WorldWideScience

Sample records for assisted chemical vapour

  1. Electric field assisted aerosol assisted chemical vapour deposition of nanostructured metal oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Anupriya J.T.; Bowman, Christopher; Panjwani, Naitik [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); Warwick, Michael E.A. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); UCL Energy Institute, Central House, 14 Upper Woburn Place, London WC1H 0HY (United Kingdom); Binions, Russell, E-mail: r.binions@qmul.ac.uk [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ (United Kingdom); School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2013-10-01

    Nanostructured thin films of tungsten, vanadium and titanium oxides were deposited on gas sensor substrates from the electric field assisted chemical vapour deposition reaction of tungsten hexaphenoxide, vanadyl acetylacetonate and titanium tetraisopropoxide respectively. The electric fields were generated by applying a potential difference between the inter-digitated electrodes of the gas sensor substrates during the deposition. The deposited films were characterised using scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The application of an electric field, encouraged the formation of interesting and unusual nanostructured morphologies, with a change in scale length and island packing. It was also noted that crystallographic orientation of the films could be controlled as a function of electric field type and strength. The gas sensor properties of the films were also examined; it was found that a two to three fold enhancement in the gas response could be observed from sensors with enhanced morphologies compared to control sensors grown without application of an electric field. - Highlights: • Electric field assisted chemical vapour deposition method • Ability to create high surface area film architectures • Can produce enhanced sensor response • Good control over film properties.

  2. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  3. Electron behaviour in CH4/H2 gas mixture in electron-assisted chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Dong Li-Fang; Ma Bo-Qin; Wang Zhi-Jun

    2004-01-01

    The behaviour of electrons in CH4/H2 gas mixture in electron-assisted chemical vapour deposition of diamond is investigated using Monte Carlo simulation. The electron drift velocity in gas mixture is obtained over a wide range of E/P (the ratio of the electric field to gas pressure) from 1500 to 300000 (V/m kPa-1). The electron energy distribution and average energy under different gas pressure (0.1-20kPa) and CH4 concentration (0.5%-10.0%) are calculated. Their effects on the diamond growth are also discussed. It is believed that these results will be helpful to the selection of optimum experimental conditions for high quality diamond film deposition.

  4. Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapour deposition

    OpenAIRE

    Bhachu, D. S.; Scanlon, D. O.; Saban, E. J.; Bronstein, H.; Parkin, I. P.; Carmalt, C. J.; Palgrave, R. G.

    2015-01-01

    Methyl-ammonium lead iodide is the archetypal perovskite solar cell material. Phase pure, compositionally uniform methyl-ammonium lead iodide thin films on large glass substrates were deposited using ambient pressure aerosol assisted chemical vapour deposition. This opens up a route to efficient scale up of hybrid perovskite film growth towards industrial deployment.

  5. Nanocomposite Coatings Codeposited with Nanoparticles Using Aerosol-Assisted Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Xianghui Hou

    2013-01-01

    Full Text Available Incorporating nanoscale materials into suitable matrices is an effective route to produce nanocomposites with unique properties for practical applications. Due to the flexibility in precursor atomization and delivery, aerosol-assisted chemical vapour deposition (AACVD process is a promising way to synthesize desired nanocomposite coatings incorporating with preformed nanoscale materials. The presence of nanoscale materials in AACVD process would significantly influence deposition mechanism and thus affect microstructure and properties of the nanocomposites. In the present work, inorganic fullerene-like tungsten disulfide (IF-WS2 has been codeposited with Cr2O3 coatings using AACVD. In order to understand the codeposition process for the nanocomposite coatings, chemical reactions of the precursor and the deposition mechanism have been studied. The correlation between microstructure of the nanocomposite coatings and the codeposition mechanism in the AACVD process has been investigated. The heterogeneous reaction on the surface of IF-WS2 nanoparticles, before reaching the substrate surface, is the key feature of the codeposition in the AACVD process. The agglomeration of nanoparticles in the nanocomposite coatings is also discussed.

  6. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  7. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  8. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges

    Science.gov (United States)

    Tallaire, Alexandre; Achard, Jocelyn; Silva, François; Brinza, Ovidiu; Gicquel, Alix

    2013-02-01

    Diamond is a material with outstanding properties making it particularly suited for high added-value applications such as optical windows, power electronics, radiation detection, quantum information, bio-sensing and many others. Tremendous progresses in its synthesis by microwave plasma assisted chemical vapour deposition have allowed obtaining single crystal optical-grade material with thicknesses of up to a few millimetres. However the requirements in terms of size, purity and crystalline quality are getting more and more difficult to achieve with respect to the forecasted applications, thus pushing the synthesis method to its scientific and technological limits. In this paper, after a short description of the operating principles of the growth technique, the challenges of increasing crystal dimensions both laterally and vertically, decreasing and controlling point and extended defects as well as modulating crystal conductivity by an efficient doping will be detailed before offering some insights into ways to overcome them.

