WorldWideScience

Sample records for assisted pulsed laser

  1. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  2. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  3. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Science.gov (United States)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  4. Nanostructured polymer stable glasses via matrix assisted pulsed laser evaporation

    Science.gov (United States)

    Shepard, Kimberly B.

    Amorphous materials, or glasses, which lack a crystalline structure, are technologically ubiquitous with applications including structural components, pharmaceuticals, and electronic devices. Glasses are traditionally formed by rapid cooling from the melt state, where molecules become kinetically trapped into a non-equilibrium configuration. The temperature at which the material transforms from supercooled liquid to glass is the glass transition temperature. The glass transition temperature is the most important property of amorphous materials, as it determines the range of temperatures where they are fabricated, used and stored. Recent technological developments in which glasses are formed by alternative routes, such as physical vapor deposition and matrix assisted pulsed laser evaporation (MAPLE), enable tunability of Tg and related physical properties. High-Tg glasses formed by these techniques are termed "stable glasses" and exhibit a wide range of exceptional properties. This work focuses on the formation and characterization of stable polymer glasses fabricated via MAPLE. Bulk films (>1 microm thick) of glassy polymers fabricated by MAPLE at slow growth rates (polymer glasses. Building on molecular dynamics simulations from the literature on the MAPLE process, we experimentally study the origin of nanostructure in our MAPLE-deposited films. We measure the time-of-flight of MAPLE-deposited material, confirming that the velocity is sufficiently low for intact deposition of polymer nanoglobules. The size distribution of polymer nanoglobules fabricated in short MAPLE depositions provides insight into how nanostructured MAPLE films form. Using our atomic force microscopy-based nanoscale dilatometry technique, we directly probe the nanoscale thermal behavior of individual polymer nanoglobules. We confirm that bulk and nanoscale glasses share many of the same physical behavior: enhanced stability above the glass transition temperature, and ~40% excess volume. We

  5. Processing of C60 thin films by Matrix-Assisted Pulsed Laser Evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2011-01-01

    Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPL...

  6. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films with...

  7. Visualization of liquid-assisted hard tissue ablation with a pulsed CO2 laser

    International Nuclear Information System (INIS)

    To investigate the characteristics of liquid-mediated hard tissue ablation induced by a pulsed CO2 laser with a wavelength of 10.6 μm, a high speed camera was used to monitor the interaction between water, tissue and laser irradiation. The results showed that laser irradiation can directly impact on tissue through a vapor channel formed by the leading part of the laser pulse. The ablation debris plays a key role in liquid-assisted laser ablation, having the ability to keep the vapor channel open to extend actuation time. The runoff effect induced by vortex convection liquid flow can remove the tissue that obstructs the effect of the next laser pulse. (letter)

  8. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  9. Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    We report the thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) of a polymer conjugate with an hydrophilic sequence between metronidazole molecules that was covalently attached to both oligomer ends of carboxylate poly(ethylene glycol) (PEG 1.5-metronidazole). A pulsed KrF* excimer laser was used to deposit the drug-polymer composite films. Fourier transform infrared spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical properties similar to the starting materials. The dependence of the surface morphology on incident laser fluence is given.

  10. Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, Bucharest-Magurele (Romania); Popescu, C.; Popescu, A.; Grigorescu, S.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, Bucharest-Magurele (Romania); Mihaiescu, D. [University of Agriculture Sciences and Veterinary Medicine, 59 Marasti, Bucharest (Romania); Gittard, S.D.; Narayan, R.J. [Biomedical Engineering, University of North Carolina, Chapel Hill, NC (United States); Buruiana, T. [Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, Iasi (Romania); Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Chrisey, D.B. [Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, NY (United States)

    2009-09-30

    We report the thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) of a polymer conjugate with an hydrophilic sequence between metronidazole molecules that was covalently attached to both oligomer ends of carboxylate poly(ethylene glycol) (PEG 1.5-metronidazole). A pulsed KrF* excimer laser was used to deposit the drug-polymer composite films. Fourier transform infrared spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical properties similar to the starting materials. The dependence of the surface morphology on incident laser fluence is given.

  11. Growth of thin fullerene films by Matrix Assisted Pulsed Laser Evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    bound carbon molecule with a well-defined mass (M = 720 amu) and therefore a good, organic test molecule. C60 fullerene thin films of average thickness of more than 100 nm was produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was di-rected onto a frozen target...... favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal contamination....

  12. Long-pulsed dye laser versus long-pulsed dye laser-assisted photodynamic therapy for acne vulgaris: A randomized controlled trial

    DEFF Research Database (Denmark)

    Haedersdal, M.; Togsverd, K.; Wiegell, S.R.;

    2008-01-01

    Background: Long-pulsed dye laser (LPDL)-assisted photodynamic therapy has been suggested to be superior to laser alone for acne vulgaris but no evidence is available. Objective: To evaluate the efficacy and safety of LPDL alone versus LPDL in photodynamic therapy with methylaminolevulinic acid...

  13. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    Science.gov (United States)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  14. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    International Nuclear Information System (INIS)

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence

  15. Pulse Operation of Chemical Oxygen-Iodine Laser by Pulsed Gas Discharge with the Assistance of Spark Pre-ionization

    Institute of Scientific and Technical Information of China (English)

    LI Guo-Fu; YU Hai-Jun; DUO Li-Ping; JIN Yu-Qi; WANG Jian; SANG Feng-Ting; FANG Ben-Jie; WANG De-Zhen

    2009-01-01

    The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pulsed gas discharge with the assistance of spark pre-ionization to achieve the pulsed goal. The influence of spark pre-ionization on discharge homogeneity is discussed. Voltage-current characteristics are shown and discussed in existence of the pre-ionization capacitor and peaking capacitor. The spark pre-ionization and peaking capacitor are very helpful in obtaining a stable and homogeneous discharge. The lasing is achieved at the total pressure of 2.2-2.9 kPa and single pulse energy is up to 180m J, the corresponding specific output energy is 1.0 J/L.

  16. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    Science.gov (United States)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  17. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.;

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per...... pulse at a fluence of 1–2 J/cm2 and decreases slowly with increasing fluence. This rate is presumably determined by the matrix rather by the proteins. A significant fraction of the proteins are intact in the film as determined by MALDI (Matrix assisted laser desorption ionization) spectrometry. The...... results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing....

  18. Radio-frequency assisted pulsed laser deposition of nanostructured WOx films

    International Nuclear Information System (INIS)

    The synthesis of tungsten oxide films with large surface area is promising for gas sensing applications. Thin WOx films were obtained by radio-frequency assisted pulsed laser deposition (RF-PLD). A tungsten target was ablated at 700 and 900 Pa in reactive oxygen, or in a 50% mixed oxygen-helium atmosphere at the same total pressure values. Corning glass was used as substrate, at temperatures including 673, 773 and 873 K. Other deposition parameters such as laser fluence (4.5 J cm-2), laser wavelength (355 nm), radiofrequency power (150 W), target to substrate distance (4 cm), laser spot area (0.7 mm2), and number of laser shots (12,000) were kept fixed. The sensitivity on the deposition conditions of morphology, nanostructure, bond coordination, and roughness of the obtained films were analyzed by scanning and transmission electron microscopy, micro-Raman spectroscopy, and atomic force microscopy.

  19. Gravity-assisted pulsed laser ablation for fabrication of compositional gradient thin film

    International Nuclear Information System (INIS)

    A compositional gradient thin film of Fe/Si was fabricated by gravity-assisted pulsed laser ablation under a gravity field of 5.3 × 104 m/s2. Systematic experiments were conducted by varying the values of several parameters including the gravity, distance between the target and the substrate, and laser fluence. The atomic fraction of Fe was measured by scanning electron microscopy/energy dispersive X-ray spectroscopy. We found that the atomic fraction of Fe increases along the gravity direction, i.e., it exhibits an apparent spatial gradient. We also found the optimal laser fluence at which a thin film having the largest possible spatial compositional gradient is obtained. It is shown that the surface energy density on the substrate surface is the key parameter to control the compositional distribution. The relatively high laser fluence as well as the very narrow space between the target and the substrate are found to be essential to sputter the film material. A plausible model is presented to explain the experimental data. - Highlights: • Gravity-assisted pulsed laser ablation method (GAPLA) is established. • A compositional gradient thin film is fabricated by GAPLA under 5.3 × 104 m/s2 condition. • The surface energy density is an important parameter for GAPLA. • A compositional gradient is generated by selective reevaporation and not diffusion

  20. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    International Nuclear Information System (INIS)

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres

  1. Development of a high magnetic field assisted pulsed laser deposition system

    Science.gov (United States)

    Zhang, Kejun; Dai, Jianming; Wu, Wenbin; Zhang, Peng; Zuo, Xuzhong; Zhou, Shu; Zhu, Xuebin; Sheng, Zhigao; Liang, Changhao; Sun, Yuping

    2015-09-01

    A high magnetic field assisted pulsed laser deposition (HMF-PLD) system has been developed to in situ grow thin films in a high magnetic field up to 10 T. In this system, a specially designed PLD cylindrical vacuum chamber is horizontally located in the bore configuration of a superconducting magnet with a bore diameter of 200 mm. To adjust the focused pulsed laser into the target in such a narrow PLD vacuum chamber, an ingeniously built-in laser leading-in chamber is employed, including a laser mirror with a reflection angle of 65° and a damage threshold up to 3.4 J/cm2. A laser alignment system consisting of a built-in video-unit leading-in chamber and a low-energy alignment laser is applied to monitor and align the pulsed laser propagation in the PLD vacuum chamber. We have grown La0.7Sr0.3MnO3 (LSMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] substrates by HMF-PLD. The results show that the nanostructures of the LSMO films can be tuned from an epitaxially continuous film structure without field to a vertically aligned nanorod structure with an applied high magnetic field above 5 T, and the dimension size of the nanorods can be tuned by the strength of the magnetic field. The associated magnetic anisotropy is found to be highly dependent on the nanorod structures. We show how the HMF-PLD provides an effective route toward tuning the nanostructures and the physical properties of functional thin films, giving it an important role in development of nanodevices and their application.

  2. Mechanisms of infrared-laser-assisted atomic ionization by attosecond pulses

    International Nuclear Information System (INIS)

    We propose a mechanism to understand the infrared (IR) laser assisted atomic ionization by attosecond pulses (AP). Atomic structures in an IR laser field are described by Floquet states and atoms can be ionized to a Floquet state by a single AP through different Floquet components. The interference of ionization through different Floquet components results in the oscillation of the ionization yield as a function of the arriving time of the AP. The proposed mechanism explains the recent experimental observations [Johnsson et al., Phys. Rev. Lett. 99, 233001 (2007)]. Furthermore, we find that, for a specified photoelectron energy, the ionization yield always oscillates as a function of the relative phase between the AP and the IR laser for both He and Ar atoms.

  3. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  4. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.; Pryds, Nini; Dinescu, M.

    2007-01-01

    microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm(2) and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI......Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...

  5. Functional porphyrin thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Atomistilor 409, Bucharest-Magurele (Romania); Popescu, C.; Popescu, A.C.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Atomistilor 409, Bucharest-Magurele (Romania); Ciucu, A.A. [Univeristy of Bucharest, Chemistry Department, Bucharest (Romania); Andronie, A.; Iordache, S.; Stamatin, I. [University of Bucharest, 3 Nano-SAE Research Center, P.O. Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, Department of Organic Chemistry, 300223 Timisoara (Romania); Chrisey, D.B. [Rensselaer Polytechnic Institute, School of Engineering, Department of Materials Science and Engineering, Troy 12180-3590, NY (United States)

    2010-05-25

    We report the first successful deposition of functionalized and nanostructured Zn(II)- and Co(II)-metalloporphyrin thin films by matrix assisted pulsed laser evaporation onto silicon wafers, quartz plates and screen-printed electrodes. The deposited nanostructures have been characterized by Raman spectrometry and cyclic voltammetry. The novelty of our contribution consists of the evaluation of the sensitivity of the MAPLE-deposited Zn(II)- and Co(II)-metalloporphyrin thin films on screen-printed carbon nanotube electrodes when challenged with dopamine.

  6. Functional porphyrin thin films deposited by matrix assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    We report the first successful deposition of functionalized and nanostructured Zn(II)- and Co(II)-metalloporphyrin thin films by matrix assisted pulsed laser evaporation onto silicon wafers, quartz plates and screen-printed electrodes. The deposited nanostructures have been characterized by Raman spectrometry and cyclic voltammetry. The novelty of our contribution consists of the evaluation of the sensitivity of the MAPLE-deposited Zn(II)- and Co(II)-metalloporphyrin thin films on screen-printed carbon nanotube electrodes when challenged with dopamine.

  7. Fabrication of microfluidic devices in silica glass by water-assisted ablation with femtosecond laser pulses

    International Nuclear Information System (INIS)

    We have fabricated a microdiverter with a protrusion and a complicated micromixer with grid-like structures in silica glass by using water-assisted femtosecond laser ablation. When distilled water is introduced into the fabricated microchannel, the blocking and redepositing effects of ablated debris can be reduced greatly. The total length of the fabricated microfluidic devices is 6 mm without any deformation. The diameters of the fabricated microchannels can be controlled by changing the used pulse energies and the width of the laser-scanning region inside the sample. The experimental results show that it is possible to fabricate high-quality and high-aspect-ratio complicated microfluidic devices in single step without the need of using photosensitive glass or post-processing

  8. Quantum interference in laser-assisted photoionization and analytical methods for the measurement of an attosecond xuv pulse

    International Nuclear Information System (INIS)

    Investigations of the quantum interference in laser-assisted photoionization by an attosecond extreme ultraviolet (xuv) pulse shows an approximately constant value for the total photoionizations for different laser intensities. The square of the full width at half maximum of a photoelectron energy spectrum (PES) linearly depends on the laser intensity. By determining the laser-related phase of each streaked electron and using a transfer equation with linear corrections, an analytically quick method is proposed for precisely reconstructing the xuv pulse intensity (chirp) from one (two) measured PES(s) with a theoretical root-mean-square temporal (energy) difference of less than 1 attosecond (0.1 eV).

  9. Quantum interference in laser-assisted photoionization and analytical methods for the measurement of an attosecond xuv pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ge Yucheng; He Haiping [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2011-08-15

    Investigations of the quantum interference in laser-assisted photoionization by an attosecond extreme ultraviolet (xuv) pulse shows an approximately constant value for the total photoionizations for different laser intensities. The square of the full width at half maximum of a photoelectron energy spectrum (PES) linearly depends on the laser intensity. By determining the laser-related phase of each streaked electron and using a transfer equation with linear corrections, an analytically quick method is proposed for precisely reconstructing the xuv pulse intensity (chirp) from one (two) measured PES(s) with a theoretical root-mean-square temporal (energy) difference of less than 1 attosecond (0.1 eV).

  10. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    International Nuclear Information System (INIS)

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll–Watson theory. (paper)

  11. High-speed photographic studies of dye-assisted pulsed Nd:YAG laser ablation of dental hard tissues

    Science.gov (United States)

    Lu, Quiang; Wallace, David B.; Hayes, Donald J.

    1997-06-01

    We have been evaluating the use of a pulsed Nd:YAG laser for ablating hard dental tissue. For this application we apply dye-drops of an IR absorptive fluid on the enamel, then irradiate with a laser pulse from the laser. By using ink- jet technology to deliver the dye-drops, we can attain micron- and millisecond-scale precision in drop delivery, with a 'burst' of drops preceding each laser pulse. To gain better understanding of the ablation process we have used a high- speed CCD camera system with 1 microsecond(s) exposure and 1 microsecond(s) inter-exposure-interval capability. Fast photography of the ablation process showed the following typical events. (i) The laser induced plasma plume erupts immediately after pulse onset, expands to maximum within 50 microsecond(s) , and lasts up to 200 microsecond(s) . (ii) Ejected particles flying away from the site of laser pulse/dye-drop impact are detected within 30 microsecond(s) of laser pulse onset, and continue up to 10 ms. These particles attain velocities up to 50 m/s with lower velocities from lower pulse power. (iii) The plasma plume has a peak height that increases with increasing laser fluence, ranging up to 10 mm for a fluence of 242 J/cm2 on enamel. From this study, the dye-assisted ablation mechanisms are inferred to be plasma-mediated and explosion- mediated tissue removal.

  12. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization

    International Nuclear Information System (INIS)

    Continuous-wave chemical oxygen-iodine lasers (COILs) can be operated in a pulsed operation mode to obtain a higher peak power. The key point is to obtain a uniform and stable glow discharge in the mixture of singlet delta oxygen and iodide. We propose using an electrode system with the assistance of surface sliding pre-ionization to solve the problem of the stable glow discharge with a large aperture. The pre-ionization unit is symmetrically fixed on the plane of the cathode surface. A uniform and stable glow discharge is obtained in a mixture of iodide (such as CH3I) and nitrogen at the specific deposition energy of 4.5 J/L, pressure of 1.99–3.32 kPa, aperture size of 11 cm × 10 cm. The electrode system is applied in a pulsed COIL. Laser energy up to 4.4 J is obtained and the specific energy output is 2 J/L. (fundamental areas of phenomenology(including applications))

  13. Optical pulse generation in a transistor laser via intra-cavity photon-assisted tunneling and excess base carrier redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Feng, M.; Iverson, E. W.; Wang, C. Y.; Holonyak, N. [Department of Electrical and Computer Engineering and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N. Wright St., Urbana, Illinois 61801 (United States)

    2015-11-02

    For a direct-gap semiconductor (e.g., a p-n junction), photon-assisted tunneling is known to exhibit a high nonlinear absorption. In a transistor laser, as discussed here, the coherent photons generated at the quantum well interact with the collector junction field and “assist” electron tunneling from base to collector, thus resulting in the nonlinear modulation of the laser and the realization of optical pulse generation. 1 and 2 GHz optical pulses are demonstrated in the transistor laser using collector voltage control.

  14. Optical pulse generation in a transistor laser via intra-cavity photon-assisted tunneling and excess base carrier redistribution

    International Nuclear Information System (INIS)

    For a direct-gap semiconductor (e.g., a p-n junction), photon-assisted tunneling is known to exhibit a high nonlinear absorption. In a transistor laser, as discussed here, the coherent photons generated at the quantum well interact with the collector junction field and “assist” electron tunneling from base to collector, thus resulting in the nonlinear modulation of the laser and the realization of optical pulse generation. 1 and 2 GHz optical pulses are demonstrated in the transistor laser using collector voltage control

  15. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Magurele, Bucharest (Romania); Mitu, B.; Filipescu, M.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania)

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm{sup −2}. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  16. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  17. The minimum amount of "matrix " needed for matrix-assisted pulsed laser deposition of biomolecules

    DEFF Research Database (Denmark)

    Tabetah, Marshall; Matei, Andreea; Constantinescu, Catalin;

    2014-01-01

    The ability of matrix-assisted pulsed laser evaporation (MAPLE) technique to transfer and deposit high-quality thin organic, bioorganic, and composite films with minimum chemical modification of the target material has been utilized in numerous applications. One of the outstanding problems in MAPLE...... the ejection of intact lysozyme molecules from pressed lysozyme targets containing small amounts of residual water. The results of this study suggest a new approach for deposition of thin films of bioorganic molecules with minimum chemical modification of the molecular structure and minimum...... film deposition, however, is the presence of residual solvent (matrix) codeposited with the polymer material and adversely affecting the quality of the deposited films. In this work, we investigate the possibility of alleviating this problem by reducing the amount of matrix in the target. A series of...

  18. Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, S. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, A.C.; Popescu, C.E.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Ciucu, A.A. [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223-Timisoara (Romania); Chrisey, D.B. [Tulane University, Departments of Physics and Biomedical Engineering, New Orleans, LA 70118 (United States)

    2013-08-01

    We report on the deposition of nanostructured porphyrin-base, 5(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin thin films by matrix assisted pulsed laser evaporation onto silicon substrates with screen-printed electrodes. AFM investigations have shown that at 400 mJ/cm{sup 2} fluence a topographical transition takes place from the platelet-like stacking porphyrin-based nanostructures in a perpendicular arrangement to a quasi-parallel one both relative to the substrate surface. Raman spectroscopy has shown that the chemical structure of the deposited thin films is preserved for fluences within the range of 200–300 mJ/cm{sup 2}. Cyclic voltammograms have demonstrated that the free porphyrin is appropriate as a single mediator for glucose in a specific case of screen-printed electrodes, suggesting potential for designing a new class of biosensors.

  19. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Papantonalis, M.R.; Auyeung, R.C.Y.; Kim, W.; O'Malley, S.M.; Bubb, D.M.; Horwitz, J.S.; Schou, Jørgen; Johansen, P.M.; Haglund Jr., R.E.

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD)....

  20. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini;

    2007-01-01

    concentration of lysozyme in the ice matrix apparently does not play any significant role for the morphology of the film. The morphology obtained with MAPLE has been compared with results for direct laser irradiation of a pressed lysozyme sample (i.e. pulsed laser deposition (PLD)). (C) 2007 Elsevier B.V. All...

  1. Matrix assisted pulsed laser evaporation of pullulan tailor-made biomaterial thin films for controlled drug delivery systems

    International Nuclear Information System (INIS)

    We report the first successful deposition of cinnamate-pullulan polysaccharide thin films by Matrix Assisted Pulsed Laser Evaporation (MAPLE). Thin film depositions were performed in vacuum using a KrF* excimer laser source (λ = 248 nm, τ ∼ 20 ns) operated at a repetition rate of 10 Hz. The dependence on incident laser fluence of the induced surface morphology is studied. We demonstrated by Raman spectroscopy that our MAPLE-deposited cinnamate-pullulan thin films are composed of starting materials preserving their chemical structures, with no impurities

  2. Water-assisted pulsed Er:YAG laser interaction with silicon

    International Nuclear Information System (INIS)

    Silicon is virtually transparent to the Er:YAG laser with a wavelength of 2.94 μm. In this study, we report that moderately doped silicon (1–10 Ω cm) can be processed by a pulsed Er:YAG laser with a pulse duration of 350 μs and a peak laser intensity of 1.7 × 105 W/cm2 by applying a thin water layer on top of silicon as a light absorbing medium. In this way, water is heated first by strongly absorbing the laser energy and then heats up the silicon wafer indirectly. As the silicon temperature rises, the free carrier concentration and therefore the absorption coefficient of silicon will increase significantly, which may enable the silicon to get directly processed by the Er:YAG laser when the water is vaporized completely. We also believe that the change in surface morphology after melting could contribute to the increase in the laser beam absorptance. It was observed that 525 nm-thick p-type wafer specimens were fully penetrated after 15 laser pulses were irradiated. Bright yellow flames were observed during the process, which indicates that the silicon surface reached the melting point

  3. Combinatorial matrix-assisted pulsed laser evaporation: Single-step synthesis of biopolymer compositional gradient thin film assemblies

    Science.gov (United States)

    Sima, F.; Axente, E.; Sima, L. E.; Tuyel, U.; Eroglu, M. S.; Serban, N.; Ristoscu, C.; Petrescu, S. M.; Toksoy Oner, E.; Mihailescu, I. N.

    2012-12-01

    We introduce a combinatorial approach for the fabrication of organic biopolymer thin films. Structures with compositional gradient are obtained by simultaneous laser vaporization of two distinct targets. Matrix-assisted pulsed laser evaporation deposition method was applied to obtain a compositional library of levan and oxidized levan in form of thin film. The gradient of film composition and structure was demonstrated by infrared spectroscopy while in vitro cell culture assays illustrated characteristic responses of cells to specific surface regions. The method can rapidly generate discrete areas of organic film compositions with improved properties than starting materials.

  4. Combinatorial Matrix Assisted Pulsed Laser Evaporation of a biodegradable polymer and fibronectin for protein immobilization and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Sima, F., E-mail: felix.sima@inflpr.ro [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Axente, E.; Iordache, I.; Luculescu, C. [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Gallet, O. [ERRMECE, Cergy-Pontoise University, Cergy-Pontoise (France); Anselme, K. [IS2M, CNRS UMR7361, Haute-Alsace University, Mulhouse (France); Mihailescu, I.N. [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania)

    2014-07-01

    Defined protein quantities were embedded in situ in a biodegradable polymer coating during simultaneous laser vaporization of two targets. Fibronectin (FN) and poly-DL-lactide (PDLLA) were transferred and immobilized concomitantly by Combinatorial Matrix Assisted Pulsed Laser Evaporation onto solid substrates. The film surface with gradient of composition was characterized by optical, scanning electron microscopy and profilometry. Micrometric FN packages were visualized in the polymeric matrix by confocal microscopy. The composition of FN was investigated by FTIR and μFTIR analyses in a polymeric matrix with different thickness.

  5. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Papantonalis, M.R.; Auyeung, R.C.Y.;

    2004-01-01

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD...... substrates were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence. (C) 2003...

  6. Matrix-Assisted Pulsed Laser Thin Film Deposition by Using Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Francesco Bloisi

    2012-01-01

    In this paper, the MAPLE technique is described in details, together with a survey of current and possible future applications for both organic and biomaterial deposition taking into account the advantages of using an Nd:YAG laser. Beside other results, we have experimental confirmation that MAPLE applications are not limited to transparent molecules highly soluble in light absorbing solvent, thus allowing deposition of poorly soluble light absorbing molecules suspended in a light transparent liquid.

  7. Reshaping, Fragmentation, and Assembly of Gold Nanoparticles Assisted by Pulse Lasers.

    Science.gov (United States)

    González-Rubio, Guillermo; Guerrero-Martínez, Andrés; Liz-Marzán, Luis M

    2016-04-19

    The vast majority of the outstanding applications of metal nanoparticles (NPs) developed during the last two decades have arisen from their unique optical properties. Within this context, rational synthesis and assembly of gold NPs have been the main research focus, aiming at the design of nanoplasmonic devices with tailored optical functionalities. The progress made in this field is thus to be ascribed to the understanding of the origin of the interaction between light and such gold nanostructures, the dynamics of which have been thoroughly investigated with significant contributions from short and ultrashort pulse laser technologies. We focus this Account on the potential of pulse lasers to provide new fundamental insights into the electron dynamics involved in the interaction of light with the free conduction electrons of Au NPs, that is, localized surface plasmon resonances (LSPRs). The excitation of LSPRs with a femtosecond pulse laser is followed by thermalization of the Au NP electrons and the subsequent relaxation of the nanocrystal lattice and the surrounding environment, which generally results in surface melting. By contrast, nanosecond irradiation usually induces AuNP fragmentation and uncontrolled melting due to overlapping excitation and relaxation phenomena. These concepts have been exploited toward the preparation of highly monodisperse gold nanospheres via pulse laser irradiation of polyhedral nanocrystal colloids, or in the fabrication of nanostructures with "written-in" optical properties. The applicability of pulsed coherent light has been extended toward the direct synthesis and manipulation of Au NPs. Through ablation of a gold target in a liquid with pulse lasers, spherical Au NPs can be synthesized with no need of stabilizing ligands, which is a great advantage in terms of reducing toxicity, rendering these NPs particularly suitable for medical applications. In addition, femtosecond laser irradiation has been proven a unique tool for the

  8. Laser-assisted-autoionization dynamics of helium resonances with single attosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wei-Chun; Lin, C. D. [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Zhao Songfeng [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2011-09-15

    The strong coupling between two autoionizing states in helium is studied theoretically with the pump-probe scheme. An isolated 100-as XUV pulse is used to excite helium near the 2s2p({sup 1} P) resonance state in the presence of an intense infrared (IR) laser. The laser field introduces strong coupling between 2s2p({sup 1} P) and 2p{sup 2}({sup 1} S) states. The IR also can ionize helium from both autoionizing states. By changing the time delay between the XUV and the IR pulses, we investigated the photoelectron spectra near the two resonances. The results are used to explain the recent experiment by Gilbertson et al.[Phys. Rev. Lett. 105, 263003 (2010)]. Using the same isolated attosecond pulse and a 540-nm laser, we also investigate the strong coupling between 2s2p({sup 1} P) and 2s{sup 2}({sup 1} S) by examining how the photoelectron spectra are modified versus the time delay and the possibility of observing Autler-Townes doublet in such experiments.

  9. Robot Assisted Laser Osteotomy

    OpenAIRE

    Burgner, Jessica

    2010-01-01

    In the scope of this thesis world's first robot system was developed, which facilitates osteotomy using laser in arbitrary geometries with an overall accuracy below 0.5mm. Methods of computer and robot assisted surgery were reconsidered and composed to a workflow. Adequate calibration and registration methods are proposed. Further a methodology for transferring geometrically defined cutting trajectories into pulse sequences and optimized execution plans is developed.

  10. Design and performance of a matrix-assisted laser desorption time-of-flight mass spectrometer utilizing a pulsed nitrogen laser

    International Nuclear Information System (INIS)

    The design considerations and experimental performance of a linear time-of-flight mass spectrometer are reported for performing matrix-assisted laser desorption studies. A simple pulsed gas-discharge nitrogen laser (337.1 nm) is successfully used in contrast to the more widely used frequency-quadrupled (266 nm) or frequency-tripled (355 nm) Nd:YAG solid-state laser. Optical considerations in utilizing the pulsed nitrogen laser are discussed and a simple optical arrangement is described which allows for suitable imaging of the poor spatial beam profile of the pulsed nitrogen laser. Laser spot sizes of 150x450 μm are obtainable. As with the frequency-tripled Nd:YAG laser, sinapic acid is found to be the most useful matrix for producing protonated molecular species from proteins. Appropriate laser power levels are determined, as matrix/sample levels. Adequate response for most small to medium molecular weight proteins is obtained for less than 1 pmol of sample. A simple einsel lens incorporated into the ion source does not appear to provide any significant focusing on the laser-desorbed ions; however, a constant d.c. voltage applied to beam stirring plates enhances the ion signal significantly. Selective, pulsed deflection of the low-mass ions produced from the matrix is also utilized to prevent excessive saturation of the microchannel plate ion detector. High source potentials are found to provide improved resolution and sensitivity in comparison with lower source potentials combined with post-acceleration at the detector. Representative mass spectra of several proteins and peptides are presented. Increased formation of photoinduced adduct ions are observed in comparison with that reported for matrix-assisted laser desorption experiments utilizing a Nd:YAG laser and significant amounts of dimer and trimer ions are produced. Significantly more peak broadening than would normally be expected is observed above 20000 u. This may be due to the post-acceleration design of

  11. Azo-derivatives thin films grown by matrix-assisted pulsed laser evaporation for non-linear optical applications

    International Nuclear Information System (INIS)

    Azo-dye compounds, in bulk or as thin films, are extensively studied due to their particular optical properties. These properties include non-linear interaction, e.g. two-photon absorption, optical limiting and all-optical poling, with potential applications in optoelectronics and sensors development. Herein, we report on the deposition of pyrazolone derivatives, namely 1-phenyl-3-methyl-4-(1′-azo-2′-sodium carboxylate)-pyrazole-5-one thin films, for applications in second harmonic generation. Matrix-assisted pulsed laser evaporation was employed for layers growth, using a Nd:YAG device operating at 266 nm (4ω). The structure and surface morphology of the deposited films were examined by Fourier transform infrared spectroscopy, atomic force microscopy, and scanning electron microscopy. Spectroscopic-ellipsometry was employed to investigate thin film optical properties. Significant second harmonic generation capabilities of the compound were pointed out by using a femtosecond Ti:sapphire laser.

  12. Pulsed laser machining apparatus

    International Nuclear Information System (INIS)

    Apparatus and method for directing a controlled number of laser pulses onto a work piece to be machined. More specifically, the laser machining apparatus includes an excitable laser and an excitation lamp for continuously exciting the laser to emit a sequence of laser pulses. The application of the laser pulses to the work piece is controlled by an inner-cavity shutter that is opened to permit a precise number of pulses to be directed onto the work piece. The frequency (REP RATE) and pulse width of the laser pulses are controlled by the excitation lamp and, in turn, are set to create a progressive weld of significant depth and structural integrity. In particular there is provided control means for counting the number of laser pulses applied to a machining site of the work piece, whereby a known controllable quantity of energy is imparted to each site. To this end, the counting of the laser pulses begins after the completion of a laser pulse, whereby the actuation of the inner-cavity shutter is not synchronized to the computer but rather to the laser emission so that only whole laser pulses will be applied to the site

  13. Divided-Pulse Lasers

    OpenAIRE

    Lamb, Erin S.; Wright, Logan G.; Wise, Frank W.

    2014-01-01

    We demonstrate the use of coherent division and recombination of the pulse within an ultrafast laser cavity to manage the nonlinear phase accumulation and scale the output pulse energy. We implement the divided-pulse technique in an ytterbium-doped fiber laser and achieve 16-times scaling of the pulse energy, to generate 6 nJ and 1.4 ps solitons in single mode fiber. Potential extensions of this concept are discussed.

  14. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren;

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence the...... fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix at...

  15. Properties of La and Nb-modified PZT thin films grown by radio frequency assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Verardi, P. [CNR-Istituto di Acustica, Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Craciun, F. [CNR-Istituto dei Sistemi Complessi, Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Dinescu, M. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania)]. E-mail: dinescum@ifin.nipne.ro; Scarisoreanu, N. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Moldovan, A. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Purice, A. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Galassi, C. [CNR-ISTEC, Via Granarolo 64, I 48018 Faenza (Italy)

    2005-04-25

    Lead zirconate titanate ferroelectric thin films added with La and Nb has been grown by radio frequency assisted pulsed laser deposition on Pt/Si, starting from sintered targets. The dielectric properties were measured in a large frequency range and their dependence on the a.c. driving field amplitude has been investigated. A linear decreasing of the dielectric permittivity with frequency logarithm increasing has been evidenced. The most important factor for the driving field amplitude influence on the dielectric properties is the type of vacancies introduced by La and Nb substitutions, which indicates that the dynamics involved in a.c. field behavior is controlled by interaction mechanisms between ferroelectric domain or nanodomain walls and pinning (vacancies) centers.

