach, based on double-phosphorylated protein kinases.

  1. Novel associative-memory-based self-learning neurocontrol model

    Science.gov (United States)

    Chen, Ke

    1992-09-01

    Intelligent control is an important field of AI application, which is closely related to machine learning, and the neurocontrol is a kind of intelligent control that controls actions of a physical system or a plant. Linear associative memory model is a good analytic tool for artificial neural networks. In this paper, we present a novel self-learning neurocontrol on the basis of the linear associative memory model to support intelligent control. Using our self-learning neurocontrol model, the learning process is viewed as an extension of one of J. Piaget's developmental stages. After a particular linear associative model developed by us is presented, a brief introduction to J. Piaget's cognitive theory is described as the basis of our self-learning style control. It follows that the neurocontrol model is presented, which usually includes two learning stages, viz. primary learning and high-level learning. As a demonstration of our neurocontrol model, an example is also presented with simulation techniques, called that `bird' catches an aim. The tentative experimental results show that the learning and controlling performance of this approach is surprisingly good. In conclusion, future research is pointed out to improve our self-learning neurocontrol model and explore other areas of application.

  2. Verbal and novel multisensory associative learning in adults.

    Science.gov (United States)

    Fifer, Joanne M; Barutchu, Ayla; Shivdasani, Mohit N; Crewther, Sheila G

    2013-01-01

    To date, few studies have focused on the behavioural differences between the learning of multisensory auditory-visual and intra-modal associations. More specifically, the relative benefits of novel auditory-visual and verbal-visual associations for learning have not been directly compared. In Experiment 1, 20 adult volunteers completed three paired associate learning tasks: non-verbal novel auditory-visual (novel-AV), verbal-visual (verbal-AV; using pseudowords), and visual-visual (shape-VV). Participants were directed to make a motor response to matching novel and arbitrarily related stimulus pairs. Feedback was provided to facilitate trial and error learning. The results of Signal Detection Theory analyses suggested a multisensory enhancement of learning, with significantly higher discriminability measures (d-prime) in both the novel-AV and verbal-AV tasks than the shape-VV task. Motor reaction times were also significantly faster during the verbal-AV task than during the non-verbal learning tasks.  Experiment 2 (n = 12) used a forced-choice discrimination paradigm to assess whether a difference in unisensory stimulus discriminability could account for the learning trends in Experiment 1. Participants were significantly slower at discriminating unisensory pseudowords than the novel sounds and visual shapes, which was notable given that these stimuli produced superior learning. Together the findings suggest that verbal information has an added enhancing effect on multisensory associative learning in adults.

  3. [Associative Learning between Orientation and Color in Early Visual Areas].

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  4. I. P. PAVLOV: 100 YEARS OF RESERACH ON ASSOCIATIVE LEARNING

    Directory of Open Access Journals (Sweden)

    GERMÁN GUTIÉRREZ

    2005-07-01

    Full Text Available A biographical summary of Ivan Pavlov is presented, emphasizing his academic formation and achievements, and hiscontributions to general science and psychology. His main findings on associative learning are described and three areasof current development in this area are discussed: the study of behavioral mechanisms, the study of neurobiologicalmechanisms and the functional role of learning.

  5. Curved Saccade Trajectories Reveal Conflicting Predictions in Associative Learning

    Science.gov (United States)

    Koenig, Stephan; Lachnit, Harald

    2011-01-01

    We report how the trajectories of saccadic eye movements are affected by memory interference acquired during associative learning. Human participants learned to perform saccadic choice responses based on the presentation of arbitrary central cues A, B, AC, BC, AX, BY, X, and Y that were trained to predict the appearance of a peripheral target…

  6. Associative Learning of Social Value in Dynamic Groups.

    Science.gov (United States)

    FeldmanHall, Oriel; Dunsmoor, Joseph E; Kroes, Marijn C W; Lackovic, Sandra; Phelps, Elizabeth A

    2017-08-01

    Although humans live in societies that regularly demand engaging with multiple people simultaneously, little is known about social learning in group settings. In two experiments, we combined a Pavlovian learning framework with dyadic economic games to test whether blocking mechanisms support value-based social learning in the gain (altruistic dictators) and loss (greedy robbers) domains. Subjects first learned about an altruistic dictator, who subsequently made altruistic splits collectively with a partner. Results revealed that because the presence of the dictator already predicted the outcome, subjects did not learn to associate value with the partner. This social blocking effect was not observed in the loss domain: A kind robber's partner, who could steal all the subjects' money but stole little, acquired highly positive value-which biased subjects' subsequent behavior. These findings reveal how Pavlovian mechanisms support efficient social learning, while also demonstrating that violations of social expectations can attenuate how readily these mechanisms are recruited.

  7. Aging and implicit learning of an invariant association.

    Science.gov (United States)

    Howard, Darlene V; Howard, James H; Dennis, Nancy A; LaVine, Sean; Valentino, Kristin

    2008-03-01

    We investigated whether there is an age-related decline in implicit learning of an invariant association. Participants memorized letter strings in which a given letter always occurred in the second position (see Frick & Lee, 1995). Experiments 1 and 2 showed that young and older adults learned this regularity implicitly, with no significant age differences, even when a perceptual feature of the stimuli changed between encoding and test. Experiment 3 confirmed that learning had occurred during encoding, in that learning increased with the number of encoding presentations. We conclude that implicit learning of this invariant association is largely preserved in healthy aging, revealing another avenue by which older people continue to adapt efficiently to environmental regularities.

  8. Digital associative memory neural network with optical learning capability

    Science.gov (United States)

    Watanabe, Minoru; Ohtsubo, Junji

    1994-12-01

    A digital associative memory neural network system with optical learning and recalling capabilities is proposed by using liquid crystal television spatial light modulators and an Optic RAM detector. In spite of the drawback of the limited memory capacity compared with optical analogue associative memory neural network, the proposed optical digital neural network has the advantage of all optical learning and recalling capabilities, thus an all optics network system is easily realized. Some experimental results of the learning and the recalling for character recognitions are presented. This new optical architecture offers compactness of the system and the fast learning and recalling properties. Based on the results, the practical system for the implementation of a faster optical digital associative memory neural network system with ferro-electric liquid crystal SLMs is also proposed.

  9. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    Science.gov (United States)

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  10. Critical evidence for the prediction error theory in associative learning.

    Science.gov (United States)

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-03-10

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning.

  11. Word learning emerges from the interaction of online referent selection and slow associative learning

    Science.gov (United States)

    McMurray, Bob; Horst, Jessica S.; Samuelson, Larissa K.

    2013-01-01

    Classic approaches to word learning emphasize the problem of referential ambiguity: in any naming situation the referent of a novel word must be selected from many possible objects, properties, actions, etc. To solve this problem, researchers have posited numerous constraints, and inference strategies, but assume that determining the referent of a novel word is isomorphic to learning. We present an alternative model in which referent selection is an online process that is independent of long-term learning. This two timescale approach creates significant power in the developing system. We illustrate this with a dynamic associative model in which referent selection is simulated as dynamic competition between competing referents, and learning is simulated using associative (Hebbian) learning. This model can account for a range of findings including the delay in expressive vocabulary relative to receptive vocabulary, learning under high degrees of referential ambiguity using cross-situational statistics, accelerating (vocabulary explosion) and decelerating (power-law) learning rates, fast-mapping by mutual exclusivity (and differences in bilinguals), improvements in familiar word recognition with development, and correlations between individual differences in speed of processing and learning. Five theoretical points are illustrated. 1) Word learning does not require specialized processes – general association learning buttressed by dynamic competition can account for much of the literature. 2) The processes of recognizing familiar words are not different than those that support novel words (e.g., fast-mapping). 3) Online competition may allow the network (or child) to leverage information available in the task to augment performance or behavior despite what might be relatively slow learning or poor representations. 4) Even associative learning is more complex than previously thought – a major contributor to performance is the pruning of incorrect associations

  12. Factors associated with learning outcome of BSN in a blended learning environment.

    Science.gov (United States)

    Hsu, Li-Ling; Hsieh, Suh-Ing

    2011-01-01

    This paper is a report of a study to examine the influence of demographic, learning behavior and learning performance variables on learning outcomes of baccalaureate nursing students within a blended learning environment. A cross-sectional survey was conducted using the self-structured demographic questionnaire, case analysis attitude scale (CAAS), the case analysis self-evaluation scales (CASES), the metacognition scale (MS) and blended learning satisfaction scale (BLSS) to measure learning outcomes after the blended learning course. A total of 99 senior undergraduate nursing students currently studying at a public nursing college in Taiwan were eligible to participate in the study in 2008. Data were analyzed by descriptive statistics and multiple linear regression. Univariate analysis showed significant associations between frequency of online dialogues, time spent on the internet, CAAS, and MS and scores on the ethical course. However, frequency of online dialogues, time spent on the internet, and the CAAS were significantly independent predictors for scores on the ethical course in the final model of multivariate analysis. The final model of the data analysis could account for 78% variances scores of ethical course (R(2) = 0.78 and adjusted R(2) = 0.77). It can be concluded from this study that frequency of online dialogue, time spent on internet, and the CAAS score are all useful predictors for learning outcome. In addition, blended learning was found to have contributed to learners' learning outcome by facilitating their metacognitive development and self-regulatory development. In blended learning courses, students have more responsibilities placed upon them than in traditional face-to-face learning environments. The first step of constructing a working blended learning model is to develop student-oriented teaching pedagogies that include face-to-face and online instruction, rather than just focusing on the provision of technical skills.

  13. Normal brain activation in schizophrenia patients during associative emotional learning.

    Science.gov (United States)

    Swart, Marte; Liemburg, Edith Jantine; Kortekaas, Rudie; Wiersma, Durk; Bruggeman, Richard; Aleman, André

    2013-12-30

    Emotional deficits are among the core features of schizophrenia and both associative emotional learning and the related ability to verbalize emotions can be reduced. We investigated whether schizophrenia patients demonstrated impaired function of limbic and prefrontal areas during associative emotional learning. Patients and controls filled out an alexithymia questionnaire and performed an associative emotional learning task with positive, negative and neutral picture-word pairs during fMRI scanning. After scanning, they indicated for each pair whether they remembered it. We conducted standard GLM analysis and Independent Component Analysis (ICA). Both the GLM results and task-related ICA components were compared between groups. The alexithymia questionnaire indicated more cognitive-emotional processing difficulties in patients than controls, but equal experienced intensity of affective states. Patients remembered less picture-word pairs, irrespective of valence. GLM analysis showed significant visual, temporal, amygdalar/hippocampal, and prefrontal activation in all subjects. ICA identified a network of brain areas similar to GLM, mainly in response to negative stimuli. Neither analysis showed differences between patients and controls during learning. Although in previous studies schizophrenia patients showed abnormalities in both memory and emotion processing, neural circuits involved in cross-modal associative emotional learning may remain intact to a certain degree, which may have potential consequences for treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Paired Associate Learning Tasks and their Contribution to Reading Skills.

    Science.gov (United States)

    Mourgues, Catalina; Tan, Mei; Hein, Sascha; Ojanen, Emma; Reich, Jodi; Lyytinen, Heikki; Grigorenko, Elena L

    2016-02-01

    Associative learning has been identified as one of several non-linguistic processes involved in reading acquisition. However, it has not been established whether it is an independent process that contributes to reading performance on its own or whether it is a process that is embedded in other linguistic skills (e.g., phonological awareness or phonological memory) and, therefore, contributing to reading performance indirectly. Research has shown that performance on tasks assessing associative learning, e.g., paired-associate learning (PAL) tasks, is lower in children with specific reading difficulties compared to typical readers. We explored the differential associations of two distinct verbal-visual PAL tasks (the Bala Bbala Graphogame, BBG, and a Foreign Language Learning Task, FLLT) with reading skills (word reading and pseudo-word decoding), controlling for phonological awareness, rapid naming, and letter and digit span in children at risk for reading disabilities and their typically developing peers. Our study sample consisted of 110 children living in rural Zambia, ranging in age from 7 to 18 years old (48.1% female). Multivariate analyses of covariance were used to explore the group differences in reading performance. Repeated-measures ANCOVA was used to examine children's learning across the PAL tasks. The differential relationships between both PAL tasks and reading performance were explored via structural equation modeling. The main result was that the children at risk for reading difficulties had lower performance on both PAL tasks. The BBG was a significant predictor for both word reading and pseudo-word decoding, whereas the FLLT-only for word reading. Performance on the FLLT partially mediated the association between phonological awareness and word reading. These results illustrate the partial independence of associative learning from other reading-related skills; the specifics of this relationship vary based on the type of PAL task administered.

  15. Association learning for emotional harbinger cues: when do previous emotional associations impair and when do they facilitate subsequent learning of new associations?

    Science.gov (United States)

    Sakaki, Michiko; Ycaza-Herrera, Alexandra E; Mather, Mara

    2014-02-01

    Neutral cues that predict emotional events (emotional harbingers) acquire emotional properties and attract attention. Given the importance of emotional harbingers for future survival, it is desirable to flexibly learn new facts about emotional harbingers when needed. However, recent research revealed that it is harder to learn new associations for emotional harbingers than cues that predict non-emotional events (neutral harbingers). In the current study, we addressed whether this impaired association learning for emotional harbingers is altered by one's awareness of the contingencies between cues and emotional outcomes. Across 3 studies, we found that one's awareness of the contingencies determines subsequent association learning of emotional harbingers. Emotional harbingers produced worse association learning than neutral harbingers when people were not aware of the contingencies between cues and emotional outcomes, but produced better association learning when people were aware of the contingencies. These results suggest that emotional harbingers do not always suffer from impaired association learning and can show facilitated learning depending on one's contingency awareness. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Learning a keying sequence you never executed: evidence for independent associative and motor chunk learning.

    Science.gov (United States)

    Verwey, Willem B; Wright, David L

    2014-09-01

    A substantial amount of research has addressed how people learn and control movement sequences. Recent results suggested that practice with discrete key pressing sequences results in two types of sequence learning: associative learning and motor chunk development (Verwey & Abrahamse, 2012). In the present study, we addressed whether in keying sequences of limited length associative learning develops also when the use of the chunking mode is prevented by introducing during practice random deviants. In line with the notion of two different learning mechanisms, the present results indicate that associative sequence learning develops when motor chunks cannot be developed during practice. This confirms the notion that motor chunks do not rely on these associations. In addition, experience with a particular execution mode during the practice phase seems to benefit subsequent use of that mode with unfamiliar and random sequences. Also, participants with substantial video-gaming experience were faster in executing discrete keying sequences in the chunking mode. These last two results may point to the development of a general ability to produce movement sequences in the chunking mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fruit flies learn to avoid odours associated with virulent infection.

    Science.gov (United States)

    Babin, Aurélie; Kolly, Sylvain; Schneider, Franziska; Dolivo, Vassilissa; Zini, Marco; Kawecki, Tadeusz J

    2014-03-01

    While learning to avoid toxic food is common in mammals and occurs in some insects, learning to avoid cues associated with infectious pathogens has received little attention. We demonstrate that Drosophila melanogaster show olfactory learning in response to infection with their virulent intestinal pathogen Pseudomonas entomophila. This pathogen was not aversive to taste when added to food. Nonetheless, flies exposed for 3 h to food laced with P. entomophila, and scented with an odorant, became subsequently less likely to choose this odorant than flies exposed to pathogen-laced food scented with another odorant. No such effect occurred after an otherwise identical treatment with an avirulent mutant of P. entomophila, indicating that the response is mediated by pathogen virulence. These results demonstrate that a virulent pathogen infection can act as an aversive unconditioned stimulus which flies can associate with food odours, and thus become less attracted to pathogen-contaminated food.

  18. Motivated strategies for learning and their association with academic ...

    African Journals Online (AJOL)

    Background. Most instruments, including the well-known Motivated Strategies for Learning Questionnaire (MSLQ), have been designed in western homogeneous settings. Use of the MSLQ in health professions education is limited. Objective. To assess the MSLQ and its association with the academic performance of a ...

  19. Paired Associate Learning in Chinese Children with Dyslexia

    Science.gov (United States)

    Li, Hong; Shu, Hua; McBride-Chang, Catherine; Liu, Hong Yun; Xue, Jin

    2009-01-01

    A total of 82 Chinese 11- and 12-year-olds with and without dyslexia were tested on four paired associate learning (PAL) tasks, phonological awareness, morphological awareness, rapid naming, and verbal short-term memory in three different experiments. Experiment 1 demonstrated that children with dyslexia were significantly poorer in visual-verbal…

  20. Remodeling of Hippocampal Synapses After Hippocampus-Dependent Associative Learning

    NARCIS (Netherlands)

    Geinisman, Yuri; Disterhoft, John F.; Gundersen, Hans Jørgen G.; McEchron, Matthew D.; Persina, Inna S.; Power, John M.; Zee, Eddy A. van der; West, Mark J.

    2000-01-01

    The aim of this study was to determine whether hippocampus-dependent associative learning involves changes in the number and/or structure of hippocampal synapses. A behavioral paradigm of trace eyeblink conditioning was used. Young adult rabbits were given daily 80 trial sessions to a criterion of

  1. Challenges Associated with Teaching and Learning of English ...

    African Journals Online (AJOL)

    This paper discussed the challenges which are associated with the teaching and learning of English Grammar in Nigeria secondary schools. Grammar is the spinal cord of any language and the user's mastery of it determines his competence and performance in the language. Furthermore, the factors which make teaching ...

  2. Challenges Associated with Teaching and Learning of English ...

    African Journals Online (AJOL)

    Nekky Umera

    Abstract. This paper discussed the challenges which are associated with the teaching and learning of English Grammar in Nigeria secondary schools. Grammar is the spinal cord of any language and the user's mastery of it determines his competence and performance in the language. Furthermore, the factors which make ...

  3. Ensemble coding in amygdala circuits for associative learning.

    Science.gov (United States)

    Gründemann, Jan; Lüthi, Andreas

    2015-12-01

    Associative fear learning in the basolateral amygdala (BLA) is crucial for an animal's survival upon environmental threats. BLA neurons are defined on the basis of their projection target, genetic markers, and associated function. BLA principal neuron responses to threat signaling stimuli are potentiated upon associative fear learning, which is tightly controlled by defined interneuron subpopulations. In addition, BLA population activity correlates with behavioral states and threat or safety signals. BLA neuronal ensembles activated by different behavioral signals can be identified using immediate early gene markers. The next challenge will be to determine the activity patterns and coding properties of defined BLA ensembles in relation to the whole neuronal population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. No trade-off between learning speed and associative flexibility in bumblebees: a reversal learning test with multiple colonies.

    Directory of Open Access Journals (Sweden)

    Nigel E Raine

    Full Text Available Potential trade-offs between learning speed and memory-related performance could be important factors in the evolution of learning. Here, we test whether rapid learning interferes with the acquisition of new information using a reversal learning paradigm. Bumblebees (Bombus terrestris were trained to associate yellow with a floral reward. Subsequently the association between colour and reward was reversed, meaning bees then had to learn to visit blue flowers. We demonstrate that individuals that were fast to learn yellow as a predictor of reward were also quick to reverse this association. Furthermore, overnight memory retention tests suggest that faster learning individuals are also better at retaining previously learned information. There is also an effect of relatedness: colonies whose workers were fast to learn the association between yellow and reward also reversed this association rapidly. These results are inconsistent with a trade-off between learning speed and the reversal of a previously made association. On the contrary, they suggest that differences in learning performance and cognitive (behavioural flexibility could reflect more general differences in colony learning ability. Hence, this study provides additional evidence to support the idea that rapid learning and behavioural flexibility have adaptive value.

  5. Adaptive memory: animacy effects persist in paired-associate learning.

    Science.gov (United States)

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Cogdill, Mindi

    2015-01-01

    Recent evidence suggests that animate stimuli are remembered better than matched inanimate stimuli. Two experiments tested whether this animacy effect persists in paired-associate learning of foreign words. Experiment 1 randomly paired Swahili words with matched animate and inanimate English words. Participants were told simply to learn the English "translations" for a later test. Replicating earlier findings using free recall, a strong animacy advantage was found in this cued-recall task. Concerned that the effect might be due to enhanced accessibility of the individual responses (e.g., animates represent a more accessible category), Experiment 2 selected animate and inanimate English words from two more constrained categories (four-legged animals and furniture). Once again, an advantage was found for pairs using animate targets. These results argue against organisational accounts of the animacy effect and potentially have implications for foreign language vocabulary learning.

  6. The Adult Learning Open University Determinants (ALOUD) study: Biological and psychological factors associated with learning performance in adult distance education

    NARCIS (Netherlands)

    Neroni, Joyce; Gijselaers, Jérôme; Kirschner, Paul A.; De Groot, Renate

    2017-01-01

    Learning is crucial for everyone. The association between biological (eg, sleep, nutrition) and psychological factors (eg, test anxiety, goal orientation) and learning performance has been well established for children, adolescents and college students in traditional education. Evidence for these

  7. Implicit versus explicit associative learning and experimentally induced placebo hypoalgesia

    Directory of Open Access Journals (Sweden)

    Andrea L Martin-Pichora

    2011-03-01

    Full Text Available Andrea L Martin-Pichora1,2, Tsipora D. Mankovsky-Arnold3, Joel Katz11Department of Psychology, York University, Toronto, ON, Canada; 2Centre for Student Development and Counseling, Ryerson University, Toronto, ON, Canada; 3Department of Psychology, McGill University, Montreal, QC, CanadaAbstract: The present study examined whether 1 placebo hypoalgesia can be generated through implicit associative learning (ie, conditioning in the absence of conscious awareness and 2 the magnitude of placebo hypoalgesia changes when expectations about pain are made explicit. The temperature of heat pain stimuli was surreptitiously lowered during conditioning trials for the placebo cream and the magnitude of the placebo effect was assessed during a subsequent set of trials when the temperature was the same for both placebo and control conditions. To assess whether placebo hypoalgesia could be generated from an implicit tactile stimulus, a 2 × 2 design was used with direction of cream application as one factor and verbal information about which cream was being applied as the second factor. A significant placebo effect was observed when participants received verbal information about which cream was being applied but not following implicit conditioning alone. However, 87.5% of those who showed a placebo response as the result of implicit conditioning were able to accurately guess the order of cream application during the final trial, despite a lack of awareness about the sensory manipulation and low confidence in their ratings, suggesting implicit learning in some participants. In summary, implicit associative learning was evident in some participants but it was not sufficient to produce a placebo effect suggesting some level of explicit expectation or cognitive mediation may be necessary. Notably, the placebo response was abolished when expectations were made explicit, suggesting a delicate interplay between attention and expectation.Keywords: placebo hypoalgesia

  8. Finding Influential Users in Social Media Using Association Rule Learning

    Directory of Open Access Journals (Sweden)

    Fredrik Erlandsson

    2016-04-01

    Full Text Available Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.

  9. Dynamic functional connectivity shapes individual differences in associative learning.

    Science.gov (United States)

    Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal

    2016-11-01

    Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Associative learning between odorants and mechanosensory punishment in larval Drosophila.

    Science.gov (United States)

    Eschbach, Claire; Cano, Carmen; Haberkern, Hannah; Schraut, Karla; Guan, Chonglin; Triphan, Tilman; Gerber, Bertram

    2011-12-01

    We tested whether Drosophila larvae can associate odours with a mechanosensory disturbance as a punishment, using substrate vibration conveyed by a loudspeaker (buzz:). One odour (A) was presented with the buzz, while another odour (B) was presented without the buzz (A/B training). Then, animals were offered the choice between A and B. After reciprocal training (A/B), a second experimental group was tested in the same way. We found that larvae show conditioned escape from the previously punished odour. We further report an increase of associative performance scores with the number of punishments, and an increase according to the number of training cycles. Within the range tested (between 50 and 200 Hz), however, the pitch of the buzz does not apparently impact associative success. Last, but not least, we characterized odour-buzz memories with regard to the conditions under which they are behaviourally expressed--or not. In accordance with what has previously been found for associative learning between odours and bad taste (such as high concentration salt or quinine), we report that conditioned escape after odour-buzz learning is disabled if escape is not warranted, i.e. if no punishment to escape from is present during testing. Together with the already established paradigms for the association of odour and bad taste, the present assay offers the prospect of analysing how a relatively simple brain orchestrates memory and behaviour with regard to different kinds of 'bad' events.

  11. Fear conditioning with film clips: a complex associative learning paradigm.

    Science.gov (United States)

    Kunze, Anna E; Arntz, Arnoud; Kindt, Merel

    2015-06-01

    We argue that the stimuli used in traditional fear conditioning paradigms are too simple to model the learning and unlearning of complex fear memories. We therefore developed and tested an adapted fear conditioning paradigm, specifically designed for the study of complex associative memories. Second, we explored whether manipulating the meaning and complexity of the CS-UCS association strengthened the learned fear association. In a two-day differential fear conditioning study, participants were randomly assigned to two experimental conditions. All participants were subjected to the same CSs (i.e., pictures) and UCS (i.e., 3 s film clip) during fear conditioning. However, in one of the conditions (negative-relevant context), the reinforced CS and UCS were meaningfully connected to each other by a 12 min aversive film clip presented prior to fear acquisition. Participants in the other condition (neutral context) were not able to make such meaningful connection between these stimuli, as they viewed a neutral film clip. Fear learning and unlearning were observed on fear-potentiated startle data and distress ratings within the adapted paradigm. Moreover, several group differences on these measures indicated increased UCS valence and enhanced associative memory strength in the negative-relevant context condition compared to the neutral context condition. Due to technical equipment failure, skin conductance data could not be interpreted. The fear conditioning paradigm as presented in the negative-relevant context condition holds considerable promise for the study of complex associative fear memories and therapeutic interventions for such memories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Prefrontal control of cerebellum-dependent associative motor learning.

    Science.gov (United States)

    Chen, Hao; Yang, Li; Xu, Yan; Wu, Guang-yan; Yao, Juan; Zhang, Jun; Zhu, Zhi-ru; Hu, Zhi-an; Sui, Jian-feng; Hu, Bo

    2014-02-01

    Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.

  13. The Adult Learning Open University Determinants (ALOUD) Study: Biological and Psychological Factors Associated with Learning Performance in Adult Distance Education

    Science.gov (United States)

    Neroni, Joyce; Gijselaers, Hieronymus J. M.; Kirschner, Paul A.; Groot, Renate H. M.

    2015-01-01

    Learning is crucial for everyone. The association between biological (eg, sleep, nutrition) and psychological factors (eg, test anxiety, goal orientation) and learning performance has been well established for children, adolescents and college students in traditional education. Evidence for these associations for adult distance students is lacking…

  14. Word, nonword and visual paired associate learning in Dutch dyslexic children

    NARCIS (Netherlands)

    Messbauer, V.C.S.; de Jong, P.F.

    2003-01-01

    Verbal and non-verbal learning were investigated in 21 8-11-year-old dyslexic children and chronological-age controls, and in 21 7-9-year-old reading-age controls. Tasks involved the paired associate learning of words, nonwords, or symbols with pictures. Both learning and retention of associations

  15. Associative learning during early adulthood enhances later memory retention in honeybees

    National Research Council Canada - National Science Library

    Arenas, Andrés; Fernández, Vanesa M; Farina, Walter M

    2009-01-01

    ... later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet...

  16. Perception of collaborative learning in associate degree students in Hong Kong.

    Science.gov (United States)

    Shek, Daniel T L; Shek, Moses M W

    2013-01-01

    Although collaborative learning has been widely researched in Western contexts, no study has been carried out to understand how associate degree students look at collaborative learning in Hong Kong. In this study, perceptions of and attitudes to collaborative learning among associate degree students were studied. A total of 44 associate degree students completed an online questionnaire including measures of perceived benefits and attitudes to collaborative learning, and social-emotional competence. Results showed that there were no significant differences between male and female students on perceived benefits of and attitudes towards collaborative learning. Social-emotional competence was related to perceived benefits of and attitudes to collaborative learning. Attitudes were also related to perceived benefits of collaborative learning. This paper is the first known study looking at the relationships among perceived benefits and attitudes to collaborative learning and social-emotional competence in Chinese associate degree students in different Chinese contexts.

  17. The power of associative learning and the ontogeny of optimal behaviour.

    Science.gov (United States)

    Enquist, Magnus; Lind, Johan; Ghirlanda, Stefano

    2016-11-01

    Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce 'intelligent' behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion.

  18. Learning Recruits Neurons Representing Previously Established Associations in the Corvid Endbrain.

    Science.gov (United States)

    Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas

    2017-10-01

    Crows quickly learn arbitrary associations. As a neuronal correlate of this behavior, single neurons in the corvid endbrain area nidopallium caudolaterale (NCL) change their response properties during association learning. In crows performing a delayed association task that required them to map both familiar and novel sample pictures to the same two choice pictures, NCL neurons established a common, prospective code for associations. Here, we report that neuronal tuning changes during learning were not distributed equally in the recorded population of NCL neurons. Instead, such learning-related changes relied almost exclusively on neurons which were already encoding familiar associations. Only in such neurons did behavioral improvements during learning of novel associations coincide with increasing selectivity over the learning process. The size and direction of selectivity for familiar and newly learned associations were highly correlated. These increases in selectivity for novel associations occurred only late in the delay period. Moreover, NCL neurons discriminated correct from erroneous trial outcome based on feedback signals at the end of the trial, particularly in newly learned associations. Our results indicate that task-relevant changes during association learning are not distributed within the population of corvid NCL neurons but rather are restricted to a specific group of association-selective neurons. Such association neurons in the multimodal cognitive integration area NCL likely play an important role during highly flexible behavior in corvids.

  19. Solution of the comparator theory of associative learning.

    Science.gov (United States)

    Ghirlanda, Stefano; Ibadullayev, Ismet

    2015-04-01

    We derive an analytical solution of the comparator theory of associative learning, as formalized by Stout and Miller (2007). The solution enables us to calculate exactly the predicted responding to stimuli in any experimental design and for any choice of model parameters. We illustrate its utility by calculating the predictions of comparator theory in some paradigmatic designs: acquisition of conditioned responses, compound conditioning, blocking, unovershadowing, and backward blocking. We consider several versions of the theory: first-order comparator theory (close to the original ideas of Miller & Matzel, 1988), second-order comparator theory (Denniston, Savastano, & Miller, 2001), and sometimes-competing retrieval (Stout & Miller, 2007). We show that all versions of comparator theory make a number of surprising predictions, some of which appear hard to reconcile with empirical data. Our solution paves the way for a fuller understanding of the theory and for its empirical evaluation. (c) 2015 APA, all rights reserved).

  20. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    Science.gov (United States)

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Honeybee associative learning performance and metabolic stress resilience are positively associated.

    Directory of Open Access Journals (Sweden)

    Gro V Amdam

    2010-03-01

    Full Text Available Social-environmental influences can affect animal cognition and health. Also, human socio-economic status is a covariate factor connecting psychometric test-performance (a measure of cognitive ability, educational achievement, lifetime health, and survival. The complimentary hypothesis, that mechanisms in physiology can explain some covariance between the same traits, is disputed. Possible mechanisms involve metabolic biology affecting integrity and stability of physiological systems during development and ageing. Knowledge of these relationships is incomplete, and underlying processes are challenging to reveal in people. Model animals, however, can provide insights into connections between metabolic biology and physiological stability that may aid efforts to reduce human health and longevity disparities.We document a positive correlation between a measure of associative learning performance and the metabolic stress resilience of honeybees. This relationship is independent of social factors, and may provide basic insights into how central nervous system (CNS function and metabolic biology can be associated. Controlling for social environment, age, and learning motivation in each bee, we establish that learning in Pavlovian conditioning to an odour is positively correlated with individual survival time in hyperoxia. Hyperoxia induces oxidative metabolic damage, and provides a measure of metabolic stress resistance that is often related to overall lifespan in laboratory animals. The positive relationship between Pavlovian learning ability and stress resilience in the bee is not equally established in other model organisms so far, and contrasts with a genetic cost of improved associative learning found in Drosophila melanogaster.Similarities in the performances of different animals need not reflect common functional principles. A correlation of honeybee Pavlovian learning and metabolic stress resilience, thereby, is not evidence of a shared biology

  2. Striatal dopamine D1 receptor suppression impairs reward-associative learning.

    Science.gov (United States)

    Higa, Kerin K; Young, Jared W; Ji, Baohu; Nichols, David E; Geyer, Mark A; Zhou, Xianjin

    2017-04-14

    Dopamine (DA) is required for reinforcement learning. Hence, disruptions in DA signaling may contribute to the learning deficits associated with psychiatric disorders. The DA D1 receptor (D1R) has been linked to learning and is a target for cognitive/motivational enhancement in patients with schizophrenia. Separating the striatal D1R contribution to learning vs. motivation, however, has been challenging. We suppressed striatal D1R expression in mice using a D1R-targeting short hairpin RNA (shRNA), delivered locally to the striatum via an adeno-associated virus (AAV). We then assessed reward- and punishment-associative learning using a probabilistic learning task and motivation using a progressive-ratio breakpoint procedure. We confirmed suppression of striatal D1Rs immunohistochemically and by testing locomotor activity after the administration of (+)-doxanthrine, a full D1R agonist, in control mice and those treated with the D1RshRNA. D1RshRNA-treated mice exhibited impaired reward-associative learning, while punishment-associative learning was spared. This deficit was unrelated to general learning impairments or amotivation, because the D1shRNA-treated mice exhibited normal Barnes maze learning and normal motivation in the progressive-ratio breakpoint procedure. Suppression of striatal D1Rs selectively impaired reward-associative learning whereas punishment-associative learning, aversion-motivated learning, and appetitive motivation were spared. Because patients with schizophrenia exhibit similar reward-associative learning deficits, D1R-targeted treatments should be investigated to improve reward learning in these patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Coordination of entorhinal-hippocampal ensemble activity during associative learning.

    Science.gov (United States)

    Igarashi, Kei M; Lu, Li; Colgin, Laura L; Moser, May-Britt; Moser, Edvard I

    2014-06-05

    Accumulating evidence points to cortical oscillations as a mechanism for mediating interactions among functionally specialized neurons in distributed brain circuits. A brain function that may use such interactions is declarative memory--that is, memory that can be consciously recalled, such as episodes and facts. Declarative memory is enabled by circuits in the entorhinal cortex that interface the hippocampus with the neocortex. During encoding and retrieval of declarative memories, entorhinal and hippocampal circuits are thought to interact via theta and gamma oscillations, which in awake rodents predominate frequency spectra in both regions. In favour of this idea, theta-gamma coupling has been observed between entorhinal cortex and hippocampus under steady-state conditions in well-trained rats; however, the relationship between interregional coupling and memory formation remains poorly understood. Here we show, by multisite recording at successive stages of associative learning, that the coherence of firing patterns in directly connected entorhinal-hippocampus circuits evolves as rats learn to use an odour cue to guide navigational behaviour, and that such coherence is invariably linked to the development of ensemble representations for unique trial outcomes in each area. Entorhinal-hippocampal coupling was observed specifically in the 20-40-hertz frequency band and specifically between the distal part of hippocampal area CA1 and the lateral part of entorhinal cortex, the subfields that receive the predominant olfactory input to the hippocampal region. Collectively, the results identify 20-40-hertz oscillations as a mechanism for synchronizing evolving representations in dispersed neural circuits during encoding and retrieval of olfactory-spatial associative memory.

  4. Effect of Phonetic Association on Learning Vocabulary in Foreign Language

    Science.gov (United States)

    Bozavli, Ebubekir

    2017-01-01

    Word is one of the most important components of a natural language. Speech is meaningful because of the meanings of words. Vocabulary acquired in one's mother tongue is learned consciously in a foreign language in non-native settings. Learning vocabulary in a system based on grammar is generally neglected or learned in conventional ways. This…

  5. Recommendation System Based On Association Rules For Distributed E-Learning Management Systems

    Science.gov (United States)

    Mihai, Gabroveanu

    2015-09-01

    Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.

  6. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    Science.gov (United States)

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  7. Preliminary investigation of flexibility in learning color-reward associations in gibbons (Hylobatidae).

    Science.gov (United States)

    D'Agostino, Justin; Cunningham, Clare

    2015-08-01

    Previous studies in learning set formation have shown that most animal species can learn to learn with subsequent novel presentations being solved in fewer presentations than when they first encounter a task. Gibbons (Hylobatidae) have generally struggled with these tasks and do not show the learning to learn pattern found in other species. This is surprising given their phylogenetic position and level of cortical development. However, there have been conflicting results with some studies demonstrating higher level learning abilities in these small apes. This study attempts to clarify whether gibbons can in fact use knowledge gained during one learning task to facilitate performance on a similar, but novel problem that would be a precursor to development of a learning set. We tested 16 captive gibbons' ability to associate color cues with provisioned food items in two experiments where they experienced a period of learning followed by experimental trials during which they could potentially use knowledge gained in their first learning experience to facilitate solution I subsequent novel tasks. Our results are similar to most previous studies in that there was no evidence of gibbons being able to use previously acquired knowledge to solve a novel task. However, once the learning association was made, the gibbons performed well above chance. We found no differences across color associations, indicating learning was not affected by the particular color / reward association. However, there were variations in learning performance with regard to genera. The hoolock (Hoolock leuconedys) and siamang (Symphalangus syndactylus) learned the fastest and the lar group (Hylobates sp.) learned the slowest. We caution these results could be due to the small sample size and because of the captive environment in which these gibbons were raised. However, it is likely that environmental variability in the native habitats of the subjects tested could facilitate the evolution of flexible

  8. Are students' beliefs about knowledge and learning associated with their reported use of learning strategies?

    Science.gov (United States)

    Dahl, Tove I; Bals, Margrethe; Turi, Anne Lene

    2005-06-01

    Although considerable research has examined beliefs and learning outcomes (e.g. Schommer, 1990, 1993a, 1993b; Schommer & Dunnell, 1997), little has looked at the relationship between beliefs and the actual learning process. This research examines the relationship between beliefs about learning and knowledge, and reports of learning strategy-use relevant for successful text comprehension. Participants were 81 Norwegian university students who had studied from 1 to 4 years in a range of disciplines. Students' beliefs about knowledge and learning were measured with the Schommer Epistemological Questionnaire (SEQ; Schommer, 1998b). Learning strategies particularly useful for text-based learning were measured with the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich, Smith, Garcia, & McKeachie, 1991). A correlational analysis between measures and full regression analyses of how beliefs influence strategy selection were performed. Beliefs about how thoroughly knowledge is integrated in networks (simple) and how fixed the ability to learn is from birth (fixed) contributed significantly to reported strategy use: Simple to rehearsal and organizational strategies, fixed to elaboration and critical thinking strategies, and a combination of simple and fixed to strategies relevant to the thoughtful monitoring of learning tasks. Beliefs about how certain knowledge is (certain) and how quickly learning can be expected to occur (quick) were not found to contribute to reported learning- strategy use in any significant way. Some, but not all, beliefs about knowledge and learning offer insight into students' reported use of learning strategies relevant for reading course literature.

  9. Subjective learning discounts test type: evidence from an associative learning and transfer task.

    Science.gov (United States)

    Touron, Dayna R; Hertzog, Christopher; Speagle, James Z

    2010-01-01

    We evaluated the extent to which memory test format and test transfer influence the dynamics of metacognitive judgments. Participants completed two study-test phases for paired-associates, with or without transferring test type, in one of four conditions: (1) recognition then recall, (2) recall then recognition, (3) recognition throughout, or (4) recall throughout. Global judgments were made prestudy, poststudy, and posttest for each phase; judgments of learning (JOLs) following item study were also collected. Results suggest that metacognitive judgment accuracy varies substantially by memory test type. Whereas underconfidence in JOLs and global predictions increases with recall practice (Koriat's underconfidence-with-practice effect), underconfidence decreases with recognition practice. Moreover, performance changes when transferring test type were not fully anticipated by pretest judgments.

  10. Age-related decline in associative learning in healthy Chinese adults.

    Science.gov (United States)

    Lee, Annie; Archer, Jo; Wong, Caroline Kai Yun; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2013-01-01

    Paired associates learning (PAL) has been widely used in aging-related research, suggesting an age-related decline in associative learning. However, there are several cognitive processes (attention, spatial and recognition memory, strategy, and associative learning) involved in PAL. It is unclear which component contributes to the decline in PAL performance associated with age effects. The present study determines whether age effects on associative learning are independent of other cognitive processes involved in PAL. Using a validated computerized cognitive program (CANTAB), we examined cognitive performance of associative learning, spatial and recognition memory, attention and strategy use in 184 Singaporean Chinese adults aged from 21 to 80 years old. Linear regression revealed significant age-related decline in associative learning, spatial and recognition memory, and the level of strategy use. This age-related decline in associative learning remains even after adjusting for attention, spatial and recognition memory, and strategy use. These results show that age effects on associative learning are independent of other cognitive processes involved in PAL.

  11. Factors associated with learning management in Mexican micro-entrepreneurs

    Directory of Open Access Journals (Sweden)

    Alejandro Mungaray Lagarda

    2016-10-01

    Full Text Available The learning capacity of social based Mexican micro-entrepreneurs to generate new knowledge and incorporate it to its products and services is evaluated. The above is done through a confirmatory factor analysis and structural linear equation system, and the presence of static and dynamic dimensions in learning capacity, which are represented by individual stocks and flows of knowledge. The positive relationship between them demonstrates the presence of learning processes that impact positively their economic performance.

  12. Paired associate learning in Chinese children with dyslexia.

    Science.gov (United States)

    Li, Hong; Shu, Hua; McBride-Chang, Catherine; Liu, Hong Yun; Xue, Jin

    2009-06-01

    A total of 82 Chinese 11- and 12-year-olds with and without dyslexia were tested on four paired associate learning (PAL) tasks, phonological awareness, morphological awareness, rapid naming, and verbal short-term memory in three different experiments. Experiment 1 demonstrated that children with dyslexia were significantly poorer in visual-verbal PAL than nondyslexic children but that these groups did not differ in visual-visual PAL performance. In Experiment 2, children with dyslexia had more difficulties in transferring rules to new stimuli in a rule-based visual-verbal PAL task as compared with children without dyslexia. Long-term retention of PAL was not impaired in dyslexic children across either experiment. In Experiment 3, rates of visual-verbal PAL deficits among children with dyslexia were all at or above 39%, the highest among all cognitive deficits tested. Moreover, rule-based visual-verbal PAL, in addition to morphological awareness and rapid naming ability, uniquely distinguished children with and without dyslexia even with other metalinguistic skills statistically controlled. Results underscore the importance of visual-verbal PAL for understanding reading impairment in Chinese children.

  13. Pavlov's Dog Associative Learning Demonstrated on Synaptic-Like Organic Transistors

    OpenAIRE

    Bichler, O.; Zhao, W.; Alibart, F.; Pleutin, S.; Lenfant, S.; Vuillaume, D.; Gamrat, C.

    2013-01-01

    In this letter, we present an original demonstration of an associative learning neural network inspired by the famous Pavlov's dogs experiment. A single nanoparticle organic memory field effect transistor (NOMFET) is used to implement each synapse. We show how the physical properties of this dynamic memristive device can be used to perform low power write operations for the learning and implement short-term association using temporal coding and spike timing dependent plasticity based learning...

  14. Associative learning down-regulates PKCβ2- and γ-immunoreactivity in astrocytes

    NARCIS (Netherlands)

    Zee, E.A. van der; Kronforst-Collins, M.A.; Disterhoft, J.F.

    1996-01-01

    We showed previously that associative learning induced a twofold increase in protein kinase Cγ-immunoreactivity (PKCγ-ir) in rabbit CA1 pyramidal neurons, whereas subicular neurons remained unchanged. Here, we investigated the effects of associative learning on PKC-positive astrocytes by determining

  15. Learning Curve and Associated Morbidity of Minimally Invasive Esophagectomy: A Retrospective Multicenter Study.

    Science.gov (United States)

    van Workum, Frans; Stenstra, Marianne H B C; Berkelmans, Gijs H K; Slaman, Annelijn E; van Berge Henegouwen, Mark I; Gisbertz, Suzanne S; van den Wildenberg, Frits J H; Polat, Fatih; Irino, Tomoyuki; Nilsson, Magnus; Nieuwenhuijzen, Grard A P; Luyer, Misha D; Adang, Eddy M; Hannink, Gerjon; Rovers, Maroeska M; Rosman, Camiel

    2017-08-29

    To investigate the morbidity that is associated with the learning curve of minimally invasive esophagectomy. Although learning curves have been described, it is currently unknown how much extra morbidity is associated with the learning curve of technically challenging surgical procedures. Prospectively collected data were retrospectively analyzed of all consecutive patients undergoing minimally invasive Ivor Lewis esophagectomy in 4 European expert centers. The primary outcome parameter was anastomotic leakage. Secondary outcome parameters were operative time and textbook outcome ("optimal outcome"). Learning curves were plotted using weighted moving average and CUSUM analysis was used to determine after how many cases the plateau was reached. Learning associated morbidity was calculated with area under the curve analysis. This study included 646 patients. Three of the 4 hospitals reached the plateau of 8% anastomotic leakage. The length of the learning curve was 119 cases. The mean incidence of anastomotic leakage decreased from 18.8% during the learning phase to 4.5% after the plateau had been reached (P < 0.001). Thirty-six extra patients (10.1% of all patients operated on during the learning curve) experienced learning associated anastomotic leakage, that could have been avoided if patients were operated by surgeons who had completed the learning curve. The incidence of textbook outcome increased from 28% to 53% and the mean operative time decreased from 344 minutes to 270 minutes. A considerable number of 36 extra patients (10.1%) experienced learning associated anastomotic leakage. More research is urgently needed to investigate how learning associated morbidity can be reduced to increase patient safety during learning curves.

  16. Enhanced sensitivity to learning fearful associations during adolescence.

    Science.gov (United States)

    Den, Miriam Liora; Richardson, Rick

    2013-09-01

    The majority of anxiety disorders emerge during adolescence, yet there is a paucity of research examining factors that contribute to the "storm and stress" of this period. Understanding how juvenile (P23), adolescent (P35), and adult (P90) rats differ on basic fear conditioning tasks may shed light on this issue. In Experiment 1, P23, P35, and P90 rats were given 6 CS-US presentations. There were four training conditions: Delay (i.e., CS co-terminating with the US), Trace 20 and Trace 40 (i.e., an interval of 20s and 40s between the CS and US, respectively), and Unpaired (i.e., explicitly Unpaired presentations of the CS and US). Twenty-four hours after conditioning, freezing was measured to assess fear of the CS in a novel context. At test, there were no age differences in CS-elicited freezing in group Delay, and this condition exhibited significantly higher levels of freezing compared to group Unpaired. However, the adolescent rats were the only age group to exhibit higher levels of freezing following training with the 20s and 40s trace intervals, compared to Unpaired controls. Experiment 2 replicated the finding that adolescent but not adult rats exhibit fear following conditioning with a 20s trace interval, while also demonstrating that both age groups display learning with a shorter trace interval of 5s. Experiment 3 showed that exposure to corticosterone (200 μg/ml) in the drinking water for 1 week prior to conditioning selectively disrupts Trace 20 but not Delay conditioning during adolescence. Lastly, in Experiment 4 the test procedures were changed such that freezing was measured both during the CS and during a stimulus free trace interval. Once again, P35 but not P90 rats exhibited fear following training with a 20s trace interval. Taken together, these findings demonstrate that adolescent rats show a heightened propensity to learn fearful associations, and that this is disrupted following exposure to corticosterone. Copyright © 2013 Elsevier Inc. All

  17. Can zebrafish learn spatial tasks? An empirical analysis of place and single CS-US associative learning.

    Science.gov (United States)

    Karnik, Indraneel; Gerlai, Robert

    2012-08-01

    The zebrafish may be an ideal tool with which genes underlying learning and memory can be identified and functionally investigated. From a translational viewpoint, relational learning and episodic memory are particularly important as their impairment is the hallmark of prevalent human neurodegenerative diseases. Recent reports suggest that zebrafish are capable of solving complex relational-type associative learning tasks, namely spatial learning tasks. However, it is not known whether good performance in these tasks was truly based upon relational learning or upon a single CS-US association. Here we study whether zebrafish can find a rewarding stimulus (sight of conspecifics) based upon a single associative cue or/and upon the location of the reward using a method conceptually similar to 'context and cue dependent fear conditioning' employed with rodents. Our results confirm that zebrafish can form an association between a salient visual cue and the rewarding stimulus and at the same time they can also learn where the reward is presented. Although our results do not prove that zebrafish form a dynamic spatial map of their surroundings and use this map to locate their reward, they do show that these fish perform similarly to rodents whose hippocampal function is unimpaired. These results further strengthen the notion that complex cognitive abilities exist in the zebrafish and thus they may be analyzed using the excellent genetic tool set developed for this simple vertebrate. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Psychosocial and Adaptive Deficits Associated with Learning Disability Subtypes

    Science.gov (United States)

    Backenson, Erica M.; Holland, Sara C.; Kubas, Hanna A.; Fitzer, Kim R.; Wilcox, Gabrielle; Carmichael, Jessica A.; Fraccaro, Rebecca L.; Smith, Amanda D.; Macoun, Sarah J.; Harrison, Gina L.; Hale, James B.

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent…

  19. Associative Learning of Social Value in Dynamic Groups

    NARCIS (Netherlands)

    FeldmanHall, O.; Dunsmoor, J.E.; Kroes, M.C.W.; Lackovic, S.; Phelps, E.A.

    2017-01-01

    Although humans live in societies that regularly demand engaging with multiple people simultaneously, little is known about social learning in group settings. In two experiments, we combined a Pavlovian learning framework with dyadic economic games to test whether blocking mechanisms support

  20. Contingencies: Learning Numerical and Emotional Associations in an Uncertain World

    NARCIS (Netherlands)

    B. de Langhe (Bart)

    2011-01-01

    textabstractThe ability to learn about the relation or covariation between events happening in the world is probably the most critical aspect of human cognition. This dissertation examines how the human mind learns numerical and emotional relations and explores consequences for managerial and

  1. Preexposure effects in spatial learning: From gestaltic to associative and attentional cognitive maps

    Directory of Open Access Journals (Sweden)

    Edward S. Redhead

    2002-01-01

    Full Text Available In this paper a series of studies and theoretical proposals about how preexposure to environmental cues affects subsequent spatial learning are reviewed. Traditionally, spatial learning had been thought to depend on gestaltic non-associative processes, and well established phenomena such as latent learning or instantaneous transfer have been taken to provide evidence for this sort of cognitive mapping. However, reviewing the literature examining these effects reveals that there is no need to advocate for gestaltic processes since standard associative learning theory provides an adequate framework for accounting for navigation skills. Recent studies reveal that attentional processes play a role in spatial learning. The need for an integrated attentional and associative approach to explain spatial learning is discussed.

  2. Easy to Learn, Hard to Suppress: The Impact of Learned Stimulus-Outcome Associations on Subsequent Action Control

    Science.gov (United States)

    Van Wouwe, N.C.; van den Wildenberg, W.P.M.; Ridderinkhof, K. R.; Claassen, D.O.; Neimat, J.S.; Wylie, S.A.