  9. Aerosol assisted chemical vapour deposition of germanium thin films using organogermanium carboxylates as precursors and formation of germania films

    Indian Academy of Sciences (India)

    Alpa Y Shah; Amey Wadawale; Vijaykumar S Sagoria; Vimal K Jain; C A Betty; S Bhattacharya

    2012-06-01

    Diethyl germanium bis-picolinate, [Et2Ge(O2CC5H4N)2], and trimethyl germanium quinaldate, [Me3Ge(O2CC9H6N)], have been used as precursors for deposition of thin films of germanium by aerosol assisted chemical vapour deposition (AACVD). The thermogravimetric analysis revealed complete volatilization of complexes under nitrogen atmosphere. Germanium thin films were deposited on silicon wafers at 700°C employing AACVD method. These films on oxidation under an oxygen atmosphere at 600°C yield GeO2. Both Ge and GeO2 films were characterized by XRD, SEM and EDS measurements. Their electrical properties were assessed by current–voltage (–) characterization.

  10. Monte Carlo simulation of the behaviour of electrons during electron-assisted chemical vapour deposition of diamond

    Institute of Scientific and Technical Information of China (English)

    董丽芳; 陈俊英; 董国义; 尚勇

    2002-01-01

    The behaviour of electrons during electron-assisted chemical vapour deposition of diamond is investigated using Monte Carlo simulation. The electron energy distribution and velocity distribution are obtained over a wide range of reduced field E/N (the ratio of the electric field to gas molecule density) from 100 to 2000 in units of 1Td=10-17Vcm2.Their effects on the diamond growth are also discussed. Themain results obtained are as follows. (1) The velocity profile is asymmetric for the component parallel to the field.Ihe velocity distribution has a peak shift in the field direction. Most electrons possess non-zero velocity parallel to the substrate. (2) The number of atomic H is a function of E/N. (3) High-quality diamond can be obtained under the condition of E/N from 50 to 800Td due to sufficient atomic H and electron bombardment.

  11. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    Science.gov (United States)

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-06-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs.

  12. Growth mechanism of planar or nanorod structured tungsten oxide thin films deposited via aerosol assisted chemical vapour deposition (AACVD)

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Min; Blackman, Chris [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2015-07-15

    Aerosol assisted chemical vapour deposition (AACVD) is used to deposit tungsten oxide thin films from tungsten hexacarbonyl (W(CO){sub 6}) at 339 to 358 C on quartz substrate. The morphologies of as-deposited thin films, which are comprised of two phases (W{sub 25}O{sub 73} and W{sub 17}O{sub 47}), vary from planar to nanorod (NR) structures as the distance from the inlet towards the outlet of the reactor is traversed. This is related to variation of the actual temperature on the substrate surface (ΔT = 19 C), which result in a change in growth mode due to competition between growth rate (perpendicular to substrate) and nucleation rate (parallel to substrate). When the ratio of perpendicular growth rate to growth rate contributed by nucleation is higher than 7.1, the as-deposited tungsten oxide thin film forms as NR. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Fabrication and gas sensing properties of pure and au-functionalised W03 nanoneedle-like structures, synthesised via aerosol assisted chemical vapour deposition method

    OpenAIRE

    Stoycheva, Toni

    2011-01-01

    In this doctoral thesis, it has been investigated and developed the Aerosol Assisted Chemical Vapour Deposition (AACVD) method for direct in-situ growth of intrinsic and Au-functionalised nanostructured WO3, as well as SnO2-based devices for gas sensing applications. The nanostructured material synthesis, device fabrication and their gas sensing properties have been studied. AACVD method was used for synthesis and direct deposition of sensing films onto classical alumina and microhotplat...

  14. Physical and tribological properties of a-Si1-xCx:H coatings prepared by r.f. plama-assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    A-Si1-xCx:H films deposited by r.f. plasma-assisted chemical vapour deposition were studied as a function of their composition. The friction and wear properties were investigated with the help of a conventional ball-on-disc apparatus. These results are correlated with chemical (Si/C atomic ratio) and structural (Raman and infrared spectroscopy) properties. The friction coefficient in a humid ambient atmosphere changes markedly with the carbon fraction and reaches a value as low as 0.05 for coatings with 70 to 90 at.% C. The carbon-rich films consist of diamond-like carbon with silicon. (orig.)

  15. Effect of surfactants on the morphology of FeSe films fabricated from a single source precursor by aerosol assisted chemical vapour deposition

    Indian Academy of Sciences (India)

    Raja Azadar Hussain; Amin Badshah; Naghma Haider; Malik Dilshad Khan; Bhajan Lal

    2015-03-01

    This article presents the fabrication of FeSe thin films from a single source precursor namely (1-(2-fluorobenzoyl)-3-(4-ferrocenyl-3-methylphenyl)selenourea (MeP2F)) by aerosol assisted chemical vapour deposition (AACVD). All the films were prepared via similar experimental conditions (temperature, flow rate, concentration, solvent system and reactor type) except the use of three different concentrations of two different surfactants i.e., triton and span. Seven thin films were characterized with PXRD, SEM, AFM, EDS and EDS mapping. The mechanism of the interaction of surfactant with MeP2F was determined with cyclic voltammetry (CV) and UV-Vis spectroscopy.