  16. Sapphire substrate-induced effects in VO2 thin films grown by oxygen plasma-assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    We investigate the structural and electronic properties of VO2 thin films on c-plane sapphire substrates with three different surface morphologies to control the strain at the substrate-film interface. Only non-annealed substrates with no discernible surface features (terraces) provided a suitable template for VO2 film growth with a semiconductor-metal transition (SMT), which was much lower than the bulk transition temperature. In addition to strain, oxygen vacancy concentration also affects the properties of VO2, which can be controlled through deposition conditions. Oxygen plasma-assisted pulsed laser deposition allows favorable conditions for VO2 film growth with SMTs that can be easily tailored for device applications

  17. Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation Of Inorganic Nanoparticles And Organic/Inorganic Hybrid Nanocomposites

    International Nuclear Information System (INIS)

    In this research, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit different classes of inorganic nanoparticles, including bare, un-encapsulated ZnO and Au nanoparticles, as well as ligand-encapsulated CdSe colloidal quantum dots (CQDs). RIR-MAPLE has been used for thin-film deposition of different organic/inorganic hybrid nanocomposites using some of these inorganic nanoparticles, including CdSe CQD-poly[2-methoxy-5-(2'-ethylhexyloxy )-1,4-(1-cyanovinylene)phenylene](MEH-CN-PPV) nanocomposites and Au nanoparticle-poly(methyl methacrylate)(PMMA) nanocomposites. The unique contribution of this research is that a technique is demonstrated for the deposition of organic-based thin-films requiring solvents with bond energies that do not have to be resonant with the laser energy. By creating an emulsion of solvent and ice in the target, RIR-MAPLE using a 2.94 μm laser can deposit most material systems because the hydroxyl bonds in the ice component of the emulsion matrix are strongly resonant with the 2.94 μm laser. In this way, the types of materials that can be deposited using RIR-MAPLE has been significantly expanded. Furthermore, materials with different solvent bond energies can be co-deposited without concern for material degradation and without the need to specifically tune the laser energy to each material solvent bond energy, thereby facilitating the realization of organic/inorganic hybrid nanocomposite thin-films. In addition to the structural characterization of the inorganic nanoparticle and hybrid nanocomposite thin-films deposited using this RIR-MAPLE technique, optical characterization is presented to demonstrate the potential of such films for optoelectronic device applications.

  18. Nucleation and growth of cubic boron nitride films produced by ion-assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, T.A.; Medlin, D.L.; Mirkarimi, P.B.; McCarty, K.F.; Klaus, E.J.; Boehme, D.R.; Johnsen, H.A.; Mills, M.J.; Ottesen, D.K. [Sandia National Labs., Livermore, CA (United States)

    1993-12-31

    We are studying the boron nitride system using a pulsed excimer laser to ablate from hexagonal BN (cBN) targets to form cubic BN (cBN) films. We are depositing BN films on heated (25--800C) Si (100) surfaces and are using a broad-beam ion source operated with Ar and N{sub 2} source gases to produce BN films with a high percentage of sp{sup 3}-bonded cBN. In order to optimize growth and nucleation of cBN films, parametric studies of the growth parameters have been performed. The best films to date show >85% sp{sup 3}-bonded BN as determined from Fourier-transform infrared (FTIR) reflection spectroscopy. High resolution transmission electron microscopy (TEM) and selected area electron diffraction confirm the presence of cBN in these samples. The films are polycrystalline and show grain sizes up to 30--40 mn. We find from both the FTIR and TEM analyses that the cBN content in these films evolves with growth time. Initially, the films are deposited as hBN and the cBN nucleates on this hBN underlayer. Importantly, the position of the cBN IR phonon also changes with growth time. Initially this mode appears near 1130 cm{sup {minus}1} and the position decreases with growth time to a constant value of 1085 cm{sup {minus}1}. Since in bulk cBN this IR mode appears at 1065 cm{sup {minus}1}, a large compressive stress induced by the ion bombardment is suggested. In addition, we report on the variation in cBN percentage with temperature.

  19. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can

  20. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miroiu, F.M., E-mail: marimona.miroiu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest (Romania); Andronie, A.; Stamatin, I. [3Nano-SAE Alternative Energy Sources-University of Bucharest, Faculty of Physics, 409 Atomistilor Street, RO-77125, Magurele-Ilfov (Romania); Moga, S.; Ducu, C. [University of Pitesti, Targul din Vale Str, no. 1, 110040 Pitesti (Romania)

    2010-05-25

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, {lambda} = 248 nm, {tau} = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm{sup 2} laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm{sup -1} amide II, 1654 cm{sup -1} amide I, 1243 cm{sup -1} amide III, while the peak from 1027 cm{sup -1} appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  1. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    International Nuclear Information System (INIS)

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, λ = 248 nm, τ = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm2 laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm-1 amide II, 1654 cm-1 amide I, 1243 cm-1 amide III, while the peak from 1027 cm-1 appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  2. Pulsed laser irradiation of silicon

    International Nuclear Information System (INIS)

    Pulsed laser irradiation of silicon was investigated with a ruby laser, having a pulse width of 30 ns and a variable energy up to 1.5 Joules. Peak powers as high as 50 MW are obtained, which is sufficient to cause melting to depths of a few thousand angstroem. In this study, development of heat flow theory made it possible to calculate temperature profiles in silicon during pulsed laser irradiation. Silicon self-diffusion measurements, laser annealing of damage in As implanted silicon, and laser induced doping of single crystal silicon was also investigated. A computer programme was used to calculate the temperature profiles in silicon during pulsed laser irradiation. Radioactive 31Si (half-life = 2.62 hours) was used to determine for the first time the self-diffusion of silicon in silicon during pulsed laser irradiation. Radioactivity profiles in the silicon sample were measured by anodic oxidation, sequential removal of the formed SiO2 by etching in dilute HF and measurement of the radioactivity left in the sample. The removal of damage caused during ion implantation of Si substrates with As was investigated by using laser annealing. Rutherford backscattering of charged nuclear paricles coupled with the channeling technique, showed that an amorphous layer 1140 A thick formed during implantation. Complete removal of this damage only started to take place at energies high enough to cause melting to depths greater than the amorphous/single crystal interface. During resolidification, the molten silicon regrows epitaxially leading to complete removal of all the damage. Disorder removal started at 0.6 Jcm-2, while complete damage removal was achieved at energies above 1.5 Jcm-2. The doping of silicon with Sb, Bi and In by laser assisted diffusion was investigated from evaporated layers as well as solutions of these dopants

  3. Carbon nitride deposition onto steel substrates by radio frequency plasma assisted pulsed laser deposition with substrate heating

    International Nuclear Information System (INIS)

    Carbon nitride (CNx) films are promising candidates for tribological application due to its low friction coefficient. However, the adhesion strength of the film on steel substrate was poor at elevated temperature during deposition. In this study, CNx film was fabricated on bearing steel (SUJ2) and austenitic stainless steel (AISI304) substrates with radio frequency (RF) plasma assisted pulsed laser deposition in nitrogen gas atmosphere. Adhesion strength of the film on the steel substrates was improved by blasting or polishing of the substrate surface before deposition. Thick CNx film was deposited on the steel substrates by substrate heating and substrate pretreatment. The atomic composition ratio of N/C and the bonding ratio of sp3 / (sp2 + sp3) increased with substrate temperature. Maximum atomic composition ratio of N/C was 0.155 on SUJ2 substrate and 0.171 on AISI304 substrate at 40 W of RF power and 673 K of substrate temperature. The maximum adhesion strength of 14.8 MPa was obtained at blasted SUJ2 substrate. The maximum knoop hardness of 8.94 GPa and the lowest friction coefficient of 0.072 were obtained on SUJ2 substrate with polished no. 150 at 40 W of RF power and 673 K of substrate temperature.

  4. Carbon nitride deposition onto steel substrates by radio frequency plasma assisted pulsed laser deposition with substrate heating

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Toshiaki, E-mail: yasui@me.tut.ac.jp [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Kimura, Shingo [Department of Production Systems Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Nishikawa, Ryutaro; Fukumoto, Masahiro [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)

    2012-11-15

    Carbon nitride (CNx) films are promising candidates for tribological application due to its low friction coefficient. However, the adhesion strength of the film on steel substrate was poor at elevated temperature during deposition. In this study, CNx film was fabricated on bearing steel (SUJ2) and austenitic stainless steel (AISI304) substrates with radio frequency (RF) plasma assisted pulsed laser deposition in nitrogen gas atmosphere. Adhesion strength of the film on the steel substrates was improved by blasting or polishing of the substrate surface before deposition. Thick CNx film was deposited on the steel substrates by substrate heating and substrate pretreatment. The atomic composition ratio of N/C and the bonding ratio of sp{sup 3} / (sp{sup 2} + sp{sup 3}) increased with substrate temperature. Maximum atomic composition ratio of N/C was 0.155 on SUJ2 substrate and 0.171 on AISI304 substrate at 40 W of RF power and 673 K of substrate temperature. The maximum adhesion strength of 14.8 MPa was obtained at blasted SUJ2 substrate. The maximum knoop hardness of 8.94 GPa and the lowest friction coefficient of 0.072 were obtained on SUJ2 substrate with polished no. 150 at 40 W of RF power and 673 K of substrate temperature.

  5. Amperometric biosensor based on Laccase immobilized onto a screen-printed electrode by Matrix Assisted Pulsed Laser Evaporation.

    Science.gov (United States)

    Verrastro, Maria; Cicco, Nunzia; Crispo, Fabiana; Morone, Antonio; Dinescu, Maria; Dumitru, Marius; Favati, Fabio; Centonze, Diego

    2016-07-01

    A Laccase-based biosensor for the determination of phenolic compounds was developed by using Matrix Assisted Pulsed Laser Evaporation as an innovative enzyme immobilization technique. and the deriving biosensor was characterized and applied for the first time. Laccase was immobilized onto different substrates including screen printed carbon electrodes and spectroscopic, morphologic and electrochemical characterizations were carried out. A linear range from 1 to 60μM was achieved working at 5.5pH and -0.2V detection potential vs Ag pseudoreference. The limits of detection and quantification were found to be 1 and 5μM, respectively. A good fabrication reproducibility, stability of response and selectivity toward interferents were also found The potential of the developed biosensor was tested in the determination of total polyphenol content in real matrices (tea infusion, ethanolic extract from Muscari comosum bulbs and aqueous solution of a food supplement from black radish root and artichoke leaves) and the results were compared with those obtained by using the Folin-Ciocalteu method. PMID:27154697

  6. Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    International Nuclear Information System (INIS)

    Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.

  7. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    Science.gov (United States)

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-10-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers

  8. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    CERN Document Server

    Li, Daojing; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-01-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers

  9. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers.

    Science.gov (United States)

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-10-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP achieved in all-normal-dispersion fiber lasers. PMID:26480103

  10. Liquid assisted ablation of zirconium for the growth of LIPSS at varying pulse durations and pulse energies by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Highlights: •Femtosecond laser ablation of Zr has been investigated. •The ablation was performed in ethanol environment. •The surface morphology of irradiated targets was explored by SEM analysis. •The compositional modification was performed by Raman spectroscopy. •The effect of pulse duration as well as pulse energy was revealed. -- Abstract: Investigations have been performed to explore the optimized conditions for the growth of Laser Induced Periodic Surface Structures (LIPSS) by varying pulse durations and pulse energies during ultrashort pulsed laser ablation of zirconium (Zr). The Ti: Sapphire laser with central wavelength of 800 nm, maximum pulse energy of 1 mJ is used to ablate Zr targets in the wet environment of ethanol. Scanning Electron Microscope (SEM) analysis was performed for central as well as the peripheral ablated area to characterize nano and microstructures formed on the Zr surface. Raman spectroscopy was carried out to explore the chemical and compositional changes produced in laser ablated Zr. In order to explore the effect of varying pulse durations ranging from 25 to 100 fs, targets were exposed to 1000 succeeding pulses keeping the pulse energy constant at 600 μJ. The micrographs of peripheral ablated areas reveal the formation of nano scale ripples or Laser Induced Periodic Surface Structures (LIPSS) for all pulse durations. LIPSS are more distinct and well organized for the shortest pulse duration of 25 fs. Whereas, LIPSS become diffused and indistinct with the increase in the pulse duration. This is the clear indication that shortest pulse duration (in our case 25 fs) is most suitable for the growth of nanoscale ripples. In order to explore the effect of varying pulse energies on the growth of LIPSS, targets were exposed to 1000 succeeding pulses with energies ranging from 200 μJ to 600 μJ for a pulse duration of 25 fs. In the peripheral ablated areas LIPSS are grown for all pulse energies. For the lowest pulse energy of

  11. Direct current-dielectrophoresis assisted microscale machining of metal by femtosecond pulsed laser

    Science.gov (United States)

    Park, ChangKyoo; Farson, Dave F.

    2015-07-01

    Accumulation of ablation debris particles interferes with femtosecond laser micromachining of high-aspect ratio grooves in metal. Debris removal from such grooves by an air or inert gas jet requires that the gas jet axis be aligned with the groove. This requirement constrains the motion system design and programming as well as the gas nozzle design for cutting of arbitrary shapes. Gas jet debris removal is also not feasible in vacuum environments. In this study, a novel technique based on DC-dielectrophoresis (DEP) for removing debris from the cut groove was investigated. Femtosecond laser ablation of linear and circular grooves from thick sections of aluminum was performed with no debris removal and with debris removal by air jet or DC-DEP force. Ablation depth and precision were compared for the three experimental conditions. Debris removal by DC-DEP force resulted in the most accurate, consistent, and orientation-independent machining of high-aspect ratio grooves. Moreover, larger electric fields exerted stronger DC-DEP force on debris particles and resulted in better ablation precision and machining rate.

  12. 21 CFR 884.6200 - Assisted reproduction laser system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a...

  13. Pulsed laser deposition assisted fabrication and characterization of Fe–Co nanoparticles embedded in TiN thin film matrix

    International Nuclear Information System (INIS)

    The FeCo material was synthesized in nanoparticle form in a TiN/FeCo/TiN sandwich structure using a pulsed laser deposition (PLD) method. FeCo is significantly cheaper than noble metal based bimetallic materials such as Fe–Pt, Ni–Pd, etc. A Fe0.5 Co0.5 composition was chosen in this study which is based on the local spin-density electronic-structure calculations. The advantage of this structure is in-situ passivation of FeCo nanoparticles by TiN thin films which is highly stable against atmospheric ambient conditions. TiN/FeCo/TiN samples with variable FeCo nanoparticle size were made by changing the number of laser pulses impinging on a chemically synthesized composite FeCo target. By controlling the particle size in the confined layers, it was possible to tune the magnetic properties from superparamagnetic to ferromagnetic in a controlled way. Magnetic hysteresis characteristics below the blocking temperature are consistent with single-domain behavior. - Highlights: ► TiN/FeCo/TiN structure using FeCo nanoparticles (NP) made by pulsed laser deposition ► In-situ passivation of FeCo NP is highly stable against atmospheric conditions. ► FeCo NP size controlled by number of laser pulses impinging on composite FeCo target ► Magnetic properties controlled by particle size in the confined layers

  14. Electrostatic quadrupole plasma mass spectrometer measurements during thin film depositions using simultaneous matrix assisted pulsed laser evaporation and magnetron sputtering

    International Nuclear Information System (INIS)

    A hybrid plasma deposition process, combining matrix assisted pulsed laser evaporation (MAPLE) of carbon nanopearls (CNPs) with magnetron sputtering of gold was investigated for growth of composite films, where 100 nm sized CNPs were encapsulated into a gold matrix. Composition and morphology of such composite films was characterized with x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. Carbon deposits on a gold magnetron sputter target and carbon impurities in the gold matrices of deposited films were observed while codepositing from gold and frozen toluene-CNP MAPLE targets in pure argon. Electrostatic quadrupole plasma analysis was used to determine that a likely mechanism for generation of carbon impurities was a reaction between toluene vapor generated from the MAPLE target and the argon plasma originating from the magnetron sputtering process. Carbon impurities of codeposited films were significantly reduced by introducing argon-oxygen mixtures into the deposition chamber; reactive oxygen species such as O and O+ effectively removed carbon contamination of gold matrix during the codeposition processes. Increasing the oxygen to argon ratio decreased the magnetron target sputter rate, and hence hybrid process optimization to prevent gold matrix contamination and maintain a high sputter yield is needed. High resolution TEM with energy dispersive spectrometry elemental mapping was used to study carbon distribution throughout the gold matrix as well as embedded CNP clusters. This research has demonstrated that a hybrid MAPLE and magnetron sputtering codeposition process is a viable means for synthesis of composite thin films from premanufactured nanoscale constituents, and that cross-process contaminations can be overcome with understanding of hybrid plasma process interaction mechanisms.

  15. Theory of laser catalysis with pulses

    CERN Document Server

    Vardi, A

    2001-01-01

    The possibility of accelerating molecular reactions by lasers has attracted considerable theoretical and experimental interest. A particular example of laser-modified reaction dynamics is laser catalysis, a process in which the tunneling through a potential barrier is enhanced by transient excitation to a bound electronic state. We have performed detailed calculations of pulsed laser catalysis on one- and two-dimensional potentials, as a function of the reactants' collision energy and the laser's central frequency. In agreement with previous CW results, the reactive lineshapes are Fano-type curves, resulting from interference between nonradiative tunneling and the optically assisted pathway. In contrast to the CW process, the power requirements of pulsed laser catalysis are well within the reach of commonly used pulsed laser sources, making an experimental realization possible. The laser catalysis scenario is shown to be equivalent in the ``dressed'' state picture, to resonant tunneling through a double-barri...

  16. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    International Nuclear Information System (INIS)

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7-12 thousand cm-1 of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T1 states. The laser power dependences (slopes of log-log power plots) of the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry Adapted Cluster-Configuration Interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics

  17. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Philip M., E-mail: Philip.johnson@stonybrook.edu [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400 (United States); Sears, Trevor J. [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400 (United States); Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-07-28

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7–12 thousand cm{sup −1} of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T{sub 1} states. The laser power dependences (slopes of log-log power plots) of the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry adapted cluster-configuration interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.

  18. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

    OpenAIRE

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-01-01

    We report on the observation of both stable dissipative solitons and noise-like pulses with the presence of strong Raman scattering in a relatively short all-normal-dispersion Yb-doped fiber laser. We show that Raman scattering can be filtered out by intracavity filter. Furthermore, by appropriate intracavity polarization control, the Raman effect can be utilized to generate broadband noise-like pulses (NLPs) with bandwidth up to 61.4 nm. To the best of our knowledge, this is the broadest NLP...

  19. Pulsed inductive HF laser

    Science.gov (United States)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 – F2(NF3 or SF66) and He(Ne) – H2 – F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%.

  20. Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Highlights: • Ga doped ZnO thin films were grown using buffer assisted pulsed laser deposition. • Lowest resistivity ∼5.1 × 10−5 Ω cm with a mobility of ∼41.9 cm2/V s was observed. • Buffer assisted growth methodology maintains relatively good crystalline quality. • This plays a key role in decreasing the resistivity of to the aforementioned value. • This resistivity value, to the best of our knowledge is the lowest so far in ZnO. - Abstract: We have grown Ga doped ZnO (GZO) thin films at moderate temperatures with Ga concentrations in the range varying from 0.25 to 3 at.% on sapphire substrates using buffer assisted pulsed laser deposition. Room temperature resistivity measured was ∼5.1 × 10−5 Ω cm with a electron mobility of ∼41.9 cm2/V s for an optimum Ga concentration of ∼0.75 at.% in the GZO films. Buffer assisted growth methodology maintains relatively good crystalline quality of the GZO thin films, thereby improving the electron mobility even at high dopant concentrations. This plays a key role in decreasing the resistivity of GZO films to the aforementioned value, which to the best of our knowledge is the lowest so far. These highly conducting GZO thin films with good mobility are potential candidates for transparent conducting oxide (TCO) applications in various optoelectronic devices

  1. Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ajimsha, R.S., E-mail: ajimsha@gmail.com [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Das, Amit K.; Misra, P.; Joshi, M.P.; Kukreja, L.M. [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Kumar, R.; Sharma, T.K.; Oak, S.M. [Semiconductor Physics & Devices Lab., Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-07-25

    Highlights: • Ga doped ZnO thin films were grown using buffer assisted pulsed laser deposition. • Lowest resistivity ∼5.1 × 10{sup −5} Ω cm with a mobility of ∼41.9 cm{sup 2}/V s was observed. • Buffer assisted growth methodology maintains relatively good crystalline quality. • This plays a key role in decreasing the resistivity of to the aforementioned value. • This resistivity value, to the best of our knowledge is the lowest so far in ZnO. - Abstract: We have grown Ga doped ZnO (GZO) thin films at moderate temperatures with Ga concentrations in the range varying from 0.25 to 3 at.% on sapphire substrates using buffer assisted pulsed laser deposition. Room temperature resistivity measured was ∼5.1 × 10{sup −5} Ω cm with a electron mobility of ∼41.9 cm{sup 2}/V s for an optimum Ga concentration of ∼0.75 at.% in the GZO films. Buffer assisted growth methodology maintains relatively good crystalline quality of the GZO thin films, thereby improving the electron mobility even at high dopant concentrations. This plays a key role in decreasing the resistivity of GZO films to the aforementioned value, which to the best of our knowledge is the lowest so far. These highly conducting GZO thin films with good mobility are potential candidates for transparent conducting oxide (TCO) applications in various optoelectronic devices.

  2. Quantum interference in laser-assisted photo-ionization excited by a femtosecond x-ray pulse

    Institute of Scientific and Technical Information of China (English)

    Ge Yu-Cheng

    2008-01-01

    The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.

  3. Laser assisted hair-removal.

    Science.gov (United States)

    Choudhary, S; Elsaie, M L; Nouri, K

    2009-10-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the hair follicle by targeting melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Laser hair removal is achieved through follicular unit destruction based on selective photothermolysis. The principle of selective photothermolysis predicts that the thermal injury will be restricted to a given target if there is sufficient selective absorption of light and the pulse duration is shorter than the thermal relaxation time of the target. This review will focus on the mechanisms of laser assisted hair removal and provide an update on the newer technologies emerging in the field of lasers assisted hair removal. PMID:19834437

  4. Vertical La0.7Ca0.3MnO3 nanorods tailored by high magnetic field assisted pulsed laser deposition

    OpenAIRE

    Kejun Zhang; Jianming Dai; Xuebin Zhu; Xiaoguang Zhu; Xuzhong Zuo; Peng Zhang; Ling Hu; Wenjian Lu; Wenhai Song; Zhigao Sheng; Wenbin Wu; Yuping Sun; Youwei Du

    2016-01-01

    La0.7Ca0.3MnO3 (LCMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] single crystal substrates have been prepared by high magnetic field assisted pulsed laser deposition (HMF-PLD) developed by ourselves. Uniformly sized and vertically aligned nanorod structures can be obtained under an applied high magnetic field above 5 T, and the dimension size of the nanorods can be manipulated by varying the applied magnetic field. It is found that the magnetic anisotropy is strongly correlate...

  5. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Science.gov (United States)

    Matei, Andreea; Marinescu, Maria; Constantinescu, Catalin; Ion, Valentin; Mitu, Bogdana; Ionita, Iulian; Dinescu, Maria; Emandi, Ana

    2016-06-01

    We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm2. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60-100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films' thickness.

  6. Pulsed laser microtomograph

    Science.gov (United States)

    Antonov, V. B.; Bonch-Bruevich, A. M.; Vasil'Ev, V. I.; Ionov, L. N.; Nikolaev, S. D.; Starobogatov, I. O.

    1994-12-01

    This paper describes a pulsed laser tomographic apparatus that has been implemented in practice and has a spatial resolution of 2-5 microns in the transverse direction and approximately 70 microns in the probe-radiation propagation direction. Experiments have been performed with model objects. Results have been obtained that confirm the possibility of early diagnosis of skin mycoses that cannot be diagnosed by existing methods.

  7. CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs

    Science.gov (United States)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2015-10-01

    An analysis of radiation, kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The gas flow conservation equations are coupled to the equations for DPAL kinetics and to the Beer-Lambert equations for pump and laser beams propagation. The DPAL kinetic processes in the Cs/CH4 (K/He) gas mixtures considered involve the three low energy levels, (1) n2S1/2, (2) n2P3/2 and (3) n2P1/2 (where n=4,6 for K and Cs, respectively), three excited alkali states and two alkali ionic states. Using the CFD model, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped CW and pulsed Cs and K DPALs. The DPAL power and medium temperature were calculated as a function of pump power and pump pulse duration. The CFD model results were compared to experimental results of Cs and K DPALs.

  8. Pulsed laser irradiation of silicon

    International Nuclear Information System (INIS)

    Pulsed laser irradiation of silicon was investigated with a ruby laser. Development of heat flow theory made it possible to calculate temperature profiles in silicon during pulsed laser irradiation. Silicon self-diffusion measurements, laser annealing of damage in As implanted silicon, and laser induced doping of single crystal silicon was investigated. A computer programme was writen based on the numerical solution, and was used to calculate the temperature profiles in silicon during irradiation. Radioactive 31Si was used to determine the self-diffusion of silicon in silicon during irradiation. Radioactivity profiles in the silicon sample were measured by anodic oxidation, sequential removal of the formed SiO2 by etching in dilute HF and measurement of the radioactivity left in the sample. Spreading of the radioactive silicon marker started to take place at energy densities above 0.8 Jcm-2, giving an average duffusion coefficient of (5.0 ± 2.7) x 10-8 m2s-1, which is of the order of magnitude expected when melting takes place. The doping of silicon with Sb, Bi and In by laser assisted diffusion was investegated from evaporated layers as well as solutions of these dopants. The threshold energies for doping was 0.6, 0.9 and 0.7 Jcm-2, while maximum dopant concentrations of 2 x 1021, 7 x 1020 and 4 x 1020 respectively was found for Sb, Bi and In. These values exceed the equilibrium solid solubility by orders of magnitude, and can be ascribed to trapping of the dopant atoms, due to the high recrystallization velocities involved. Doping was carried out by placing silicon substrates directly into solutions of SbCl3 and triphenyl antimony. The threshold of solution doping was found to be much greater than doping from evaporated layer. This difference could be ascribed to the much larger absorption coefficient of the laser light in the evaporated layers, as compared to single crystal silicon

  9. Efficient upconversion polymer-inorganic nanocomposite thin film emitters prepared by the double beam matrix assisted pulsed laser evaporation (DB-MAPLE)

    Science.gov (United States)

    Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent

    2014-09-01

    We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.

  10. Molecular wakes for ultrashort laser pulses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The molecular wake-assisted interaction between two collinear femotosecond laser pulses is investigated in air,which leads to the generation of a controllable 1.8 mJ super-continuum pulse with an elongated self-guided channel due to the cross-phase modulation of the impulsively aligned diatomic molecules in air. For two parallel launched femtosecond laser pulses with a certain spatial separation,controllable attraction and repulsion of the pulses are observed due to the counter-balance among molecular wakes,Kerr and plasma effects,where the molecular wakes show a longer interaction distance than the others to control the propagation of the intense ultrashort laser pulses.

  11. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    In this paper, some research and develop-ment activities within pulsed laser welding technology at the Tech-nical University of Denmark will be described. The laser group at the Insti-tute for Manufacturing Technology has nearly 20 years of experience in laser materials process-ing. Inter......-nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...

  12. High-power pulsed lasers

    International Nuclear Information System (INIS)

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  13. Laser system using ultra-short laser pulses

    Science.gov (United States)

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  14. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  15. Stoichiometry and characterization of aluminum oxynitride thin films grown by ion-beam-assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Oxides are inherently stable in air at elevated temperatures and may serve as wear resistant matrices for solid lubricants. Aluminum oxide is a particularly good candidate for a matrix because it has good diffusion barrier properties and modest hardness. Most thin film deposition techniques that are used to grow alumina require high temperatures to impart crystallinity. Crystalline films are about twice as hard as amorphous ones. Unfortunately, the mechanical properties of most engineering steels are degraded at temperatures above 250-350 deg. C. This work is focused on using energetic reactive ion bombardment during simultaneous pulsed laser deposition to enhance film crystallization at low temperatures. Alumina films were grown at several background gas pressures and temperatures, with and without Ar ion bombardment. The films were nearly stoichiometric except for depositions in vacuum. Using nitrogen ion bombardment, nitrogen was incorporated into the films and formed the Al-O-N matrix. Nitrogen concentration could be controlled through selection of gas pressure and ion energy. Crystalline Al-O-N films were grown at 330 deg. C with a negative bias voltage to the substrate, and showed improved hardness in comparison to amorphous films

  16. Pulsed laser deposition of liquid crystals

    OpenAIRE

    Gonzalo de los Reyes, José; Dyer, P. E.; Hird, M.

    1997-01-01

    Thin films of 4-cyano-4’-pentylbiphenyl ~5CB! liquid crystal have been fabricated by pulsed laser deposition. The suitability of different lasers ~ArF, KrF and CO2) has been investigated over a range of fluence using visible-UV and infrared absorption and optical microscopy to characterise the films. High performance liquid chromatography ~HPLC! and matrix assisted laser desorption ionization mass spectroscopy ~MALDI-MS! were used to assess the extent of decomposition of the films. The result...

  17. Pulse-Width Jitter Measurement for Laser Diode Pulses

    Institute of Scientific and Technical Information of China (English)

    TANG Jun-Hua; WANG Yun-Cai

    2006-01-01

    @@ Theoretical analysis and experimental measurement of pulse-width jitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced.

  18. A method of laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ragul' skii, V.V.; Nosach, O.U.

    1981-07-08

    A method is proposed for shaping a laser pulse by using its nonlinear interaction with the medium. In order to increase the contrast of the emission pulse over a wide spectrum range without brightness loss, the emission pulse is subjected to induced scattering in the transparent medium, while preserving the solid angle of the emission; the scattered emission is then separated from the initial emission.

  19. The soft-photon approximation in infrared-laser-assisted atomic ionization by extreme-ultraviolet attosecond-pulse trains

    International Nuclear Information System (INIS)

    We use the soft-photon approximation, formulated for finite pulses, to investigate the effects of the dressing pulse duration and intensity on simulated attosecond pump–probe experiments employing trains of attosecond extreme-ultraviolet pulses in conjunction with an IR probe pulse. We illustrate the validity of the approximation by comparing the modelled photoelectron distributions for the helium atom, in the photon energy region close to the N = 2 threshold, to the results from the direct solution of the time-dependent Schrödinger equation for two active electrons. Even in the presence of autoionizing states, the model accurately reproduces most of the background features of the ab initio photoelectron spectrum in the 1s channel. A splitting of the photoelectron harmonic signal along the polarization axis, in particular, is attributed to the finite duration of the probe pulse. Furthermore, we study the dependence of the sideband integrated signal on the pump–probe time delay for increasing IR field strengths. Starting at IR intensities of the order of  ∼ 1 TW cm−2, overtones in the sideband oscillations due to the exchange of three or more IR photons start to appear. We derive an analytical expression in the frequency-comb limit of the soft-photon model for the amplitude of all the sideband frequency components and show that these amplitudes oscillate as a function of the intensity of the IR field. In particular, we predict that the amplitude of the fundamental component with frequency 2ωIR, on which the rabitt optical reconstruction technique is based, changes sign periodically. (paper)

  20. Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Cristescu, R.; Dorcioman, G.; Ristoscu, C.; Axente, E.; Grigorescu, S.; Moldovan, A.; Mihailescu, I. N.; Kocourek, Tomáš; Jelínek, Miroslav; Albulescu, M.; Buruiana, T.; Mihaiescu, D.; Stamatin, I.; Chrisey, D.B.

    2006-01-01

    Roč. 252, - (2006), s. 4647-4651. ISSN 0169-4332 Institutional research plan: CEZ:AV0Z10100522 Keywords : polysaccharide * pullulan * thin films * laser deposition * MAPLE * drug delivery Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.436, year: 2006

  1. Vertical La0.7Ca0.3MnO3 nanorods tailored by high magnetic field assisted pulsed laser deposition

    Science.gov (United States)

    Zhang, Kejun; Dai, Jianming; Zhu, Xuebin; Zhu, Xiaoguang; Zuo, Xuzhong; Zhang, Peng; Hu, Ling; Lu, Wenjian; Song, Wenhai; Sheng, Zhigao; Wu, Wenbin; Sun, Yuping; Du, Youwei

    2016-01-01

    La0.7Ca0.3MnO3 (LCMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] single crystal substrates have been prepared by high magnetic field assisted pulsed laser deposition (HMF-PLD) developed by ourselves. Uniformly sized and vertically aligned nanorod structures can be obtained under an applied high magnetic field above 5 T, and the dimension size of the nanorods can be manipulated by varying the applied magnetic field. It is found that the magnetic anisotropy is strongly correlated to the dimension size of the nanorods. A significantly enhanced low-field magnetoresistance (LFMR) of -36% under 0.5 T at 100 K can be obtained due to the enhanced carrier scattering at the vertical grain boundaries between the nanorods for the LCMO films. The growth mechanism of the nanorods has been also discussed, which can be attributed to the variation of deposition rate, adatom surface diffusion, and nucleation induced by the application of a high magnetic field in the film processing. The successful achievements of such vertical nanorod structures will provide an instructive route to investigate the physical nature of these nanostructures and achieve nanodevice manipulation.

  2. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    International Nuclear Information System (INIS)

    FeAl films around equiatomic composition are grown on a-cut (112¯0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at TA = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures

  3. Crack imaging by pulsed laser spot thermography

    International Nuclear Information System (INIS)

    A surface crack close to a spot heated by a laser beam impedes lateral heat flow and produces alterations to the shape of the thermal image of the spot that can be monitored by thermography. A full 3D simulation has been developed to simulate heat flow from a laser heated spot in the proximity of a crack. The modelling provided an understanding of the ways that different parameters affect the thermal images of laser heated spots. It also assisted in the development of an efficient image processing strategy for extracting the scanned cracks. Experimental results show that scanning pulsed laser spot thermography has considerable potential as a remote, non-contact crack imaging technique.