    2015-01-01

    The inhibition of impulsive response tendencies that conflict with goal-directed action is a key component of executive control. An emerging literature reveals that the proficiency of inhibitory control is modulated by expected or unexpected opportunities to earn reward or avoid punishment. However, less is known about how inhibitory control is impacted by the processing of task-irrelevant stimulus information that has been associated previously with particular outcomes (reward or punishment) or response tendencies (action or inaction). We hypothesized that stimulus features associated with particular action-valence tendencies, even though task irrelevant, would modulate inhibitory control processes. Participants first learned associations between stimulus features (color), actions, and outcomes using an action-valence learning task that orthogonalizes action (action, inaction) and valence (reward, punishment). Next, these stimulus features were embedded in a Simon task as a task-irrelevant stimulus attribute. We analyzed the effects of action-valence associations on the Simon task by means of distributional analysis to reveal the temporal dynamics. Learning patterns replicated previously reported biases; inherent, Pavlovian-like mappings (action-reward, inaction-punishment avoidance) were easier to learn than mappings conflicting with these biases (action-punishment avoidance, inaction-reward). More importantly, results from two experiments demonstrated that the easier to learn, Pavlovian-like action-valence associations interfered with the proficiency of inhibiting impulsive actions in the Simon task. Processing conflicting associations led to more proficient inhibitory control of impulsive actions, similar to Simon trials without any association. Fast impulsive errors were reduced for trials associated with punishment in comparison to reward trials or trials without any valence association. These findings provide insight into the temporal dynamics of task

  3. Pavlov's dog associative learning demonstrated on synaptic-like organic transistors.

    Science.gov (United States)

    Bichler, O; Zhao, W; Alibart, F; Pleutin, S; Lenfant, S; Vuillaume, D; Gamrat, C

    2013-02-01

    In this letter, we present an original demonstration of an associative learning neural network inspired by the famous Pavlov's dogs experiment. A single nanoparticle organic memory field effect transistor (NOMFET) is used to implement each synapse. We show how the physical properties of this dynamic memristive device can be used to perform low-power write operations for the learning and implement short-term association using temporal coding and spike-timing-dependent plasticity-based learning. An electronic circuit was built to validate the proposed learning scheme with packaged devices, with good reproducibility despite the complex synaptic-like dynamic of the NOMFET in pulse regime.

  4. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients.

    Science.gov (United States)

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be-in part-due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts.

  5. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    Directory of Open Access Journals (Sweden)

    Bert eLenaert

    2015-07-01

    Full Text Available Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs were introduced. In a sample of healthy participants (Study 1, we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2, individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be – in part – due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3 showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt, these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant

  6. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    Science.gov (United States)

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID

  7. Animal social learning: associations and adaptations [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Simon M. Reader

    2016-08-01

    Full Text Available Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on ‘ordinary’ processes but with extraordinary consequences.

  8. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    Directory of Open Access Journals (Sweden)

    Mohammad-Ali Nikouei Mahani

    Full Text Available In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.

  9. Does academic performance or personal growth share a stronger association with learning environment perception?

    OpenAIRE

    Colbert-Getz, Jorie M.; Tackett, Sean; Wright, Scott M.; Shochet, Robert S.

    2016-01-01

    Objectives This study was conducted to characterize the relative strength of associations of learning environment perception with academic performance and with personal growth. Methods In 2012-2014 second and third year students at Johns Hopkins University School of Medicine completed a learning environment survey and personal growth scale. Hierarchical linear regression analysis was employed to determine if the proportion of variance in learning environment scores accounted for by personal g...

  10. Active Learning "Not" Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses…

  11. Probabilistic Category Learning in Developmental Dyslexia: Evidence from Feedback and Paired-Associate Weather Prediction Tasks

    Science.gov (United States)

    Gabay, Yafit; Vakil, Eli; Schiff, Rachel; Holt, Lori L.

    2015-01-01

    Objective Developmental dyslexia is presumed to arise from specific phonological impairments. However, an emerging theoretical framework suggests that phonological impairments may be symptoms stemming from an underlying dysfunction of procedural learning. Method We tested procedural learning in adults with dyslexia (n=15) and matched-controls (n=15) using two versions of the Weather Prediction Task: Feedback (FB) and Paired-associate (PA). In the FB-based task, participants learned associations between cues and outcomes initially by guessing and subsequently through feedback indicating the correctness of response. In the PA-based learning task, participants viewed the cue and its associated outcome simultaneously without overt response or feedback. In both versions, participants trained across 150 trials. Learning was assessed in a subsequent test without presentation of the outcome, or corrective feedback. Results The Dyslexia group exhibited impaired learning compared with the Control group on both the FB and PA versions of the weather prediction task. Conclusions The results indicate that the ability to learn by feedback is not selectively impaired in dyslexia. Rather it seems that the probabilistic nature of the task, shared by the FB and PA versions of the weather prediction task, hampers learning in those with dyslexia. Results are discussed in light of procedural learning impairments among participants with dyslexia. PMID:25730732

  12. Choline acetyltransferase in the hippocampus is associated with learning strategy preference in adult male rats.

    Science.gov (United States)

    Hawley, Wayne R; Witty, Christine F; Daniel, Jill M; Dohanich, Gary P

    2015-08-01

    One principle of the multiple memory systems hypothesis posits that the hippocampus-based and striatum-based memory systems compete for control over learning. Consistent with this notion, previous research indicates that the cholinergic system of the hippocampus plays a role in modulating the preference for a hippocampus-based place learning strategy over a striatum-based stimulus--response learning strategy. Interestingly, in the hippocampus, greater activity and higher protein levels of choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine, are associated with better performance on hippocampus-based learning and memory tasks. With this in mind, the primary aim of the current study was to determine if higher levels of ChAT and the high-affinity choline uptake transporter (CHT) in the hippocampus were associated with a preference for a hippocampus-based place learning strategy on a task that also could be solved by relying on a striatum-based stimulus--response learning strategy. Results confirmed that levels of ChAT in the dorsal region of the hippocampus were associated with a preference for a place learning strategy on a water maze task that could also be solved by adopting a stimulus-response learning strategy. Consistent with previous studies, the current results support the hypothesis that the cholinergic system of the hippocampus plays a role in balancing competition between memory systems that modulate learning strategy preference. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review.

    Science.gov (United States)

    Timmann, D; Drepper, J; Frings, M; Maschke, M; Richter, S; Gerwig, M; Kolb, F P

    2010-01-01

    In this review results of human lesion studies are compared examining associative learning in the motor, emotional and cognitive domain. Motor and emotional learning were assessed using classical eyeblink and fear conditioning. Cerebellar patients were significantly impaired in acquisition of conditioned eyeblink and fear-related autonomic and skeletal responses. An additional finding was disordered timing of conditioned eyeblink responses. Cognitive learning was examined using stimulus-stimulus-response paradigms, with an experimental set-up closely related to classical conditioning paradigms. Cerebellar patients were impaired in the association of two visual stimuli, which could not be related to motor performance deficits. Human lesion and functional brain imaging studies in healthy subjects are in accordance with a functional compartmentalization of the cerebellum for different forms of associative learning. The medial zone appears to contribute to fear conditioning and the intermediate zone to eyeblink conditioning. The posterolateral hemispheres (that is lateral cerebellum) appear to be of additional importance in fear conditioning in humans. Future studies need to examine the reasonable assumption that the posterolateral cerebellum contributes also to higher cognitive forms of associative learning. Human cerebellar lesion studies provide evidence that the cerebellum is involved in motor, emotional and cognitive associative learning. Because of its simple and homogeneous micro-circuitry a common computation may underly cerebellar involvement in these different forms of associative learning. The overall task of the cerebellum may be the ability to provide correct predictions about the relationship between sensory stimuli. Copyright (c) 2009 Elsevier Srl. All rights reserved.

  14. Institutional Change and Leadership Associated with Blended Learning Innovation: Two Case Studies

    Science.gov (United States)

    Garrison, D. Randy; Vaughan, Norman D.

    2013-01-01

    This article documents the institutional change and leadership associated with blended learning innovation in higher education. Two case studies are provided that demonstrate how transformational institutional change related to blended teaching and learning approaches is predicated upon committed collaborative leadership that engages all levels of…

  15. Effects of Learning Experience on Forgetting Rates of Item and Associative Memories

    Science.gov (United States)

    Yang, Jiongjiong; Zhan, Lexia; Wang, Yingying; Du, Xiaoya; Zhou, Wenxi; Ning, Xueling; Sun, Qing; Moscovitch, Morris

    2016-01-01

    Are associative memories forgotten more quickly than item memories, and does the level of original learning differentially influence forgetting rates? In this study, we addressed these questions by having participants learn single words and word pairs once (Experiment 1), three times (Experiment 2), and six times (Experiment 3) in a massed…

  16. Learning the Association between a Context and a Target Location in Infancy

    Science.gov (United States)

    Bertels, Julie; San Anton, Estibaliz; Gebuis, Titia; Destrebecqz, Arnaud

    2017-01-01

    Extracting the statistical regularities present in the environment is a central learning mechanism in infancy. For instance, infants are able to learn the associations between simultaneously or successively presented visual objects (Fiser & Aslin, 2002; Kirkham, Slemmer & Johnson, 2002). The present study extends these results by…

  17. Comfort and experience with online learning: trends over nine years and associations with knowledge.

    Science.gov (United States)

    Cook, David A; Thompson, Warren G

    2014-07-01

    Some evidence suggests that attitude toward computer-based instruction is an important determinant of success in online learning. We sought to determine how comfort using computers and perceptions of prior online learning experiences have changed over the past decade, and how these associate with learning outcomes. Each year from 2003-2011 we conducted a prospective trial of online learning. As part of each year's study, we asked medicine residents about their comfort using computers and if their previous experiences with online learning were favorable. We assessed knowledge using a multiple-choice test. We used regression to analyze associations and changes over time. 371 internal medicine and family medicine residents participated. Neither comfort with computers nor perceptions of prior online learning experiences showed a significant change across years (p > 0.61), with mean comfort rating 3.96 (maximum 5 = very comfortable) and mean experience rating 4.42 (maximum 6 = strongly agree [favorable]). Comfort showed no significant association with knowledge scores (p = 0.39) but perceptions of prior experiences did, with a 1.56% rise in knowledge score for a 1-point rise in experience score (p = 0.02). Correlations among comfort, perceptions of prior experiences, and number of prior experiences were all small and not statistically significant. Comfort with computers and perceptions of prior experience with online learning remained stable over nine years. Prior good experiences (but not comfort with computers) demonstrated a modest association with knowledge outcomes, suggesting that prior course satisfaction may influence subsequent learning.

  18. University of Central Florida and the American Association of State Colleges and Universities: Blended Learning Toolkit

    Science.gov (United States)

    EDUCAUSE, 2014

    2014-01-01

    The Blended Learning Toolkit supports the course redesign approach, and interest in its openly available clearinghouse of online tools, strategies, curricula, and other materials to support the adoption of blended learning continues to grow. When the resource originally launched in July 2011, 20 AASCU [American Association of State Colleges and…

  19. Fear conditioning with film clips: a complex associative learning paradigm

    NARCIS (Netherlands)

    Kunze, A.E.; Arntz, A.; Kindt, M.

    2015-01-01

    Background and objectives: We argue that the stimuli used in traditional fear conditioning paradigms are too simple to model the learning and unlearning of complex fear memories. We therefore developed and tested an adapted fear conditioning paradigm, specifically designed for the study of complex

  20. A high-capacity model for one shot association learning in the brain

    Directory of Open Access Journals (Sweden)

    Hafsteinn eEinarsson

    2014-11-01

    Full Text Available We present a high-capacity model for one-shot association learning(hetero-associative memory in sparse networks. We assume that basic patternsare pre-learned in networks and associations between two patterns are presentedonly once and have to be learned immediately. The model is a combination of anAmit-Fusi like network sparsely connected to a Willshaw type network. Thelearning procedure is palimpsest and comes from earlier work on one-shotpattern learning. However, in our setup we can enhance the capacity of thenetwork by iterative retrieval. This yields a model for sparse brain-likenetworks in which populations of a few thousand neurons are capable of learninghundreds of associations even if they are presented only once. The analysis ofthe model is based on a novel result by Janson et. al. on bootstrappercolation in random graphs.

  1. Adult Learning Open University Determinants (ALOUD) study: Psychological factors associated with study success

    NARCIS (Netherlands)

    Neroni, Joyce; De Groot, Renate; Kirschner, Paul A.

    2013-01-01

    Neroni, J., De Groot, R. H. M., & Kirschner, P. A. (2012, 7 November). Adult Learning Open University Determinants (ALOUD) study: Psychological factors associated with study success. Poster presentation at the International ICO Fall School, Girona, Spain.

  2. Adult Learning Open University Determinants study (ALOUD): Biological lifestyle factors associated with study success

    NARCIS (Netherlands)

    Gijselaers, Jérôme; De Groot, Renate; Kirschner, Paul A.

    2012-01-01

    Gijselaers, H. J. M., De Groot, R. H. M., & Kirschner, P. A. (2012, 7 November). Adult Learning Open University Determinants study (ALOUD): Biological lifestyle factors associated with study success. Poster presentation at the International ICO Fall School, Girona, Spain.

  3. The Smart Gut: Tracking Affective Associative Learning with Measures of "Liking", Facial Electromyography, and Preferential Looking

    Science.gov (United States)

    Armel, K. Carrie; Pulido, Carmen; Wixted, John T.; Chiba, Andrea A.

    2009-01-01

    We demonstrate here that initially neutral items can acquire "specific" value based on their associated outcomes, and that responses of physiological systems to such previously meaningless stimuli can rapidly reflect this associative history. Each participant participated in an associative learning task in which four neutral abstract pictures were…

  4. Associability-modulated loss learning is increased in posttraumatic stress disorder

    Science.gov (United States)

    Brown, Vanessa M; Zhu, Lusha; Wang, John M; Frueh, B Christopher

    2018-01-01

    Disproportionate reactions to unexpected stimuli in the environment are a cardinal symptom of posttraumatic stress disorder (PTSD). Here, we test whether these heightened responses are associated with disruptions in distinct components of reinforcement learning. Specifically, using functional neuroimaging, a loss-learning task, and a computational model-based approach, we assessed the mechanistic hypothesis that overreactions to stimuli in PTSD arise from anomalous gating of attention during learning (i.e., associability). Behavioral choices of combat-deployed veterans with and without PTSD were fit to a reinforcement learning model, generating trial-by-trial prediction errors (signaling unexpected outcomes) and associability values (signaling attention allocation to the unexpected outcomes). Neural substrates of associability value and behavioral parameter estimates of associability updating, but not prediction error, increased with PTSD during loss learning. Moreover, the interaction of PTSD severity with neural markers of associability value predicted behavioral choices. These results indicate that increased attention-based learning may underlie aspects of PTSD and suggest potential neuromechanistic treatment targets. PMID:29313489

  5. Stimulus processing and associative learning in Wistar and WKHA rats.

    Science.gov (United States)

    Chess, Amy C; Keene, Christopher S; Wyzik, Elizabeth C; Bucci, David J

    2005-06-01

    This study assessed basic learning and attention abilities in Wistar-Kyoto hyperactive (WKHA) rats using appetitive conditioning preparations. Two measures of conditioned responding to a visual stimulus, orienting behavior (rearing on the hind legs), and food cup behavior (placing the head inside the recessed food cup) were measured. In Experiment 1, simple conditioning, but not extinction, was impaired in WKHA rats compared with Wistar rats. In Experiment 2, nonreinforced presentations of the visual cue preceded the conditioning sessions. WKHA rats displayed less orienting behavior than Wistar rats but comparable levels of food cup behavior. These data suggest that WKHA rats exhibit specific abnormalities in attentional processing as well as in learning stimulus-reward relationships. (c) 2005 APA, all rights reserved.

  6. Early student outcomes associated with a virtual community for learning.

    Science.gov (United States)

    Giddens, Jean Foret; Shuster, Geoff; Roehrig, Nicole

    2010-06-01

    Virtual communities represent a new and innovative approach to learning within nursing education. Because this is an emerging trend, little is known about the use of virtual communities and the impact on students and their learning. This article reports the results of a study designed to assess the initial perceived benefits of using a virtual community known as The Neighborhood in a single undergraduate baccalaureate nursing program during the first few years following development. Results showed greater benefits reported among underrepresented minority students and students who expected to receive lower than a course grade of A. In addition, findings suggest the strength of perceived benefits increases over time among all learners. These findings merely scratch the surface of additional work needed in this area. Copyright 2010, SLACK Incorporated.

  7. An Integrated Model of Associative and Reinforcement Learning

    Science.gov (United States)

    2012-08-01

    from robotics (Peters, Vijayakumar, & Schaal, 2003) and artificial intelli- gence (Russell & Norvig, 1995) to cognitive architectures (Fu & Anderson...cycles are less expensive than actions (e.g. robotics ). One of the limitations of RL as a complete model of human decision-making becomes apparent in...1948). For example, Blodgett (1929) ran three groups of rats in a maze -learning experiment. One group (the control) was re- warded upon reaching the

  8. Psychosocial and Adaptive Deficits Associated With Learning Disability Subtypes.

    Science.gov (United States)

    Backenson, Erica M; Holland, Sara C; Kubas, Hanna A; Fitzer, Kim R; Wilcox, Gabrielle; Carmichael, Jessica A; Fraccaro, Rebecca L; Smith, Amanda D; Macoun, Sarah J; Harrison, Gina L; Hale, James B

    2015-01-01

    Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent comprehensive evaluations for learning and/or behavior problems in two Pacific Northwest school districts. Using concordance-discordance model (C-DM) processing strengths and weaknesses SLD identification criteria, results revealed working memory SLD (n = 20), processing speed SLD (n = 30), executive SLD (n = 32), and no disability groups (n = 41). Of the SLD subtypes, repeated measures MANOVA results revealed the processing speed SLD subtype exhibited the greatest psychosocial and adaptive impairment according to teacher behavior ratings. Findings suggest processing speed deficits may be behind the cognitive and psychosocial disturbances found in what has been termed "nonverbal" SLD. Limitations, implications, and future research needs are addressed. © Hammill Institute on Disabilities 2013.

  9. Dopamine Selectively Modulates the Outcome of Learning Unnatural Action-Valence Associations.

    Science.gov (United States)

    Van Wouwe, Nelleke C; Claassen, Daniel O; Neimat, Joseph S; Kanoff, Kristen E; Wylie, Scott A

    2017-05-01

    Learning the contingencies between stimulus, action, and outcomes is disrupted in disorders associated with altered dopamine (DA) function in the BG, such as Parkinson disease (PD). Although the role of DA in learning to act has been extensively investigated in PD, the role of DA in "learning to withhold" (or inhibit) action to influence outcomes is not as well understood. The current study investigated the role of DA in learning to act or to withhold action to receive rewarding, or avoid punishing outcomes, in patients with PD tested "off" and "on" dopaminergic medication (n = 19) versus healthy controls (n = 30). Participants performed a reward-based learning task that orthogonalized action and outcome valence (action-reward, inaction-reward, action-punishment, inaction-punishment). We tested whether DA would bias learning toward action, toward reward, or to particular action-outcome interactions. All participants demonstrated inherent learning biases preferring action with reward and inaction to avoid punishment, and this was unaffected by medication. Instead, DA produced a complex modulation of learning less natural action-outcome associations. "Off" DA medication, patients demonstrated impairments in learning to withhold action to gain reward, suggesting a difficulty to overcome a bias toward associating inaction with punishment avoidance. On DA medication, these patterns changed, and patients showed a reduced ability to learn to act to avoid punishment, indicating a bias toward action and reward. The current findings suggest that DA in PD has a complex influence on the formation of action-outcome associations, particularly those involving less natural linkages between action and outcome valence.

  10. Frontal networks for learning and executing arbitrary stimulus-response associations.

    Science.gov (United States)

    Boettiger, Charlotte A; D'Esposito, Mark

    2005-03-09

    Flexible rule learning, a behavior with obvious adaptive value, is known to depend on an intact prefrontal cortex (PFC). One simple, yet powerful, form of such learning consists of forming arbitrary stimulus-response (S-R) associations. A variety of evidence from monkey and human studies suggests that the PFC plays an important role in both forming new S-R associations and in using learned rules to select the contextually appropriate response to a particular stimulus cue. Although monkey lesion studies more strongly implicate the ventrolateral PFC (vlPFC) in S-R learning, clinical data and neurophysiology studies have implicated both the vlPFC and the dorsolateral region (dlPFC) in associative rule learning. Previous human imaging studies of S-R learning tasks, however, have not demonstrated involvement of the dlPFC. This may be because of the design of previous imaging studies, which used few stimuli and used explicitly stated one-to-one S-R mapping rules that were usually practiced before scanning. Humans learn these rules very quickly, limiting the ability of imaging techniques to capture activity related to rule acquisition. To address these issues, we performed functional magnetic resonance imaging while subjects learned by trial and error to associate sets of abstract visual stimuli with arbitrary manual responses. Successful learning of this task required discernment of a categorical type of S-R rule in a block design expected to yield sustained rule representation. Our results show that distinct components of the dorsolateral, ventrolateral, and anterior PFC, lateral premotor cortex, supplementary motor area, and the striatum are involved in learning versus executing categorical S-R rules.

  11. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    Science.gov (United States)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  12. Associations of learning style with cultural values and demographics in nursing students in Iran and Malaysia.

    Science.gov (United States)

    Abdollahimohammad, Abdolghani; Ja'afar, Rogayah

    2015-01-01

    The goal of the current study was to identify associations between the learning style of nursing students and their cultural values and demographic characteristics. A non-probability purposive sampling method was used to gather data from two populations. All 156 participants were female, Muslim, and full-time degree students. Data were collected from April to June 2010 using two reliable and validated questionnaires: the Learning Style Scales and the Values Survey Module 2008 (VSM 08). A simple linear regression was run for each predictor before conducting multiple linear regression analysis. The forward selection method was used for variable selection. P-values ≤0.05 and ≤0.1 were considered to indicate significance and marginal significance, respectively. Moreover, multi-group confirmatory factor analysis was performed to determine the invariance of the Farsi and English versions of the VSM 08. The perceptive learning style was found to have a significant negative relationship with the power distance and monumentalism indices of the VSM 08. Moreover, a significant negative association was observed between the solitary learning style and the power distance index. However, no significant association was found between the analytic, competitive, and imaginative learning styles and cultural values (P>0.05). Likewise, no significant associations were observed between learning style, including the perceptive, solitary, analytic, competitive, and imaginative learning styles, and year of study or age (P>0.05). Students who reported low values on the power distance and monumentalism indices are more likely to prefer perceptive and solitary learning styles. Within each group of students in our study sample from the same school the year of study and age did not show any significant associations with learning style.

  13. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior.

    Science.gov (United States)

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-02-16

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0-12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization.

  14. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    Science.gov (United States)

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  15. The acquisition of simple associations as observed in color-word contingency learning.

    Science.gov (United States)

    Lin, Olivia Y-H; MacLeod, Colin M

    2018-01-01

    Three experiments investigated the learning of simple associations in a color-word contingency task. Participants responded manually to the print colors of 3 words, with each word associated strongly to 1 of the 3 colors and weakly to the other 2 colors. Despite the words being irrelevant, response times to high-contingency stimuli and to low-contingency stimuli quickly diverged. This high-low difference remained quite constant over successive blocks of trials, evidence of stable contingency learning. Inclusion of a baseline condition-an item having no color-word contingency-permitted separation of the contingency learning effect into 2 components: a cost due to low contingency and a benefit due to high contingency. Both cost and benefit were quick to acquire, quick to extinguish, and quick to reacquire. The color-word contingency task provides a simple way to directly study the learning of associations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Stimulus-classification and stimulus-action associations: Effects of repetition learning and durability.

    Science.gov (United States)

    Moutsopoulou, Karolina; Yang, Qing; Desantis, Andrea; Waszak, Florian

    2015-01-01

    It has been shown that acquired stimulus-response bindings result from at least two types of associations from the stimulus to the task (stimulus-task or stimulus-classification; S-C) and from the stimulus to the motor response (stimulus-response or stimulus-action; S-A). These types of associations have been shown to independently affect behaviour. This finding suggests that they are processed in different pathways or different parts of a pathway at the neural level. Here we test a hypothesis that such associations may be differentially affected by repetition learning and that such effects may be detected by measuring their durability against overwriting. We show that both S-C and S-A associations are in fact strengthened when learning is boosted by increasing repetitions of the primes. However, the results further suggest that associations between stimuli and actions have less durable effects on behaviour and that the durability of S-C and S-A associations is independent of repetition learning. This is an important finding for the understanding of the underlying mechanisms of associative learning and particularly raises the question of which processes may affect flexibility of learning.

  17. A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative learning.

    Science.gov (United States)

    Tan, Javan; Quek, Chai

    2010-06-01

    Self-organizing neurofuzzy approaches have matured in their online learning of fuzzy-associative structures under time-invariant conditions. To maximize their operative value for online reasoning, these self-sustaining mechanisms must also be able to reorganize fuzzy-associative knowledge in real-time dynamic environments. Hence, it is critical to recognize that they would require self-reorganizational skills to rebuild fluid associative structures when their existing organizations fail to respond well to changing circumstances. In this light, while Hebbian theory (Hebb, 1949) is the basic computational framework for associative learning, it is less attractive for time-variant online learning because it suffers from stability limitations that impedes unlearning. Instead, this paper adopts the Bienenstock-Cooper-Munro (BCM) theory of neurological learning via meta-plasticity principles (Bienenstock et al., 1982) that provides for both online associative and dissociative learning. For almost three decades, BCM theory has been shown to effectively brace physiological evidence of synaptic potentiation (association) and depression (dissociation) into a sound mathematical framework for computational learning. This paper proposes an interpretation of the BCM theory of meta-plasticity for an online self-reorganizing fuzzy-associative learning system to realize online-reasoning capabilities. Experimental findings are twofold: 1) the analysis using S&P-500 stock index illustrated that the self-reorganizing approach could follow the trajectory shifts in the time-variant S&P-500 index for about 60 years, and 2) the benchmark profiles showed that the fuzzy-associative approach yielded comparable results with other fuzzy-precision models with similar online objectives.

  18. Learning hypotheses and an associated tool to design and to analyse teaching-learning sequences

    Science.gov (United States)

    Buty, Christian; Tiberghien, Andrée; Le Maréchal, Jean-François

    2004-05-01

    This contribution presents a tool elaborated from a theoretical framework linking epistemological, learning and didactical hypotheses. This framework lead to design teaching sequences from a socio-constructivist perspective, and is based on the role of models in physics or chemistry, and on the role of students' initial knowledge in learning processes. This tool, formatted as a 'grid', is applied to one example in physics (optics, grade 11), and to one example in chemistry (conductivity, grade 11). Both these examples are taken from the important activity our team has developed from several years, in collaboration with upper secondary school science teachers, in order to design teaching sequences and experiment them in real classrooms.

  19. Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism.

    Science.gov (United States)

    Mathar, David; Neumann, Jane; Villringer, Arno; Horstmann, Annette

    2017-10-01

    Prediction errors (PEs) encode the difference between expected and actual action outcomes in the brain via dopaminergic modulation. Integration of these learning signals ensures efficient behavioral adaptation. Obesity has recently been linked to altered dopaminergic fronto-striatal circuits, thus implying impairments in cognitive domains that rely on its integrity. 28 obese and 30 lean human participants performed an implicit stimulus-response learning paradigm inside an fMRI scanner. Computational modeling and psycho-physiological interaction (PPI) analysis was utilized for assessing PE-related learning and associated functional connectivity. We show that human obesity is associated with insufficient incorporation of negative PEs into behavioral adaptation even in a non-food context, suggesting differences in a fundamental neural learning mechanism. Obese subjects were less efficient in using negative PEs to improve implicit learning performance, despite proper coding of PEs in striatum. We further observed lower functional coupling between ventral striatum and supplementary motor area in obese subjects subsequent to negative PEs. Importantly, strength of functional coupling predicted task performance and negative PE utilization. These findings show that obesity is linked to insufficient behavioral adaptation specifically in response to negative PEs, and to associated alterations in function and connectivity within the fronto-striatal system. Recognition of neural differences as a central characteristic of obesity hopefully paves the way to rethink established intervention strategies: Differential behavioral sensitivity to negative and positive PEs should be considered when designing intervention programs. Measures relying on penalization of unwanted behavior may prove less effective in obese subjects than alternative approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Associative learning phenomena in the snail (Helix aspersa): conditioned inhibition.

    Science.gov (United States)

    Acebes, Félix; Solar, Patricia; Moris, Joaquín; Loy, Ignacio

    2012-03-01

    Two experiments using garden snails (Helix aspersa) showed conditioned inhibition using both retardation and summation tests. Conditioned inhibition is a procedure by which a stimulus becomes a predictor of the absence of a relevant event--the unconditioned stimulus (US). Typically, conditioned inhibition consists of pairings between an initially neutral conditioned stimulus, CS(2), and an effective excitatory conditioned stimulus, CS(1), in the absence of the US. Retardation and summation tests are required in order to confirm that CS(2) has acquired inhibitory properties. Conditioned inhibition has previously been found in invertebrates; however, these demonstrations did not use the retardation and summation tests required for an unambiguous demonstration of inhibition, allowing for alternative explanations. The implications of our results for the fields of comparative cognition and invertebrate physiological models of learning are discussed.

  1. Cocaine use severity and cerebellar gray matter are associated with reversal learning deficits in cocaine-dependent individuals

    NARCIS (Netherlands)

    Moreno-López, L.; Perales, J.C.; van Son, D.; Albein-Urios, N.; Soriano-Mas, C.; Martinez-Gonzalez, J.M.; Wiers, R.W.; Verdejo-García, A.

    2015-01-01

    Cocaine addiction involves persistent deficits to unlearn previously rewarded response options, potentially due to neuroadaptations in learning-sensitive regions. Cocaine-targeted prefrontal systems have been consistently associated with reinforcement learning and reversal deficits, but more recent

  2. Is problem-based learning associated with students’ motivation? A quantitative and qualitative study

    NARCIS (Netherlands)

    M. Wijnen (Marit); S.M.M. Loyens (Sofie); L. Wijnia (Lisette); G. Smeets (Guus); M.J. Kroeze (Maarten); H.T. van der Molen (Henk)

    2017-01-01

    textabstractIn this study, a mixed-method design was employed to investigate the association between a student-centred, problem-based learning (PBL) method and law students’ motivation. Self-determination theory (SDT) states that autonomous motivation, which is associated with higher academic

  3. Does Testing Increase Spontaneous Mediation in Learning Semantically Related Paired Associates?

    Science.gov (United States)

    Cho, Kit W.; Neely, James H.; Brennan, Michael K.; Vitrano, Deana; Crocco, Stephanie

    2017-01-01

    Carpenter (2011) argued that the testing effect she observed for semantically related but associatively unrelated paired associates supports the mediator effectiveness hypothesis. This hypothesis asserts that after the cue-target pair "mother-child" is learned, relative to restudying mother-child, a review test in which…

  4. An Empirical Study of Applying Associative Method in College English Vocabulary Learning

    Science.gov (United States)

    Zhang, Min

    2014-01-01

    Vocabulary is the basis of any language learning. To many Chinese non-English majors it is difficult to memorize English words. This paper applied associative method in presenting new words to them. It is found that associative method did receive a better result both in short-term and long-term retention of English words. Compared with the…

  5. Event timing in associative learning: from biochemical reaction dynamics to behavioural observations.

    Science.gov (United States)

    Yarali, Ayse; Nehrkorn, Johannes; Tanimoto, Hiromu; Herz, Andreas V M

    2012-01-01

    Associative learning relies on event timing. Fruit flies for example, once trained with an odour that precedes electric shock, subsequently avoid this odour (punishment learning); if, on the other hand the odour follows the shock during training, it is approached later on (relief learning). During training, an odour-induced Ca(++) signal and a shock-induced dopaminergic signal converge in the Kenyon cells, synergistically activating a Ca(++)-calmodulin-sensitive adenylate cyclase, which likely leads to the synaptic plasticity underlying the conditioned avoidance of the odour. In Aplysia, the effect of serotonin on the corresponding adenylate cyclase is bi-directionally modulated by Ca(++), depending on the relative timing of the two inputs. Using a computational approach, we quantitatively explore this biochemical property of the adenylate cyclase and show that it can generate the effect of event timing on associative learning. We overcome the shortage of behavioural data in Aplysia and biochemical data in Drosophila by combining findings from both systems.

  6. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf

    2016-02-01

    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).

  7. Motivating Students' Learning Using Word Association Test and Concept Maps

    Directory of Open Access Journals (Sweden)

    Z. Kostova

    2010-06-01

    Full Text Available The paper presents the effect of a free word association test, content analysis and concept mapping on students’ achievements in human biology. The free word association test was used for revealing the scientific conceptual structures of 8th grade and 12th grade students, around a stimulus word – human being – and for motivating them to study human biology. The stimulus word retrieved a cluster of associations most of which were based on science education and experience. Associations with the stimulus word were analyzed and classified according to predetermined criteria and structured by means of a concept map. The stimulus word ‘human being’ was quantitatively assessed in order to find out the balance between the associations with its different aspects. On the basis of the results some connections between biology and other sciences studying the human being, were worked out. Each new topic in human biology was studied by using content analysis of the textbook and concept mapping as study tools and thus maintaining students’ motivation. Achievements of students were assessed by means of tests, observation and concept maps evaluation. The obtained data was also valuable in clarifying the complex nature of the human being, and confirming the statement that biology cannot answer all questions, concerning human nature. Inferences were made about the word association test combined with content analysis and concept map construction as an educational strategy.

  8. Efficient learning of microbial genotype-phenotype association rules.

    Science.gov (United States)

    MacDonald, Norman J; Beiko, Robert G

    2010-08-01

    Finding biologically causative genotype-phenotype associations from whole-genome data is difficult due to the large gene feature space to mine, the potential for interactions among genes and phylogenetic correlations between genomes. Associations within phylogenetically distinct organisms with unusual molecular mechanisms underlying their phenotype may be particularly difficult to assess. We have developed a new genotype-phenotype association approach that uses Classification based on Predictive Association Rules (CPAR), and compare it with NETCAR, a recently published association algorithm. Our implementation of CPAR gave on average slightly higher classification accuracy, with approximately 100 time faster running times. Given the influence of phylogenetic correlations in the extraction of genotype-phenotype association rules, we furthermore propose a novel measure for downweighting the dependence among samples by modeling shared ancestry using conditional mutual information, and demonstrate its complementary nature to traditional mining approaches. Software implemented for this study is available under the Creative Commons Attribution 3.0 license from the author at http://kiwi.cs.dal.ca/Software/PICA

  9. Diffusion MRI properties of the human uncinate fasciculus correlate with the ability to learn visual associations.

    Science.gov (United States)

    Thomas, Cibu; Avram, Alexandru; Pierpaoli, Carlo; Baker, Chris

    2015-11-01

    The uncinate fasciculus (UF) is a cortico-cortico white matter pathway that links the anterior temporal and the orbitofrontal cortex (OFC). In the monkey, transection of the UF causes significant impairments in learning conditional visual-visual associations, while object discrimination remains intact, suggesting an important role for the UF in mediating the learning of complex visual associations. Whether this functional role extends to the human UF has not been tested directly. Here, we used diffusion tensor magnetic resonance imaging (dMRI) and behavioral experiments to examine the relation between learning visual associations and the structural properties of the human UF. In a group of healthy adults, we segmented the UF and the inferior longitudinal fasciculus (ILF) and derived dMRI measures of the structural properties of the two pathways. We also used a behavioral experiment adapted from the monkey studies to characterize the ability of these individuals to learn to associate a person's face with a group of specific scenes (conditional visual-visual association). We then tested whether the variability in the dMRI measures of the two pathways correlated with variability in the ability to rapidly learn the face-place associations. Our study suggests that in the human, the left UF may be important for mediating the rapid learning of conditional visual-visual associations whereas the right UF may play an important role in the immediate retrieval of visual-visual associations. These results provide preliminary evidence suggesting similarities and differences in the functional role of the UF in monkeys compared to humans. The findings presented here contribute to our understanding of the functional role of the UF in humans and the functional neuroanatomy of the brain networks involved in visual cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A dose for the wiser is enough: the alcohol benefits for associative learning in zebrafish.

    Science.gov (United States)

    Chacon, Diana M; Luchiari, Ana C

    2014-08-04

    This study aimed to test seeking behavior caused by alcohol and the drug effects on learning in the zebrafish, Danio rerio. Three treatments were conducted: acute, chronic and withdrawal, using 0.10%, 0.25%, and 1.00% alcohol and control (0.00%) (vol/vol.%). For the drug seeking behavior, we used a place preference paradigm (shuttle box tank) before and after alcohol exposure in acute (single exposure) and chronic (7 days) treatments. We observed a change in the basal preference due to the association with alcohol only for 0.25% and 1.00% doses in both acute and chronic offering, indicating an alcohol-seeking behavior after the drug exposure. For the learning task, two treatments were tested: chronic alcohol exposure (26 days including the learning period) and alcohol withdrawal (15 days of alcohol exposure before the learning period). During the learning period, fish received light stimulus followed by food in a pre-defined area of the tank for 8 consecutive days. The low dose group (0.10%) learned the task by the 3rd day both in chronic and withdrawal treatments. The higher doses (0.25% and 1.00%) caused a learning impairment in the chronic treatment group, while fish from the alcohol withdrawal treatment displayed learning on the final testing day. Therefore, we suggest that high alcohol doses impair learning and cause drug seeking behavior, even after drug exposure cessation, while low doses positively affect learning and do not cause seeking behavior. Given our results we propose that the zebrafish is a promising model for identifying active compounds, antibodies or genes which modulate the alcohol dual effects: learning improvement and reinforcing behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Reorganization and plastic changes of the human brain associated with skill learning and expertise

    Directory of Open Access Journals (Sweden)

    Yongmin eChang

    2014-02-01

    Full Text Available Novel experience and learning new skills are known as modulators of brain function. Advances in non-invasive brain imaging have provided new insight into structural and functional reorganization associated with skill learning and expertise. Especially, significant imaging evidences come from the domains of sports and music. Data from in vivo imaging studies in sports and music have provided vital information on plausible neural substrates contributing to brain reorganization underlying skill acquisition in humans. This mini review will attempt to take a narrow snapshot of imaging findings demonstrating functional and structural plasticity that mediate skill learning and expertise while identifying converging areas of interest and possible avenues for future research.

  12. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    Science.gov (United States)

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  13. Does academic performance or personal growth share a stronger association with learning environment perception?

    Science.gov (United States)

    Colbert-Getz, Jorie M; Tackett, Sean; Wright, Scott M; Shochet, Robert S

    2016-08-28

    This study was conducted to characterize the relative strength of associations of learning environment perception with academic performance and with personal growth. In 2012-2014 second and third year students at Johns Hopkins University School of Medicine completed a learning environment survey and personal growth scale. Hierarchical linear regression analysis was employed to determine if the proportion of variance in learning environment scores accounted for by personal growth was significantly larger than the proportion accounted for by academic performance (course/clerkship grades). The proportion of variance in learning environment scores accounted for by personal growth was larger than the proportion accounted for by academic performance in year 2 [R(2)Δ of 0.09, F(1,175) = 14.99,  p Learning environment scores shared a small amount of variance with academic performance in years 2 and 3.  The amount of variance between learning environment scores and personal growth was small in year 2 and large in year 3. Since supportive learning environments are essential for medical education, future work must determine if enhancing personal growth prior to and during the clerkship year will increase learning environment perception.

  14. Word Learning in the Developing Brain : ERP Dynamics of Learning Word-Object Associations

    OpenAIRE

    Borgström, Kristina

    2016-01-01

    This dissertation investigated electrophysiological measures of individual differences in toddlers’ ability to learn novel object labels and process familiar object words and their referents. The studies measured both visual and auditory event-related potentials (ERPs) in response to pictures of objects and words in a longitudinal sample of 20- to 24-month-olds, an age of dynamic vocabulary development. These ERP measures were related to the children’s productive vocabulary siz...

  15. The Caudate Nucleus Mediates Learning of Stimulus-Control State Associations.

    Science.gov (United States)

    Chiu, Yu-Chin; Jiang, Jiefeng; Egner, Tobias

    2017-01-25

    A longstanding dichotomy in cognitive psychology and neuroscience pits controlled, top-down driven behavior against associative, bottom-up driven behavior, where cognitive control processes allow us to override well-learned stimulus-response (S-R) associations. By contrast, some previous studies have raised the intriguing possibility of an integration between associative and controlled processing in the form of stimulus-control state (S-C) associations, the learned linkage of specific stimuli to particular control states, such as high attentional selectivity. The neural machinery mediating S-C learning remains poorly understood, however. Here, we combined human functional magnetic resonance imaging (fMRI) with a previously developed Stroop protocol that allowed us to dissociate reductions in Stroop interference based on S-R learning from those based on S-C learning. We modeled subjects' acquisition of S-C and S-R associations using an associative learning model and then used trial-by-trial S-C and S-R prediction error (PE) estimates in model-based behavioral and fMRI analyses. We found that PE estimates derived from S-C and S-R associations accounted for the reductions in behavioral Stroop interference effects in the S-C and S-R learning conditions, respectively. Moreover, model-based fMRI analyses identified the caudate nucleus as the key structure involved in selectively updating stimulus-control state associations. Complementary analyses also revealed a greater reliance on parietal cortex when using the learned S-R versus S-C associations to minimize Stroop interference. These results support the emerging view that generalizable control states can become associated with specific bottom-up cues, and they place the caudate nucleus of the dorsal striatum at the center of the neural stimulus-control learning machinery. Previous behavioral studies have demonstrated that control states, for instance, heightened attentional selectivity, can become directly associated

  16. Addressing the Learning Outcomes and Assessment Methods Associated with Participation in Student Government Associations: A Qualitative Study of California Community Colleges

    Science.gov (United States)

    Nevin, Miles J.

    2017-01-01

    This document analysis synthesized student learning outcomes (SLOs) and assessment methods from a sample of 36 student government associations in the California Community College system. Student learning outcomes were grouped according to "governance, ethical and civic behavior", and "experiential learning functions." Using…

  17. Stimulus preexposure speeds or slows subsequent acquisition of associative learning depending on learning test procedures and response measure.

    Science.gov (United States)

    Holland, Peter C

    2017-10-19

    Prior exposure to a conditioned stimulus (CS) typically results in latent inhibition-slower acquisition of associative learning about that stimulus in subsequent training. Here, we found that CS preexposure had different effects on the appetitive conditioning of rats with a sucrose unconditioned stimulus (US) depending on training test procedures, the similarity of preexposure and training procedures, and the choice of response measure. Preexposure to a visual or an auditory stimulus produced facilitation of acquisition of food-cup-directed responding when both of those cues were (separately) paired with sucrose delivery in the training test (Experiments 1 and 3). By contrast, the same preexposure procedure resulted in latent inhibition of food-cup learning if the second stimulus in the test phase was of the same modality as the preexposed stimulus (Experiment 2). In Experiment 3, latent inhibition was enhanced if both phases included a single CS or both phases included both auditory and visual CSs, compared to treatments in which only one CS was presented in one phase but two CSs were presented in the other phase. In Experiment 4, preexposure of an auditory cue slowed subsequent learning about it if the context was salient but enhanced learning if the context was of weaker salience. Finally, a measure of general activity revealed latent inhibition after preexposure in all conditions in all 4 experiments. We discuss the results within several classes of latent inhibition theories, none of which provides a comprehensive account.

  18. Motivated strategies for learning and their association with academic ...

    African Journals Online (AJOL)

    component', 'critical thinking', and 'time and study environment', the composite score was significantly but poorly correlated to academic performance. Conclusion. Overall, limited correlations were found between the MSLQ scores and academic performance. Further investigation of the use of the. MSLQ and its association ...

  19. Sleep directly following learning benefits consolidation of spatial associative memory

    NARCIS (Netherlands)

    Talamini, L.M.; Nieuwenhuis, I.L.C.; Takashima, A.; Jensen, O.

    2008-01-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is

  20. Sleep directly following learning benefits consolidation of spatial associative memory

    NARCIS (Netherlands)

    Talamini, L.M.; Nieuwenhuis, I.L.C.; Takashima, A.

    2008-01-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face–location associations is

  1. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review.

    Science.gov (United States)

    Sclafani, Joseph A; Kim, Choll W

    2014-06-01

    There is an inherently difficult learning curve associated with minimally invasive surgical (MIS) approaches to spinal decompression and fusion. The association between complication rate and the learning curve remains unclear. We performed a systematic review for articles that evaluated the learning curves of MIS procedures for the spine, defined as the change in frequency of complications and length of surgical time as case number increased, for five types of MIS for the spine. We conducted a systematic review in the PubMed database using the terms "minimally invasive spine surgery AND complications AND learning curve" followed by a manual citation review of included manuscripts. Clinical outcome and learning curve metrics were categorized for analysis by surgical procedure (MIS lumbar decompression procedures, MIS transforaminal lumbar interbody fusion, percutaneous pedicle screw insertion, laparoscopic anterior lumbar interbody fusion, and MIS cervical procedures). As the most consistent parameters used to evaluate the learning curve were procedure time and complication rate as a function of chronologic case number, our analysis focused on these. The search strategy identified 15 original studies that included 966 minimally invasive procedures. Learning curve parameters were correlated to chronologic procedure number in 14 of these studies. The most common learning curve complication for decompressive procedures was durotomy. For fusion procedures, the most common complications were implant malposition, neural injury, and nonunion. The overall postoperative complication rate was 11% (109 of 966 cases). The learning curve was overcome for operative time and complications as a function of case numbers in 20 to 30 consecutive cases for most techniques discussed within this review. The quantitative assessment of the procedural learning curve for MIS techniques for the spine remains challenging because the MIS techniques have different learning curves and because

  2. Elemental representation and configural mappings: combining elemental and configural theories of associative learning.

    Science.gov (United States)

    McLaren, I P L; Forrest, C L; McLaren, R P

    2012-09-01

    In this article, we present our first attempt at combining an elemental theory designed to model representation development in an associative system (based on McLaren, Kaye, & Mackintosh, 1989) with a configural theory that models associative learning and memory (McLaren, 1993). After considering the possible advantages of such a combination (and some possible pitfalls), we offer a hybrid model that allows both components to produce the phenomena that they are capable of without introducing unwanted interactions. We then successfully apply the model to a range of phenomena, including latent inhibition, perceptual learning, the Espinet effect, and first- and second-order retrospective revaluation. In some cases, we present new data for comparison with our model's predictions. In all cases, the model replicates the pattern observed in our experimental results. We conclude that this line of development is a promising one for arriving at general theories of associative learning and memory.

  3. Chronological age and its impact on associative learning proficiency and brain structure in middle adulthood.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Bellani, Marcella; Ahmed, Rizwan; Dusi, Nicola; Rambaldelli, Gianluca; Perlini, Cinzia; Marinelli, Veronica; Ramaseshan, Karthik; Ruggeri, Mirella; Bambilla, Paolo

    2016-01-15

    The rate of biological change in middle-adulthood is relatively under-studied. Here, we used behavioral testing in conjunction with structural magnetic resonance imaging to examine the effects of chronological age on associative learning proficiency and on brain regions that previous functional MRI studies have closely related to the domain of associative learning. Participants (n=66) completed a previously established associative learning paradigm, and consented to be scanned using structural magnetic resonance imaging. Age-related effects were investigated both across sub-groups in the sample (younger vs. older) and across the entire sample (using regression approaches). Chronological age had substantial effects on learning proficiency (independent of IQ and Education Level), with older adults showing a decrement compared to younger adults. In addition, decreases in estimated gray matter volume were observed in multiple brain regions including the hippocampus and the dorsal prefrontal cortex, both of which are strongly implicated in associative learning. The results suggest that middle adulthood may be a more dynamic period of life-span change than previously believed. The conjunctive application of narrowly focused tasks, with conjointly acquired structural MRI data may allow us to enrich the search for, and the interpretation of, age-related changes in cross-sectional samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Networks of Learning : Professional Association and the Continuing Education of Teachers of Mathematics in Pakistan

    DEFF Research Database (Denmark)

    Baber, Sikunder Ali

    and policy makers have been recently receiving attention an innovative and flexible professional development forum for creating ownership among these stakeholders' regarding implementing change and reforms in educational landscape in different countries. The paper draws on the notion of "networking......" and shows how a number of professional associations have become as networks of learning to encourage the continuing professional education of both pre-service and in-service teachers in the context of Pakistan. A case of the Mathematics Association of Pakistan (MAP) as a Network of Learning is presented...

  5. Learning and retrieving holistic and componential visual-verbal associations in reading and object naming.

    Science.gov (United States)

    Quinn, Connor; Taylor, J S H; Davis, Matthew H

    2017-04-01

    Understanding the neural processes that underlie learning to read can provide a scientific foundation for literacy education but studying these processes in real-world contexts remains challenging. We present behavioural data from adult participants learning to read artificial words and name artificial objects over two days. Learning profiles and generalisation confirmed that componential learning of visual-verbal associations distinguishes reading from object naming. Functional MRI data collected on the second day allowed us to identify the neural systems that support componential reading as distinct from systems supporting holistic visual-verbal associations in object naming. Results showed increased activation in posterior ventral occipitotemporal (vOT), parietal, and frontal cortices when reading an artificial orthography compared to naming artificial objects, and the reverse profile in anterior vOT regions. However, activation differences between trained and untrained words were absent, suggesting a lack of cortical representations for whole words. Despite this, hippocampal responses provided some evidence for overnight consolidation of both words and objects learned on day 1. The comparison between neural activity for artificial words and objects showed extensive overlap with systems differentially engaged for real object naming and English word/pseudoword reading in the same participants. These findings therefore provide evidence that artificial learning paradigms offer an alternative method for studying the neural systems supporting language and literacy. Implications for literacy acquisition are discussed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    Science.gov (United States)

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  7. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    Directory of Open Access Journals (Sweden)

    Martine Baars

    2017-08-01

    Full Text Available Self-regulated learning (SRL skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale, motivation (i.e., autonomous and controlled motivation, mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels. In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  8. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    Science.gov (United States)

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  9. SAwSu: an integrated model of associative and reinforcement learning.

    Science.gov (United States)

    Veksler, Vladislav D; Myers, Christopher W; Gluck, Kevin A

    2014-04-01

    Successfully explaining and replicating the complexity and generality of human and animal learning will require the integration of a variety of learning mechanisms. Here, we introduce a computational model which integrates associative learning (AL) and reinforcement learning (RL). We contrast the integrated model with standalone AL and RL models in three simulation studies. First, a synthetic grid-navigation task is employed to highlight performance advantages for the integrated model in an environment where the reward structure is both diverse and dynamic. The second and third simulations contrast the performances of the three models in behavioral experiments, demonstrating advantages for the integrated model in accounting for behavioral data. Copyright © 2014 Cognitive Science Society, Inc.

  10. Male Drosophila melanogaster learn to prefer an arbitrary trait associated with female mating status

    DEFF Research Database (Denmark)

    Verzijden, Machteld Nicolette; Abbott, Jessica K.; Philipsborn, Anne von

    2015-01-01

    are able to learn to associate olfactory and gustatory cues with female receptivity, but the role of more arbitrary, visual cues in mate choice learning has been overlooked to date in this species. We therefore carried out a series of experiments to determine: 1) whether males had a baseline preference...... color, but that males which were trained with sexually receptive females of a given eye color showed a preference for that color during a standard binary choice experiment. The learned cue was indeed likely to be truly visual, since the preference disappeared when the binary choice phase...... of the experiment was carried out in darkness.This is, to our knowledge 1) the first evidence that male D. melanogaster can use more arbitrary cues and 2) the first evidence that males use visual cues during mate choice learning. Our findings suggest that that D. melanogaster has untapped potential as a model...

  11. Effect of lighting conditions on brain network complexity associated with response learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida M; González-Pardo, Héctor; Arias, Jorge L

    2013-10-25

    Several studies have reported the brain regions involved in response learning. However, there is discrepancy regarding the lighting conditions in the experimental setting (i.e. under dark or light conditions). In this regard, it would be relevant to know if the presence/absence of visual cues in the environment has any effect in the brain networks involved in a response learning task. Animals were trained in a water T-maze under two different lighting conditions (light versus dark). All subjects reached the learning criterion of 80% correct arm choices. Quantitative cytochrome oxidase (CO) histochemistry was used as a metabolic brain mapping technique. Our results show that the ventral hippocampus and the parietal cortex are associated with the acquisition of a response learning task regardless of lighting conditions. In addition, when the same task is run in the dark, widespread recruitment of structures involving cortical, limbic and striatal regions was found. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Powerful Tests for Multi-Marker Association Analysis Using Ensemble Learning.