  16. Autonomous Chemical Vapour Detection by Micro UAV

    OpenAIRE

    Kent Rosser; Karl Pavey; Nicholas FitzGerald; Anselm Fatiaki; Daniel Neumann; David Carr; Brian Hanlon; Javaan Chahl

    2015-01-01

    The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS), as a model chemical vapour, into a micro unmanned aerial vehicle (UAV), and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm con...

  17. Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors

    Science.gov (United States)

    Kevin, Punarja; Lewis, David J.; Raftery, James; Azad Malik, M.; O'Brien, Paul

    2015-04-01

    The synthesis of the asymmetric dithiocarbamates of tin(II) with the formula [Sn(S2CNRR')2] (where R=Et, R'=n-Bu (1); R=Me, R'=n-Bu (2); R=R'=Et (3)) and their use for the deposition of SnS thin films by aerosol-assisted chemical vapour deposition (AACVD) is described. The effects of temperature and the concentration of the precursors on deposition were investigated. The stoichiometry of SnS was best at higher concentrations of precursors (250 mM) and at 450 °C. The direct electronic band gap of the SnS produced by this method was estimated from optical absorbance measurements as 1.2 eV. The composition of films was confirmed by powder X-ray diffraction (p-XRD) and energy dispersive analysis of X-rays (EDAX) spectroscopy.

  18. Preparation of high-quality hydrogenated amorphous silicon film with a new microwave electron cyclotron resonance chemical vapour deposition system assisted with hot wire

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiu-Hong; Chen Guang-Hua; Yin Sheng-Yi; Rong Yan-Dong; Zhang Wen-Li; Hu Yue-Hui

    2005-01-01

    The preparation of high-quality hydrogenated amorphous silicon (a-Si:H) film with a new microwave electron cyclotron resonance-chemical vapour deposition (MWECR-CVD) system assisted with hot wire is presented. In this system the hot wire plays an important role in perfecting the microstructure as well as improving the stability and the optoelectronic properties of the a-Si:H film. The experimental results indicate that in the microstructure of the a-Si:H film, the concentration of dihydride is decreased and a trace of microcrystalline occurs, which is useful to improve its stability, and that in the optoelectronic properties of the a-Si:H film, the deposition rate reaches above 2.0nm/s and the photosensitivity increases up to 4.71× 105.

  19. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  20. Biocompatibility of chemical-vapour-deposited diamond.

    Science.gov (United States)

    Tang, L; Tsai, C; Gerberich, W W; Kruckeberg, L; Kania, D R

    1995-04-01

    The biocompatibility of chemical-vapour-deposited (CVD) diamond surfaces has been assessed. Our results indicate that CVD diamond is as biocompatible as titanium (Ti) and 316 stainless steel (SS). First, the amount of adsorbed and 'denatured' fibrinogen on CVD diamond was very close to that of Ti and SS. Second, both in vitro and in vivo there appears to be less cellular adhesion and activation on the surface of CVD diamond surfaces compared to Ti and SS. This evident biocompatibility, coupled with the corrosion resistance and notable mechanical integrity of CVD diamond, suggests that diamond-coated surfaces may be highly desirable in a number of biomedical applications. PMID:7654876

  1. Deposition of cobalt and nickel sulfide thin films from thio- and alkylthio-urea complexes as precursors via the aerosol assisted chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mgabi, L.P.; Dladla, B.S. [Department of Chemistry, University of Zululand, Private bag X1001 KwaDlangezwa, 3880 (South Africa); Malik, M.A. [School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Garje, Shivram S. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Akhtar, J. [Nanoscience and Materials Synthesis Lab, Department of Physics, COMSATS, Institute of Information Technology (CIIT), Chak shahzad, Islamabad (Pakistan); Revaprasadu, N., E-mail: RevaprasaduN@unizulu.ac.za [Department of Chemistry, University of Zululand, Private bag X1001 KwaDlangezwa, 3880 (South Africa)

    2014-08-01

    We report the synthesis of Co(II) and Ni(II) thiourea and alkylthiourea complexes by reacting the metal salts (CoCl{sub 2} and NiCl{sub 2}) with the thiourea, phenylthiourea and dicyclohexylthiourea ligands in a 1:2 ratio. The complexes, [CoCl{sub 2}(CS(NH{sub 2}){sub 2}){sub 2}] (I), [CoCl{sub 2}(CSNHC{sub 6}H{sub 5}NH{sub 2}){sub 2} (II) and [CoCI{sub 2}(SC(NHC{sub 6}H{sub 11}){sub 2}){sub 2}] (III), [NiCl{sub 2}(CS(NH{sub 2}){sub 2}){sub 2}] (IV), [NiCl{sub 2}(CSNHC{sub 6}H{sub 5}NH{sub 2}){sub 2}] (V) and [NiCl{sub 2}(SC(NHC{sub 6}H{sub 11}){sub 2}){sub 2}] (VI) were characterized by C, H, N analysis and Fourier transform infrared spectroscopy. Thermogravimetric analysis shows that all complexes undergo a two step decomposition process except for [NiCl{sub 2}(CSNHC{sub 6}H{sub 5}NH{sub 2}){sub 2}] (V) which decomposes in a single step. The complexes were used as single-source precursors for the deposition of cobalt sulfide and nickel sulfide thin films by aerosol assisted chemical vapor deposition at temperatures between 350 an 500 °C. The crystallinity of the films was determined by X-ray diffraction and their morphology was determined by scanning electron microscopy. The morphology of the cobalt sulfide thin films varies from randomly oriented platelets, to granulated spheres and cubes as the precursor and deposition conditions are changed. For nickel sulfide, the [NiCl{sub 2}(CS(NH{sub 2}){sub 2}){sub 2}] (IV) complex gave rods whereas the [NiCl{sub 2}(CSNHC{sub 6}H{sub 5}NH{sub 2}){sub 2}] (V) produced spherical particles. - Highlights: • We report the synthesis of Co(II) and Ni(II) thiourea and alkylthiourea complexes. • C, H, N analysis and Fourier transform infrared spectroscopy characterization • NiS and CoS thin films deposited by aerosol assisted chemical vapor deposition • X-ray diffraction characterization of the phase of the films • Film morphology determined by scanning electron microscopy.