  4. Fundamentals of laser-assisted fabrication of inorganic and organic films

    DEFF Research Database (Denmark)

    Schou, Jørgen

    2008-01-01

    The standard method for producing films by laser-assisted methods, Pulsed Laser Deposition (PLD) will be reviewed. The films considered are usually inorganic films, but also films of organic materials have been produced. Also the deposition of organic films by MAPLE (Matrix Assisted Pulsed Laser...

  5. Ultra-short pulsed laser engineered metal-glass nanocomposites

    CERN Document Server

    Stalmashonak, Andrei; Abdolvand, Amin

    2013-01-01

    Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local opti...

  6. Switching time in laser pulse heat-assisted magnetic recording using L10-FePt nanoparticles

    International Nuclear Information System (INIS)

    Atomistic spin model simulations using Langevin dynamics are performed to study the factors that determine the thermomagnetic recording time window in FePt media. The onset of thermomagnetic writing occurs at a temperature To larger than the Curie temperature Tc as a result of the finite time of relaxation of the magnetization by the linear reversal mode. The Bloch relaxation rate of magnetization growth during cooling below Tc is independent on the write field, provided the field is stronger than some threshold value. Application of a strong write field reduces switching time through better spin alignment in the paramagnetic regime. Finite size effects on the probability distribution of freezing temperatures Tf and the free energy provide insight on the thermomagnetic reversal mechanism. Constraints on the “pulse-mode” of recording when the head field reverses direction during cooling are also considered

  7. Ultrashort-pulse laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D; Rubenchik, A M; Sefcik, J A; Stuart, B C

    1998-09-01

    A new type of material processing is enabled with ultrashort (t < 10 ps) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms that eliminate thermal shock or collateral damage. High-precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  8. Ultrashort-pulse lasers machining

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D, Stuart, B C

    1999-01-22

    A new type of material processing is enabled with ultrashort (t < 10 psec) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms which eliminate thermal shock or collateral damage. High precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  9. Pulse transformer for GaAs laser

    Science.gov (United States)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  10. Two-laser infrared and ultraviolet matrix-assisted laser desorption/ionization.

    Science.gov (United States)

    Little, Mark W; Kim, Jae-Kuk; Murray, Kermit K

    2003-07-01

    Matrix-assisted laser desorption/ionization (MALDI) was performed using two pulsed lasers with wavelengths in the IR and UV regions. A 10.6 micro m pulsed CO(2) laser was used to irradiate a MALDI target, followed after an adjustable delay by a 337 nm pulsed nitrogen laser. The sample consisted of a 2,5-dihydroxybenzoic acid matrix and bovine insulin guest molecule. The pulse energy for both of the lasers was adjusted so that the ion of interest, either the matrix or guest ion, was not produced by either of the lasers alone. The delay time for maximum ion yield occurs at 1 micro s for matrix and guest ions and the signal decayed to zero in approximately 400 micro s. A mechanism is presented for enhanced UV MALDI ion yield following the IR laser pulse based on transient heating. PMID:12898657

  11. Laser assisted removal of synthetic painting-conservation materials using UV radiation of ns and fs pulse duration: Morphological studies on model samples

    Energy Technology Data Exchange (ETDEWEB)

    Pouli, P., E-mail: ppouli@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH), P.O. Box 1385, Heraklion, 71110 Crete (Greece); Nevin, A. [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH), P.O. Box 1385, Heraklion, 71110 Crete (Greece); Courtauld Institute of Art, University of London, Somerset House, Strand, WC2R 0RN, London (United Kingdom); Andreotti, A.; Colombini, P. [Dipartimento di Chimica e Chimica Industriale, Universita di Pisa, via Risorgimento 35, 56126 Pisa (Italy); Georgiou, S. [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH), P.O. Box 1385, Heraklion, 71110 Crete (Greece); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH), P.O. Box 1385, Heraklion, 71110 Crete (Greece); Department of Physics, University of Crete, P.O. Box 2208, Heraklion, 71003 (Greece)

    2009-02-15

    In an effort to establish the optimal parameters for the cleaning of complex layers of polymers (mainly based on acrylics, vinyls, epoxys known as Elvacite, Laropal, Paraloid B72, among others) applied during past conservation treatments on the surface of wall paintings, laser cleaning tests were performed with particular emphasis on the plausible morphological modifications induced in the remaining polymeric material. Pulse duration effects were studied using laser systems of different pulse durations (ns and fs) at 248 nm. Prior to tests on real fragments from the Monumental Cemetery in Pisa (Italy) which were coated with different polymers, attention was focused on the study of model samples consisting of analogous polymer films cast on quartz disks. Ultraviolet irradiation is strongly absorbed by the studied materials both in ns and fs irradiation regimes. However, it is demonstrated that ultrashort laser pulses result in reduced morphological alterations in comparison to ns irradiation. In addition, the dependence of the observed alterations on the chemical composition of the consolidation materials in both regimes was examined. Most importantly, it was shown that in this specific conservation problem, an optimum cleaning process may rely not only on the minimization of laser-induced morphological changes but also on the exploitation of the conditions that favour the disruption of the adhesion between the synthetic material and the painting.

  12. Laser assisted removal of synthetic painting-conservation materials using UV radiation of ns and fs pulse duration: Morphological studies on model samples

    International Nuclear Information System (INIS)

    In an effort to establish the optimal parameters for the cleaning of complex layers of polymers (mainly based on acrylics, vinyls, epoxys known as Elvacite, Laropal, Paraloid B72, among others) applied during past conservation treatments on the surface of wall paintings, laser cleaning tests were performed with particular emphasis on the plausible morphological modifications induced in the remaining polymeric material. Pulse duration effects were studied using laser systems of different pulse durations (ns and fs) at 248 nm. Prior to tests on real fragments from the Monumental Cemetery in Pisa (Italy) which were coated with different polymers, attention was focused on the study of model samples consisting of analogous polymer films cast on quartz disks. Ultraviolet irradiation is strongly absorbed by the studied materials both in ns and fs irradiation regimes. However, it is demonstrated that ultrashort laser pulses result in reduced morphological alterations in comparison to ns irradiation. In addition, the dependence of the observed alterations on the chemical composition of the consolidation materials in both regimes was examined. Most importantly, it was shown that in this specific conservation problem, an optimum cleaning process may rely not only on the minimization of laser-induced morphological changes but also on the exploitation of the conditions that favour the disruption of the adhesion between the synthetic material and the painting.

  13. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    Science.gov (United States)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  14. Pulse propagation in the laser wakefield accelerator

    International Nuclear Information System (INIS)

    A high-density regime of the laser wakefield accelerator is reviewed in which enhanced acceleration is achieved via resonant self-modulation of the laser pulse. This requires laser power in excess of the critical power for optical guiding and a plasma wavelength short compared to the laser pulse-length. The evolution of the laser pulse is described, including a discussion of self-modulation and laser-hose instabilities. Examples of self-modulated laser wakefield accelerators are presented. copyright 1996 American Institute of Physics

  15. Ultrashort Laser Pulses in Biology and Medicine

    CERN Document Server

    Braun, Markus; Zinth, Wolfgang

    2008-01-01

    Sources of ultrashort laser pulses are nowadays commercially available and have entered many areas of research and development. This book gives an overview of biological and medical applications of these laser pulses. The briefness of these laser pulses permits the tracing of the fastest processes in photo-active bio-systems, which is one focus of the book. The other focus is applications that rely on the high peak intensity of ultrashort laser pulses. Examples covered span non-linear imaging techniques, optical tomography, and laser surgery.

  16. Laser assisted graffiti paints removing

    Science.gov (United States)

    Novikov, B. Y.; Chikalev, Y. V.; Shakhno, E. A.

    2011-02-01

    It's hard to imagine a modern city view without some drawings and inscriptions, usually called "graffiti". Traditional cleaning methods do not suit modern requirements. Investigation of possibilities of laser assisted paints removing is described in this article. The conditions for removing different paints from different surfaces were defined.

  17. A model for the dissociation pulse, afterglow, and laser pulse in the Cu/CuCl double pulse laser

    OpenAIRE

    Kushner, M J; Culick, F. E. C.

    1980-01-01

    A model which completely describes the Cu/CuCl double pulse laser is presented. The dissociation discharge pulse and afterglow are simulated and the results are used as initial conditions for an analysis of the pumping discharge pulse and laser pulse. Experimental behavior including the minimum, optimum, and maximum delays between pulses, and the dependence of laser pulse energy on dissociation energy are satisfactorily reproduced. An optimum tube temperature is calculated, and the dependence...

  18. A model for the dissociation pulse, afterglow, and laser pulse in the Cu/CuCI double pulse laser

    OpenAIRE

    Kushner, M J; Culick, F. E. C.

    1980-01-01

    A model which completely describes the Cu/CuCI double pulse laser is presented. The dissociation discharge pulse and afterglow are simulated and the results are used as initial conditions for an analysis of the pumping discharge pulse and laser pulse. Experimental behavior including the minimum, optimum, and maximum delays between pulses, and the dependence of laser pulse energy on dissociation energy are satisfactorily reproduced. An optimum tube temperature is calculated, and the depende...

  19. Pulse shaping on the Nova laser system

    International Nuclear Information System (INIS)

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs

  20. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    Science.gov (United States)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O’Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O’Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  1. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  2. Dynamic pulsing of a MOPA fiber laser

    Science.gov (United States)

    Romero, Rosa; Guerreiro, Paulo T.; Hendow, Sami T.; Salcedo, José R.

    2011-05-01

    Dynamic Pulsing is demonstrated using a pulsed MOPA fiber laser at 1064nm. The output of the MOPA laser is a pulsed profile consisting of a burst of closely spaced pulses. Tests were performed under several materials with pulse bursts ranging from 10ns to 1μs and operating from 500kHz down to single shot. In particular, percussion drilling in stainless steel is demonstrated showing improvements in quality and speed of the process. These profiles allow high flexibility and optimization of the process addressing the specificity of the end application. Dynamic Pulsing allows the same MOPA fiber laser to be used in diverse materials as well as different processes such us marking, drilling, scribing and engraving. The pulsed fiber laser used in this study is a MOPA-DY by Multiwave Photonics. It is based on a modulated seed laser followed by a series of fiber amplifiers and ending with an optically isolated collimator. This pulsed laser model has an output in such a way that each trigger produces a fast burst of pulses, with a repetition frequency within the burst of the order of tens of MHz. Within the burst it is possible to change the number of pulses, the individual pulse profile, burst pulse period and even to generate non-periodic burst pulse separations. The laser allows full freedom for all these combinations. The study here reported compares the impact of pulse peak power, number of pulses within a burst and the pulse burst period, on process quality (heat affected zone, debris, hole uniformity) and drilling yield.

  3. Laser assisted removal of fixed contamination from metallic substrate

    International Nuclear Information System (INIS)

    A single mode pulsed fiber laser was used to remove fixed contamination from stainless steel substrate by ablation. Samples were simulated by electro-deposition technique with 232U as the test contaminant. Laser power, repetition rate, laser beam scanning speed and number of passes were optimised to obtain the desired ablation depth in the substrate. Ablation depth varying between few microns to few hundreds of microns could be achieved through careful control of these processing parameters. The absence of any activity in laser treated samples provided experimental signature of the efficacy of the laser assisted removal of fixed contamination. (author)

  4. Laser-assisted fabrication of materials

    CERN Document Server

    Manna, Indranil

    2013-01-01

    Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on ´Laser assisted Fabrication’ is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.

  5. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  6. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  7. One laser pulse generates two photoacoustic signals

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying the stress confinement, the dual photoacoustic signals are generated following the positive and negative edges of the long laser pulse. More interestingly, the first expansion-induced photoacoustic signal exhibits positive waveform due to the initial sharp rising of temperature. On the contrary, the second contraction-induced photoacoustic signal exhibits exactly negative waveform due to the falling of temperature, as well as pulse-width-dependent, signal amplitude which is caused by the concurrent heat accumulation and ...

  8. Relativistic laser pulse compression in magnetized plasmas

    International Nuclear Information System (INIS)

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses

  9. A case study for terahertz-assisted single attosecond pulse generation

    CERN Document Server

    Balogh, Emeric; Tosa, Valer; Varjú, Katalin

    2014-01-01

    We numerically investigate the use of strong THz radiation in assisting single attosecond pulse generation by few-cycle, 800 nm laser pulses. We optimize focusing conditions to generate short and powerful single attosecond pulses of high-energy photons by keeping the parameters of the THz field within the limits achieved experimentally. We show that using optimal focusing geometry isolated attosecond pulses shorter than 100 as can be obtained even in the absence of further gating or XUV compression techniques, using an 8 fs generating pulse. Furthermore, quantum path control of short- and long-trajectory components is demonstrated by varying the delay between the THz and IR pulses.

  10. Classical Dynamics of Free Electromagnetic Laser Pulses

    OpenAIRE

    Goto, S; Tucker, R. W.; Walton, T. J.

    2015-01-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a poten...

  11. Fundamentals of laser-assisted fabrication of inorganic and organic films

    DEFF Research Database (Denmark)

    Schou, Jørgen

    The standard method for producing films by laser-assisted methods, Pulsed Laser Deposition (PLD) will be reviewed. The films considered are usually inorganic films, but also films of organic materials have been produced. Also the deposition of organic films by MAPLE (Matrix Assisted Pulsed Laser...... Evaporation), in which the target is replaced by a frozen matrix containing a few per cent film material, will be reviewed....

  12. Laser assisted decontamination of nuclear fuel elements

    International Nuclear Information System (INIS)

    Laser assisted removal of loosely bound fuel particulates from the clad surface following the process of pellet loading has decided advantages over conventional methods. It is a dry and noncontact process that generates very little secondary waste and can occur inside a glove box without any manual interference minimizing the possibility of exposure to personnel. The rapid rise of the substrate/ particulate temperature owing to the absorption of energy from the incident laser pulse results in a variety of processes that may lead to the expulsion of the particulates. As a precursor to the cleaning of the fuel elements, initial experiments were carried out on contamination simulated on commonly used clad surfaces to gain a first hand experience on the various laser parameters for which as efficient cleaning can be obtained without altering the properties of the clad surface. The cleaning of a dummy fuel element was subsequently achieved in the laboratory by integrating the laser with a work station that imparted simultaneous rotational and linear motion to the fuel element. (author)

  13. EEHG-assisted FEL schemes for attosecond X-ray pulses generation

    Energy Technology Data Exchange (ETDEWEB)

    Yan Jun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Deng Haixiao, E-mail: denghaixiao@sinap.ac.c [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wang Dong; Dai Zhimin [Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Shanghai 201800 (China)

    2010-09-21

    In this paper, the schemes of echo-enabled harmonic generation (EEHG) assisted free electron laser (FEL) for generating attosecond soft X-ray pulses are further investigated. We present brief analytical models and three-dimensional simulations for comparison studies of such schemes reported earlier. Moreover, on the basis of these analyses, a more compact and robust EEHG-assisted FEL scheme is proposed for pump-probe experiments using two-color attosecond X-ray pulses.

  14. On the Feasibility of Depth Profiling of Animal Tissue by Ultrashort Pulse Laser Ablation

    OpenAIRE

    Milasinovic, Slobodan; Liu, Yaoming; Bhardwaj, Chhavi; Melvin, Blaze M.T.; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    Experiments were performed to examine the feasibility of MS depth profiling of animal tissue by ~75 fs, 800 nm laser pulses to expose underlying layers of tissue for subsequent MS analysis. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was used to analyze phospholipids and proteins from both intact bovine eye lens tissue and tissue ablated by ultrashort laser pulses. Laser desorption postionization (LDPI-MS) with 10.5 eV single photon ionization was also used to ana...

  15. High Power Picosecond Laser Pulse Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  16. Ultrashort-pulse lasers and their applications

    International Nuclear Information System (INIS)

    A revolution has occurred over the past ten years in our ability to generate, manipulate, and amplify ultrashort pulses. Laser pulses can be as short as a few femtoseconds (few optical cycles) and possess extreme power up to several terawatts. The applications of these pulses are numerous in physics, chemistry, and biology, where they can be used to time resolve ultrafast events. We review in this article the state of the art in short pulse generation and amplification. (author)

  17. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    Science.gov (United States)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Krausz, Ferenc; Yu, Wei; Tsakiris, George D.; Veisz, Laszlo

    2015-03-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ˜100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  18. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guangjin, E-mail: guangjin.ma@mpq.mpg.de [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Max-Planck-Institut für Quantenoptik, D-85748 Garching (Germany); Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo [Max-Planck-Institut für Quantenoptik, D-85748 Garching (Germany); Krausz, Ferenc [Max-Planck-Institut für Quantenoptik, D-85748 Garching (Germany); Department für Physik, Ludwig-Maximilians-Universität, D-85748 Garching (Germany); Yu, Wei [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  19. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  20. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Science.gov (United States)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  1. MOPA pulsed fiber laser for silicon scribing

    Science.gov (United States)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  2. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2015-01-01

    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  3. Optical quality of pulsed aerodynamic laser windows

    International Nuclear Information System (INIS)

    The feasibility of using a shock tube-generated pulsed flow field as a single-shot window for short, high-energy laser pulses is investigated, with a view to single pulse gas laser-driven, inertial confinement fusion facility application. A scribed diaphragm shock tube with glass endwalls was used to simulate the window, and a ruby laser pulse was transmitted along the tube axis after the diaphragm burst. Pressure wave field optical quality and turbulent contact interface were recorded holographically at different delay times for a variety of pressures and gas compositions in the driver and driven sections of the shock tube. Interferograms were interpreted by means of digital techniques to determine beam-quality degradations, and showed that a beam quality of 1.33, adequate for laser fusion use, was routinely obtainable at the ruby laser wavelength

  4. Pulse front tilt measurement of femtosecond laser pulses

    Science.gov (United States)

    Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.

    2016-07-01

    In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.

  5. PULSED MODE LASER CUTTING OF SHEETS FOR TAILORED BLANKS

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    This paper describes how the laser cutting process can be optimised in such a way that the cut sheets can subsequently be used to laser weld tailored blanks. In a number of systematic laboratory experiments the effect of cutting speed, assist gas pressure, average laser power and pulse energy was...... item for parameter optimisation of laser cut sheets used for tailored blanks. It was concluded that high quality cut edges with a squareness as small as 0.015 mm may be obtained. Such edges are well suited for subsequent laser welding....... analysed. For quality assessment the squareness, roughness and dross attachment of laser cut blanks were measured. In all tests, the medium strength steel GA 260 with a thickness of 1.8 mm was used. In this work it has been successfully demonstrated that the squareness of a cut can be used as a quality...

  6. Characteristics of the pumping pulse and the output laser pulse for a Cu/CuCl double pulse laser

    OpenAIRE

    Kushner, M J; Culick, F. E. C.

    1980-01-01

    Characteristics of the pumping discharge pulse and laser pulse in a Cu/CuCl double pulse laser have been measured as a function of time delay, buffer gas pressure, and tube temperature. We have found that for otherwise fixed discharge conditions, pumping rates decrease as these quantities are increased. The shape of the laser pulse as a function of time delay is shown to be dependent on the rate of current rise of the pumping pulse. The length of time required by the pumping pulse to achieve ...

  7. Laser plasma formation assisted by ultraviolet pre-ionization

    International Nuclear Information System (INIS)

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266 nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064 nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ∼10 ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results

  8. Thermal effects in laser-assisted embryo hatching

    Science.gov (United States)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2000-08-01

    Diode lasers [(lambda) equals 1480 nm] are used with in-vitro fertilization [IVF] as a promoter of embryo hatching. A focused laser beam is applied in vitro to form a channel in the zona pellucida (shell) of the pre-embryo. After transfer into the uterus, the embryo hatches: it extrudes itself through the channel and implants into the uterine wall. Laser-assisted hatching can result in improving implantation and pregnancy success rates. We present examples of zone pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g. by overheating. In order to define safe regimes we have derived some thermal side-effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed-beam experiment a HeNe laser probe detects the temperature-induced change in refractive index. We find that the diode laser beam produces superheated water approaching 200 C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration laser power approximately 100 mW.

  9. The Dynamics of Compact Laser Pulses

    OpenAIRE

    Goto, S; Tucker, Robin William; Walton, T. J.

    2015-01-01

    We discuss the use of a class of exact finite energy solutions to the vacuum source-free Maxwell equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged point particles. These compact solutions are classified in terms of their chiral content and their influence on particular charge configurations in space. The results of such classical interactions motivate a phenomenological quantum description of a propagating laser pulse in a medium i...

  10. The dynamics of compact laser pulses

    Science.gov (United States)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-07-01

    We discuss the use of a class of exact finite energy solutions to the vacuum source-free Maxwell equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged point particles. These compact solutions are classified in terms of their chiral content and their influence on particular charge configurations in space. The results of such classical interactions motivate a phenomenological quantum description of a propagating laser pulse in a medium in terms of an effective quantum Hamiltonian.

  11. Pulsed lasers in dentistry: sense or nonsense?

    Science.gov (United States)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  12. Effect of nitrogen surrounding gas and plasma assistance on nitrogen incorporation in a-C:N films by femtosecond pulsed laser deposition

    Science.gov (United States)

    Bourquard, F.; Maddi, C.; Donnet, C.; Loir, A.-S.; Barnier, V.; Wolski, K.; Garrelie, F.

    2016-06-01

    In the context of nitrogen-rich amorphous carbon thin films ultrafast pulsed laser deposition from graphite targets in inert nitrogen or nitrogen plasma ambient, this study assesses the correlation between the ablation plume composition and dynamics and the thin films contents and structures. The use of both optical emission spectroscopy and spectrally resolved 2D imaging, coupled with intensified CCD temporal resolution, allows to precisely follow such species of the plume as CN and C2 molecules, from their apparition to their deposition on the substrate. The results show that carbon-nitrogen bonding arises at the early time of expansion with little changes in quantity thereafter. The key role of the DC-bias is in lowering the molecular weight of the ambient gas, thus easing molecules way toward the target and interfering with the chemical reaction for CN generation. Depending on the ambient pressure, these processes will have drastically different effects on the thin films properties and contents. This work thus explains the origin of high nitrogen contents in a-C:N thin films obtained using DC-bias, and proposes an easy in situ optical observation-based way to predict and look for the best conditions to maximize those contents in future work.

  13. Laser assisted Breit-Wheeler and Schwinger processes

    CERN Document Server

    Nousch, T; Seipt, D; Kämpfer, B; Titov, A I; Blaschke, D; Panferov, A D; Smolyansky, S A

    2016-01-01

    The assistance of an intense optical laser pulse on electron-positron pair production by the Breit-Wheeler and Schwinger processes in XFEL fields is analyzed. The impact of a laser beam on high-energy photon collisions with XFEL photons consists in a phase space redistribution of the pairs emerging in the Breit-Wheeler sub-process. We provide numerical examples of the differential cross section for parameters related to the European XFEL. Analogously, the Schwinger type pair production in pulsed fields with oscillating components referring to a superposition of optical laser and XFEL frequencies is evaluated. The residual phase space distribution of created pairs is sensitive to the pulse shape and may differ significantly from transiently achieved mode occupations.

  14. Short pulse laser train for laser plasma interaction experiments

    International Nuclear Information System (INIS)

    A multiframe, high-time resolution pump-probe diagnostic consisting of a consecutive train of ultrashort laser pulses (∼ps) has been developed for use with a chirped pulse amplification (CPA) system. A system of high quality windows is used to create a series of 1054 nm picosecond-laser pulses which are injected into the CPA system before the pulse stretcher and amplifiers. By adding or removing windows in the pulse train forming optics, the number of pulses can be varied. By varying the distance and thickness of the respective optical elements, the time in between the pulses, i.e., the time in between frames, can be set. In our example application, the CPA pulse train is converted to 527 nm using a KDP crystal and focused into a preformed plasma and the reflected laser light due to stimulated Raman scattering is measured. Each pulse samples different plasma conditions as the plasma evolves in time, producing more data on each laser shot than with a single short pulse probe. This novel technique could potentially be implemented to obtain multiple high-time resolution measurements of the dynamics of physical processes over hundreds of picoseconds or even nanoseconds with picosecond resolution on a single shot

  15. Survey on modern pulsed high power lasers

    International Nuclear Information System (INIS)

    The requirements to be met by lasers for particle acceleration are partially similar to those already known for fusion lasers. The power level wanted in both caes is up to 100 TW or even more. The pulse durations favourable for laser accelerators are in the range from 1 ps to 1000 ps whereas fusion lasers require several ns. The energy range for laser accelerators is thus correspondingly smaller than that for fusion lasers: 1-100 kJ versus several 100 kJ. The design criteria of lasers meeting the requirements are discussed in the following. The CO2, iodine, Nd:glass and excimer lasers are treated in detail. The high repetition rate aspect will not be particularly addressed since for the present generation of lasers the wanted rates of far above 1 Hz are completely out of scope. Moreover, for the demonstration of principle these rates are not needed. (orig./HSI)

  16. Stretched pulse Yb3+:silica fibre laser

    OpenAIRE

    Cautaerts, V.; Richardson, D.J.; Paschotta, R.; Hanna, D.C.

    1997-01-01

    We report what we believe to be the first results on short-pulse generation in Yb3+:silica fiber. By applying the stretched pulse technique in a unidirectional, polarization-switch Yb3+ fiber laser incorporating a prism-based dispersive delay line, we obtain self-start mode locking and 100pJ pulses that can be compressed to give clean chirp-free

  17. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    Science.gov (United States)

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  18. Modeling of pulsed lasers for remote sensing

    Science.gov (United States)

    Walsh, Brian M.; Barnes, Norman P.; Petros, Mulugeta; Yu, Jirong; Singh, Upendra N.

    2005-01-01

    Pulsed lasers are useful for remote sensing of wind and greenhouse gases to better understand the atmosphere and its impact on weather patterns and the environment. It is not always practical to develop and optimize new laser systems empirically due to the time and expense associated with such endeavors. A practical option is to use a laser model to predict various performance parameters and compare these with the needs required for a particular remote sensing application. This approach can be very useful in determining the efficacy of potential laser systems, saving both time and money before proceeding with the actual construction of a laser device. As a pedagogical example, the modeling of diode pumped Tm:Ho:YLF and Tm:Ho:LuLF lasers are examined. Tm:Ho lasers operating around 2.0 μm have been used for wind measurements such as clear air turbulence and wake vortices. The model predictions for the laser systems examined here are compared to the actual laser performance, validating the usefulness of the modeling approach. While Tm:Ho fluoride lasers are used as a pedagogical example, the model is applicable to any lanthanide series pulsed laser system. This provides a useful tool for investigating potential laser systems that meet the requirements desired for a variety of remote sensing applications.

  19. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm-1, which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm-1. The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm-1. (author). 6 refs., 11 figs

  20. Laser pulse shaping for high gradient accelerators

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  1. Pulsed solid state lasers for medicine

    Science.gov (United States)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  2. STATISTICAL ANALYSIS OF FEMTOSECOND PULSES LASER ON HOLE DRILLING OF SILICON WAFER

    OpenAIRE

    Jiao, L; E. Y. K. Ng; Zheng, H.; Wee, L.M.

    2011-01-01

    This study investigated the relationship and parameters interactions between five independent variables in laser percussion drilling of micro-hole. Experiments were conducted on single crystal silicon wafer with material thickness of 725 μm using femtosecond (fs) laser with wavelength of 775 nm and pulse duration of 200 fs. Laser power, focus position, number of pulses, workpiece temperature and assist liquid were selected as independent process variables. Taguchi L18 orthogonal array was app...

  3. Classical Dynamics of Free Electromagnetic Laser Pulses

    CERN Document Server

    Goto, S; Walton, T J

    2015-01-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Lande and Podolsky.

  4. Heat accumulation during pulsed laser materials processing.

    Science.gov (United States)

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. PMID:24921828

  5. RF synchronized short pulse laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  6. High Power Pulsed Gas Lasers

    Science.gov (United States)

    Witteman, W. J.

    1987-09-01

    Gas lasers have shown to be capable of delivering tens of terrawatt aspeak power or tens of kilowatt as average power. The efficiencies of most high power gas lasers are relatively high compared with other types of lasers. For instance molecular lasers, oscillating on low lying vibrational levels, and excimer lasers may have intrinsic efficiencies above 10%.The wavelengths of these gas lasers cover the range from the far infrared to the ultra-violet region, say from 12000 to 193 nm. The most important properties are the scalability, optical homogeneity of the excited medium, and the relatively low price per watt of output power. The disadvantages may be the large size of the systems and the relatively narrow line width with limited tunability compared with solid state systems producing the same peak power. High power gas lasers group into three main categories depending on the waste-heat handling capacity.

  7. Optimization of two tailored rectangular femtosecond laser pulses in methane dissociation

    Science.gov (United States)

    Sadighi-Bonabi, R.; Dehghani, Z.; Irani, E.

    2010-05-01

    Based on the quantum mechanics principles and classically calculated dressed potential surfaces by using field assisted dissociation model the dissociation probability for CH4+ molecule exposed with a 100 femtosecond 8 Jcm-2 Ti:sapphire laser pulses is calculated. Using the gradient optimization method two tailored rectangular laser pulses for controlling the dissociation of C-H bond of CH4+ molecule along laser pulse direction is found. In the proposed optimization method, the complicacy of solving Schrodinger wave equation is reduced by using classical method and in contrast to the usual controlling and pulse shaping methods of chemical reactions, the experimental data is not needed and this reduces the controlling costs.

  8. Ophthalmic applications of ultrashort pulsed lasers

    Science.gov (United States)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  9. Femtosecond laser microchannels fabrication based on electrons dynamics control using temporally or spatially shaped pulses

    Science.gov (United States)

    Yan, Xueliang; Hu, Jie; Li, Xiaowei; Xia, Bo; Liu, Pengjun; Lu, Yongfeng; Jiang, Lan

    2014-11-01

    With ultrashort pulse durations and ultrahigh power densities, femtosecond laser presents unique advantages of high precision and high quality fabrication of microchannels in transparent materials. In our study, by shaping femtosecond laser pulse energy distribution in temporal or spatial domains, localized transient electrons dynamics and the subsequent processes, such as phase changes, can be controlled, leading to the dramatic increases in the capability of femtosecond laser microchannels fabrication. The temporally shaped femtosecond laser pulse trains can significantly enhance the material removal rate in both water-assisted femtosecond laser drilling and femtosecond laser irradiation followed by chemical etching. Besides, high-aspect-ratio and small-diameter microchannels are drilled by spatially shaped femtosecond laser pulses.

  10. Laser-assisted nuclear photoeffect reexamined

    CERN Document Server

    Kálmán, Péter; Keszthelyi, Tamás

    2013-01-01

    The S-matrix element and the cross section of the laser-assisted nuclear photoeffect are recalculated in a gauge invariant manner taking into account the effect of the Coulomb field of the remainder nucleus. The \\gamma-photon energy dependence of the laser free cross section obtained in the plane wave and long-wavelength Coulomb-Volkov approximations are compared. Numerically the laser-assisted partial cross sections with laser photon energy 2 keV and some different polarization states of \\gamma-photon of energy 3 MeV are investigated.

  11. Pulsed laser treatments of polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L. [Physic Department, Messina University, Ctr. Papardo 31, 98186 S. Agata, Messina (Italy); Visco, A.M., E-mail: avisco@unime.i [Industrial Chemistry and Material Engineering Department, Messina University, Ctr. Di Dio, 98186 S. Agata, Messina (Italy); Campo, N. [Industrial Chemistry and Material Engineering Department, Messina University, Ctr. Di Dio, 98186 S. Agata, Messina (Italy); Caridi, F. [Physic Department, Messina University, Ctr. Papardo 31, 98186 S. Agata, Messina (Italy)

    2010-10-01

    A Nd:Yag pulsed laser, 3 ns pulse width, 150 mJ pulse energy, operating at the second harmonics (532 nm) has been used to irradiate in air polyethylene thin films. The thermal and chemical effects induced by the laser irradiation in the polymer are responsible of the hydrogen and C{sub x}H{sub y} groups emission at long irradiation times. A special study, concerning the welding effect between two different types of polyethylene films, one transparent and the other strong absorbent the laser light, was performed. The welding, at the interface of the two pressed polymers, depends on the optical and micro-structural material properties besides the irradiation time. In particular, polymers with different viscosity, melting temperature and crystalline degree exhibit different mechanical behaviour. Different techniques were employed to investigate on the polymeric welding effects, such as the mass quadrupole spectrometry, the scanning electron microscope, the surface profiler and the mechanical strength measurement.

  12. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    Science.gov (United States)

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  13. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration

    Science.gov (United States)

    Kojima, Sadaoki; Arikawa, Yasunobu; Morace, Alessio; Hata, Masayasu; Nagatomo, Hideo; Ozaki, Tetsuo; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Johzaki, Tomoyuki; Sunahara, Atsushi; Sakagami, Hitoshi; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-05-01

    The dependence of high-energy electron generation on the pulse duration of a high intensity LFEX laser was experimentally investigated. The LFEX laser (λ = 1.054 and intensity = 2.5 – 3 x 1018 W/cm2) pulses were focused on a 1 mm3 gold cubic block after reducing the intensities of the foot pulse and pedestal by using a plasma mirror. The full width at half maximum (FWHM) duration of the intense laser pulse could be set to either 1.2 ps or 4 ps by temporally stacking four beams of the LFEX laser, for which the slope temperature of the high-energy electron distribution was 0.7 MeV and 1.4 MeV, respectively. The slope temperature increment cannot be explained without considering pulse duration effects on fast electron generation.

  14. Efficient pulsed CO2 laser calculations

    Science.gov (United States)

    Stone, David H.; Honey, David A.