    Directory of Open Access Journals (Sweden)

    Badri Padhukasahasram

    Full Text Available Multi-marker approaches have received a lot of attention recently in genome wide association studies and can enhance power to detect new associations under certain conditions. Gene-, gene-set- and pathway-based association tests are increasingly being viewed as useful supplements to the more widely used single marker association analysis which have successfully uncovered numerous disease variants. A major drawback of single-marker based methods is that they do not look at the joint effects of multiple genetic variants which individually may have weak or moderate signals. Here, we describe novel tests for multi-marker association analyses that are based on phenotype predictions obtained from machine learning algorithms. Instead of assuming a linear or logistic regression model, we propose the use of ensembles of diverse machine learning algorithms for prediction. We show that phenotype predictions obtained from ensemble learning algorithms provide a new framework for multi-marker association analysis. They can be used for constructing tests for the joint association of multiple variants, adjusting for covariates and testing for the presence of interactions. To demonstrate the power and utility of this new approach, we first apply our method to simulated SNP datasets. We show that the proposed method has the correct Type-1 error rates and can be considerably more powerful than alternative approaches in some situations. Then, we apply our method to previously studied asthma-related genes in 2 independent asthma cohorts to conduct association tests.

  13. Powerful Tests for Multi-Marker Association Analysis Using Ensemble Learning.

    Science.gov (United States)

    Padhukasahasram, Badri; Reddy, Chandan K; Levin, Albert M; Burchard, Esteban G; Williams, L Keoki

    2015-01-01

    Multi-marker approaches have received a lot of attention recently in genome wide association studies and can enhance power to detect new associations under certain conditions. Gene-, gene-set- and pathway-based association tests are increasingly being viewed as useful supplements to the more widely used single marker association analysis which have successfully uncovered numerous disease variants. A major drawback of single-marker based methods is that they do not look at the joint effects of multiple genetic variants which individually may have weak or moderate signals. Here, we describe novel tests for multi-marker association analyses that are based on phenotype predictions obtained from machine learning algorithms. Instead of assuming a linear or logistic regression model, we propose the use of ensembles of diverse machine learning algorithms for prediction. We show that phenotype predictions obtained from ensemble learning algorithms provide a new framework for multi-marker association analysis. They can be used for constructing tests for the joint association of multiple variants, adjusting for covariates and testing for the presence of interactions. To demonstrate the power and utility of this new approach, we first apply our method to simulated SNP datasets. We show that the proposed method has the correct Type-1 error rates and can be considerably more powerful than alternative approaches in some situations. Then, we apply our method to previously studied asthma-related genes in 2 independent asthma cohorts to conduct association tests.

  14. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    Science.gov (United States)

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-10-15

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans.

  15. Coherence of gamma-band EEG activity as a basis for associative learning

    Science.gov (United States)

    Miltner, Wolfgang H. R.; Braun, Christoph; Arnold, Matthias; Witte, Herbert; Taub, Edward

    1999-02-01

    Different regions of the brain must communicate with each other to provide the basis for the integration of sensory information, sensory-motor coordination and many other functions that are critical for learning, memory, information processing, perception and the behaviour of organisms. Hebb suggested that this is accomplished by the formation of assemblies of cells whose synaptic linkages are strengthened whenever the cells are activated or `ignited' synchronously. Hebb's seminal concept has intrigued investigators since its formulation, but the technology to demonstrate its existence had been lacking until the past decade. Previous studies have shown that very fast electroencephalographic activity in the gamma band (20-70Hz) increases during, and may be involved in, the formation of percepts and memory, linguistic processing, and other behavioural and preceptual functions. We show here that increased gamma-band activity is also involved in associative learning. In addition, we find that another measure, gamma-band coherence, increases between regions of the brain that receive the two classes of stimuli involved in an associative-learning procedure in humans. An increase in coherence could fulfil the criteria required for the formation of hebbian cell assemblies, binding together parts of the brain that must communicate with one another in order for associative learning to take place. In this way, coherence may be a signature for this and other types of learning.

  16. Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms.

    Science.gov (United States)

    Seo, Dong-Oh; Carillo, Mary Ann; Chih-Hsiung Lim, Sean; Tanaka, Kenji F; Drew, Michael R

    2015-08-12

    Adult hippocampal neurogenesis is believed to support hippocampus-dependent learning and emotional regulation. These putative functions of adult neurogenesis have typically been studied in isolation, and little is known about how they interact to produce adaptive behavior. We used trace fear conditioning as a model system to elucidate mechanisms through which adult hippocampal neurogenesis modulates processing of aversive experience. To achieve a specific ablation of neurogenesis, we generated transgenic mice that express herpes simplex virus thymidine kinase specifically in neural progenitors and immature neurons. Intracerebroventricular injection of the prodrug ganciclovir caused a robust suppression of neurogenesis without suppressing gliogenesis. Neurogenesis ablation via this method or targeted x-irradiation caused an increase in context conditioning in trace but not delay fear conditioning. Data suggest that this phenotype represents opposing effects of neurogenesis ablation on associative and nonassociative components of fear learning. Arrest of neurogenesis sensitizes mice to nonassociative effects of fear conditioning, as evidenced by increased anxiety-like behavior in the open field after (but not in the absence of) fear conditioning. In addition, arrest of neurogenesis impairs associative trace conditioning, but this impairment can be masked by nonassociative fear. The results suggest that adult neurogenesis modulates emotional learning via two distinct but opposing mechanisms: it supports associative trace conditioning while also buffering against the generalized fear and anxiety caused by fear conditioning. The role of adult hippocampal neurogenesis in fear learning is controversial, with some studies suggesting neurogenesis is needed for aspects of fear learning and others suggesting it is dispensable. We generated transgenic mice in which neural progenitors can be selectively and inducibly ablated. Our data suggest that adult neurogenesis supports

  17. Dental Students' Study Habits in Flipped/Blended Classrooms and Their Association with Active Learning Practices.

    Science.gov (United States)

    Gadbury-Amyot, Cynthia C; Redford, Gloria J; Bohaty, Brenda S

    2017-12-01

    In recognition of the importance for dental education programs to take a student-centered approach in which students are encouraged to take responsibility for their learning, a pediatric dentistry course redesign aimed at promoting greater active and self-directed learning was implemented at one U.S. dental school. The aim of this study was to examine the association between the students' self-reported study habits and active learning practices necessary for meaningful learning in the flipped/blended classroom. A convenience sample of two classes of second-year dental students in spring 2014 (SP14, n=106) and spring 2015 (SP15, n=106) was invited to participate in the study. Of the SP14 students, 84 participated, for a response rate of 79%; of the SP15 students, 94 participated, for a response rate of 87%. Students' self-reported responses to questions about study strategies with the prerecorded lecture materials and assigned reading materials were examined. Non-parametric analyses resulted in a cohort effect, so data are reported by class. In the SP15 class, 72% reported watching all/more than half of the prerecorded lectures versus 62% of the SP14 class, with a majority watching more than one lecture per week. In the SP15 cohort, 68% used active learning strategies when watching the lectures versus 58.3% of the SP14 cohort. The time of day preferred by the majority of both cohorts for interacting with course materials was 7-11 pm. Both SP14 and SP15 students reported being unlikely to read assigned materials prior to coming to class. Overall, the course redesign appeared to engage students in self-directed active learning. However, the degree to which active learning practices were taking place to achieve meaningful learning was questionable given students' self-reported study strategies. More work is needed to examine strategies for promoting study practices that will lead to meaningful learning.

  18. Stochasticity, bistability and the wisdom of crowds: a model for associative learning in genetic regulatory networks.

    Science.gov (United States)

    Sorek, Matan; Balaban, Nathalie Q; Loewenstein, Yonatan

    2013-01-01

    It is generally believed that associative memory in the brain depends on multistable synaptic dynamics, which enable the synapses to maintain their value for extended periods of time. However, multistable dynamics are not restricted to synapses. In particular, the dynamics of some genetic regulatory networks are multistable, raising the possibility that even single cells, in the absence of a nervous system, are capable of learning associations. Here we study a standard genetic regulatory network model with bistable elements and stochastic dynamics. We demonstrate that such a genetic regulatory network model is capable of learning multiple, general, overlapping associations. The capacity of the network, defined as the number of associations that can be simultaneously stored and retrieved, is proportional to the square root of the number of bistable elements in the genetic regulatory network. Moreover, we compute the capacity of a clonal population of cells, such as in a colony of bacteria or a tissue, to store associations. We show that even if the cells do not interact, the capacity of the population to store associations substantially exceeds that of a single cell and is proportional to the number of bistable elements. Thus, we show that even single cells are endowed with the computational power to learn associations, a power that is substantially enhanced when these cells form a population.

  19. Stochasticity, bistability and the wisdom of crowds: a model for associative learning in genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Matan Sorek

    Full Text Available It is generally believed that associative memory in the brain depends on multistable synaptic dynamics, which enable the synapses to maintain their value for extended periods of time. However, multistable dynamics are not restricted to synapses. In particular, the dynamics of some genetic regulatory networks are multistable, raising the possibility that even single cells, in the absence of a nervous system, are capable of learning associations. Here we study a standard genetic regulatory network model with bistable elements and stochastic dynamics. We demonstrate that such a genetic regulatory network model is capable of learning multiple, general, overlapping associations. The capacity of the network, defined as the number of associations that can be simultaneously stored and retrieved, is proportional to the square root of the number of bistable elements in the genetic regulatory network. Moreover, we compute the capacity of a clonal population of cells, such as in a colony of bacteria or a tissue, to store associations. We show that even if the cells do not interact, the capacity of the population to store associations substantially exceeds that of a single cell and is proportional to the number of bistable elements. Thus, we show that even single cells are endowed with the computational power to learn associations, a power that is substantially enhanced when these cells form a population.

  20. Associative Learning Drives the Formation of Silent Synapses in Neuronal Ensembles of the Nucleus Accumbens.

    Science.gov (United States)

    Whitaker, Leslie R; Carneiro de Oliveira, Paulo E; McPherson, Kylie B; Fallon, Rebecca V; Planeta, Cleopatra S; Bonci, Antonello; Hope, Bruce T

    2016-08-01

    Learned associations between environmental stimuli and rewards play a critical role in addiction. Associative learning requires alterations in sparsely distributed populations of strongly activated neurons, or neuronal ensembles. Until recently, assessment of functional alterations underlying learned behavior was restricted to global neuroadaptations in a particular brain area or cell type, rendering it impossible to identify neuronal ensembles critically involved in learned behavior. We used Fos-GFP transgenic mice that contained a transgene with a Fos promoter driving expression of green fluorescent protein (GFP) to detect neurons that were strongly activated during associative learning, in this case, context-independent and context-specific cocaine-induced locomotor sensitization. Whole-cell electrophysiological recordings were used to assess synaptic alterations in specifically activated GFP-positive (GFP+) neurons compared with surrounding nonactivated GFP-negative (GFP-) neurons 90 min after the sensitized locomotor response. After context-independent cocaine sensitization, cocaine-induced locomotion was equally sensitized by repeated cocaine injections in two different sensitization contexts. Correspondingly, silent synapses in these mice were induced in GFP+ neurons, but not GFP- neurons, after sensitization in both of these contexts. After context-specific cocaine sensitization, cocaine-induced locomotion was sensitized exclusively in mice trained and tested in the same context (paired group), but not in mice that were trained in one context and then tested in a different context (unpaired group). Silent synapses increased in GFP+ neurons, but not in GFP- neurons from mice in the paired group, but not from mice in the unpaired group. Our results indicate that silent synapses are formed only in neuronal ensembles of the nucleus accumbens shell that are related to associative learning. Published by Elsevier Inc.

  1. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory.

    Science.gov (United States)

    Mattfeld, Aaron T; Stark, Craig E L

    2015-08-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment, we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment, we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments, the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. © 2015 Wiley Periodicals, Inc.

  2. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    Science.gov (United States)

    Mattfeld, Aaron T.; Stark, Craig E. L.

    2015-01-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298

  3. Learning Outcomes Associated with Classroom Implementation of a Biotechnology-Themed Video Game

    Science.gov (United States)

    Barko, Tim; Sadler, Troy D.

    2013-01-01

    The educational video game Mission Biotech provides a virtual experience for students in learning biotechnology materials and tools. This study explores the use of Mission Biotech and the associated curriculum by three high school teachers and their students. All three classes demonstrated gains on a curriculum-aligned test of science content.…

  4. Physical Aggression towards Others in Adults with Learning Disabilities: Prevalence and Associated Factors

    Science.gov (United States)

    Tyrer, F.; McGrother, C. W.; Thorp, C. F.; Donaldson, M.; Bhaumik, S.; Watson, J. M.; Hollin, C.

    2006-01-01

    Background: Many people with learning disabilities (LD) show aggressive behaviour, but the extent of the problem and its associated factors and effects are unclear. Methods: A cross-sectional analysis was carried out using interview data from 3065 adults with LD on the Leicestershire LD Register. Physical aggression towards others was defined as…

  5. Associations between Chinese Language Classroom Environments and Students' Motivation to Learn the Language

    Science.gov (United States)

    Chua, Siew Lian; Wong, Angela F. L.; Chen, Der-Thanq

    2009-01-01

    Associations between the nature of Chinese Language Classroom Environments and Singapore secondary school students' motivation to learn the Chinese Language were investigated. A sample of 1,460 secondary three (grade 9) students from 50 express stream (above average academic ability) classes in Singapore government secondary schools was involved…

  6. Associations among Sleep Problems, Learning Difficulties and Substance Use in Adolescence

    Science.gov (United States)

    Fakier, Nuraan; Wild, Lauren G.

    2011-01-01

    This study investigated the relationships among sleep problems, learning difficulties and substance use in adolescence. Previous research suggests that these variables share an association with executive functioning deficits, and are intertwined. The sample comprised 427 adolescents (M age = 16 years) attending remedial schools and 276 adolescents…

  7. Inherent Association Between Academic Delay of Gratification, Future Time Perspective, and Self-Regulated Learning

    Science.gov (United States)

    Bembenutty, Hefer; Karabenick, Stuart A.

    2004-01-01

    We review the association between delay of gratification and future time perspective (FTP), which can be incorporated within the theoretical perspective of self-regulation of learning. We propose that delay of gratification in academic contexts, along with facilitative beliefs about the future, increase the likelihood of completing academic tasks.…

  8. Learning Processes Associated with Panic-Related Symptoms in Families with and without Panic Disordered Mothers

    Science.gov (United States)

    de Albuquerque, Jiske E. G.; Munsch, Simone; Margraf, Jurgen; Schneider, Silvia

    2013-01-01

    The present study compared learning processes associated with panic-related symptoms in families with and without panic disordered mothers. Using a multi-informant approach, 86 mothers [of whom 58 had a primary diagnosis of panic disorder (PD)], their partners and teenage children (mean age, 16.67 years) reported about parents' behavior (modeling…

  9. Age differences in brain activation associated with verbal learning and fatigue

    NARCIS (Netherlands)

    Klaasen, Elissa; Evers, Lisbeth; De Groot, Renate; Veltman, Dick; Jolles, Jelle

    2012-01-01

    Klaassen, E., Evers, E., De Groot, R. H. M., Veltman, D., & Jolles, J. (2011, February). Age differences in brain activation associated with verbal learning and fatigue. Poster presented at the School for Mental Health and Neuroscience Research Day 2011, Maastricht, The Netherlands.

  10. Stimulant Drug Effects on Touchscreen Automated Paired-Associates Learning (PAL) in Rats

    Science.gov (United States)

    Roschlau, Corinna; Votteler, Angeline; Hauber, Wolfgang

    2016-01-01

    Here we tested in rats effects of the procognitive drugs modafinil and methylphenidate on post-acquisition performance in an object-location paired-associates learning (PAL) task. Modafinil (32; 64 mg/kg) was without effect, while higher (9 mg/kg) but not lower (4.5 mg/kg) doses of methylphenidate impaired PAL performance. Likewise, higher but not…

  11. A World of Learning: Practical Manual. Enhancing the Multiplier Effect of the Associated Schools Project.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This manual presents the major lessons learned about how national authorities, individual institutions, and individual educators can work to increase the impact of the Associated Schools Project (ASP) schools and spread it to other parts of the educational system. ASP is a project of the United Nations Educational, Scientific and Cultural…

  12. Do Psychology Department Mission Statements Reflect the American Psychological Association Undergraduate Learning Goals?

    Science.gov (United States)

    Warchal, Judith R.; Ruiz, Ana I.; You, Di

    2017-01-01

    This study focuses on the inclusion of the American Psychological Association's learning goals in the mission statements of undergraduate psychology programs across the US. We reviewed the mission statements available on websites for 1336 psychology programs listed in the Carnegie classification. Results of a content analysis revealed that of the…

  13. Characteristics of Operant Learning Games Associated with Optimal Child and Adult Social--Emotional Consequences

    Science.gov (United States)

    Dunst, Carl J.; Raab, Melinda; Trivette, Carol M.; Wilson, Linda L.; Hamby, Deborah W.; Parkey, Cindy; Gatens, Mary; French, Jennie

    2007-01-01

    Findings from a study investigating the conditions under which contingency learning games were associated with optimal child and adult concomitant and social--emotional behavior benefits are reported. Participants were 41 preschool children with multiple disabilities and profound developmental delays and their parents or teachers. Results showed…

  14. Motoric Mediation in Children's Paired-Associate Learning: Effects of Visual and Tactual Contact.

    Science.gov (United States)

    Wolff, Peter; And Others

    The generation of dynamic mental imagery is known to facilitate paired associate (PA) learning in older subjects. Wolff and Levin (in press) have reported that children who were apparently too young to generate mental imagery of this kind did benefit from self-generated motoric interactions involving pairs of toys. Since the result was obtained…

  15. Temporal Contexts: Filling the Gap between Episodic Memory and Associative Learning

    Science.gov (United States)

    Matute, Helena; Lipp, Ottmar V.; Vadillo, Miguel A.; Humphreys, Michael S.

    2011-01-01

    People can create temporal contexts, or episodes, and stimuli that belong to the same context can later be used to retrieve the memory of other events that occurred at the same time. This can occur in the absence of direct contingency and contiguity between the events, which poses a challenge to associative theories of learning and memory. Because…

  16. History and Culture of Alara--The Action Learning and Action Research Association

    Science.gov (United States)

    Zuber-Skerritt, Ortrun; Passfield, Ron

    2016-01-01

    As co-founders of the Action Learning and Action Research Association (ALARA), we tell the story of this international network organisation through our personal experience. Our history traces the evolution of ALARA from origins at the first World Congress in 1990 in Brisbane, Australia, through development over two and a half decades, to its…

  17. Physical activity and sedentary behavior associated with learning outcomes and cognition in adult distance learners

    NARCIS (Netherlands)

    Gijselaers, Jérôme; De Groot, Renate; Kirschner, Paul A.

    2013-01-01

    Gijselaers, H. J. M., De Groot, R. H. M., & Kirschner, P. A. (2013, 7 November). Physical activity and sedentary behavior associated with learning outcomes and cognition in adult distance learners. Paper presentation at the ICO [Interuniversity Center for Educational Research] National Fall School,

  18. Vida Hispanica: The Spanish and Portuguese Journal of the Association for Language Learning, 1994-1997.

    Science.gov (United States)

    Hollyman, John, Ed.; Turk, Phil, Ed.

    1997-01-01

    This journal focuses on the learning and teaching of Spanish and Portuguese. Selected articles include the following: "Word Associations in Spanish"; "A Woman of Substance? The Role of Andrea in Nada"; "Spanish for Business"; "Subtitles as a Teaching Technique"; "The Writing Workshop";…

  19. Associative Learning of Pictures and Words by Low-Functioning Children with Autism

    Science.gov (United States)

    Preissler, Melissa Allen

    2008-01-01

    This research investigates whether children with autism learn picture, word and object relations as associative pairs or whether they understand such relations as referential. In Experiment 1, children were taught a new word (e.g. "whisk") repeatedly paired with a novel picture. When given the picture and a previously unseen real whisk and asked…

  20. Are Approaches to Learning in Kindergarten Associated with Academic and Social Competence Similarly?

    Science.gov (United States)

    Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne

    2015-01-01

    Background: Approaches to learning (ATL) is a key domain of school readiness with important implications for children's academic trajectories. Interestingly, however, the impact of early ATL on children's social competence has not been examined. Objective: This study examines associations between children's ATL at age 5 and academic achievement…

  1. Adult Learning Open University Determinants study (ALOUD): physical activity associated with study success

    NARCIS (Netherlands)

    Gijselaers, Jérôme; De Groot, Renate; Kirschner, Paul A.

    2013-01-01

    Gijselaers, H. J. M., De Groot, R. H. M., & Kirschner, P. A. (2013, 23 May). Adult Learning Open University Determinants study (ALOUD): physical activity associated with study success. Poster presentation at the annual meeting of the International Society for Behaviour on Nutrition and Physical

  2. Developing the Associate Practitioner Role – A Regional Approach To Mental Health and Learning Disabilities

    OpenAIRE

    Beacock, Sue

    2009-01-01

    In 2008 NHS Yorkshire and the Humber instigated a project to develop an educational commissioning framework for the workforce in mental health and learning disabilities. Part of this work is focussed on providing evidence and developing frameworks for the implementation of new ways of working. The development of associate practitioner roles is an integral part of this process and crucial to future workforce planning. Associate practitioners are workers who have skills and knowledge beyond tho...

  3. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.

    Science.gov (United States)

    Zepeda, Emily A; Veline, Robert J; Crook, Robyn J

    2017-06-01

    Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research. However, little is known about their behavior or cognitive ability. Using the well-established "prawn-in-the-tube" assay of learning and memory, we show that within a single 10-min trial E. scolopes learns to inhibit its predatory behavior, and after three trials it can retain this memory for at least 12 d. Rapid learning and very long-term retention were apparent under two different training schedules. To our knowledge, this study is the first demonstration of learning and memory in this species as well as the first demonstration of associative learning in any squid.

  5. Finding patterns and learning words: Infant phonotactic knowledge is associated with vocabulary size.

    Science.gov (United States)

    Graf Estes, Katharine; Gluck, Stephanie Chen-Wu; Grimm, Kevin J

    2016-06-01

    Native language statistical regularities about allowable phoneme combinations (i.e., phonotactic patterns) may provide learners with cues to support word learning. The current research investigated the association between infants' native language phonotactic knowledge and their word learning progress, as measured by vocabulary size. In the experiment, 19-month-old infants listened to a corpus of nonce words that contained novel phonotactic patterns. All words began with "illegal" consonant clusters that cannot occur in native (English) words. The rationale for the task was that infants with fragile phonotactic knowledge should exhibit stronger learning of the novel illegal phonotactic patterns than infants with robust phonotactic knowledge. We found that infants with smaller vocabularies showed stronger phonotactic learning than infants with larger vocabularies even after accounting for general cognition. We propose that learning about native language structure may promote vocabulary development by providing a foundation for word learning; infants with smaller vocabularies may have weaker support from phonotactics than infants with larger vocabularies. Furthermore, stored vocabulary knowledge may promote the detection of phonotactic patterns even during infancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A Conserved Function of C. elegans CASY-1 Calsyntenin in Associative Learning

    Science.gov (United States)

    Hoerndli, Frédéric J.; Walser, Michael; Fröhli Hoier, Erika; de Quervain, Dominique; Papassotiropoulos, Andreas; Hajnal, Alex

    2009-01-01

    Background Whole-genome association studies in humans have enabled the unbiased discovery of new genes associated with human memory performance. However, such studies do not allow for a functional or causal testing of newly identified candidate genes. Since polymorphisms in Calsyntenin 2 (CLSTN2) showed a significant association with episodic memory performance in humans, we tested the C. elegans CLSTN2 ortholog CASY-1 for possible functions in the associative behavior of C. elegans. Methodology/Principal Findings Using three different associative learning paradigms and functional rescue experiments, we show that CASY-1 plays an important role during associative learning in C. elegans. Furthermore, neuronal expression of human CLSTN2 in C. elegans rescues the learning defects of casy-1 mutants. Finally, genetic interaction studies and neuron-specific expression experiments suggest that CASY-1 may regulate AMPA-like GLR-1 glutamate receptor signaling. Conclusion/Significance Our experiments demonstrate a remarkable conservation of the molecular function of Calsyntenins between nematodes and humans and point at a role of C. elegans casy-1 in regulating a glutamate receptor signaling pathway. PMID:19287492

  7. A conserved function of C. elegans CASY-1 calsyntenin in associative learning.

    Directory of Open Access Journals (Sweden)

    Frédéric J Hoerndli

    Full Text Available BACKGROUND: Whole-genome association studies in humans have enabled the unbiased discovery of new genes associated with human memory performance. However, such studies do not allow for a functional or causal testing of newly identified candidate genes. Since polymorphisms in Calsyntenin 2 (CLSTN2 showed a significant association with episodic memory performance in humans, we tested the C. elegans CLSTN2 ortholog CASY-1 for possible functions in the associative behavior of C. elegans. METHODOLOGY/PRINCIPAL FINDINGS: Using three different associative learning paradigms and functional rescue experiments, we show that CASY-1 plays an important role during associative learning in C. elegans. Furthermore, neuronal expression of human CLSTN2 in C. elegans rescues the learning defects of casy-1 mutants. Finally, genetic interaction studies and neuron-specific expression experiments suggest that CASY-1 may regulate AMPA-like GLR-1 glutamate receptor signaling. CONCLUSION/SIGNIFICANCE: Our experiments demonstrate a remarkable conservation of the molecular function of Calsyntenins between nematodes and humans and point at a role of C. elegans casy-1 in regulating a glutamate receptor signaling pathway.

  8. Executive Function Is Associated With Off-Line Motor Learning in People With Chronic Stroke.

    Science.gov (United States)

    Al-Dughmi, Mayis; Al-Sharman, Alham; Stevens, Suzanne; Siengsukon, Catherine F

    2017-04-01

    Sleep has been shown to promote off-line motor learning in individuals following stroke. Executive function ability has been shown to be a predictor of participation in rehabilitation and motor recovery following stroke. The purpose of this study was to explore the association between executive function and off-line motor learning in individuals with chronic stroke compared with healthy control participants. Seventeen individuals with chronic stroke (>6 months poststroke) and 9 healthy adults were included in the study. Participants underwent 3 consecutive nights of polysomnography, practiced a continuous tracking task the morning of the third day, and underwent a retention test the morning after the third night. Participants underwent testing on 4 executive function tests after the continuous tracking task retention test. Participants with stroke showed a significant positive correlation between the off-line motor learning score and performance on the Trail-Making Test from Delis-Kaplan Executive Function System (r = 0.652; P = 0.005), while the healthy control participants did not. Regression analysis showed that the Trail-Making Test-Delis-Kaplan Executive Function System is a significant predictor of off-line motor learning (P = 0.008). This is the first study to demonstrate that better performance on an executive function test of attention and set-shifting predicts a higher magnitude of off-line motor learning in individuals with chronic stroke. This emphasizes the need to consider attention and set-shifting abilities of individuals following stroke as these abilities are associated with motor learning. This in turn could affect learning of activities of daily living and impact functional recovery following stroke.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A166).

  9. Association of Medical School Pediatric Department Chairs Principles of Lifelong Learning in Pediatric Medicine.

    Science.gov (United States)

    Opipari, Valerie P; Daniels, Stephen R; Wilmott, Robert W; Jacobs, Richard F

    2016-11-01

    Pediatric general and subspecialty care requires continuous effort to maintain knowledge and competencies in clinical practice. Equally important are efforts by investigators and educators to maintain knowledge and competencies in the conduct of research and training. The Association of Medical School Pediatric Department Chairs initiated a survey in July 2015 to define principles of lifelong learning in pediatric medicine and determine the approaches and strategies used by chairs to assess knowledge and competence across the care, research, and teaching missions. A total of 101 of 142 chairs (71%) completed the survey. Six of 7 proposed principles were endorsed by 84% to 96% of Association of Medical School Pediatric Department Chairs members. The focus areas included individual accountability, individually relevant activities, use of evidence-based guidelines/national standards, gaining cognitive expertise, learning as a continuous effort, affordability, and focus on individual understanding. The chairs endorsed a requirement for evidence of lifelong learning, competence, and compliance by all faculty members in clinical (n = 89 [88%]), research (n = 63 [62%]), and educational (n = 85 [84%]) practice. The survey identified the strategies to assess lifelong learning and faculty competence and compliance in clinical, research, and educational roles. Across missions, chairs endorsed an expectation for individual responsibility supplemented by formal evaluation practices and institutional and regulatory office oversight. While chairs endorsed an important role for the American Board of Pediatrics in assessing and verifying lifelong learning, knowledge, and competence in general and specialty certification, most (n = 91 [90%]) endorsed a need to revise current board requirements to better emphasize closing gaps in knowledge and using approaches that are evidence-based. This study provides the perspectives of pediatric department chairs on principles

  10. Factors associated with student learning processes in primary health care units: a questionnaire study.

    Science.gov (United States)

    Bos, Elisabeth; Alinaghizadeh, Hassan; Saarikoski, Mikko; Kaila, Päivi

    2015-01-01

    Clinical placement plays a key role in education intended to develop nursing and caregiving skills. Studies of nursing students' clinical learning experiences show that these dimensions affect learning processes: (i) supervisory relationship, (ii) pedagogical atmosphere, (iii) management leadership style, (iv) premises of nursing care on the ward, and (v) nursing teachers' roles. Few empirical studies address the probability of an association between these dimensions and factors such as student (a) motivation, (b) satisfaction with clinical placement, and (c) experiences with professional role models. The study aimed to investigate factors associated with the five dimensions in clinical learning environments within primary health care units. The Swedish version of Clinical Learning Environment, Supervision and Teacher, a validated evaluation scale, was administered to 356 graduating nursing students after four or five weeks clinical placement in primary health care units. Response rate was 84%. Multivariate analysis of variance is determined if the five dimensions are associated with factors a, b, and c above. The analysis revealed a statistically significant association with the five dimensions and two factors: students' motivation and experiences with professional role models. The satisfaction factor had a statistically significant association (effect size was high) with all dimensions; this clearly indicates that students experienced satisfaction. These questionnaire results show that a good clinical learning experience constitutes a complex whole (totality) that involves several interacting factors. Supervisory relationship and pedagogical atmosphere particularly influenced students' satisfaction and motivation. These results provide valuable decision-support material for clinical education planning, implementation, and management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine.

    Science.gov (United States)

    Stolyarova, Alexandra; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia

    2014-09-01

    Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Associative Learning during Early Adulthood Enhances Later Memory Retention in Honeybees

    Science.gov (United States)

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2009-01-01

    Background Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. Methodology Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i) a rewarded experience through the offering of scented food, or (ii) a non-rewarded experience with a pure volatile compound in the rearing environment. Principal Findings Early rewarded experiences (either at 1–4 or 5–8 days of adult age) enhanced retention performance in 9–12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5–8 days of adult age. Associative memories acquired at 9–12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. Conclusions The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees. PMID:19956575

  13. Taking the Operant Paradigm into the Field: Associative Learning in Wild Great Tits.

    Directory of Open Access Journals (Sweden)

    Julie Morand-Ferron

    Full Text Available Associative learning is essential for resource acquisition, predator avoidance and reproduction in a wide diversity of species, and is therefore a key target for evolutionary and comparative cognition research. Automated operant devices can greatly enhance the study of associative learning and yet their use has been mainly restricted to laboratory conditions. We developed a portable, weatherproof, battery-operated operant device and conducted the first fully automated colour-associative learning experiment using free-ranging individuals in the wild. We used the device to run a colour discrimination task in a monitored population of tits (Paridae. Over two winter months, 80 individuals from four species recorded a total of 5,128 trials. Great tits (Parus major were more likely than other species to visit the devices and engage in trials, but there were no sex or personality biases in the sample of great tits landing at the devices and registering key pecks. Juveniles were more likely than adults to visit the devices and to register trials. Individuals that were successful at solving a novel technical problem in captivity (lever-pulling learned faster than non-solvers when at the operant devices in the wild, suggesting cross-contextual consistency in learning performance in very different tasks. There was no significant effect of personality or sex on learning rate, but juveniles' choice accuracy tended to improve at a faster rate than adults. We discuss how customisable automated operant devices, such as the one described here, could prove to be a powerful tool in evolutionary ecology studies of cognitive traits, especially among inquisitive species such as great tits.

  14. Associative learning during early adulthood enhances later memory retention in honeybees.

    Science.gov (United States)

    Arenas, Andrés; Fernández, Vanesa M; Farina, Walter M

    2009-12-02

    Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i) a rewarded experience through the offering of scented food, or (ii) a non-rewarded experience with a pure volatile compound in the rearing environment. Early rewarded experiences (either at 1-4 or 5-8 days of adult age) enhanced retention performance in 9-12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5-8 days of adult age. Associative memories acquired at 9-12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees.

  15. Learning to Associate Auditory and Visual Stimuli: Behavioral and Neural Mechanisms

    Science.gov (United States)

    Altieri, Nicholas; Stevenson, Ryan; Wallace, Mark T.; Wenger, Michael J.

    2014-01-01

    The ability to effectively combine sensory inputs across modalities is vital for acquiring a unified percept of events. For example, watching a hammer hit a nail while simultaneously identifying the sound as originating from the event requires the ability to identify spatio-temporal congruencies and statistical regularities. In this study, we applied a reaction time (RT) and hazard function measure known as capacity (e.g., Townsend and Ashby, 1978) to quantify the extent to which observers learn paired associations between simple auditory and visual patterns in a model theoretic manner. As expected, results showed that learning was associated with an increase in accuracy, but more significantly, an increase in capacity. The aim of this study was to associate capacity measures of multisensory learning, with neural based measures, namely mean Global Field Power (GFP). We observed a co-variation between an increase in capacity, and a decrease in GFP amplitude as learning occurred. This suggests that capacity constitutes a reliable behavioral index of efficient energy expenditure in the neural domain. PMID:24276220

  16. Medical Student Perceptions of the Learning Environment: Learning Communities Are Associated With a More Positive Learning Environment in a Multi-Institutional Medical School Study.

    Science.gov (United States)

    Smith, Sunny D; Dunham, Lisette; Dekhtyar, Michael; Dinh, An; Lanken, Paul N; Moynahan, Kevin F; Stuber, Margaret L; Skochelak, Susan E

    2016-09-01

    Many medical schools have implemented learning communities (LCs) to improve the learning environment (LE) for students. The authors conducted this study to determine whether a relationship exists between medical student perceptions of the LE and presence of LCs during the preclerkship years. Students from 24 schools participating in the American Medical Association Learning Environment Study completed the 17-item Medical Student Learning Environment Survey (MSLES) at the end of their first and second years of medical school between 2011 and 2013. Mean total MSLES scores and individual item scores at the end of the first and second years in schools with and without LCs were compared with t tests, and effect sizes were calculated. Mixed-effects longitudinal models were used to control for student demographics and random school and student effects on the relationship between LC status and MSLES score. A total of 4,980 students (81% of 6,148 matriculants) from 18 schools with LCs and 6 without LCs participated. Mean [SD] MSLES scores were significantly higher in LC schools compared with non-LC schools at the end of year one (3.72 [0.44] versus 3.57 [0.43], P < .001) and year two (3.69 [0.49] versus 3.42 [0.54], P < .001). The effect size increased from 0.35 (small) at the end of year one to 0.53 (medium) at the end of year two. This large multi-institutional cohort study found that LCs at medical schools were associated with more positive perceptions of the LE by preclerkship students.

  17. Dissociating Crossmodal and Verbal Demands in Paired Associate Learning (PAL): What Drives the PAL-Reading Relationship?

    Science.gov (United States)

    Litt, Robin A.; de Jong, Peter F.; van Bergen, Elsje; Nation, Kate

    2013-01-01

    Recent research suggests that visual-verbal paired associate learning (PAL) may tap a crossmodal associative learning mechanism that plays a distinct role in reading development. However, evidence from children with dyslexia indicates that deficits in visual-verbal PAL are strongly linked to the verbal demands of the task. The primary aim of this…

  18. Dissociating crossmodal and verbal demands in paired associate learning (PAL): What drives the PAL-reading relationship?

    NARCIS (Netherlands)

    Litt, R.A.; de Jong, P.F.; van Bergen, E.; Nation, K.

    2013-01-01

    Recent research suggests that visual-verbal paired associate learning (PAL) may tap a crossmodal associative learning mechanism that plays a distinct role in reading development. However, evidence from children with dyslexia indicates that deficits in visual-verbal PAL are strongly linked to the

  19. Hyper-Binding across Time: Age Differences in the Effect of Temporal Proximity on Paired-Associate Learning

    Science.gov (United States)

    Campbell, Karen L.; Trelle, Alexandra; Hasher, Lynn

    2014-01-01

    Older adults show hyper- (or excessive) binding effects for simultaneously and sequentially presented distraction. Here, we addressed the potential role of hyper-binding in paired-associate learning. Older and younger adults learned a list of word pairs and then received an associative recognition task in which rearranged pairs were formed from…

  20. Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning

    Directory of Open Access Journals (Sweden)

    Jing Qu

    2017-08-01

    Full Text Available Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO and fusiform gyrus (FG before training was negatively associated with reaction time (RT in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory.

  1. Framework and catalogue of tools for Participatory monitoring for Farmer Family Learning Groups and Marketing Associations

    DEFF Research Database (Denmark)

    Vaarst, Mette; Nalunga, Jane; Tibasiima, Thaddeo

    2016-01-01

    of this project (2013-2015) was Farmer Family Learning Groups (FFLG) as a method for developing long-term food security through social capital building. Furthermore, another project based on the FFLG approach but focusing on the formation of Marketing Associations (MAs) contributed to this booklet. This project...... external facilitators of FFLGs, four FFLG officers from the four organisations in ECOSAF, 21 Marketing Association officers, and staff members and volunteers from NOGAMU, SATNET and Organic Denmark. In the process we have worked together from each our context, and exchanged ideas on farmer group...... development, participation and monitoring. Participatory monitoring in Farmer Family Learning Groups and Marketing Associations is for the people and the groups who have set goals for themselves and need to monitor themselves whether they are getting closer to the goals which they have set. These groups...

  2. Neuron-specific regulation of associative learning and memory by MAGI-1 in C. elegans.

    Directory of Open Access Journals (Sweden)

    Attila Stetak

    Full Text Available BACKGROUND: Identifying the molecular mechanisms and neural circuits that control learning and memory are major challenges in neuroscience. Mammalian MAGI/S-SCAM is a multi-PDZ domain synaptic scaffolding protein that interacts with a number of postsynaptic signaling proteins and is thereby thought to regulate synaptic plasticity [1], [2], [3]. PRINCIPAL FINDINGS: While investigating the behavioral defects of C. elegans nematodes carrying a mutation in the single MAGI ortholog magi-1, we have identified specific neurons that require MAGI-1 function for different aspects of associative learning and memory. Various sensory stimuli and a food deprivation signal are associated in RIA interneurons during learning, while additional expression of MAGI-1 in glutamatergic AVA, AVD and possibly AVE interneurons is required for efficient memory consolidation, i.e. the ability to retain the conditioned changes in behavior over time. During associative learning, MAGI-1 in RIA neurons controls in a cell non-autonomous fashion the dynamic remodeling of AVA, AVD and AVE synapses containing the ionotropic glutamate receptor (iGluR GLR-1 [4]. During memory consolidation, however, MAGI-1 controls GLR-1 clustering in AVA and AVD interneurons cell-autonomously and depends on the ability to interact with the beta-catenin HMP-2. SIGNIFICANCE: Together, these results indicate that different aspects of associative learning and memory in C. elegans are likely carried out by distinct subsets of interneurons. The synaptic scaffolding protein MAGI-1 plays a critical role in these processes in part by regulating the clustering of iGluRs at synapses.

  3. The conceptual basis of function learning and extrapolation: comparison of rule-based and associative-based models.

    Science.gov (United States)

    McDaniel, Mark A; Busemeyer, Jerome R

    2005-02-01

    The purpose of this article is to provide a foundation for a more formal, systematic, and integrative approach to function learning that parallels the existing progress in category learning. First, we note limitations of existing formal theories. Next, we develop several potential formal models of function learning, which include expansion of classic rule-based approaches and associative-based models. We specify for the first time psychologically based learning mechanisms for the rule models. We then present new, rigorous tests of these competing models that take into account order of difficulty for learning different function forms and extrapolation performance. Critically, detailed learning performance was also used to conduct the model evaluations. The results favor a hybrid model that combines associative learning of trained input-prediction pairs with a rule-based output response for extrapolation (EXAM).

  4. Selectivity in associative learning: A cognitive stage framework for blocking and cue competition phenomena

    Directory of Open Access Journals (Sweden)

    Yannick eBoddez

    2014-11-01

    Full Text Available Blocking is the most important phenomenon in the history of associative learning theory: For over 40 years, blocking has inspired a whole generation of learning models. Blocking is part of a family of effects that are typically termed cue competition effects. Common amongst all cue competition effects is that a cue-outcome relation is poorly learned or poorly expressed because the cue is trained in the presence of an alternative predictor or cause of the outcome. We provide an overview of the cognitive processes involved in cue competition effects in humans and propose a stage framework that brings these processes together. The framework contends that the behavioral display of cue competition is cognitively construed following three stages that include (1 an encoding stage, (2 a retention stage, and (3 a performance stage. We argue that the stage framework supports a comprehensive understanding of cue competition effects.

  5. Molecular cloning of linotte in Drosophila: a novel gene that functions in adults during associative learning.

    Science.gov (United States)

    Bolwig, G M; Del Vecchio, M; Hannon, G; Tully, T

    1995-10-01

    The linotte (lio) gene was identified in a screen for mutations that disrupted 3 hr memory after olfactory associative learning, without affecting the perception of odors or electroshock. The mutagenesis yielded a transposon-tagged gene disruption, which allowed rapid cloning of genomic DNA. The lio transcription unit was identified via rescue of the lio1 learning/memory defect by induced expression of a lio+ transgene in adults. The perception of odors or electroshock remained normal when the lio+ transgene was expressed in these lio1 flies. Learning/memory remained normal when the lio+ transgene was expressed in wild-type (lio+) flies. The lio gene produces only one transcript, the level of expression of which varies throughout development. Sequence analysis indicates that lio encodes a novel protein.

  6. The rural physician associate program: the value of immersion learning for third-year medical students.

    Science.gov (United States)

    Zink, Therese; Halaas, Gwen W; Finstad, Deborah; Brooks, Kathleen D

    2008-01-01

    Changes in health care and new theories of learning have prompted significant changes in medical education. Some US medical schools employ immersion learning in rural communities to increase the number of physicians who choose to practice in these areas. Founded in 1971, the rural physician associate program (RPAP) is a longitudinal immersion learning experience for students during their third year of medical school. Students are assigned to a primary care preceptor(s) in a rural community ranging in population from 1,000 to 30,000 for 36 weeks. To describe students' perceived value of this immersion learning experience. Data from 3 classes (2004, 2005, 2006) of students (n = 95) were analyzed, including final essays that reflect on their experiences and logs of their patient encounters and procedures. Themes from students' essays related to the hands-on learning experience are presented. Frequencies of ambulatory encounters and procedures were calculated and compared with those of metropolitan area colleagues where possible. The continuity experience allows for one-to-one mentoring and long-term relationships. Students see physicians, clinic/hospital staff, and patients as their teachers. The environment is nurturing, but nudges them outside their comfort zone. Students gain increasing competence with their skills and do best if they are independent and seek out learning opportunities. They report more hands-on experience, more confidence and autonomy than their peers in the metropolitan area. The RPAP experience provides a nurturing, longitudinal, immersion learning experience that facilitates the gradual but steady development of clinical skills alongside a personal and professional mentor.

  7. Associations between Verbal Learning Slope and Neuroimaging Markers across the Cognitive Aging Spectrum.

    Science.gov (United States)

    Gifford, Katherine A; Phillips, Jeffrey S; Samuels, Lauren R; Lane, Elizabeth M; Bell, Susan P; Liu, Dandan; Hohman, Timothy J; Romano, Raymond R; Fritzsche, Laura R; Lu, Zengqi; Jefferson, Angela L

    2015-07-01

    A symptom of mild cognitive impairment (MCI) and Alzheimer's disease (AD) is a flat learning profile. Learning slope calculation methods vary, and the optimal method for capturing neuroanatomical changes associated with MCI and early AD pathology is unclear. This study cross-sectionally compared four different learning slope measures from the Rey Auditory Verbal Learning Test (simple slope, regression-based slope, two-slope method, peak slope) to structural neuroimaging markers of early AD neurodegeneration (hippocampal volume, cortical thickness in parahippocampal gyrus, precuneus, and lateral prefrontal cortex) across the cognitive aging spectrum [normal control (NC); (n=198; age=76±5), MCI (n=370; age=75±7), and AD (n=171; age=76±7)] in ADNI. Within diagnostic group, general linear models related slope methods individually to neuroimaging variables, adjusting for age, sex, education, and APOE4 status. Among MCI, better learning performance on simple slope, regression-based slope, and late slope (Trial 2-5) from the two-slope method related to larger parahippocampal thickness (all p-valuesslope (pslope (pslope and neuroimaging variables for NC (p-values ≥.05) or AD (p-values ≥.02). Better learning performances related to larger medial temporal lobe (i.e., hippocampal volume, parahippocampal gyrus thickness) and ventrolateral prefrontal cortex in MCI only. Regression-based and late slope were most highly correlated with neuroimaging markers and explained more variance above and beyond other common memory indices, such as total learning. Simple slope may offer an acceptable alternative given its ease of calculation.

  8. Sensorimotor learning and associated visual perception are intact but unrelated in autism spectrum disorder.

    Science.gov (United States)

    Hayes, Spencer J; Andrew, Matthew; Foster, Nathan C; Elliott, Digby; Gowen, Emma; Bennett, Simon J

    2017-10-20

    Humans show an astonishing capability to learn sensorimotor behaviours. However, data from sensorimotor learning experiments suggest the integration of efferent sensorimotor commands, afferent sensorimotor information, and visual consequences of a performed action during learning is different in autism, leading to atypical representation of internal action models. Here, we investigated the generalization of a sensorimotor internal action model formed during sensorimotor learning to a different, but associated, visual perception task. Although motor timing was generally less accurate in adults with autism, following practice with feedback both autistic adults, and controls, significantly improved performance of the movement sequence timing task by reducing timing error. In a subsequent perception task, both groups demonstrated similar temporal-discrimination accuracy (autism = 75%; control = 76%). Significant correlations between motor timing error, and temporal-discrimination during a perception task, was found for controls. No significant correlations were found for autistic adults. Our findings indicate that autistic adults demonstrated adaptation by reducing motor timing error through sensorimotor learning. However, the finding of significant correlations between motor timing error and temporal-discrimination accuracy in the control group only suggests sensorimotor processes underpinning internal action model formation operate differently in autism. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. We showed autistic adults learned a new motor skill, and visually judged moving objects, to a similar level of accuracy as a control group. Unlike the control group, there was no relationship between how well autistic adults learned the motor skill, and how well they judged objects. The lack of a relationship might be one of the reasons autistic adults interact differently in the social world. © 2017 International

  9. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    Full Text Available A new learning rule (Precise-Spike-Driven (PSD Synaptic Plasticity is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  10. Differential effects of BDNF val(66)met in repetitive associative learning paradigms.

    Science.gov (United States)

    Freundlieb, Nils; Backhaus, Winifried; Brüggemann, Norbert; Gerloff, Christian; Klein, Christine; Pinnschmidt, Hans O; Hummel, Friedhelm C

    2015-09-01

    In healthy young subjects, the brain derived neurotropic factor (BDNF) val(66)met polymorphism negatively affects behavioural outcome in short-term motor cortex or hippocampus-based learning paradigms. In repetitive training paradigms over several days this effect can be overcome, in tests involving other brain areas even positive effects were found. To further specify the role of this polymorphism in cognitive processes, we used an associative vocabulary learning paradigm over four consecutive days and tested 38 young healthy subjects and 29 healthy elderly subjects. As a control paradigm, we designed a nonverbal haptic Braille letter-learning paradigm based on the same principles. Behavioural outcome was then associated with the BDNF-genotype. In the vocabulary learning task, met carrier (met/val and met/met) benefitted more from the repetitive training than val/val subjects. This was paralleled by a higher reduction of delayed answers during the course of the study, an effect that was also present in the haptic paradigm. However, in a group of healthy elderly subjects, no similar tendency was found. We conclude that the BDNF val(66)met polymorphism alters highly circumscribed answer behaviours in young healthy subjects. This might partly explain the high variability of previously published results. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The Association Between Corticomotor Excitability and Motor Skill Learning in People With Painful Hand Arthritis.

    Science.gov (United States)

    Parker, Rosalind S; Lewis, Gwyn N; Rice, David A; McNair, Peter J

    2017-03-01

    Previous studies have shown a tendency for reduced motor cortex inhibition in chronic pain populations. People with chronic pain also routinely demonstrate motor deficiencies, including skill learning. The goals of the current study were to (1) provide a thorough analysis of corticomotor and intracortical excitability in people with chronic arthritic hand pain, and (2) examine the relationship between these measures and performance on a motor skill learning task. Twenty-three people with arthritic hand pain and 20 pain-free controls participated in a cross-sectional study. Transcranial magnetic stimulation was used to assess corticomotor and intracortical excitability of the first dorsal interosseus muscle. Participants then completed a 30-minute motor skill training task involving the index finger of the same hand. Hand arthritis participants showed evidence of reduced intracortical inhibition and enhanced facilitation, which correlated with duration of hand pain. Arthritis participants were initially poorer at the motor skill task but over the total training time performance was equivalent between groups. There were no associations found between measures of intracortical excitability and motor skill learning. Our findings are the first to provide evidence of cortical disinhibition in people with painful arthritis, as previously demonstrated in other chronic pain populations. Cortical excitability changes may progress the longer pain persists, with increased pain duration being associated with greater cortical disinhibition. There was no evidence that these changes in cortical excitability are related to impaired motor function or skill learning.

  12. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    Science.gov (United States)

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  13. Learning-Related Brain-Electrical Activity Dynamics Associated with the Subsequent Impact of Learnt Action-Outcome Associations

    Directory of Open Access Journals (Sweden)

    Fabian Baum

    2017-05-01

    Full Text Available Goal-directed behavior relies on the integration of anticipated outcomes into action planning based on acquired knowledge about the current contingencies between behavioral responses (R and desired outcomes (O under specific stimulus conditions (S. According to ideomotor theory, bidirectional R-O associations are an integral part of this knowledge structure. Previous EEG studies have identified neural activity markers linked to the involvement of such associations, but the initial acquisition process has not yet been characterized. The present study thus examined brain-electrical activity dynamics during the rapid acquisition of novel bidirectional R-O associations during instructed S-R learning. Within a trial, we inspected response-locked and stimulus-locked activity dynamics in order to identify markers linked to the forward and backward activation of bidirectional R-O associations as they were being increasingly strengthened under forced choice conditions. We found that a post-response anterior negativity following auditory outcomes was increasingly attenuated as a function of the acquired association strength. This suggests that previously reported action-induced sensory attenuation effects under extensively trained free choice conditions can be established within few repetitions of specific R-O pairings under forced choice conditions. Furthermore, we observed the even more rapid development of a post-response but pre-outcome fronto-central positivity which was reduced for high R-O learners which might indicate the rapid deployment of preparatory attention towards predictable outcomes. Finally, we identified a learning-related stimulus-locked activity modulation within the visual P1-N1 latency range which might reflect the multi-sensory integration of the perceived antecedent visual stimulus the anticipated auditory outcome.