  2. Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition

    Science.gov (United States)

    Golgir, Hossein Rabiee; Zhou, Yun Shen; Li, Dawei; Keramatnejad, Kamran; Xiong, Wei; Wang, Mengmeng; Jiang, Li Jia; Huang, Xi; Jiang, Lan; Silvain, Jean Francois; Lu, Yong Feng

    2016-09-01

    The influence of exciting ammonia (NH3) molecular vibration in the growth of gallium nitride (GaN) was investigated by using an infrared laser-assisted metal organic chemical vapor deposition method. A wavelength tunable CO2 laser was used to selectively excite the individual vibrational modes. Resonantly exciting the NH-wagging mode (v2) of NH3 molecules at 9.219 μm led to a GaN growth rate of 84 μm/h, which is much higher than the reported results. The difference between the resonantly excited and conventional thermally populated vibrational states was studied via resonant and nonresonant vibrational excitations of NH3 molecules. Resonant excitation of various vibrational modes was achieved at 9.219, 10.35, and 10.719 μm, respectively. Nonresonant excitation was conducted at 9.201 and 10.591 μm, similar to conventional thermal heating. Compared to nonresonant excitation, resonant excitation noticeably promotes the GaN growth rate and crystalline quality. The full width at half maximum value of the XRD rocking curves of the GaN (0002) and GaN (10-12) diffraction peaks decreased at resonant depositions and reached its minimum value of 45 and 53 arcmin, respectively, at the laser wavelength of 9.219 μm. According to the optical emission spectroscopic studies, resonantly exciting the NH3 v2 mode leads to NH3 decomposition at room temperature, reduces the formation of the TMGa:NH3 adduct, promotes the supply of active species in GaN formation, and, therefore, results in the increased GaN growth rate.

  3. Chemical Vapour Deposition of Large Area Graphene

    OpenAIRE

    Larsen, Martin Benjamin Barbour Spanget; Bøggild, Peter; Booth, Tim; Jørgensen, Anders Michael

    2015-01-01

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, ...

  4. Chemical vapour deposition synthetic diamond: materials, technology and applications

    OpenAIRE

    Balmer, R. S.; Brandon, J R; Clewes, S L; Dhillon, H. K.; Dodson, J M; Friel, I.; Inglis, P. N.; Madgwick, T D; Markham, M. L.; Mollart, T P; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A J; Wilman, J J

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synt...

  5. Chemical vapour deposition of metal oxides and phosphides.

    OpenAIRE

    Binions, R.

    2006-01-01

    This thesis investigates the deposition of thin films of main group metal phosphide and main group metal oxide compounds on glass substrates by the use of dual source atmospheric pressure chemical vapour deposition. Binary phosphide systems with tin, germanium, silicon, antimony, copper or boron have been examined. Binary oxide systems of gallium, antimony, tin or niobium have also been investigated. Additionally these systems were deposited on gas sensor substrates and evaluated as metal oxi...

  6. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    OpenAIRE

    Bignardi, Luca; van Dorp, Willem F; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; de Hosson, Jeff Th. M.; Stöhr, Meike; Rudolf, Petra

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comp...

  7. Laser-Induced Chemical Vapour Deposition of Silicon Carbonitride

    OpenAIRE

    Besling, W.; van der Put, P.; Schoonman, J.

    1995-01-01

    Laser-induced Chemical Vapour Deposition of silicon carbonitride coatings and powders has been investigated using hexamethyldisilazane (HMDS) and ammonia as reactants. An industrial CW CO2-laser in parallel configuration has been used to heat up the reactant gases. HMDS dissociates in the laser beam and reactive radicals are formed which increase rapidly in molecular weight by an addition mechanism. Dense polymer-like silicon carbonitride thin films and nanosized powders are formed depending ...