    1991-02-01

    A computationally efficient scheme for generating pumping rates was developed for use with a pulsed CO2 laser model. A steady-state solution of the Boltzmann electron transport equation generates the rates. Vibrational temperatures for the CO2 and N2 populations are determined by iterating the Boltzmann solver with the rate equation model. Rapid convergence and coarse grids allow quick calculations of pulse shape, peak power, and total energy. Results compare well with a fully time-dependent Boltzmann solver.

  15. Ultrashort pulsed laser technology development program

    Science.gov (United States)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  16. Pulsed uv nitrogen laser: dynamical behavior

    International Nuclear Information System (INIS)

    Using the time dependent rate equations, the dynamical behavior of a high power pulsed N2 laser radiating at 337.1 nm is derived. The threshold conditions are given. The output peak power and pulse width as a function of length and initial inversion density are shown. The theoretical results derived are compared with experimental data and are found to be in good agreement

  17. Laser pulse shaping with liquid crystals

    OpenAIRE

    Martín Pereda, José Antonio; Muriel Fernández, Miguel Ángel

    1983-01-01

    A method of unpolarized laser pulses shaping is reported. The basis of the method is the use of an hybrid optical bistable device with nematic liquid-crystals, similar to the one previously reported by us. A sample of the input light constrols, by an asymmetrical electronic comparator, a 1 x 2 electro-optical total switch. The output pulses are reshaped and maintain the same polarization properties as the input light. From triangular input light signals, symmetriacl and asymmetrical output pu...

  18. Short pulse high power fiber laser systems

    OpenAIRE

    Malinowski, A.; Piper, A; Price, J.H.V.; He, F.; Ibsen, M; Nilsson, J.; Richardson, D J

    2005-01-01

    We review the rapid recent progress in the development of short pulse high-power fiber laser and amplifier devices. Use of cladding pump technology now provides a route to compact and efficient laser and amplifier systems with high beam quality and high output powers. A new Yb-fiber CPA system incorporating a CFBG stretcher with both 2nd and 3rd order dispersion is presented for high pulse energy applications. In addition, a simplified Yb-fiber parabolic amplifier system is also shown to be s...

  19. Polyethylene welding by pulsed visible laser irradiation

    Science.gov (United States)

    Torrisi, L.; Caridi, F.; Visco, A. M.; Campo, N.

    2011-01-01

    Laser welding of plastics is a relatively new process that induces locally a fast polymer heating. For most applications, the process involves directing a pulsed beam of visible light at the weld joint by going through one of the two parts. This is commonly referred to as “through transmission visible laser welding”. In this technique, the monochromatic visible light source uses a power ns pulsed laser in order to irradiate the joint through one part and the light is absorbed in the vicinity of the other part. In order to evaluate the mechanical resistance of the welded joint, mass quadrupole spectrometry, surface profilometry, microscopy techniques and mechanical shear tests were employed. The welding effect was investigated as a function of the laser irradiation time, nature of the polyethylene materials and temperature.

  20. Polyethylene welding by pulsed visible laser irradiation

    International Nuclear Information System (INIS)

    Laser welding of plastics is a relatively new process that induces locally a fast polymer heating. For most applications, the process involves directing a pulsed beam of visible light at the weld joint by going through one of the two parts. This is commonly referred to as 'through transmission visible laser welding'. In this technique, the monochromatic visible light source uses a power ns pulsed laser in order to irradiate the joint through one part and the light is absorbed in the vicinity of the other part. In order to evaluate the mechanical resistance of the welded joint, mass quadrupole spectrometry, surface profilometry, microscopy techniques and mechanical shear tests were employed. The welding effect was investigated as a function of the laser irradiation time, nature of the polyethylene materials and temperature.

  1. Ceramic dentures manufactured with ultrashort laser pulses

    Science.gov (United States)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  2. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    Institute of Scientific and Technical Information of China (English)

    Niu Dong-Mei; Li Hai-Yang; Luo Xiao-Lin; Liang Feng; Cheng Shuang; Li An-Lin

    2006-01-01

    The multi-charged sulfur ions of Sq+ (q ≤ 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 1010 ~ 1012W·cm-2. S6+ is the dominant multicharged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  3. Synthesis of high Al content AlxGa1−xN ternary films by pulsed laser co-ablation of GaAs and Al targets assisted by nitrogen plasma

    International Nuclear Information System (INIS)

    Highlights: • AlxGa1−xN films were synthesized by co-ablation of an Al target and a GaAs target. • Nitrogen plasma was used to assist the synthesis of AlxGa1−xN ternary films. • The AlxGa1−xN films are slightly rich in N with an Al content above 0.6. • The AlxGa1−xN films are hexagonal wurtzite in crystal structure. • The AlxGa1−xN films have an absorption edge of 260 nm and a band gap of 4.7 eV. - Abstract: We present the synthesis of AlxGa1−xN ternary films by pulsed laser co-ablation of a polycrystalline GaAs target and a metallic Al target in the environment of nitrogen plasma which provides nitrogen for the films and assists the formation of nitride films. Field emission scanning electron microscopy exposes the smooth surface appearance and dense film structure. X-ray diffraction, Fourier-transform infrared spectroscopy and Raman scattering spectroscopy reveal the hexagonal wurtzite structure. Optical characterization shows high optical transmittance with an absorption edge of about 260 nm and a band gap of 4.7 eV. Compositional analysis gives the Al content of about 0.6. The structure and optical properties of the AlxGa1−xN films are compared with those of binary GaN and AlN films synthesized by ablating GaAs or Al target with the same nitrogen plasma assistance

  4. Pulsed YAG laser spot welding under microgravity

    Science.gov (United States)

    Katayama, Seiji; Tanaka, Koji; Mizutani, Masami; Matsunawa, Akira

    2000-02-01

    With the objectives of obtaining a fundamental knowledge of laser welding technology inside and outside the spacecraft in space, pulsed YAG laser spot welding was performed on the metal plates in Ar gas atmosphere or a vacuum in the falling microgravity apparatus equipped with the fiber-delivered laser focusing optics. The influence of gravity or microgravity on penetration and welding defect formation was further clarified by comparing the welds made in the normal flat and overhead positions. Almost all results of weld penetration and defect formation under microgravity were similar to those under normal gravity except the welding result of aluminum alloy A5083 subjected to the high power density laser, and were between normal gravity and overhead position welding results. Welding in a vacuum was characterized by the formation of a narrower and cone-shaped bottom in any alloy weld. Porosity was easily formed in any deeply penetrated weld metal under high power density welding with a rectangular pulse-shaped laser, and could be reduced by utilizing pulse-controlled laser even under microgravity.

  5. Laser assisted Breit-Wheeler and Schwinger processes

    OpenAIRE

    T. Nousch; Otto, A.; Seipt, D.(Helmholtz-Institut Jena, Fröbelstieg 3, Jena, 07743, Germany); Kämpfer, B.; Titov, A. I.; Blaschke, D.; Panferov, A. D.; Smolyansky, S. A.

    2016-01-01

    The assistance of an intense optical laser pulse on electron-positron pair production by the Breit-Wheeler and Schwinger processes in XFEL fields is analyzed. The impact of a laser beam on high-energy photon collisions with XFEL photons consists in a phase space redistribution of the pairs emerging in the Breit-Wheeler sub-process. We provide numerical examples of the differential cross section for parameters related to the European XFEL. Analogously, the Schwinger type pair production in pul...

  6. Graphene in Ultrafast and Ultrastrong Laser Pulses

    Science.gov (United States)

    Koochakikelardeh, Hamed; Apalkov, Vadym; Stockman, Mark

    2015-03-01

    We have shown that graphene subjected to an ultrafast (near-single-oscillation pulse) and strong (F ~ 1-3 V/Å) pulse exhibits fundamental behavior dramatically different from both insulators and metals. In such an ultrafast and ultrastrong field, the electron dynamics is coherent, in contrast to relatively long pulses (τ>100 fs) where the electron's dephasing becomes important leading to incoherent dynamics. Electron transfer from the valence band (VB) to the conduction band (CB) is deeply irreversible i.e., non-adiabatic, in which the residual CB population (after pulse ends) is close to the maximum one. The residual CB population as a function of wave vector is nonuniform with a few strongly localized spots near the Dirac points, at which the CB population is almost 100%. Furthermore, it is shown the direction of charge transfer depends on the pulse amplitude. Namely, at small pulse amplitude, =1 V/Å, it is in opposite direction of the pulse maximum (negative transferred charge). Consequently, in terms of charge transport, graphene at small pulse intensities behaves as a dielectric while at large intensities acts as a metal. These femtosecond currents and charge transfer in graphene may provide fundamental basis for detection and calibration of ultrashort intense laser pulses and are promising for petahertz information processing. This work was supported by U.S. Office of Naval Research No. N00014-13-1-0649 and NSF Grant No. ECCS-1308473.

  7. Short-pulse laser materials processing

    International Nuclear Information System (INIS)

    The goal of this project was to develop, through experiments and modeling, a better understanding of the physics issues and machining techniques related to short-pulse laser materials processing. Although we have successfully demonstrated many types of cuts in a wide range of materials, our general short-pulse machining scientific knowledge and our ability to model the complex physical processes involved are limited. During this past year we made good progress in addressing some of these issues, but there remain many unanswered questions. Section 2 begins with a theoretical look at short-pulse laser ablation of material using a 1-D radiation-hydrodynamic code which includes a self-consistent description of laser absorption and reflection from an expanding plasma. In Section 3 we present measurements of scaling relationships, hole drilling progression, electric field and polarization effects, and a detailed look at the interesting structures formed during hole drilling of metals under various conditions. Section 4 describes the consequences of the presence of a prepulse before the main drilling pulse. In Section 5 we take a brief look at the plasma plume: how it can be useful, and how we can avoid it. Finally, Section 6 contains a couple of examples of machining non-metals. The laser system used for practically all the experimental results presented here was a short-pulse laser based on Ti:sapphire, which produced 150-fs pulses (minimum) centered at 825 nm, of energy up to 5 mJ at 1 kHz, or 5 W average power

  8. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    Science.gov (United States)

    Niu, Dong-Mei; Li, Hai-Yang; Luo, Xiao-Lin; Liang, Feng; Cheng, Shuang; Li, An-Lin

    2006-07-01

    The multi-charged sulfur ions of Sq+ (qlaser of 1064 and 532 nm with an intensity of 1010~ 1012W.cm-2. S6+ is the dominant multi-charged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  9. Electromagnetic Pulses at Short-Pulse Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  10. Measurement of electronegativity at different laser wavelengths: accuracy of Langmuir probe assisted laser photo-detachment

    Science.gov (United States)

    Sirse, N.; Oudini, N.; Bendib, A.; Ellingboe, A. R.

    2016-08-01

    Langmuir probe (LP) assisted pulsed laser photo-detachment (LPD) of negative ions is one of the frequently used diagnostic techniques in electronegative plasmas. The technique is based on measuring the rise in electron saturation current following photo-detachment. During the photo-detachment process it is assumed that the background electron parameters (temperature and density) remain unchanged in the laser channel and the photo-detached electrons thermalize instantaneously with the background electrons (same temperature). Therefore, the measured electronegativity should be independent of laser wavelengths. However, our recent simulation results (2015 Phys. Plasmas 22 073509) demonstrates a failure of these assumptions and suggests that the measured rise in electron saturation current has a dependence on the laser wavelength. This letter presents experimental evidence in support of these simulation results. In this work, photo-detachment is performed at two different laser wavelengths in an oxygen inductively coupled plasma discharge. Electronegativity measured by LP assisted LPD is compared with those obtained by the hairpin probe (HPP) assisted LPD which is based on quasi-neutrality assumption. The experimental results reveal that the electronegativities measured by LP assisted LPD are affected by the laser wavelength, whereas, electronegativities measured by HPP assisted LPD are almost independent. The discrepancy between the measurements is higher at high electronegativities. In conclusion, the experimental results validate the weakness of assumptions to estimate electronegativity from LPD combined with LP and therefore emphasizes the need of a more realistic model to analyze raw data or an alternate solution is to utilize HPP.

  11. Femtosecond laser pulse written Volume Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Richter Daniel

    2013-11-01

    Full Text Available Femtosecond laser pulses can be applied for structuring a wide range of ransparent materials. Here we want to show how to use this ability to realize Volume-Bragg-Gratings in various- mainly non-photosensitive - glasses. We will further present the characteristics of the realized gratings and a few elected applications that have been realized.

  12. Pulse solid state lasers in aesthetic surgery

    Science.gov (United States)

    Dobryakov, Boris S.; Greben'kova, Ol'ga B.; Gulev, Valerii S.

    1996-04-01

    The emission of a pulse-periodic laser on alumo-ittrium garnet applied for preventive and medical treatment of a capsule contracture round implanted prostheses in xenoplastics is described in the present paper. The results obtained testify to a high efficiency of suggested method.

  13. Electron photodetachment by short laser pulse

    NARCIS (Netherlands)

    Golovinski, P. A.; Drobyshev, A. A.

    2012-01-01

    Expressions are derived for calculations of the total probabilities and electron spectra for the photodetachment of electrons from negative ions with filled valence s shells by ultrashort laser pulses. Particular calculations have been performed for two negative ions (H- and Li-) and titanium-sapphi

  14. RECENT ADVANCES IN PULSED LASER ABLATED PLASMA PLUMES: A REVIEW

    OpenAIRE

    ASHUTOSH DWIVEDI

    2007-01-01

    Pulsed laser ablation is a process in which an intense laser pulse interacts with the matter producing plasma. The present work describes the theoretical work being conducted in the past for the pulsed laser ablation phenomenon. It incorporates the theoretical models being proposed by various researchers around the globe for pulsed laser ablation. The main processes involved in the laser–matter interaction leading to plasma plume formation are the absorption and the reflection of the incident...

  15. Laser zona dissection using short-pulse ultraviolet lasers

    Science.gov (United States)

    Neev, Joseph; Tadir, Yona; Ho, Peter D.; Whalen, William E.; Asch, Richardo H.; Ord, Teri; Berns, Michael W.

    1992-06-01

    The interaction of pulsed ultraviolet radiation with the zona pellucida of human oocytes which had failed to fertilize in standard IVF cycles, was investigated. Two lasers were studied: a 100 ps pulsed Nd:YAG with a nonlinear crystal emitting light at 266 nm, and a 15 ns XeCl excimer laser with 308 nm radiation. Incisions in the zona were made by aiming the beam tangentially to the oocyte. The results indicate superior, high precision performance by the excimer laser creating trenches as narrow as 1 micrometers and as shallow as 1 micrometers . The incision size was found to be sensitive to the laser's energy and to the position of the microscope's objective focal plane, but relatively insensitive to the laser pulse repetition rate. Once the minimum spot size was defined by the system parameters, the laser beam was used to curve out any desired zona shape. This laser microsurgery technique as applied to partial zone dissection or zona drilling could prove very useful as a high-precision, non-contact method for treatments of low fertilization rate and for enhancing embryo implantation rates in patients undergoing IVF treatments.

  16. Enhanced subthreshold electron-positron production in short laser pulses

    OpenAIRE

    Titov, A. I.; Takabe, H.; Kampfer, B.; Hosaka, A.

    2012-01-01

    The emission of electron-positron pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g.\\ laser) wave field is analyzed. A significant increase of the total cross section of pair production in the subthreshold region is found for decreasing laser pulse duration even in case of moderate laser pulse intensities.

  17. Enhanced subthreshold e+ e- production in short laser pulses.

    Science.gov (United States)

    Titov, A I; Takabe, H; Kämpfer, B; Hosaka, A

    2012-06-15

    The emission of e+ e- pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g., laser) wave field is analyzed. A significant increase of the total cross section of pair production in the subthreshold region is found for decreasing laser pulse duration even in the case of moderate laser pulse intensities. PMID:23004244

  18. Fundamentals of laser pulse irradiation of silicon

    International Nuclear Information System (INIS)

    A computer model has been developed to describe the space and time evolution of carrier concentration, carrier energy and lattice temperature during nanosecond and picosecond laser pulse irradiation of Si single crystals. In particular the dynamic response has been evaluated for energy density of the ps laser pulse below and above the density threshold for surface melting. The obtained data allow a comparison with time-resolved reflectivity measurements reported in the literature. The available data are fitted by the computer model assuming a relaxation time for the energy transfer from the carriers to the lattice of 1 ps. The validity of the thermal model used to describe laser annealing in the nanosecond regime is assessed. (author)

  19. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  20. Nanosecond square pulse generation in fiber lasers with normal dispersion

    Science.gov (United States)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Lu, C.

    2007-04-01

    We report on the generation of nanosecond square pulses in a passively mode-locked fiber ring laser made of purely normal dispersive fibers. Different to the noise-like pulse operation of the laser, the generated square pulses are stable and have no internal structures. We show that the formation of the square pulse is due to the combined action of the pulse peak clamping effect caused by the cavity and the almost linear pulse propagation in the normal dispersive fibers.

  1. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK, A B

    1999-05-26

    density (n{sub n} of order 10{sup 18} cm{sup -3}) and weakly ionized (n{sub e}/n{sub n}, < 0.001) at long time delays of order 200 ns. Recollections of Al plumes confirm the low plume divergence and demonstrate high material adhesion to the receiving substrate, as well as a higher Al material yield than that of conventional pulsed laser deposition. Al redepositions are also highly conductive at the deposit/substrate interface, suggesting possible applications in selective laser-assisted bonding.

  2. Double nanosecond pulses generation in ytterbium fiber laser

    Science.gov (United States)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  3. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    OpenAIRE

    Trines, R. M. G. M.; Fiúza, F.; Bingham, R.; Fonseca, R. A.; Silva, L. O.; Cairns, R. A.; Norreys, P. A.

    2011-01-01

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important co...

  4. Theory of attosecond delays in laser-assisted photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Dahlström, J.M., E-mail: marcus.dahlstrom@fysik.su.se [Department of Physics, Lund University, P.O. Box 118, 22100 Lund (Sweden); Atomic Physics, Fysikum, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Guénot, D.; Klünder, K.; Gisselbrecht, M.; Mauritsson, J. [Department of Physics, Lund University, P.O. Box 118, 22100 Lund (Sweden); L’Huillier, A., E-mail: anne.lhuillier@fysik.lth.se [Department of Physics, Lund University, P.O. Box 118, 22100 Lund (Sweden); Maquet, A. [UPMC Université Paris 6, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); CNRS, UMR 7614, LCPMR, Paris (France); Taïeb, R., E-mail: richard.taieb@upmc.fr [UPMC Université Paris 6, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); CNRS, UMR 7614, LCPMR, Paris (France)

    2013-03-12

    Highlights: ► We find the phase for laser-assisted XUV ionization transition matrix elements (M). ► The phase of M is simply: the sum of the scattering phase of the intermediate continuum state and an universal phase. ► The universal phase is independent of the initial state and it leads to a delay observed in attosecond time-delay experiments. - Abstract: We study the temporal aspects of laser-assisted extreme ultraviolet (XUV) photoionization using attosecond pulses of harmonic radiation. The aim of this paper is to establish the general form of the phase of the relevant transition amplitudes and to make the connection with the time-delays that have been recently measured in experiments. We find that the overall phase contains two distinct types of contributions: one is expressed in terms of the phase-shifts of the photoelectron continuum wavefunction while the other is linked to continuum–continuum transitions induced by the infrared (IR) laser probe. Our formalism applies to both kinds of measurements reported so far, namely the ones using attosecond pulse trains of XUV harmonics and the others based on the use of isolated attosecond pulses (streaking). The connection between the phases and the time-delays is established with the help of finite difference approximations to the energy derivatives of the phases. The observed time-delay is a sum of two components: a one-photon Wigner-like delay and a universal delay that originates from the probing process itself.

  5. Theory of attosecond delays in laser-assisted photoionization

    International Nuclear Information System (INIS)

    Highlights: ► We find the phase for laser-assisted XUV ionization transition matrix elements (M). ► The phase of M is simply: the sum of the scattering phase of the intermediate continuum state and an universal phase. ► The universal phase is independent of the initial state and it leads to a delay observed in attosecond time-delay experiments. - Abstract: We study the temporal aspects of laser-assisted extreme ultraviolet (XUV) photoionization using attosecond pulses of harmonic radiation. The aim of this paper is to establish the general form of the phase of the relevant transition amplitudes and to make the connection with the time-delays that have been recently measured in experiments. We find that the overall phase contains two distinct types of contributions: one is expressed in terms of the phase-shifts of the photoelectron continuum wavefunction while the other is linked to continuum–continuum transitions induced by the infrared (IR) laser probe. Our formalism applies to both kinds of measurements reported so far, namely the ones using attosecond pulse trains of XUV harmonics and the others based on the use of isolated attosecond pulses (streaking). The connection between the phases and the time-delays is established with the help of finite difference approximations to the energy derivatives of the phases. The observed time-delay is a sum of two components: a one-photon Wigner-like delay and a universal delay that originates from the probing process itself

  6. Laser-supported detonation waves and pulsed laser propulsion

    International Nuclear Information System (INIS)

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (104 K, 102 atmospheres, 107 w/cm2) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area

  7. Evaporation of solids by pulsed laser irradiation

    Science.gov (United States)

    Stafast, H.; Von Przychowski, M.

    The focused beam of a KrF laser (248 nm) has been applied to irradiate targets of Al 2O 3, SiC, graphite, Pb, Ni, Cr, quartz, and NaCl at variable laser energy flux is the range 0-13 J/cm 2. The amount of target material ejected into the vacuum (background pressure about 8 × 10 -4 Torr) was determined from the target weight before and after laser irradiation. The average number of particles (formula weight) evaporated per laser pulse and per unit of irradiated target area is non-linearly dependent on the laser energy flux. The evaporation of Al 2O 3, SiC, and graphite is showing a well-defined flux threshold while the vaporization of Pb, Ni and Cr is rising smoothly with increasing flux. With both groups of materials laser evaporation is monotonically increasing with the laser energy flux. NaCl and quartz, on the other hand, are showing an intermediate maximum in the laser vaporization efficiency.

  8. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  9. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    Science.gov (United States)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  10. Long pulse electron gun for laser applications

    International Nuclear Information System (INIS)

    This paper reports on large-area electron guns that are critical components in many high-energy gas laser systems. The secondary emission electron (SEE) gun offers an attractive option for pulsed laser applications. With this type of cold cathode gun, a dc voltage is applied to the cathode and the electron beam is generated by secondary emission due to ion bombardment processes. The gun is controlled by modulating the source of ions which resides at ground potential. This design greatly simplifies the electron gun power system. SEE-gun systems have been developed which provide 150-220 keV beams at current densities exceeding 25 mA/cm2 with current density uniformities of approximately ±10% over areas of up to 5 x 150 cm2. Pulse lengths have ranged from 30 μs to 20 ms at repetition rates from single-pulse to 30 Hz. It is expected that the SEE-gun can be scaled to beam voltages of greater than 300 kV, beam areas greater than 1 m2, peak current densities exceeding 1 A/cm2, time-averaged current densities approx-gt 0.5 mA/cm2, pulse lengths of 0.1 μs to dc, and pulse repetition rates >1 kHz with good uniformity, high reliability and long life. Furthermore, the inherent simplicity of the SEE-gun results in low cost and a compact, light-weight system

  11. Surface characteristic of stainless steel sheet after pulsed laser forming

    International Nuclear Information System (INIS)

    Laser forming is a non-contact and die-less forming technique of producing bending, spatial forming, modifying and adjusting the curvature of the metallic sheet by using the controlled laser beam energy. One of the problems in laser forming is controlling the characteristic of laser scanned surface. The aim of the investigation is to explore the relation between the surface behaviors of heat affected zone (HAZ) scanned by pulse laser and the pulse parameters of the laser. This paper illustrated the fundamental theory of pulsed laser affected material, and pays attention to the microstructure, micro-hardness and the anticorrosion in the HAZ generated by the laser scanning. Metallographic microscope, scanning electron microscope (SEM), micro-hardness testing system are used to examine the surface characteristics. The work presented in this paper is beneficial to understand the mechanism of pulse laser affect to materials and improve controlling the surface behaviors scanned by pulsed laser.

  12. Laser absorption via QED cascades in counter propagating laser pulses

    CERN Document Server

    Grismayer, Thomas; Martins, Joana L; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01

    A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes ($\\sim$ 10 PW) where the laser absorption is negligible, to extreme intensities (> 100 PW) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed.

  13. Pulse-burst laser systems for fast Thomson scattering (invited)

    International Nuclear Information System (INIS)

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  14. Pulse-burst laser systems for fast Thomson scattering (invited).

    Science.gov (United States)

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned. PMID:21033868

  15. Molecular alignment using circularly polarized laser pulses

    CERN Document Server

    Smeenk, C T L

    2013-01-01

    We show that circularly polarized femtosecond laser pulses produce field-free alignment in linear and planar molecules. We study the rotational wavepacket evolution of O$_2$ and benzene created by circularly polarized light. For benzene, we align the molecular plane to the plane of polarization. For O$_2$, we demonstrate that circular polarization yields a net alignment along the laser propagation axis at certain phases of the evolution. Circular polarization gives us the ability to control alignment of linear molecules outside the plane of polarization, providing new capabilities for molecular imaging.

  16. Nanosecond pulsed laser blackening of copper

    Science.gov (United States)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  17. Micromachining of copper by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.Y. [ITRI South, Industrial Technology Research Institute, Liujia District, Tainan City 734, Taiwan (China); Ren, Y. [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Cheng, C.W., E-mail: CWCheng@itri.org.tw [ITRI South, Industrial Technology Research Institute, Liujia District, Tainan City 734, Taiwan (China); Chen, J.K.; Tzou, D.Y. [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We have reported new experimental and theoretical results on the femtosecond laser ablation for copper at fluences up to 408 J/cm{sup 2}. Black-Right-Pointing-Pointer The present model simulations correlate well with the experimental data over a broad range of laser fluences from 0.8 to 400 J/cm{sup 2}. Black-Right-Pointing-Pointer The good correlation suggests that the proposed model is an efficient and accurate tool for predicting ultrafast laser material ablation. - Abstract: Simulation results of femtosecond laser ablation of copper were compared to experimental data. The numerical analysis was performed using a predictive model, including a two temperature model, an optical critical point model with three Lorentzian terms, two phase change models for melting and evaporation under superheating, and a phase explosion criterion for ejection of metastable liquid decomposing into droplets and vapor phase. The experiments were conducted with a 120-fs, 800-nm Ti:sapphire lasers for fluences up to 408 J/cm{sup 2}. The ablation depths were measured, and the ablation rate was estimated. It was shown that the present numerical simulations correlate well with the experimental data over the entire range of the laser fluences investigated except for those below 0.8 J/cm{sup 2}, indicating that the proposed model is an accurate and efficient tool for predicting ultrashort-pulsed laser material ablation.

  18. Site-Selective Field Emission Source by Femtosecond Laser Pulses and Its Emission Mechanism

    OpenAIRE

    Yanagisawa, Hirofumi

    2012-01-01

    Recent experimental and theoretical investigations on asymmetric field emission induced by weak femtosecond laser pulses and also its emission mechanisms are briefly reviewed. The emission mechanisms are discussed further for a wider range of DC fields and laser power. It appears that firstly photo-assisted field emission from lower-excitation order grows in the higher DC fields and secondly our simulations can be applied only for lower laser power.

  19. Pulse switching for high energy lasers

    Science.gov (United States)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  20. Optical reprogramming with ultrashort femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  1. Laser Pulse Heating of Spherical Metal Particles

    CERN Document Server

    Tribelsky, Michael I; Kivshar, Yuri S; Luk'yanchuk, Boris S; Khokhlov, Alexei R

    2011-01-01

    We consider a general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solutions of the diffraction problem and solve heat-transfer equations to determine the maximum temperature at the particle surface as a function of optical and thermometric parameters of the problem. The main attention is paid to the case when the thermometric conductivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that in this case at any given finite duration of the laser pulse the maximum temperature rise as a function of the particle size reaches an absolute maximum at a certain finite size of the particle, and we suggest simple approximate analytical expressions for this dependence which covers the entire range of variations of the problem parameters and agree well with direct numerical simulations.

  2. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    International Nuclear Information System (INIS)

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 μNsec, 6,200 sec and 22%, respectively.

  3. Study on pulsed excimer laser deposited films

    CERN Document Server

    Liu Jing Ru; Li Tie Jun; Yao Dong Sheng; Wang Li Ge; Yuan Xiao; Wang Sheng; Ye Xi Sheng

    2002-01-01

    Pulsed lasers of two different durations (30 ns, 500 fs) are used to deposit Hydrogen-free Diamond Like Carbon (DLC) films over large areas. Analysis of DLC films shows remarkable mechanical, optical, electrical, and chemical properties that are close to those of diamond. By optical emission spectroscopy and ion probe, the effects of plasma characteristic on DLC film are on experimentally studied. Amorphous silicon films deposited by PLD are also experimentally studied

  4. Theoretical Studies of the Output Pulse with Variation of the Pumping Pulse for RF Excited CO2 Pulsed Waveguide Laser

    Institute of Scientific and Technical Information of China (English)

    A Rauf; ZHOU Wei; XIN Jian-guo

    2006-01-01

    The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as the excitation pulses. The frequency dependence behavior of the output pulse is also presented.

  5. Statistical Analysis of Femtosecond Pulses Laser on Hole Drilling of Silicon Wafer

    Science.gov (United States)

    Jiao, L.; Ng, E. Y. K.; Zheng, H.; Wee, L. M.

    This study investigated the relationship and parameters interactions between five independent variables in laser percussion drilling of micro-hole. Experiments were conducted on single crystal silicon wafer with material thickness of 725 μm using femtosecond (fs) laser with wavelength of 775 nm and pulse duration of 200 fs. Laser power, focus position, number of pulses, workpiece temperature and assist liquid were selected as independent process variables. Taguchi L18 orthogonal array was applied to design the experiments. The drilling process was evaluated in terms of entrance hole diameter and exit hole diameter. The analysis of the variance (ANOVA) was used to determine the significant parameters that are affecting the entrance hole diameter and exit hole diameter. The result shows that laser power and focus position has highly significant effect on entrance hole diameter. The number of pulses, focus position and assist liquid however has highly significant effect on exit hole diameter.

  6. Near threshold laser-assisted nuclear photoeffect

    CERN Document Server

    Kálmán, Péter; Keszthelyi, Tamás

    2013-01-01

    The change of nuclear photoeffect due to an intense coherent (laser) field is discussed near the threshold, where the hindering effect of the Coulomb field of the remainder nucleus is essential. The ratio of laser-assisted and laser free differential cross section is deduced and found to be independent of the polarization state of the \\gamma field and the two types of initial nuclear state considered. The numerical values of this ratio are given at some characteristic parameters of the intense field and the detuning.

  7. Heavy ion acceleration using femtosecond laser pulses

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  8. Pulsed laser deposition of rare earth compounds

    CERN Document Server

    Stone, L A

    2001-01-01

    Magnetostrictive thin films have been deposited using various techniques such as sputtering and evaporation but the use of laser deposition has been limited. This research presents the results from pulsed laser deposition (PLD) of TbFe sub 2 , DyFe sub 2 and Terfenol-D thin films using an infra red Transversely Excited Atmospheric (TEA) CO sub 2 laser at lambda approx 10.6 mu m and an ultra violet Argon-Fluoride (ArF) excimer laser at lambda approx 193 nm. Results have showed that the TEA CO sub 2 laser under the range of conditions studied is not suitable for the production of magnetostrictive films. The problems experienced are a mixture of mostly fracture debris at low fluences (F approx 20 Jcm sup - sup 2) and melt droplets at high fluences (F approx 60 Jcm sup - sup 2). In all cases the destruction of the target is a major problem, with the Terfenol-D targets being the worst affected. Thin films produced were all iron rich. The use of an excimer laser has proved more successful in providing stoichiometri...

  9. Short Pulse Experimental Capability at the Nike Laser Facility

    Science.gov (United States)

    Weaver, J. L.; Chan, Y.; Gardner, J.; Giuliani, J.; Karasik, M.; Kehne, D.; Mostovych, A.; Obenschain, S.; Velikovich, A.; Schmitt, A.; Serlin, V.; Aglitskiy, Y.; Metzler, N.; Smyth, Z.; Terrell, S.

    2004-11-01

    Recent simulations demonstrated high gain for direct drive pellets compressed by a laser pulse incorporating a short pulse prior to the main pulse. Theoretical work has also shown that a short prepulse can create a tailored density profile that reduces the initial instability growth due to laser imprinting. A new short pulse (0.35-0.75 ns FWHM)is being added to the Nike KrF laser system to facilitate hydrodynamic experiments with short prepulses. This capability has been incorporated into the initial stages of the laser system and the propagation of these pulses through the angularly multiplexed amplifiers is being studied. Measurements of pulse shape and energy will be compared to simulations using the KrF physics code Orestes for the next to last amplifier of the laser system, the 20 cm x 20 cm e-beam pumped laser cell. The effects of amplified spontaneous emission (ASE) upon individual output pulses will be also discussed.

  10. Pulsed Nd-YAG laser in endodontics

    Science.gov (United States)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  11. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  12. Twin-Pulse Soliton Operation of a Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    W.; S.; Man; H.; Y.; Tam

    2003-01-01

    We report on the experimental observation of a novel type of twin-pulse soliton in a passively mode-locked fiber ring laser. Twin-pulse soliton interaction in the laser cavity are also experimentally investigated and compared with those of the single pulse soliton.

  13. [Effect of pulsed CO2-laser irradiation on bone tissue].