  14. Comparing elemental and configural associative theories in human causal learning: a case for attention.

    Science.gov (United States)

    Lachnit, Harald; Schultheis, Holger; König, Stephan; Ungör, Metin; Melchers, Klaus

    2008-04-01

    In two causal learning experiments with human participants, the authors compared various associative theories that assumed either elemental (unique cue, modified unique cue, replaced elements model, and Harris' model) or configural processing of stimuli (Pearce's theory and a modification of it). The authors used modified patterning problems initially suggested by Redhead and Pearce (1995). Predictions for all theories were generated by computer simulations. Both configural theories and the unique cue approach failed to account for the observations. The replaced elements model was able to account for part of the data, but only if the replacement parameters could vary across discrimination problems. The Harris model and the modified unique cue approach, assuming that the salience of stimuli decreases with an increasing number of stimuli in a compound, successfully accounted for all of our data. This success implies that attentional factors should be explicitly taken into account in associative learning theory.

  15. Association between classroom ventilation mode and learning outcome in Danish schools

    DEFF Research Database (Denmark)

    Toftum, Jørn; Kjeldsen, Birthe Uldahl; Wargocki, Pawel

    2015-01-01

    Associations between learning, ventilation mode, and other classroom characteristics were investigated with data from a Danish test scheme and two widespread cross-sectional studies examining air quality in Danish schools. An academic achievement indicator as a measure of the learning outcome...... opening. Also, the carbon dioxide concentration was lower in classrooms with balanced mechanical ventilation. There was no consistent association between the achievement indicators and the person specific room volume, construction/renovation year, or the occupancy. Measurements of carbon dioxide...... concentrations and temperatures in 820 classrooms in 389 schools were available. In 56% and 66% of the classrooms included in the two studies, the measured CO2 concentration was higher than 1000ppm. The findings of this study add to the growing evidence that insufficient classroom ventilation have impacts...

  16. Synaptic Neurotransmission Depression in Ventral Tegmental Dopamine Neurons and Cannabinoid-Associated Addictive Learning

    Science.gov (United States)

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-01-01

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction. PMID:21187978

  17. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-12-01

    Full Text Available Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP and long-term depression (LTD. Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses of the midbrain ventral tegmental area (VTA following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids, the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  18. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression.

    Directory of Open Access Journals (Sweden)

    Joanna F Dipnall

    Full Text Available Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study.The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009-2010. Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators.After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30, serum glucose (OR 1.01; 95% CI 1.00, 1.01 and total bilirubin (OR 0.12; 95% CI 0.05, 0.28. Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016, and current smokers (p<0.001.The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling

  19. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Science.gov (United States)

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-12-20

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  20. Effects of a cognitive training on spatial learning and associated functional brain activations.

    Science.gov (United States)

    Hötting, Kirsten; Holzschneider, Kathrin; Stenzel, Anna; Wolbers, Thomas; Röder, Brigitte

    2013-07-20

    Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40-55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults.

  1. Inferring Association between Compound and Pathway with an Improved Ensemble Learning Method.

    Science.gov (United States)

    Song, Meiyue; Jiang, Zhenran

    2015-11-01

    Emergence of compound molecular data coupled to pathway information offers the possibility of using machine learning methods for compound-pathway associations' inference. To provide insights into the global relationship between compounds and their affected pathways, a improved Rotation Forest ensemble learning method called RGRF (Relief & GBSSL - Rotation Forest) was proposed to predict their potential associations. The main characteristic of the RGRF lies in using the Relief algorithm for feature extraction and regarding the Graph-Based Semi-Supervised Learning method as classifier. By incorporating the chemical structure information, drug mode of action information and genomic space information, our method can achieve a better precision and flexibility on compound-pathway prediction. Moreover, several new compound-pathway associations that having the potential for further clinical investigation have been identified by database searching. In the end, a prediction tool was developed using RGRF algorithm, which can predict the interactions between pathways and all of the compounds in cMap database. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evidence for multiple processes contributing to the Perruchet effect: Response priming and associative learning.

    Science.gov (United States)

    Weidemann, Gabrielle; McAndrew, Amy; Livesey, Evan J; McLaren, Ian P L

    2016-10-01

    The Perruchet effect constitutes a robust demonstration that it is possible to dissociate conditioned responding and expectancy in a random partial reinforcement design across a variety of human associative learning paradigms. This dissociation has been interpreted as providing evidence for multiple processes supporting learning, with expectancy driven by cognitive processes that lead to a Gambler's fallacy, and the pattern of conditioned responding (CRs) the result of an associative learning process. An alternative explanation is that the pattern of CRs is the result of exposure to the unconditioned stimulus (US). In 3 human eyeblink conditioning experiments we examined these competing explanations of the Perruchet effect by employing a differential conditioning design and varying the degree to which the 2 conditioned stimuli (CS) were discriminable. Across all of these experiments there was evidence for a component of the CRs being strongly influenced by recent reinforcement, in a way that was not demonstrably influenced by manipulations of CS discriminability, which suggests a response priming mechanism contributes to the Perruchet effect. However, the complete pattern of results and an analysis of the results from previously published studies are also consistent with there being an associative contribution to the effect. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. The speed of learning instructed stimulus-response association rules in human: experimental data and model.

    Science.gov (United States)

    Bugmann, Guido; Goslin, Jeremy; Duchamp-Viret, Patricia

    2013-11-06

    Humans can learn associations between visual stimuli and motor responses from just a single instruction. This is known to be a fast process, but how fast is it? To answer this question, we asked participants to learn a briefly presented (200ms) stimulus-response rule, which they then had to rapidly apply after a variable delay of between 50 and 1300ms. Participants showed a longer response time with increased variability for short delays. The error rate was low and did not vary with the delay, showing that participants were able to encode the rule correctly in less than 250ms. This time is close to the fastest synaptic learning speed deemed possible by diffusive influx of AMPA receptors. Learning continued at a slower pace in the delay period and was fully completed in average 900ms after rule presentation onset, when response latencies dropped to levels consistent with basic reaction times. A neural model was proposed that explains the reduction of response times and of their variability with the delay by (i) a random synaptic learning process that generates weights of average values increasing with the learning time, followed by (ii) random crossing of the firing threshold by a leaky integrate-and-fire neuron model, and (iii) assuming that the behavioural response is initiated when all neurons in a pool of m neurons have fired their first spike after input onset. Values of m=2 or 3 were consistent with the experimental data. The proposed model is the simplest solution consistent with neurophysiological knowledge. Additional experiments are suggested to test the hypothesis underlying the model and also to explore forgetting effects for which there were indications for the longer delay conditions. This article is part of a Special Issue entitled Neural Coding 2012. © 2013 Elsevier B.V. All rights reserved.

  4. Associative learning as higher order cognition: Learning in human and nonhuman animals from the perspective of propositional theories and relational frame theory.

    Science.gov (United States)

    De Houwer, Jan; Hughes, Sean; Barnes-Holmes, Dermot

    2016-08-01

    We aim to provide a new perspective on the old debate about whether evidence for higher order cognition in nonhuman animals can be reinterpreted in terms of associative learning. Our starting point is the idea that associative learning is best thought of as an effect (i.e., the impact of paired events on behavior) rather than a specific mental process (e.g., the formation of associations). This idea allows us to consider (a) propositional theories according to which associative learning is mediated by higher order mental processes akin to problem solving and (b) relational frame theory that allows one to think of seemingly simple associative learning effects as instances of a complex phenomenon known as arbitrarily applicable relational responding. Based on these 2 theories, we argue that (a) higher order cognition and associative learning are not necessarily mutually exclusive and (b) a more sophisticated conceptualization of higher order cognition is warranted. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Neural compensation in adulthood following very preterm birth demonstrated during a visual paired associates learning task

    Directory of Open Access Journals (Sweden)

    Philip J. Brittain

    2014-01-01

    Full Text Available Very preterm birth (VPT; < 33 weeks of gestation is associated with an increased risk of learning disability, which contributes to more VPT-born children repeating grades and underachieving in school. Learning problems associated with VPT birth may be caused by pathophysiological alterations in neurodevelopment resulting from perinatal brain insult; however, adaptive neuroplastic processes may subsequently occur in the developing preterm brain which ameliorate, to an extent, the potential sequelae of altered neurophysiology. Here, we used functional magnetic resonance imaging (fMRI to compare neuronal activation in 24 VPT individuals and 22 controls (CT in young adulthood during a learning task consisting of the encoding and subsequent recognition of repeated visual paired associates. Structural MRI data were also collected and analysed in order to explore possible structure-function associations. Whilst the two groups did not differ in their learning ability, as demonstrated by their capacity to recognize previously-seen and previously–unseen visual pairs, between-group differences in linear patterns of Blood Oxygenation Level Dependant (BOLD activity were observed across the four repeated blocks of the task for both the encoding and recognition conditions, suggesting that the way learning takes place differs between the two groups. During encoding, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the cerebellum, the anterior cingulate gyrus, the midbrain/substantia nigra, medial temporal (including parahippocampal gyrus and inferior and superior frontal gyri. During the recognition condition, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the claustrum and the posterior cerebellum. Structural analysis revealed smaller grey matter volume in right middle temporal gyrus in VPT individuals compared to controls, however volume in this region

  6. EEG potentials associated with artificial grammar learning in the primate brain.

    Science.gov (United States)

    Attaheri, Adam; Kikuchi, Yukiko; Milne, Alice E; Wilson, Benjamin; Alter, Kai; Petkov, Christopher I

    2015-09-01

    Electroencephalography (EEG) has identified human brain potentials elicited by Artificial Grammar (AG) learning paradigms, which present participants with rule-based sequences of stimuli. Nonhuman animals are sensitive to certain AGs; therefore, evaluating which EEG Event Related Potentials (ERPs) are associated with AG learning in nonhuman animals could identify evolutionarily conserved processes. We recorded EEG potentials during an auditory AG learning experiment in two Rhesus macaques. The animals were first exposed to sequences of nonsense words generated by the AG. Then surface-based ERPs were recorded in response to sequences that were 'consistent' with the AG and 'violation' sequences containing illegal transitions. The AG violations strongly modulated an early component, potentially homologous to the Mismatch Negativity (mMMN), a P200 and a late frontal positivity (P500). The macaque P500 is similar in polarity and time of occurrence to a late EEG positivity reported in human AG learning studies but might differ in functional role. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Presynaptic GABAB Receptors Regulate Hippocampal Synapses during Associative Learning in Behaving Mice.

    Directory of Open Access Journals (Sweden)

    M Teresa Jurado-Parras

    Full Text Available GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the central nervous system. Pharmacological activation of GABAB receptors regulates neurotransmission and neuronal excitability at pre- and postsynaptic sites. Electrophysiological activation of GABAB receptors in brain slices generally requires strong stimulus intensities. This raises the question as to whether behavioral stimuli are strong enough to activate GABAB receptors. Here we show that GABAB1a-/- mice, which constitutively lack presynaptic GABAB receptors at glutamatergic synapses, are impaired in their ability to acquire an operant learning task. In vivo recordings during the operant conditioning reveal a deficit in learning-dependent increases in synaptic strength at CA3-CA1 synapses. Moreover, GABAB1a-/- mice fail to synchronize neuronal activity in the CA1 area during the acquisition process. Our results support that activation of presynaptic hippocampal GABAB receptors is important for acquisition of a learning task and for learning-associated synaptic changes and network dynamics.

  8. Evolution of social learning when high expected payoffs are associated with high risk of failure

    Science.gov (United States)

    Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon

    2011-01-01

    In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals. PMID:21508013

  9. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Ichiro N. Maruyama

    2017-05-01

    Full Text Available Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US. It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS, and potassium chloride (KCl as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM and long-term memory (LTM, respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected

  10. ALOUD psychological: Adult Learning Open University Determinants Study – Association between psychological factors and study success in formal lifelong learners

    NARCIS (Netherlands)

    Neroni, Joyce; De Groot, Renate; Kirschner, Paul A.

    2012-01-01

    Neroni, J., De Groot, R. H. M., & Kirschner, P. A. (2012, 12 April). ALOUD psychological: Adult Learning Open University Determinants Study – Association between psychological factors and study success in formal lifelong learners. Presentation given at the plenary meeting of Learning & Cognition,

  11. Effects of Visual and Phonological Distinctness on Visual-Verbal Paired Associate Learning in Dutch Dyslexic and Normal Readers

    Science.gov (United States)

    Messbauer, Vera C. S.; de Jong, Peter F.

    2006-01-01

    In three studies, the effects of visual and phonological distinctness on the visual-verbal paired associate learning of dyslexic and normal readers at the age of 10-12 were examined. We hypothesized that both groups would be equally affected by the visual distinctness of the pictures, whereas the learning performance of the dyslexic children would…

  12. ALOUD biological: Adult Learning Open University Determinants study - Association of biological determinants with study success in formal lifelong learners

    NARCIS (Netherlands)

    Gijselaers, Jérôme; De Groot, Renate; Kirschner, Paul A.

    2012-01-01

    Gijselaers, H. J. M., De Groot, R. H. M., & Kirschner, P. A. (2012, 15 March). ALOUD biological: Adult Learning Open University Determinants study - Association of biological determinants with study success in formal lifelong learners. Presentation given at the plenary meeting of Learning &

  13. Beliefs Associated with Support for Child-Centred Learning Environment among Hong Kong Pre-Service Early Childhood Teachers

    Science.gov (United States)

    Cheung, Sum Kwing; Ling, Elsa Ka-wei; Leung, Suzannie Kit Ying

    2017-01-01

    The physical, social and temporal dimensions of the classroom environment have an important role in children's learning. This study examines the level of support for child-centred learning, and its associated beliefs, that is provided by Hong Kong's pre-service early childhood teachers. Two hundred and seventy-five students from a pre-service…

  14. I Don’t Want to Miss a Thing – Learning Dynamics and Effects of Feedback Type and Monetary Incentive in a Paired Associate Deterministic Learning Task

    Directory of Open Access Journals (Sweden)

    Magda Gawlowska

    2017-06-01

    Full Text Available Effective functioning in a complex environment requires adjusting of behavior according to changing situational demands. To do so, organisms must learn new, more adaptive behaviors by extracting the necessary information from externally provided feedback. Not surprisingly, feedback-guided learning has been extensively studied using multiple research paradigms. The purpose of the present study was to test the newly designed Paired Associate Deterministic Learning task (PADL, in which participants were presented with either positive or negative deterministic feedback. Moreover, we manipulated the level of motivation in the learning process by comparing blocks with strictly cognitive, informative feedback to blocks where participants were additionally motivated by anticipated monetary reward or loss. Our results proved the PADL to be a useful tool not only for studying the learning process in a deterministic environment, but also, due to the varying task conditions, for assessing differences in learning patterns. Particularly, we show that the learning process itself is influenced by manipulating both the type of feedback information and the motivational significance associated with the expected monetary reward.

  15. Identifying associations between pig pathologies using a multi-dimensional machine learning methodology

    Directory of Open Access Journals (Sweden)

    Sanchez-Vazquez Manuel J

    2012-08-01

    Full Text Available Abstract Background Abattoir detected pathologies are of crucial importance to both pig production and food safety. Usually, more than one pathology coexist in a pig herd although it often remains unknown how these different pathologies interrelate to each other. Identification of the associations between different pathologies may facilitate an improved understanding of their underlying biological linkage, and support the veterinarians in encouraging control strategies aimed at reducing the prevalence of not just one, but two or more conditions simultaneously. Results Multi-dimensional machine learning methodology was used to identify associations between ten typical pathologies in 6485 batches of slaughtered finishing pigs, assisting the comprehension of their biological association. Pathologies potentially associated with septicaemia (e.g. pericarditis, peritonitis appear interrelated, suggesting on-going bacterial challenges by pathogens such as Haemophilus parasuis and Streptococcus suis. Furthermore, hepatic scarring appears interrelated with both milk spot livers (Ascaris suum and bacteria-related pathologies, suggesting a potential multi-pathogen nature for this pathology. Conclusions The application of novel multi-dimensional machine learning methodology provided new insights into how typical pig pathologies are potentially interrelated at batch level. The methodology presented is a powerful exploratory tool to generate hypotheses, applicable to a wide range of studies in veterinary research.

  16. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory.

    Directory of Open Access Journals (Sweden)

    Bradley H Lee

    Full Text Available Anesthetic exposure early in life affects neural development and long-term cognitive function, but our understanding of the types of memory that are altered is incomplete. Specific cognitive tests in rodents that isolate different memory processes provide a useful approach for gaining insight into this issue.Postnatal day 7 (P7 rats were exposed to either desflurane or isoflurane at 1 Minimum Alveolar Concentration for 4 h. Acute neuronal death was assessed 12 h later in the thalamus, CA1-3 regions of hippocampus, and dentate gyrus. In separate behavioral experiments, beginning at P48, subjects were evaluated in a series of object recognition tests relying on associative learning, as well as social recognition.Exposure to either anesthetic led to a significant increase in neuroapoptosis in each brain region. The extent of neuronal death did not differ between groups. Subjects were unaffected in simple tasks of novel object and object-location recognition. However, anesthetized animals from both groups were impaired in allocentric object-location memory and a more complex task requiring subjects to associate an object with its location and contextual setting. Isoflurane exposure led to additional impairment in object-context association and social memory.Isoflurane and desflurane exposure during development result in deficits in tasks relying on associative learning and recognition memory. Isoflurane may potentially cause worse impairment than desflurane.

  17. Identifying associations between pig pathologies using a multi-dimensional machine learning methodology.

    Science.gov (United States)

    Sanchez-Vazquez, Manuel J; Nielen, Mirjam; Edwards, Sandra A; Gunn, George J; Lewis, Fraser I

    2012-08-31

    Abattoir detected pathologies are of crucial importance to both pig production and food safety. Usually, more than one pathology coexist in a pig herd although it often remains unknown how these different pathologies interrelate to each other. Identification of the associations between different pathologies may facilitate an improved understanding of their underlying biological linkage, and support the veterinarians in encouraging control strategies aimed at reducing the prevalence of not just one, but two or more conditions simultaneously. Multi-dimensional machine learning methodology was used to identify associations between ten typical pathologies in 6485 batches of slaughtered finishing pigs, assisting the comprehension of their biological association. Pathologies potentially associated with septicaemia (e.g. pericarditis, peritonitis) appear interrelated, suggesting on-going bacterial challenges by pathogens such as Haemophilus parasuis and Streptococcus suis. Furthermore, hepatic scarring appears interrelated with both milk spot livers (Ascaris suum) and bacteria-related pathologies, suggesting a potential multi-pathogen nature for this pathology. The application of novel multi-dimensional machine learning methodology provided new insights into how typical pig pathologies are potentially interrelated at batch level. The methodology presented is a powerful exploratory tool to generate hypotheses, applicable to a wide range of studies in veterinary research.

  18. Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex.

    Directory of Open Access Journals (Sweden)

    Raoul F H Ribot

    Full Text Available Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans, can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (Platycercus elegans parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a ca 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position. The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow

  19. The Transition to Minimal Consciousness through the Evolution of Associative Learning.

    Science.gov (United States)

    Bronfman, Zohar Z; Ginsburg, Simona; Jablonka, Eva

    2016-01-01

    The minimal state of consciousness is sentience. This includes any phenomenal sensory experience - exteroceptive, such as vision and olfaction; interoceptive, such as pain and hunger; or proprioceptive, such as the sense of bodily position and movement. We propose unlimited associative learning (UAL) as the marker of the evolutionary transition to minimal consciousness (or sentience) , its phylogenetically earliest sustainable manifestation and the driver of its evolution. We define and describe UAL at the behavioral and functional level and argue that the structural-anatomical implementations of this mode of learning in different taxa entail subjective feelings (sentience). We end with a discussion of the implications of our proposal for the distribution of consciousness in the animal kingdom, suggesting testable predictions, and revisiting the ongoing debate about the function of minimal consciousness in light of our approach.

  20. Learning of arbitrary association between visual and auditory novel stimuli in adults: the "bond effect" of haptic exploration.

    Directory of Open Access Journals (Sweden)

    Benjamin Fredembach

    Full Text Available BACKGROUND: It is well-known that human beings are able to associate stimuli (novel or not perceived in their environment. For example, this ability is used by children in reading acquisition when arbitrary associations between visual and auditory stimuli must be learned. The studies tend to consider it as an "implicit" process triggered by the learning of letter/sound correspondences. The study described in this paper examined whether the addition of the visuo-haptic exploration would help adults to learn more effectively the arbitrary association between visual and auditory novel stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Adults were asked to learn 15 new arbitrary associations between visual stimuli and their corresponding sounds using two learning methods which differed according to the perceptual modalities involved in the exploration of the visual stimuli. Adults used their visual modality in the "classic" learning method and both their visual and haptic modalities in the "multisensory" learning one. After both learning methods, participants showed a similar above-chance ability to recognize the visual and auditory stimuli and the audio-visual associations. However, the ability to recognize the visual-auditory associations was better after the multisensory method than after the classic one. CONCLUSION/SIGNIFICANCE: This study revealed that adults learned more efficiently the arbitrary association between visual and auditory novel stimuli when the visual stimuli were explored with both vision and touch. The results are discussed from the perspective of how they relate to the functional differences of the manual haptic modality and the hypothesis of a "haptic bond" between visual and auditory stimuli.

  1. Factors associated with pharmacy students' attitudes towards learning communication skills - A study among Nordic pharmacy students.

    Science.gov (United States)

    Svensberg, Karin; Brandlistuen, Ragnhild Eek; Björnsdottir, Ingunn; Sporrong, Sofia Kälvemark

    2018-03-01

    Good communication skills are essential for pharmacy students to help patients with their medicines. Students' attitudes towards communication skills learning will influence their willingness to engage in communication training, and their skills when dealing with patients later on in their professional life. The aim of this study was to explore Nordic pharmacy students' attitudes to communication skills learning, and the associations between those attitudes and various student characteristics. A cross-sectional questionnaire-based study was conducted in 11 Nordic pharmacy schools between April 2015 and January 2016. The overall response rate for the final study population was 77% (367 out of 479 students). Pharmacy students who had fulfilled all mandatory communication training and most of their pharmacy practical experience periods were included. The communication skills attitudes scale was the main outcome. Linear regression models were fitted with the outcome variable and various student characteristics as the predictors, using generalized estimating equations to account for clustering within pharmacy schools. Nordic pharmacy students in general have moderately positive attitudes towards learning communication skills. Positive attitudes towards learning communication skills among pharmacy students were associated with being female (β adjusted 0.42, 95% CI 0.20 to 0.63, p communication skills improvement (β adjusted 0.50, 95% CI 0.30 to 0.71, pcommunication skills are not the result of personality (β adjusted  -0.24, 95% CI -0.44 to -0.04, p=0.017). The study provides important information for faculty members responsible for curriculum improvements and teachers to refine their teaching of communication skills. From this, the teaching can be better tailored to suit different students. The students' chances of being able to effectively help patients in the future will be increased by that. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity.

    Science.gov (United States)

    Chang, Hao-Xun; Haudenshield, James S; Bowen, Charles R; Hartman, Glen L

    2017-01-01

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study.

  3. Microbial communities associated with plants: learning from nature to apply it in agriculture.

    Science.gov (United States)

    Andreote, Fernando Dini; Pereira E Silva, Michele de Cássia

    2017-06-01

    It is a new consensus that any living organism depends on its partners to strive under environmental conditions along their living period. Plants are also highly dependent on their associated microbes, which can support its development and proper protection under stressors. Along their evolution, plants learned to interact to soil microbiota, extracting their utmost capacity to provide resources for plant development and successful colonization of terrestrial systems, where the great soil biodiversity is keen on properly exert this role. Functional systems, such as the rhizosphere, provide evidences of the powerful selection exerted by plants upon the living soil microbes. In counterpart, the anthropogenic activity, mainly in forms of agricultural managements, has neglected this symbiosis, interfering in soil biodiversity, and consequently, reducing plant development through the interference in their association with beneficial microbes. This mini review has collected information to build a suitable hypothesis that if we better learn about the connection between plants and its associated microbiota in nature, we can lead agriculture to a better exploration of this omnipresent source of nutrients and protection, increasing yield and sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity

    Science.gov (United States)

    Chang, Hao-Xun; Haudenshield, James S.; Bowen, Charles R.; Hartman, Glen L.

    2017-01-01

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study. PMID:28421041

  5. Neural compensation in adulthood following very preterm birth demonstrated during a visual paired associates learning task.

    Science.gov (United States)

    Brittain, Philip J; Froudist Walsh, Sean; Nam, Kie-Woo; Giampietro, Vincent; Karolis, Vyacheslav; Murray, Robin M; Bhattacharyya, Sagnik; Kalpakidou, Anastasia; Nosarti, Chiara

    2014-01-01

    Very preterm birth (VPT; brain insult; however, adaptive neuroplastic processes may subsequently occur in the developing preterm brain which ameliorate, to an extent, the potential sequelae of altered neurophysiology. Here, we used functional magnetic resonance imaging (fMRI) to compare neuronal activation in 24 VPT individuals and 22 controls (CT) in young adulthood during a learning task consisting of the encoding and subsequent recognition of repeated visual paired associates. Structural MRI data were also collected and analysed in order to explore possible structure-function associations. Whilst the two groups did not differ in their learning ability, as demonstrated by their capacity to recognize previously-seen and previously-unseen visual pairs, between-group differences in linear patterns of Blood Oxygenation Level Dependant (BOLD) activity were observed across the four repeated blocks of the task for both the encoding and recognition conditions, suggesting that the way learning takes place differs between the two groups. During encoding, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the cerebellum, the anterior cingulate gyrus, the midbrain/substantia nigra, medial temporal (including parahippocampal) gyrus and inferior and superior frontal gyri. During the recognition condition, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the claustrum and the posterior cerebellum. Structural analysis revealed smaller grey matter volume in right middle temporal gyrus in VPT individuals compared to controls, however volume in this region was not significantly associated with functional activation. These results demonstrate that although cognitive task performance between VPT individuals and controls may be comparable on certain measures, differences in BOLD signal may also be evident, some of which could represent compensatory neural processes following VPT

  6. Individual personality differences in goats predict their performance in visual learning and non-associative cognitive tasks.

    Science.gov (United States)

    Nawroth, Christian; Prentice, Pamela M; McElligott, Alan G

    2017-01-01

    Variation in common personality traits, such as boldness or exploration, is often associated with risk-reward trade-offs and behavioural flexibility. To date, only a few studies have examined the effects of consistent behavioural traits on both learning and cognition. We investigated whether certain personality traits ('exploration' and 'sociability') of individuals were related to cognitive performance, learning flexibility and learning style in a social ungulate species, the goat (Capra hircus). We also investigated whether a preference for feature cues rather than impaired learning abilities can explain performance variation in a visual discrimination task. We found that personality scores were consistent across time and context. Less explorative goats performed better in a non-associative cognitive task, in which subjects had to follow the trajectory of a hidden object (i.e. testing their ability for object permanence). We also found that less sociable subjects performed better compared to more sociable goats in a visual discrimination task. Good visual learning performance was associated with a preference for feature cues, indicating personality-dependent learning strategies in goats. Our results suggest that personality traits predict the outcome in visual discrimination and non-associative cognitive tasks in goats and that impaired performance in a visual discrimination tasks does not necessarily imply impaired learning capacities, but rather can be explained by a varying preference for feature cues. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The influence of attention and reward on the learning of stimulus-response associations

    NARCIS (Netherlands)

    Vartak, Devavrat; Jeurissen, Danique; Self, Matthew W.; Roelfsema, Pieter R.

    2017-01-01

    We can learn new tasks by listening to a teacher, but we can also learn by trial-and-error. Here, we investigate the factors that determine how participants learn new stimulus-response mappings by trial-and-error. Does learning in human observers comply with reinforcement learning theories, which

  8. Reversal learning strategy in adolescence is associated with prefrontal cortex activation.

    Science.gov (United States)

    Boehme, Rebecca; Lorenz, Robert C; Gleich, Tobias; Romund, Lydia; Pelz, Patricia; Golde, Sabrina; Flemming, Eva; Wold, Andrew; Deserno, Lorenz; Behr, Joachim; Raufelder, Diana; Heinz, Andreas; Beck, Anne

    2017-01-01

    Adolescence is a critical maturation period for human cognitive control and executive function. In this study, a large sample of adolescents (n = 85) performed a reversal learning task during functional magnetic resonance imaging. We analyzed behavioral data using a reinforcement learning model to provide individually fitted parameters and imaging data with regard to reward prediction errors (PE). Following a model-based approach, we formed two groups depending on whether individuals tended to update expectations predominantly for the chosen stimulus or also for the unchosen one. These groups significantly differed in their problem behavior score obtained using the child behavior checklist (CBCL) and in a measure of their developmental stage. Imaging results showed that dorsolateral striatal areas covaried with PE. Participants who relied less on learning based on task structure showed less prefrontal activation compared with participants who relied more on task structure. An exploratory analysis revealed that PE-related activity was associated with pubertal development in prefrontal areas, insula and anterior cingulate. These findings support the hypothesis that the prefrontal cortex is implicated in mediating flexible goal-directed behavioral control. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Global hypoxia induced impairment in learning and spatial memory is associated with precocious hippocampal aging.

    Science.gov (United States)

    Biswal, Suryanarayan; Sharma, Deepti; Kumar, Kushal; Nag, Tapas Chandra; Barhwal, Kalpana; Hota, Sunil Kumar; Kumar, Bhuvnesh

    2016-09-01

    Both chronological aging and chronic hypoxia stress have been reported to cause degeneration of hippocampal CA3 neurons and spatial memory impairment through independent pathways. However, the possible occurrence of precocious biological aging on exposure to single episode of global hypoxia resulting in impairment of learning and memory remains to be established. The present study thus aimed at bridging this gap in existing literature on hypoxia induced biological aging. Male Sprague Dawley rats were exposed to simulated hypobaric hypoxia (25,000ft) for different durations and were compared with aged rats. Behavioral studies in Morris Water Maze showed decline in learning abilities of both chronologically aged as well as hypoxic rats as evident from increased latency and pathlength to reach target platform. These behavioral changes in rats exposed to global hypoxia were associated with deposition of lipofuscin and ultrastructural changes in the mitochondria of hippocampal neurons that serve as hallmarks of aging. A single episode of chronic hypobaric hypoxia exposure also resulted in the up-regulation of pro-aging protein, S100A9 and down regulation of Tau, SNAP25, APOE and Sod2 in the hippocampus similar to that in aged rats indicating hypoxia induced accelerated aging. The present study therefore provides evidence for role of biological aging of hippocampal neurons in hypoxia induced impairment of learning and memory. Copyright © 2016. Published by Elsevier Inc.

  10. Long-term associative learning predicts verbal short-term memory performance.

    Science.gov (United States)

    Jones, Gary; Macken, Bill

    2017-10-02

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  11. Distinct effects of dopamine vs STN stimulation therapies in associative learning and retention in Parkinson disease.

    Science.gov (United States)

    Ventre-Dominey, Jocelyne; Mollion, Hélène; Thobois, Stephane; Broussolle, Emmanuel

    2016-04-01

    Evidence has been provided in Parkinson's disease patients of cognitive impairments including visual memory and learning which can be partially compensated by dopamine medication or subthalamic nucleus stimulation. The effects of these two therapies can differ according to the learning processes involving the dorsal vs ventral part of the striatum. Here we aimed to investigate and compare the outcomes of dopamine vs stimulation treatment in Parkinson patient's ability to acquire and maintain over successive days their performance in visual working memory. Parkinson patients performed conditional associative learning embedded in visual (spatial and non spatial) working memory tasks over two consecutive days either ON or OFF dopaminergic drugs or STN stimulation depending on the group of patients studied. While Parkinson patients were more accurate and faster in memory tasks ON vs OFF stimulation independent of the day of testing, performance in medicated patients differed depending on the medication status during the initial task acquisition. Patients who learnt the task ON medication the first day were able to maintain or even improve their memory performance both OFF and ON medication on the second day after consolidation. These effects were observed only in patients with dopamine replacement with or without motor fluctuations. This enhancement in memory performance after having learnt under dopamine medication and not under STN stimulation was mostly significant in visuo-spatial working memory tasks suggesting that dopamine replacement in the depleted dorsal striatum is essential for retention and consolidation of learnt skill. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in Parietal-Opercular (SII) Cortex.

    Science.gov (United States)

    Mano, Hiroaki; Yoshida, Wako; Shibata, Kazuhisa; Zhang, Suyi; Koltzenburg, Martin; Kawato, Mitsuo; Seymour, Ben

    2017-09-27

    The location of a sensory cortex for temperature perception remains a topic of substantial debate. Both the parietal-opercular (SII) and posterior insula have been consistently implicated in thermosensory processing, but neither region has yet been identified as the locus of fine temperature discrimination. Using a perceptual learning paradigm in male and female humans, we show improvement in discrimination accuracy for subdegree changes in both warmth and cool detection over 5 d of repetitive training. We found that increases in discriminative accuracy were specific to the temperature (cold or warm) being trained. Using structural imaging to look for plastic changes associated with perceptual learning, we identified symmetrical increases in gray matter volume in the SII cortex. Furthermore, we observed distinct, adjacent regions for cold and warm discrimination, with cold discrimination having a more anterior locus than warm. The results suggest that thermosensory discrimination is supported by functionally and anatomically distinct temperature-specific modules in the SII cortex.SIGNIFICANCE STATEMENT We provide behavioral and neuroanatomical evidence that perceptual learning is possible within the temperature system. We show that structural plasticity localizes to parietal-opercular (SII), and not posterior insula, providing the best evidence to date resolving a longstanding debate about the location of putative "temperature cortex." Furthermore, we show that cold and warm pathways are behaviorally and anatomically dissociable, suggesting that the temperature system has distinct temperature-dependent processing modules. Copyright © 2017 Mano et al.

  13. Individual differences in personality in laying hens are related to learning a colour cue association.

    Science.gov (United States)

    de Haas, Elske N; Lee, Caroline; Hernandez, Carlos E; Naguib, Marc; Rodenburg, T Bas

    2017-01-01

    Personality can influence how animals perceive and learn cues. The behaviour and physiological responses animals show during stressful events is indicative of their personality. Acute induced stress prior to a cognitive test are known to affect the judgement of a stimulus, but personality of an individual could also affect learning of a specific cognitive paradigm. Here, we assessed if adult laying hens' behaviour and physiological responses, as indicators of their personality, were related to their cognitive performance. We assessed their behavioural responses to a tonic immobility test, an open field test, and a manual restraint test, and measured plasma corticosterone levels after manual restraint. After that, hens (n=20) were trained in a pre-set training schedule to associate a colour-cue with a reward. In a two-choice go-go test, hens needed to choose between a baited or non-baited food container displayed randomly on the left or right side of an arena. Success in learning was related to personality, with better performance of hens which showed a reactive personality type by a long latency to walk, struggle or vocalize during the tests. Only eight out of 20 hens reached the training criteria. The non-learners showed a strong side preference during all training days. Side preferences were strong in hens with high levels of plasma corticosterone and with a long duration of tonic immobility, indicating that fearful, stress-sensitive hens are more prone to develop side biases. Our results show that learning can be hindered by side biases, and fearful animals with a more proactive personality type are more sensitive to develop such biases. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The effects of vitamin C on hypothyroidism-associated learning and memory impairment in juvenile rats.

    Science.gov (United States)

    Beheshti, Farimah; Karimi, Sareh; Vafaee, Farzaneh; Shafei, Mohammad Naser; Sadeghnia, Hamid Reza; Hadjzadeh, Mosa Al Reza; Hosseini, Mahmoud

    2017-06-01

    In this study the effects of Vitamin C (Vit C) on hypothyroidism-associated learning and memory impairment in juvenile rats was investigated. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into six groups and treated: (1) Control; (2) Propylthiouracil (PTU) which 0.005% PTU in their drinking; (3-5) Propylthiouracil- Vit C groups; besides PTU, dams in these groups received 10, 100 and 500 mg/kg Vit C respectively, (6) one group as a positive control; the intact rats received an effective dose, 100 mg/kg Vit. C. After delivery, the pups were continued to receive the experimental treatments in their drinking water up to 56th day of their life. Ten male offspring of each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) which were started at 63th day (one week after stopping of the treatments). Brains were then removed for biochemical measurements. PTU increased time latency and traveled distance during 5 days in MWM while, reduced the spent time in target quadrant in MWM and step-trough latency (STL) in PA. PTU decreased thiol content, superoxide dismutase (SOD) and catalase (CAT) activities in the brain while, increased molondialdehyde (MDA). In MWM test, 10, 100 and 500 mg/kg Vit C reduced time latency and traveled distance without affecting the traveling speed during 5 days. All doses of Vit C increased the spent time in target quadrant in probe trail of MWM and also increased STL in PA test. Vit C increased thiol, SOD and CAT in the brain tissues while, reduced MDA. Results of present study confirmed the beneficial effects of Vit C on learning and memory. It also demonstrated that Vit C has protective effects on hypothyroidism-associated learning and memory impairment in juvenile rats which might be elucidated by the antioxidative effects.

  15. Realization of Associative Memory in an Enzymatic Process: Toward Biomolecular Networks with Learning and Unlearning Functionalities.

    Science.gov (United States)

    Bocharova, Vera; MacVittie, Kevin; Chinnapareddy, Soujanya; Halámek, Jan; Privman, Vladimir; Katz, Evgeny

    2012-05-17

    We report a realization of an associative memory signal/information processing system based on simple enzyme-catalyzed biochemical reactions. Optically detected chemical output is always obtained in response to the triggering input, but the system can also "learn" by association, to later respond to the second input if it is initially applied in combination with the triggering input as the "training" step. This second chemical input is not self-reinforcing in the present system, which therefore can later "unlearn" to react to the second input if it is applied several times on its own. Such processing steps realized with (bio)chemical kinetics promise applications of bioinspired/memory-involving components in "networked" (concatenated) biomolecular processes for multisignal sensing and complex information processing.

  16. Pathological gamblers are more vulnerable to the illusion of control in a standard associative learning task

    Directory of Open Access Journals (Sweden)

    Cristina eOrgaz

    2013-06-01

    Full Text Available An illusion of control is said to occur when a person believes that he or she controls an outcome that is uncontrollable. Pathological gambling has often been related to an illusion of control, but the assessment of the illusion has generally used introspective methods in domain-specific (i.e., gambling situations. The illusion of control of pathological gamblers, however, could be a more general problem, affecting other aspects of their daily life. Thus, we tested them using a standard associative learning task which is known to produce illusions of control in most people under certain conditions. The results showed that the illusion was significantly stronger in pathological gamblers than in a control undiagnosed sample. This suggests (a that the experimental tasks used in basic associative learning research could be used to detect illusions of control in gamblers in a more indirect way, as compared to introspective and domain-specific questionnaires; and (b, that in addition to gambling-specific problems, pathological gamblers may have a higher-than-normal illusion of control in their daily life.

  17. Mild maternal stress disrupts associative learning and increases aggression in offspring.

    Science.gov (United States)

    Eaton, L; Edmonds, E J; Henry, T B; Snellgrove, D L; Sloman, K A

    2015-05-01

    Maternal stress has been shown to affect behaviour of offspring in a wide range of animals, but this evidence has come from studies that exposed gestating mothers to acute or severe stressors, such as restraint or exposure to synthetic stress hormones. Here we show that exposure of mothers to even a mild stressor reduces associative learning and increases aggression in offspring. Female guppies were exposed to routine husbandry procedures that produced only a minimal, non-significant, elevation of the stress hormone cortisol. In contrast to controls, offspring from mothers that experienced this mild stress failed to learn to associate a colour cue and food reward, and showed a greater amount of inter-individual variation in behaviour compared with control offspring. This mild stress also resulted in offspring that were more aggressive towards their own mirror image than controls. While it is possible that these results could represent the transmission of beneficial maternal characteristics to offspring born into unpredictable environments, the potential for mild maternal stress to affect offspring performance also has important implications for research into the trans-generational effects of stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array

    Directory of Open Access Journals (Sweden)

    Sukru Burc Eryilmaz

    2014-07-01

    Full Text Available Recent advances in neuroscience together with nanoscale electronic device technology have resulted in huge interests in realizing brain-like computing hardwares using emerging nanoscale memory devices as synaptic elements. Although there has been experimental work that demonstrated the operation of nanoscale synaptic element at the single device level, network level studies have been limited to simulations. In this work, we demonstrate, using experiments, array level associative learning using phase change synaptic devices connected in a grid like configuration similar to the organization of the biological brain. Implementing Hebbian learning with phase change memory cells, the synaptic grid was able to store presented patterns and recall missing patterns in an associative brain-like fashion. We found that the system is robust to device variations, and large variations in cell resistance states can be accommodated by increasing the number of training epochs. We illustrated the tradeoff between variation tolerance of the network and the overall energy consumption, and found that energy consumption is decreased significantly for lower variation tolerance.

  19. Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance

    Directory of Open Access Journals (Sweden)

    Riad I. Hammoud

    2014-10-01

    Full Text Available We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA and multi-media indexing and explorer (MINER. VIVA utilizes analyst call-outs (ACOs in the form of chat messages (voice-to-text to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1 a fusion of graphical track and text data using probabilistic methods; (2 an activity pattern learning framework to support querying an index of activities of interest (AOIs and targets of interest (TOIs by movement type and geolocation; and (3 a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV. VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.

  20. Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning

    Science.gov (United States)

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2017-04-01

    Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate.

  1. Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning.

    Science.gov (United States)

    Saddoris, Michael P; Carelli, Regina M

    2014-01-15

    Cocaine use is often associated with diminished cognitive function, persisting even after abstinence from the drug. Likely targets for these changes are the core and shell of the nucleus accumbens (NAc), which are critical for mediating the rewarding aspects of drugs of abuse as well as supporting associative learning. To understand this deficit, we recorded neural activity in the NAc of rats with a history of cocaine self-administration or control subjects while they learned Pavlovian first- and second-order associations. Rats were trained for 2 weeks to self-administer intravenous cocaine or water. Later, rats learned a first-order Pavlovian discrimination where a conditioned stimulus (CS)+ predicted food, and a control (CS-) did not. Rats then learned a second-order association where, absent any food reinforcement, a novel cued (SOC+) predicted the CS+ and another (SOC-) predicted the CS-. Electrophysiological recordings were taken during performance of these tasks in the NAc core and shell. Both control subjects and cocaine-experienced rats learned the first-order association, but only control subjects learned the second-order association. Neural recordings indicated that core and shell neurons encoded task-relevant information that correlated with behavioral performance, whereas this type of encoding was abolished in cocaine-experienced rats. The NAc core and shell perform complementary roles in supporting normal associative learning, functions that are impaired after cocaine experience. This impoverished encoding of motivational behavior, even after abstinence from the drug, might provide a key mechanism to understand why addiction remains a chronically relapsing disorder despite repeated attempts at sobriety. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Equine Assisted Psychotherapy: The Equine Assisted Growth and Learning Association's Model Overview of Equine-Based Modalities

    Science.gov (United States)

    Notgrass, Clayton G.; Pettinelli, J. Douglas

    2015-01-01

    This article describes the Equine Assisted Growth and Learning Association's (EAGALA) experiential model called "Equine Assisted Psychotherapy" (EAP). EAGALA's model is based on the Association for Experiential Education's (AEE) tenets and is focused on the learner's experience with horses. Drawing on the historical use of equines in the…

  3. Learning democracy in a Swedish gamers’ association: Representative democracy as experiential knowledge in a liquid civil society

    Directory of Open Access Journals (Sweden)

    Tobias Harding

    2011-10-01

    Full Text Available To explore the role of civil society organizations in learning democracy this articlecombines the concept of democracy as 'phronesis' with neo-institutional theory, as well as with Hannah Pitkin's concepts of representation. It presents a case study (based on qualitative research of how democracy is learned in SVEROK, a Swedish youth organization focusing on activities such as computer and role-playing games, activities often associated with informal organization. In SVEROK they are organized in an organization sharing many features with established Swedish organizations, including hierarchic formal representative democracy. The norm in SVEROK is a pragmatic organizational knowledge focusing on substantive and formal representation. Organized education plays only a limited role. Learning is typically informal and experience-based. An organization similar to earlier national organizations is createdby self-organized and self-governing associations in government-supported cooperation. The case study supports Theda Skocpol's argument that organizationalstructure is vital to democratic learning.

  4. A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Simon Baron-Cohen

    Full Text Available Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419 versus low (n = 183 mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10(-5, 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10(-6. In this analysis, one of the SNPs (rs789859 showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115 were nominally significant (lowest p-value 3.278 × 10(-4. Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64. The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.

  5. A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: a preliminary study.

    Science.gov (United States)

    Baron-Cohen, Simon; Murphy, Laura; Chakrabarti, Bhismadev; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Warrier, Varun

    2014-01-01

    Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10(-5), 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10(-6)). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10(-4)). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.

  6. Functional neuroanatomy associated with the expression of distinct movement kinematics in motor sequence learning.

    Science.gov (United States)

    Orban, P; Peigneux, P; Lungu, O; Debas, K; Barakat, M; Bellec, P; Benali, H; Maquet, P; Doyon, J

    2011-04-14

    A broad range of motor skills, such as speech and writing, evolves with the ability to articulate elementary motor movements into novel sequences that come to be performed smoothly through practice. Neuroimaging studies in humans have demonstrated the involvement of the cerebello-cortical and striato-cortical motor loops in the course of motor sequence learning. Nonetheless, the nature of the improvement and brain mechanisms underlying different parameters of movement kinematics are not yet fully ascertained. We aimed at dissociating the cerebral substrates related to the increase in performance on two kinematic indices: velocity, that is the speed with which each single movement in the sequence is produced, and transitions, that is the duration of the gap between these individual movements. In this event-related fMRI experiment, participants practiced an eight-element sequence of finger presses on a keypad which allowed to record those kinematic movement parameters. Velocity was associated with activations in the ipsilateral spinocerebellum (lobules 4-5, 8 and medial lobule 6) and in the contralateral primary motor cortex. Transitions were associated with increased activity in the neocerebellum (lobules 6 bilaterally and lobule 4-5 ipsilaterally), as well as with activations within the right and left putamen and a broader bilateral network of motor cortical areas. These findings indicate that, rather than being the product of a single mechanism, the general improvement in motor performance associated with early motor sequence learning arises from at least two distinct kinematic processes, whose behavioral expressions are supported by partially overlapping and segregated brain networks. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Grapheme learning and grapheme-color synesthesia: Toward a comprehensive model of grapheme-color association

    Directory of Open Access Journals (Sweden)

    Michiko eAsano

    2013-11-01

    Full Text Available Recent progress in grapheme-color synesthesia research has revealed that certain regularities, as well as individual differences, figure into grapheme-color associations. Although several factors are known to regulate grapheme-color associations, the impact of factors, including their interrelationships, on synesthesia remains unclear. We investigated determinants of synesthetic color for graphemes (characters, letters of Hiragana, a phonetic script in the Japanese language, and the English alphabet. Results revealed that grapheme ordinality was the strongest predictor of synesthetic colors for Hiragana characters, followed by character sound, and visual shape. Ordinality and visual shapes also significantly predicted synesthetic colors for English alphabet letters, however, sounds did not. The relative impact of grapheme properties on grapheme-color associations and the differences between these two writing systems are accounted for by considering the way graphemes are processed in the brain and introduced during an individual's development. A new model is proposed which takes into account the developmental process of grapheme learning. The model provides comprehensive explanation of synesthetic grapheme-color association determination processes, including the differences across writing systems.

  8. Grapheme learning and grapheme-color synesthesia: toward a comprehensive model of grapheme-color association.

    Science.gov (United States)

    Asano, Michiko; Yokosawa, Kazuhiko

    2013-01-01

    Recent progress in grapheme-color synesthesia research has revealed that certain regularities, as well as individual differences, figure into grapheme-color associations. Although several factors are known to regulate grapheme-color associations, the impact of factors, including their interrelationships, on synesthesia remains unclear. We investigated determinants of synesthetic color for graphemes (characters, letters) of Hiragana, a phonetic script in the Japanese language, and the English alphabet. Results revealed that grapheme ordinality was the strongest predictor of synesthetic colors for Hiragana characters, followed by character sound, and visual shape. Ordinality and visual shapes also significantly predicted synesthetic colors for English alphabet letters, however, sounds did not. The relative impact of grapheme properties on grapheme-color associations and the differences between these two writing systems are accounted for by considering the way graphemes are processed in the brain and introduced during an individual's development. A new model is proposed which takes into account the developmental process of grapheme learning. The model provides comprehensive explanation of synesthetic grapheme-color association determination processes, including the differences across writing systems.

  9. Mutation at the TrkB PLC{gamma}-docking site affects hippocampal LTP and associative learning in conscious mice.

    Science.gov (United States)

    Gruart, Agnès; Sciarretta, Carla; Valenzuela-Harrington, Mauricio; Delgado-García, José M; Minichiello, Liliana

    2007-01-01

    Previous in vitro studies have characterized the electrophysiological properties and molecular events associated with long-term potentiation (LTP), but as yet there are no in vivo data from molecular-level dissection that directly identify LTP as the biological substrate for learning and memory. Understanding whether the molecular pathways required for learning are also those generating LTP when measured directly on the relevant circuit of a learning animal is clearly important, although so far has proved technically difficult. Here, for the first time, we combine highly defined genetic mouse models with behavior and in vivo recordings. We recorded the activity-dependent changes taking place at the CA3-CA1 synapses during the acquisition and extinction of a simple form of an associative learning task in mice carrying point mutations on specific docking sites of TrkB receptors (trkB(SHC), trkB(PLC)). The learning task consisted of a classical eyeblink conditioning using a trace paradigm. The conditioned stimulus (CS) consisted of a tone and was followed by a periorbital electrical shock as an unconditioned stimulus (US). The US started 500 msec after the end of the CS. We show that a single pulse presented to the Schaffer collateral-commissural pathway during the CS-US interval evoked a monosynaptic field excitatory postsynaptic potential (fEPSP) at the CA1 pyramidal cells, with a slope linearly related to learning evolution in controls and trkB(SHC) mutants, but the relationship was impaired in trkB(PLC) mice. These data support a link between the PLCgamma-docking site downstream of TrkB and the activity-dependent synaptic changes evoked at the CA3-CA1 synapses during associative learning in conscious mice, and indicate that TrkB PLCgamma-site-activated molecular pathway(s) underlie both associative learning and LTP triggered at the CA3-CA1 synapse.

  10. Stress impairs retrieval of extinguished and unextinguished associations in a predictive learning task.

    Science.gov (United States)

    Hamacher-Dang, Tanja C; Uengoer, Metin; Wolf, Oliver T

    2013-09-01

    Recovery effects which can frequently be observed after a seemingly successful extinction procedure indicate that extinction does not lead to an erasure of the memory trace. Investigating factors which modulate the retrieval of extinction memory is highly relevant for basic science and clinical applications alike. This study investigated the effect of stress on the retrieval of extinguished and unextinguished stimulus-outcome associations in a predictive learning task. In this task, participants had to imagine being the doctor of a patient who sometimes suffers from stomach trouble after meals in his favorite restaurants. They were presented with different food stimuli while having to predict the occurrence or non-occurrence of stomach trouble. As extinction memory is modulated by context, we manipulated contextual cues so that initial acquisition of critical associations occurred in context (restaurant frame) A on day one, whereas associations were reversed in context B (extinction, day two). On the third day, participants were either stressed (exposed to the socially evaluated cold pressor task (SECPT); n=21) or subjected to a control condition (n=21) shortly before extinction memory retrieval was tested (in contexts A and B). Salivary cortisol and blood pressure measures as well as subjective ratings indicated that stress induction was successful. When retrieval of extinguished associations was tested on day three, participants' predictions reflected a renewal effect, as indicated by stronger recovery of responding in the acquisition context compared to the extinction context. Compared to controls, stressed participants showed impaired retrieval of extinguished and unextinguished associations. Contextual cues abolished the stress-induced memory impairment for unextinguished but not for extinguished associations. These findings might help to explain why stress leads to the reoccurrence of symptoms in affective disorders. Copyright © 2013 Elsevier Inc. All rights

  11. The relationship between visitor characteristics and learning-associated behaviors in a science museum discovery space

    Science.gov (United States)

    Lozowski Boisvert, Dorothy; Jochums Slez, Brenda

    As informal educational institutions, science museums must do more than entertain and amaze visitors. Museum educators must design exhibits that attract and hold the attention of visitors long enough so that the visitors become engaged with the exhibits and learn from them. In order for museum educators to develop such exhibits, more information is needed about the variables associated with learning in museums. This study contributes to the growing body of knowledge on informal education by examining the relationship between visitor characteristics and attraction, holding power, and visitor engagement.One hundred fifty-four visitors to a science museum discovery space were observed as they interacted freely with the exhibits. Trained volunteers recorded the subjects' movements including the exhibits at which they stopped (attraction), the amount of time spent at each exhibit (holding power), and behaviors indicative of subjects' engagement levels with the exhibits. Data indicated significant differences between age group and the holding power of exhibits. Though not significant statistically, a similar trend was noted between age group and attraction and visitor engagement level. No significant differences were found between gender or social grouping and attraction, holding power, or engagement levels.