  8. Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication

    International Nuclear Information System (INIS)

    A comparison of the transport properties of populations of single-crystal, In2O3 nanowires (NWs) grown by unassisted hot-wall chemical vapour deposition (CVD) versus NWs grown by laser-ablation-assisted chemical vapour deposition (LA-CVD) is presented. For nominally identical growth conditions across the two systems, NWs fabricated at 850 deg. C with laser-ablation had significantly higher average mobilities at the 99.9% confidence level, 53.3 ± 5.8 cm2 V-1 s-1 versus 10.2 ± 1.9 cm2 V-1 s-1. It is also observed that increasing growth temperature decreases mobility for LA-CVD NWs. Transmission electron microscopy studies of CVD-fabricated samples indicate the presence of an amorphous In2O3 region surrounding the single-crystal core. Further, low-temperature measurements verify the presence of ionized impurity scattering in low-mobility CVD-grown NWs

  9. Surface chemical studies of chemical vapour deposited diamond thin films

    International Nuclear Information System (INIS)

    Polycrystalime diamond grown by low pressure chemical vapour deposition (CVD) techniques has emerged in recent years as a new material with applications in such areas as optics, electronics, radiation detectors, chemical sensors and electrochemistry. A main aim of this thesis has been to advance current knowledge of the surface chemical properties of CVD diamond to underpin the development of our understanding of the properties and potential applications of this material. Cl2 is found to adsorb dissociatively on the clean, hydrogen-free diamond surface up to sub-monolayer coverage with a sticking probability of ∼1.2x10-3. Adsorption is a non-activated process, and the sticking probability and extent of coverage decreased with increasing temperature. This was shown to contrast with the behaviour found for the interaction of chlorine with the hydrogenated diamond surface where increased sticking probabilities and saturation surface coverages were observed, and where the reactivity also increased with temperature. Thermal desorption of atomic Cl occurred over a broad temperature range m both chemisorption systems, indicating the presence of more than one binding state. Atomic hydrogen was successful in efficiently etching the bound Cl from the surface. XeF2 was found to adsorb dissociatively onto the clean diamond surface to give up to monolayer coverages of F, which formed two distinct binding states. The first state, populated at low coverage, was predominantly covalent in character, while the second state, occurring at high surface coverages, had more ionic bonding character. Pre-hydrogenation of the diamond surface increased the reactive sticking probability observed, but decreased the extent of coverage by blocking reactive sites. The semi-ionic F was readily etched by atomic hydrogen, and underwent thermal desorption at temperatures as low as 300 deg C. The covalent form was more stable, being seemingly resistant to etching and persistent to high temperatures

  10. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    International Nuclear Information System (INIS)

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used

  11. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  12. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    Science.gov (United States)

    Bignardi, Luca; van Dorp, Willem F.; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; de Hosson, Jeff Th. M.; Stöhr, Meike; Rudolf, Petra

    2013-09-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comparable with those of samples prepared by micromechanical cleaving of graphite. Measurements show that the area of high quality suspended graphene is limited by the folding of the graphene during the transfer.

  13. Microscopic characterisation of suspended graphene grown by chemical vapour deposition.

    Science.gov (United States)

    Bignardi, Luca; van Dorp, Willem F; Gottardi, Stefano; Ivashenko, Oleksii; Dudin, Pavel; Barinov, Alexei; De Hosson, Jeff Th M; Stöhr, Meike; Rudolf, Petra

    2013-10-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron spectromicroscopy, while the structural and crystalline properties are studied by TEM and Raman spectroscopy. We demonstrate that the suspended graphene membrane locally shows electronic properties comparable with those of samples prepared by micromechanical cleaving of graphite. Measurements show that the area of high quality suspended graphene is limited by the folding of the graphene during the transfer. PMID:23945527

  14. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    use as a construction material for process equipment, with the cheaper alternative being the construction of equipment from steel and then protecting it with a thin but efficacious layer of tantalum. Chemical Vapour Deposition (CVD) is chosen as the most effective process to apply thin corrosion......Tantalum’s resistance to corrosion in hot acidic environments and its superior metallic properties have made it a prime solution as a construction material or protective coating to equipment intended for use in such harsh chemical and physical conditions. The high price of tantalum metal limits its...... protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...

  15. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    International Nuclear Information System (INIS)

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb2(OEt)10 does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt)5 acts as an octahedral field completing entity and leads to Nb(OEt)4(dmae). We show that Nb(OEt)4(dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h−1 to values larger than 400 nm·h−1 can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt)4(dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt)4(dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an atomic layer deposition (ALD) process indicating that HV

  16. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dabirian, Ali [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Kuzminykh, Yury, E-mail: yury.kuzminykh@empa.ch [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Wagner, Estelle; Benvenuti, Giacomo [3D-Oxides, 70 Rue G. Eiffel Technoparc, 01630 St Genis Pouilly (France); ABCD Technology, 12 route de Champ-Colin, 1260 Nyon (Switzerland); Rushworth, Simon [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Hoffmann, Patrik, E-mail: patrik.hoffmann@empa.ch [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland)

    2014-11-28

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb{sub 2}(OEt){sub 10} does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt){sub 5} acts as an octahedral field completing entity and leads to Nb(OEt){sub 4}(dmae). We show that Nb(OEt){sub 4}(dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h{sup −1} to values larger than 400 nm·h{sup −1} can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt){sub 4}(dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt){sub 4}(dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an

  17. Chemical vapour deposition synthetic diamond: materials, technology and applications

    Science.gov (United States)

    Balmer, R. S.; Brandon, J. R.; Clewes, S. L.; Dhillon, H. K.; Dodson, J. M.; Friel, I.; Inglis, P. N.; Madgwick, T. D.; Markham, M. L.; Mollart, T. P.; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A. J.; Wilman, J. J.; Woollard, S. M.