    Science.gov (United States)

    Kholodnov, S E

    1985-01-01

    Different dynamic effects on biological tissue caused by pulsed laser radiation are described. It is shown that the parameters of these effects which take place on the bone tissue affected by pulsed CO2-laser radiation are directly dependent on the parameters of these pulses and may be predicted for any concrete application. PMID:3931698

  14. Drop deformation by laser-pulse impact

    CERN Document Server

    Gelderblom, Hanneke; Klein, Alexander L; Bouwhuis, Wilco; Lohse, Detlef; Villermaux, Emmanuel; Snoeijer, Jacco H

    2015-01-01

    A free-falling absorbing liquid drop hit by a nanosecond laser-pulse experiences a strong recoil-pressure kick. As a consequence, the drop propels forward and deforms into a thin sheet which eventually fragments. We study how the drop deformation depends on the pulse shape and drop properties. We first derive the velocity field inside the drop on the timescale of the pressure pulse, when the drop is still spherical. This yields the kinetic-energy partition inside the drop, which precisely measures the deformation rate with respect to the propulsion rate, before surface tension comes into play. On the timescale where surface tension is important the drop has evolved into a thin sheet. Its expansion dynamics is described with a slender-slope model, which uses the impulsive energy-partition as an initial condition. Completed with boundary integral simulations, this two-stage model explains the entire drop dynamics and its dependance on the pulse shape: for a given propulsion, a tightly focused pulse results in a...

  15. Laser-assisted cleaning: Dominant role of surface

    Indian Academy of Sciences (India)

    J Padma Nilaya; D J Biswas

    2010-12-01

    Pulsed laser-assisted removal of particulates from substrates has decided advantages over the conventional methods of cleaning. Experiments conducted with loose contamination on metal and transparent dielectric surfaces proved conclusively the dominant role played by the absorption of the incident radiation by the surface towards the generation of the cleaning force as against the absorption in the particulates alone. Further, the presence of transparent/semi-transparent particulates on a metal surface was found to result in an increased absorption of the incident radiation by the substrate. This effect, identified as field-enhanced surface absorption was found to increase with reduction in the average particulate size.

  16. Fifth-order intensity autocorrelations based on six-wave mixing of femtosecond laser pulses

    Science.gov (United States)

    Gaižauskas, Eugenijus; Steponkevičius, KÈ©stutis; Vaičaitis, Virgilijus

    2016-02-01

    It is shown both experimentally and by numerical simulations that fifth-order intensity autocorrelations of femtosecond laser pulses can be obtained from two-beam noncollinear six-wave mixing in air. A numerical analysis of competing direct and six-wave-assisted third-harmonic-generation pathways showed that these measurements are suitable for the background-free temporal characterization of laser pulses. Reshaping of the pulse and 10 fs subpulse formation during the primary stages of light filamentation were observed using the proposed method.

  17. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range. The...

  18. The Electron Trajectory in a Relativistic Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    He Feng; Yu Wei; Lu Peixiang; Xu Han; Shen Baifei; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this report, we start from Lagrange equation and analyze theoretically the electron dynamics in electromagnetic field. By solving the relativistic government equations of electron,the trajectories of an electron in plane laser pulse, focused laser pulse have been given for different initial conditions. The electron trajectory is determined by its initial momentum, the amplitude,spot size and polarization of the laser pulse. The optimum initial momentum of the electron for LSS (laser synchrotron source) is obtained. Linear polarized laser is more advantaged than circular polarized laser for generating harmonic radiation.

  19. Amplification of Short Pulse High Power UV Laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At recent year, with the development of CPA and other amplification technology, laser intensity achieves great increase and laser power can be high to PW(105) now, this ultrashort pulse lasers offer scientists a route to investigate laser-matter interaction in an absolute new regime.So far the researches on ultrashort pulse laser-matter interaction concentrated on infrared regime, yet ultraviolet laser has the advantage in intense field physics and ICF researches for its short wavelength and less nonlinear effects. KrF excimer is the best medium in UV ultrashort pulse amplification for its small saturation energy and high contrast ratio accessible.

  20. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    Science.gov (United States)

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review. PMID:22747717

  1. Measurement Issues In Pulsed Laser Propulsion

    International Nuclear Information System (INIS)

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  2. Optical measurement on quantum cascade lasers using femtosecond pulses

    Science.gov (United States)

    Cai, Hong

    Quantum cascade lasers (QCLs) as the state-of-the-art mid-infrared (mid-IR) coherent sources have been greatly developed in aspects such as output power, energy efficiency and spectral purity. However, there are additional applications of QCLs in high demand, namely mode-locking, mid-IR modulation, etc. The inherent optical properties and ultrafast carrier dynamics can lead to solutions to these challenges. In this dissertation, we further characterize QCLs using mid-IR femtosecond (fs) pulses generated from a laser system consisting of a Ti:sapphire oscillator, a Ti:sapphire regenerative amplifier, an optical parametric amplifier and a difference frequency generator. We study the Kerr nonlinearity of QCLs by coupling resonant and off-resonant mid-IR fs pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-IR pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results. The giant Kerr nonlinearity investigated here may be used to realize ultrafast pulse generation in QCLs. In addition, we temporally resolved the ultrafast mid-infrared transmission modulation of QCLs using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps are used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth

  3. Pulsed laser fluorometry for environmental monitoring

    Science.gov (United States)

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water, is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration.

  4. Nonparaxial propagation of ultrashort laser pulses in plasma channels

    International Nuclear Information System (INIS)

    The propagation characteristics of an ultrashort laser pulse in a preformed plasma channel are analyzed. The plasma channel is assumed to be parabolic and unperturbed by the laser pulse. Solutions to the wave equation beyond the paraxial approximation are derived that include finite pulse length effects and group velocity dispersion. When the laser pulse is mismatched within the channel, betatron oscillations arise in the laser pulse envelope. A finite pulse length leads to a spread in the laser wave number and consequently a spread in betatron wave number. This results in phase mixing and damping of the betatron oscillation. The damping distance characterizing the phase mixing of the betatron oscillation is derived, as is the dispersion distance characterizing the longitudinal spreading of the pulse. copyright 1999 The American Physical Society

  5. Preparation of a YBCO superconducting tape by pulsed laser deposition

    International Nuclear Information System (INIS)

    A high current density YBa2Cu3O7-x (YBCO) superconducting thick film on a flexible NiCr alloy substrate tape with ZrO2 + 10%Y2O3 (YSZ) as buffer layer was prepared by pulsed laser deposition (PLD). The buffer layer YSZ of thickness 0.3 microm was formed on the NiCr alloy substrate tape of length 6.0 cm by ion-assisted pulsed laser deposition (ISPLD). The YBCO superconducting thick film with thickness 1.5 microm was deposited on the YSZ/NiCr alloy substrate tape by a KrF Laser. The X-ray diffraction pattern indicates that the YBCO superconducting thick film is with strongly C-axis oriented. The critical current densities versus temperature and magnetic film is with strongly C-axis oriented. The critical current densities versus temperature and magnetic field were measured by standard four-point probe method, the values of critical current density and the critical temperature of the YBCO/YSZ/NiCr alloy superconducting tape are 8.75 x 104 A/cm2 (at 77 K, 0 T) and 88.7 K, respectively

  6. Pulsed laser deposition of rare earth compounds

    International Nuclear Information System (INIS)

    Magnetostrictive thin films have been deposited using various techniques such as sputtering and evaporation but the use of laser deposition has been limited. This research presents the results from pulsed laser deposition (PLD) of TbFe2, DyFe2 and Terfenol-D thin films using an infra red Transversely Excited Atmospheric (TEA) CO2 laser at λ ∼10.6 μm and an ultra violet Argon-Fluoride (ArF) excimer laser at λ ∼ 193 nm. Results have showed that the TEA CO2 laser under the range of conditions studied is not suitable for the production of magnetostrictive films. The problems experienced are a mixture of mostly fracture debris at low fluences (F ∼ 20 Jcm-2) and melt droplets at high fluences (F∼ 60 Jcm-2). In all cases the destruction of the target is a major problem, with the Terfenol-D targets being the worst affected. Thin films produced were all iron rich. The use of an excimer laser has proved more successful in providing stoichiometric transfer of the target material, although this is only true under certain conditions. When a rotating target was used the growth of stoichiometric films was difficult due to a process related to the high photon energy of the excimer laser. The use of single spot irradiation did provide films of near stoichiometric composition over a wide range of fluences. Magnetostrictions for both TbFe2 and DyFe2 were found to be quite similar λ// ∼ 280 ppm at an applied field of 980 kAm-1. The results for Terfenol-D films were quite low with λ// ∼ 190 ppm at 980 kAm-1 but these showed signs of being adversely affected by stresses created during deposition. (author)

  7. Landau damping of a driven plasma wave from laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bu Zhigang [Department of Physics, Shanghai University, Shanghai 200444 (China); Ji Peiyong [Department of Physics, Shanghai University, Shanghai 200444 (China); The Shanghai Key Lab of Astrophysics, Shanghai 200234 (China)

    2012-01-15

    The interaction between a laser pulse and a driven plasma wave with a phase velocity approaching the speed of light is studied, and our investigation is focused on the Gaussian laser pulse. It is demonstrated that when the resonance condition between the plasma wave and the laser pulse is satisfied, the Landau damping phenomenon of the plasma wave originated from the laser pulse will emerge. The dispersion relations for the plasma waves in resonance and non-resonance regions are obtained. It is proved that the Landau damping rate for a driven plasma wave is {gamma}>0 in the resonance region, so the laser pulse can produce an inverse damping effect, namely Landau growth effect, which leads an instability for the plasma wave. The Landau growth means that the energy is transmitted from the laser pulse to the plasma wave, which could be an effective process for enhancing the plasma wave.

  8. Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique

    International Nuclear Information System (INIS)

    The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort ( 5 x 1017 W/cm2, 75 fs laser pulse

  9. Optodynamic analysis of pulsed-laser processing with a Nd:YAG laser

    OpenAIRE

    Strgar, Simon; Možina, Janez

    2015-01-01

    Laser drilling and laser marking of metals with a pulsed Nd:YAG laser are discussed. Some characteristics of pulsed-laser processing and the possibilities of process optodynamic analysis are presented for the laser-drilling of aluminium. The optodynamic analysis is based on observation of generated shock waves, which propagate in the material as well as in the surrounding air during laser processing. For the detection of laser-induced shock waves in the air and for measurements of their chara...

  10. Controlling electron injection in laser plasma accelerators using multiple pulses

    International Nuclear Information System (INIS)

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  11. Numerical simulation of copper ablation by ultrashort laser pulses

    OpenAIRE

    Ding, PengJi; Hu, BiTao; Li, Yuhong

    2011-01-01

    Using a modified self-consistent one-dimensional hydrodynamic lagrangian fluid code, laser ablation of solid copper by ultrashort laser pulses in vacuum was simulated to study fundamental mechanisms and to provide a guide for drilling periodic microholes or microgratings on the metal surface. The simulated laser ablation threshold is a approximate constancy in femtosecond regime and increases as the square root of pulse duration in picosecond regime. The ablation depth as a function of pulse ...

  12. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  13. Turning process assisted in situ by short time current pulses

    OpenAIRE

    Sánchez Egea, Antonio José; González Rojas, Hernan Alberto; Montilla Montaña, Carlos A.; Kallewaard, Valentina

    2015-01-01

    This article reports on a novel machining process technique: in situ electrically assisted turning process based on the influence of electropulsing. An in house generator was used to induce a current intensity of 90 A, a pulse duration between 50 and 200 µs and frequencies between 100 and 300 Hz. The influence of different electropulsing configurations assisting the machining process was studied, specifically on the surface properties and the power consumption in 1045 steel. The results ...

  14. Development of short pulse soft x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.B.; MacGowan, B.J.; Koch, J.A.; Mrowka, S.; Matthews, D.L.; Eder, D.; London, R.

    1993-02-01

    X-ray lasers with pulse duration shorter than 20 ps allow the possibility of imaging laser produced plasmas with {mu}m resolution. In addition, the high peak brightness of these new sources will allow us to study nonlinear optics in the xuv region. In this paper we will describe our efforts to produce collisionally pumped short pulse x-ray lasers. Initial results, which have produced {approximately} 45 ps (FWHM) x-ray lasers, using a double pulse irradiation technique are presented along with a discussion of the prospects for reducing the pulse width.

  15. Femtosecond laser ablation of Au film around single pulse threshold

    Institute of Scientific and Technical Information of China (English)

    Xiaochang Ni; Ching-Yue Wang; Yinzhong Wu; Li Yang; Wei Jia; Lu Chai

    2006-01-01

    @@ Ablation process of 1-kHz femtosecond lasers (pulse duration of 148 fs, wavelength of 775 nm) of Au film on silica substrates is studied. The thresholds for single and multi pulses can be obtained directly from the relation between the squared diameter D2 of the ablated craters and the laser fluence φo. From the plot of the accumulated laser fluence Nφth(N) and the number of laser pulses N, incubation coefficient of Au film is obtained to be 0.765. Some experimental data obtained around the single pulse threshold are in good agreement with the theoretical calculation.

  16. Extended propagation of powerful laser pulses in focusing Kerr media

    CERN Document Server

    Malkin, V M

    2016-01-01

    Powerful incoherent laser pulses can propagate in focusing Kerr media much longer distances than can coherent pulses, due to the fast phase mixing that prevents transverse filamentation. This distance is limited by 4-wave scattering, which accumulates waves at small transverse wavenumbers, where phase mixing is too slow to retain the incoherence and thus prevent the filamentation. However, we identify how this theoretical limit can be overcome by countering this accumulation through transverse heating of the pulse by random fluctuations of the refractive index. In these new regimes, the laser pulse propagation distances are significantly extended, making feasible a new class of random lasers, in particular, ultra-powerful random lasers in plasmas.

  17. Laser grooving of Al2O3 plate by a pulsed Nd:YAG laser: Characteristics and application to the manufacture of gas sensors array heater

    International Nuclear Information System (INIS)

    Laser grooving on a 0.635 mm thick alumina ceramic plate was carried out by a 400 W pulsed Nd:YAG laser. The effects of the laser grooving parameters, such as laser pulse frequency, laser peak pulse energy, assisting gases (oxygen and nitrogen), laser beam diameter and grooving speed on the morphologies of grooves were investigated by using field-emission scanning electron microscopy (FE-SEM) and optical microscopy. Results show that the U-type groove with smooth inner surface was produced at a fixed pulse frequency of 40 Hz, a grooving speed of 4 mm s-1 and an assisting gas pressure of 3 bar. The depth of the U-type groove increased with an increase in laser pulse peak energy. The assisting gas type was found to influence the grooving mechanism, that is, nitrogen gas had a chemical reaction with alumina, and then changed the substrate surface absorptivity to laser beam. So the smaller heat-affected zone (HAZ) was obtained in the substrate than that of the oxygen assisting gas. In addition, the stable and reliable RuO2-buried heater was produced in the U-type groove with smooth inner surface, which reduced sensing element power consumption and improved the thermal response rate in a sensor array

  18. Noncontact microsurgery of living cell membrane using femtosecond laser pulses

    Science.gov (United States)

    Ilina, I. V.; Ovchinnikov, A. V.; Sitnikov, D. S.; Chefonov, O. V.; Agranat, M. B.; Mikaelyan, A. S.

    2013-06-01

    Near-infrared femtosecond laser pulses were applied to initiate reversible permeabilization of cell membrane and inject extrinsic substances into the target cells. Successful laser-based injection of a membrane impermeable dye, as well as plasmid DNA was demonstrated.

  19. Laser-assisted delivery of topical methotrexate - in vitro investigations.

    Science.gov (United States)

    Taudorf, Elisabeth Hjardem

    2016-06-01

    Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by high performance liquid chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and desorption electro spray mass spectrometry imaging (DESI-MSI) (study III). Laser-tissue interactions generated by AFXL: AFXL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions. Impact of MAZ depth on AFXL-assisted topical MTX delivery: Pretreatment by AFXL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intradermal biodistribution profile towards

  20. 25 years of pulsed laser deposition

    Science.gov (United States)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  1. Ultrashort Pulse Laser Ablation for Depth Profiling of Bacterial Biofilms

    OpenAIRE

    Milasinovic, Slobodan; Liu, Yaoming; Gasper, Gerald L.; Zhao, Youbo; Johnston, Joanna L.; Gordon, Robert J.; Hanley, Luke

    2010-01-01

    Sample ablation by pulsed lasers is one option for removing material from a sample surface for in situ depth profiling during imaging mass spectrometry, but ablation is often limited by laser-induced damage of the remaining material. A preliminary evaluation was performed of sub-100 fs, 800 nm pulsed laser ablation for depth profiling of bacterial biofilms grown on glass by the drip flow method. Electron and optical microscopy were combined with laser desorption vacuum ultraviolet postionizat...

  2. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  3. Generation of Intense THz Pulsed Lasers Pumped Strongly by CO2 Pulsed Lasers

    Institute of Scientific and Technical Information of China (English)

    QI Chun-Chao; CHENG Zu-Hai

    2009-01-01

    A theoretical method dealing with two intense laser fields interacting with a three-level molecular system is proposed.A discussion is presented on the properties of the solutions for time-independent and time-dependent absorption coefficients and gain coemcient on resonance for strong laser fields,based on analytic evaluation of the rate equations for a homogeneously broadened,three-level molecular system.The pump intensity range can be estimated according to the analytic expression of pump saturation intensity.The effects of pulse width,gas pressure and path length on the energy absorbed from pump light are studied theoretically.The results can be applied to the analysis of pulsed,optically pumped terahertz lasers.

  4. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  5. Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses.

    Science.gov (United States)

    Trines, R M G M; Fiúza, F; Bingham, R; Fonseca, R A; Silva, L O; Cairns, R A; Norreys, P A

    2011-09-01

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion. PMID:21981507

  6. Intense laser pulse propagation in capillary discharge plasma channels

    International Nuclear Information System (INIS)

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in ∼300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model produce the expected optical guiding, with the laser pulse radius rL exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T3 laser, and preliminary results are reported. copyright 1999 American Institute of Physics

  7. Solid propellant extinction by laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Novozhilov, B.V. [Russian Academy of Science, Moscow (Russian Federation). Inst. of Chemical Physics; Zanotti, C.; Giuliani, P. [Istituto per la Tecnologia dei Materiali e dei Processi Energetici TeMPE - C.N.R., Milano (Italy)

    2000-12-01

    The possibility to generate a combustion transient of a composite AP.HTPB/86.14 propellant, burning under steady state conditions, was experimentally demonstrated by using a CO{sub 2} laser energy pulse. The experimental results point out that the burning propellant behavior can be defined by the curves separating, for every operating pressure, the continuous burning from the extinction solutions. In this paper, a simplified theoretical approach gives a phenomenological explanation of the energy pulse effect on the combustion process and the consequent burning propellant response after the deradiation transient. In the framework of this study the extinction condition is formulated in terms of the minimum temperature that causes the burning propellant to quench at the Pressure Deflagration Limit. The proposed theoretical work is aimed, first of all, to determine the critical radiant flux values, for different operating pressures, below which the burning propellant extinction is never achieved even if the laser pulse duration tends to infinity. Then, the extinction boundaries are defined choosing two different approximate approaches that take into account the ratio between the condensed phase relaxation time and the radiant energy pulse duration. Two limit cases, defined as slow/fast interaction of the radiant energy with the combustion process, can be used to describe the burning propellant extinction phenomena, and the results of this work indicate that the general trend of the computed boundary limits reproduces the experimental data. (orig.) [German] Mit einem CO{sub 2}-Laser wurde die Moeglichkeit demonstriert, einen Uebergangszustand der Verbrennung eines Komposit-Treibstoffes AP.HTPB/86.14 zu erzeugen, der unter stationaeren Bedingungen brannte. Die experimentellen Ergebnisse zeigen auf, dass das Verbrennungsverhalten durch die Kurven bestimmt werden kann, die fuer jeden Arbeitsdruck die kontinuierlichen Verbrennungsloesungen von den Ausloeschloesung trennen

  8. Theory of attosecond delays in laser-assisted photoionization

    CERN Document Server

    Dahlström, J M; Klünder, K; Gisselbrecht, M; Mauritsson, J; L'Huillier, A; Maquet, A; Taïeb, R

    2011-01-01

    We study the temporal aspects of laser-assisted extreme ultraviolet (XUV) photoionization using attosecond pulses of harmonic radiation. The aim of this paper is to establish the general form of the phase of the relevant transition amplitudes and to make the connection with the time-delays that have been recently measured in experiments. We find that the overall phase contains two distinct types of contributions: one is expressed in terms of the phase-shifts of the photoelectron continuum wavefunction while the other is linked to continuum--continuum transitions induced by the infrared (IR) laser probe. Our formalism applies to both kinds of measurements reported so far, namely the ones using attosecond pulse trains of XUV harmonics and the others based on the use of isolated attosecond pulses (streaking). The connection between the phases and the time-delays is established with the help of finite difference approximations to the energy derivatives of the phases. This makes clear that the observed time-delays...

  9. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    Science.gov (United States)

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. PMID:22559543

  10. Amplifier similariton laser with extra-broad bandwidth output pulse

    Science.gov (United States)

    Korobko, D. A.; Okhotnikov, O. G.; Zolotovskii, I. O.

    2016-03-01

    We propose an advanced scheme of amplifier similariton laser providing an output pulse spectrum much wider than the gain bandwidth. The upgrade is an additional dispersive element introduced into the cavity to locally increase the peak pulse power. The proposed scheme demonstrates a drastic increase in the output pulse spectrum width, reduction of the pulse duration, and an increase in the output peak pulse power after compression.

  11. Pulsed laser ablation of solids basics, theory and applications

    CERN Document Server

    Stafe, Mihai; Puscas, Niculae N

    2014-01-01

    The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental  non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and...

  12. Generation of ultrashort electron bunches by colliding laser pulses

    International Nuclear Information System (INIS)

    A proposed laser-plasma based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counter-propagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses

  13. Development of frequency tunable Ti:sapphire laser and dye laser pumped by a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    We investigated lasing characteristics of two kinds of tunable laser, liquid dye laser and solid Ti:sapphire crystal laser, pumped by high pulse repetition rate Nd:YAG laser. Dye laser showed drastically reduced pulsewidth compared with that of pump laser and it also contained large amount of amplified spontaneous emission. Ti:sapphire laser showed also reduced pulsewidth. But, the laser conversion pump laser and Ti:sapphire laser pulse, we used a Brewster-cut Pockel's cell for Q-switching. The laser was frequency doubled by a type I BBO crystal outside of the cavity.

  14. Solitary Nanostructures Produced by Ultrashort Laser Pulse.

    Science.gov (United States)

    Inogamov, Nail A; Zhakhovsky, Vasily V; Khokhlov, Viktor A; Petrov, Yury V; Migdal, Kirill P

    2016-12-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications. PMID:27044306

  15. Solitary Nanostructures Produced by Ultrashort Laser Pulse

    Science.gov (United States)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.; Khokhlov, Viktor A.; Petrov, Yury V.; Migdal, Kirill P.

    2016-04-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  16. Optical gene transfer by femtosecond laser pulses

    Science.gov (United States)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  17. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    Science.gov (United States)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  18. Laser-induced condensation by ultrashort laser pulses at 248 nm

    OpenAIRE

    Joly, P; Petrarca, M.; Vogel, A.(Physikalisches Institut, University of Bonn, Bonn, Germany); Pohl, T; Nagy, T.; Jusforgues, Q.; Simon, P.; Kasparian, J.; Weber, K.; Wolf, J.-P.

    2013-01-01

    We compare laser-induced condensation by UV laser pulses of femtosecond, sub-picosecond, and nanosecond duration between each other, as well as with respect to near-infrared (NIR) (800 nm) ultrashort laser pulses. Particle nucleation by UV pulses is so efficient that their growth beyond several hundreds of nm is limited by the local concentration of water vapour molecules. Furthermore, we evidence a dual mechanism: While condensation induced by ultrashort UV pulses rely on nitrogen photo-oxid...

  19. Pulsed power supplies for laser flashlamps. Final report

    International Nuclear Information System (INIS)

    A preliminary engineering design of a compensated pulse alternator for driving laser flashlamps is presented. The work performed by the Center for Electromechanics at The University of Texas at Austin also includes the optimization and revision of the prototype design for a compensated pulse alternator power supply for the NOVA laser system at Lawrence Livermore Laboratory

  20. Advanced pulsed and CW high-power fiber lasers

    OpenAIRE

    Nilsson, J.; Grudinin, A.B.; Turner, P.W.

    2000-01-01

    We examine design issues for high-energy pulsed as well as for high-power cw fiber lasers. Power handling and pump scalability are primary issues for kilowatt fiber lasers. Special core designs are needed for high-energy pulse generation.

  1. Clutter discrimination algorithm simulation in pulse laser radar imaging

    Science.gov (United States)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  2. POWER RECYCLING OF BURST-MODE LASER PULSES FOR LASER PARTICLE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [ORNL

    2016-01-01

    A number of laser-particle interaction experiments such as the laser assisted hydrogen ion beam stripping or X-/ -ray generations via inverse-Compton scattering involve light sources operating in a burst mode to match the tem-poral structure of the particle beam. To mitigate the laser power challenge, it is important to make the interaction inside an optical cavity to recycle the laser power. In many cases, conventional cavity locking techniques will not work since the burst normally has a very small duty factor and low repetition rate and it is impossible to gen-erate an effective control signal. This work reports on the development of a doubly-resonant optical cavity scheme and its locking techniques that enables a simultaneous resonance of two laser beams with different spectra and/or temporal structures. We demonstrate that such a cavity can be used to recycle burst-mode ultra-violet laser pulses with arbitrary burst lengths and repetition rates.

  3. Laser-generated ultrasonic pulse shapes at solid wedges.

    Science.gov (United States)

    Pupyrev, Pavel D; Lomonosov, Alexey M; Mayer, Andreas P

    2016-08-01

    Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges. PMID:27135188

  4. Ultrafast pulse lasers jump to macro applications

    Science.gov (United States)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  5. Heat transfer during pulsed laser cutting of thin sheets

    OpenAIRE

    Lindau, Jules Washington

    1989-01-01

    A numerical model of the temperature field during pulsed laser cutting of thin sheets (approximately 2.5 x l0-5 m) was developed. Cutting was simulated through removal of nodes from a finite difference scheme based on sensible heating to the phase change temperature and a single value of latent heat (melting or vaporization). The pulsed laser model predicts a heat-affected zone of less than 0.02 mm for pulsed laser cutting. For comparable cutting with a continuous power laser, ...

  6. Pulsed laser deposition of amorphous carbon/silver nanocomposites

    International Nuclear Information System (INIS)

    Metal/amorphous carbon (a-C:M) composite films are emerging as a category of very important engineering materials for surface protection. We implement pulsed laser deposition (PLD) to grow pure a-C and a-C:Ag nanocomposites. Our PLD process is assisted by a static electric field. We investigate the structural features of the a-C:Ag nanocomposites and the bonding configuration of the a-C matrix with respect to the electric field and the composition of the PLD target. For this study we use Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and X-ray diffraction (XRD). We show that the Ag mean grain size and the sp2 content of the a-C matrix are increasing with increasing Ag content in the films

  7. Pulsed laser deposition of amorphous carbon/silver nanocomposites

    Science.gov (United States)

    Matenoglou, G.; Evangelakis, G. A.; Kosmidis, C.; Foulias, S.; Papadimitriou, D.; Patsalas, P.

    2007-07-01

    Metal/amorphous carbon (a-C:M) composite films are emerging as a category of very important engineering materials for surface protection. We implement pulsed laser deposition (PLD) to grow pure a-C and a-C:Ag nanocomposites. Our PLD process is assisted by a static electric field. We investigate the structural features of the a-C:Ag nanocomposites and the bonding configuration of the a-C matrix with respect to the electric field and the composition of the PLD target. For this study we use Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and X-ray diffraction (XRD). We show that the Ag mean grain size and the sp 2 content of the a-C matrix are increasing with increasing Ag content in the films.

  8. Pulsed laser deposition of amorphous carbon/silver nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Matenoglou, G. [University of Ioannina, Department of Materials Science and Engineering, GR-45110 Ioannina (Greece); Evangelakis, G.A. [University of Ioannina, Department of Physics, GR-45110 Ioannina (Greece); Kosmidis, C. [University of Ioannina, Department of Physics, GR-45110 Ioannina (Greece); Foulias, S. [University of Ioannina, Department of Physics, GR-45110 Ioannina (Greece); Papadimitriou, D. [University of Ioannina, Department of Physics, GR-45110 Ioannina (Greece); Patsalas, P. [University of Ioannina, Department of Materials Science and Engineering, GR-45110 Ioannina (Greece)]. E-mail: ppats@cc.uoi.gr

    2007-07-31

    Metal/amorphous carbon (a-C:M) composite films are emerging as a category of very important engineering materials for surface protection. We implement pulsed laser deposition (PLD) to grow pure a-C and a-C:Ag nanocomposites. Our PLD process is assisted by a static electric field. We investigate the structural features of the a-C:Ag nanocomposites and the bonding configuration of the a-C matrix with respect to the electric field and the composition of the PLD target. For this study we use Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and X-ray diffraction (XRD). We show that the Ag mean grain size and the sp{sup 2} content of the a-C matrix are increasing with increasing Ag content in the films.

  9. Laser assisted modification of poled silver-doped nanocomposite soda-lime glass

    OpenAIRE

    Drevinskas Rokas; Beresna Martynas; Deparis Olivier; Kazansky Peter G.

    2013-01-01

    Thermal poling assisted homogenization of polydisperse Ag nanoparticles embedded in the soda-lime glass is demonstrated. The homogenization leads to the narrowing of the localized surface plasmon resonance. The subsequent irradiation with linearly polarized ultrashort laser pulses induces spectrally defined and four times larger dichroism than in non-poled sample.

  10. Laser assisted modification of poled silver-doped nanocomposite soda-lime glass

    Directory of Open Access Journals (Sweden)

    Drevinskas Rokas

    2013-11-01

    Full Text Available Thermal poling assisted homogenization of polydisperse Ag nanoparticles embedded in the soda-lime glass is demonstrated. The homogenization leads to the narrowing of the localized surface plasmon resonance. The subsequent irradiation with linearly polarized ultrashort laser pulses induces spectrally defined and four times larger dichroism than in non-poled sample.

  11. Towards manipulating relativistic laser pulses with 3D printed materials

    OpenAIRE

    Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter i...

  12. Additive-pulse modelocking of non-cw neodymium lasers

    Science.gov (United States)

    Heinz, P.; Reuther, A.; Laubereau, A.

    1993-03-01

    Passive modelocking of several flash-lamp pumped neodymium lasers with electro-optic amplitude stabilization is demonstrated using a nonlinear Michelson interferometer. Improved performance is reported for the GSGG- YLF- and glass-laser as compared to the nonlinear absorber, with shorter pulse durations and smaller amplitude fluctuations, e.g. 5 μJ pulses for 460 ± 20 fs for Nd:glass. Evidence is obtained for multi-selfstability of the pulse energy.

  13. Propagation of finite length laser pulses in plasma channels

    International Nuclear Information System (INIS)

    Finite pulse length effects are shown to play a major role in the propagation, stability, and guiding of intense laser beams in plasmas. We present the quasiparaxial approximation (QPA) to the wave equation that takes finite pulse length effects into account. The QPA is an extension of the usual paraxial approximation. The laser field is shown to be significantly modified for pulses less than a few tens of wavelengths long. A pair of coupled envelope-power equations having finite pulse length effects, as well as relativistic and atomic electron nonlinearities, is derived and analyzed. Short laser pulses propagating in plasma channels are found to undergo an envelope oscillation in which the front of the pulse is always damped while the back initially grows. The modulation eventually damps due to frequency spread phase mixing. In addition, finite pulse length effects are shown to modify nonlinear focusing processes significantly. thinsp copyright 1999 The American Physical Society

  14. Parametric study on femtosecond laser pulse ablation of Au films

    International Nuclear Information System (INIS)

    Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N x φ th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research

  15. Nonlinear laser pulse response in a crystalline lens.

    Science.gov (United States)

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated. PMID:27192252

  16. Optodynamic aspect of a pulsed laser ablation process

    Science.gov (United States)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  17. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    International Nuclear Information System (INIS)

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 μm thicknesses) irradiated with an ultra-intense laser pulse (up to 1020 W⋅cm−2, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  18. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Buffechoux, S.; Albertazzi, B. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Capelli, D.; Antici, P. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Dipartimento SBAI, Sapienza, Universita di Roma, Via Scarpa 16, 00161 Roma (Italy); Levy, A.; Fuchs, J. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Lecherbourg, L.; Marjoribanks, R. S. [Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-01-15

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  19. Interaction of superintense laser pulses with relativistic ions.

    OpenAIRE

    Chirilă, C. C.; Joachain, C. J.; Kylstra, N. J.; Potvliege, R. M.

    2004-01-01

    At high intensities, three-step recollision processes driven by low frequency laser pulses, such as high-order harmonic generation and high-order above-threshold ionization, are normally severely suppressed by the magnetic-field component of the laser field. It is shown that this suppression is not severe, even for ponderomotive energies well above 10keV, for multicharged ions moving at a sufficiently high relativistic velocity against a counterpropagating infrared laser pulse. Numerical resu...

  20. High power pulsed ytterbium doped fibre lasers and their applications

    OpenAIRE

    Chen, Kang Kang

    2011-01-01

    The aim of my project is to develop pulsed Ytterbium (Yb) doped fibre master oscillator power amplifier (MOPA) systems seeded by semiconductor lasers. I was principally focused on two specific projects aligned to sponsored programs of research within the ORC pulsed fibre laser group: the first project, TSB funded project LAMPS, aimed to develop an important class of next generation laser system capable of average output powers of more than 100 W when operating in both the nanosecond and pico...

  1. Production of picosecond, kilojoule, petawatt laser pulses via Raman amplification of nanosecond pulses

    CERN Document Server

    Trines, R; Bingham, R; Fonseca, R A; Silva, L O; Cairns, R A; Norreys, P A

    2011-01-01

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump to probe pulses, implying that multi-kiloJoule ultra-violet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  2. Surface plasmon resonance assisted rapid laser joining of glass

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin, E-mail: a.abdolvand@dundee.ac.uk [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, Zengbo [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm{sup 2} and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  3. Surface plasmon resonance assisted rapid laser joining of glass

    International Nuclear Information System (INIS)

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm2 and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices

  4. Laser-assisted direct ink writing of planar and 3D metal architectures

    Science.gov (United States)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  5. Laser-assisted direct ink writing of planar and 3D metal architectures.