  12. Associative learning versus fear habituation as predictors of long-term extinction retention.

    Science.gov (United States)

    Brown, Lily A; LeBeau, Richard T; Chat, Ka Yi; Craske, Michelle G

    2017-06-01

    Violation of unconditioned stimulus (US) expectancy during extinction training may enhance associative learning and result in improved long-term extinction retention compared to within-session habituation. This experiment examines variation in US expectancy (i.e., expectancy violation) as a predictor of long-term extinction retention. It also examines within-session habituation of fear-potentiated startle (electromyography, EMG) and fear of conditioned stimuli (CS) throughout extinction training as predictors of extinction retention. Participants (n = 63) underwent fear conditioning, extinction and retention and provided continuous ratings of US expectancy and EMG, as well as CS fear ratings before and after each phase. Variation in US expectancy throughout extinction and habituation of EMG and fear was entered into a regression as predictors of retention and reinstatement of levels of expectancy and fear. Greater variation in US expectancy throughout extinction training was significantly predictive of enhanced extinction performance measured at retention test, although not after reinstatement test. Slope of EMG and CS fear during extinction did not predict retention of extinction. Within-session habituation of EMG and self-reported fear is not sufficient for long-term retention of extinction learning, and models emphasizing expectation violation may result in enhanced outcomes.

  13. Visual diet versus associative learning as mechanisms of change in body size preferences.

    Directory of Open Access Journals (Sweden)

    Lynda G Boothroyd

    Full Text Available Systematic differences between populations in their preferences for body size may arise as a result of an adaptive 'prepared learning' mechanism, whereby cues to health or status in the local population are internalized and affect body preferences. Alternatively, differences between populations may reflect their 'visual diet' as a cognitive byproduct of mere exposure. Here we test the relative importance of these two explanations for variation in body preferences. Two studies were conducted where female observers were exposed to pictures of high or low BMI women which were either aspirational (healthy, attractive models in high status clothes or non-aspirational (eating disordered patients in grey leotards, or to combinations thereof, in order to manipulate their body-weight preferences which were tested at baseline and at post-test. Overall, results showed good support for visual diet effects (seeing a string of small or large bodies resulted in a change from pre- to post-test whether the bodies were aspirational or not and also some support for the associative learning explanation (exposure to aspirational images of overweight women induced a towards preferring larger bodies, even when accompanied by equal exposure to lower weight bodies in the non-aspirational category. Thus, both influences may act in parallel.

  14. Transformed Telepresence and Its Association with Learning in Computer-Supported Collaborative Learning: A Case Study in English Learning and Its Evaluation

    Science.gov (United States)

    Ting, Yu-Liang; Tai, Yaming; Chen, Jun-Horng

    2017-01-01

    Telepresence has been playing an important role in a mediated learning environment. However, the current design of telepresence seems to be dominated by the emulation of physical human presence. With reference to social constructivism learning and the recognition of individuals as intelligent entities, this study explored the transformation of…

  15. Application of two machine learning algorithms to genetic association studies in the presence of covariates.

    Science.gov (United States)

    Nonyane, Bareng A S; Foulkes, Andrea S

    2008-11-14

    Population-based investigations aimed at uncovering genotype-trait associations often involve high-dimensional genetic polymorphism data as well as information on multiple environmental and clinical parameters. Machine learning (ML) algorithms offer a straightforward analytic approach for selecting subsets of these inputs that are most predictive of a pre-defined trait. The performance of these algorithms, however, in the presence of covariates is not well characterized. In this manuscript, we investigate two approaches: Random Forests (RFs) and Multivariate Adaptive Regression Splines (MARS). Through multiple simulation studies, the performance under several underlying models is evaluated. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is also provided. Consistent with more traditional regression modeling theory, our findings highlight the importance of considering the nature of underlying gene-covariate-trait relationships before applying ML algorithms, particularly when there is potential confounding or effect mediation.

  16. Sex-specific associative learning cues and inclusive fitness benefits in the Seychelles warbler.

    Science.gov (United States)

    Richardson, D S; Burke, T; Komdeurs, J

    2003-09-01

    In cooperative breeding vertebrates, indirect fitness benefits would be maximized by subordinates that accurately assess their relatedness to group offspring and preferentially help more closely related kin. In the Seychelles warbler (Acrocephalus sechellensis), we found a positive relationship between subordinate-nestling kinship (determined using microsatellite marker genotypes) and provisioning rates, but only for female subordinates. Female subordinates that helped were significantly more related to the nestlings than were nonhelpers, and the decision to help appears to be based on associative learning cues. High levels of female infidelity means that subordinates cannot trust their legitimacy through the male line, consequently they appear to use the continued presence of the primary female, but not the primary male, as a reliable cue to determine when to feed nestlings. By using effective discrimination, female subordinates are able to maximize the indirect benefits gained within a cooperative breeding system otherwise driven primarily by direct breeding benefits.

  17. Application of two machine learning algorithms to genetic association studies in the presence of covariates

    Directory of Open Access Journals (Sweden)

    Foulkes Andrea S

    2008-11-01

    Full Text Available Abstract Background Population-based investigations aimed at uncovering genotype-trait associations often involve high-dimensional genetic polymorphism data as well as information on multiple environmental and clinical parameters. Machine learning (ML algorithms offer a straightforward analytic approach for selecting subsets of these inputs that are most predictive of a pre-defined trait. The performance of these algorithms, however, in the presence of covariates is not well characterized. Methods and Results In this manuscript, we investigate two approaches: Random Forests (RFs and Multivariate Adaptive Regression Splines (MARS. Through multiple simulation studies, the performance under several underlying models is evaluated. An application to a cohort of HIV-1 infected individuals receiving anti-retroviral therapies is also provided. Conclusion Consistent with more traditional regression modeling theory, our findings highlight the importance of considering the nature of underlying gene-covariate-trait relationships before applying ML algorithms, particularly when there is potential confounding or effect mediation.

  18. Retrieval cues that trigger reconsolidation of associative fear memory are not necessarily an exact replica of the original learning experience

    Directory of Open Access Journals (Sweden)

    Marieke eSoeter

    2015-05-01

    Full Text Available Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus. A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15, the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15, an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.

  19. Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis.

    Science.gov (United States)

    Ulrich, Reiner; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2010-01-01

    Theiler's murine encephalomyelitis is an experimentally virus-induced inflammatory demyelinating disease of the spinal cord, displaying clinical and pathological similarities to chronic progressive multiple sclerosis. The aim of this study was to identify pathways associated with chronic demyelination using an assumption-free combined microarray and immunohistology approach. Movement control as determined by rotarod assay significantly worsened in Theiler's murine encephalomyelitis -virus-infected SJL/J mice from 42 to 196 days after infection (dpi). In the spinal cords, inflammatory changes were detected 14 to 196 dpi, and demyelination progressively increased from 42 to 196 dpi. Microarray analysis revealed 1001 differentially expressed genes over the study period. The dominating changes as revealed by k-means and functional annotation clustering included up-regulations related to intrathecal antibody production and antigen processing and presentation via major histocompatibility class II molecules. A random forest machine learning algorithm revealed that down-regulated lipid and cholesterol biosynthesis, differentially expressed neurite morphogenesis and up-regulated toll-like receptor-4-induced pathways were intimately associated with demyelination as measured by immunohistology. Conclusively, although transcriptional changes were dominated by the adaptive immune response, the main pathways associated with demyelination included up-regulation of toll-like receptor 4 and down-regulation of cholesterol biosynthesis. Cholesterol biosynthesis is a rate limiting step of myelination and its down-regulation is suggested to be involved in chronic demyelination by an inhibition of remyelination.

  20. Preferential Arc transcription at rest in the active ensemble during associative learning.

    Science.gov (United States)

    Hashikawa, Koichi; Matsuki, Norio; Nomura, Hiroshi

    2011-05-01

    Information processing in the central nervous system (CNS) during periods of rest is crucial for lasting memories but the precise off-line neuronal population activity that contributes to long-term memory formation remains unclear. This pattern of neuronal activity during rest triggers transcription of immediate early genes such as activity regulated cytoskeletal gene (Arc). We compared the active neuronal population in the lateral amygdala of C57BL/6J mice during fear conditioning and rest periods using a large scale imaging technique, Arc cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). We found that the neuronal population transcribing Arc during fear conditioning was more similar to that the population transcribing Arc after fear conditioning than before fear conditioning. The overlapping population was larger in conditioned mice that acquired associative memory than in unshocked mice and in latent inhibited mice that received shocks but did not form associative memory. Moreover, these results were confirmed using Arc/Homer 1a catFISH. Our findings indicate that Arc is preferentially transcribed in neurons that are active during fear conditioning after associative learning. This preferential transcription may contribute to the formation of long-lasting memory. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals.

    Science.gov (United States)

    Lancaster, Thomas M; Ihssen, Niklas; Brindley, Lisa M; Tansey, Katherine E; Mantripragada, Kiran; O'Donovan, Michael C; Owen, Michael J; Linden, David E J

    2016-02-01

    A substantial proportion of schizophrenia liability can be explained by additive genetic factors. Risk profile scores (RPS) directly index risk using a summated total of common risk variants weighted by their effect. Previous studies suggest that schizophrenia RPS predict alterations to neural networks that support working memory and verbal fluency. In this study, we apply schizophrenia RPS to fMRI data to elucidate the effects of polygenic risk on functional brain networks during a probabilistic-learning neuroimaging paradigm. The neural networks recruited during this paradigm have previously been shown to be altered to unmedicated schizophrenia patients and relatives of schizophrenia patients, which may reflect genetic susceptibility. We created schizophrenia RPS using summary data from the Psychiatric Genetic Consortium (Schizophrenia Working Group) for 83 healthy individuals and explore associations between schizophrenia RPS and blood oxygen level dependency (BOLD) during periods of choice behavior (switch-stay) and reflection upon choice outcome (reward-punishment). We show that schizophrenia RPS is associated with alterations in the frontal pole (PWHOLE-BRAIN-CORRECTED  = 0.048) and the ventral striatum (PROI-CORRECTED  = 0.036), during choice behavior, but not choice outcome. We suggest that the common risk variants that increase susceptibility to schizophrenia can be associated with alterations in the neural circuitry that support the processing of changing reward contingencies. Hum Brain Mapp 37:491-500, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Altered activation in association with reward-related trial-and-error learning in patients with schizophrenia.

    Science.gov (United States)

    Koch, Kathrin; Schachtzabel, Claudia; Wagner, Gerd; Schikora, Julia; Schultz, Christoph; Reichenbach, Jürgen R; Sauer, Heinrich; Schlösser, Ralf G M

    2010-03-01

    In patients with schizophrenia, the ability to learn from reinforcement is known to be impaired. The present fMRI study aimed at investigating the neural correlates of reinforcement-related trial-and-error learning in 19 schizophrenia patients and 20 healthy volunteers. A modified gambling paradigm was applied where each cue indicated a subsequent number which had to be guessed. In order to vary predictability, the cue-number associations were based on different probabilities (50%, 81%, 100%) which the participants were not informed about. Patients' ability to learn contingencies on the basis of feedback and reward was significantly impaired. While in healthy volunteers increasing predictability was associated with decreasing activation in a fronto-parietal network, this decrease was not detectable in patients. Analysis of expectancy-related reinforcement processing yielded a hypoactivation in putamen, dorsal cingulate and superior frontal cortex in patients relative to controls. Present results indicate that both reinforcement-associated processing and reinforcement learning might be impaired in the context of the disorder. They moreover suggest that the activation deficits which patients exhibit in association with the processing of reinforcement might constitute the basis for the learning deficits and their accompanying activation alterations. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  3. Hippocampal electrical stimulation disrupts associative learning when targeted at dentate spikes.

    Science.gov (United States)

    Nokia, Miriam S; Gureviciene, Irina; Waselius, Tomi; Tanila, Heikki; Penttonen, Markku

    2017-07-15

    Dentate spikes are fast fluctuations of hilar local-field potentials that take place during rest and are thought to reflect input arriving from the entorhinal cortex to the hippocampus. During dentate spikes, neuronal firing in hippocampal input (dentate gyrus) and output (CA1/CA3) regions is uncoupled. To date, the behavioural significance of dentate spikes is unknown. Here, we provide evidence that disrupting the dentate spike-related uncoupling of the dentate gyrus and the CA1/CA3 subregions for 1 h after training retards associative learning. We suggest dentate spikes play a significant role in memory consolidation. Hippocampal electrophysiological oscillations, namely theta and ripples, have been implicated in encoding and consolidation of new memories, respectively. According to existing literature, hippocampal dentate spikes are prominent, short-duration (<30 ms), large-amplitude (∼2-4 mV) fluctuations in hilar local-field potentials that take place during awake immobility and sleep. Interestingly, previous studies indicate that during dentate spikes dentate gyrus granule cells increase their firing while firing of CA1 pyramidal cells are suppressed, thus resulting in momentary uncoupling of the two hippocampal subregions. To date, the behavioural significance of dentate spikes is unknown. Here, to study the possible role of dentate spikes in learning, we trained adult male Sprague-Dawley rats in trace eyeblink classical conditioning. For 1 h immediately following each conditioning session, one group of animals received hippocampal stimulation via the ventral hippocampal commissure (vHC) contingent on dentate spikes to disrupt the uncoupling between the dentate gyrus and the CA1 subregions. A yoked control group was stimulated during immobility, irrespective of brain state, and another control group was not stimulated at all. As a result, learning was impaired only in the group where vHC stimulation was administered contingent on dentate spikes. Our

  4. Deep brain stimulation of the subthalamic nucleus selectively improves learning of weakly associated cue combinations during probabilistic classification learning in Parkinson's disease.

    Science.gov (United States)

    Wilkinson, Leonora; Beigi, Mazda; Lagnado, David A; Jahanshahi, Marjan

    2011-05-01

    Evidence from functional imaging and clinical studies on patients with Parkinson's disease (PD) or Huntington's disease (HD) suggests that the basal ganglia play a crucial role in learning on the weather prediction task (WPT). Using deep brain stimulation (DBS) on versus off methodology, the aim of this study was to investigate the effect of altering the output from the basal ganglia to the prefrontal cortex on implicit probabilistic classification learning on the WPT by patients with PD. Eleven PD patients with bilateral DBS of the subthalamic nucleus (STN) and 13 matched controls completed 200 trials of the WPT on 2 separate occasions, with the patients tested with DBS of the STN on or off. DBS of the STN had no effect on overall WPT learning. However, STN DBS selectively improved implicit learning of cue combinations that were weakly (implicitly), rather than strongly (explicitly), associated with the WPT outcome. Results suggest that the STN plays a role in implicit probabilistic classification learning by altering basal ganglia output to the frontal cortex.

  5. Association of learning styles with research self-efficacy: study of short-term research training program for medical students.

    Science.gov (United States)

    Dumbauld, Jill; Black, Michelle; Depp, Colin A; Daly, Rebecca; Curran, Maureen A; Winegarden, Babbi; Jeste, Dilip V

    2014-12-01

    With a growing need for developing future physician scientists, identifying characteristics of medical students who are likely to benefit from research training programs is important. This study assessed if specific learning styles of medical students, participating in federally funded short-term research training programs, were associated with research self-efficacy, a potential predictor of research career success. Seventy-five first-year medical students from 28 medical schools, selected to participate in two competitive NIH-supported summer programs for research training in aging, completed rating scales to evaluate learning styles at baseline, and research self-efficacy before and after training. We examined associations of individual learning styles (visual-verbal, sequential-global, sensing-intuitive, and active-reflective) with students' gender, ranking of medical school, and research self-efficacy. Research self-efficacy improved significantly following the training programs. Students with a verbal learning style reported significantly greater research self-efficacy at baseline, while visual, sequential, and intuitive learners demonstrated significantly greater increases in research self-efficacy from baseline to posttraining. No significant relationships were found between learning styles and students' gender or ranking of their medical school. Assessments of learning styles may provide useful information to guide future training endeavors aimed at developing the next generation of physician-scientists. © 2014 Wiley Periodicals, Inc.

  6. Neural changes associated to procedural learning and automatization process in Developmental Coordination Disorder and/or Developmental Dyslexia.

    Science.gov (United States)

    Biotteau, Maëlle; Péran, Patrice; Vayssière, Nathalie; Tallet, Jessica; Albaret, Jean-Michel; Chaix, Yves

    2017-03-01

    Recent theories hypothesize that procedural learning may support the frequent overlap between neurodevelopmental disorders. The neural circuitry supporting procedural learning includes, among others, cortico-cerebellar and cortico-striatal loops. Alteration of these loops may account for the frequent comorbidity between Developmental Coordination Disorder (DCD) and Developmental Dyslexia (DD). The aim of our study was to investigate cerebral changes due to the learning and automatization of a sequence learning task in children with DD, or DCD, or both disorders. fMRI on 48 children (aged 8-12) with DD, DCD or DD + DCD was used to explore their brain activity during procedural tasks, performed either after two weeks of training or in the early stage of learning. Firstly, our results indicate that all children were able to perform the task with the same level of automaticity, but recruit different brain processes to achieve the same performance. Secondly, our fMRI results do not appear to confirm Nicolson and Fawcett's model. The neural correlates recruited for procedural learning by the DD and the comorbid groups are very close, while the DCD group presents distinct characteristics. This provide a promising direction on the neural mechanisms associated with procedural learning in neurodevelopmental disorders and for understanding comorbidity. Published by Elsevier Ltd.

  7. Verbal and novel multisensory associative learning in adults [v1; ref status: indexed, http://f1000r.es/p4

    OpenAIRE

    Joanne M Fifer; Ayla Barutchu; Shivdasani, Mohit N.; Crewther, Sheila G

    2013-01-01

    To date, few studies have focused on the behavioural differences between the learning of multisensory auditory-visual and intra-modal associations. More specifically, the relative benefits of novel auditory-visual and verbal-visual associations for learning have not been directly compared. In Experiment 1, 20 adult volunteers completed three paired associate learning tasks: non-verbal novel auditory-visual (novel-AV), verbal-visual (verbal-AV; using pseudowords), and visual-visual (shape-VV)....

  8. Verbal and novel multisensory associative learning in adults [v2; ref status: indexed, http://f1000r.es/12s

    OpenAIRE

    Joanne M Fifer; Ayla Barutchu; Shivdasani, Mohit N.; Crewther, Sheila G

    2013-01-01

    To date, few studies have focused on the behavioural differences between the learning of multisensory auditory-visual and intra-modal associations. More specifically, the relative benefits of novel auditory-visual and verbal-visual associations for learning have not been directly compared. In Experiment 1, 20 adult volunteers completed three paired associate learning tasks: non-verbal novel auditory-visual (novel-AV), verbal-visual (verbal-AV; using pseudowords), and visual-visual (shape-VV)....

  9. Learning

    Directory of Open Access Journals (Sweden)

    Mohsen Laabidi

    2014-01-01

    Full Text Available Nowadays learning technologies transformed educational systems with impressive progress of Information and Communication Technologies (ICT. Furthermore, when these technologies are available, affordable and accessible, they represent more than a transformation for people with disabilities. They represent real opportunities with access to an inclusive education and help to overcome the obstacles they met in classical educational systems. In this paper, we will cover basic concepts of e-accessibility, universal design and assistive technologies, with a special focus on accessible e-learning systems. Then, we will present recent research works conducted in our research Laboratory LaTICE toward the development of an accessible online learning environment for persons with disabilities from the design and specification step to the implementation. We will present, in particular, the accessible version “MoodleAcc+” of the well known e-learning platform Moodle as well as new elaborated generic models and a range of tools for authoring and evaluating accessible educational content.

  10. Online Learning Behaviors for Radiology Interns Based on Association Rules and Clustering Technique

    Science.gov (United States)

    Chen, Hsing-Shun; Liou, Chuen-He

    2014-01-01

    In a hospital, clinical teachers must also care for patients, so there is less time for the teaching of clinical courses, or for discussing clinical cases with interns. However, electronic learning (e-learning) can complement clinical skills education for interns in a blended-learning process. Students discuss and interact with classmates in an…

  11. Associations between Chinese EFL Graduate Students' Beliefs and Language Learning Strategies

    Science.gov (United States)

    Tang, Mailing; Tian, Jianrong

    2015-01-01

    This study, using Horwitz's Beliefs about Language Learning Inventory and Oxford's Strategy Inventory for Language Learning, investigated learners' beliefs about language learning and their choice of strategy categories among 546 graduate students in China. The correlation between learners' beliefs and their strategy categories use was examined.…

  12. Effects of errorless and errorful face-name associative learning in moderate to severe dementia.

    NARCIS (Netherlands)

    Ruis, C.; Kessels, R.P.C.

    2005-01-01

    BACKGROUND AND AIMS: The prevention of errors during learning has been found to be effective in overcoming memory problems in patients with amnesia compared with errorful or trial-and-error learning, possibly as a result of intact implicit memory function. Although errorless learning is a clinically

  13. Associative learning in two closely related parasitoid wasps: a neuroecological approach

    NARCIS (Netherlands)

    Bleeker, M.A.K.

    2005-01-01

    Insects are useful model organisms to study learning and memory. Their brains are less complex than vertebrate brains, but the basic mechanisms of learning and memory are similar in both taxa. In this thesis I study learning and subsequent memory formation in two parasitoid wasp species that differ

  14. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Science.gov (United States)

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  15. The association between motivation, affect, and self-regulated learning when solving problems

    NARCIS (Netherlands)

    M. Baars (Marieke); L. Wijnia (Lisette); G.W.C. Paas (Fred)

    2017-01-01

    textabstractSelf-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a

  16. Service Learning in Public Health: Exploring the Benefit to Host Agencies in CDC's Public Health Associate Program.

    Science.gov (United States)

    Wigington, Corinne J; Sobelson, Robyn K; Duncan, Heather L; Young, Andrea C

    The "learn by doing" approach to training is common in the public health field and is a core component of service-learning programs. Trainee satisfaction, learning, and application of learning have been studied. What is less understood is the perspective of the agencies that host trainees. This study aimed to identify whether and how the Centers for Disease Control and Prevention's Public Health Associate Program (PHAP) adds value to the agencies that host trainees during 2-year field assignments. An exploratory, qualitative study design consisting of 9 semistructured telephone interviews with PHAP host agency supervisors was used. Results suggested that PHAP increased host agencies' capacity by assigning capable trainees to host agencies. Trainees made quality contributions that led to agency- and/or community-wide improvements and positively affected the agencies' culture. Further evaluation of the host perspective is necessary; as coupled with the trainee's perspective, it will provide a more holistic understanding of program value.

  17. Improved children's motor learning of the basketball free shooting pattern by associating subjective error estimation and extrinsic feedback.

    Science.gov (United States)

    Silva, Leandro de Carvalho da; Pereira-Monfredini, Carla Ferro; Teixeira, Luis Augusto

    2017-09-01

    This study aimed at assessing the interaction between subjective error estimation and frequency of extrinsic feedback in the learning of the basketball free shooting pattern by children. 10- to 12-year olds were assigned to 1 of 4 groups combining subjective error estimation and relative frequency of extrinsic feedback (33% × 100%). Analysis of performance was based on quality of movement pattern. Analysis showed superior learning of the group combining error estimation and 100% feedback frequency, both groups receiving feedback on 33% of trials achieved intermediate results, and the group combining no requirement of error estimation and 100% feedback frequency had the poorest learning. Our results show the benefit of subjective error estimation in association with high frequency of extrinsic feedback in children's motor learning of a sport motor pattern.

  18. International Association for Cognitive Education and Psychology. European Regional Conference: Cognitive Development and Learning from Kindergarten to University. Program and Abstracts

    OpenAIRE

    Hessels, Marco G.P.

    2012-01-01

    Abstracts and program of the 2012 European Regional Conference "Cognitive development and learning from kindergarten to university" of the International Association for Cognitive Education and Psychology.

  19. tDCS Over the Motor Cortex Shows Differential Effects on Action and Object Words in Associative Word Learning in Healthy Aging.

    Science.gov (United States)

    Branscheidt, Meret; Hoppe, Julia; Freundlieb, Nils; Zwitserlood, Pienie; Liuzzi, Gianpiero

    2017-01-01

    Healthy aging is accompanied by a continuous decline in cognitive functions. For example, the ability to learn languages decreases with age, while the neurobiological underpinnings for the decline in learning abilities are not known exactly. Transcranial direct current stimulation (tDCS), in combination with appropriate experimental paradigms, is a well-established technique to investigate the mechanisms of learning. Based on previous results in young adults, we tested the suitability of an associative learning paradigm for the acquisition of action- and object-related words in a cohort of older participants. We applied tDCS to the motor cortex (MC) and hypothesized an involvement of the MC in learning action-related words. To test this, a cohort of 18 healthy, older participants (mean age 71) engaged in a computer-assisted associative word-learning paradigm, while tDCS stimulation (anodal, cathodal, sham) was applied to the left MC. Participants' task performance was quantified in a randomized, cross-over experimental design. Participants successfully learned novel words, correctly translating 39.22% of the words after 1 h of training under sham stimulation. Task performance correlated with scores for declarative verbal learning and logical reasoning. Overall, tDCS did not influence associative word learning, but a specific influence was observed of cathodal tDCS on learning of action-related words during the NMDA-dependent stimulation period. Successful learning of a novel lexicon with associative learning in older participants can only be achieved when the learning procedure is changed in several aspects, relative to young subjects. Learning success showed large inter-individual variance which was dependent on non-linguistic as well as linguistic cognitive functions. Intriguingly, cathodal tDCS influenced the acquisition of action-related words in the NMDA-dependent stimulation period. However, the effect was not specific for the associative learning principle

  20. tDCS Over the Motor Cortex Shows Differential Effects on Action and Object Words in Associative Word Learning in Healthy Aging

    Directory of Open Access Journals (Sweden)

    Meret Branscheidt

    2017-05-01

    Full Text Available Healthy aging is accompanied by a continuous decline in cognitive functions. For example, the ability to learn languages decreases with age, while the neurobiological underpinnings for the decline in learning abilities are not known exactly. Transcranial direct current stimulation (tDCS, in combination with appropriate experimental paradigms, is a well-established technique to investigate the mechanisms of learning. Based on previous results in young adults, we tested the suitability of an associative learning paradigm for the acquisition of action- and object-related words in a cohort of older participants. We applied tDCS to the motor cortex (MC and hypothesized an involvement of the MC in learning action-related words. To test this, a cohort of 18 healthy, older participants (mean age 71 engaged in a computer-assisted associative word-learning paradigm, while tDCS stimulation (anodal, cathodal, sham was applied to the left MC. Participants’ task performance was quantified in a randomized, cross-over experimental design. Participants successfully learned novel words, correctly translating 39.22% of the words after 1 h of training under sham stimulation. Task performance correlated with scores for declarative verbal learning and logical reasoning. Overall, tDCS did not influence associative word learning, but a specific influence was observed of cathodal tDCS on learning of action-related words during the NMDA-dependent stimulation period. Successful learning of a novel lexicon with associative learning in older participants can only be achieved when the learning procedure is changed in several aspects, relative to young subjects. Learning success showed large inter-individual variance which was dependent on non-linguistic as well as linguistic cognitive functions. Intriguingly, cathodal tDCS influenced the acquisition of action-related words in the NMDA-dependent stimulation period. However, the effect was not specific for the associative

  1. Dissociable effects of reward on attentional learning: from passive associations to active monitoring.

    Science.gov (United States)

    Della Libera, Chiara; Perlato, Andrea; Chelazzi, Leonardo

    2011-04-29

    Visual selective attention (VSA) is the cognitive function that regulates ongoing processing of retinal input in order for selected representations to gain privileged access to perceptual awareness and guide behavior, facilitating analysis of currently relevant information while suppressing the less relevant input. Recent findings indicate that the deployment of VSA is shaped according to past outcomes. Targets whose selection has led to rewarding outcomes become relatively easier to select in the future, and distracters that have been ignored with higher gains are more easily discarded. Although outcomes (monetary rewards) were completely predetermined in our prior studies, participants were told that higher rewards would follow more efficient responses. In a new experiment we have eliminated the illusory link between performance and outcomes by informing subjects that rewards were randomly assigned. This trivial yet crucial manipulation led to strikingly different results. Items that were associated more frequently with higher gains became more difficult to ignore, regardless of the role (target or distracter) they played when differential rewards were delivered. Therefore, VSA is shaped by two distinct reward-related learning mechanisms: one requiring active monitoring of performance and outcome, and a second one detecting the sheer association between objects in the environment (whether attended or ignored) and the more-or-less rewarding events that accompany them.

  2. Dissociable effects of reward on attentional learning: from passive associations to active monitoring.

    Directory of Open Access Journals (Sweden)

    Chiara Della Libera

    Full Text Available Visual selective attention (VSA is the cognitive function that regulates ongoing processing of retinal input in order for selected representations to gain privileged access to perceptual awareness and guide behavior, facilitating analysis of currently relevant information while suppressing the less relevant input. Recent findings indicate that the deployment of VSA is shaped according to past outcomes. Targets whose selection has led to rewarding outcomes become relatively easier to select in the future, and distracters that have been ignored with higher gains are more easily discarded. Although outcomes (monetary rewards were completely predetermined in our prior studies, participants were told that higher rewards would follow more efficient responses. In a new experiment we have eliminated the illusory link between performance and outcomes by informing subjects that rewards were randomly assigned. This trivial yet crucial manipulation led to strikingly different results. Items that were associated more frequently with higher gains became more difficult to ignore, regardless of the role (target or distracter they played when differential rewards were delivered. Therefore, VSA is shaped by two distinct reward-related learning mechanisms: one requiring active monitoring of performance and outcome, and a second one detecting the sheer association between objects in the environment (whether attended or ignored and the more-or-less rewarding events that accompany them.

  3. Effects of Estradiol on Learned Helplessness and Associated Remodeling of Hippocampal Spine Synapses in Female Rats

    Science.gov (United States)

    Hajszan, Tibor; Szigeti-Buck, Klara; Sallam, Nermin L; Bober, Jeremy; Parducz, Arpad; MacLusky, Neil J; Leranth, Csaba; Duman, Ronald S

    2009-01-01

    Background Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in females is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant, desipramine. Considering the fact that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life may influence behavioral and synaptic responses to stress and depression. Methods Using electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n=70), under different conditions of estradiol exposure. Results Stress induced an acute and persistent loss of hippocampal spine synapses, while subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either prior to stress or prior to escape testing of nonstressed animals both increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. Conclusions These findings suggest that hippocampal spine synapse remodeling may be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression. PMID:19811775

  4. Functional Specialization within the Striatum along Both the Dorsal/Ventral and Anterior/Posterior Axes during Associative Learning via Reward and Punishment

    Science.gov (United States)

    Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E. L.

    2011-01-01

    The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what…

  5. Electrophysiological correlates of associative learning in smokers: a higher-order conditioning experiment

    Directory of Open Access Journals (Sweden)

    Littel Marianne

    2012-01-01

    Full Text Available Abstract Background Classical conditioning has been suggested to play an important role in the development, maintenance, and relapse of tobacco smoking. Several studies have shown that initially neutral stimuli that are directly paired with smoking are able to elicit conditioned responses. However, there have been few human studies that demonstrate the contribution of higher-order conditioning to smoking addiction, although it is assumed that higher-order conditioning predominates learning in the outside world. In the present study a higher-order conditioning task was designed in which brain responses of smokers and non-smokers were conditioned by pairing smoking-related and neutral stimuli (CS1smoke and CS1neutral with two geometrical figures (CS2smoke and CS2neutral. ERPs were recorded to all CSs. Results Data showed that the geometrical figure that was paired with smoking stimuli elicited significantly larger P2 and P3 waves than the geometrical figure that was paired with neutral stimuli. During the first half of the experiment this effect was only present in smokers whereas non-smokers displayed no significant differences between both stimuli, indicating that neutral cues paired with motivationally relevant smoking-related stimuli gain more motivational significance even though they were never paired directly with smoking. These conclusions are underscored by self-reported evidence of enhanced second-order conditioning in smokers. Conclusions It can be concluded that smokers show associative learning for higher-order smoking-related stimuli. The present study directly shows the contribution of higher-order conditioning to smoking addiction and is the first to reveal its electrophysiological correlates. Although results are preliminary, they may help in understanding the etiology of smoking addiction and its persistence.

  6. Electrophysiological correlates of associative learning in smokers: a higher-order conditioning experiment.

    Science.gov (United States)

    Littel, Marianne; Franken, Ingmar Ha

    2012-01-11

    Classical conditioning has been suggested to play an important role in the development, maintenance, and relapse of tobacco smoking. Several studies have shown that initially neutral stimuli that are directly paired with smoking are able to elicit conditioned responses. However, there have been few human studies that demonstrate the contribution of higher-order conditioning to smoking addiction, although it is assumed that higher-order conditioning predominates learning in the outside world. In the present study a higher-order conditioning task was designed in which brain responses of smokers and non-smokers were conditioned by pairing smoking-related and neutral stimuli (CS1smoke and CS1neutral) with two geometrical figures (CS2smoke and CS2neutral). ERPs were recorded to all CSs. Data showed that the geometrical figure that was paired with smoking stimuli elicited significantly larger P2 and P3 waves than the geometrical figure that was paired with neutral stimuli. During the first half of the experiment this effect was only present in smokers whereas non-smokers displayed no significant differences between both stimuli, indicating that neutral cues paired with motivationally relevant smoking-related stimuli gain more motivational significance even though they were never paired directly with smoking. These conclusions are underscored by self-reported evidence of enhanced second-order conditioning in smokers. It can be concluded that smokers show associative learning for higher-order smoking-related stimuli. The present study directly shows the contribution of higher-order conditioning to smoking addiction and is the first to reveal its electrophysiological correlates. Although results are preliminary, they may help in understanding the etiology of smoking addiction and its persistence.

  7. Learning-related fMRI activation associated with a rotational visuo-motor transformation.

    Science.gov (United States)

    Graydon, Francis X; Friston, Karl J; Thomas, Christopher G; Brooks, Vernon B; Menon, Ravi S

    2005-03-01

    The unique ability to learn transformed or altered visuo-motor relationships during motor learning (visuo-motor transformation learning) has engaged researchers for over a century. Compared to other forms of motor learning (e.g., sequence learning), little is known about plasticity in the cortical and/or subcortical systems involved. We used fMRI to isolate region-specific activation changes during the learning of a visuo-motor (joystick) task under a simple transformation (90 degree rotation of visual feedback). Distributed brain systems were engaged in the learning process. In particular, we found evidence of a learning-dependent transition from early activation of the posterior parietal cortex to later distributed cortico-subcortical-cerebellar responses (in the temporal and occipital cortices, basal ganglia, cerebellum and thalamus). The role of the posterior parietal cortex may relate specifically to the acquisition of the transformation, while that of the fusiform and superior temporal gyri may reflect higher level visual and visuo-spatial processing underlying consolidation. Learning-related increases in cerebellar responses are consistent with its proposed role in the acquisition of internal models of the motor apparatus. These learning-related changes suggest a role for interacting neural systems involving the co-operation of cortico-cortico, cortico-cerebellar and cortico-basal ganglia loops during visuo-motor transformation learning.

  8. KNOWLEDGE TRANSFER AND LEARNING: PROBLEMS OF KNOWLEDGE TRANSFER ASSOCIATED WITH TRYING TO SHORT-CIRCUIT THE LEARNING CYCLE

    Directory of Open Access Journals (Sweden)

    Sue Newell

    2006-11-01

    Full Text Available Knowledge is considered to be a key organizational resource in the 21st century and the knowledge management ‘movement’ has alerted organizations to the fact that they should more strategically exploit their knowledge assets. Companies are thus lured by the suggestion that they can gain competitive advantage by the more astute management of their knowledge base and in particular, by the transfer of knowledge across individuals, groups and organizational units, using IT to accomplish this. In this paper, we reflect on this common view of knowledge transfer. More specifically, we question an implication of this view - essentially the possibility of short-circuiting the learning cycle, so that individuals do not have to rely on their personal or shared experiences to identify better practices, but can learn from the codified lessons of others in IT systems. More importantly, we consider the characteristics of knowledge – that knowledge is distributed, ambiguous and disruptive – that makes its transfer highly problematic. Drawing on case research, we relate this to the learning cycle (Kolb 1984 and thereby identify barriers to knowledge transfer. We conclude by considering ways of overcoming these barriers by emphasizing the importance of social systems alongside technical systems.

  9. Associations among Attitudes, Perceived Difficulty of Learning Science, Gender, Parents' Occupation and Students' Scientific Competencies

    Science.gov (United States)

    Chi, ShaoHui; Wang, Zuhao; Liu, Xiufeng; Zhu, Lei

    2017-01-01

    This study investigated the associations among students' attitudes towards science, students' perceived difficulty of learning science, gender, parents' occupations and their scientific competencies. A sample of 1591 (720 males and 871 females) ninth-grade students from 29 junior high schools in Shanghai completed a scientific competency test and…

  10. Variation of the gene coding for DARPP-32 (PPP1R1B) and brain connectivity during associative emotional learning

    NARCIS (Netherlands)

    Curcic-Blake, Branislava; Swart, Marte; Ter Horst, Gert J.; Langers, Dave R. M.; Kema, Ido P.; Aleman, Andre

    2012-01-01

    Associative emotional learning, which is important for the social emotional functioning of individuals and is often impaired in psychiatric illnesses, is in part mediated by dopamine and glutamate pathways in the brain. The protein DARPP-32 is involved in the regulation of dopaminergic and

  11. Differential-Associative Processing or Example Elaboration: Which Strategy Is Best for Learning the Definitions of Related and Unrelated Concepts?

    Science.gov (United States)

    Hannon, Brenda

    2012-01-01

    Definitions of related concepts (e.g., "genotype-phenotype") are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning…

  12. Understanding the Association between Future Time Perspective and Self-Regulated Learning through the Lens of Self-Determination Theory

    Science.gov (United States)

    de Bilde, Jerissa; Vansteenkiste, Maarten; Lens, Willy

    2011-01-01

    The present cross-sectional research examined a process underlying the positive association between holding an extended future time perspective (FTP) and learning outcomes through the lens of self-determination theory. High school students and university students (N = 275) participated in the study. It was found that students with an extended FTP…

  13. Maximising Intercultural Learning in Short Term International Placements: Findings Associated with Orientation Programs, Guided Reflection and Immersion

    Science.gov (United States)

    Campbell, Coral J. L.; Walta, Caroline

    2015-01-01

    Short-term international practicum experience is now a feature of many university education programs in Australia in an attempt to engage students with the growing multi-cultural aspects of Australian life. The stated purposes of such practicum experiences generally highlight intercultural learning, which is associated with the development of…

  14. Transitions between Short-Term and Long-Term Memory in Learning Meaningful Unrelated Paired Associates Using Computer Based Drills.

    Science.gov (United States)

    Goldenberg, Tzvika Y.; Turnure, James E.

    1989-01-01

    Discussion of short-term and long-term memory in learning paired associates focuses on two microcomputer-based instructional design experiments with eleventh and twelfth graders that were modeled after traditional drill and practice routines. Research questions are presented, treatment conditions are explained, and additional research is…

  15. Are Cardiovascular Risk Factors Associated with Verbal Learning and Memory Impairment in Patients with Schizophrenia? A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Christophe Lancon

    2012-01-01

    Full Text Available Objective. The aim of this study is to assess the relationships of cardiovascular risk factors with verbal learning and memory in patients with schizophrenia. Methods and Design. cross-sectional study. Inclusion Criteria. Diagnosis of schizophrenia according to the DSM-IV-TR criteria. Data Collection. Sociodemographic information, clinical characteristics, anthropometric measurements, blood tests, and episodic memory using the California Verbal Learning Test (CVLT. Analysis. A multivariate analysis using multiple linear regressions was performed to determine variables that are potentially associated with verbal learning and memory. Results. One hundred and sixty-eight outpatients participated in our study. An association was found between the metabolic syndrome (MetS and memory impairment on measures of verbal learning, and short- and long-term memory. Among the different components of MeTS, hypertriglycerides, abdominal obesity, and low HDL cholesterol were the only factors associated with memory impairment. Alcohol dependence or abuse was associated with a higher rate of forgetting. Conclusion. Our findings suggest that MetS and alcohol use may be linked with memory impairment in schizophrenia. These findings provide important insights into the interdependencies of cardiovascular risk factors and cognitive disorders and support novel strategies for treating and preventing cognitive disorders in patients with schizophrenia.

  16. Identifying Configurations of Perceived Teacher Autonomy Support and Structure: Associations with Self-Regulated Learning, Motivation and Problem Behavior

    Science.gov (United States)

    Vansteenkiste, Maarten; Sierens, Eline; Goossens, Luc; Soenens, Bart; Dochy, Filip; Mouratidis, Athanasios; Aelterman, Nathalie; Haerens, Leen; Beyers, Wim

    2012-01-01

    Grounded in self-determination theory, the aim of this study was (a) to examine naturally occurring configurations of perceived teacher autonomy support and clear expectations (i.e., a central aspect of teacher structure), and (b) to investigate associations with academic motivation, self-regulated learning, and problem behavior. Based on…

  17. Types of Language Disorders in Students Classified as ED: Prevalence and Association with Learning Disabilities and Psychopathology

    Science.gov (United States)

    Benner, Gregory J.; Mattison, Richard E.; Nelson, J. Ron; Ralston, Nicole C.

    2009-01-01

    The purpose of this study was to determine the prevalence of four types of language disorders among public school students (N = 152) classified as Emotional Disturbance (ED). We also examined the association of the types of language disorders experienced by these students with specific learning disabilities and clinical levels of specific types of…

  18. Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo (1)H functional magnetic resonance spectroscopy.

    Science.gov (United States)

    Stanley, Jeffrey A; Burgess, Ashley; Khatib, Dalal; Ramaseshan, Karthik; Arshad, Muzamil; Wu, Helen; Diwadkar, Vaibhav A

    2017-06-01

    fMRI has provided vibrant characterization of regional and network responses associated with associative learning and memory; however, their relationship to functional neurochemistry is unclear. Here, we introduce a novel application of in vivo proton functional magnetic resonance spectroscopy ((1)H fMRS) to investigate the dynamics of hippocampal glutamate during paired-associated learning and memory in healthy young adults. We show that the temporal dynamics of glutamate differed significantly during processes of memory consolidation and retrieval. Moreover, learning proficiency was predictive of the temporal dynamics of glutamate such that fast learners were characterized by a significant increase in glutamate levels early in learning, whereas this increase was only observed later in slow learners. The observed functional dynamics of glutamate provides a novel in vivo marker of brain function. Previously demonstrated N-methyl-D-aspartate (NMDA) receptor mediated synaptic plasticity during associative memory formation may be expressed in glutamate dynamics, which the novel application of (1)H MRS is sensitive to. The novel application of (1)H fMRS can provide highly innovative vistas for characterizing brain function in vivo, with significant implications for studying glutamatergic neurotransmission in health and disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. An Empirical Examination of the Association between Multiple Intelligences and Language Learning Self-Efficacy among TEFL University Students

    Science.gov (United States)

    Moafian, Fatemeh; Ebrahimi, Mohammad Reza

    2015-01-01

    The current study investigated the association between multiple intelligences and language learning efficacy expectations among TEFL (Teaching English as a Foreign Language) university students. To fulfill the aim of the study, 108 junior and senior TEFL students were asked to complete the "Multiple Intelligence Developmental Assessment…

  20. Perceived and post-traumatic stress are associated with decreased learning, memory, and fluency in HIV-infected women.

    Science.gov (United States)

    Rubin, Leah H; Cook, Judith A; Springer, Gayle; Weber, Kathleen M; Cohen, Mardge H; Martin, Eileen M; Valcour, Victor G; Benning, Lorie; Alden, Christine; Milam, Joel; Anastos, Kathryn; Young, Mary A; Gustafson, Deborah R; Sundermann, Erin E; Maki, Pauline M

    2017-08-28

    Psychological risk factors (PRFs) are associated with impaired learning and memory in HIV-infected (HIV+) women. We determined the dynamic nature of the effects of PRFs and HIV serostatus on learning and memory over time. Multi-center, prospective cohort study METHODS:: Every two years between 2009 and 2013 (3 times), 646 HIV+ and 300 demographically-similar HIV-uninfected (HIV-) women from the Women's Interagency HIV Study completed neuropsychological (NP) testing and questionnaires measuring PRFs (perceived stress, post-traumatic stress disorder (PTSD) symptoms, depressive symptoms). Using mixed-effects regressions, we examined separate and interactive associations between HIV-serostatus and PRFs on performance over time. HIV+ and HIV- women had similar rates of PRFs. Fluency was the only domain where performance over time depended on the combined influence of HIV-serostatus and stress or PTSD (p's stress and PTSD were associated with a greater cognitive decline in performance (p's stress and PTSD. Irrespective of time, performance on learning and memory depended on the combined influence of HIV-serostatus and stress or PTSD (p's ≤ 0.05). In the context of HIV, stress and PTSD were negatively associated with performance. Effects were pronounced on learning among HIV+ women without effective treatment or viral suppression. Regardless of time or HIV-serostatus, all PRFs were associated with lower speed, global NP, and executive function. More than depression, perceived stress and PTSD symptoms are treatment targets to potentially improve fluency, learning, and memory in women living with HIV particularly when HIV treatment is not optimal.

  1. Associative vocabulary learning: development and testing of two paradigms for the (re-) acquisition of action- and object-related words.

    Science.gov (United States)

    Freundlieb, Nils; Ridder, Volker; Dobel, Christian; Enriquez-Geppert, Stefanie; Baumgaertner, Annette; Zwitserlood, Pienie; Gerloff, Christian; Hummel, Friedhelm C; Liuzzi, Gianpiero

    2012-01-01

    Despite a growing number of studies, the neurophysiology of adult vocabulary acquisition is still poorly understood. One reason is that paradigms that can easily be combined with neuroscientfic methods are rare. Here, we tested the efficiency of two paradigms for vocabulary (re-) acquisition, and compared the learning of novel words for actions and objects. Cortical networks involved in adult native-language word processing are widespread, with differences postulated between words for objects and actions. Words and what they stand for are supposed to be grounded in perceptual and sensorimotor brain circuits depending on their meaning. If there are specific brain representations for different word categories, we hypothesized behavioural differences in the learning of action-related and object-related words. Paradigm A, with the learning of novel words for body-related actions spread out over a number of days, revealed fast learning of these new action words, and stable retention up to 4 weeks after training. The single-session Paradigm B employed objects and actions. Performance during acquisition did not differ between action-related and object-related words (time*word category: p = 0.01), but the translation rate was clearly better for object-related (79%) than for action-related words (53%, p = 0.002). Both paradigms yielded robust associative learning of novel action-related words, as previously demonstrated for object-related words. Translation success differed for action- and object-related words, which may indicate different neural mechanisms. The paradigms tested here are well suited to investigate such differences with neuroscientific means. Given the stable retention and minimal requirements for conscious effort, these learning paradigms are promising for vocabulary re-learning in brain-lesioned people. In combination with neuroimaging, neuro-stimulation or pharmacological intervention, they may well advance the understanding of language learning

  2. Association between learning style preferences and anatomy assessment outcomes in graduate-entry and undergraduate medical students.

    Science.gov (United States)

    O'Mahony, Siobhain M; Sbayeh, Amgad; Horgan, Mary; O'Flynn, Siun; O'Tuathaigh, Colm M P

    2016-07-08

    An improved understanding of the relationship between anatomy learning performance and approaches to learning can lead to the development of a more tailored approach to delivering anatomy teaching to medical students. This study investigated the relationship between learning style preferences, as measured by Visual, Aural, Read/write, and Kinesthetic (VARK) inventory style questionnaire and Honey and Mumford's learning style questionnaire (LSQ), and anatomy and clinical skills assessment performance at an Irish medical school. Additionally, mode of entry to medical school [undergraduate/direct-entry (DEM) vs. graduate-entry (GEM)], was examined in relation to individual learning style, and assessment results. The VARK and LSQ were distributed to first and second year DEM, and first year GEM students. DEM students achieved higher clinical skills marks than GEM students, but anatomy marks did not differ between each group. Several LSQ style preferences were shown to be weakly correlated with anatomy assessment performance in a program- and year-specific manner. Specifically, the "Activist" style was negatively correlated with anatomy scores in DEM Year 2 students (rs = -0.45, P = 0.002). The "Theorist" style demonstrated a weak correlation with anatomy performance in DEM Year 2 (rs = 0.18, P = 0.003). Regression analysis revealed that, among the LSQ styles, the "Activist" was associated with poorer anatomy assessment performance (P VARK "Aural" modality (P < 0.05). These data support the contention that individual student learning styles contribute little to variation in academic performance in medical students. Anat Sci Educ 9: 391-399. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  3. Associative learning mechanisms underpinning the transition from recreational drug use to addiction.

    Science.gov (United States)

    Hogarth, Lee; Balleine, Bernard W; Corbit, Laura H; Killcross, Simon

    2013-04-01

    Learning theory proposes that drug seeking is a synthesis of multiple controllers. Whereas goal-directed drug seeking is determined by the anticipated incentive value of the drug, habitual drug seeking is elicited by stimuli that have formed a direct association with the response. Moreover, drug-paired stimuli can transfer control over separately trained drug seeking responses by retrieving an expectation of the drug's identity (specific transfer) or incentive value (general transfer). This review covers outcome devaluation and transfer of stimulus-control procedures in humans and animals, which isolate the differential governance of drug seeking by these four controllers following various degrees of contingent and noncontingent drug exposure. The neural mechanisms underpinning these four controllers are also reviewed. These studies suggest that although initial drug seeking is goal-directed, chronic drug exposure confers a progressive loss of control over action selection by specific outcome representations (impaired outcome devaluation and specific transfer), and a concomitant increase in control over action selection by antecedent stimuli (enhanced habit and general transfer). The prefrontal cortex and mediodorsal thalamus may play a role in this drug-induced transition to behavioral autonomy. © 2012 New York Academy of Sciences.

  4. Argyris and associates' orientations towards learning collectively: Can it be measured through self reports?

    Directory of Open Access Journals (Sweden)

    C. Schmidt

    1997-06-01

    Full Text Available The purpose of this study was to investigate the feasibility of measuring interactional orientations towards learning collectively by means of a self report instrument. Based on the theoretical framework of Argyris and associates, a measuring instrument was constructed and subjected to statistical analysis. 317 post graduate students in the faculty of Economic and Management Sciences at the Rand Afrikaans University completed the inventory. A factor analysis yielded four second-order factors. The results of the study appear to lend statistical support to the nature of the most prevalent interactional strategies described in the literature. The implications of these findings are discussed.Opsomming Die doel van hierdie studie was om die lewensvatbaarheid daarvan te ondersoek om interaksionele orientasies ten opsigte van kollektiewe leer deur middel van 'n selfverslaggewende instrument te meet. 'n Meetinstrument gegrond op die teoretiese raamwerk van Argyris en genote is gekonstrueer en aan statistiese ontleding onderwerp. 317 nagraadse studente in die fakulteit Ekonomiese en Bestuurswetenskappe aan die Randse Afrikaanse Universiteit het die vraelys voltooi. 'n Faktorontleding het vier tweede-orde faktore opgelewer. Die resultate van die studie blyk statistiese steun aan die aard van die mees algemene interaksionele strategieë, soos beskryf in die literatuur, te lewer. Die implikasies van hierdie bevindinge word bespreek.