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  18. Light-induced chemical vapour deposition painting with titanium dioxide

    Science.gov (United States)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  19. Chemical Vapour Deposition of Gas Sensitive Metal Oxides

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2016-03-01

    Full Text Available This article presents a review of recent research efforts and developments for the fabrication of metal-oxide gas sensors using chemical vapour deposition (CVD, presenting its potential advantages as a materials synthesis technique for gas sensors along with a discussion of their sensing performance. Thin films typically have poorer gas sensing performance compared to traditional screen printed equivalents, attributed to reduced porosity, but the ability to integrate materials directly with the sensor platform provides important process benefits compared to competing synthetic techniques. We conclude that these advantages are likely to drive increased interest in the use of CVD for gas sensor materials over the next decade, whilst the ability to manipulate deposition conditions to alter microstructure can help mitigate the potentially reduced performance in thin films, hence the current prospects for use of CVD in this field look excellent.

  20. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  1. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  2. Laser diagnostics of chemical vapour deposition of diamond films

    CERN Document Server

    Wills, J B

    2002-01-01

    Cavity ring down spectroscopy (CRDS) has been used to make diagnostic measurements of chemically activated CH sub 4 / H sub 2 gas mixtures during the chemical vapour deposition (CVD) of thin diamond films. Absolute absorbances, concentrations and temperatures are presented for CH sub 3 , NH and C sub 2 H sub 2 in a hot filament (HF) activated gas mixture and CH, C sub 2 and C sub 2 H sub 2 in a DC arc plasma jet activated mixture. Measurements of the radical species were made using a pulsed dye laser system to generate tuneable visible and UV wavelengths. These species have greatest concentration in the hottest, activated regions of the reactors. Spatial profiling of the number densities of CH sub 3 and NH radicals have been used as stringent tests of predictions of radical absorbance and number densities made by 3-D numerical simulations, with near quantitative agreement. O sub 2 has been shown to reside in the activated region of the Bristol DC arc jet at concentrations (approx 10 sup 1 sup 3 molecules / cm...

  3. The atmospheric chemical vapour deposition of coatings on glass

    CERN Document Server

    Sanderson, K D

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In sub 2 O sub 3 films with a resistivity of 1.1 - 3x10 sup - sup 3 OMEGA cm were obtained with ln(thd) sub 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) sub 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstr...

  4. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity.

    Science.gov (United States)

    Bérard, Ariane; Patience, Gregory S; Chouinard, Gérald; Tavares, Jason R

    2016-01-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle. PMID:27531048

  5. Characterization of Defects in Chemical Vapour Deposited Diamonds

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-Long; XIA Yi-Ben; WANG Lin-Jun; GU Bei-Bei

    2005-01-01

    @@ Room-temperature Raman and PL spectra, photocurrent (PC) and thermally stimulated current (TSC) were measured to investigate the mid-gap defects in diamonds grown by using a hot-filament chemical vapour deposition (CVD) technique. The [Si-V]0 centres caused by the Si-C bonds in diamond grains and at grain boundaries are located at 1.68eV. We firstly detect the level 1.55eV by using PL and it is tentatively attributed to the zero-phonon luminescence line or vibronic band of the [Si-V]0 induced by the Si-O bonds. The 2.7-3.2eV and 1.9-2.1 eV PC peaks were detected and discussed. The [N-V] complex may be attributed to these defect levels.Some shallow energy levels lower than 1.0eV were also observed in the CVD diamond.

  6. Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity

    Science.gov (United States)

    Bérard, Ariane; Patience, Gregory S.; Chouinard, Gérald; Tavares, Jason R.

    2016-08-01

    Apple growers face new challenges to produce organic apples and now many cover orchards with high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a superhydrophobic coating should reduce the amount of water that passes through the net. Here we treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). We placed polymer samples in a quartz tube and passed a mixture of H2 and CO through it while a UVC lamp (254 nm) illuminated the surface. After the treatment, the contact angle between water droplets and the surface increased by an average of 20°. The contact angle of samples placed 70 cm from the entrance of the tube was higher than those at 45 cm and 20 cm. The PICVD-treated HDPE achieved a contact angle of 124°. Nets spray coated with a solvent-based commercial product achieved 180° but water ingress was, surprisingly, higher than that for nets with a lower contact angle.

  7. Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication

    Science.gov (United States)

    Stern, E.; Cheng, G.; Guthrie, S.; Turner-Evans, D.; Broomfield, E.; Lei, B.; Li, C.; Zhang, D.; Zhou, C.; Reed, M. A.