    Science.gov (United States)

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  6. Development of a compact soft X-ray laser using a pulse-train laser. 4

    International Nuclear Information System (INIS)

    Time behaviour of gain coefficients was studied for the two different pulse train-lasers; one is a normal pulse-train, and the other modified one. The duration time of gain is larger for the modified pulse-train laser compared with the normal one. (author)

  7. The mechanism for SEU simulation by pulsed laser

    Institute of Scientific and Technical Information of China (English)

    HUANG; Jianguo; HAN; Jianwei

    2004-01-01

    To simulate single event effect (SEE) by pulsed laser is a new approach in ground-based simulation of SEE in recent years. In this paper the way in which picosecond pulsed laser interacts with semiconductor and the mechanism of SEE inducement are analyzed. Additionally, associated calculations are made in the case of Nd:YAG and Ti:Sapphire lasers generally used in experiments and silicon device, with comparisons made between the two lasers. In the meantime, the fundamental principle for determining laser parameters and their typical ranges of values are provided according to the results.

  8. Quantum Electrodynamics Theory of Laser Assisted Recombination

    Institute of Scientific and Technical Information of China (English)

    敖淑艳; 程太旺; 李晓峰; 潘守甫; 傅盘铭

    2003-01-01

    Using a formal scattering theoretical approach, we develop a nonperturbative quantum electrodynamics theory to describe laser assisted recombination (LAR), in which an electron initially in the quantized Volkov state recombines with an ion and emits a high-energy photon with frequency defined by energy conservation laws.The transition probability is expressed as an analytic closed form and the spectrum of LAR reflects mainly the properties of general Bessel functions. For the case of a fast electron the LAR spectrum is confined in a well-defined range, while for a slow electron, the LAR spectrum exhibits a double-plateau structure.

  9. Creation and control of single attosecond XUV pulse by few-cycle intense laser pulse

    Science.gov (United States)

    Carrera, Juan J.; Tong, X. M.; Chu, Shih-I.

    2006-05-01

    We present a theoretical investigation of the mechanisms responsible for the production of single atto-second pulse by using few-cycle intense laser pulses. The atto-second XUV spectral is calculated by accurately integrating the time- dependent Schr"odinger equation. The detailed mechanism for the production of the XUV pulse are also corroborated by analyzing the classical trajectories of the electron. Our study shows that the first return of the rescattering electron is responsible for the high energy atto-second pulse. Furthermore, we can optimize the production of atto-second XUV pulses by modifying the trajectory of the rescattering electron by tuning the laser field envelope.

  10. Trends in ultrashort and ultrahigh power laser pulses based on optical parametric chirped pulse amplification

    International Nuclear Information System (INIS)

    Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification (OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of few-optical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively. (paper)

  11. Tantalum ions produced by 1064 nm pulsed laser irradiation

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Gammino, S.; Andó, L.; Láska, Leoš

    2002-01-01

    Roč. 91, - (2002), s. 4685-4692. ISSN 0021-8979 Institutional research plan: CEZ:AV0Z1010921 Keywords : pulsed laser irradiation * high-temperature plasma production * Nd:YAG laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.281, year: 2002

  12. Energy losses estimation during pulsed-laser seam welding

    Czech Academy of Sciences Publication Activity Database

    Šebestová, Hana; Havelková, M.; Chmelíčková, H.

    2014-01-01

    Roč. 45, č. 3 (2014), s. 1116-1121. ISSN 1073-5615 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : laser welding * pulsed-laser * Nd:YAG laser Subject RIV: JP - Industrial Processing Impact factor: 1.461, year: 2014

  13. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    Science.gov (United States)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  14. Application of Yb:YAG short pulse laser system

    Energy Technology Data Exchange (ETDEWEB)

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  15. Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor.

    Science.gov (United States)

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang Hee

    2009-08-01

    Pulse compression in a differentially pumped neon-filled hollow fiber was used to generate high-power few-cycle laser pulses. The pulse compression process was optimized by adjusting gas pressure and laser chirp to produce the shortest laser pulses. Precise dispersion control enabled the generation of laser pulses with duration of 3.7 fs and energy of 1.2 mJ. This corresponds to an output of 1.5 cycle, 0.3 TW pulses at a 1 kHz repetition rate using positively chirped 33 fs laser pulses. PMID:19649091

  16. Gating attosecond pulse train generation using multicolor laser fields

    International Nuclear Information System (INIS)

    The process of high-order harmonic generation leads to the production of a train of attosecond-duration extreme ultraviolet (XUV) pulses, with one pulse emitted per optical half-cycle. For attosecond pump-probe experiments, a single, isolated attosecond pulse is preferable, requiring an almost continuous spectrum. We show experimentally and numerically that the addition of a second laser field, and later a third, at a noncommensurate frequency relative to the driving field can modify the subcycle shape of the electric field, leading to the appearance of additional spectral components between the usual odd harmonics and in some cases a quasicontinuum. We perform a parametric study of the frequency ratio between the two first laser fields, the result of which is in good agreement with theoretical selection rules. We also show numerically that using three laser frequencies from an optical parametric amplifier can achieve a single attosecond pulse from a 24-fs laser pulse.

  17. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  18. Experimental and numerical approaches of Laser assisted turning

    OpenAIRE

    GERMAIN, Guénaël; ROBERT, Patrick; Lebrun, Jean-Lou; Dal Santo, Philippe; Poitou, Arnaud

    2005-01-01

    This study shows experimental and numerical preliminary approaches of laser assisted machining. The laboratory has an industrial lathe equipped with a laser source with 2.5 kW to carry out experiments on various materials. This machine is instrumented for the measurement of cutting forces and thermal fields (infra-red camera). Our aim is to show the viability of the process in industry. After a presentation of laser assisted machining, we will detail the laser heating modelling, and the first...

  19. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  20. Double-pulse LIBS of gadolinium oxide ablated by femto- and nano-second laser pulses

    International Nuclear Information System (INIS)

    Emission characteristics of gadolinium (Gd) oxide are studied, using ns and fs laser pulses for ablation in double-pulse laser induced breakdown spectroscopy (LIBS). In the current conditions of pulse energy and signal detection timing, emission intensity enhancement in the reheating mode is 25-fold, but little effect can be observed in a pre-pulse mode. It is shown that the optimum focus position of the ablation pulse is about 5 mm apart from the sample surface in the reheating mode. Although little emission can be observed in the single-pulse configuration with fs ablation pulses, the intense emission can be observed in the reheating mode in the double-pulse configuration. (orig.)

  1. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  2. Laser air-jet engine: the action of shock waves at low laser pulse repetition rates

    International Nuclear Information System (INIS)

    The impact and thermal action of laser sparks on the reflector of a laser engine in which the propulsion is produced by repetitively pulsed radiation is estimated. It is shown that for a low pulse repetition rate, the thermal contact of a plasma with the reflector and strong dynamic resonance loads are inevitable. These difficulties can be surmounted by using the method based on the merging of shock waves at a high pulse repetition rate. (laser applications)

  3. Single molecule imaging with longer x-ray laser pulses

    OpenAIRE

    Martin, Andrew V.; Corso, Justine K.; Caleman, Carl; Timneanu, Nicusor; Quiney, Harry M.

    2015-01-01

    During the last five years, serial femtosecond crystallography using x-ray laser pulses has developed into a powerful technique for determining the atomic structures of protein molecules from micrometer and sub-micrometer sized crystals. One of the key reasons for this success is the "self-gating" pulse effect, whereby the x-ray laser pulses do not need to outrun all radiation damage processes. Instead, x-ray induced damage terminates the Bragg diffraction prior to the pulse completing its pa...

  4. Molecular attosecond photoionization with few cycle XUV laser pulses

    International Nuclear Information System (INIS)

    We present molecular attosecond ionization with few cycle XUV laser pulses from numerical solutions of time dependent Schrodinger equations. Simulations performed on aligned H+2 exhibit signature of red-shifts in photoelectron energy spectra. This is shown to be critically sensitive to the the pulse duration and wavelength and is attributed to the broad spectral width of the ionizing pulses and diminishing electronic Franck-Condon factors with short pulses. We analyze the laser parameter dependence of the energy spectra by a perturbative model.

  5. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    International Nuclear Information System (INIS)

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  6. Micromachining soda-lime glass by femtosecond laser pulses

    Science.gov (United States)

    Jia, Wei; Yu, Jian; Chai, Lu; Wang, Ching-Yue

    2015-08-01

    The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.

  7. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses

    OpenAIRE

    Ziting Li; Bin Zeng; Wei Chu; Hongqiang Xie; Jinping Yao; Guihua Li; Lingling Qiao; Zhanshan Wang; Ya Cheng

    2016-01-01

    We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized...

  8. Optically pumped terahertz lasers with high pulse repetition frequency: theory and design

    Institute of Scientific and Technical Information of China (English)

    Yude Sun; Shiyou Fu; Jing Wang; Zhenghe Sun; Yanchao Zhang; Zhaoshuo Tian; Qi Wang

    2009-01-01

    Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.

  9. Generation of elliptically polarized nitrogen-ion laser fields using two-color femtosecond laser pulses

    CERN Document Server

    Li, Ziting; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2015-01-01

    We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized molecular nitrogen-ion laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the molecular nitrogen-ion laser.

  10. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  11. Ablation characteristics of quantum square pulse mode dental erbium laser

    Science.gov (United States)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  12. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    Science.gov (United States)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  13. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    International Nuclear Information System (INIS)

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  14. LONGITUDINAL DISCH. CO2 LASER WITH PULSED PRE-IONIZATION

    Institute of Scientific and Technical Information of China (English)

    Yu Yanning; Wan Chongyi

    2002-01-01

    A novel pre-ionization scheme of helical transverse-pulsed pre-ionization in a longitudinal discharge CO2 laser is presented. The laser tube is made of glass with inner diameter of 7.5mm and discharge length of 50cm. The laser performance characteristics as functions of parameters, such as pressure, charging capacitance and applied voltage, are investigated. Compared with the same laser structure without pre-ionization, the maximum pulse energy improves by 23%, the optimum electro-optical efficiency increases by 31%, and the specific output energy reaches 26 J/(L·atm).

  15. Modulation of ionization on laser frequency in ultra-short pulse intense laser-gas-target

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing

    2006-01-01

    Based on the dispersion relation of intense laser pulse propagating in gradually ionized plasma, this paper discusses the frequency modulation induced by ionization of an ultra-short intense laser pulse interacting with a gas target.The relationship between the frequency modulation and the ionization rate, the plasmas frequency variation, and the polarization of atoms (ions) is analysed. The numerical results indicate that, at high frequency, the polarization of atoms (ions) plays a more important role than plasma frequency variation in modulating the laser frequency, and the laser frequency variation is different at different positions of the laser pulse.

  16. Fundamental studies of pulsed laser ablation

    CERN Document Server

    Claeyssens, F

    2001-01-01

    dopant) have resulted in a coherent view of the resulting plume, which exhibits a multi-component structure correlated with different regimes of ablation, which are attributed to ejection from ZnO and ablation from a Zn melt. OES measurements show that the emitting Zn component within the plume accelerates during expansion in vacuum - an observation attributable to the presence of hot, fast electrons in the plume. The same acceleration behaviour is observed in the case of Al atomic emissions resulting from ablation of an Al target in vacuum. Deposition conditions, substrate temperature and background gas pressure were all varied in a quest for optimally aligned, high quality ZnO thin films. Initial ab initio calculations were performed also, to aid in understanding the stability of these c-axis aligned films. The pulsed ultraviolet (lambda = 193, 248 nm) laser ablation of graphite, polycrystalline diamond and ZnO targets has been investigated. Characteristics of the resulting plumes of ablated material have b...

  17. Laser triggered injection of electrons in a laser wakefield accelerator with the colliding pulse method

    OpenAIRE

    Nakamura, K; Fubiani, G; Geddes, C. G. R.; Michel, P.; van Tilborg, J.; Toth, C; Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2004-01-01

    An injection scheme for a laser wakefield accelerator that employs a counterpropagating laser (colliding with the drive laser pulse, used to generate a plasma wake) is discussed. The threshold laser intensity for electron injection into the wakefield was analyzed using a heuristic model based on phase-space island overlap. Analysis shows that the injection can be performed using modest counterpropagating laser intensity a_1 < 0.5 for a drive laser intensity of a_0 = 1.0. Preliminary expe...

  18. Monitor and control of neuronal activities with femtosecond pulse laser

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; LIU XiuLi; L(U) XiaoHua; LI JiaSong; LUO QingMing; ZENG ShaoQun

    2008-01-01

    Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons in rat cortex slice were monitored by a custom-built two-photon microscopy, and the spontaneous calcium signals and the pharmacological responses as well as the responses to femtosecond pulse laser stimulation were recorded. The results showed that the amplitude of the cal-cium signals increased in direct proportion to the corresponding electrical activities. Glutamate induced a calcium transient, but continuous application resulted in smaller response. Simultaneous monitoring of neuronal populations distinguished the neurons of different microcircuits. The femtosecond pulse laser induced local or global calcium signals in the pyramidal neurons. The approach of interrogation and control of neural activities using femtosecond pulse laser is non-contact, nondestructive, repeatable, and without any additional substrates, which will contribute to the development of neuroscience.

  19. Double Ionization by Strong Elliptically Polarized Laser Pulses

    OpenAIRE

    Wang, Xu; Eberly, J. H.

    2009-01-01

    We join the tribute to Professor N.B. Delone in this memorial issue by presenting the results of new calculations on the effects of ellipticity on double ionization by short and strong near-optical laser pulses.

  20. Optimizing ultrashort laser pulse compression by two photon absorption

    International Nuclear Information System (INIS)

    Demonstrated is an approach for relative optimization of ultrashort pulses using two-photon generated photocurrent in a GaAsP photodiode. Two-photon absorption is a nonlinear process, allowing for highly sensitive tuning of ultrashort laser systems

  1. Alignment of symmetric top molecules by short laser pulses

    DEFF Research Database (Denmark)

    Hamilton, Edward; Seideman, Tamar; Ejdrup, Tine;

    2005-01-01

    Nonadiabatic alignment of symmetric top molecules induced by a linearly polarized, moderately intense picosecond laser pulse is studied theoretically and experimentally. Our studies are based on the combination of a nonperturbative solution of the Schrodinger equation with femtosecond time...

  2. Schwinger Vacuum Pair Production in Chirped Laser Pulses

    CERN Document Server

    Dumlu, Cesim K

    2010-01-01

    The recent developments of high intensity ultra-short laser pulses have raised the hopes of observing Schwinger vacuum pair production which is one of the important non-perturbative phenomena in Quantum electrodynamics (QED). The quantitative analysis of realistic high intensity laser pulses is vital for understanding the effect of the field parameters on the momentum spectrum of the produced particles. In this study, we analyze chirped laser pulses with a sub-cycle structure, and investigate the effects of the chirp parameter on the momentum spectrum of the produced particles. The combined effect of the chirp and carrier phase of the laser pulse is also analyzed. These effects are qualitatively explained by investigating the turning point structure of the potential within the framework of the complex WKB scattering approach to pair production.

  3. Miniature, Rugged, Pulsed Laser Source for LIDAR Application Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Princeton Optronics proposes to develop a high energy pulsed laser source based on a novel approach. The approach consists of a technique to combine a large number...

  4. 20 W High Efficiency 1550 nm Pulsed Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High peak power short pulsed lasers have been considered to be an enabling technology to build high power transmitters for future deep space high rate space...

  5. Femtosecond laser pulse train interaction with dielectric materials

    Science.gov (United States)

    Dematteo Caulier, O.; Mishchik, K.; Chimier, B.; Skupin, S.; Bourgeade, A.; Javaux Léger, C.; Kling, R.; Hönninger, C.; Lopez, J.; Tikhonchuk, V.; Duchateau, G.

    2015-11-01

    The interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model is investigated. Theoretical predictions are directly confronted with experimental observations in soda-lime glass. It is shown that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in the simulations correspond very well to zones of permanent material modifications observed in the experiments. It turns out that pulse-to-pulse variations of the laser absorption are negligible and of minor influence to permanent material modifications.

  6. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    International Nuclear Information System (INIS)

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser

  7. Longitudinally excited CO2 laser with short laser pulse for hard tissue drilling

    Science.gov (United States)

    Uno, Kazuyuki; Hayashi, Hiroyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with a circular beam and a low divergence angle. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse width of 103 ns and a pulse tail length of 32.6 μs. The beam cross-section was circular and the full-angle beam divergence was 1.7 mrad. The laser was used to drill ivory samples without carbonization at fluences of 2.3-7.1 J/cm2. The drilling depth of the dry ivory increased with the fluence. The drilling mechanism of the dry ivory was attributed to absorption of the laser light by the ivory.

  8. Reduction of the pulse duration of the ultrafast laser pulses of the Two-Photon Laser Scanning Microscopy (2PLSM

    Directory of Open Access Journals (Sweden)

    Reshak Ali

    2008-07-01

    Full Text Available Abstract Background We provide an update of our two-photon laser scanning microscope by compressing or reducing the broadening of the pulse width of ultrafast laser pulses for dispersion precompensation, to enable the pulses to penetrate deeply inside the sample. Findings The broadening comes as the pulses pass through the optical elements. We enhanced and modified the quality and the sharpness of images by enhancing the resolution using special polarizer namely Glan Laser polarizer GL10. This polarizer consists of two prisms separated by air space. This air separation between the two prisms uses to delay the red wavelength when the light leaves the first prism to the air then to second prism. We note a considerable enhancing with using the GL polarizer, and we can see the details of the leaf structure in early stages when we trying to get focus through z-stacks of images in comparison to exactly the same measurements without using GL polarizer. Hence, with this modification we able to reduce the time of exposure the sample to the laser radiation thereby we will reduce the probability of photobleaching and phototoxicity. When the pulse width reduced, the average power of the laser pulses maintained at a constant level. Significant enhancement is found between the two kinds of images of the Two-Photon Excitation Fluorescence (TPEF. Conclusion In summary reduction the laser pulse width allowed to collect more diffraction orders which will used to form the images. The more diffraction orders the higher resolution images.

  9. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  10. Layer-by-layer pattern propagtion and pulsed laser deposition

    OpenAIRE

    Westerhoff, F.; Brendel, L.; Wolf, D. E.

    2001-01-01

    In this article kinetic Monte Carlo simulations for molecular beam epitaxy (MBE) and pulsed laser depositon (PLD) are compared. It will be shown that an optimal pattern conservation during MBE is achieved for a specific ratio of diffusion to deposition rate. Further on pulsed laser deposition is presented as an alternative way to control layer by layer growth. First results concerning the island density in the submonolayer regime are shown.

  11. Pulsed Laser Centre (CLPU). The Salamanca peta watt laser; Centro de Laseres Pulsados (CLPU). El laser de Petavatio de Salamanca

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. R.

    2016-08-01

    With pulses lasting 30 photo seconds, the CLPU VEGA laser is capable of generating a peak power level of one peta watt, this making it one of the worlds most powerful lasers. When focussed it can reach extreme intensities. The way in which a pulse of this nature interacts with an atom or what its applications might be are among the questions answered by this article. (Author)

  12. Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Renat R. Letfullin

    2008-01-01

    Full Text Available The interaction between nanoparticles and ultrashort laser pulses holds great interest in laser nanomedicine, introducing such possibilities as selective cell targeting to create highly localized cell damage. Two models are studied to describe the laser pulse interaction with nanoparticles in the femtosecond, picosecond, and nanosecond regimes. The first is a two-temperature model using two coupled diffusion equations: one describing the heat conduction of electrons, and the other that of the lattice. The second model is a one-temperature model utilizing a heat diffusion equation for the phonon subsystem and applying a uniform heating approximation throughout the particle volume. A comparison of the two modeling strategies shows that the two-temperature model gives a good approximation for the femtosecond mode, but fails to accurately describe the laser heating for longer pulses. On the contrary, the simpler one-temperature model provides an adequate description of the laser heating of nanoparticles in the femtosecond, picosecond, and nanosecond modes.

  13. Tunable repetitively pulsed Cr2+ : ZnSe laser

    International Nuclear Information System (INIS)

    Methods of wavelength tuning of a polycrystalline Cr2+ : ZnSe laser pumped by a repetitively pulsed Tm : YLF laser (pulse duration ∼100 ns, pulse repetition rate 3 KHz) are studied. With the use of a prism selector, the laser wavelength was tuned within the range of 2070 – 2400 nm at a linewidth of 11 nm for a SiO2 prism and 30 nm for a CaF2 prism. The use of a Lyot filter made it possible to tune the Cr2+ : ZnSe laser wavelength (with replacement of the cavity mirrors) within the spectral ranges of 2130 – 2400 and 2530 – 2750 nm at a linewidth of 4 nm. (lasers)

  14. Long-pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: a randomized controlled trial

    DEFF Research Database (Denmark)

    Nymann, Peter; Hedelund, Lene; Haedersdal, M

    2010-01-01

    This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias.......This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias....

  15. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...

  16. Nonsequential Double Ionization of Atoms in Strong Laser Pulses

    Science.gov (United States)

    Prauzner-Bechcicki, J. S.; Sacha, K.; Eckhardt, B.; Zakrzewski, J.

    2007-10-01

    It is now possible to produce laser pulses with reproducible pulse shape and controlled carrier envelope phase. It is discussed how that can be explored in double ionisation studies. To this end we solve numerically the Schrödinger equation for a limited dimensionality model which nevertheless treats electron repulsion qualitatively correctly and allows to study correlation effects due to the Coulomb repulsion.

  17. Attosecond laser pulse ionization of atoms and molecules

    International Nuclear Information System (INIS)

    Ionization dynamics of atoms and molecules under attosecond laser pulses with various photon energies and peak intensities have been investigated using the Time-Dependent Close-Coupling (TDCC) method. We predict the chirp effects on the triply differential probabilities for the ionized electrons of He produced by 450 and 135 asec pulses. In addition, we shall apply our generalized TDCC method to examine the four-body breakup dynamics of molecular hydrogen induced by these ultrashort pulses.

  18. Generation of a synchronized pulse of extraordinary precision using chirped pulse laser

    International Nuclear Information System (INIS)

    We have developed the generation system of synchronized pulses of high precision using chirped pulse laser. The PW laser is synchronized to Gekko XII beams within 10 picosecond by injecting part of the PW laser into the Gekko XII laser system. A part of the 3 ns/6 nm (pulse width/spectral width) output from the front end is stretched to 5.5 ns/5 nm and is then sliced to 1.1 ns/nm width and injected into Gekko XII system. We have obtained 2.5-kJ output energy at a 532-nm wavelength from 12 semi-Gaussian beams. The pulse width is 1.1 ± 0.1 ns (FWHM) and the conversion efficiency from 1 to 0.5 mm was 43%. (author)

  19. Pulsed laser ablation of GaAs using nano pulse length

    International Nuclear Information System (INIS)

    Ablation using very short pulses has shown a great promise in facilitating the growth of complex multi-element films with stoichiometries matching those of their parent materials. GaAs is an important material in the electronic and opto-electronic industries and due to its compound structure it is an intriguing candidate for pulsed laser deposition. This work investigates the effect of nanosecond laser pulse lengths on the ablation of GaAs in an inert atmosphere. The number of pulses was varied in order to find the optimal condition for nano particles formation in our setup. The deposited structures were studied by grazing incidence small angle X-ray scattering and atomic force microscopy. It is shown that the GaAs nanoparticle sizes and size distributions can be controlled partly by the number of laser pulses applied in their production.

  20. The effect of the laser wavelength on collinear double pulse laser induced breakdown spectroscopy (DP-LIBS)

    Science.gov (United States)

    Wang, Qi; Lin, Yanqing; Liu, Jing; Fan, Shuang; Xu, Zhuopin; Huang, Qing; Wu, Yuejin

    2016-05-01

    The pulsed lasers at wavelengths of 532 nm and 1064 nm were used as two beams of light for collinear double pulse laser induced breakdown spectroscopy (DP-LIBS). By changing the time sequence of two beams of different lasers, we studied the effect of the interval of two pulses of DP-LIBS on spectral signals compared with single pulsed (SP) LIBS.

  1. Fuzzy model for Laser Assisted Bending Process

    Directory of Open Access Journals (Sweden)

    Giannini Oliviero

    2016-01-01

    Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.

  2. Synchronization of Sub-Picosecond Electron and Laser Pulses

    International Nuclear Information System (INIS)

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression

  3. Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography

    International Nuclear Information System (INIS)

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO4 by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of 16O2+ ions. Green laser assisted field evaporation led to the selective loss of Li (∼33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO4. Plotting of multihit events on Saxey plots also revealed a strong neutral O2 loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency. - Highlights: • Laser wavelength and pulse energy affect accuracy of APT analysis of LiFePO4. • Oxygen deficiency observed for UV laser; stronger at higher laser energies. • Selective loss of Li with green laser due to dc evaporation. • Saxey plots reveal prevalent formation of O2 neutrals. • Quantification of molecular dissociations cannot account for O deficiency

  4. Effects of laser energy and wavelength on the analysis of LiFePO{sub 4} using laser assisted atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Dhamodaran [Department of NanoEngineering, University of California San Diego, CA 92093 (United States); Schreiber, Daniel K. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Perea, Daniel E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Martens, Richard L. [Central Analytical Facility, University of Alabama, Tuscaloosa, AL 35487 (United States); Janssen, Yuri [Department of Chemistry, Stony Brook University, Stony Brook, NY 11790-3400 (United States); Khalifah, Peter [Department of Chemistry, Stony Brook University, Stony Brook, NY 11790-3400 (United States); Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11793-5000 (United States); Meng, Ying Shirley, E-mail: shirleymeng@ucsd.edu [Department of NanoEngineering, University of California San Diego, CA 92093 (United States)

    2015-01-15

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO{sub 4} by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of {sup 16}O{sub 2}{sup +} ions. Green laser assisted field evaporation led to the selective loss of Li (∼33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO{sub 4}. Plotting of multihit events on Saxey plots also revealed a strong neutral O{sub 2} loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency. - Highlights: • Laser wavelength and pulse energy affect accuracy of APT analysis of LiFePO{sub 4}. • Oxygen deficiency observed for UV laser; stronger at higher laser energies. • Selective loss of Li with green laser due to dc evaporation. • Saxey plots reveal prevalent formation of O{sub 2} neutrals. • Quantification of molecular dissociations cannot account for O deficiency.

  5. Theory and simulation of ultra-short pulse laser interactions

    Energy Technology Data Exchange (ETDEWEB)

    More, R.; Walling, R.; Price, D.; Guethlein, G.; Stewart, R.; Libby, S.; Graziani, F.; Levatin, J. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-03-01

    This paper describes recent Livermore work aimed at building computational tools to describe ultra-short pulse laser plasmas. We discuss calculations of laser absorption, atomic data for high-charge ions, and a new idea for linear-response treatment of non-equilibrium phenomena near LTE. (author)

  6. Ion and neutral emission from pulsed laser irradiation of metals

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Andó, L.; Gammino, S.; Krása, Josef; Láska, Leoš

    2001-01-01

    Roč. 184, - (2001), s. 327-336. ISSN 0168-583X Institutional research plan: CEZ:AV0Z1010921 Keywords : pulse laser irradiation * ion neutral emission * plasma * time of flight Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.041, year: 2001

  7. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  8. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.;

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O...

  9. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  10. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing. PMID:22614601

  11. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...... devices have been sold directly to consumers for treatment in the home. In this review, we outline the principles underlying laser and IPL technologies and undertake an evidence-based assessment of the short- and long-term efficacy of the different devices available to the practising dermatologist...

  12. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation.

    Science.gov (United States)

    Mork, J; Chen, Y; Heuck, M

    2014-10-17

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers. For larger modulation, a transition from pure frequency modulation to the generation of ultrashort pulses is observed. The laser dynamics is analyzed by generalizing the field equation for conventional lasers to account for a dynamical mirror, described by coupled mode theory. PMID:25361259

  13. Pulse Selection Control for the IR FEL Photocathode Drive Laser

    Science.gov (United States)

    Jordan, K.; Evans, R.; Garza, O.; Hill, R.; Shinn, M.; Song, J.; Venhaus, D.

    1997-05-01

    The method for current control of the photocathode source is described. This device allows remote control of drive laser output pulses for resulting beam currents of less than 1 microamp to full current of 5 milliamps. The low current modes are accomplished by counting discrete micropulses and gating electro-optical cells. The higher current modes are done by varying both the photons per pulse and the frequency of the laser output pulses. Programmable Logic Devices (PLDs) provide the choice in micropulses per macropulse and the macropulse frequency. All macropulses are line locked to 60 Hz and have the ability to be slewed through a line cycle in discrete steps.

  14. Femtosecond laser pulse train interaction with dielectric materials

    CERN Document Server

    Caulier, O Dematteo; Chimier, B; Skupin, S; Bourgeade, A; Léger, C Javaux; Kling, R; Hönninger, C; Lopez, J; Tikhonchuk, V; Duchateau, G

    2015-01-01

    We investigate the interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model. Our theoretical predictions are directly confronted with experimental observations in soda-lime glass. We show that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in our simulations correspond very well to zones of permanent material modifications observed in the experiments.

  15. Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses.

    Science.gov (United States)

    Inasawa, Susumu; Sugiyama, Masakazu; Yamaguchi, Yukio

    2005-05-19

    The evolution of size distributions of gold nanoparticles under pulsed laser irradiation (Nd:YAG, lambda = 355 nm, pulse width 30 ps) was carefully observed by transmission electron microscopy. Interestingly, the initial monomodal size distribution of gold nanoparticles turned into a bimodal one, with two peaks in the number of particles, one at 6 nm and the other at 16-24 nm. The sizes for small particles depended very little on the irradiated laser energy. This change is attributed to laser-induced size reduction of the initial gold nanoparticles followed by the formation of small particles. In our analysis, we extracted a characteristic value for the size-reduction rate per one pulse and revealed that laser-induced size reduction of gold nanoparticles occurred even below the boiling point. When laser energy is insufficient for the boiling of particles, formation of gold vapor around liquid gold drops is thought to cause the phenomenon. With enough laser energy for the boiling, the formation of gold vapor around and inside liquid gold drops is responsible for the phenomenon. We also observed particles with gold strings after one pulse irradiation with a laser energy of 43 mJ cm(-2) pulse(-1), which is sufficient energy for the boiling. It is considered that such particles with gold strings are formed by the projection of gaseous gold from liquid gold drops with some volume of liquid gold around the bubble. On the basis of comparison with previous work, picosecond laser pulses are thought to be the most efficient way to cause laser-induced size reduction of gold nanoparticles. PMID:16852127

  16. Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures

    International Nuclear Information System (INIS)

    Methane decomposition is investigated during Pd-assisted laser induced plasma in the controlled chamber at various pressures using Q-switched Nd:YAG laser. Real time LIBS monitoring is applied to reveal the involved mechanisms during methane decomposition by inspecting the plasma parameters at mano-metric pressures of 1 to 10 mbar. The dependence of electron density and plasma temperature with pressure is also studied. It is shown that the plasma recreates higher hydrocarbons during the decomposition of methane. In addition, Fourier transform infrared spectroscopy, gas chromatography, scanning electron microscopy and transmission electron microscopy are applied to support the findings. - Highlights: ► Simultaneous laser induced breakdown spectroscopy ► Pd-assisted methane decomposition ► Nanosecond pulsed laser decomposition of methane ► Generation of higher hydrocarbon ► Dependence of electron density and temperature of induced plasma with pressure

  17. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.;

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...

  18. Dynamical spin effects in ultra-relativistic laser pulses

    OpenAIRE

    Wen, Meng; Bauke, Heiko; Keitel, Christoph H.

    2014-01-01

    The dynamics of single laser-driven electrons and many particle systems with spin are investigated on the basis of a classical theory. We demonstrate that the spin forces can alter the electron dynamics in an ultra-relativistic laser field due to the coupling of the electron's spin degree of freedom to its kinematic momentum. High-energy electrons can acquire significant spin-dependent transverse momenta while passing through a counterpropagating ultra-relativistic infrared laser pulse. Numer...

  19. Irradiation experiment of textile materials by excimer laser pulses

    International Nuclear Information System (INIS)

    The results of the irradiation experiment of natural and synthetic textile materials by XeCl (excimer) laser pulses (emission wavelenght λ=0.308 μm) are presented. The friction, finish and look variations of the irradiated textiles are examined as a function of the laser radiation parameters (e. g. fluence and shots number). The possibility of using excimer laser systems on industrial bases is also discussed

  20. Toward attosecond electron pulses using ultra-intense lasers

    Science.gov (United States)

    Varin, Charles; Fortin, Pierre-Louis; Piché, Michel

    2008-06-01

    In many countries around the world, ultra-intense laser facilities are being built. These state-of-the-art lasers are intended for innovative medical and technological applications, as well as for basic experiments at the frontiers of fundamental science. Laser particle acceleration is a promising new endeavor. Recently developed schemes using radially polarized beams could help in reaching unprecedentedly short electron pulse durations, well in the attosecond range and potentially in the subattosecond range.

  1. Mathematical modelling of multiple pulsed laser percussion drilling

    OpenAIRE

    Suchatawat, Maturose

    2012-01-01

    In laser percussion drilling, a series of laser pulses with specified energies and durations irradiate the workpiece surface to gradually heat, melt, and vaporise material until a hole with required depth and diameter is achieved. Despite being the quickest technique for producing small diameter holes, laser percussion drilling regularly suffers from difficulties in controlling the hole quality such as hole circularity, hole taper and recast layer. Therefore, in order to produce holes to a sp...