  5. Using signals associated with safety in avoidance learning: computational model of sex differences

    Directory of Open Access Journals (Sweden)

    Milen L. Radell

    2015-07-01

    Full Text Available Avoidance behavior involves learning responses that prevent upcoming aversive events; these responses typically extinguish when the aversive events stop materializing. Stimuli that signal safety from aversive events can paradoxically inhibit extinction of avoidance behavior. In animals, males and females process safety signals differently. These differences help explain why women are more likely to be diagnosed with an anxiety disorder and exhibit differences in symptom presentation and course compared to men. In the current study, we extend an existing model of strain differences in avoidance behavior to simulate sex differences in rats. The model successfully replicates data showing that the omission of a signal associated with a period of safety can facilitate extinction in females, but not males, and makes novel predictions that this effect should depend on the duration of the period, the duration of the signal itself, and its occurrence within that period. Non-reinforced responses during the safe period were also found to be important in the expression of these patterns. The model also allowed us to explore underlying mechanisms for the observed sex effects, such as whether safety signals serve as occasion setters for aversive events, to determine why removing them can facilitate extinction of avoidance. The simulation results argue against this account, and instead suggest the signal may serve as a conditioned reinforcer of avoidance behavior.

  6. Olfactory enrichment and scent cue associative learning in captive birds of prey.

    Science.gov (United States)

    Nelson Slater, Melissa; Hauber, Mark E

    2017-03-01

    As the use of enrichment in zoos has become a standardized husbandry practice, the continued improvement of enrichment programs should be concomitant with empirical validation of those practices. The role of scent as enrichment remains an unexplored avenue for many bird species. We conducted a multi-phase experiment to introduce wrapped food packages and scent cuing to indicate food presence into the exhibits of several birds of prey species at the Bronx Zoo, New York City, to assess if scent can function as enrichment in these species. Our research found support for these birds associating a novel scent cue from a package with the presence of food inside. When tested with sham (empty) packages, these individuals more often and more extensively handled scented versus unscented packages. Overall, these results indicate the ability of some our small sample of individuals to learn olfactory cues and provide support for trials to include olfactory enrichment as a potential part of the daily routine for some birds of prey in zoo settings. © 2017 Wiley Periodicals, Inc.

  7. Interprofessional simulated learning: short-term associations between simulation and interprofessional collaboration

    Directory of Open Access Journals (Sweden)

    van Soeren Mary

    2011-03-01

    Full Text Available Abstract Background Health professions education programs use simulation for teaching and maintaining clinical procedural skills. Simulated learning activities are also becoming useful methods of instruction for interprofessional education. The simulation environment for interprofessional training allows participants to explore collaborative ways of improving communicative aspects of clinical care. Simulation has shown communication improvement within and between health care professions, but the impacts of teamwork simulation on perceptions of others' interprofessional practices and one's own attitudes toward teamwork are largely unknown. Methods A single-arm intervention study tested the association between simulated team practice and measures of interprofessional collaboration, nurse-physician relationships, and attitudes toward health care teams. Participants were 154 post-licensure nurses, allied health professionals, and physicians. Self- and proxy-report survey measurements were taken before simulation training and two and six weeks after. Results Multilevel modeling revealed little change over the study period. Variation in interprofessional collaboration and attitudes was largely attributable to between-person characteristics. A constructed categorical variable indexing 'leadership capacity' found that participants with highest and lowest values were more likely to endorse shared team leadership over physician centrality. Conclusion Results from this study indicate that focusing interprofessional simulation education on shared leadership may provide the most leverage to improve interprofessional care.

  8. Literature mining of protein-residue associations with graph rules learned through distant supervision

    Directory of Open Access Journals (Sweden)

    Ravikumar KE

    2012-10-01

    Full Text Available Abstract Background We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. Results The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. Conclusions The primary contributions of this work are to (1 demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2 show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  9. Examining the direct and indirect effects of visual-verbal paired associate learning on Chinese word reading.

    Science.gov (United States)

    Georgiou, George; Liu, Cuina; Xu, Shiyang

    2017-08-01

    Associative learning, traditionally measured with paired associate learning (PAL) tasks, has been found to predict reading ability in several languages. However, it remains unclear whether it also predicts word reading in Chinese, which is known for its ambiguous print-sound correspondences, and whether its effects are direct or indirect through the effects of other reading-related skills such as phonological awareness and rapid naming. Thus, the purpose of this study was to examine the direct and indirect effects of visual-verbal PAL on word reading in an unselected sample of Chinese children followed from the second to the third kindergarten year. A sample of 141 second-year kindergarten children (71 girls and 70 boys; mean age=58.99months, SD=3.17) were followed for a year and were assessed at both times on measures of visual-verbal PAL, rapid naming, and phonological awareness. In the third kindergarten year, they were also assessed on word reading. The results of path analysis showed that visual-verbal PAL exerted a significant direct effect on word reading that was independent of the effects of phonological awareness and rapid naming. However, it also exerted significant indirect effects through phonological awareness. Taken together, these findings suggest that variations in cross-modal associative learning (as measured by visual-verbal PAL) place constraints on the development of word recognition skills irrespective of the characteristics of the orthography children are learning to read. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  11. Phoneme Awareness, Visual-Verbal Paired-Associate Learning, and Rapid Automatized Naming as Predictors of Individual Differences in Reading Ability

    Science.gov (United States)

    Warmington, Meesha; Hulme, Charles

    2012-01-01

    This study examines the concurrent relationships between phoneme awareness, visual-verbal paired-associate learning, rapid automatized naming (RAN), and reading skills in 7- to 11-year-old children. Path analyses showed that visual-verbal paired-associate learning and RAN, but not phoneme awareness, were unique predictors of word recognition,…

  12. Psychological and Organizational Variables Associated with Workplace Learning in Small and Medium Manufacturing Businesses in Korea

    Science.gov (United States)

    Moon, Se-Yeon; Na, Seung-Il

    2009-01-01

    The purpose of this study was to determine the relationship between workplace learning and psychological variables, such as learning competency, motivation, curiosity, self-esteem and locus of control, and organizational variables, such as centralization of power, formality, merit system and communication. The studied population consisted entirely…

  13. Metacognitive Monkeys or Associative Animals? Simple Reinforcement Learning Explains Uncertainty in Nonhuman Animals

    Science.gov (United States)

    Le Pelley, M. E.

    2012-01-01

    Monkeys will selectively and adaptively learn to avoid the most difficult trials of a perceptual discrimination learning task. Couchman, Coutinho, Beran, and Smith (2010) have recently demonstrated that this pattern of responding does not depend on animals receiving trial-by-trial feedback for their responses; it also obtains if experience of the…

  14. A computational model associating learning process, word attributes, and age of acquisition.

    Science.gov (United States)

    Hidaka, Shohei

    2013-01-01

    We propose a new model-based approach linking word learning to the age of acquisition (AoA) of words; a new computational tool for understanding the relationships among word learning processes, psychological attributes, and word AoAs as measures of vocabulary growth. The computational model developed describes the distinct statistical relationships between three theoretical factors underpinning word learning and AoA distributions. Simply put, this model formulates how different learning processes, characterized by change in learning rate over time and/or by the number of exposures required to acquire a word, likely result in different AoA distributions depending on word type. We tested the model in three respects. The first analysis showed that the proposed model accounts for empirical AoA distributions better than a standard alternative. The second analysis demonstrated that the estimated learning parameters well predicted the psychological attributes, such as frequency and imageability, of words. The third analysis illustrated that the developmental trend predicted by our estimated learning parameters was consistent with relevant findings in the developmental literature on word learning in children. We further discuss the theoretical implications of our model-based approach.

  15. Visual Sequence Learning in Infancy: Domain-General and Domain-Specific Associations with Language

    Science.gov (United States)

    Shafto, Carissa L.; Conway, Christopher M.; Field, Suzanne L.; Houston, Derek M.

    2012-01-01

    Research suggests that nonlinguistic sequence learning abilities are an important contributor to language development (Conway, Bauernschmidt, Huang, & Pisoni, 2010). The current study investigated visual sequence learning (VSL) as a possible predictor of vocabulary development in infants. Fifty-eight 8.5-month-old infants were presented with a…

  16. Effect Sizes Associated with Micro-PROLOG-Based Computer-Assisted Learning.

    Science.gov (United States)

    Fraser, Barry J.; Teh, George P. L.

    1994-01-01

    Discussion of effect sizes in computer-assisted learning research focuses on a study conducted in Singapore high school geography classes that used micro-PROLOG to determine the efficacy of computer-assisted learning. Topics include impact on achievement, student attitudes, and classroom environment. (53 references) (LRW)

  17. Nicotine Withdrawal Disrupts Contextual Learning but Not Recall of Prior Contextual Associations: Implications for Nicotine Addiction

    OpenAIRE

    Portugal, George S.; Gould, Thomas J.

    2008-01-01

    Interactions between nicotine and learning could contribute to nicotine addiction. Although previous research indicates that nicotine withdrawal disrupts contextual learning, the effects of nicotine withdrawal on contextual memories acquired before withdrawal are unknown. The present study investigated whether nicotine withdrawal disrupted recall of prior contextual memories by examining the effects of nicotine withdrawal on recall of nicotine conditioned place preference (CPP) and contextual...

  18. Evaluation of physical damage associated with action selection strategies in reinforcement learning

    NARCIS (Netherlands)

    Koryakovskiy, I.; Vallery, H.; Babuska, R.; Caarls, W.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Reinforcement learning techniques enable robots to deal with their own dynamics and with unknown environments without using explicit models or preprogrammed behaviors. However, reinforcement learning relies on intrinsically risky exploration, which is often damaging for physical systems. In the

  19. Indicators of early and late processing reveal the importance of within-trial-time for theories of associative learning.

    Science.gov (United States)

    Lachnit, Harald; Thorwart, Anna; Schultheis, Holger; Lotz, Anja; Koenig, Stephan; Uengoer, Metin

    2013-01-01

    In four human learning experiments (Pavlovian skin conductance, causal learning, speeded classification task), we evaluated several associative learning theories that assume either an elemental (modified unique cue model and Harris' model) or a configural (Pearce's configural theory and an extension of it) form of stimulus processing. The experiments used two modified patterning problems (A/B/C+, AB/BC/AC+ vs. ABC-; A+, BC+ vs. ABC-). Pearce's configural theory successfully predicted all of our data reflecting early stimulus processing, while the predictions of the elemental theories were in accord with all of our data reflecting later stages of stimulus processing. Our results suggest that the form of stimulus representation depends on the amount of time available for stimulus processing. Our findings highlight the necessity to investigate stimulus processing during conditioning on a finer time scale than usually done in contemporary research.

  20. Association between neuroendocrinological parameters and learning and memory functions in adolescent anorexia nervosa before and after weight recovery.

    Science.gov (United States)

    Buehren, Katharina; Konrad, Kerstin; Schaefer, Kerstin; Kratzsch, Juergen; Kahraman-Lanzerath, Berak; Lente, Christina; Herpertz-Dahlmann, Beate

    2011-06-01

    A growing body of evidence indicates that hormones play an important role in learning and memory functions as well as in mood modulation. During the acute stage of anorexia nervosa (AN), weight loss has a significant effect on serum levels of estrogen, thyroid hormones, and cortisol. Furthermore deficits in learning and memory functions are evident in patients with eating disorders during emaciation. Hormonal and neuropsychological alterations at least partly remit during weight restoration. We investigated the association between learning and memory functions as well as mood and neuroendocrinological parameters before and after weight gain in adolescent AN. Twenty-eight female subjects with AN, diagnosed according to DSM-IV, were examined before and after weight recovery. Both investigations took place while the patients were receiving hospital treatment, and the results were compared to a control group consisting of 18 age- and IQ-matched normal-weight female adolescents also tested twice within 4 months. Verbal memory and learning were assessed by a German paper-pencil-test (LGT). We performed correlation calculations between neuropsychological functions and depressive symptoms and estrogen, cortisol and free triiodothyronine (fT₃) in the plasma at both time points. Compared to normal controls adolescents with AN performed worse in one subtest of the LGT which requires the verbal reproduction of figural material across both time points. Verbal learning was positively correlated with estrogen levels after weight recovery. Depressive symptoms of AN patients significantly decreased during weight rehabilitation and correlated negatively with fT₃ at T₁. We did not find a relationship between cortisol levels and neuropsychological functions. We observed subtle memory impairments and depressive symptoms in subjects with adolescent AN associated with starvation-induced estrogen and triiodothyronine deficits, respectively. Normalization of body weight and resuming

  1. Protein Dynamics Associated with Failed and Rescued Learning in the Ts65Dn Mouse Model of Down Syndrome

    Science.gov (United States)

    Ahmed, Md. Mahiuddin; Dhanasekaran, A. Ranjitha; Block, Aaron; Tong, Suhong; Costa, Alberto C. S.; Stasko, Melissa; Gardiner, Katheleen J.

    2015-01-01

    Down syndrome (DS) is caused by an extra copy of human chromosome 21 (Hsa21). Although it is the most common genetic cause of intellectual disability (ID), there are, as yet, no effective pharmacotherapies. The Ts65Dn mouse model of DS is trisomic for orthologs of ∼55% of Hsa21 classical protein coding genes. These mice display many features relevant to those seen in DS, including deficits in learning and memory (L/M) tasks requiring a functional hippocampus. Recently, the N-methyl-D-aspartate (NMDA) receptor antagonist, memantine, was shown to rescue performance of the Ts65Dn in several L/M tasks. These studies, however, have not been accompanied by molecular analyses. In previous work, we described changes in protein expression induced in hippocampus and cortex in control mice after exposure to context fear conditioning (CFC), with and without memantine treatment. Here, we extend this analysis to Ts65Dn mice, measuring levels of 85 proteins/protein modifications, including components of MAP kinase and MTOR pathways, and subunits of NMDA receptors, in cortex and hippocampus of Ts65Dn mice after failed learning in CFC and after learning was rescued by memantine. We show that, compared with wild type littermate controls, (i) of the dynamic responses seen in control mice in normal learning, >40% also occur in Ts65Dn in failed learning or are compensated by baseline abnormalities, and thus are considered necessary but not sufficient for successful learning, and (ii) treatment with memantine does not in general normalize the initial protein levels but instead induces direct and indirect responses in approximately half the proteins measured and results in normalization of the endpoint protein levels. Together, these datasets provide a first view of the complexities associated with pharmacological rescue of learning in the Ts65Dn. Extending such studies to additional drugs and mouse models of DS will aid in identifying pharmacotherapies for effective clinical trials

  2. Protein dynamics associated with failed and rescued learning in the Ts65Dn mouse model of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Md Mahiuddin Ahmed

    Full Text Available Down syndrome (DS is caused by an extra copy of human chromosome 21 (Hsa21. Although it is the most common genetic cause of intellectual disability (ID, there are, as yet, no effective pharmacotherapies. The Ts65Dn mouse model of DS is trisomic for orthologs of ∼55% of Hsa21 classical protein coding genes. These mice display many features relevant to those seen in DS, including deficits in learning and memory (L/M tasks requiring a functional hippocampus. Recently, the N-methyl-D-aspartate (NMDA receptor antagonist, memantine, was shown to rescue performance of the Ts65Dn in several L/M tasks. These studies, however, have not been accompanied by molecular analyses. In previous work, we described changes in protein expression induced in hippocampus and cortex in control mice after exposure to context fear conditioning (CFC, with and without memantine treatment. Here, we extend this analysis to Ts65Dn mice, measuring levels of 85 proteins/protein modifications, including components of MAP kinase and MTOR pathways, and subunits of NMDA receptors, in cortex and hippocampus of Ts65Dn mice after failed learning in CFC and after learning was rescued by memantine. We show that, compared with wild type littermate controls, (i of the dynamic responses seen in control mice in normal learning, >40% also occur in Ts65Dn in failed learning or are compensated by baseline abnormalities, and thus are considered necessary but not sufficient for successful learning, and (ii treatment with memantine does not in general normalize the initial protein levels but instead induces direct and indirect responses in approximately half the proteins measured and results in normalization of the endpoint protein levels. Together, these datasets provide a first view of the complexities associated with pharmacological rescue of learning in the Ts65Dn. Extending such studies to additional drugs and mouse models of DS will aid in identifying pharmacotherapies for effective

  3. Increased Entorhinal–Prefrontal Theta Synchronization Parallels Decreased Entorhinal–Hippocampal Theta Synchronization during Learning and Consolidation of Associative Memory

    Science.gov (United States)

    Takehara-Nishiuchi, Kaori; Maal-Bared, Geith; Morrissey, Mark D.

    2012-01-01

    Memories are thought to be encoded as a distributed representation in the neocortex. The medial prefrontal cortex (mPFC) has been shown to support the expression of memories that initially depend on the hippocampus (HPC), yet the mechanisms by which the HPC and mPFC access the distributed representations in the neocortex are unknown. By measuring phase synchronization of local field potential (LFP) oscillations, we found that learning initiated changes in neuronal communication of the HPC and mPFC with the lateral entorhinal cortex (LEC), an area that is connected with many other neocortical regions. LFPs were recorded simultaneously from the three brain regions while rats formed an association between an auditory stimulus (CS) and eyelid stimulation (US) in a trace eyeblink conditioning paradigm, as well as during retention 1 month following learning. Over the course of learning, theta oscillations in the LEC and mPFC became strongly synchronized following presentation of the CS on trials in which rats exhibited a conditioned response (CR), and this strengthened synchronization was also observed during remote retention. In contrast, CS-evoked theta synchronization between the LEC and HPC decreased with learning. Our results suggest that communication between the LEC and mPFC are strengthened with learning whereas the communication between the LEC and HPC are concomitantly weakened, suggesting that enhanced LEC–mPFC communication may be a neuronal correlate for theoretically proposed neocortical reorganization accompanying encoding and consolidation of a memory. PMID:22319482

  4. Imbalance-Aware Machine Learning for Predicting Rare and Common Disease-Associated Non-Coding Variants.

    Science.gov (United States)

    Schubach, Max; Re, Matteo; Robinson, Peter N; Valentini, Giorgio

    2017-06-07

    Disease and trait-associated variants represent a tiny minority of all known genetic variation, and therefore there is necessarily an imbalance between the small set of available disease-associated and the much larger set of non-deleterious genomic variation, especially in non-coding regulatory regions of human genome. Machine Learning (ML) methods for predicting disease-associated non-coding variants are faced with a chicken and egg problem - such variants cannot be easily found without ML, but ML cannot begin to be effective until a sufficient number of instances have been found. Most of state-of-the-art ML-based methods do not adopt specific imbalance-aware learning techniques to deal with imbalanced data that naturally arise in several genome-wide variant scoring problems, thus resulting in a significant reduction of sensitivity and precision. We present a novel method that adopts imbalance-aware learning strategies based on resampling techniques and a hyper-ensemble approach that outperforms state-of-the-art methods in two different contexts: the prediction of non-coding variants associated with Mendelian and with complex diseases. We show that imbalance-aware ML is a key issue for the design of robust and accurate prediction algorithms and we provide a method and an easy-to-use software tool that can be effectively applied to this challenging prediction task.

  5. Unanticipated learning outcomes associated with commitment to change in continuing medical education.

    Science.gov (United States)

    Dolcourt, Jack L; Zuckerman, Grace

    2003-01-01

    Educator-derived, predetermined instructional objectives are integral to the traditional instructional model and form the linkage between instructional design and postinstruction evaluation. The traditional model does not consider unanticipated learning outcomes. We explored the contribution of learner-identified desired outcomes compared with learner outcomes that were not named in the instructional design. This study was conducted at a short course in pediatrics in which 43 physicians, advanced practice nurses, nurses, and physician assistants voluntarily self-identified committed- to changes (CTCs). We compared these CTC predicates with the predetermined instructional objectives that had been published in advance in the conference brochure and syllabus. CTCs whose predicates described the same features as the instructional objectives were considered to be anticipated learning outcomes. CTCs lacking correspondence with instructional objectives were considered to represent unanticipated learning outcomes. Of the 157 CTCs, 68% were anticipated learning outcomes because their predicates could be linked to the instructional objectives. The remaining 32% of CTCs did not correspond to any of the instructional objectives and thus represented unanticipated learning outcomes. These findings demonstrate that evaluations based on instructional objectives, although valuable, are incomplete because educational activities may also stimulate many unanticipated learning outcomes. Continuing medical education planners can gain a fuller assessment of the effect of their educational endeavors by including predetermined instructional objectives and encouraging the constructivist practice of recognizing unanticipated learning.

  6. ASSOCIATION BETWEEN AFFECTS AND REPRESENTATIONS INVOLVED IN THE SCHOOL LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Andreia Osti

    2017-04-01

    Full Text Available This study assumes that the affective dimensions involves the process of planning and developing pedagogical practices and are an important factor in determining the nature of relations between the students and the various objects of knowledge. In this sense, the study aimed to analyze how students represent the affective aspects of both the teaching and learning process and what are their perceptions of the learning environment. The participants were 120 students of the 5th year of elementary school of public schools in the metropolitan region of Campinas, 60 of those students having satisfactory academic performance and 60 having learning disabilities. To gather the data, three instruments were used: “Psychopedagogical Educational Par Proof”, “AffectionsZanon Scale” and “Teacher Expectations Scale”. The results revealed that students with learning disabilities differ significantly from those with adequate performance. Students with learning difficulties establish fewer ties with the formal school learning and for their teachers and this portrays non-school situations while students with satisfactory performance have a better understanding of the expectations of their teachers and this shows that they have a more emotional relationship with the school environment. It is believed that this study contributes to the understanding of the relationship between the feelings experienced by students in the context of the classroom and its implications for the academic performance of the same. Keywords: Positive Psychology. Interpersonal relationships. Learning experiences.

  7. Non-linguistic learning and aphasia: Evidence from a paired associate and feedback-based task

    Science.gov (United States)

    Vallila-Rohter, Sofia; Kiran, Swathi

    2013-01-01

    Though aphasia is primarily characterized by impairments in the comprehension and/or expression of language, research has shown that patients with aphasia also show deficits in cognitive-linguistic domains such as attention, executive function, concept knowledge and memory (Helm-Estabrooks, 2002 for review). Research in aphasia suggests that cognitive impairments can impact the online construction of language, new verbal learning, and transactional success (Freedman & Martin, 2001; Hula & McNeil, 2008; Ramsberger, 2005). In our research, we extend this hypothesis to suggest that general cognitive deficits influence progress with therapy. The aim of our study is to explore learning, a cognitive process that is integral to relearning language, yet underexplored in the field of aphasia rehabilitation. We examine non-linguistic category learning in patients with aphasia (n=19) and in healthy controls (n=12), comparing feedback and non-feedback based instruction. Participants complete two computer-based learning tasks that require them to categorize novel animals based on the percentage of features shared with one of two prototypes. As hypothesized, healthy controls showed successful category learning following both methods of instruction. In contrast, only 60% of our patient population demonstrated successful non-linguistic category learning. Patient performance was not predictable by standardized measures of cognitive ability. Results suggest that general learning is affected in aphasia and is a unique, important factor to consider in the field of aphasia rehabilitation. PMID:23127795

  8. Multicenter cohort study on association of genotypes with prospective sports concussion: methods, lessons learned, and recommendations.

    Science.gov (United States)

    Terrell, Thomas R; Bostick, Roberd; Barth, Jeffrey; Sloane, Richard; Cantu, Robert C; Bennett, Ellen; Galloway, Leslie; Laskowitz, Daniel; Erlanger, Dave; McKeag, Doug; Valentine, Verle; Nichols, Gregory

    2017-01-01

    Approximately 3.8 million sports related TBIs occur per year. Genetic variation may affect both TBI risk and post-TBI clinical outcome. Limited research has focused on genetic risk for concussion among athletes. We describe the design, methods, and baseline characteristics of this prospective cohort study designed to investigate a potential association between genetic polymorphisms of apolipoprotein E gene, APOE promoter G-219T, and Tau gene exon 6 polymorphisms (Ser53 Pro and Hist47Tyr) with: 1) the risk of prospective concussion; 2) concussion severity; and 3) postconcussion neurocognitive recovery. The prospective cohort study included a final population of 2947 college, high school, and professional athletes. Baseline data collection included a concussion/medical history questionnaire, neuropsychological (NP) testing, and genetic sampling for the genetic polymorphisms. Data collection on new concussions experienced utilized post-concussion history/mental status form, Lovell post-concussion symptom score, Standardized Assessment of Concussion (SAC) and/or the Sports Concussion Assessment Tool (SCAT)-1/SCAT-2, and post-concussion NP testing. This paper is focused on discussing the important methodological considerations, organizational challenges and lessons learned in the completion of a multi-center prospective cohort study. A total of 3740 subjects enrolled, with a total of 335 concussions experienced. Of critical importance to the success of a study of this type is to successfully recruit committed institutions with qualified local study personnel, obtain "buy-in" from study sites, and cultivate strong working relationships with study sites. The use of approved incentives may improve study site recruitment, enhance retention, and enhance compliance with study protocols. Future publications will detail the specific findings of this study. Collaborative research is very likely needed given the nature of this study population.

  9. Healthcare Associated Infections: educational intervention by "Adult Learning" in an Italian teaching hospital.

    Science.gov (United States)

    Rinaldi, A; Marani, A; Montesano, M; Berdini, S; Petruccioli, M C; Di Ninno, F; Orioli, R; Ferretti, F; Tarsitani, G; Napoli, C; De Luca, A; Orsi, G B

    2016-01-01

    An educational intervention for HAI prevention based on a combination of training, motivation and subsequent application in the current clinical practice in an Italian teaching hospital. In 2015-2016 a pilot mandatory training on HAI targeted to HCWs was organized in the 450 bed teaching hospital Sant'Andrea in Rome. By adopting the "Impact/control matrix" prioritization tool, the relative level of impact (risk in causing or favoring HAI) and control (possibility for HCWs to prevent HAI) attributed by the participants to the issues associated to HAI during their working groups was evaluated. Overall, 34 physicians, 43 nurses and 15 non clinical professionals participated actively in seven courses, identifying 58 different issues related to HAI, which were reported 128 times. Results showed frequently that, within the same type of issue, HCW referred various levels of impact (risk in causing or favoring HAI) and personal control (possibility for HCW to prevent HAI). Overall staff shortage was the most reported problem by HCW in our hospital. Also hand washing was regarded as a main problem, but HCW expressed the feeling that individuals could act more successfully on this issue (high or medium control). Results showed that staff frequently did not know how to handle correctly visitors, similarly many colleagues expressed some difficulty in communicating information to patients and relatives on HAI. Surprisingly, "antimicrobial therapy" and "excessive invasive procedures" were not particularly highlighted by the personnel. HCW expressed satisfaction for the course approac. The study showed an overall good level of knowledge regarding the importance and principles of infection control in our teaching hospital HCW. However personnel perceived a variability in the impact of many issues on HAI and even more on the personal possibility to control their effect. In order to improve HCW compliance with HAI prevention programs, the "Adult Learning" model seems to be very

  10. A process-based approach to characterizing the effect of acute alprazolam challenge on visual paired associate learning and memory in healthy older adults.

    Science.gov (United States)

    Pietrzak, Robert H; Scott, James Cobb; Harel, Brian T; Lim, Yen Ying; Snyder, Peter J; Maruff, Paul

    2012-11-01

    Alprazolam is a benzodiazepine that, when administered acutely, results in impairments in several aspects of cognition, including attention, learning, and memory. However, the profile (i.e., component processes) that underlie alprazolam-related decrements in visual paired associate learning has not been fully explored. In this double-blind, placebo-controlled, randomized cross-over study of healthy older adults, we used a novel, "process-based" computerized measure of visual paired associate learning to examine the effect of a single, acute 1-mg dose of alprazolam on component processes of visual paired associate learning and memory. Acute alprazolam challenge was associated with a large magnitude reduction in visual paired associate learning and memory performance (d = 1.05). Process-based analyses revealed significant increases in distractor, exploratory, between-search, and within-search error types. Analyses of percentages of each error type suggested that, relative to placebo, alprazolam challenge resulted in a decrease in the percentage of exploratory errors and an increase in the percentage of distractor errors, both of which reflect memory processes. Results of this study suggest that acute alprazolam challenge decreases visual paired associate learning and memory performance by reducing the strength of the association between pattern and location, which may reflect a general breakdown in memory consolidation, with less evidence of reductions in executive processes (e.g., working memory) that facilitate visual paired associate learning and memory. Copyright © 2012 John Wiley & Sons, Ltd.

  11. An ensemble learning approach jointly modeling main and interaction effects in genetic association studies.

    Science.gov (United States)

    Zhang, Zhaogong; Zhang, Shuanglin; Wong, Man-Yu; Wareham, Nicholas J; Sha, Qiuying

    2008-05-01

    Complex diseases are presumed to be the results of interactions of several genes and environmental factors, with each gene only having a small effect on the disease. Thus, the methods that can account for gene-gene interactions to search for a set of marker loci in different genes or across genome and to analyze these loci jointly are critical. In this article, we propose an ensemble learning approach (ELA) to detect a set of loci whose main and interaction effects jointly have a significant association with the trait. In the ELA, we first search for "base learners" and then combine the effects of the base learners by a linear model. Each base learner represents a main effect or an interaction effect. The result of the ELA is easy to interpret. When the ELA is applied to analyze a data set, we can get a final model, an overall P-value of the association test between the set of loci involved in the final model and the trait, and an importance measure for each base learner and each marker involved in the final model. The final model is a linear combination of some base learners. We know which base learner represents a main effect and which one represents an interaction effect. The importance measure of each base learner or marker can tell us the relative importance of the base learner or marker in the final model. We used intensive simulation studies as well as a real data set to evaluate the performance of the ELA. Our simulation studies demonstrated that the ELA is more powerful than the single-marker test in all the simulation scenarios. The ELA also outperformed the other three existing multi-locus methods in almost all cases. In an application to a large-scale case-control study for Type 2 diabetes, the ELA identified 11 single nucleotide polymorphisms that have a significant multi-locus effect (P-value=0.01), while none of the single nucleotide polymorphisms showed significant marginal effects and none of the two-locus combinations showed significant two

  12. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  13. Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking.

    Science.gov (United States)

    Bae, Seung-Hwan; Yoon, Kuk-Jin

    2018-03-01

    Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.

  14. Verbal and novel multisensory associative learning in adults [v2; ref status: indexed, http://f1000r.es/12s

    Directory of Open Access Journals (Sweden)

    Joanne M Fifer

    2013-05-01

    Full Text Available To date, few studies have focused on the behavioural differences between the learning of multisensory auditory-visual and intra-modal associations. More specifically, the relative benefits of novel auditory-visual and verbal-visual associations for learning have not been directly compared. In Experiment 1, 20 adult volunteers completed three paired associate learning tasks: non-verbal novel auditory-visual (novel-AV, verbal-visual (verbal-AV; using pseudowords, and visual-visual (shape-VV. Participants were directed to make a motor response to matching novel and arbitrarily related stimulus pairs. Feedback was provided to facilitate trial and error learning. The results of Signal Detection Theory analyses suggested a multisensory enhancement of learning, with significantly higher discriminability measures (d-prime in both the novel-AV and verbal-AV tasks than the shape-VV task. Motor reaction times were also significantly faster during the verbal-AV task than during the non-verbal learning tasks.  Experiment 2 (n = 12 used a forced-choice discrimination paradigm to assess whether a difference in unisensory stimulus discriminability could account for the learning trends in Experiment 1. Participants were significantly slower at discriminating unisensory pseudowords than the novel sounds and visual shapes, which was notable given that these stimuli produced superior learning. Together the findings suggest that verbal information has an added enhancing effect on multisensory associative learning in adults

  15. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex.

    Directory of Open Access Journals (Sweden)

    Malgorzata Jasinska

    Full Text Available Associative fear learning, resulting from whisker stimulation paired with application of a mild electric shock to the tail in a classical conditioning paradigm, changes the motor behavior of mice and modifies the cortical functional representation of sensory receptors involved in the conditioning. It also induces the formation of new inhibitory synapses on double-synapse spines of the cognate barrel hollows. We studied density and distribution of polyribosomes, the putative structural markers of enhanced synaptic activation, following conditioning. By analyzing serial sections of the barrel cortex by electron microscopy and stereology, we found that the density of polyribosomes was significantly increased in dendrites of the barrel activated during conditioning. The results revealed fear learning-induced increase in the density of polyribosomes associated with both excitatory and inhibitory synapses located on dendritic spines (in both single- and double-synapse spines and only with the inhibitory synapses located on dendritic shafts. This effect was accompanied by a significant increase in the postsynaptic density area of the excitatory synapses on single-synapse spines and of the inhibitory synapses on double-synapse spines containing polyribosomes. The present results show that associative fear learning not only induces inhibitory synaptogenesis, as demonstrated in the previous studies, but also stimulates local protein synthesis and produces modifications of the synapses that indicate their potentiation.

  16. Hippocampal dysregulation of neurofibromin-dependent pathways is associated with impaired spatial learning in engrailed 2 knock-out mice.

    Science.gov (United States)

    Provenzano, Giovanni; Pangrazzi, Luca; Poli, Andrea; Pernigo, Mattia; Sgadò, Paola; Genovesi, Sacha; Zunino, Giulia; Berardi, Nicoletta; Casarosa, Simona; Bozzi, Yuri

    2014-10-01

    Genome-wide association studies indicated the homeobox-containing transcription factor Engrailed-2 (En2) as a candidate gene for autism spectrum disorders (ASD). Accordingly, En2 knock-out (En2(-/-)) mice show anatomical and behavioral "ASD-like" features, including decreased sociability and learning deficits. The molecular pathways underlying these deficits in En2(-/-) mice are not known. Deficits in signaling pathways involving neurofibromin and extracellular-regulated kinase (ERK) have been associated with impaired learning. Here we investigated the neurofibromin-ERK cascade in the hippocampus of wild-type (WT) and En2(-/-) mice before and after spatial learning testing. When compared with WT littermates, En2(-/-) mice showed impaired performance in the Morris water maze (MWM), which was accompanied by lower expression of the activity-dependent gene Arc. Quantitative RT-PCR, immunoblotting, and immunohistochemistry experiments showed a marked downregulation of neurofibromin expression in the dentate gyrus of both naive and MWM-treated En2(-/-) mice. ERK phosphorylation, known to be induced in the presence of neurofibromin deficiency, was increased in the dentate gyrus of En2(-/-) mice after MWM. Treatment of En2(-/-) mice with lovastatin, an indirect inhibitor of ERK phosphorylation, markedly reduced ERK phosphorylation in the dentate gyrus, but was unable to rescue learning deficits in MWM-trained mutant mice. Further investigation is needed to unravel the complex molecular mechanisms linking dysregulation of neurofibromin-dependent pathways to spatial learning deficits in the En2 mouse model of ASD. Copyright © 2014 the authors 0270-6474/14/3413281-08$15.00/0.

  17. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. Copyright © 2016 the American Physiological Society.

  18. Effects of enriched physical and social environments on motor performance, associative learning, and hippocampal neurogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Noelia Madroñal

    Full Text Available We have studied the motor abilities and associative learning capabilities of adult mice placed in different enriched environments. Three-month-old animals were maintained for a month alone (AL, alone in a physically enriched environment (PHY, and, finally, in groups in the absence (SO or presence (SOPHY of an enriched environment. The animals' capabilities were subsequently checked in the rotarod test, and for classical and instrumental learning. The PHY and SOPHY groups presented better performances in the rotarod test and in the acquisition of the instrumental learning task. In contrast, no significant differences between groups were observed for classical eyeblink conditioning. The four groups presented similar increases in the strength of field EPSPs (fEPSPs evoked at the hippocampal CA3-CA1 synapse across classical conditioning sessions, with no significant differences between groups. These trained animals were pulse-injected with bromodeoxyuridine (BrdU to determine hippocampal neurogenesis. No significant differences were found in the number of NeuN/BrdU double-labeled neurons. We repeated the same BrdU study in one-month-old mice raised for an additional month in the above-mentioned four different environments. These animals were not submitted to rotarod or conditioned tests. Non-trained PHY and SOPHY groups presented more neurogenesis than the other two groups. Thus, neurogenesis seems to be related to physical enrichment at early ages, but not to learning acquisition in adult mice.

  19. Student outcomes associated with service-learning in a culturally relevant high school program.

    Science.gov (United States)

    Yamauchi, Lois A; Billig, Shelley H; Meyer, Stephen; Hofschire, Linda

    2006-01-01

    The Hawaiian Studies Program (HSP) integrates the learning of Hawaiian culture with more traditional secondary curriculum in science, social studies, and English. Students also participate in weekly community service-learning sessions. Fifty-five HSP students and 29 peers (who were not involved in the program), completed a survey measuring: students' connection to, pride in, and responsibility for their community; civic attitudes; and career knowledge and preparedness. HSP teachers, community members, and students were also interviewed about program outcomes. Compared to other peers, HSP students tended to report feeling more connected to their community and school and to agree that they had career-related skills. Participants believed that service- learning contributed to these outcomes by making connections between school and community life and by exposing students to a variety of careers.

  20. Evaluation of Learning Associated with Multiple Exposures to Computerized Dynamic Posturography

    Science.gov (United States)

    Dean, S. Lance; Paloski, William H.; Taylor, Laura C.; Vanya, Robert D.; Feiveson, Alan H.; Wood, Scott J.

    2009-01-01

    Computerized dynamic posturography has been used to quantitatively assess the time course of functional sensorimotor recovery after exposure to spaceflight or to groundbased analogs such as head-down bed rest. An assessment of balance recovery may be confounded as subjects develop new strategies through repeated exposures to test paradigms. The purpose of this control study was to characterize the learning effects of sensory organization and motor control tests across multiple sessions. METHODS: Twenty-eight healthy subjects were tested over four sessions. To examine the effects of between-session interval, subjects were assigned to one of four groups in which the interval between the 1 st and 2nd sessions was 7 (+/- 1) days, 14 (+/-1) days, 28 (+/-2) days, or 56 (+/-3) days. The interval between remaining sessions was 28 (+/-4) days. Peak-to-peak anterior-posterior sway was measured during standard Sensory Organization Tests (SOTs) using either fixed or unstable sway-referenced support with eyes open, eyes closed, or sway-referenced vision. Sway was also measured during modified SOTs using eyes-closed conditions with either static or dynamic head tilts. Postural recovery to unexpected support surface perturbations (translations or rotations) was measured during Motor Control Tests. The test order was block randomized across subjects. RESULTS: The learning effects varied with test condition. There were no measurable differences with a stable support surface. The more challenging conditions (unstable support surface with and without head tilts) led to greater differences and took more trials to stabilize. The effect of time interval between the first two sessions was negligible across conditions. Evidence suggested that learning carried across similar conditions (such as unstable support SOTs). DISCUSSION: Familiarization session and/or trials are recommended to minimize learning effects when characterizing functional recovery after exposure to altered sensory

  1. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on e-Learning (Prague, Czech Republic, July 23-26, 2013)

    Science.gov (United States)

    Nunes, Miguel Baptista, Ed.; McPherson, Maggie, Ed.

    2013-01-01

    These proceedings contain the papers of the International Conference e-Learning 2013, which was organised by the International Association for Development of the Information Society and is part of the Multi Conference on Computer Science and Information Systems (Prague, Czech Republic, July 23-26, 2013). The e-Learning 2013 conference aims to…

  2. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on Mobile Learning (11th, Madeira, Portugal, March 14-16, 2015)

    Science.gov (United States)

    Sánchez, Inmaculada Arnedillo, Ed.; Isaías, Pedro, Ed.

    2015-01-01

    These proceedings contain the papers and posters of the 11th International Conference on Mobile Learning 2015, which was organised by the International Association for Development of the Information Society, in Madeira, Portugal, March 14-16, 2015. The Mobile Learning 2015 Conference seeks to provide a forum for the presentation and discussion of…

  3. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on e-Learning (Madeira, Portugal, July 1-4, 2016)

    Science.gov (United States)

    Nunes, Miguel Baptista, Ed.; McPherson, Maggie, Ed.

    2016-01-01

    These proceedings contain the papers of the International Conference e-Learning 2016, which was organised by the International Association for Development of the Information Society, 1-3 July, 2016. This conference is part of the Multi Conference on Computer Science and Information Systems 2016, 1-4 July. The e-Learning (EL) 2016 conference aims…

  4. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on Mobile Learning (Lisbon, Portugal, March 14-16, 2013)

    Science.gov (United States)

    Sánchez, Inmaculada Arnedillo, Ed.; Isaías, Pedro, Ed.

    2013-01-01

    These proceedings contain the papers of the International Conference on Mobile Learning 2013, which was organised by the International Association for Development of the Information Society, in Lisbon, Portugal, March 14-16, 2013. The Mobile Learning 2013 International Conference seeks to provide a forum for the presentation and discussion of…

  5. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on Mobile Learning (12th, Vilamoura, Algarve, Portugal, April 9-11, 2016)

    Science.gov (United States)

    Sánchez, Inmaculada Arnedillo, Ed.; Isaías, Pedro, Ed.

    2016-01-01

    These proceedings contain the papers of the 12th International Conference on Mobile Learning 2016, which was organized by the International Association for Development of the Information Society, in Vilamoura, Algarve, Portugal, April 9-11, 2016. The Mobile Learning 2016 Conference seeks to provide a forum for the presentation and discussion of…

  6. Developmental stress impairs performance on an association task in male and female songbirds, but impairs auditory learning in females only.

    Science.gov (United States)

    Farrell, Tara M; Morgan, Amanda; MacDougall-Shackleton, Scott A

    2016-01-01

    In songbirds, early-life environments critically shape song development. Many studies have demonstrated that developmental stress impairs song learning and the development of song-control regions of the brain in males. However, song has evolved through signaller-receiver networks and the effect stress has on the ability to receive auditory signals is equally important, especially for females who use song as an indicator of mate quality. Female song preferences have been the metric used to evaluate how developmental stress affects auditory learning, but preferences are shaped by many non-cognitive factors and preclude the evaluation of auditory learning abilities in males. To determine whether developmental stress specifically affects auditory learning in both sexes, we subjected juvenile European starlings, Sturnus vulgaris, to either an ad libitum or an unpredictable food supply treatment from 35 to 115 days of age. In adulthood, we assessed learning of both auditory and visual discrimination tasks. Females reared in the experimental group were slower than females in the control group to acquire a relative frequency auditory task, and slower than their male counterparts to acquire an absolute frequency auditory task. There was no difference in auditory performance between treatment groups for males. However, on the colour association task, birds from the experimental group committed more errors per trial than control birds. There was no correlation in performance across the cognitive tasks. Developmental stress did not affect all cognitive processes equally across the sexes. Our results suggest that the male auditory system may be more robust to developmental stress than that of females.

  7. Role of the plasticity-associated transcription factor zif268 in the early phase of instrumental learning.

    Directory of Open Access Journals (Sweden)

    Matthieu Maroteaux

    Full Text Available Gene transcription is essential for learning, but the precise role of transcription factors that control expression of many other genes in specific learning paradigms is yet poorly understood. Zif268 (Krox24/Egr-1 is a transcription factor and an immediate-early gene associated with memory consolidation and reconsolidation, and induced in the striatum after addictive drugs exposure. In contrast, very little is known about its physiological role at early stages of operant learning. We investigated the role of Zif268 in operant conditioning for food. Zif268 expression was increased in all regions of the dorsal striatum and nucleus accumbens in mice subjected to the first session of operant conditioning. In contrast, Zif268 increase in the dorsomedial caudate-putamen and nucleus accumbens core was not detected in yoked mice passively receiving the food reward. This indicates that Zif268 induction in these structures is linked to experiencing or learning contingency, but not to reward delivery. When the task was learned (5 sessions, Zif268 induction disappeared in the nucleus accumbens and decreased in the medial caudate-putamen, whereas it remained high in the lateral caudate-putamen, previously implicated in habit formation. In transgenic mice expressing green fluorescent protein (GFP in the striatonigral neurons, Zif268 induction occured after the first training session in both GFP-positive and negative neurons indicating an enhanced Zif268 expression in both striatonigral and striatopallidal neurons. Mutant mice lacking Zif268 expression obtained less rewards, but displayed a normal discrimination between reinforced and non-reinforced targets, and an unaltered approach to food delivery box. In addition, their motivation to obtain food rewards, evaluated in a progressive ratio schedule, was blunted. In conclusion, Zif268 participates in the processes underlying performance and motivation to execute food-conditioned instrumental task.

  8. The movement kinematics and learning strategies associated with adopting different foci of attention during both acquisition and anxious performance.

    Directory of Open Access Journals (Sweden)

    Gavin Peter Lawrence

    2012-11-01

    Full Text Available Research suggests that implicit strategies adopted during learning help prevent breakdown of automatic processes and subsequent performance decrements associated with the presence of pressure. According to the Constrained Action Hypothesis, automaticity of movement is promoted when adopting an external focus of attention. The purpose of the current experiment was to investigate if learning with an external focus of attention can enhance performance under subsequent pressure situations through promoting implicit learning and automaticity. Since previous research has generally used outcome measures of performance, the current study adopted measures of movement production. Specifically, we calculated within subject variability in trajectory velocity and distance travelled every 10% of movement time. This detailed kinematic analysis allowed investigation into some of the previously unexplored mechanisms responsible for the benefits of adopting an external focus of attention. Novice participants performed a 2.5m golf putt. Following a pre-test, participants were randomly assigned to one of three focus groups (internal, external, control. Participants then completed 400 acquisition trials over two consecutive days before being subjected to both a low-anxiety and high-anxiety transfer test. Dependent variables included variability, number of successful putts and mean radial error. Results revealed that variability was greater in the internal compared to the external and control groups. Putting performance revealed that all groups increased performance following acquisition. However, only the control group demonstrated a decrement in performance in the high-anxiety transfer test. These findings suggest that adopting an appropriate focus of attention during learning can prevent choking; with an external focus inhibiting the breakdown of automatic processes and an internal focus acting as a self-focus learning strategy and thus desensitizing individuals

  9. Qualitative and quantitative differences in learning associated with multiple-choice testing

    Science.gov (United States)

    Fisher, K.; Williams, S.; Roth, J.

    This study assesses some effects of the Computer-Assisted Self-Evaluation (CASE) system of frequent multiple-choice testing with immediate computer feedback; it is part of a larger project aiming to combine the principal strengths of individualized instruction with lecture teaching (Fisher, 1979). Learning and retention are examined in two equivalent groups of undergraduates enrolled in an upper division science course. One group (N =34) received 24 CASE quizzes with immediate feedback and the other (N=30) received two CASE-generated midterms with delayed feedback. Quiz students significantly outperformed Midterm students on the posttest; the Quiz section scored nine percentage points higher on rote items and fourteen points higher on meaningful items. Quiz students also had more positive attitudes toward and were more involved in the course. On a retention test given two years later, the Quiz Group scored eight percentage points higher than the Midterm Group on meaningful items. This study suggests that, contrary to popular opinion, multiple-choice questions promote meaningful learning at least as well as, and possibly better than, rote learning. The CASE system appears to be about as effective as other forms of frequent testing and immediate feedback in enhancing learning, and it provides a simple, cost-effective means of individualized testing in large lecture classes.

  10. Is learning mindfulness associated with improved affect after mindfulness-based cognitive therapy?

    NARCIS (Netherlands)

    Schroevers, Maya J.; Brandsma, R.

    2010-01-01

    The increased popularity of mindfulness-based interventions and the growing body of empirical evidence confirming the positive effects of these interventions on well-being warrant more research to determine if the effects are indeed related to learning mindfulness. The present study extends previous

  11. The Mediating Role of Maladaptive Perfectionism in the Association between Psychological Control and Learned Helplessness

    Science.gov (United States)

    Filippello, Pina; Larcan, Rosalba; Sorrenti, Luana; Buzzai, Caterina; Orecchio, Susanna; Costa, Sebastiano

    2017-01-01

    Despite the extensive research on parental psychological control, no study has explored the relation between parental and teacher psychological control, maladaptive perfectionism and learned helplessness (LH). The purpose of this study was to investigate (1) whether perceived teacher psychological control predicts positively LH, (2) whether…

  12. Association of Kinesthetic and Read-Write Learner with Deep Approach Learning and Academic Achievement

    Directory of Open Access Journals (Sweden)

    Latha Rajendra Kumar

    2011-06-01

    Full Text Available Background: The main purpose of the present study was to further investigate study processes, learning styles, and academic achievement in medical students. Methods: A total of 214 (mean age 22.5 years first and second year students - preclinical years - at the Asian Institute of Medical Science and Technology (AIMST University School of Medicine, in Malaysia participated.  There were 119 women (55.6% and 95 men (44.4%.   Biggs questionnaire for determining learning approaches and the VARK questionnaire for determining learning styles were used.  These were compared to the student’s performance in the assessment examinations. Results: The major findings were 1 the majority of students prefer to study alone, 2 most students employ a superficial study approach, and 3 students with high kinesthetic and read-write scores performed better on examinations and approached the subject by deep approach method compared to students with low scores.  Furthermore, there was a correlation between superficial approach scores and visual learner’s scores. Discussion: Read-write and kinesthetic learners who adopt a deep approach learning strategy perform better academically than do the auditory, visual learners that employ superficial study strategies.   Perhaps visual and auditory learners can be encouraged to adopt kinesthetic and read-write styles to enhance their performance in the exams.

  13. Individual differences in personality in laying hens are related to learning a colour cue association

    NARCIS (Netherlands)

    Haas, de Elske N.; Lee, Caroline; Hernandez, Carlos E.; Naguib, Marc; Rodenburg, Bas

    2017-01-01

    Personality can influence how animals perceive and learn cues. The behaviour and physiological responses animals show during stressful events is indicative of their personality. Acute induced stress prior to a cognitive test are known to affect the judgement of a stimulus, but personality of an

  14. Association of District Principal Evaluation with Learning-Centered Leadership Practice: Evidence from Michigan and Beijing

    Science.gov (United States)

    Sun, Min; Youngs, Peter; Yang, Haiyan; Chu, Hongqi; Zhao, Qian

    2012-01-01

    Principal evaluation has become a key component of national policy debates on developing effective leaders. To contribute to these debates, this study draws on survey data to explore how principals in Michigan and metropolitan Beijing behaved differently in enacting leadership related to teaching and learning, and how they were evaluated…

  15. Associative Learning and Sensory Neuroplasticity: How Does It Happen and What Is It Good For?

    Science.gov (United States)

    McGann, John P.

    2015-01-01

    Historically, the body's sensory systems have been presumed to provide the brain with raw information about the external environment, which the brain must interpret to select a behavioral response. Consequently, studies of the neurobiology of learning and memory have focused on circuitry that interfaces between sensory inputs and behavioral…

  16. Unanticipated Learning Outcomes Associated with Commitment to Change in Continuing Medical Education

    Science.gov (United States)

    Dolcourt, Jack L.; Zuckerman, Grace

    2003-01-01

    Introduction: Educator-derived, predetermined instructional objectives are integral to the traditional instructional model and form the linkage between instructional design and postinstruction evaluation. The traditional model does not consider unanticipated learning outcomes. We explored the contribution of learner-identified desired outcomes…

  17. Patients with obsessive-compulsive disorder are impaired in associative learning based on external feedback

    NARCIS (Netherlands)

    Nielen, M. M.; den Boer, J. A.; Smid, H. G. O. M.