    2006-06-01

    A comparison of the transport properties of populations of single-crystal, In2O3 nanowires (NWs) grown by unassisted hot-wall chemical vapour deposition (CVD) versus NWs grown by laser-ablation-assisted chemical vapour deposition (LA-CVD) is presented. For nominally identical growth conditions across the two systems, NWs fabricated at 850 °C with laser-ablation had significantly higher average mobilities at the 99.9% confidence level, 53.3 ± 5.8 cm2 V-1 s-1 versus 10.2 ± 1.9 cm2 V-1 s-1. It is also observed that increasing growth temperature decreases mobility for LA-CVD NWs. Transmission electron microscopy studies of CVD-fabricated samples indicate the presence of an amorphous In2O3 region surrounding the single-crystal core. Further, low-temperature measurements verify the presence of ionized impurity scattering in low-mobility CVD-grown NWs.

  8. Thermoluminescence Characteristics of a New Production of Chemical Vapour Deposition Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Furetta, C.; Kitis, G.; Brambilla, A.; Jany, C.; Bergonzo, P.; Foulon, F

    1999-07-01

    The dosimetric properties are presented of a recent production of chemical vapour deposition diamond growth. Experimental data concerning the TL response as a function of dose, the energy response and fading behaviour are reported. Very preliminary results suggest that diamond can be used in TL mode as well as an activation detector. (author)

  9. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  10. The mechanical properties of thin alumina film deposited by metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Gellings, P.J.; Vendel, van de D.; Metselaar, H.S.C.; Corbach, van H.D.; Fransen, T.

    1995-01-01

    Amorphous alumina films were deposited by metal-organic chemical vapour deposition (MOCVD) on stainless steel, type AISI 304. The MOCVD experiments were performed in nitrogen at low and atmospheric pressures. The effects of deposition temperature, growth rate and film thickness on the mechanical pro

  11. The influence of substrate orientation on the density of silicon nanowires grown on multicrystalline and single crystal substrates by electron cyclotron resonance chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J., E-mail: balljb@lsbu.ac.uk; Reehal, H.S.

    2012-01-31

    The Au catalysed, vapour-liquid-solid growth of Si nanowires on Si substrates of different orientations has been studied using electron cyclotron resonance plasma-assisted chemical vapour deposition (ECRCVD). ECRCVD plasma excitation is found to strongly promote wire growth rate and density with wire diameters in excess of 200 nm under the conditions used. Substrate orientation and nanowire density are strongly correlated. This has been studied using multicrystalline as well as single crystal Si substrates. It is suggested that the Gibbs-Thomson effect can account for the behaviour of wire density with orientation. The application of an RF generated, DC self-bias of - 5 V on the substrate during growth strongly enhances wire density without affecting growth rate or diameter. A tentative model for wire growth has been proposed which is based on an initial incubation/crystallisation step, followed by silicon incorporation at the vapour-liquid interface being rate-limiting.

  12. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition

    OpenAIRE

    Zhu, Wenjuan; Low, Tony; Lee, Yi-Hsien; Wang, Han; Farmer, Damon B.; Kong, Jing; Xia, Fengnian; Avouris, Phaedon

    2013-01-01

    Layered transition metal dichalcogenides display a wide range of attractive physical and chemical properties and are potentially important for various device applications. Here we report the electronic transport and device properties of monolayer molybdenum disulphide (MoS2) grown by chemical vapour deposition (CVD). We show that these devices have the potential to suppress short channel effects and have high critical breakdown electric field. However, our study reveals that the electronic pr...

  13. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); UCL Energy Institute, Central House, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom); Binions, Russell, E-mail: r.binions@qmul.ac.uk [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)

    2014-06-01

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research. - Graphical abstract: Schematic demonstration of the effect of thermochromic glazing on solar radiation (red arrow represents IR radiation, black arrow represents all other solar radiation). - Highlights: • Vanadium dioxide thin films for energy efficient glazing. • Reviews chemical vapour deposition techniques. • Latest results for thin film deposition for vanadium dioxide.

  14. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    OpenAIRE

    Sung-Jin Chang; Moon Seop Hyun; Sung Myung; Min-A Kang; Jung Ho Yoo; Lee, Kyoung G.; Bong Gill Choi; Youngji Cho; Gaehang Lee; Tae Jung Park

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from R...

  15. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition

    OpenAIRE

    Friel, I.; Clewes, S L; Dhillon, H. K.; Perkins, N.; Twitchen, D. J.; Scarsbrook, G. A.

    2009-01-01

    In order to improve the performance of existing technologies based on single crystal diamond grown by chemical vapour deposition (CVD), and to open up new technologies in fields such as quantum computing or solid state and semiconductor disc lasers, control over surface and bulk crystalline quality is of great importance. Inductively coupled plasma (ICP) etching using an Ar/Cl gas mixture is demonstrated to remove sub-surface damage of mechanically processed surfaces, whilst maintaining macro...

  16. Fundamental Studies of the Chemical Vapour Deposition of Graphene on Copper

    OpenAIRE

    Lewis, Amanda

    2014-01-01

    The chemical vapour deposition (CVD) of graphene is the most promising route for production of large-area graphene films. However there are still major challenges faced by the field, including control of the graphene coverage, quality, and the number of layers. These challenges can be overcome by developing a fundamental understanding of the graphene growth process. This thesis contributes to the growing body of work on graphene CVD by uniquely exploring the gas phas...