  2. Deuterium Clusters Fusion Induced by the Intense Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Jie; CHEN Jia-Bin; WANG Hong-Bin; JIAO Chun-Ye; HE Ying-Ling; WEN Tian-Shu; WEN Xian-Lun; CHEN Ming; ZHENG Zhi-Jian; GU Yu-Qiu; ZHANG Bao-Han; RHEE Yong-Joo; NAM Sung-Mo; HAN Jae-Min; RHEE Yong-Woo; YEA Kwon-Hae

    2007-01-01

    Neutrons (2.45 MeV) from deuterium cluster fusion induced by the intense femtosecond (30 fs) laser pulse are experimentally demonstrated. The average neutron yield 103 per shot is obtained. It is found that the yield slightly increases with the increasing laser spot size. No neutron can be observed when the laser intensity Ⅰ <4.3×1015 W/cm2.

  3. Stoichiometric magnetite grown by infrared nanosecond pulsed laser deposition

    OpenAIRE

    Sanz, Mikel; Oujja, M.; Rebollar, Esther; Marco, J. F.; Figuera, Juan de la; Monti, Matteo; Bollero, A.; Camarero, J.; Pedrosa, Francisco J.; García-Hernández, M.; Castillejo, Marta

    2013-01-01

    Pulsed laser deposition (PLD) is a versatile technique for the fabrication of nanostructures due to the possibilities it offers to control size and shape of nanostructured deposits by varying the laser parameters. Magnetite nanostructures are currently promising materials to be used in computing, electronic devices and spintronic applications. For all these uses the fabrication of uniform nanostructured pure magnetite thin films is highly advantageous. In PLD of magnetite, the laser irradiati...

  4. Mechanism study of skin tissue ablation by nanosecond laser pulses

    Science.gov (United States)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  5. Propagation of intense, ultrashort laser pulses through preionized plasma slabs

    International Nuclear Information System (INIS)

    Relativistic self-focusing and channel formation induced by intense, ultrashort laser pulses in preionized targets is modeled for accessible experimental parameters. The stability of channel formation is limited by the nonparaxiality of the laser beam in regions of tight self-focusing. This issue is examined with recently developed nonparaxial theory. Channel formation is also characterized in terms of the transmitted pulse spectrum, the transmitted laser intensity profile, and the radial electron density distribution. Calculations indicate a signature spectral shift in transmission biased toward longer wavelengths, which is attributed to the rapid expulsion of electrons away from the propagation axis

  6. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    Science.gov (United States)

    Kemp, A J; Divol, L

    2012-11-01

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion. PMID:23215393

  7. Small rare gas clusters in XUV laser pulses

    CERN Document Server

    Bauer, D

    2003-01-01

    Semi-classical molecular dynamics simulations of small rare gas clusters in short laser pulses of 100 nm wavelength were performed. For comparison, the cluster response to 800 nm laser pulses was investigated as well. The inner ionization dynamics of the multi-electron atoms inside the cluster was treated explicitly. The simulation results underpin that at XUV wavelengths collisions play an important role in the energy absorption and the generation of the surprisingly high charge states of Xe atoms inside clusters, as they were observed in the free-electron laser experiment at DESY, Hamburg, Germany [Wabnitz et al., Nature 420, 482 (2002)].

  8. Propagation of intense laser pulses in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. H., E-mail: xhyang@nudt.edu.cn; Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Yu, W., E-mail: weiyu@mail.shcnc.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, H. [School of Computer Science, National University of Defense Technology, Changsha 410073 (China); Yu, M. Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institut für Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Borghesi, M. [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  9. Laser ablation of iron: A comparison between femtosecond and picosecond laser pulses

    International Nuclear Information System (INIS)

    In this study, a comparison between femtosecond (fs) and picosecond (ps) laser ablation of electrolytic iron was carried out in ambient air. Experiments were conducted using a Ti:sapphire laser that emits radiation at 785 nm and at pulse widths of 110 ps and 130 fs, before and after pulse compression, respectively. Ablation rates were calculated from the depth of craters produced by multiple laser pulses incident normally to the target surface. Optical and scanning electron microscopy showed that picosecond laser pulses create craters that are deeper than those created by the same number of femtosecond laser pulses at the same fluence. Most of the ablated material was ejected from the ablation site in the form of large particles (few microns in size) in the case of picosecond laser ablation, while small particles (few hundred nanometers) were produced in femtosecond laser ablation. Thermal effects were apparent at high fluence in both femtosecond and picosecond laser ablation, but were less prevalent at low fluence, closer to the ablation threshold of the material. The quality of craters produced by femtosecond laser ablation at low fluence is better than those created at high fluence or using picosecond laser pulses

  10. Electroporation visualized under a multishot pulsed laser fluorescence microscope system

    Science.gov (United States)

    Itoh, Hiroyasu; Yu, Irene I. K.; Hibino, Masahiro; Hayakawa, Tsuyoshi; Kinosita, Kazuhiko, Jr.

    1993-10-01

    We describe a new fluorescence microscope system, which is the third generation of our pulsed-laser microscope systems developed for the purpose of capturing rapid cellular phenomena. Time resolution of this latest version is supported by the combination of a Q- switched Nd:YAG laser producing a burst of 4 pulses and a large format framing camera. We obtain series images at intervals on the order of 10 microsecond(s) with exposure times of 30 ns. With this multi-shot pulsed laser fluorescence microscope system, we examined the behavior of the transmembrane potential in a sea urchin egg under an intense electric field. Irreversible process of cell electroporation was revealed in serial images taken under a single electric pulse of microsecond duration.

  11. Xenon plasma sustained by pulse-periodic laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu., E-mail: yakimov@lantanlaser.ru [Russian Academy of Sciences, A. Ishlinsky Institute for Problems in Mechanics (Russian Federation)

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  12. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  13. Laser micro-processing of silicon using nanosecond pulse shaped fibre laser at 1 ?m wavelength

    OpenAIRE

    LI, Kun

    2012-01-01

    Processing of Si in the semiconductor and solar cell industry has been dominated by the Diode Pumped Solid State (DPSS) Ultraviolet (UV) laser. Recent advances in laser source technology have produced fibre lasers with Master Oscillator Power Amplifier (MOPA) architectures that offer high repetition rates, high operational efficiencies, and pulse modulation controls exceeding those of typical Q-switched DPSS lasers. The aim of this research is to investigate 1 ?m fibre laser machining of Si w...

  14. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    International Nuclear Information System (INIS)

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses

  15. Atomic and molecular processes generated by linearly polarized few-cycle laser pulses

    International Nuclear Information System (INIS)

    S-matrix theory is used to analyze different atomic and molecular processes in a linearly polarized few-cycle laser field. The energy spectra of high-order above-threshold ionization (HATI) are presented. Electron-atom potential scattering assisted by a few-cycle laser pulse is also analyzed. It is shown that the plateau structures in the energy spectra of the electron-atom potential scattering are dependent on the carrier-envelope phase (CEP) of the laser pulse, so that the cutoff positions of the plateaus can be controlled by changing the CEP. Regarding our analysis of the molecular HATI process, the angle-resolved spectra, obtained by different theoretical approaches, are also presented. (paper)

  16. Envelope evolution of a laser pulse in an active medium

    International Nuclear Information System (INIS)

    The authors show that the envelope velocity, venv, of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous venv. In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique

  17. Medical applications of ultra-short pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  18. Complex Spectra Structure of an Attosecond Pulse Train Driven by Sub-5-fs Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    YUN Chen-Xia; TENG Hao; ZHANG Wei; WANG Li-Feng; ZHAN Min-Jie; HE Xin-Kui; WANG Bing-Bing; WEI Zhi-Yi

    2011-01-01

    We present the observation of the additional spectral components between the odd order harmonics in the harmonic spectrum generated from argon gas driven by sub-5-fs laser pulses.The theoretical analysis shows that the asymmetric laser field in both spatial and temporal domains leads to this complicated spectrum structure of high order harmonics.

  19. A Novel Femtosecond Laser System for Attosecond Pulse Generation

    Directory of Open Access Journals (Sweden)

    Jianqiang Zhu

    2012-01-01

    Full Text Available We report a novel ultrabroadband high-energy femtosecond laser to be built in our laboratory. A 7-femtosecond pulse is firstly stretched by an eight-pass offner stretcher with a chirp rate 15 ps/nm, and then energy-amplified by a two-stage optical parametric chirped pulse amplification (OPCPA. The first stage as preamplification with three pieces of BBO crystals provides the majority of the energy gain. At the second stage, a YCOB crystal with the aperture of ~50 mm is used instead of the KDP crystal as the gain medium to ensure the shortest pulse. After the completion, the laser will deliver about 8 J with pulse duration of about 10 femtoseconds, which should be beneficial to the attosecond pulse generation and other ultrafast experiments.

  20. Generation of ultrashort electron bunches by colliding laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B.; Lee, P.B.; Wurtele, J.S. [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Esarey, E. [Beam Physics Branch, Plasma Physics Division, Navel Research Laboratory, Washington, District of Columbia 20375 (United States); Leemans, W.P. [Center for Beam Physics, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    1999-07-01

    A proposed laser-plasma based relativistic electron source [E. Esarey {ital et al.}, Phys. Rev. Lett. {bold 79}, 2682 (1997)] using laser triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counter-propagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses. {copyright} {ital 1999 American Institute of Physics.}

  1. Pulsed Single Frequency MOPA Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Latest advances in semiconductor optoelectronics makes it possible to develop compact light weight robust sources of coherent optical pulses, demanded for numerous...

  2. Self-pinching of pulsed laser beams during filamentary propagation

    International Nuclear Information System (INIS)

    Competing nonlinear optical effects that act on femtosecond laser pulses propagating in a self-generated light filament may give rise to a pronounced radial beam deformation, similar to the z-pinch contraction of pulsed high-current discharges. This self-generated spatial beam contraction is accompanied by a pulse break-up that can be beneficially exploited for on-axis temporal compression of the pulse. The pinching mechanism therefore explains the recently observed self-compression and the complicated spatio-temporal shapes typical for filament propagation experiments. (authors)

  3. Double-pulse laser ablation sampling: Enhancement of analyte emission by a second laser pulse at 213 nm

    International Nuclear Information System (INIS)

    For the purpose of devising methods for minimally destructive multi-element analysis, we compare the performance of a 266 nm–213 nm double-pulse scheme against that of the single 266 nm pulse scheme. The first laser pulse at 266 nm ablates a mica sample. Ten ns later, the second pulse at 213 nm and 64 mJ cm−2 orthogonally intercepts the gas plume to enhance the analyte signal. Emissions from aluminum, silicon, magnesium and sodium are simultaneously observed. At low 266 nm laser fluence when only sub-ng of sample mass is removed, the signal enhancement by the 213 nm pulse is especially apparent. The minimum detectable amount of aluminum is about 24 fmol; it will be a hundred times higher if the sample is analyzed by the 266 nm pulse alone. The minimum detectable mass for the other analytes is also reduced by about two orders of magnitude when the second pulse at 213 nm is introduced. The spectral and temporal properties of the enhanced signal are consistent with the mechanism of ultra-violet laser excited atomic fluorescence of dense plumes. - Highlights: • We devise a two-laser-pulse scheme to analyze the elemental composition of mica as test samples. • We compare the analytical performance of the single 266 nm pulse scheme against the 266 nm – 213 nm two pulse scheme. • The two pulse scheme improves the absolute LODs of the analytes by about a hundred times. • The spectral and temporal properties of the enhanced signal are consistent with the mechanism

  4. Double-pulse laser ablation sampling: Enhancement of analyte emission by a second laser pulse at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Bruno Yue [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Mao, Xianglei [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hou, Huaming [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ocean University of China, Qingdao (China); Zorba, Vassilia; Russo, Richard E. [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Cheung, Nai-Ho, E-mail: nhcheung@hkbu.edu.hk [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)

    2015-08-01

    For the purpose of devising methods for minimally destructive multi-element analysis, we compare the performance of a 266 nm–213 nm double-pulse scheme against that of the single 266 nm pulse scheme. The first laser pulse at 266 nm ablates a mica sample. Ten ns later, the second pulse at 213 nm and 64 mJ cm{sup −2} orthogonally intercepts the gas plume to enhance the analyte signal. Emissions from aluminum, silicon, magnesium and sodium are simultaneously observed. At low 266 nm laser fluence when only sub-ng of sample mass is removed, the signal enhancement by the 213 nm pulse is especially apparent. The minimum detectable amount of aluminum is about 24 fmol; it will be a hundred times higher if the sample is analyzed by the 266 nm pulse alone. The minimum detectable mass for the other analytes is also reduced by about two orders of magnitude when the second pulse at 213 nm is introduced. The spectral and temporal properties of the enhanced signal are consistent with the mechanism of ultra-violet laser excited atomic fluorescence of dense plumes. - Highlights: • We devise a two-laser-pulse scheme to analyze the elemental composition of mica as test samples. • We compare the analytical performance of the single 266 nm pulse scheme against the 266 nm – 213 nm two pulse scheme. • The two pulse scheme improves the absolute LODs of the analytes by about a hundred times. • The spectral and temporal properties of the enhanced signal are consistent with the mechanism.

  5. Pulse-to-pulse interaction analysis and parameter optimization for future-generation ophthalmic laser systems

    Science.gov (United States)

    Tinne, N.; Kaune, B.; Bleeker, S.; Lubatschowski, H.; Krüger, A.; Ripken, T.

    2014-02-01

    The immediate pulse-to-pulse interaction becomes more and more important for future-generation high-repetition rate ophthalmic laser systems. Therefore, we investigated the interaction of two laser pulses with different spatial and temporal separation by time-resolved photography. There are various different characteristic interaction mechanisms which are divided into 11 interaction scenarios. Furthermore, the parameter range has been constricted regarding the medical application; here, the efficiency was optimized to a maximum jet velocity along the scanning axis with minimum applied pulse energy as well as unwanted side effects at the same time. In conclusion, these results are of great interest for the prospective optimization of the ophthalmic surgical process with future-generation fs-lasers.

  6. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    A near-terawatt, KrF* laser system, focussable to power densities >1018 W/cm2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  7. Laser triggered injection of electrons in a laser wakefield accelerator with the colliding pulse method

    International Nuclear Information System (INIS)

    An injection scheme for a laser wakefield accelerator that employs a counter propagating laser (colliding with the drive laser pulse, used to generate a plasma wake) is discussed. The threshold laser intensity for electron injection into the wakefield was analyzed using a heuristic model based on phase-space island overlap. Analysis shows that the injection can be performed using modest counter propagating laser intensity a1 0 = 1.0. Preliminary experiments were preformed using a drive beam and colliding beam. Charge enhancement by the colliding pulse was observed. Increasing the signal-to-noise ratio by means of a preformed plasma channel is discussed

  8. Generation of high harmonics and attosecond pulses with ultrashort laser pulse filaments and conical waves

    Indian Academy of Sciences (India)

    A Couairon; A Lotti; D Faccio; P Di Trapani; D S Steingrube; E Schulz; T Binhammer; U Morgner; M Kovacev; M B Gaarde

    2014-08-01

    Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.

  9. Intense isolated few-cycle attosecond XUV pulses from overdense plasmas driven by tailored laser pulses

    Science.gov (United States)

    Chen, Zi-Yu; Li, Xiao-Ya; Chen, Li-Ming; Li, Yu-Tong; Zhu, Wen-Jun

    2014-06-01

    A method to generate an intense isolated few-cycle attosecond XUV pulse is demonstrated using particle-in-cell simulations. When a tailored laser pulse with a sharp edge irradiates a foil target, a strong transverse net current can be excited, which emits a few-cycle XUV pulse from the target rear side. The isolated pulse is ultrashort in the time domain with a duration of several hundred attoseconds. It also has a narrow bandwidth in the spectral domain compared to other XUV sources of high-order harmonics. It has most energy confined around the plasma frequency and no low-harmonic orders below the plasma frequency. It is also shown that XUV pulse of peak field strength up to $ 8\\times 10^{12} $ V$\\mathrm{m}^{-1}$ can be produced. Without the need for pulse selecting and spectral filtering, such an intense few-cycle XUV pulse is better suited to a number of applications.

  10. Intense isolated few-cycle attosecond XUV pulses from overdense plasmas driven by tailored laser pulses

    CERN Document Server

    Chen, Zi-Yu; Chen, Li-Ming; Li, Yu-Tong; Zhu, Wen-Jun

    2014-01-01

    A method to generate an intense isolated few-cycle attosecond XUV pulse is demonstrated using particle-in-cell simulations. When a tailored laser pulse with a sharp edge irradiates a foil target, a strong transverse net current can be excited, which emits a few-cycle XUV pulse from the target rear side. The isolated pulse is ultrashort in the time domain with a duration of several hundred attoseconds. It also has a narrow bandwidth in the spectral domain compared to other XUV sources of high-order harmonics. It has most energy confined around the plasma frequency and no low-harmonic orders below the plasma frequency. In addition, the peak electric field of the pulse is up to $ 8\\times 10^{12} $ V$\\mathrm{m}^{-1}$. Without the need for pulse selecting and spectral filtering, such an intense few-cycle XUV pulse is better suited to a number of applications.

  11. Nonlinear polarization rotation-induced pulse shaping in a stretched-pulse ytterbium-doped fiber laser

    Science.gov (United States)

    Bai, Dong-Bi; Li, Wen-Xue; Yang, Kang-Wen; Shen, Xu-Ling; Chen, Xiu-Liang; Zeng, He-Ping

    2014-10-01

    We report on controllable pulse shaping in a Yb-doped stretched-pulse fiber laser followed by a high-power chirped pulse amplifier. We demonstrate that the pulses after an extra-cavity grating pair change their intensity profile from Lorentz to Gaussian and then to sech2 shapes by adjusting the intra-cavity polarization through a quarter-wave plate inside the fiber laser cavity. The laser pulses with different pulse shapes exhibit pulse-to-pulse amplitude fluctuation of ~ 1.02%, while the sech2-shaped pulse train is provided with a more stable free-running repetition rate as a result of the stronger self-phase modulation in the fiber laser cavity than Lorentz- and Gaussian-shaped pulse trains.

  12. Pulsed DC accelerator for laser wakefield accelerator

    International Nuclear Information System (INIS)

    For the acceleration of ultra-short, high-brightness electron bunches, a pulsed DC accelerator was constructed. The pulser produced megavolt pulses of 1 ns duration in a vacuum diode. Results are presented from field emission of electrons in the diode. The results indicate that the accelerating gradient in the diode is approximately 1.5 GV/m

  13. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  14. Wavelength dependence of soft tissue ablation by using pulsed lasers

    Institute of Scientific and Technical Information of China (English)

    Xianzeng Zhang; Shusen Xie; Qing Ye; Zhenlin Zhan

    2007-01-01

    Pulsed laser ablation of soft biological tissue was studied at 10.6-, 2.94-, and 2.08-μm wavelengths. The ablation effects were assessed by means of optical microscope, the ablation crater depths were measured with reading microscope. It was shown that Er:YAG laser produced the highest quality ablation with clear,sharp cuts following closely the patial contour of the incident beam and the lowest fluence threshold. The pulsed CO2 laser presented the moderate quality ablation with the highest ablation efficiency. The craters drilled with Ho:YAG laser were generally larger than the incident laser beam spot, irregular in shape, and clearly dependent on the local morphology of biotissue. The blation characteristics, including fluence threshold and ablation efficiency, varied substantially with wavelength. It is not evident that water is the only dominant chromophore in tissue.

  15. [Micromachining of Au film by femtosecond pulse laser].

    Science.gov (United States)

    Yuan, Dong-qing; Zhou, Ming; Cai, Lan; Shen, Jian

    2009-05-01

    Femtosecond laser micromachining of film is an emerging technology for fabrication of MEMS devices. A Ti: sapphire laser (130 fs, 1000 Hz)was used to irradiate the thin film with variations in process parameters such as pulse energy. The film thickness is about 4 microm which was measured by AFM. When we used single pulse to excite the film, the ablation diameter increased along with the energy ascending; when the energy of single pulse was invariable, the diameter had little change when altering the number of pulses. The single pulse threshold fluence of Au film was Fth = 0.7 J x cm(-2) at this ultrashort pulse-length in air. By changing the energy of excitation pulse it was found that when the energy was lower than the threshold, the line on the film was heaved; when the energy was higher than the threshold, the line was concave, which was detected by AFM. It was also found that the width of line decreased along with the increase in process speed when the pulse energy remained unchanged; the width of line increased along with the pulse energy ascending when the process speed was fixed. PMID:19650455

  16. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  17. Effect of sulfur on weld geometry in pulsed laser welds

    International Nuclear Information System (INIS)

    The primary goal of the present study was to determine whether compositional differences in a surface active element in austenitic stainless steel can alter the geometry of pulsed laser welds. Clearly, much less time is available during pulse laser welding for convection cells to form and influence heat transfer. A two-dimensional heat-transfer code has been developed for pulsed Nd:YAG laser welding that only incorporates heat transfer by conduction for the molten metal. For fluences that do not result in significant evaporation, this code generally yields good predictions of weld geometries, if appropriate corrections are made for surface absorptivity. At higher fluences, significant differences are found between predicted and observed weld pool shapes. This study is a portion of a larger program to determine the causes of these differences. Earlier work has produced direct experimental evidence that convection cells can develop during pulsed laser welding. However, experimental evidence that convection is present during welding is not sufficient to indicate whether convection is a dominant heat transfer mechanism. More recently, modeling of transient two-dimensional Marangoni flow in a pulsed laser weld pool was attempted

  18. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    International Nuclear Information System (INIS)

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  19. Towards manipulating relativistic laser pulses with 3D printed materials

    CERN Document Server

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  20. Pulsed laser deposition of ZnSe N epilayers

    CERN Document Server

    Boo, B H; Xu, N

    2000-01-01

    A high-quality epitaxial film of nitrogen-doped ZsSe has been grown on a GaAs(100) substrate by using pulsed laser deposition assisted by an atomic nitrogen beam produced by a supersonic nozzle beam source. Atomic force microscopy shows that the surface of the ZnSe epilayer grown on GaAs(100) at 2 x 10 sup - sup 3 Torr is flat and dense. It also shows that its roughness is approx = 1.6 nm, less than that of epilayers grown by using metalorganic vapor phase epitaxy. X-ray diffraction results show that this ZnSe epilayer is a single crystalline epitaxial film. X-ray photoelectron spectroscopy (XPS) indicates that the epilayer is composed of 84 % Zn and Se, 10 % N, and 6 % O; other impurities are rare. The XPS spectra involving the Zn(2p sub 3 sub / sub 2) and the N(1s) core levels also indicate that the concentration of doped nitrogen atoms is above 10 sup 2 sup 1 /cm sup 3.

  1. Diode-Pumped Nanosecond Pulsed Laser with Pulse-Transmission-Mode Q-Switch

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; HUO Yu-Jing; HE Shu-Fang; FENG Li-Chun

    2001-01-01

    Q-switched pulses at 1.064μm with a peak power of 5.02kW and a pulse width of2.8ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate. These values were achieved by combining the techniques of aconsto-optic Q-switching and electro-optic pulse-transmission-mode Q-switching. The temporal characteristics of the pulses were analysed numerically. The experimental results are shown to be in good agreement with theoretical predictions.

  2. Electron-yield enhancement in a Laser-Wakefield accelerator driven by asymmetric laser pulses

    CERN Document Server

    Leemans, W P; Esarey, E; Geddes, C G R; Toth, C; Trines, R; Schroeder, C B; Shadwick, B A; Tilborg, J V; Faure, J

    2002-01-01

    The effect of asymmetric laser pulses on electron yield from a laser Wakefield accelerator has been experimentally studied using > 10 sup 1 sup 9 cm sup - sup 3 plasmas and a 10 TW, >45 fs, Ti:Al sub 2 O sub 3 laser. The laser pulse shape was controlled through nonlinear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability, and that frequency chirp is of minimal importance for the experimental parameters.

  3. Symmetric laser-assisted charge transfer: A nonperturbative treatment

    International Nuclear Information System (INIS)

    We present a nonperturbative treatment of laser-assisted charge transfer under conditions of high laser intensity and low collision energy in a specific symmetric charge transfer system: H(1s) + H+ + mhw → H+ + H(n = 1, 2). Previous work in laser-assisted charge transfer has demonstrated that although perturbative treatments are generally valid for lower laser intensities and higher collision energies, nonperturbative treatments are necessary in the present regime where the influence of the laser on the cross sections is more pronounced. The present work is based on the semiclassical impact parameter method, choosing initial conditions appropriate to charge transfer and treating the projectile-target system within a quasimolecular framework. The interaction with the laser is treated semiclassically, in the velocity gauge. We investigate the effect of the laser on both resonant and nonresonant charge transfer processes and provide comparisons with perturbative results. Finally, we shall discuss possibilities for future research

  4. Pulsed Mid-infrared Radiation from Spectral Broadening in Laser Wakefield Simulations

    OpenAIRE

    Zhu, W.; Palastro, J. P.; Antonsen, T. M.

    2013-01-01

    Spectral red-shifting of high power laser pulses propagating through underdense plasma can be a source of ultrashort mid-infrared (MIR) radiation. During propagation, a high power laser pulse drives large amplitude plasma waves, depleting the pulse energy. At the same time, the large amplitude plasma wave provides a dynamic dielectric response that leads to spectral shifting. The loss of laser pulse energy and the approximate conservation of laser pulse action imply that spectral red-shifts a...

  5. Single molecule imaging with longer x-ray laser pulses

    CERN Document Server

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  6. Modelling of noise-like pulses generated in fibre lasers

    Science.gov (United States)

    Smirnov, Sergey; Kobtsev, Sergey

    2016-03-01

    The present paper for the first time proposes and studies a relatively simple model of noise-like pulses that matches the experimental data well and suggests that there is a correlation between phases of adjacent spectral components of noiselike pulses. Comparison of a relatively basic model of `random' pulses with the results of noise-like pulse modelling in mode-locked fibre lasers based on coupled non-linear Schrödinger equations demonstrates that it adequately reproduces temporal and spectral properties of noise-like pulses as well as correlation between adjacent modes so that it's possible to use the proposed model for highly efficient simulations of promising applications of noise-like pulses, such as material processing, non-linear frequency conversion, microscopy, and others.

  7. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    OpenAIRE

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-01-01

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be...

  8. Engineering anisotropy in glass with ultrafast laser assisted nanostructuring

    OpenAIRE

    Beresna, Martynas; Drevinskas, Rokas; Zhang, Jingyu; Gecevičius, Mindaugas; Kazansky, Peter

    2015-01-01

    Recent applications of femtosecond laser assisted self-assembled nanostructures will be overviewed. Specifically, polarization sensitive optical elements and 5-dimensional optical data storage with practically unlimited life-time will be demonstrated and discussed.

  9. An Introduction to Laser Assisted Microfabrication, Current Status and Future Scope of Application

    Science.gov (United States)

    Ostendorf, A.

    From the invention of the laser almost about five decades ago scientists have studied the potential of laser micromachining. Compared to high power laser applications most applications on the microscale require rather moderate average powers in the range of a few watts or below along with good beam qualities and the possibility to use pulsed and/or short wavelength laser systems. Most applications in this field are based on ablation , i.e., material removal for structuring , drilling , or precise cutting of materials. However, current activities are also ongoing in adapting rapid prototyping , i.e., generative processes to the microscale. Finally, a tremendous amount of research activities are carried out to generate nanostructures. Because of the wavelength and the diffraction limit in classical optics new approaches have been taken into account to overcome these limitations and making use of the unique properties of laser radiation also on the nanometer scale. This chapter provides an overview of pulsed laser assisted micromachining with a focus on structuring by laser ablation , laser generative processes, and finally nanomachining.

  10. Multiphoton ionization with femtosecond laser pulses

    International Nuclear Information System (INIS)

    There are a number of reasons to use subpicosecond pulses in multiphoton ionization experiments. Pulses with shorter risetimes make it possible to study processes with higher rates before one runs into the problem of depletion of target atoms. Furthermore, the momentum of the electron does not change between the point of ionization and the detector if the pulse expires before the electron has time to sample the spatial inhomogeneity of the light intensity. This makes it possible to identify the intensity at which an electron was formed from the energy with which it reaches the detector. Yet another advantage is the fact that the primary ionization products are subject to the ionizing radiation for only a short amount of time, thus reducing the probability of sequential ionization as compared to direct processes. In this paper the experimental results on the multiphoton ionization of xenon with pulses of 100 fs, that were obtained during the preceding year at ENSTA, Palaiseau, will be presented

  11. Energy deposition from focused terawatt laser pulses in air

    CERN Document Server

    Point, Guillaume; Mysyrowicz, André; Houard, Aurélien

    2015-01-01

    Laser filamentation is responsible for the deposition of a significant part of the laser pulse energy in the propagation medium. We found that using terawatt laser pulses and relatively tight focusing conditions in air, resulting in a bundle of co-propagating multifilaments, more than 50 % of the pulses energy is transferred to the medium, eventually degrading into heat. This results in a strong hydrodynamic reaction of air with the generation of shock waves and associated underdense channels for each short-scale filament. In the focal zone, where filaments are close to each other, these discrete channels eventually merge to form a single cylindrical low-density tube over a $\\sim 1~ \\mu\\mathrm{s}$ timescale. We measured the maximum lineic deposited energy to be more than 1 J/m.

  12. Generation and amplification of nanosecond pulses by iodine lasers

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.S.; Katulin, V.A.; Nosach, V.Y.; Petrov, A.L.

    1982-12-01

    Results are reported of experimental investigations of high-power photodissociation iodine laser pumped by lamps and by radiation from high-current electric discharges. The basic parameters of the working medium, the parameters of both lamp-pumped and discharge-pumped lasers, and methods of shaping of a short pulse with diffraction directivity of the radiation are investigated. The possibility of effective amplification of a short pulse by an iodine amplifier pumped with an open high-current discharge is demonstrated. An iodine laser generating a pulse of duration 1 nsec, divergence 10/sup -4/ rad, and energy 100 J at a contrast 10/sup 8/ and 300 J at a contrast 10/sup 2/-10/sup 3/ is described.

  13. Laser short pulse heating of metal nano-wires

    Science.gov (United States)

    Yilbas, B. S.; Al-Dweik, A. Y.

    2012-11-01

    Non-equilibrium energy transfer takes place in a solid substrate during a short-pulse laser irradiation and temperature field can be obtained analytically in the irradiated region. In the present study, laser short-pulse heating of metal nano-wire is considered and the analytical solution for two-dimensional axisymmetric nano-wire is presented. Since the absorption of the incident beam takes place in the skin of the irradiated surface, a volumetric heat source resembling the absorption process is incorporated in the analysis. Three different nano-wire materials are introduced in the analysis for the comparison reason. These include silver, chromium, and copper. It is found that temperature decay is gradual on the surface vicinity and temporal variation of the surface temperature follows almost the laser pulse intensity profile at the irradiated center.

  14. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  15. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  16. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  17. Multiple Filamentation of Laser Pulses in a Glass

    Science.gov (United States)

    Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Iglakova, A. N.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.

    2016-03-01

    Results are presented of experiments on investigation of the spatial characteristics of multi-filamentation region of giga- and terawatt pulses of a Ti:sapphire laser in a glass. Dependences are obtained of the coordinate of the beginning of filamentation region, number of filaments, their distribution along the laser beam axis, and length of filaments on the pulse power. It is shown that with increasing radiation power, the number of filaments in the multi-filamentation region decreases, whereas the filament diameter has a quasiconstant value for all powers realized in the experiments. It is shown that as a certain power of the laser pulse with Gauss energy density distribution is reached, the filamentation region acquires the shape of a hollow cone with apex directed toward the radiation source.

  18. Evolution of short laser pulse in partially stripped plasma

    International Nuclear Information System (INIS)

    Intense laser pulses while propagating through neutral gases ionize them. If the intensity of the laser is not sufficiently high, the gases may not be completely ionized, hence giving rise to partially stripped plasma. The propagation medium for a laser beam in partially stripped plasma consists of a linear and a nonlinear plasma current due to free electrons as well as linear and nonlinear polarization field due to bound atomic electrons. Polarization fields can arise from a number of processes, the dominant process being electronic polarization arising due to modification of the atomic electron distribution by the optical field. The polarization field due to atoms in partially striped plasma can be expressed as a power series of the electric field of the laser. The present paper deals with the effect of nonlinear polarization field and plasma current density on the evolution characteristics of a laser pulse propagating in partially stripped plasma. The wave equation describing the laser field amplitude driven by plasma current density as well as polarization field of the bound atomic electrons is set up. Using a variational technique the equations governing the simultaneous evolution of the spot-size and length of a laser pulse propagating in partially stripped plasma are obtained and solved numerically. (author)

  19. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    International Nuclear Information System (INIS)

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (1012 watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (109 watts) and can be focussed to intensities of /approximately/1016 W/cm2. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs

  20. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  1. Development of pulsed UV lasers and their application in laser spectroscopy

    International Nuclear Information System (INIS)

    The application of two-photon laser spectroscopy to plasma diagnostics requires tuneable UV-laser spectrometers providing: some mJ pulse energy at ns time scale with spectral quality close to Fourier Transform Limit, good pulse to pulse reproducibility and tuning linearity. We report about two different systems, a first laser specially optimized for the radiation at 243 nm, which is required for the 1S-2S two photon transition of atomic hydrogen, and a second one generating 205 nm suited for the transition 1S - 3S/3D.

  2. The effect of laser pulse tailored welding of Inconel 718

    Science.gov (United States)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  3. Ultrafast Pulse Radiolysis Using a Terawatt Laser Wakefield Accelerator

    CERN Document Server

    Oulianov, D A; Gosztola, D J; Korovyanko, O J; Rey de Castro, R C; Shkrob, I A; Crowell, Robert A.; Gosztola, David J.; Korovyanko, Oleg J.; Oulianov, Dmitri A.; Rey-de-Castro, Roberto C.; Shkrob, Ilya A.