    Background. Patients with obsessive-compulsive disorder (OCD) have to repeat their actions before feeling satisfied that the action reached its intended goal. Learning theory predicts that this may be due to a failure in the processing of external feedback. Method. We examined the performance of 29

  18. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  19. Discrepancies between adolescents' attributed relevance and experiences regarding communication are associated with poorer client participation and learning processes in psychosocial care

    NARCIS (Netherlands)

    Jager, Margot; Reijneveld, Sijmen A.; Metselaar, Janneke; Knorth, Erik J.; De Winter, Andrea F.

    2014-01-01

    Objective: To examine adolescents' attributed relevance and experiences regarding communication, and whether discrepancies in these are associated with clients' participation and learning processes in psychosocial care. Methods: Adolescents receiving psychosocial care (n = 211) completed measures of

  20. The role of associative and non-associative learning in the training of horses and implications for the welfare (a review

    Directory of Open Access Journals (Sweden)

    Paolo Baragli

    2015-03-01

    Full Text Available Horses were domesticated 6000 years ago and since then different types of approaches have been developed to enhance the horse's wellbeing and the human-horse relationship. Even though horse training is an increasingly important research area and many articles have been published on the subject, equitation is still the sport with the highest rate of human injuries, and a significant percentage of horses are sold or slaughtered due to behavioral problems. One explanation for this data is that the human-horse relationship is complex and the communication between humans and horses has not yet been accurately developed. Thus, this review addresses correct horse training based on scientific knowledge in animal learning and psychology. Specifically, it starts from the basic communication between humans and horses and then focuses on associative and non-associative learning, with many practical outcomes in horse management from the ground and under saddle. Finally, it highlights the common mistakes in the use of negative reinforcement, as well as all the implications that improper training could have on horse welfare. Increased levels of competence in horse training could be useful for equine technicians, owners, breeders, veterinarians, and scientists, in order to safeguard horse welfare, and also to reduce the number of human injuries and economic loss for civil society and the public health system.

  1. Sleep parameters, functional status and time post-stroke are associated with off-line motor skill learning in people with chronic stroke

    Directory of Open Access Journals (Sweden)

    Catherine eSiengsukon

    2015-10-01

    Full Text Available Background: Mounting evidence demonstrates that individuals with stroke benefit from sleep to enhance learning of a motor task. While stage NREM2 sleep and REM sleep have been associated with off-line motor skill learning in neurologically-intact individuals, it remains unknown which sleep parameters or specific sleep stages are associated with off-line motor skill learning in individuals with stroke. Methods: Twenty individuals with chronic stroke (> 6 months following stroke and 10 neurologically slept for three consecutive nights in a sleep laboratory with polysomnography. Participants practiced a tracking task the morning before the third night and underwent a retention test the morning following the third night. Off-line learning on the tracking task was assessed. Pearson’s correlations assessed for associations between the magnitude of off-line learning and sleep variables, age, upper extremity motor function, stroke severity, depression and time since stroke occurrence.Results: Individuals with stroke performed with significantly less error on the tracking task following a night of sleep (p=.006 while the control participants did not (p=.816. Increased sleep efficiency (r= -.285, less time spent in stage NREM3 sleep (r=.260, and more time spent in stage REM sleep (r= -.266 was weakly-to-moderately associated with increased magnitude of off-line motor learning. Furthermore, higher upper-extremity motor function (r = -.400, lower stroke severity (r = .360, and less time since stroke occurrence (r=.311 were moderately associated with increased magnitude of off-line motor learning. Conclusion: This study is the first study to provide insight into which sleep stages and individual characteristics may be associated with off-line learning in people with stroke. Future work should continue to understand which factors or combination of factors promote off-line motor learning in people with neurologic injury to best promote motor recovery in

  2. The timing of language learning shapes brain structure associated with articulation.

    Science.gov (United States)

    Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Klein, Denise

    2016-09-01

    We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech-motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.

  3. Building a RAPPOR with the Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries

    Directory of Open Access Journals (Sweden)

    Fanti Giulia

    2016-07-01

    Full Text Available Techniques based on randomized response enable the collection of potentially sensitive data from clients in a privacy-preserving manner with strong local differential privacy guarantees. A recent such technology, RAPPOR [12], enables estimation of the marginal frequencies of a set of strings via privacy-preserving crowdsourcing. However, this original estimation process relies on a known dictionary of possible strings; in practice, this dictionary can be extremely large and/or unknown. In this paper, we propose a novel decoding algorithm for the RAPPOR mechanism that enables the estimation of “unknown unknowns,” i.e., strings we do not know we should be estimating. To enable learning without explicit dictionary knowledge, we develop methodology for estimating the joint distribution of multiple variables collected with RAPPOR. Our contributions are not RAPPOR-specific, and can be generalized to other local differential privacy mechanisms for learning distributions of string-valued random variables.

  4. Efficacy of vision therapy in children with learning disability and associated binocular vision anomalies.

    Science.gov (United States)

    Hussaindeen, Jameel Rizwana; Shah, Prerana; Ramani, Krishna Kumar; Ramanujan, Lalitha

    To report the frequency of binocular vision (BV) anomalies in children with specific learning disorders (SLD) and to assess the efficacy of vision therapy (VT) in children with a non-strabismic binocular vision anomaly (NSBVA). The study was carried out at a centre for learning disability (LD). Comprehensive eye examination and binocular vision assessment was carried out for 94 children (mean (SD) age: 15 (2.2) years) diagnosed with specific learning disorder. BV assessment was done for children with best corrected visual acuity of ≥6/9 - N6, cooperative for examination and free from any ocular pathology. For children with a diagnosis of NSBVA (n=46), 24 children were randomized to VT and no intervention was provided to the other 22 children who served as experimental controls. At the end of 10 sessions of vision therapy, BV assessment was performed for both the intervention and non-intervention groups. Binocular vision anomalies were found in 59 children (62.8%) among which 22% (n=13) had strabismic binocular vision anomalies (SBVA) and 78% (n=46) had a NSBVA. Accommodative infacility (AIF) was the commonest of the NSBVA and found in 67%, followed by convergence insufficiency (CI) in 25%. Post-vision therapy, the intervention group showed significant improvement in all the BV parameters (Wilcoxon signed rank test, p<0.05) except negative fusional vergence. Children with specific learning disorders have a high frequency of binocular vision disorders and vision therapy plays a significant role in improving the BV parameters. Children with SLD should be screened for BV anomalies as it could potentially be an added hindrance to the reading difficulty in this special population. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  5. Getting a head start: diet, sub-adult growth, and associative learning in a seed-eating passerine.

    Directory of Open Access Journals (Sweden)

    Kristina M Bonaparte

    Full Text Available Developmental stress, and individual variation in response to it, can have important fitness consequences. Here we investigated the consequences of variable dietary protein on the duration of growth and associative learning abilities of zebra finches, Taeniopygia guttata, which are obligate graminivores. The high-protein conditions that zebra finches would experience in nature when half-ripe seed is available were mimicked by the use of egg protein to supplement mature seed, which is low in protein content. Growth rates and relative body proportions of males reared either on a low-protein diet (mature seed only or a high-protein diet (seed plus egg were determined from body size traits (mass, head width, and tarsus measured at three developmental stages. Birds reared on the high-protein diet were larger in all size traits at all ages, but growth rates of size traits showed no treatment effects. Relative head size of birds reared on the two diets differed from age day 95 onward, with high-diet birds having larger heads in proportion to both tarsus length and body mass. High-diet birds mastered an associative learning task in fewer bouts than those reared on the low-protein diet. In both diet treatments, amount of sub-adult head growth varied directly, and sub-adult mass change varied inversely, with performance on the learning task. Results indicate that small differences in head growth during the sub-adult period can be associated with substantial differences in adult cognitive performance. Contrary to a previous report, we found no evidence for growth compensation among birds on the low-protein diet. These results have implications for the study of vertebrate cognition, developmental stress, and growth compensation.

  6. Differential entrainment and learning-related dynamics of spike and local field potential activity in the sensorimotor and associative striatum.

    Science.gov (United States)

    Thorn, Catherine A; Graybiel, Ann M

    2014-02-19

    Parallel cortico-basal ganglia loops are thought to have distinct but interacting functions in motor learning and habit formation. In rats, the striatal projection neuron populations (MSNs) in the dorsolateral and dorsomedial striatum, respectively corresponding to sensorimotor and associative regions of the striatum, exhibit contrasting dynamics as rats acquire T-maze tasks (Thorn et al., 2010). Here, we asked whether these patterns could be related to the activity of local interneuron populations in the striatum and to the local field potential activity recorded simultaneously in the corresponding regions. We found that dorsolateral and dorsomedial striatal fast-spiking interneurons exhibited task-specific and training-related dynamics consistent with those of corresponding MSN populations. Moreover, both MSNs and interneuron populations in both regions became entrained to theta-band (5-12 Hz) frequencies during task acquisition. However, the predominant entrainment frequencies were different for the sensorimotor and associative zones. Dorsolateral striatal neurons became entrained mid-task to oscillations centered ∼ 5 Hz, whereas simultaneously recorded neurons in the dorsomedial region became entrained to higher frequency (∼ 10 Hz) rhythms. These region-specific patterns of entrainment evolved dynamically with the development of region-specific patterns of interneuron and MSN activity, indicating that, with learning, these two striatal regions can develop different frequency-modulated circuit activities in parallel. We suggest that such differential entrainment of sensorimotor and associative neuronal populations, acquired through learning, could be critical for coordinating information flow throughout each trans-striatal network while simultaneously enabling nearby components of the separate networks to operate independently.

  7. Compensatory Motor Network Connectivity is Associated with Motor Sequence Learning after Subcortical Stroke

    Science.gov (United States)

    Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.

    2015-01-01

    Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996

  8. Assessment of student learning associated with tree thinking in an undergraduate introductory organismal biology course.

    Science.gov (United States)

    Smith, James J; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted of designing and implementing a set of experiences to help students learn to read, interpret, and manipulate phylogenetic trees, with a particular emphasis on using data to evaluate alternative phylogenetic hypotheses (trees). To assess the outcomes of these learning experiences, we designed and implemented a Phylogeny Assessment Tool (PhAT), an open-ended response instrument that asked students to: 1) map characters on phylogenetic trees; 2) apply an objective criterion to decide which of two trees (alternative hypotheses) is "better"; and 3) demonstrate understanding of phylogenetic trees as depictions of ancestor-descendant relationships. A pre-post test design was used with the PhAT to collect data from students in two consecutive Fall semesters. Students in both semesters made significant gains in their abilities to map characters onto phylogenetic trees and to choose between two alternative hypotheses of relationship (trees) by applying the principle of parsimony (Occam's razor). However, learning gains were much lower in the area of student interpretation of phylogenetic trees as representations of ancestor-descendant relationships.

  9. Foreign language learning in French speakers is associated with rhythm perception, but not with melody perception.

    Science.gov (United States)

    Bhatara, Anjali; Yeung, H Henny; Nazzi, Thierry

    2015-04-01

    There has been increasing interest in links between language and music. Here, we investigate the relation between foreign language learning and music perception. We administered tests measuring melody and rhythm perception as well as a questionnaire on musical and foreign language experience to 147 monolingual French speakers. As expected, we found that musicians had better melody and rhythm perception than nonmusicians and that, among musicians, there was a positive correlation between the total number of years of music training and test scores. Crucially, we also found a positive correlation between the total number of years learning foreign languages and rhythm perception, but we found no such relation with melody perception. Moreover, the degree to which participants were better at rhythm than melody perception was also related to foreign language experience. Results suggest that both music training and learning foreign languages (primarily English, Spanish, and German in our sample) are related to French speakers' perception of rhythm, but not to their perception of melody. These results are discussed with respect to the rhythmic properties of French and suggest a common perceptual basis for rhythm in language and music. (c) 2015 APA, all rights reserved.

  10. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Diedrichs, Jens

    2012-01-01

    Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG......) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle......-neocortical memories during sleep....

  11. Peer-instructed seminar attendance is associated with improved preparation, deeper learning and higher exam scores: a survey study.

    Science.gov (United States)

    Bouwmeester, Rianne A M; de Kleijn, Renske A M; van Rijen, Harold V M

    2016-08-09

    . Perceived preparation of peers was positively associated with the perceived quality of seminars. Also, seminar attendance was positively associated with exam scores. Students' overall explanations suggest that discussing with peers and applying knowledge in pathophysiology cases underlies this association. Discussion with well-prepared peers during seminars improves student perceptions of deeper learning and peer-instructed seminar attendance was associated with higher exam scores.

  12. Hippocampal gene expression meta-analysis identifies aging and age-associated spatial learning impairment (ASLI genes and pathways.

    Directory of Open Access Journals (Sweden)

    Raihan K Uddin

    Full Text Available A number of gene expression microarray studies have been carried out in the past, which studied aging and age-associated spatial learning impairment (ASLI in the hippocampus in animal models, with varying results. Data from such studies were never integrated to identify the most significant ASLI genes and to understand their effect. In this study we integrated these data involving rats using meta-analysis. Our results show that proper removal of batch effects from microarray data generated from different laboratories is necessary before integrating them for meta-analysis. Our meta-analysis has identified a number of significant differentially expressed genes across age or across ASLI. These genes affect many key functions in the aged compared to the young rats, which include viability of neurons, cell-to-cell signalling and interaction, migration of cells, neuronal growth, and synaptic plasticity. These functional changes due to the altered gene expression may manifest into various neurodegenerative diseases and disorders, some of which leading into syndromic memory impairments. While other aging related molecular changes can result into altered synaptic plasticity simply causing normal aging related non-syndromic learning or spatial learning impairments such as ASLI.

  13. Cortical-hippocampal functional connectivity during covert consolidation sub-serves associative learning: Evidence for an active "rest" state.

    Science.gov (United States)

    Ravishankar, Mathura; Morris, Alexandra; Burgess, Ashley; Khatib, Dalal; Stanley, Jeffrey A; Diwadkar, Vaibhav A

    2017-10-18

    We studied modulation of undirected functional connectivity (uFC) in cortical-hippocampal sub-networks during associative learning. Nineteen healthy individuals were studied (fMRI acquired on a Siemens Verio 3T), and uFC was studied between nodes in a network of regions identified by standard activation models based on bivariate correlational analyses of time series data. The paradigm alternated between Memory Encoding, Rest and Retrieval. "Rest" intervals promoted covert consolidation. Over the task, performance was broadly separable into linear (Early) and asymptomatic (Late) regimes, with late performance reflecting successful memory consolidation. Significant modulation of uFC was observed during periods of covert consolidation. The sub-networks which were modulated constituted connections between frontal regions such as the dorsal prefrontal cortex (dPFC) and dorsal anterior cingulate cortex (dACC), the medial temporal lobe (hippocampus, HPC), the superior parietal cortex (SPC) and the fusiform gyrus (FG). uFC patterns were dynamic in that sub-networks modulated during Early learning (dACC ↔ SPC, dACC ↔ FG, dPFC ↔ HPC) were not identical to those modulated during Late learning (dACC ↔ HPC, dPFC ↔ FG, FG ↔ SPC). Covert consolidation exerts systematic effects, and these results add to emerging evidence for the constructive role of the brain's "resting state" in potentiating action. Copyright © 2017. Published by Elsevier Inc.

  14. PatternCoder: A Programming Support Tool for Learning Binary Class Associations and Design Patterns

    Science.gov (United States)

    Paterson, J. H.; Cheng, K. F.; Haddow, J.

    2009-01-01

    PatternCoder is a software tool to aid student understanding of class associations. It has a wizard-based interface which allows students to select an appropriate binary class association or design pattern for a given problem. Java code is then generated which allows students to explore the way in which the class associations are implemented in a…

  15. Production of grooming-associated sounds by chimpanzees (Pan troglodytes) at Ngogo: variation, social learning, and possible functions.

    Science.gov (United States)

    Watts, David P

    2016-01-01

    Chimpanzees (Pan troglodytes) use some communicative signals flexibly and voluntarily, with use influenced by learning. These signals include some vocalizations and also sounds made using the lips, oral cavity, and/or teeth, but not the vocal tract, such as "attention-getting" sounds directed at humans by captive chimpanzees and lip smacking during social grooming. Chimpanzees at Ngogo, in Kibale National Park, Uganda, make four distinct sounds while grooming others. Here, I present data on two of these ("splutters" and "teeth chomps") and consider whether social learning contributes to variation in their production and whether they serve social functions. Higher congruence in the use of these two sounds between dyads of maternal relatives than dyads of non-relatives implies that social learning occurs and mostly involves vertical transmission, but the results are not conclusive and it is unclear which learning mechanisms may be involved. In grooming between adult males, tooth chomps and splutters were more likely in long than in short bouts; in bouts that were bidirectional rather than unidirectional; in grooming directed toward high-ranking males than toward low-ranking males; and in bouts between allies than in those between non-allies. Males were also more likely to make these sounds while they were grooming other males than while they were grooming females. These results are expected if the sounds promote social bonds and induce tolerance of proximity and of grooming by high-ranking males. However, the alternative hypothesis that the sounds are merely associated with motivation to groom, with no additional social function, cannot be ruled out. Limited data showing that bouts accompanied by teeth chomping or spluttering at their initiation were longer than bouts for which this was not the case point toward a social function, but more data are needed for a definitive test. Comparison to other research sites shows that the possible existence of grooming

  16. Longitudinal Association between Short Sleep, Body Weight, and Emotional and Learning Problems in Hispanic and Caucasian Children

    Science.gov (United States)

    Silva, Graciela E.; Goodwin, James L.; Parthasarathy, Sairam; Sherrill, Duane L.; Vana, Kimberly D.; Drescher, Amy A.; Quan, Stuart F.

    2011-01-01

    Study Objective: To determine the impact of lower amounts of childhood sleep assessed by polysomnogram on development of obesity, being anxious or depressed, or having learning problems 5 years later. Design: Prospective cohort. Participants: Subjects were 304 community participants from the Tucson Children's Assessment of Sleep Apnea study, aged 6–12 years old at baseline. Measurements and Results: Children were classified according to baseline sleep as those who slept ≥ 9 h/night, those who slept > 7.5 to obese (≥ 85th BMI percentile), obese (≥ 95th BMI percentile), anxious or depressed, and learning problems at follow-up were assessed according to baseline sleep categories. Children who slept ≤ 7.5 h/night had higher odds of being obese (OR = 3.3, P children who slept ≥ 9 h/night. Borderline significance for overweight/obese (OR = 2.2, P children who slept ≤ 7.5 h/night as compared to those who slept ≥ 9 h/night. A mean increase in BMI of 1.7 kg/m2 (P = 0.01) over the 5 years of follow-up was seen for children who slept ≤ 7.5 h/night compared to those who slept ≥ 9 h/night. These relationships did not differ between Hispanic and Caucasian children. Conclusions: Children with reduced amounts of sleep (≤ 7.5 h/night) had an increased risk for higher body weight in early adolescence. Similarly, children who slept ≤ 7.5 h/night had higher risk of being anxious or depressed or having learning problems in early adolescence. Citation: Silva GE; Goodwin JL; Parthasarathy S; Sherrill DL; Vana KD; Drescher AA; Quan SF. Longitudinal association between short sleep, body weight, and emotional and learning problems in Hispanic and Caucasian children. SLEEP 2011;34(9):1197-1205. PMID:21886357

  17. Imagery May Arise from Associations Formed through Sensory Experience: A Network of Spiking Neurons Controlling a Robot Learns Visual Sequences in Order to Perform a Mental Rotation Task.

    Science.gov (United States)

    McKinstry, Jeffrey L; Fleischer, Jason G; Chen, Yanqing; Gall, W Einar; Edelman, Gerald M

    Mental imagery occurs "when a representation of the type created during the initial phases of perception is present but the stimulus is not actually being perceived." How does the capability to perform mental imagery arise? Extending the idea that imagery arises from learned associations, we propose that mental rotation, a specific form of imagery, could arise through the mechanism of sequence learning-that is, by learning to regenerate the sequence of mental images perceived while passively observing a rotating object. To demonstrate the feasibility of this proposal, we constructed a simulated nervous system and embedded it within a behaving humanoid robot. By observing a rotating object, the system learns the sequence of neural activity patterns generated by the visual system in response to the object. After learning, it can internally regenerate a similar sequence of neural activations upon briefly viewing the static object. This system learns to perform a mental rotation task in which the subject must determine whether two objects are identical despite differences in orientation. As with human subjects, the time taken to respond is proportional to the angular difference between the two stimuli. Moreover, as reported in humans, the system fills in intermediate angles during the task, and this putative mental rotation activates the same pathways that are activated when the system views physical rotation. This work supports the proposal that mental rotation arises through sequence learning and the idea that mental imagery aids perception through learned associations, and suggests testable predictions for biological experiments.

  18. ADHD, learning difficulties and sleep disturbances associated with KCNJ11-related neonatal diabetes.

    Science.gov (United States)

    Landmeier, Karen A; Lanning, Monica; Carmody, David; Greeley, Siri Atma W; Msall, Michael E

    2017-11-01

    Mutations in KCNJ11 are the most common cause of permanent neonatal diabetes mellitus (NDM). Approximately 25% of patients have obvious neurological dysfunction, but whether milder related problems might be more common has been unclear. We sought to assess the prevalence of parental concerns about learning, behavior, attention deficit hyperactivity disorder (ADHD), social competency, and sleep in subjects with KCNJ11-related NDM compared to unaffected sibling controls. Subjects or their guardians in the University of Chicago Monogenic Diabetes Registry completed a survey examining learning, behavior, ADHD and sleep. Thirty subjects with KCNJ11 -related NDM and 25 unaffected sibling controls were assessed. Data were analyzed using GraphPad Prism 6. Nonparametric analysis was performed using Fisher's exact test for group comparisons. Thirteen (43%) individuals with KCNJ11 -related NDM had treatment for or a diagnosis of ADHD compared to two (8%) of the sibling controls (P < 0.05). Compared to their sibling controls, individuals with KCNJ11 mutations had significant differences in behavior difficulties, social awareness, academic achievement and the need for an Individualized Education Plan (IEP). As seen in other neurodevelopmental disorders, individuals with KCNJ11 mutations also had significantly higher rates of sleep difficulties (P < 0.01). Patients with KCNJ11 -related NDM are at an increased risk for delays in learning, social-emotional and behavioral development, ADHD and sleep difficulties based on parent report. Early identification, along with integrated medical and developmental support, may promote better neurodevelopmental outcomes for this unique population. Further investigation utilizing detailed neuropsychological testing will better define the neurodevelopmental consequences of KATP mutations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Dental students’ and lecturers’ perception of the degree of difficulty of caries detection associated learning topics in Brazil

    Directory of Open Access Journals (Sweden)

    Juan Sebastian Lara

    2015-12-01

    Full Text Available Purpose: It aimed to explore the degree of difficulty of caries-detection-associated-topics perceived by dental students and lecturers as pedagogical step in the development of learning objects for e-learning. Methods: A convenience sample comprising ninety-eight subjects from different academic levels (undergraduate/graduate students and pediatric dentistry lecturers participated. Two spreadsheets (isolated/relative were created considering key topics in the caries detection process. The isolated evaluation intended to explore each topic in an isolated way, while the relative intended to classify, comparatively, the participants’ perceived difficulty per topic. Afterwards, data were analyzed. All values on spreadsheets were combined obtaining the subject’s final perception. Associations between the subjects’ degree of the perceived difficulty and academic level were estimated. ANOVA was used to determine differences regarding the perception among evaluated topics in distinct groups. Results: Caries histopathology and detection of proximal carious lesions were the topics perceived as the most difficult in the process of caries detection by both students and lecturers. Differentiation between an extrinsic pigmentation and a brown-spot (caries lesion as well as differential diagnosis between caries and enamel developmental defects or non-carious lesions were considered as more difficult by undergraduates in comparison to graduates/lecturers (regression-coefficient=14.54; Standard Error=3.34; P<0.001 and 8.40, 3.31, and 0.01 respectively. Conclusion: Topics as histopathology and detection of proximal caries lesions were identified as the most difficult despite the academic level. However, some topics are differently perceived according to the group. These results are useful for developing pedagogical material, based on the students real learning needs/expectations.

  20. Dental students' and lecturers' perception of the degree of difficulty of caries detection associated learning topics in Brazil.

    Science.gov (United States)

    Lara, Juan Sebastian; Braga, Mariana Minatel; Shitsuka, Caleb; Wen, Chao Lung; Haddad, Ana Estela

    2015-01-01

    It aimed to explore the degree of difficulty of caries-detection-associated-topics perceived by dental students and lecturers as pedagogical step in the development of learning objects for e-learning. A convenience sample comprising ninety-eight subjects from different academic levels (undergraduate/graduate students and pediatric dentistry lecturers) participated. Two spreadsheets (isolated/relative) were created considering key topics in the caries detection process. The isolated evaluation intended to explore each topic in an isolated way, while the relative intended to classify, comparatively, the participants' perceived difficulty per topic. Afterwards, data were analyzed. All values on spreadsheets were combined obtaining the subject's final perception. Associations between the subjects' degree of the perceived difficulty and academic level were estimated. ANOVA was used to determine differences regarding the perception among evaluated topics in distinct groups. Caries histopathology and detection of proximal carious lesions were the topics perceived as the most difficult in the process of caries detection by both students and lecturers. Differentiation between an extrinsic pigmentation and a brown-spot (caries lesion) as well as differential diagnosis between caries and enamel developmental defects or non-carious lesions were considered as more difficult by undergraduates in comparison to graduates/lecturers (regression-coefficient=14.54; Standard Error=3.34; Pdetection of proximal caries lesions were identified as the most difficult despite the academic level. However, some topics are differently perceived according to the group. These results are useful for developing pedagogical material, based on the students real learning needs/expectations.

  1. Word associations contribute to machine learning in automatic scoring of degree of emotional tones in dream reports.

    Science.gov (United States)

    Amini, Reza; Sabourin, Catherine; De Koninck, Joseph

    2011-12-01

    Scientific study of dreams requires the most objective methods to reliably analyze dream content. In this context, artificial intelligence should prove useful for an automatic and non subjective scoring technique. Past research has utilized word search and emotional affiliation methods, to model and automatically match human judges' scoring of dream report's negative emotional tone. The current study added word associations to improve the model's accuracy. Word associations were established using words' frequency of co-occurrence with their defining words as found in a dictionary and an encyclopedia. It was hypothesized that this addition would facilitate the machine learning model and improve its predictability beyond those of previous models. With a sample of 458 dreams, this model demonstrated an improvement in accuracy from 59% to 63% (kappa=.485) on the negative emotional tone scale, and for the first time reached an accuracy of 77% (kappa=.520) on the positive scale. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. NMDA receptors control cue-outcome selectivity and plasticity of orbitofrontal firing patterns during associative stimulus-reward learning.

    Science.gov (United States)

    van Wingerden, Marijn; Vinck, Martin; Tijms, Vincent; Ferreira, Irene R S; Jonker, Allert J; Pennartz, Cyriel M A

    2012-11-21

    Neural activity in orbitofrontal cortex has been linked to flexible representations of stimulus-outcome associations. Such value representations are known to emerge with learning, but the neural mechanisms supporting this phenomenon are not well understood. Here, we provide evidence for a causal role for NMDA receptors (NMDARs) in mediating spike pattern discriminability, neural plasticity, and rhythmic synchronization in relation to evaluative stimulus processing and decision making. Using tetrodes, single-unit spike trains and local field potentials were recorded during local, unilateral perfusion of an NMDAR blocker in rat OFC. In the absence of behavioral effects, NMDAR blockade severely hampered outcome-selective spike pattern formation to olfactory cues, relative to control perfusions. Moreover, NMDAR blockade shifted local rhythmic synchronization to higher frequencies and degraded its linkage to stimulus-outcome selective coding. These results demonstrate the importance of NMDARs for cue-outcome associative coding in OFC during learning and illustrate how NMDAR blockade disrupts network dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Clinical and treatment-related predictors of cognition in bipolar disorder: focus on visual paired associative learning.

    Science.gov (United States)

    Tournikioti, Kalliopi; Ferentinos, Panagiotis; Michopoulos, Ioannis; Alevizaki, Maria; Soldatos, Constantin R; Dikeos, Dimitris; Douzenis, Athanasios

    2016-10-25

    Bipolar disorder (BD) is associated with impairment in cognitive domains such as verbal memory and executive functions. However, visual paired associative learning (PAL) has been far less researched. Neurocognitive dysfunction in BD patients has been related to several clinical factors, but data on the effect of medication are relatively scarce and inconsistent. The aim of our study was to explore the effect of clinical and treatment-related parameters on executive functions and visual memory/learning, including PAL, in BD. Cognitive performance of 60 bipolar I patients and 30 healthy subjects was evaluated by using CANTAB battery tasks targeting spatial recognition memory, PAL and executive functions (set shifting, planning, inhibitory control). Bipolar patients showed poorer performance in PAL, set shifting, planning and inhibitory control than healthy subjects; however, only differences in PAL and planning survived correction for multiple comparisons. Number of previous manic episodes and illness duration predicted worse performance in set shifting and PAL, respectively, whereas current treatment with valproate predicted better performance in PAL. This is one of the first studies to assess clinical and treatment-related predictors of PAL in BD. We report a possibly beneficial effect of valproate on PAL, which warrants further investigation.

  4. Δ⁹Tetrahydrocannabinol impairs visuo-spatial associative learning and spatial working memory in rhesus macaques.

    Science.gov (United States)

    Taffe, Michael A

    2012-10-01

    Cannabis remains the most commonly abused illicit drug and is rapidly expanding in quasi-licit use in some jurisdictions under medical marijuana laws. Effects of the psychoactive constituent Δ⁹tetrahydrocannabinol (Δ⁹THC) on cognitive function remain of pressing concern. Prior studies in monkeys have not shown consistent evidence of memory-specific effects of Δ⁹THC on recognition tasks, and it remains unclear to what extent Δ⁹THC causes sedative versus specific cognitive effects. In this study, adult male rhesus monkeys were trained on tasks which assess spatial working memory, visuo-spatial associative memory and learning as well as motivation for food reward. Subjects were subsequently challenged with 0.1-0.3 mg/kg Δ⁹THC, i.m., in randomized order and evaluated on the behavioral measures. The performance of both vsPAL and SOSS tasks was impaired by Δ⁹THC in a dose and task-difficulty dependent manner. It is concluded that Δ⁹THC disrupts cognition in a way that is consistent with a direct effect on memory. There was evidence for interference with spatial working memory, visuo-spatial associative memory and incremental learning in the latter task. These results and the lack of specific effect of Δ⁹THC in prior visual recognition studies imply a sensitivity of spatial memory processing and/or working memory to endocannabinoid perturbation.

  5. Learning linear spatial-numeric associations improves accuracy of memory for numbers

    Directory of Open Access Journals (Sweden)

    Clarissa Ann Thompson

    2016-01-01

    Full Text Available Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1. Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status. To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2. As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.

  6. From the lexicon to expectations about kinds: a role for associative learning.

    Science.gov (United States)

    Colunga, Eliana; Smith, Linda B

    2005-04-01

    In the novel noun generalization task, 2 1/2-year-old children display generalized expectations about how solid and nonsolid things are named, extending names for never-before-encountered solids by shape and for never-before-encountered nonsolids by material. This distinction between solids and nonsolids has been interpreted in terms of an ontological distinction between objects and substances. Nine simulations and behavioral experiments tested the hypothesis that these expectations arise from the correlations characterizing early learned noun categories. In the simulation studies, connectionist networks were trained on noun vocabularies modeled after those of children. These networks formed generalized expectations about solids and nonsolids that match children's performances in the novel noun generalization task in the very different languages of English and Japanese. The simulations also generate new predictions supported by new experiments with children. Implications are discussed in terms of children's development of distinctions between kinds of categories and in terms of the nature of this knowledge.

  7. Neurochemical changes in the hippocampus and prefrontal cortex associated with electroacupuncture for learning and memory impairment.

    Science.gov (United States)

    He, Jian; Zhao, Congkuai; Liu, Weilin; Huang, Jia; Liang, Shengxiang; Chen, Lidian; Tao, Jing

    2018-02-01

    Electroacupuncture (EA) has been widely used to treat cognitive impairment following cerebral ischemia. However, the functional mechanisms of EA have not been fully elucidated. The aim of the present study was to investigate whether EA at the GV 20 and DU 24 acupoints can improve the learning and memory ability via alteration of the neurochemical metabolism in the hippocampus (HPC) and prefrontal cortex (PFC) of rats with ischemia and reperfusion (I/R) injury. Sprague‑Dawley male rats were randomly divided into three groups, namely the sham group (n=12), the middle cerebral artery occlusion (MCAO) group (n=12) and the EA treatment (MCAO + EA) group (n=12). MCAO was performed to establish the left focal cerebral I/R injury model, and the GV 20 and DU 24 acupoints were then stimulated with EA for 30 min per time, once daily, for 7 consecutive days. The Morris water maze (MWM) test was used to assess learning and memory ability. T2‑weighted imaging was used to assess the cerebral infarct volume. Magnetic resonance spectroscopy was used to assess neurochemical metabolism of HPC and PFC. The neurological scores of the MCAO + EA group were significantly reduced compared with those of the MCAO group 7 days after EA treatment (Pplatform area was significantly higher in the MCAO + EA group compared with that in the MCAO group (P0.05). The ratios of NAA/Cr, Cho/Cr and Glu/Cr of left‑to‑right PFC were elevated (Plearning and memory ability, possibly through increasing the levels of NAA and Cho in the HPC and PFC of rats with I/R injury.

  8. Grapheme learning and grapheme-color synesthesia: toward a comprehensive model of grapheme-color association

    OpenAIRE

    Asano, Michiko; Yokosawa, Kazuhiko

    2013-01-01

    Recent progress in grapheme-color synesthesia research has revealed that certain regularities, as well as individual differences, figure into grapheme-color associations. Although several factors are known to regulate grapheme-color associations, the impact of factors, including their interrelationships, on synesthesia remains unclear. We investigated determinants of synesthetic color for graphemes (characters, letters) of Hiragana, a phonetic script in the Japanese language, and the English ...

  9. Grapheme learning and grapheme-color synesthesia: Toward a comprehensive model of grapheme-color association

    OpenAIRE

    Michiko eAsano; Michiko eAsano; Michiko eAsano; Kazuhiko eYokosawa

    2013-01-01

    Recent progress in grapheme-color synesthesia research has revealed that certain regularities, as well as individual differences, figure into grapheme-color associations. Although several factors are known to regulate grapheme-color associations, the impact of factors, including their interrelationships, on synesthesia remains unclear. We investigated determinants of synesthetic color for graphemes (characters, letters) of Hiragana, a phonetic script in the Japanese language, and the English ...

  10. A new face of sleep: The impact of post-learning sleep on recognition memory for face-name associations.

    Science.gov (United States)

    Maurer, Leonie; Zitting, Kirsi-Marja; Elliott, Kieran; Czeisler, Charles A; Ronda, Joseph M; Duffy, Jeanne F

    2015-12-01

    Sleep has been demonstrated to improve consolidation of many types of new memories. However, few prior studies have examined how sleep impacts learning of face-name associations. The recognition of a new face along with the associated name is an important human cognitive skill. Here we investigated whether post-presentation sleep impacts recognition memory of new face-name associations in healthy adults. Fourteen participants were tested twice. Each time, they were presented 20 photos of faces with a corresponding name. Twelve hours later, they were shown each face twice, once with the correct and once with an incorrect name, and asked if each face-name combination was correct and to rate their confidence. In one condition the 12-h interval between presentation and recall included an 8-h nighttime sleep opportunity ("Sleep"), while in the other condition they remained awake ("Wake"). There were more correct and highly confident correct responses when the interval between presentation and recall included a sleep opportunity, although improvement between the "Wake" and "Sleep" conditions was not related to duration of sleep or any sleep stage. These data suggest that a nighttime sleep opportunity improves the ability to correctly recognize face-name associations. Further studies investigating the mechanism of this improvement are important, as this finding has implications for individuals with sleep disturbances and/or memory impairments. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. DeepSkeleton: Learning Multi-Task Scale-Associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

    Science.gov (United States)

    Shen, Wei; Zhao, Kai; Jiang, Yuan; Wang, Yan; Bai, Xiang; Yuille, Alan

    2017-11-01

    Object skeletons are useful for object representation and object detection. They are complementary to the object contour, and provide extra information, such as how object scale (thickness) varies among object parts. But object skeleton extraction from natural images is very challenging, because it requires the extractor to be able to capture both local and non-local image context in order to determine the scale of each skeleton pixel. In this paper, we present a novel fully convolutional network with multiple scale-associated side outputs to address this problem. By observing the relationship between the receptive field sizes of the different layers in the network and the skeleton scales they can capture, we introduce two scale-associated side outputs to each stage of the network. The network is trained by multi-task learning, where one task is skeleton localization to classify whether a pixel is a skeleton pixel or not, and the other is skeleton scale prediction to regress the scale of each skeleton pixel. Supervision is imposed at different stages by guiding the scale-associated side outputs toward the groundtruth skeletons at the appropriate scales. The responses of the multiple scale-associated side outputs are then fused in a scale-specific way to detect skeleton pixels using multiple scales effectively. Our method achieves promising results on two skeleton extraction datasets, and significantly outperforms other competitors. Additionally, the usefulness of the obtained skeletons and scales (thickness) are verified on two object detection applications: Foreground object segmentation and object proposal detection.

  12. The declarative system in children with specific language impairment: a comparison of meaningful and meaningless auditory-visual paired associate learning.

    Science.gov (United States)

    Bishop, Dorothy V M; Hsu, Hsinjen Julie

    2015-01-01

    It has been proposed that children with Specific Language Impairment (SLI) have a selective deficit in procedural learning, with relatively spared declarative learning. In previous studies we and others confirmed deficits in procedural learning of sequences, using both verbal and nonverbal materials. Here we studied the same children using a task that implicates the declarative system, auditory-visual paired associate learning. There were parallel tasks for verbal materials (vocabulary learning) and nonverbal materials (meaningless patterns and sounds). Participants were 28 children with SLI aged 7-11 years, 28 younger typically-developing children matched for raw scores on a test of receptive grammar, and 20 typically-developing children matched on chronological age. Children were given four sessions of paired-associate training using a computer game adopting an errorless learning procedure, during which they had to select a picture from an array of four to match a heard stimulus. In each session they did both vocabulary training, where the items were eight names and pictures of rare animals, and nonverbal training, where stimuli were eight visual patterns paired with complex nonverbal sounds. A total of 96 trials of each type was presented over four days. In all groups, accuracy improved across the four sessions for both types of material. For the vocabulary task, the age-matched control group outperformed the other two groups in the starting level of performance, whereas for the nonverbal paired-associate task, there were no reliable differences between groups. In both tasks, rate of learning was comparable for all three groups. These results are consistent with the Procedural Deficit Hypothesis of SLI, in finding spared declarative learning on a nonverbal auditory-visual paired associate task. On the verbal version of the task, the SLI group had a deficit in learning relative to age-matched controls, which was evident on the first block in the first session

  13. Association between urine cotinine levels, continuous performance test variables, and attention deficit hyperactivity disorder and learning disability symptoms in school-aged children.

    Science.gov (United States)

    Cho, S C; Hong, Y C; Kim, J W; Park, S; Park, M H; Hur, J; Park, E J; Hong, S B; Lee, J H; Shin, M S; Kim, B N; Yoo, H J; Cho, I H; Bhang, S Y; Hahn, S; Han, S K

    2013-01-01

    We examined the cross-sectional relationship between environmental tobacco smoke exposure, continuous performance test (CPT) measures, and attention deficit hyperactivity disorder (ADHD) or learning disability symptoms in school-aged children. In total, 989 children (526 boys, mean age 9.1 ± 0.7 years), recruited from five South Korean cities participated in this study. We used urine cotinine as a biomarker for environmental tobacco smoke exposure, and obtained the children's scores on a CPT. Parents completed the Korean versions of the ADHD rating scale-IV (ADHD-RS) and learning disability evaluation scale (LDES). Using generalized linear mixed model (GLMM), we assessed the associations between urine cotinine concentrations, neuropsychological variables, and symptoms of ADHD and learning disabilities. Additionally, we conducted structural equation models to explore the effects' pathways. After adjusting for a range of relevant covariates, GLMM showed urinary cotinine levels were significantly and positively associated with CPT scores on omission errors, commission errors, response time, and response time variability, and with parent- and teacher-rated ADHD-RS scores. In addition, urine cotinine levels were negatively associated with LDES scores on spelling and mathematical calculations. The structural equation model revealed that CPT variables mediated the association between urine cotinine levels and parental reports of symptoms of ADHD and learning disabilities. Our data indicate that environmental exposure to tobacco smoke is associated with ADHD and learning disabilities in children, and that impairments in attention and inhibitory control probably mediate the effect.

  14. Association rules for rat spatial learning: the importance of the hippocampus for binding item identity with item location.

    Science.gov (United States)

    Albasser, Mathieu M; Dumont, Julie R; Amin, Eman; Holmes, Joshua D; Horne, Murray R; Pearce, John M; Aggleton, John P

    2013-12-01

    Three cohorts of rats with extensive hippocampal lesions received multiple tests to examine the relationships between particular forms of associative learning and an influential account of hippocampal function (the cognitive map hypothesis). Hippocampal lesions spared both the ability to discriminate two different digging media and to discriminate two different room locations in a go/no-go task when each location was approached from a single direction. Hippocampal lesions had, however, differential effects on a more complex task (biconditional discrimination) where the correct response was signaled by the presence or absence of specific cues. For all biconditional tasks, digging in one medium (A) was rewarded in the presence of cue C, while digging in medium B was rewarded in the presences of cue D. Such biconditional tasks are "configural" as no individual cue or element predicts the solution (AC+, AD-, BD+, and BC-). When proximal context cues signaled the correct digging choice, biconditional learning was seemingly unaffected by hippocampal lesions. Severe deficits occurred, however, when the correct digging choice was signaled by distal room cues. Also, impaired was the ability to discriminate two locations when each location was approached from two directions. A task demand that predicted those tasks impaired by hippocampal damage was the need to combine specific cues with their relative spatial positions ("structural learning"). This ability makes it possible to distinguish the same cues set in different spatial arrays. Thus, the hippocampus appears necessary for configural discriminations involving structure, discriminations that potentially underlie the creation of cognitive maps. Copyright © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  15. SYSTEMIC INFLAMMATION IMPAIRS ATTENTION AND COGNITIVE FLEXIBILITY BUT NOT ASSOCIATIVE LEARNING IN AGED RATS: Possible Implications for Delirium

    Directory of Open Access Journals (Sweden)

    Deborah J Culley

    2014-06-01

    Full Text Available Delirium is a common and morbid condition in elderly hospitalized patients. Its pathophysiology is poorly understood but inflammation has been implicated based on a clinical association with systemic infection and surgery and preclinical data showing that systemic inflammation adversely affects hippocampus-dependent memory. However, clinical manifestations and imaging studies point to abnormalities not in the hippocampus but in cortical circuits. We therefore tested the hypothesis that systemic inflammation impairs prefrontal cortex function by assessing attention and executive function in aged animals. Aged (24-month-old Fischer-344 rats received a single intraperitoneal injection of lipopolysaccharide (LPS; 50 ug/kg or saline and were tested on the attentional shifting task (AST, an index of integrity of the prefrontal cortex, on days 1-3 post-injection. Plasma and frontal cortex concentrations of the cytokine TNFα and the chemokine CCL2 were measured by ELISA in separate groups of identically treated, age-matched rats. LPS selectively impaired reversal learning and attentional shifts without affecting discrimination learning in the AST, indicating a deficit in attention and cognitive flexibility but not learning globally. LPS increased plasma TNFα and CCL2 acutely but this resolved within 24-48 h. TNFα in the frontal cortex did not change whereas CCL2 increased nearly 3-fold 2 h after LPS but normalized by the time behavioral testing started 24 h later. Together, our data indicate that systemic inflammation selectively impairs attention and executive function in aged rodents and that the cognitive deficit is independent of concurrent changes in frontal cortical TNFα and CCL2. Because inattention is a prominent feature of clinical delirium, our data support a role for inflammation in the pathogenesis of this clinical syndrome and suggest this animal model could be useful for studying that relationship further.

  16. What can we learn from the microbial ecological interactions associated with polymicrobial diseases?

    Science.gov (United States)

    Antiabong, J F; Boardman, W; Ball, A S

    2014-03-15

    Periodontal diseases in humans and animals are model polymicrobial diseases which are associated with a shift in the microbial community structure and function; there is therefore a need to investigate these diseases from a microbial ecological perspective. This review highlights three important areas of microbial ecological investigation of polymicrobial diseases and the lessons that could be learnt: (1) identification of disease-associated microbes and the implications for choice of anti-infective treatment; (2) the implications associated with vaccine design and development and (3) application of the dynamics of microbial interaction in the discovery of novel anti-infective agents. This review emphasises the need to invigorate microbial ecological approaches to the study of periodontal diseases and other polymicrobial diseases for greater understanding of the ecological interactions between and within the biotic and abiotic factors of the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. An empirical examination of the association between multiple intelligences and language learning self-efficacy among TEFL university students

    Directory of Open Access Journals (Sweden)

    Fatemeh Moafian

    2015-01-01

    Full Text Available The current study investigated the association between multiple intelligences and language learning efficacy expectations among TEFL (Teaching English as a Foreign Language university students. To fulfill the aim of the study, 108 junior and senior TEFL students were asked to complete the "Multiple Intelligence Developmental Assessment Scales" (MIDAS (Shearer, 1996 and the "Learners' Sense of Efficacy Survey" (Gahungu, 2009. Descriptive statistics, correlation analysis and regression analysis were employed to analyze the data. The findings of correlation analysis indicated that, among the different types of intelligences, Linguistic and Intrapersonal intelligences had strong positive correlations with learners' self-efficacy beliefs. The results of regression analysis showed that Linguistic and Intrapersonal intelligences were positive predictors of learners’ efficacy beliefs, whereas Mathematical intelligence was the negative predictor of students’ self-efficacy beliefs. All in all, the findings of the present study contribute to the understanding of the interplay between students’ multiple intelligences and their language learning self-efficacy beliefs; furthermore, they convey some implications for university teachers, material and curriculum developers and language testers.

  18. An associative learning deficit in 1-year-old infants of depressed mothers: role of depression duration.

    Science.gov (United States)

    Kaplan, Peter S; Danko, Christina M; Diaz, Andres; Kalinka, Christina J

    2011-02-01

    The effectiveness of infant-directed speech (IDS) produced by non-depressed mothers for promoting the acquisition of voice-face associations was investigated in 1-year-old children of depressed mothers in a conditioned-attention paradigm. Prior research suggested that infants of mothers with comparatively longer-duration depressive episodes exhibit poorer learning in response to non-depressed mothers' IDS, but duration of depression was confounded with infant age. In the current study, 1-year-old infants of currently depressed mothers with relatively longer-duration depressive episodes (i.e., perinatal onset) showed significantly poorer learning than 1-year-olds of currently depressed mothers with relatively shorter duration depressive episodes (non-perinatal onset). This was true despite the fact that there were no measurable differences in the severity of depression, level of social functioning, or antidepressant medication use between the two groups. These findings add support to the hypothesis that there is an experience-based change in responsiveness to female IDS in infants of depressed mothers during the first year of life. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Learning lessons and making differences: the European Association of Health Law conference 2009.

    Science.gov (United States)

    Laurie, Graeme

    2010-06-01

    The second conference of the European Association of Health Law took place in the Royal College of Physicians in Edinburgh, Scotland on 15-16 October 2009. The event was generously sponsored by the British Academy and the AHRC/SCRIPT research centre based in the School of Law at the University of Edinburgh. The meeting was attended by 115 delegates from 26 countries and preceded by a public debate on assisted dying. This report gives an account of these events and the future direction of the work of the Association.

  20. Automated Analysis of e-Participation Data by Utilizing Associative Networks, Spreading Activation and Unsupervised Learning

    Science.gov (United States)

    Teufl, Peter; Payer, Udo; Parycek, Peter

    According to [1], the term e-participation is defined as ”the use of information and communication technologies to broaden and deepen political participation by enabling citizens to connect with one another and with their elected representatives”. This definition sounds quite simple and logical, but when considering the implementation of such a service in a real world scenario, it is obvious that it is not possible to evaluate messages, which are generated by thousands of citizens, by hand. Such documents need to be read and analyzed by experts with the required in-depth domain knowledge. In order to enable this analysis process and thereby to increase the number of possible e-particpation applications, we need to provide these experts with automated analysis tools that cluster, pre-screen and pre-evaluate public opinions and public contributions. In this paper we present a framework based on Machine Learning-(ML) and Artificial Intelligence-(AI) techniques that are capable of various analysis mechanisms such as unsupervised clustering of yet unread documents, searching for related concepts within documents and the description of relations between terms. To finish, we show how the proposed framework can be applied to real world data taken from the Austrian e-participation platform mitmachen.at.

  1. Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans.

    Science.gov (United States)

    Amano, Hisayuki; Maruyama, Ichiro N

    2011-10-01

    The nematode Caenorhabditis elegans (C. elegans) adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH 4.0), as an unconditioned stimulus (US). Before the conditioning, worms were attracted to 1-propanol and avoided HCl in chemotaxis assay. In contrast, after massed or spaced training, worms were either not attracted at all to or repelled from 1-propanol on the assay plate. The memory after the spaced training was retained for 24 h, while the memory after the massed training was no longer observable within 3 h. Worms pretreated with transcription and translation inhibitors failed to form the memory by the spaced training, whereas the memory after the massed training was not significantly affected by the inhibitors and was sensitive to cold-shock anesthesia. Therefore, the memories after the spaced and massed trainings can be classified as long-term memory (LTM) and short-term/middle-term memory (STM/MTM), respectively. Consistently, like other organisms including Aplysia, Drosophila, and mice, C. elegans mutants defective in nmr-1 encoding an NMDA receptor subunit failed to form both LTM and STM/MTM, while mutations in crh-1 encoding the CREB transcription factor affected only the LTM.

  2. Program Setup Time and Learning Curves associated with "ready to fly" Drone Mapping Hardware and Software.

    Science.gov (United States)

    Wilcox, T.

    2016-12-01

    How quickly can students (and educators) get started using a "ready to fly" UAS and popular publicly available photogrammetric mapping software for student research at the undergraduate level? This poster presentation focuses on the challenges of starting up your own drone-mapping program for undergraduate research in a compressed timescale of three months. Particular focus will be given to learning the operation of the platforms, hardware and software interface challenges, and using these electronic systems in real-world field settings that pose a range of physical challenges to both operators and equipment. We will be using a combination of the popular DJI Phantom UAS and Pix4D mapping software to investigate mass wasting processes and potential hazards present in public lands popular with recreational users. Projects are aimed at characterizing active geological hazards that operate on short timescales and may include gully headwall erosion in Flaming Geyser State Park and potential landslide instability within Capital State Forest, both in the Puget Sound region of Washington State.

  3. Rival assessment among northern elephant seals: evidence of associative learning during male–male contests

    Science.gov (United States)

    Casey, Caroline; Charrier, Isabelle; Mathevon, Nicolas; Reichmuth, Colleen

    2015-01-01

    Specialized signals emitted by competing males often convey honest information about fighting ability. It is generally believed that receivers use these signals to directly assess their opponents. Here, we demonstrate an alternative communication strategy used by males in a breeding system where the costs of conflict are extreme. We evaluated the acoustic displays of breeding male northern elephant seals (Mirounga angustirostris), and found that social knowledge gained through prior experience with signallers was sufficient to maintain structured dominance relationships. Using sound analysis and playback experiments with both natural and modified signals, we determined that males do not rely on encoded information about size or dominance status, but rather learn to recognize individual acoustic signatures produced by their rivals. Further, we show that behavioural responses to competitors' calls are modulated by relative position in the hierarchy: the highest ranking (alpha) males defend their harems from all opponents, whereas mid-ranking (beta) males respond differentially to familiar challengers based on the outcome of previous competitive interactions. Our findings demonstrate that social knowledge of rivals alone can regulate dominance relationships among competing males within large, spatially dynamic social groups, and illustrate the importance of combining descriptive and experimental methods when deciphering the biological relevance of animal signals. PMID:26361553

  4. Effects of an Interteaching Probe on Learning and Generalization of American Psychological Association (APA) Style

    Science.gov (United States)

    Slezak, Jonathan M.; Faas, Caitlin

    2017-01-01

    This study implemented the components of interteaching as a probe to teach American Psychological Association (APA) Style to undergraduate university students in a psychology research methods and statistics course. The interteaching method was compared to the traditional lecture-based approach between two sections of the course with the same…

  5. Associations between Collaborative Learning and Personality/Cognitive Style among Online Community College Students

    Science.gov (United States)

    Sheffield, Anneliese

    2016-01-01

    This research study investigated associations between online community college students' personal characteristics and experiences in online courses (n = 123). Specifically, students' personalities and cognitive styles were examined alongside the perceived quality and outcomes of collaboration. Negative correlations were found between the…

  6. Association between Contract Teachers and Student Learning in Five Francophone African Countries

    Science.gov (United States)

    Chudgar, Amita

    2015-01-01

    This article investigates the association between studying with a contract teacher and a student's academic outcomes, using data from five Francophone African countries for two grade levels and two subjects. Based on this analysis, the evidence for or against this form of teacher hiring is inconclusive. The results indicate that these…

  7. Urinary Microbiota Associated with Preterm Birth: Results from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE Study.

    Directory of Open Access Journals (Sweden)

    Nicholas J Ollberding

    Full Text Available Preterm birth (PTB is the leading cause of infant morbidity and mortality. Genitourinary infection is implicated in the initiation of spontaneous PTB; however, examination of the urinary microbiota in relation to preterm delivery using next-generation sequencing technologies is lacking. In a case-control study nested within the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE study, we examined associations between the urinary microbiota and PTB. A total of 49 cases (delivery < 37 weeks gestation and 48 controls (delivery ≥ 37 weeks gestation balanced on health insurance type were included in the present analysis. Illumina sequencing of the 16S rRNA gene V4 region was performed on urine samples collected during the second trimester. We observed no difference in taxa richness, evenness, or community composition between cases and controls or for gestational age modeled as a continuous variable. Operational taxonomic units (OTUs classified to Prevotella, Sutterella, L. iners, Blautia, Kocuria, Lachnospiraceae, and S.marcescens were enriched among cases (FDR corrected p≤ 0.05. A urinary microbiota clustering partition dominated by S. marcescens was also associated with PTB (OR = 3.97, 95% CI: 1.19-13.24. These data suggest a limited role for the urinary microbiota in PTB when measured during the second trimester by 16S rRNA gene sequencing. The enrichment among cases in several organisms previously reported to be associated with genitourinary pathology requires confirmation in future studies to rule out the potential for false positive findings.

  8. Altered Expression of Endoplasmic Reticulum Stress Associated Genes in Hippocampus of Learned Helpless Rats: Relevance to Depression Pathophysiology

    Directory of Open Access Journals (Sweden)

    Matthew A. Timberlake

    2016-01-01

    Full Text Available The unfolded protein response (UPR is an evolutionarily conserved defensive mechanism that is used by cells to correct misfolded proteins that accumulate in the endoplasmic reticulum. These proteins are misfolded as a result of physical stress on a cell and initiate a host of downstream effects that govern processes ranging from inflammation to apoptosis. To examine whether UPR system plays a role in depression, we examined the expression of genes that are part of the three different pathways for UPR activation, namely GRP78, GRP94, ATF6, XBP-1, ATF4 and CHOP using an animal model system that distinguishes vulnerability (learned helpless, LH from resistance (non-learned helpless, NLH to develop depression. Rats were exposed to inescapable shock on day 1 and day 7 and were tested for escape latency on day 14. Rats not given shock but tested for escape latency were used as tested control (TC. Plasma corticosterone levels were measured. Expression levels of various UPR associated genes were determined in hippocampus using qPCR. We found that the corticosterone level was higher in LH rats compared with TC and NLH rats. Expression of GRP78, GRP94, ATF6 and XBP-1 were significantly upregulated in LH rats compared with TC or NLH rats, whereas NLH rats did not show such changes. Expression levels of ATF4 and CHOP showed trends towards upregulation but were not significantly altered in LH or NLH group. Our data show strong evidence of altered UPR system in depressed rats, which could be associated with development of depressive behavior.

  9. Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences

    Science.gov (United States)

    Carey, James R.

    2013-01-01

    Complex skill learning at a joint initiates competition between its representation in the primary motor cortex (M1) and that of the neighboring untrained joint. This process of representational plasticity has been mapped by cortically-evoking simple movements. We investigated, following skill learning at a joint, 1) whether comparable processes of representational plasticity are observed when mapping is based on volitionally produced complex movements and 2) the consequence on the skill of the adjacent untrained joint. Twenty-four healthy subjects were assigned to either finger- or elbow-skill training or no-training control group. At pretest and posttest, subjects performed complex skill movements at finger, elbow and ankle concurrent with functional magnetic resonance imaging (fMRI) to define learning and allow mapping of corresponding activation-based representations in M1. Skill following both finger- and elbow- training transferred to the ankle (remote joint) (p=0.05 and 0.05); however, finger training did not transfer to the elbow and elbow training did not transfer to the finger. Following finger training, location of the trained finger representation showed a trend (p=0.08) for medial shift towards the representation of adjacent untrained elbow joint; the change in intensity of the latter representation was associated with elbow skill (Spearman's ρ=–0.71, p=0.07). Following elbow training, the trained elbow representation and the adjacent untrained finger representation increased their overlap (p=0.02), which was associated with finger skill (Spearman's ρ=–0.83, p=0.04). Thus, our pilot study reveals comparable processes of representational plasticity with fMRI mapping of complex skill movements as have been demonstrated with cortically-evoked methods. Importantly, these processes may limit the degree of transfer of skill between trained and adjacent untrained joints. These pilot findings that await confirmation in large-scale studies have significant

  10. A patient with bilateral facial palsy associated with hypertension and chickenpox: learning points

    OpenAIRE

    Al-Abadi, Eslam; Milford, David V; Smith, Martin

    2010-01-01

    Bilateral facial nerve paralysis is an uncommon presentation and even more so in children. There are reports of different causes of bilateral facial nerve palsy. It is well-established that hypertension and chickenpox causes unilateral facial paralysis and the importance of checking the blood pressure in children with facial nerve paralysis cannot be stressed enough. The authors report a boy with bilateral facial nerve paralysis in association with hypertension and having recently recovered f...

  11. Mechanisms of intestinal inflammation and development of associated cancers: Lessons learned from mouse models

    Science.gov (United States)

    Westbrook, Aya M.; Szakmary, Akos; Schiestl, Robert H.

    2010-01-01

    Chronic inflammation is strongly associated with approximately 1/5th of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With regards

  12. A Survey Study of the Association between Perceptions of Interactions, Learning and Satisfaction among Undergraduate Online Students

    Science.gov (United States)

    Benzigar, Sasikumar

    2014-01-01

    Undergraduate students' perceptions of their presences in online learning environments are critical in creating online courses that can best enhance their learning. Hence, understanding how learners perceive their presences in the online environment could assist course designers and instructors in creating quality online learning experiences. The…

  13. KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies.

    Science.gov (United States)

    Abo Alchamlat, Sinan; Farnir, Frédéric

    2017-03-21

    Finding epistatic interactions in large association studies like genome-wide association studies (GWAS) with the nowadays-available large volume of genomic data is a challenging and largely unsolved issue. Few previous studies could handle genome-wide data due to the intractable difficulties met in searching a combinatorial explosive search space and statistically evaluating epistatic interactions given a limited number of samples. Our work is a contribution to this field. We propose a novel approach combining K-Nearest Neighbors (KNN) and Multi Dimensional Reduction (MDR) methods for detecting gene-gene interactions as a possible alternative to existing algorithms, e especially in situations where the number of involved determinants is high. After describing the approach, a comparison of our method (KNN-MDR) to a set of the other most performing methods (i.e., MDR, BOOST, BHIT, MegaSNPHunter and AntEpiSeeker) is carried on to detect interactions using simulated data as well as real genome-wide data. Experimental results on both simulated data and real genome-wide data show that KNN-MDR has interesting properties in terms of accuracy and power, and that, in many cases, it significantly outperforms its recent competitors. The presented methodology (KNN-MDR) is valuable in the context of loci and interactions mapping and can be seen as an interesting addition to the arsenal used in complex traits analyses.

  14. Social influence on associative learning: double dissociation in high-functioning autism, early-stage behavioural variant frontotemporal dementia and Alzheimer's disease.

    Science.gov (United States)

    Kéri, Szabolcs

    2014-05-01

    Most of our learning activity takes place in a social context. I examined how social interactions influence associative learning in neurodegenerative diseases and atypical neurodevelopmental conditions primarily characterised by social cognitive and memory dysfunctions. Participants were individuals with high-functioning autism (HFA, n = 18), early-stage behavioural variant frontotemporal dementia (bvFTD, n = 16) and Alzheimer's disease (AD, n = 20). The leading symptoms in HFA and bvFTD were social and behavioural dysfunctions, whereas AD was characterised by memory deficits. Participants received three versions of a paired associates learning task. In the game with boxes test, objects were hidden in six candy boxes placed in different locations on the computer screen. In the game with faces, each box was labelled by a photo of a person. In the real-life version of the game, participants played with real persons. Individuals with HFA and bvFTD performed well in the computer games, but failed on the task including real persons. In contrast, in patients with early-stage AD, social interactions boosted paired associates learning up to the level of healthy control volunteers. Worse performance in the real life game was associated with less successful recognition of complex emotions and mental states in the Reading the Mind in the Eyes Test. Spatial span did not affect the results. When social cognition is impaired, but memory systems are less compromised (HFA and bvFTD), real-life interactions disrupt associative learning; when disease process impairs memory systems but social cognition is relatively intact (early-stage AD), social interactions have a beneficial effect on learning and memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Pragmatics of language and theory of mind in children with dyslexia with associated language difficulties or nonverbal learning disabilities.

    Science.gov (United States)

    Cardillo, Ramona; Garcia, Ricardo Basso; Mammarella, Irene C; Cornoldi, Cesare

    2017-03-15

    The present study aims to find empirical evidence of deficits in linguistic pragmatic skills and theory of mind (ToM) in children with dyslexia with associated language difficulties or nonverbal learning disabilities (NLD), when compared with a group of typically developing (TD) children matched for age and gender. Our results indicate that children with dyslexia perform less well than TD children in most of the tasks measuring pragmatics of language, and in one of the tasks measuring ToM. In contrast, children with NLD generally performed better than the dyslexia group, and performed significantly worse than the TD children only in a metaphors task based on visual stimuli. A discriminant function analysis confirmed the crucial role of the metaphors subtest and the verbal ToM task in distinguishing between the groups. We concluded that, contrary to a generally-held assumption, children with dyslexia and associated language difficulties may be weaker than children with NLD in linguistic pragmatics and ToM, especially when language is crucially involved. The educational and clinical implications of these findings are discussed.

  16. Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies

    Science.gov (United States)

    Mieth, Bettina; Kloft, Marius; Rodríguez, Juan Antonio; Sonnenburg, Sören; Vobruba, Robin; Morcillo-Suárez, Carlos; Farré, Xavier; Marigorta, Urko M.; Fehr, Ernst; Dickhaus, Thorsten; Blanchard, Gilles; Schunk, Daniel; Navarro, Arcadi; Müller, Klaus-Robert

    2016-01-01

    The standard approach to the analysis of genome-wide association studies (GWAS) is based on testing each position in the genome individually for statistical significance of its association with the phenotype under investigation. To improve the analysis of GWAS, we propose a combination of machine learning and statistical testing that takes correlation structures within the set of SNPs under investigation in a mathematically well-controlled manner into account. The novel two-step algorithm, COMBI, first trains a support vector machine to determine a subset of candidate SNPs and then performs hypothesis tests for these SNPs together with an adequate threshold correction. Applying COMBI to data from a WTCCC study (2007) and measuring performance as replication by independent GWAS published within the 2008–2015 period, we show that our method outperforms ordinary raw p-value thresholding as well as other state-of-the-art methods. COMBI presents higher power and precision than the examined alternatives while yielding fewer false (i.e. non-replicated) and more true (i.e. replicated) discoveries when its results are validated on later GWAS studies. More than 80% of the discoveries made by COMBI upon WTCCC data have been validated by independent studies. Implementations of the COMBI method are available as a part of the GWASpi toolbox 2.0. PMID:27892471

  17. Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies

    Science.gov (United States)

    Mieth, Bettina; Kloft, Marius; Rodríguez, Juan Antonio; Sonnenburg, Sören; Vobruba, Robin; Morcillo-Suárez, Carlos; Farré, Xavier; Marigorta, Urko M.; Fehr, Ernst; Dickhaus, Thorsten; Blanchard, Gilles; Schunk, Daniel; Navarro, Arcadi; Müller, Klaus-Robert

    2016-11-01

    The standard approach to the analysis of genome-wide association studies (GWAS) is based on testing each position in the genome individually for statistical significance of its association with the phenotype under investigation. To improve the analysis of GWAS, we propose a combination of machine learning and statistical testing that takes correlation structures within the set of SNPs under investigation in a mathematically well-controlled manner into account. The novel two-step algorithm, COMBI, first trains a support vector machine to determine a subset of candidate SNPs and then performs hypothesis tests for these SNPs together with an adequate threshold correction. Applying COMBI to data from a WTCCC study (2007) and measuring performance as replication by independent GWAS published within the 2008-2015 period, we show that our method outperforms ordinary raw p-value thresholding as well as other state-of-the-art methods. COMBI presents higher power and precision than the examined alternatives while yielding fewer false (i.e. non-replicated) and more true (i.e. replicated) discoveries when its results are validated on later GWAS studies. More than 80% of the discoveries made by COMBI upon WTCCC data have been validated by independent studies. Implementations of the COMBI method are available as a part of the GWASpi toolbox 2.0.

  18. Association between the serotonin transporter gene polymorphism and verbal learning in older adults is moderated by gender.

    Science.gov (United States)

    Imlach, A-R; Ward, D D; Vickers, J C; Summers, M J; Felmingham, K L

    2017-06-06

    The S allele of the functional 5-HTTLPR polymorphism has previously been associated with reductions in memory function. Given the change in function of the serotonergic system in older adults, and the functional consequences of memory decline in this age group, further investigation into the impact of 5-HTTLPR in healthy older adults is required. This investigation examined the effect of 5-HTTLPR variants (S carriers versus L/L homozygotes) on verbal and visual episodic memory in 438 healthy older adults participating in the Tasmanian Healthy Brain Project (age range 50-79 years, M=60.35, s.d.=6.75). Direct effects of 5-HTTLPR on memory processes, in addition to indirect effects through interaction with age and gender, were assessed. Although no direct effects of 5-HTTLPR on memory processes were identified, our results indicated that gender significantly moderated the impact that 5-HTTLPR variants exerted on the relationship between age and verbal episodic memory function as assessed by the Rey Auditory Verbal Learning Test. No significant direct or indirect effects were identified in relation to visual memory performance. Overall, this investigation found evidence to suggest that 5-HTTLPR genotype affects the association of age and verbal episodic memory for males and females differently, with the predicted negative effect of S carriage present in males but not females. Such findings indicate a gender-dependent role for 5-HTTLPR in the verbal episodic memory system of healthy older adults.

  19. Association rules for rat spatial learning: The importance of the hippocampus for binding item identity with item location

    Science.gov (United States)

    Albasser, Mathieu M; Dumont, Julie R; Amin, Eman; Holmes, Joshua D; Horne, Murray R; Pearce, John M; Aggleton, John P

    2013-01-01

    Three cohorts of rats with extensive hippocampal lesions received multiple tests to examine the relationships between particular forms of associative learning and an influential account of hippocampal function (the cognitive map hypothesis). Hippocampal lesions spared both the ability to discriminate two different digging media and to discriminate two different room locations in a go/no-go task when each location was approached from a single direction. Hippocampal lesions had, however, differential effects on a more complex task (biconditional discrimination) where the correct response was signaled by the presence or absence of specific cues. For all biconditional tasks, digging in one medium (A) was rewarded in the presence of cue C, while digging in medium B was rewarded in the presences of cue D. Such biconditional tasks are “configural” as no individual cue or element predicts the solution (AC+, AD−, BD+, and BC−). When proximal context cues signaled the correct digging choice, biconditional learning was seemingly unaffected by hippocampal lesions. Severe deficits occurred, however, when the correct digging choice was signaled by distal room cues. Also, impaired was the ability to discriminate two locations when each location was approached from two directions. A task demand that predicted those tasks impaired by hippocampal damage was the need to combine specific cues with their relative spatial positions (“structural learning”). This ability makes it possible to distinguish the same cues set in different spatial arrays. Thus, the hippocampus appears necessary for configural discriminations involving structure, discriminations that potentially underlie the creation of cognitive maps. PMID:23749378

  20. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.

    Science.gov (United States)

    Oluwadare, Oluwatosin; Cheng, Jianlin

    2017-11-14

    With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .

  1. Survey of teaching/learning of healthcare-associated infections in UK and Irish medical schools.

    LENUS (Irish Health Repository)

    O'Brien, D

    2009-10-01

    All medical doctors have an important role to play in the diagnosis, management and prevention of healthcare-associated infection (HCAI). Strengthening the contribution of medical doctors and medical students to HCAI prevention programmes should include measures that enhance knowledge, improve practice and develop appropriate attitudes to the safety and quality of patient care. The Hospital Infection Society (HIS) funded a review of medical education on HCAI throughout medical schools in the UK and the Republic of Ireland. A questionnaire was drafted and circulated to all medical schools and 31 of 38 (82%) responded. The prevalence and transmission of HCAI were taught by 97% and 100% of medical schools, respectively, but the importance of HCAI as a quality and safety issue was covered in only 60% of medical schools. Multiple choice questions (MCQs) and objective structure clinical examinations (OSCEs) were the most popular methods of assessment. Lectures, discussion of cases and practical demonstrations were considered useful by >90% of respondents and online material and log books by 67% and 60%, respectively. More than 80% were willing to share a common pool of educational resources. An agreed curriculum should be developed for educating medical students in HCAI prevention and control, to outline optimum methods for assessment and develop a shared pool of educational resources.

  2. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents.

    Science.gov (United States)

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte; Gould, Robert W; Grannan, Michael; Noetzel, Meredith J; Lamsal, Atin; Niswender, Colleen M; Daniels, J Scott; Poslusney, Michael S; Melancon, Bruce J; Tarr, James C; Byers, Frank W; Wess, Jürgen; Duggan, Mark E; Dunlop, John; Wood, Michael W; Brandon, Nicholas J; Wood, Michael R; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2014-10-15

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders.

  3. The effect of nonhuman's external regulation on children's responses to detect children with developmental problems (DP) associated with the natural development of self-regulation during learning tasks

    NARCIS (Netherlands)

    Agina, Adel Masaud; Kommers, Petrus A.M.; Steehouder, M.F.

    2012-01-01

    The present study sought to examine the effect of the nonhuman’s external regulation on children’s responses during learning tasks to detect children with developmental problems (DP) associated with the natural development process of self-regulation. The material was an isolated, computer-based

  4. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    Science.gov (United States)

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  5. Post-traumatic stress is associated with verbal learning, memory, and psychomotor speed in HIV-infected and HIV-uninfected women.

    Science.gov (United States)

    Rubin, Leah H; Pyra, Maria; Cook, Judith A; Weber, Kathleen M; Cohen, Mardge H; Martin, Eileen; Valcour, Victor; Milam, Joel; Anastos, Kathryn; Young, Mary A; Alden, Christine; Gustafson, Deborah R; Maki, Pauline M

    2016-04-01

    The prevalence of post-traumatic stress disorder (PTSD) is higher among HIV-infected (HIV+) women compared with HIV-uninfected (HIV-) women, and deficits in episodic memory are a common feature of both PTSD and HIV infection. We investigated the association between a probable PTSD diagnosis using the PTSD Checklist-Civilian (PCL-C) version and verbal learning and memory using the Hopkins Verbal Learning Test in 1004 HIV+ and 496 at-risk HIV- women. HIV infection was not associated with a probable PTSD diagnosis (17% HIV+, 16% HIV-; p = 0.49) but was associated with lower verbal learning (p learning (p < 0.01) and memory (p < 0.01) and psychomotor speed (p < 0.001). The particular pattern of cognitive correlates of probable PTSD varied depending on exposure to sexual abuse and/or violence, with exposure to either being associated with a greater number of cognitive domains and a worse cognitive profile. A statistical interaction between HIV serostatus and PTSD was observed on the fine motor skills domain (p = 0.03). Among women with probable PTSD, HIV- women performed worse than HIV+ women on fine motor skills (p = 0.01), but among women without probable PTSD, there was no significant difference in performance between the groups (p = 0.59). These findings underscore the importance of considering mental health factors as correlates to cognitive deficits in women with HIV.

  6. A Comparative Study of University of Wisconsin-Stout Freshmen and Senior Education Major's Computing and Internet Technology Skills/Knowledge and Associated Learning Experiences

    Science.gov (United States)

    Sveum, Evan Charles

    2010-01-01

    A study comparing University of Wisconsin-Stout freshmen and senior education majors' computing and Internet technology skills/knowledge and associated learning experiences was conducted. Instruments used in this study included the IC[superscript 3][R] Exam by Certiport, Inc. and the investigator's Computing and Internet Skills Learning…

  7. Associations of Middle School Student Science Achievement and Attitudes about Science with Student-Reported Frequency of Teacher Lecture Demonstrations and Student-Centered Learning

    Science.gov (United States)

    Odom, Arthur Louis; Bell, Clare Valerie

    2015-01-01

    The purpose of this study was to examine the association of middle school student science achievement and attitudes about science with student-reported frequency of teacher lecture demonstrations and student-centered learning. The student sample was composed of 602 seventh- and eighth-grade students enrolled in middle school science. Multiple…

  8. Self-ordered pointing and visual conditional associative learning tasks in drug-free schizophrenia spectrum disorder patients

    Directory of Open Access Journals (Sweden)

    Galluzzo Alessandro

    2008-01-01

    Full Text Available Abstract Background There is evidence of a link between schizophrenia and a deficit of working memory, but this has been derived from tasks not specifically developed to probe working memory per se. Our aim was to investigate whether working memory deficits may be detected across different paradigms using the self-ordered pointing task (SOPT and the visual conditional associative learning task (VCALT in patients with schizophrenia spectrum disorders and healthy controls. The current literature suggests deficits in schizophrenia spectrum disorder patients versus healthy controls but these studies frequently involved small samples, broad diagnostic criteria, inclusion of patients on antipsychotic medications, and were not controlled for symptom domains, severity of the disorder, etc. To overcome some of these limitations, we investigated the self-monitoring and conditional associative learning abilities of a numerically representative sample of healthy controls and a group of non-deteriorated, drug-free patients hospitalized for a schizophrenia spectrum disorder with florid, mainly positive psychotic symptoms. Methods Eighty-five patients with a schizophrenia spectrum disorder (DSM-IV-TR diagnosis of schizophrenia (n = 71 or schizophreniform disorder (n = 14 and 80 healthy controls entered the study. The clinical picture was dominated by positive symptoms. The healthy control group had a negative personal and family history of schizophrenia or mood disorder and satisfied all the inclusion and exclusion criteria other than variables related to schizophrenia spectrum disorders. Results Compared to controls, patients had worse performances on SOPT, VCALT and higher SOPT/VCALT ratios, not affected by demographic or clinical variables. ROC curves showed that SOPT, VCALT, and SOPT/VCALT ratio had good accuracy in discriminating patients from controls. The SOPT and VCALT scores were inter-correlated in controls but not in patients. Conclusion The

  9. Conditional associative learning examined in a paralyzed patient with amyotrophic lateral sclerosis using brain-computer interface technology

    Directory of Open Access Journals (Sweden)

    Birbaumer N

    2008-11-01

    Full Text Available Abstract Background Brain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs of the EEG (electroencephalogram was used to assess conditional associative learning in one severely paralyzed, late-stage ALS patient. After having been taught arbitrary stimulus relations, he was evaluated for formation of equivalence classes among the trained stimuli. Methods A monitor presented visual information in two targets. The method of teaching was matching to sample. Three types of stimuli were presented: signs (A, colored disks (B, and geometrical shapes (C. The sample was one type, and the choice was between two stimuli from another type. The patient used his SCP to steer a cursor to one of the targets. A smiley was presented as a reward when he hit the correct target. The patient was taught A-B and B-C (sample – comparison matching with three stimuli of each type. Tests for stimulus equivalence involved the untaught B-A, C-B, A-C, and C-A relations. An additional test was discrimination between all three stimuli of one equivalence class presented together versus three unrelated stimuli. The patient also had sessions with identity matching using the same stimuli. Results The patient showed high accuracy, close to 100%, on identity matching and could therefore discriminate the stimuli and control the cursor correctly. Acquisition of A-B matching took 11 sessions (of 70 trials each and had to be broken into simpler units before he could learn it. Acquisition of B-C matching took two sessions. The patient passed all equivalence class tests at 90% or higher. Conclusion The patient may have had a deficit in acquisition of the first conditional association of signs and colored disks. In contrast, the patient showed clear evidence that A-B and B-C training had resulted in formation of equivalence classes. The brain-computer interface technology combined with the matching to sample method is a useful way to assess various

  10. Increased generalization of learned associations is related to re-experiencing symptoms in veterans with symptoms of post-traumatic stress.

    Science.gov (United States)

    Anastasides, Nicole; Beck, Kevin D; Pang, Kevin C H; Servatius, Richard J; Gilbertson, Mark W; Orr, Scott P; Myers, Catherine E

    2015-01-01

    One interpretation of re-experiencing symptoms in post-traumatic stress disorder (PTSD) is that memories related to emotional information are stored strongly, but with insufficient specificity, so that stimuli which are minimally related to the traumatic event are sufficient to trigger recall. If so, re-experiencing symptoms may reflect a general bias against encoding background information during a learning experience, and this tendency might not be limited to learning about traumatic or even autobiographical events. To test this possibility, we administered a discrimination-and-transfer task to 60 Veterans (11.2% female, mean age 54.0 years) self-assessed for PTSD symptoms in order to examine whether re-experiencing symptoms were associated with increased generalization following associative learning. The discrimination task involved learning to choose the rewarded object from each of six object pairs; each pair differed in color or shape but not both. In the transfer phase, the irrelevant feature in each pair was altered. Regression analysis revealed no relationships between re-experiencing symptoms and initial discrimination learning. However, re-experiencing symptom scores contributed to the prediction of transfer performance. Other PTSD symptom clusters (avoidance/numbing, hyperarousal) did not account for significant additional variance. The results are consistent with an emerging interpretation of re-experiencing symptoms as reflecting a learning bias that favors generalization at the expense of specificity. Future studies will be needed to determine whether this learning bias may pre-date and confer risk for, re-experiencing symptoms in individuals subsequently exposed to trauma, or emerges only in the wake of trauma exposure and PTSD symptom development.

  11. Trajectories of the home learning environment across the first 5 years: associations with children's vocabulary and literacy skills at prekindergarten.

    Science.gov (United States)

    Rodriguez, Eileen T; Tamis-LeMonda, Catherine S

    2011-01-01

    Children's home learning environments were examined in a low-income sample of 1,852 children and families when children were 15, 25, 37, and 63 months. During home visits, children's participation in literacy activities, the quality of mothers' engagements with their children, and the availability of learning materials were assessed, yielding a total learning environment score at each age. At 63 months, children's vocabulary and literacy skills were assessed. Six learning environment trajectories were identified, including environments that were consistently low, environments that were consistently high, and environments characterized by varying patterns of change. The skills of children at the extremes of learning environment trajectories differed by more than 1 SD and the timing of learning experiences related to specific emerging skills. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  12. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    Science.gov (United States)

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  13. The "LEARn" (Latent Early-life Associated Regulation) model integrates environmental risk factors and the developmental basis of Alzheimer's disease, and proposes remedial steps.

    Science.gov (United States)

    Lahiri, Debomoy K; Maloney, Bryan

    2010-04-01

    The neurodegenerative disorder Alzheimer's disease (AD) is the 6th leading cause of death in the USA. In addition to neurological and psychiatric symptoms, AD is characterized by deficiencies in S-adenylmethionine (SAM), vitamin B12, and folate. Deficiency in these nutrients has been shown to result in gene promoter methylation with upregulation of AD-associated genes. While some cases of AD are due to specific mutations in genes such as presenilin 1 (PSEN) and the amyloid-beta peptide precursor protein (APP), these familial AD (FAD) cases account for a minority of cases. The majority of genetic contribution consists of risk factors with incomplete penetrance. Several environmental risk factors, such as cholesterol and diet, head trauma, and reduced levels of exercise, have also been determined for AD. Nevertheless, the majority of risk for AD appears to be established early in life. We propose to explain this via the LEARn (Latent Early-life Associated Regulation) model. LEARn-AD (LAD) would be a "two-hit" disorder, wherein the first hit would occur due to environmental stress within the regulatory sequences of AD-associated genes, maintained by epigenetic changes such as in DNA methylation. This hit would most likely come in early childhood. The second hit could consist of further stress, such as head trauma, poor mid-life diet, or even general changes in expression of genes that occur later in life independent of any pathogenesis. Given that the primary risk for LAD would be maintained by DNA (hypo)methylation, we propose that long-term nutritional remediation based on the LEARn model, or LEARn-based nutritional gain (LEARnING), beginning early in life, would significantly reduce risk for AD late in life. 2010 Elsevier Inc. All rights reserved.

  14. Double dissociation of the anterior and posterior dorsomedial caudate-putamen in the acquisition and expression of associative learning with the nicotine stimulus.

    Science.gov (United States)

    Charntikov, Sergios; Pittenger, Steven T; Swalve, Natashia; Li, Ming; Bevins, Rick A

    2017-07-15

    Tobacco use is the leading cause of preventable deaths worldwide. This habit is not only debilitating to individual users but also to those around them (second-hand smoking). Nicotine is the main addictive component of tobacco products and is a moderate stimulant and a mild reinforcer. Importantly, besides its unconditional effects, nicotine also has conditioned stimulus effects that may contribute to the tenacity of the smoking habit. Because the neurobiological substrates underlying these processes are virtually unexplored, the present study investigated the functional involvement of the dorsomedial caudate putamen (dmCPu) in learning processes with nicotine as an interoceptive stimulus. Rats were trained using the discriminated goal-tracking task where nicotine injections (0.4 mg/kg; SC), on some days, were paired with intermittent (36 per session) sucrose deliveries; sucrose was not available on interspersed saline days. Pre-training excitotoxic or post-training transient lesions of anterior or posterior dmCPu were used to elucidate the role of these areas in acquisition or expression of associative learning with nicotine stimulus. Pre-training lesion of p-dmCPu inhibited acquisition while post-training lesions of p-dmCPu attenuated the expression of associative learning with the nicotine stimulus. On the other hand, post-training lesions of a-dmCPu evoked nicotine-like responding following saline treatment indicating the role of this area in disinhibition of learned motor behaviors. These results, for the first time, show functionally distinct involvement of a- and p-dmCPu in various stages of associative learning using nicotine stimulus and provide an initial account of neural plasticity underlying these learning processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Association of Polar Early Career Scientists: a model for experiential learning in professional development for students and early career researchers

    Science.gov (United States)

    Bradley, A. C.; Hindshaw, R. S.; Fugmann, G.; Mariash, H.

    2016-12-01

    The Association of Polar Early Career Scientists was established by early career researchers during the 2007-2008 International Polar Year as an organization for early career researchers in the polar and cryospheric sciences. APECS works to promote early career researchers through soft-skills training in both research and outreach activities, through advocating for including early career researchers in all levels of the scientific process and scientific management, and through supporting a world-wide network of researchers in varied fields. APECS is lead by early career researchers; this self-driven model has proved to be an effective means for developing the leadership, management, and communication skills that are essential in the sciences, and has shown to be sustainable even in a community where frequent turn-over is inherent to the members. Since its inception, APECS has reached over 5,500 members in more than 80 countries, and we have placed more than 50 early career researchers on working groups and steering committees with organizations around the world in the last two years alone. The close partnerships that APECS has with national and international organizations exposes members to both academic and alternative career paths, including those at the science-policy interface. This paper describes APECS's approach to experiential learning in professional development and the best practices identified over our nearly ten years as an organization.

  16. A positive association between active lifestyle and hemispheric lateralization for motor control and learning in older adults.

    Science.gov (United States)

    Wang, Jinsung; D'Amato, Arthur; Bambrough, Jennifer; Swartz, Ann M; Miller, Nora E

    2016-11-01

    Physical activity (PA) is well known to have general health benefits for older adults, but it is unclear whether it can also positively affect brain function involved in motor control and learning. We have previously shown that interlimb transfer of visuomotor adaptation occurs asymmetrically in young adults, while that occurs symmetrically in older adults, which suggests that the lateralized function of each hemisphere during motor tasks is diminished with aging. Here, we investigated the association between the level of PA and hemispheric motor lateralization by comparing the pattern of interlimb transfer following visuomotor adaptation between physically active and inactive older adults. Subjects were divided into two groups based on their PA level (active, inactive). They were further divided into two groups, such that a half of the subjects in each group adapted to a 30° rotation during targeted reaching movements with the left arm first, then with the right arm; and the other half with the right arm first, then with the left arm. Results indicated asymmetrical transfer (from left to right only) in the active subjects, whereas symmetrical transfer (from left to right, and vice versa) was observed in the inactive subjects. These findings suggest that older adults who maintain active lifestyle have a central nervous system that is more intact in terms of its lateralized motor function as compared with those who are inactive. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Patterns of cognitive impairments among heroin and cocaine users: the association with self-reported learning disabilities and infectious disease.

    Science.gov (United States)

    Severtson, Stevan G; Hedden, Sarra L; Martins, Silvia S; Latimer, William W

    2012-01-01

    This study used data from six neuropsychological measures of executive function (EF) and general intellectual functioning (GIF) administered to 303 regular users of heroin and/or cocaine as indicators in a latent profile analysis (LPA). Results indicated the presence of three profiles: impaired GIF and EF profile (30.8%), intact GIF and EF profile (58.8%), and high GIF/intact EF profile (10.4%). Using a multinomial logistic regression, it was determined that individuals who reported being diagnosed with either a learning disability (LD) and/or attention-deficit/hyperactivity disorder (ADHD) were more likely to be in the impaired GIF and EF profile than other profiles. Results from a logistic regression indicated that the impaired GIF and EF profile was associated with a greater prevalence of past hepatitis B and/or C infection. Implication for harm reduction and treatment programs and the need to take into account individuals with LD and ADHD are discussed. © Hammill Institute on Disabilities 2012.

  18. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  19. Can convict Cichlids (Amatitlania siquia) socially learn the degree of predation risk associated with novel visual cues in their environment?

    Science.gov (United States)

    Barks, Patrick M; Godin, Jean-Guy J

    2013-01-01

    For many animals, the ability to distinguish cues indicative of predation risk from cues unrelated to predation risk is not entirely innate, but rather is learned and improved with experience. Two pathways to such learning are possible. First, an animal could initially express antipredator behaviour toward a wide range of cues and subsequently learn which of those cues are non-threatening. Alternatively, it could initially express no antipredator behaviour toward a wide range of cues and subsequently learn which of them are threatening. While the learned recognition of threatening cues may occur either through personal interaction with a cue (asocial learning) or through observation of the behaviour of social companions toward a cue (social learning), the learned recognition of non-threatening cues seems to occur exclusively through habituation, a form of asocial learning. Here, we tested whether convict cichlid fish (Amatitlaniasiquia) can socially learn to recognize visual cues in their environment as either threatening or non-threatening. We exposed juvenile convict cichlids simultaneously to a novel visual cue and one of three (visual) social cues: a social cue indicative of non-risk (the sight of conspecifics that had previously been habituated to the novel cue), a social cue indicative of predation risk (the sight of conspecifics trained to fear the novel cue), or a control treatment with no social cue. The subsequent response of focal fish, when presented with the novel cue alone, was not influenced by the social cue that they had previously witnessed. We therefore did not find evidence that convict cichlids in our study could use social learning to recognize novel visual cues as either threatening or non-threatening. We consider alternative explanations for our findings.

  20. Can convict Cichlids (Amatitlania siquia socially learn the degree of predation risk associated with novel visual cues in their environment?

    Directory of Open Access Journals (Sweden)

    Patrick M Barks

    Full Text Available For many animals, the ability to distinguish cues indicative of predation risk from cues unrelated to predation risk is not entirely innate, but rather is learned and improved with experience. Two pathways to such learning are possible. First, an animal could initially express antipredator behaviour toward a wide range of cues and subsequently learn which of those cues are non-threatening. Alternatively, it could initially express no antipredator behaviour toward a wide range of cues and subsequently learn which of them are threatening. While the learned recognition of threatening cues may occur either through personal interaction with a cue (asocial learning or through observation of the behaviour of social companions toward a cue (social learning, the learned recognition of non-threatening cues seems to occur exclusively through habituation, a form of asocial learning. Here, we tested whether convict cichlid fish (Amatitlaniasiquia can socially learn to recognize visual cues in their environment as either threatening or non-threatening. We exposed juvenile convict cichlids simultaneously to a novel visual cue and one of three (visual social cues: a social cue indicative of non-risk (the sight of conspecifics that had previously been habituated to the novel cue, a social cue indicative of predation risk (the sight of conspecifics trained to fear the novel cue, or a control treatment with no social cue. The subsequent response of focal fish, when presented with the novel cue alone, was not influenced by the social cue that they had previously witnessed. We therefore did not find evidence that convict cichlids in our study could use social learning to recognize novel visual cues as either threatening or non-threatening. We consider alternative explanations for our findings.

  1. Associative learning in the dengue vector mosquito, Aedes aegypti: avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus.

    Science.gov (United States)

    Menda, Gil; Uhr, Joshua H; Wyttenbach, Robert A; Vermeylen, Françoise M; Smith, David M; Harrington, Laura C; Hoy, Ronald R

    2013-01-15

    Associative learning has been shown in a variety of insects, including the mosquitoes Culex quinquefasciatus and Anopheles gambiae. This study demonstrates associative learning for the first time in Aedes aegypti, an important vector of dengue, yellow fever and chikungunya viruses. This species prefers to rest on dark surfaces and is attracted to the odor of 1-octen-3-ol. After training in which a dark surface alone or a dark surface with odor was paired with electric shock, mosquitoes avoided the previously attractive area. The association was stronger when odor was included in training, was retained for at least 60 min but not for 24 h, and was equal for males and females. These results demonstrate the utility of a bulk-training paradigm for mosquitoes similar to that used with Drosophila melanogaster.

  2. Pre- and Postsynaptic Role of Dopamine D2 Receptor DD2R in Drosophila Olfactory Associative Learning

    Directory of Open Access Journals (Sweden)

    Cheng Qi

    2014-11-01

    Full Text Available Dopaminergic neurons in Drosophila play critical roles in diverse brain functions such as motor control, arousal, learning, and memory. Using genetic and behavioral approaches, it has been firmly established that proper dopamine signaling is required for olfactory classical conditioning (e.g., aversive and appetitive learning. Dopamine mediates its functions through interaction with its receptors. There are two different types of dopamine receptors in Drosophila: D1-like (dDA1, DAMB and D2-like receptors (DD2R. Currently, no study has attempted to characterize the role of DD2R in Drosophila learning and memory. Using a DD2R-RNAi transgenic line, we have examined the role of DD2R, expressed in dopamine neurons (i.e., the presynaptic DD2R autoreceptor, in larval olfactory learning. The function of postsynaptic DD2R expressed in mushroom body (MB was also studied as MB is the center for Drosophila learning, with a function analogous to that of the mammalian hippocampus. Our results showed that suppression of presynaptic DD2R autoreceptors impairs both appetitive and aversive learning. Similarly, postsynaptic DD2R in MB neurons appears to be involved in both appetitive and aversive learning. The data confirm, for the first time, that DD2R plays an important role in Drosophila olfactory learning.

  3. Trajectories of the Home Learning Environment across the First 5 Years: Associations with Children's Vocabulary and Literacy Skills at Prekindergarten

    Science.gov (United States)

    Rodriguez, Eileen T.; Tamis-LeMonda, Catherine S.

    2011-01-01

    Children's home learning environments were examined in a low-income sample of 1,852 children and families when children were 15, 25, 37, and 63 months. During home visits, children's participation in literacy activities, the quality of mothers' engagements with their children, and the availability of learning materials were assessed, yielding a…

  4. Learning Stimulus-Location Associations in 8- and 11-Month-Old Infants: Multimodal Versus Unimodal Information

    NARCIS (Netherlands)

    ter Schure, S.; Mandell, D.J.; Escudero, P.; Raijmakers, M.E.J.; Johnson, S.P.

    2014-01-01

    Research on the influence of multimodal information on infants' learning is inconclusive. While one line of research finds that multimodal input has a negative effect on learning, another finds positive effects. The present study aims to shed some new light on this discussion by studying the

  5. Foundational Aspects of Classroom Relations: Associations between Teachers' Immediacy Behaviours, Classroom Democracy, Class Identification and Learning

    Science.gov (United States)

    Kwitonda, Jean Claude

    2017-01-01

    This study focused on foundational aspects of classroom relations. Specifically, relationships between teachers' immediacy (interpersonal) behaviours, classroom democracy, identification and learning were considered. Previous work suggests that these variables can be used as a foundation to shape classroom climate, culture and learning outcomes…

  6. Adults with Asperger Syndrome with and without a Cognitive Profile Associated with "Non-Verbal Learning Disability." A Brief Report

    Science.gov (United States)

    Nyden, Agneta; Niklasson, Lena; Stahlberg, Ola; Anckarsater, Henrik; Dahlgren-Sandberg, Annika; Wentz, Elisabet; Rastam, Maria

    2010-01-01

    Asperger syndrome (AS) and non-verbal learning disability (NLD) are both characterized by impairments in motor coordination, visuo-perceptual abilities, pragmatics and comprehension of language and social understanding. NLD is also defined as a learning disorder affecting functions in the right cerebral hemisphere. The present study investigates…

  7. Effect of Phonetic Association on Lexis Learning in Natural Language Context: A Comparative Study of English, French and Turkish Words

    Science.gov (United States)

    Ebubekir, Bozavli

    2017-01-01

    Mother tongue acquisition starts with words and grammar acquired spontaneously by means of communication, while at school foreign language learning takes place based on grammar. Vocabulary learning is very often neglected or rather it turns into an individual activity. The present study, which is considered to be unique on its own, is to reveal…

  8. Peer-instructed seminar attendance is associated with improved preparation, deeper learning and higher exam scores: a survey study

    NARCIS (Netherlands)

    Bouwmeester, RAM; de Kleijn, R.A.M.; van Rijen, HVM

    2016-01-01

    Background: Active engagement in education improves learning outcomes. To enhance active participation in seminars, a student-centered course design was implemented and evaluated in terms of self-reported preparation, student motivation and exam scores. We hypothesized that small group learning with

  9. Peer-instructed seminar attendance is associated with improved preparation, deeper learning and higher exam scores : A survey study

    NARCIS (Netherlands)

    Bouwmeester, Rianne A M; De Kleijn, Renske A M; Van Rijen, Harold V M

    2016-01-01

    Background: Active engagement in education improves learning outcomes. To enhance active participation in seminars, a student-centered course design was implemented and evaluated in terms of self-reported preparation, student motivation and exam scores. We hypothesized that small group learning with

  10. Sucrose acceptance and different forms of associative learning of the honey bee (Apis mellifera L. in the field and laboratory

    Directory of Open Access Journals (Sweden)

    Samir Mujagic

    2010-07-01

    Full Text Available The experiments analyze different forms of learning and 24-h retention in the field and in the laboratory in bees that accept sucrose with either low (≤3% or high (≥30% or ≥50% concentrations. In the field we studied color learning at a food site and at the hive entrance. In the laboratory olfactory conditioning of the proboscis extension response (PER was examined. In the color learning protocol at a feeder, bees with low sucrose acceptance thresholds (≤3% show significantly faster and better acquisition than bees with high thresholds (≥50%. Retention after 24 h is significantly different between the two groups of bees and the choice reactions converge. Bees with low and high acceptance thresholds in the field show no differences in the sucrose sensitivity PER tests in the laboratory. Acceptance thresholds in the field are thus a more sensitive behavioral measure than PER responsiveness in the laboratory. Bees with low acceptance thresholds show significantly better acquisition and 24-h retention in olfactory learning in the laboratory compared to bees with high thresholds. In the learning protocol at the hive entrance bees learn without sucrose reward that a color cue signals an open entrance. In this experiment, bees with high sucrose acceptance thresholds showed significantly better learning and reversal learning than bees with low thresholds. These results demonstrate that sucrose acceptance thresholds affect only those forms of learning in which sucrose serves as the reward. The results also show that foraging behavior in the field is a good predictor for learning behavior in the field and in the laboratory.

  11. An Exploratory Study of Effective Online Learning: Assessing Satisfaction Levels of Graduate Students of Mathematics Education Associated with Human and Design Factors of an Online Course

    Directory of Open Access Journals (Sweden)

    Joohi Lee

    2014-02-01

    Full Text Available This exploratory research project investigated graduate students’ satisfaction levels with online learning associated with human (professor/instructor and instructional associate and design factors (course structure and technical aspects using a survey study. A total of 81 graduate students (master’s students who majored in math and science education enrolled in an online math methods course (Conceptual Geometry participated in this study. According to the results of this study, student satisfaction level is closely associated with clear guidelines on assignment, rubrics, and constructive feedback. In addition, student satisfaction level is related to professor’s (or course instructor’s knowledge of materials.

  12. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List

  13. Motor Skill Learning Is Associated with Phase-Dependent Modifications in the Striatal cAMP/PKA/DARPP-32 Signaling Pathway in Rodents.

    Science.gov (United States)

    Qian, Yu; Forssberg, Hans; Diaz Heijtz, Rochellys

    2015-01-01

    Abundant evidence points to a key role of dopamine in motor skill learning, although the underlying cellular and molecular mechanisms are still poorly understood. Here, we used a skilled-reaching paradigm to first examine changes in the expression of the plasticity-related gene Arc to map activity in cortico-striatal circuitry during different phases of motor skill learning in young animals. In the early phase, Arc mRNA was significantly induced in the medial prefrontal cortex (mPFC), cingulate cortex, primary motor cortex, and striatum. In the late phase, expression of Arc did not change in most regions, except in the mPFC and dorsal striatum. In the second series of experiments, we studied the learning-induced changes in the phosphorylation state of dopamine and cAMP-regulated phosphoprotein, 32k Da (DARPP-32). Western blot analysis of the phosphorylation state of DARPP-32 and its downstream target cAMP response element-binding protein (CREB) in the striatum revealed that the early, but not late, phase of motor skill learning was associated with increased levels of phospho-Thr34-DARPP-32 and phospho-Ser133-CREB. Finally, we used the DARPP-32 knock-in mice with a point mutation in the Thr34 regulatory site (i.e., protein kinase A site) to test the significance of this pathway in motor skill learning. In accordance with our hypothesis, inhibition of DARPP-32 activity at the Thr34 regulatory site strongly attenuated the motor learning rate and skilled reaching performance of mice. These findings suggest that the cAMP/PKA/DARPP-32 signaling pathway is critically involved in the acquisition of novel motor skills, and also demonstrate a dynamic shift in the contribution of cortico-striatal circuitry during different phases of motor skill learning.

  14. The association between dopamine receptor (DRD4) gene polymorphisms and second language learning style and behavioral variability in undergraduate students in Turkey.

    Science.gov (United States)

    Maras Atabay, Meltem; Safi Oz, Zehra; Kurtman, Elvan

    2014-08-01

    The dopamine D4 receptor gene (DRD4) encodes a receptor for dopamine, a chemical messenger used in the brain. One variant of the DRD4 gene, the 7R allele, is believed to be associated with attention deficit hyperactivity disorder (ADHD). The aim of this study was to investigate the relationships between repeat polymorphisms in dopamine DRD4 and second language learning styles such as visual (seeing), tactile (touching), auditory (hearing), kinesthetic (moving) and group/individual learning styles, as well as the relationships among DRD4 gene polymorphisms and ADHD in undergraduate students. A total of 227 students between the ages of 17-21 years were evaluated using the Wender Utah rating scale and DSM-IV diagnostic criteria for ADHD. Additionally, Reid's perceptual learning style questionnaire for second language learning style was applied. In addition, these students were evaluated for social distress factors using the list of Threatening Events (TLE); having had no TLE, having had just one TLE or having had two or more TLEs within the previous 6 months before the interview. For DRD4 gene polymorphisms, DNA was extracted from whole blood using the standard phenol/chloroform method and genotyped using polymerase chain reaction. Second language learners with the DRD4.7+ repeats showed kinaesthetic and auditory learning styles, while students with DRD4.7-repeats showed visual, tactile and group learning, and also preferred the more visual learning styles [Formula: see text]. We also demonstrated that the DRD4 polymorphism significantly affected the risk effect conferred by an increasing level of exposure to TLE.

  15. Motor Skill Learning Is Associated with Phase-Dependent Modifications in the Striatal cAMP/PKA/DARPP-32 Signaling Pathway in Rodents

    Science.gov (United States)

    Qian, Yu; Forssberg, Hans; Diaz Heijtz, Rochellys

    2015-01-01

    Abundant evidence points to a key role of dopamine in motor skill learning, although the underlying cellular and molecular mechanisms are still poorly understood. Here, we used a skilled-reaching paradigm to first examine changes in the expression of the plasticity-related gene Arc to map activity in cortico-striatal circuitry during different phases of motor skill learning in young animals. In the early phase, Arc mRNA was significantly induced in the medial prefrontal cortex (mPFC), cingulate cortex, primary motor cortex, and striatum. In the late phase, expression of Arc did not change in most regions, except in the mPFC and dorsal striatum. In the second series of experiments, we studied the learning-induced changes in the phosphorylation state of dopamine and cAMP-regulated phosphoprotein, 32k Da (DARPP-32). Western blot analysis of the phosphorylation state of DARPP-32 and its downstream target cAMP response element-binding protein (CREB) in the striatum revealed that the early, but not late, phase of motor skill learning was associated with increased levels of phospho-Thr34-DARPP-32 and phospho-Ser133-CREB. Finally, we used the DARPP-32 knock-in mice with a point mutation in the Thr34 regulatory site (i.e., protein kinase A site) to test the significance of this pathway in motor skill learning. In accordance with our hypothesis, inhibition of DARPP-32 activity at the Thr34 regulatory site strongly attenuated the motor learning rate and skilled reaching performance of mice. These findings suggest that the cAMP/PKA/DARPP-32 signaling pathway is critically involved in the acquisition of novel motor skills, and also demonstrate a dynamic shift in the contribution of cortico-striatal circuitry during different phases of motor skill learning. PMID:26488498

  16. Motor Skill Learning Is Associated with Phase-Dependent Modifications in the Striatal cAMP/PKA/DARPP-32 Signaling Pathway in Rodents.

    Directory of Open Access Journals (Sweden)

    Yu Qian

    Full Text Available Abundant evidence points to a key role of dopamine in motor skill learning, although the underlying cellular and molecular mechanisms are still poorly understood. Here, we used a skilled-reaching paradigm to first examine changes in the expression of the plasticity-related gene Arc to map activity in cortico-striatal circuitry during different phases of motor skill learning in young animals. In the early phase, Arc mRNA was significantly induced in the medial prefrontal cortex (mPFC, cingulate cortex, primary motor cortex, and striatum. In the late phase, expression of Arc did not change in most regions, except in the mPFC and dorsal striatum. In the second series of experiments, we studied the learning-induced changes in the phosphorylation state of dopamine and cAMP-regulated phosphoprotein, 32k Da (DARPP-32. Western blot analysis of