    2006-01-01

    We report the first ultrafast pulse radiolysis transient absorption spectroscopy measurements from the Terawatt Ultrafast High Field Facility (TUHFF) at Argonne National Laboratory. TUHFF houses a 20 TW Ti:sapphire laser system that generates 2.5 nC sub-picosecond pulses of multi-MeV electrons at 10 Hz using laser wakefield acceleration. The system has been specifically optimized for kinetic measurements in a pump-probe fashion. This requires averaging over many shots which necessitates stable, reliable generation of electron pulses. The latter were used to generate excess electrons in pulse radiolysis of liquid water and concentrated solutions of perchloric acid. The hydronium ions in the acidic solutions react with the hydrated electrons resulting in the rapid decay of the transient absorbance at 800 nm on the picosecond time scale. Time resolution of a few picoseconds has been demonstrated. The current time resolution is determined primarily by the physical dimensions of the sample and the detection sensit...

  4. Long-pulse-width narrow-bandwidth solid state laser

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  5. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    Science.gov (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-01

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps. PMID:23571876

  6. Orienting coupled quantum rotors by ultrashort laser pulses

    OpenAIRE

    Shima, Hiroyuki; Nakayama, Tsuneyoshi

    2004-01-01

    We point out that the non-adiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most efficiently enhances the orientation of quantum paired rotors.

  7. Orienting coupled quantum rotors by ultrashort laser pulses

    OpenAIRE

    Shima, Hiroyuki; Nakayama, Tsuneyoshi

    2004-01-01

    We pointed out that the nonadiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most efficiently enhance the orientation of quantum paired rotors.

  8. Laser-Pulse/Fiber-Optic Liquid-Leak Detector

    Science.gov (United States)

    Padgett, M. E.

    1986-01-01

    Several potential leak sites monitored using single sensing fiber. Fluid systems monitored quickly for leaks in remote, hazardous, or inaccessible locations by system of compact, lightweight fiber-optic leak sensors presently undergoing development. Sensors installed at potential leak sites as joints, couplings, and fittings. Sensor read by sending laser pulse along fiber, then noting presence or relative amplitude of return pulse. Leak-monitoring technique applicable to wide range of fluid systems and minimizes human exposure to toxic or dangerous fluids.

  9. Pulsed laser ablation and deposition of niobium carbide

    Science.gov (United States)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  10. Streak camera system for prompt display of laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, J.S.; Justice, R.; Bender, S.

    1989-01-01

    The streak camera is a useful tool for doing imaging experiments. Its high bandwidth and large information carrying capacity provide great flexibility in data recording. This paper describes a streak system used to make two-dimensional measurements on a pulsed laser system. The streak system measures beam position, full width, relative intensity, and shape on multiple pulses in a single sweep. These measurements are analyzed in real time and displayed for user feedback. 18 figs.

  11. Pulsed ti: sapphire laser power amplifier

    International Nuclear Information System (INIS)

    We have demonstrated an all solid state Ti:Sapphire laser system consisting of a power oscillator and single pass amplifier. The electrical-to-optical efficiency far exceeds that of the current CW systems. The pump lasers have lower capital and operating costs than the Argon-ion laser. In the future, we plan to scale the output power to higher levels by adding a fourth pump laser and improving the output power of the current pump lasers. Modeling results suggest that a large increase in efficiency can be realized by improving the beam quality of the pump lasers, even at the cost of reduced output power. We will explore this option by adding apertures to the cavity and/or reducing the rod diameter along with optimizing the resonator design. Other improvements in efficiency which will be investigated include double passing the amplifier for better extraction. To complete this work, the laser system will be converted into a two-stage amplifier. A narrow band, lower power oscillator currently under development will be injected in to the amplifier to study the extraction and efficiency characteristics of the amplifier throughout the tuning range of Ti:Sapphire. Detailed beam quality measurements will also be made. Other work will include doubling the narrow band output for materials processing applications

  12. The energy coupling efficiency of multiwavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals

    International Nuclear Information System (INIS)

    The bulk damage performance of potassium dihydrogen phosphate crystals under simultaneous exposure to 1064, 532, and 355 nm nanosecond-laser pulses is investigated in order to probe the mechanisms governing damage initiation during frequency conversion. The results provide insight into the dependence on laser parameters of the defect-assisted excitation process responsible for coupling of the laser energy into the lattice under exposure to high power laser light. In addition, it is suggested that the damage performance can be directly related to and predicted from the damage behavior of the crystal at each wavelength separately

  13. Effect of laser-assisted bleaching with Nd:YAG and diode lasers on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Mirhashemi, Amirhossein; Emadian Razavi, Elham Sadat; Behboodi, Sara; Chiniforush, Nasim

    2015-12-01

    The aim of the present study was to assess the effect of laser-assisted bleaching with neodymium:yttrium-aluminum-garnet (Nd:YAG) and diode lasers on shear bond strength (SBS) of orthodontic brackets. One hundred and four extracted human premolars were randomly divided into four groups: group 1: No bleaching applied (control group); group 2: Teeth bleached with 40 % hydrogen peroxide; group 3: Teeth treated with 30 % hydrogen peroxide activated with Nd:YAG laser (1064 nm, 2.5 W, 25 Hz, pulse duration of 100 μs, 6 mm distance); and group 4: Teeth treated with 30 % hydrogen peroxide activated with diode laser (810 nm, 1 W, CW, 6 mm distance). Equal numbers of teeth in groups 2, 3, and 4 were bonded at start, 1 h, 24 h, and 1 week after bleaching. A universal testing machine measured the SBS of the samples 24 h after bonding. After bracket debonding, the amount of residual adhesive on the enamel surface was observed under a stereomicroscope to determine the adhesive remnant index (ARI) scores. The SBS in the unbleached group was significantly higher than that in the bleached groups bonded immediately and 1 h after laser-assisted bleaching (P < 0.05). In groups 3 and 4 at start and group 2 at start and 1 h after laser-assisted bleaching, the SBS was found to be significantly lower than that in the control group. Significant differences in the ARI scores existed among groups as well. The SBS of brackets seems to increase quickly within an hour after laser-assisted bleaching and 24 h after conventional bleaching. Thus, this protocol can be recommended if it is necessary to bond the brackets on the same day of bleaching. PMID:26319247

  14. Detection of early dental caries with short pulse laser

    International Nuclear Information System (INIS)

    Differences in the optical properties of polarization and photoluminescence between caries lesion and noncaries (sound) enamel have been investigated by focusing a pulsed Nd:YAG laser of 532 nm on the surface of teeth. Significant difference in the polarization property of the scattered light from the surface can be observed with some carious samples. For photoluminescence spectral lines which appear at around 650 nm, the intensity of caries lesion has been approximately two times higher than that of sound one. A discussion is presented in which early are potentially detectable by the pulsed laser. (author)

  15. Pulsed Yb:KYW laser and UV generation

    OpenAIRE

    Tjörnhammar, Staffan

    2010-01-01

    In this master thesis project, a pulsed UV laser was designed and constructed. Also, the effects of absorption in a volume Bragg grating were investigated. The laser was diode pumped and constructed with Yb:KYW as gain medium. The lasing was at a wavelength of 1029.2 nm with a spectral bandwidth of 0.23 nm, locked by a volume Bragg grating that was used as input coupler for spectral control. Passive Q‑switching was used to generate pulses by placing a Cr:YAG saturable absorber inside the cavi...

  16. Plasma and cavitation dynamics during pulsed laser microsurgery in vivo

    CERN Document Server

    Hutson, M Shane

    2007-01-01

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo) - specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo - especially at 355 nm - due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  17. Quantum quenching of radiation losses in short laser pulses

    CERN Document Server

    Harvey, Chris; Ilderton, Anton; Marklund, Mattias

    2016-01-01

    Accelerated charges radiate, and therefore must lose energy. The impact of this energy loss on particle motion, called radiation reaction, becomes significant in intense-laser matter interactions, where it can reduce collision energies, hinder particle acceleration schemes, and is seemingly unavoidable. Here we show that this common belief breaks down in short laser pulses, and that energy losses and radiation reaction can be controlled and effectively switched off by appropriate tuning of the pulse length. This "quenching" of emission is impossible in classical physics, but becomes possible in QED due to the discrete nature of quantum emissions.

  18. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    Science.gov (United States)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  19. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    We performed 20-ps pulse laser irradiation experiments on a MgB2 neutron detector to know a thermal-relaxation process for designing a MgB2 neutron detector. The membrane-type structured MgB2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 106 events per second

  20. Nuclear fuel safety studies by laser pulse heating

    International Nuclear Information System (INIS)

    The behaviour of nuclear fuels under transient heating conditions is vital to nuclear safety. A laser pulse based heating system to simulate the transient heating conditions experienced by the fuel during reactor accidents like LOCA and RIA is under development at BARC, Mumbai. Some of the concepts used in this system are under testing in pilot studies. This paper describes the results of some pilot studies carried out on unirradiated UO2 specimens by laser pulse heating, followed by metallography and X-ray diffraction measurements. (author)

  1. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  2. Plasma waveguides for high-intensity laser pulses

    International Nuclear Information System (INIS)

    This thesis documents the development of plasma waveguides for high-intensity laser pulses. Initial work concentrated on the development of the discharge-ablated capillary waveguide, based on the work of A. Zigler (Zigler, A., Y. Ehrlich, C. Cohen, J. Krall and P. Sprangle, J. Opt. Soc. Am. B 13, 68). The waveguide was shown to be capable of guiding picosecond laser pulses with an intensity of 1016 W cm-2 over a length of 10 mm. The pulse energy transmission of the capillary was increased from 48% to 70% when the discharge was fired. An interferometry-based measurement technique was developed, allowing measurement of the electron density profile formed in the capillary waveguide. These measurements were used as input to a numerical simulation that predicted the propagation of intense laser pulses through partially-ionised plasma waveguides. Numerical simulations accurately reproduced the picosecond pulse guiding results, and gave important insights into the properties and severe drawbacks of partially-ionised waveguides. Previous work on partially-ionised plasma waveguides has not fully explored the implications of the propagation of intense pulses through the partially-ionised plasma. For polypropylene waveguides, it was shown that for pulses with an intensity of 1016 W cm-2, the waveguide is not capable of high-quality guiding. However, for pulses with an intensity of greater than 1017 W cm-2, high-quality guiding is predicted through the partially-ionised waveguide in a new regime called 'quasi-matched guiding'. A novel gas-filled capillary discharge waveguide was designed and built. The device was shown to form a guiding channel inside a capillary pre-filled with gas. Interferometry measurements of the electron density profile formed in a hydrogen-filled capillary discharge waveguide showed that an approximately parabolic plasma waveguide could be formed in an essentially fully-ionised hydrogen plasma. The device was used to guide femtosecond laser pulses, with

  3. Curing of Epoxy Resin Induced by Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    LI Yubin; ZHANG Zuoguang

    2005-01-01

    The possibility of curing of epoxy resin induced by femtosecond laser beam was explored through choosing different initiators . Absorption spectroscopy, infrared spectroscopy (IR), stereomicroscopy and scanning electron microscopy (SEM) were applied to analyze the structure of epoxy resin systems after irradiation with a femtosecond laser beam. The experimental results show that the epoxy resin systems containing diaryliodonium salts can be cured by irradiation of Jemtosecond laser pulse, while the systems containing benzoin can not be cured. It is found that diaryliodonium salts decompose under the irradiation of femtosecond laser pulse through multi ( two ) -photon absorption, initiating the ring-opening polymerization of epoxy resin. And the appearance of cured area has a sheet structure consisting of many tiny lamellar structures.

  4. Interaction of Superintense Laser Pulses with Relativistic Ions

    Science.gov (United States)

    Chirilă, C. C.; Joachain, C. J.; Kylstra, N. J.; Potvliege, R. M.

    2004-12-01

    At high intensities, three-step recollision processes driven by low frequency laser pulses, such as high-order harmonic generation and high-order above-threshold ionization, are normally severely suppressed by the magnetic-field component of the laser field. It is shown that this suppression is not severe, even for ponderomotive energies well above 10keV, for multicharged ions moving at a sufficiently high relativistic velocity against a counterpropagating infrared laser pulse. Numerical results are presented for high-order harmonic emission by a single Ne9+ ion moving with a Lorentz factor γ=15 against a Nd:glass laser beam. The calculations are done within a Coulomb-corrected nondipole strong field approximation. The approximation is tested by comparing with accurate results.

  5. Interaction of superintense laser pulses with relativistic ions.

    Science.gov (United States)

    Chirilă, C C; Joachain, C J; Kylstra, N J; Potvliege, R M

    2004-12-10

    At high intensities, three-step recollision processes driven by low frequency laser pulses, such as high-order harmonic generation and high-order above-threshold ionization, are normally severely suppressed by the magnetic-field component of the laser field. It is shown that this suppression is not severe, even for ponderomotive energies well above 10 keV, for multicharged ions moving at a sufficiently high relativistic velocity against a counterpropagating infrared laser pulse. Numerical results are presented for high-order harmonic emission by a single Ne9+ ion moving with a Lorentz factor gamma=15 against a Nd:glass laser beam. The calculations are done within a Coulomb-corrected nondipole strong field approximation. The approximation is tested by comparing with accurate results. PMID:15697809

  6. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brendel' , V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  7. Cutaneous effects of pulsed nitrogen gas laser irradiation

    International Nuclear Information System (INIS)

    The effects of pulsed nitrogen gas laser emission (337.1 nm wavelength) were studied on human skin. The laser provides high-intensity monochromatic UVA radiation and can elicit delayed erythema in an actual exposure time of about 1 msec (105,000 pulses, each lasting 10 nsec, delivered over 210 sec). The effects of nitrogen laser irradiation were compared clinically and histologically with conventional erythemogenic UVA and UVB exposures from xenon arc or mercury arc lamps and were found to be similar in many respects. The minimal erythema dose is comparable to that obtained using more conventional continuous light sources which have more than 100 times lower intensity. A phototoxicity comparison of oral and topically applied psoralens is presented, indicating that the laser may prove useful in comparing photosensitizing capacity of certain compounds

  8. Waveguide fabrication in phosphate glasses using femtosecond laser pulses

    International Nuclear Information System (INIS)

    We report on the response of glass to focused femtosecond (fs) laser pulses during waveguide fabrication in a commercial sodium aluminum phosphate glass (Schott IOG-1). Single-pass longitudinal translation of IOG-1 glass with respect to the focused laser beam at a rate of 20 μm/s and pulse energies of 3.5 μJ results in the formation of two waveguides located on opposite sides of the laser-exposed region, which itself does not guide light. This behavior is different from that of the more widely studied silica glass system. The precise location of the waveguides in IOG-1 glass depends on the relative tilt of the fs laser beam with respect to the sample translation direction. Fluorescence imaging of the modified glass using a confocal microscope setup reveals the formation of color center defects in the exposed region but not within the waveguides

  9. Ultrafast pulses from a mid-infrared fiber laser.

    Science.gov (United States)

    Hu, Tomonori; Jackson, Stuart D; Hudson, Darren D

    2015-09-15

    Ultrafast laser pulses at mid-infrared wavelengths (2-20 μm) interact strongly with molecules due to the resonance with their vibration modes. This enables their application in frequency comb-based sensing and laser tissue surgery. Fiber lasers are ideal to achieve these pulses, as they are compact, stable, and efficient. We extend the performance of these lasers with the production of 6.4 kW at a wavelength of 2.8 μm with complete electric field retrieval using frequency-resolved optical gating techniques. Contrary to the problems associated with achieving a high average power, fluoride fibers have now shown the capability of operating in the ultrafast, high-peak-power regime. PMID:26371902

  10. Multiple quantum wells for passive ultra short laser pulse generation

    CERN Document Server

    Quintero-Torres, R; Rodriguez-Rodriguez, E; Stintz, Andreas; Diels, Jean-Claude

    2007-01-01

    Solid state lasers are demanding independent control in the gain media and cavity loss to achieve ultra short laser pulses using passive mode-locking. Recently, laser mode-locking is achieved with a MBE structure with multiple quantum wells, designed to achieve two functions; Bragg mirror and changes in absorption to control the cavity dynamics. The use of an AlGaAs/AlAs Bragg mirror with a 15 nm GaAs saturable absorber used in a Cr:LiSAF tuneable laser proved to be effective to produce femtosecond pulses. The use of saturable absorbers thus far is a trial and error procedure that is changing due to the correlation with more predictive procedures.

  11. Micro-ablation with high power pulsed copper vapor lasers.

    Science.gov (United States)

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser. PMID:19404369

  12. Droplet deformation and fragmentation by ultra-short laser pulses

    CERN Document Server

    Krivokorytov, M S; Sidelnikov, Yu V; Krivtsun, V M; Medvedev, V V; Kompanets, V O; Lash, A A; Koshelev, K N

    2016-01-01

    We report on the experimental studies of the deformation and fragmentation of liquid metal droplets by picosecond and subpicosecond laser pulses. The experiments were performed with laser irradiance varying in 10E13-10E15 W/cm^2 range. The observed evolution of the droplet shape upon the impact dramatically differs from the previously reported for nanosecond laser pulses. Instead of flattening the droplet undergoes rapid asymmetric expansion and transforms into a complex shape which can be interpreted as two conjunct spheroid shells and finally fragments. We explain the described hydrodynamic response to the ultra-short impact as a result of the propagation of the laser-induced convergent shockwave through the volume of droplet.

  13. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xinxing, E-mail: xinxing.sun@iom-leipzig.de; Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318, Leipzig (Germany)

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  14. Optical trapping of nanoparticles by ultrashort laser pulses.

    Science.gov (United States)

    Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi

    2013-01-01

    Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field. PMID:23738434

  15. Cooling of relativistic electron beams in chirped laser pulses

    CERN Document Server

    Yoffe, Samuel R; Kravets, Yevgen; Jaroszynski, Dino A

    2015-01-01

    The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau--Lifshitz theory. Results indicate that even la...

  16. Laser grooving of Al{sub 2}O{sub 3} plate by a pulsed Nd:YAG laser: Characteristics and application to the manufacture of gas sensors array heater

    Energy Technology Data Exchange (ETDEWEB)

    Bai Zikui [State Key Laboratory of Plastic Forming Simulation and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang Aihua [Nanomaterial and Smart Sensor Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie Changsheng [State Key Laboratory of Plastic Forming Simulation and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China) and Nanomaterial and Smart Sensor Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: csxie@mail.hust.edu.cn

    2006-11-05

    Laser grooving on a 0.635 mm thick alumina ceramic plate was carried out by a 400 W pulsed Nd:YAG laser. The effects of the laser grooving parameters, such as laser pulse frequency, laser peak pulse energy, assisting gases (oxygen and nitrogen), laser beam diameter and grooving speed on the morphologies of grooves were investigated by using field-emission scanning electron microscopy (FE-SEM) and optical microscopy. Results show that the U-type groove with smooth inner surface was produced at a fixed pulse frequency of 40 Hz, a grooving speed of 4 mm s{sup -1} and an assisting gas pressure of 3 bar. The depth of the U-type groove increased with an increase in laser pulse peak energy. The assisting gas type was found to influence the grooving mechanism, that is, nitrogen gas had a chemical reaction with alumina, and then changed the substrate surface absorptivity to laser beam. So the smaller heat-affected zone (HAZ) was obtained in the substrate than that of the oxygen assisting gas. In addition, the stable and reliable RuO{sub 2}-buried heater was produced in the U-type groove with smooth inner surface, which reduced sensing element power consumption and improved the thermal response rate in a sensor array.

  17. Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser

    International Nuclear Information System (INIS)

    Pulsed laser ablation of ultra-high-molecular-weight-polyethylene (UHMWPE) is investigated at Prague Asterix Laser System (PALS) Laboratory. The high ablation yield as a function of laser energy is presented at 438 nm laser wavelength. The mechanisms of the polymer ablation are studied on the base of ''in situ'' analysis, such as mass quadrupole spectrometry and time-of-flight measurements, and ''ex situ'' analysis, such as SEM investigations and Raman spectroscopy. Results show that the laser irradiation induces a strong polymer dehydrogenation and molecular emission due to different CxHy groups having high kinetic energy and high charge state. At a laser pulse energy of 150 J the H+, Cn+ ions (n=1 to 6) are emitted from the plasma with velocities of the order of 108 cm/s, while the CxHy groups and the carbon clusters, detected up to C16, have a velocity about one or two order magnitude lower. The laser ablation process produces a deep crater in the polymer, which depth depends on the laser pulse energy and it is of the order of 500 μm. The crater volume increases with the laser pulse energy. Results demonstrated that the laser radiation modifies the polymer chains because dehydrogenated material and carbon-like structures are detected in the crater walls and in the bottom of the crater, respectively. A comparison of the experimental results with the data available in literature is presented and discussed

  18. Demonstration of a self-pulsing photonic crystal Fano laser

    CERN Document Server

    Yu, Yi; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-01-01

    Semiconductor lasers in use today rely on mirrors based on the reflection at a cleaved facet or Bragg reflection from a periodic stack of layers. Here, we demonstrate an ultra-small laser with a mirror based on the Fano resonance between a continuum of waveguide modes and the discrete resonance of a nanocavity. The Fano resonance leads to unique laser characteristics. Since the Fano mirror is very narrow-band compared to conventional lasers, the laser is single-mode and in particular, it can be modulated via the mirror. We show, experimentally and theoretically, that nonlinearities in the mirror may even promote the generation of a self-sustained train of pulses at gigahertz frequencies, an effect that was previously only observed in macroscopic lasers. Such a source is of interest for a number of applications within integrated photonics.

  19. Extensive angiokeratoma circumscriptum - successful treatment with 595-nm variable-pulse pulsed dye laser and 755-nm long-pulse pulsed alexandrite laser.

    Science.gov (United States)

    Baumgartner, Ján; Šimaljaková, Mária; Babál, Pavel

    2016-06-01

    Angiokeratomas are rare vascular mucocutaneous lesions characterized by small-vessel ectasias in the upper dermis with reactive epidermal changes. Angiokeratoma circumscriptum (AC) is the rarest among the five types in the current classification of angiokeratoma. We present a case of an extensive AC in 19-year-old women with Fitzpatrick skin type I of the left lower extremity, characterized by a significant morphological heterogeneity of the lesions, intermittent bleeding, and negative psychological impact. Histopathological examination after deep biopsy was consistent with that of angiokeratoma. The association with metabolic diseases (Fabry disease) was excluded by ophthalmological, biochemical, and genetic examinations. Nuclear magnetic resonance imaging has not detected deep vascular hyperplasia pathognomic for verrucous hemangioma. The combined treatment with 595-nm variable-pulse pulsed dye laser (VPPDL) and 755-nm long-pulse pulsed alexandrite laser (LPPAL) with dynamic cooling device led to significant removal of the pathological vascular tissue of AC. Only a slight degree of secondary reactions (dyspigmentations and texture changes) occurred. No recurrence was observed after postoperative interval of 9 months. We recommend VPPDL and LPPAL for the treatment of extensive AC. PMID:26736060

  20. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses

    OpenAIRE

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    We experimentally demonstrate ultrafast dynamic of generation of a strong 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the excited and ground states of N2 for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, ...

  1. An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition

    OpenAIRE

    Grant-Jacob, James A.; Beecher, Stephen J.; Parsonage, Tina L.; Hua, Ping; Mackenzie, Jacob I.; Shepherd, David P.; Eason, Robert W.

    2016-01-01

    We present details of the homo-epitaxial growth of Yb:YAG onto a oriented YAG substrate by pulsed laser deposition. Material characterization and initial laser experiments are also reported, including the demonstration of laser action from the 15 µm-thick planar waveguide generating 11.5 W of output power with a slope efficiency of 48%. This work indicates that under appropriate conditions, high-quality single-crystal Yb:YAG growth via pulsed laser deposition is achievable with characteristi...

  2. Electrical properties of pulsed UV laser irradiated amorphous carbon

    OpenAIRE

    Y. Miyajima; Adikaari, AADT; Henley, SJ; Shannon, JM; Silva, SRP

    2008-01-01

    Amorphous carbon films containing no hydrogen were irradiated with a pulsed UV laser in vacuum. Raman spectroscopy indicates an increase in the quantity of sp(2) clustering with the highest laser energy density and a commensurate reduction in resistivity. The reduction of resistivity is explained to be associated with thermally induced graphitization of amorphous carbon films. The high field transport is consistent with a Poole-Frenkel type transport mechanism via neutral trapping centers rel...

  3. Polaritonic materials fabricated and tested with ultrashort-pulse lasers

    CERN Document Server

    Ward, D W; Feurer, T; Nelson, K A; Ward, David W.; Statz, Eric R.; Feurer, Thomas; Nelson, Keith A.

    2004-01-01

    Using femtosecond laser machining, we have fabricated photonic bandgap materials that influence propagation of phonon-polaritons in ferroelectric crystals. Broadband polaritons were generated with impulsive stimulated Raman scattering (ISRS) using an ultrashort laser pulse, and the spatial and temporal evolution of the polaritons were imaged as they propagated through the fabricated structures with polariton real-space imaging. These techniques offer a new approach to optical materials design.

  4. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...... diode; the excitonic semiconductor response for varying material thickness in the case of linear optics; and modulational instability of electromagnetic waves in media with spatially varying non-linearity....

  5. Characterization of polymer thin films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate). The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. It was found that for laser fluences up to 1.5 J/cm2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm2 the polyepichlorohydrin films present deviations from the bulk polymer. Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm2). The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material. The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.

  6. Ablation and plasma emission produced by dual femtosecond laser pulses

    International Nuclear Information System (INIS)

    Pairs of 80 fs, 800 nm laser pulses were used to ablate Si, Cu, and CaF2 in air. The spectrally resolved plasma emission was measured as a function of laser fluence and pulse delay. After an initial dip, the fluorescence was found to increase monotonically with pulse delay, reaching a plateau after some tens of picoseconds, depending on the material and fluence. The enhancement ratio (defined as the ratio of the fluorescence produced by the pulse pair to that produced by a single pulse of the same total fluence) reaches a maximum value of 6 and 11 at a fluence of ∼6 J/cm2 for Si and Cu, respectively, and declines to a value below 2 at higher fluences. In contrast, the enhancement for CaF2 increases slowly from zero near threshold to a broad maximum value of 2 near 50 J/cm2. Using reflectivity and atomic force microscopy measurements as diagnostics, we interpret the Si and Cu behavior in terms of a two phase mechanism, in which the first pulse melts the surface of the crystal and the second pulse ablates the resulting liquid film. A qualitatively different mechanism initiated by multiphoton absorption is involved in CaF2 ablation

  7. Temporal laser pulse manipulation using multiple optical ring-cavities

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  8. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    Science.gov (United States)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  9. Direct welding of glass and metal by 1  kHz femtosecond laser pulses.

    Science.gov (United States)

    Zhang, Guodong; Cheng, Guanghua

    2015-10-20

    In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices. PMID:26560385

  10. Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods

    International Nuclear Information System (INIS)

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer–drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA–gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer–drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  11. Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, C.; Dorcioman, G.; Miroiu, F.M.; Socol, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Gittard, S.D.; Miller, P.R.; Narayan, R.J. [Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599-7575 (United States); Enculescu, M. [National Institute for Materials Physics, PO Box MG-7, Bucharest-Magurele (Romania); Chrisey, D.B. [Tulane University, Department of Physics and Engineering Physics, New Orleans, LA (United States)

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer–drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA–gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer–drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  12. Laser fusion neutron source employing compression with short pulse lasers

    Science.gov (United States)

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  13. Nonlinear 6-fold enhancement of laser drilling efficiency by double pulse mode: prospective in medicine application

    Science.gov (United States)

    Pershina, N. S.; Pershin, S. M.; Cech, M.; Prochazka, I.

    2009-05-01

    The efficiency of laser ablation drilling of metal and dielectric (ceramic, glasses, etc.) samples with single and multiple laser pulses per one laser shot was experimentally studied. The laser is operated on the fundamental (1064 nm) wavelength of Nd:YAG laser with 30 ns pulse length or its second (532 nm) and third (351 nm) harmonics, respectively. The laser shot repletion rate was 1 Hz. The pulses in train were separated by 25-45 μs interval. The crater depth and drilling speed dependence increasing on pulse number in multipulse train was studied. The laser ablation normalized per pulse energy in train dependence is not linear function. The strong ablation enhancement was observed. The optimal (in sense the total pulse energy using) drilling can be obtained with double pulse mode compared with 3 - 5 pulses. Nonlinear more than 6 fold increasing of crater depth produced by the second pulse in train was detected. The mechanism of selective increasing of the second pulse interaction efficiency with the hard target is discussed. Experimental results explained in terms of double pulse mode laser ablation model. Spectroscopy study of laser plasma was observed to confirm discussed model of high efficiency for two laser pulse laser ablation. Efficiency of double pulse mode compared with multipulse mode is discussed to be more perspective for various applications of laser ablation. The medicine (surgery, dentist, ophthalmology and so on) application is the most prospective, for instance, the teeth drilling or glaucoma perforation, can be done with smaller energy value.

  14. Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses

    International Nuclear Information System (INIS)

    The laser-induced backside wet etching (LIBWE) is an advanced laser processing method used for structuring transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated for various materials, e.g. oxides (fused silica, sapphire) or fluorides (CaF2, MgF2), and applied for the fabrication of microstructures. In the present study, LIBWE of fused silica with mode-locked picosecond (tp = 10 ps) lasers at UV wavelengths (λ1 = 355 nm and λ2 = 266 nm) using a (pyrene) toluene solution was demonstrated for the first time. The influence of the experimental parameters, such as laser fluence, pulse number, and absorbing liquid, on the etch rate and the resulting surface morphology were investigated. The etch rate grew linearly with the laser fluence in the low and in the high fluence range with different slopes. Incubation at low pulse numbers as well as a nearly constant etch rate after a specific pulse number for example were observed. Additionally, the etch rate depended on the absorbing liquid used; whereas the higher absorption of the admixture of pyrene in the used toluene enhances the etch rate and decreases the threshold fluence. With a λ1 = 266 nm laser set-up, an exceptionally smooth surface in the etch pits was achieved. For both wavelengths (λ1 = 266 nm and λ2 = 355 nm), LIPSS (laser-induced periodic surface structures) formation was observed, especially at laser fluences near the thresholds of 170 and 120 mJ/cm2, respectively.

  15. Application of femtosecond ultrashort pulse laser to photodynamic therapy mediated by indocyanine green

    OpenAIRE

    Sawa, M; Awazu, K; Takahashi, T.; Sakaguchi, H; Horiike, H.; Ohji, M; Tano, Y

    2004-01-01

    Backgrounds/aims: To evaluate treatment with high peak power pulse energy by femtosecond ultrashort pulse laser (titanium sapphire laser) delivered at an 800 nm wavelength for corneal neovascularisation using photodynamic therapy (PDT) mediated by indocyanine green (ICG).

  16. Development of Nanosecond Short Pulse High Power KrF Laser System

    Institute of Scientific and Technical Information of China (English)

    SZATMAR; Sador; BOHUS; Janos

    2011-01-01

    Compression of short pulse laser is demanded by the physical experiments such as EOS for Heaven-I system. A nanosecond short pulse high power discharge pumping excimer laser system was developed under the frame of Science and Technology

  17. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N2, NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author)

  18. Recent applications of pulsed lasers in advanced materials processing

    International Nuclear Information System (INIS)

    Pulsed laser sources are widely used for the micro-processing of materials from the structuring and patterning of surfaces to the direct machining of devices. This paper discusses laser micro-processing techniques for the fabrication of microstructures with high accuracy and precision over large areas. Techniques discussed include laser mask projection techniques, synchronised image scanning (SIS) and bow tie scanning (BTS) and direct beam micromachining. Examples of the application of these techniques in industrial production are discussed, including solar cell scribing, micro-optical device manufacture, inkjet printer nozzle drilling and plasma display panel patterning

  19. Performance optimization of water-jet assisted underwater laser cutting of AISI 304 stainless steel sheet

    Science.gov (United States)

    Mullick, Suvradip; Madhukar, Yuvraj K.; Roy, Subhransu; Nath, Ashish K.

    2016-08-01

    Recent development of water-jet assisted underwater laser cutting has shown some advantages over the gas assisted underwater laser cutting, as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. Scattering is reported to be a dominant loss mechanism, which depends on the growth of vapor layer at cut front and its removal by water-jet. Present study reports improvement in process efficiency by reducing the scattering loss using modulated laser power. Judicious control of laser pulse on- and off-time could improve process efficiency through restricting the vapor growth and its effective removal by water-jet within the laser on- and off-time, respectively. Effects of average laser power, duty cycle and modulation frequency on specific energy are studied to get an operating zone for maximum efficiency. Next, the variation in laser cut quality with different process parameters are studied within this operating zone using Design of experiment (DOE). Response surface methodology (RSM) is used by implementing three level Box-Behnken design to optimize the variation in cut quality, and to find out the optimal process parameters for desired quality. Various phenomena and material removal mechanism involved in this process are also discussed.

  20. Physics of Giant ElectroMagnetic Pulse generation in short pulse laser experiments

    OpenAIRE

    Poyé, Alexandre; Hulin, Sébastien; Bailly-Grandvaux, Mathieu; Dubois, Jean-Luc; Ribolzi, Jérôme; Raffestin, Didier; Bardon, Matthieu; Lubrano-Lavaderci, Frédéric; D'Humières, Emmanuel; Santos, Joao Jorge; Nicolaï, Philippe; Tikhonchuk, Vladimir

    2015-01-01

    In this paper we describe the physical processes that lead to the generation of Giant Electro- Magnetic Pulses (GEMP) on powerful laser facilities. Our study is based on experimental mea- surements of both the charging of a solid target irradiated by an ultra-short, ultra-intense laser and the detection of the electromagnetic emission in the GHz domain. An unambiguous correlation between the neutralisation current in the target holder and the electromagnetic emission shows that the source of ...