  17. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  18. Purification of Single-walled Carbon Nanotubes Grown by a Chemical Vapour Deposition (CVD) Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A procedure for purification of single-walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition (CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as-prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.

  19. The pyrolytic decomposition of ATSB during chemical vapour deposition of thin alumina films

    OpenAIRE

    Haanappel, V.A.C.; Corbach, van, H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    The effect of the deposition temperature and the partial pressure of water on the thermal decomposition chemistry of aluminium-tri-sec-butoxide (ATSB) during metal organic chemical vapour deposition (MOCVD) is reported. The MOCVD experiments were performed in nitrogen at atmospheric pressure. The partial pressure of ATSB was 0.026 kPa (0.20 mmHg) and that of water was between 0 and 0.026 kPa (0–0.20 mmHg). The pyrolytic decomposition chemistry of ATSB was studied by mass spectrometry at tempe...

  20. Fluidization and coating of very dense powders by fluidized bed chemical vapour deposition

    OpenAIRE

    Rodriguez, Philippe; Caussat, Brigitte; Ablitzer, Carine; Iltis, Xavière; Brothier, Méryl

    2013-01-01

    The hydrodynamic behaviour of a very dense tungsten powder, 75 µm in median diameter and 19,300 kg/m3 in grain density, has been studied in a fluidized bed at room temperature using nitrogen and argon as carrier gas. Even if fluidization was achieved, the small bed expansion indicated that it was imperfect. Then, the fluidization was studied at 400 °C in order to investigate the feasibility of coating this powder by Fluidized Bed Chemical Vapour Deposition (FBCVD). In particular, the influenc...

  1. Deposition of diamond and boron nitride films by plasma chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J.M. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Gomez-Aleixandre, C. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Sanchez-Garrido, O. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Vazquez, L. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.; Martinez-Duart, J.M. [Universidad Autonoma, CSIC, Madrid (Spain). Inst. of Mater. Sci.

    1995-01-01

    The deposition problems of diamond and cubic boron nitride (c-BN) by chemical vapour deposition techniques are reviewed, with major emphasis on the nucleation and reaction mechanisms. A discussion is made of the main deposition parameters (i.e. gas mixture, substrate conditioning, plasma discharges etc.) which favour the formation of the cubic phase. Most of the work is devoted to diamond owing to the large progress attained in this material. In fact, the use of diamond as a hard protective coating is now on a commercial scale. By contrast, the preparation of c-BN layers with good characteristics still needs of further research. ((orig.))

  2. Chemically vapour deposited diamond coatings on cemented tungsten carbides: Substrate pretreatments, adhesion and cutting performance

    International Nuclear Information System (INIS)

    Chemical vapour deposition (CVD) of diamond films onto Co-cemented tungsten carbide (WC-Co) tools and wear parts presents several problems due to interfacial graphitization induced by the binder phase and thermal expansion mismatch of diamond and WC-Co. Methods used to improve diamond film adhesion include substrate-modification processes that create a three-dimensional compositionally graded interface. This paper reviews substrate pretreatments and adhesion issues of chemically vapour deposited diamond films on WC-Co. The combined effect of pretreatments and substrate microstructure on the adhesive toughness and wear rate of CVD diamond in dry machining of highly abrasive materials was analyzed. The role of diamond film surface morphology on chip evacuation in dry milling of ceramics was also investigated by comparing feed forces of coated and uncoated mills. The overall tribological performance of diamond coated mills depended on coating microstructure and smoothness. The use of smother films did allow to reduce cutting forces by facilitating chip evacuation

  3. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g−1) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm−2 (i.e., around 400 mA h g−1) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%

  4. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista-UNESP, Avenida Tres de Marco, 511, Alto da Boa Vista, 18087-180, Soracaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Rouxinol, Francisco P.M.; Gelamo, Rogerio V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Trasferetti, B. Claudio [Present address: Superintendencia Regional da Policia Federal em Sao Paulo, Setor Tecnico-Cientifico, Rua Hugo d' Antola 95/10o Andar, Lapa de Baixo, 05038-090 Sao Paulo, SP (Brazil); Davanzo, C.U. [Instituto de Quimica, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Bica de Moraes, Mario A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V{sub S}) and of the proportion of TEOS in the mixture (X{sub T}) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V{sub S} and X{sub T} are presented.

  5. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Laurenti, M., E-mail: marco.laurenti@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garino, N. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Porro, S.; Fontana, M. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2015-08-15

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g{sup −1}) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm{sup −2} (i.e., around 400 mA h g{sup −1}) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%.

  6. High quality plasma enhanced chemical vapour deposited silicon oxide gas barrier coatings on polyester films

    International Nuclear Information System (INIS)

    Silicon oxide barrier coatings fabricated by a plasma enhanced chemical vapour deposition roll-to-roll process on polyester film have demonstrated impressive properties as a barrier to water vapour permeation. This study highlights the influence of the substrate on these coatings as we find that heat stabilised poly(ethylene terephthalate) (PET), with or without an additional acrylate primer layer, and poly(ethylene naphthalate) (PEN) produce superior composites than untreated PET film in terms of gas barrier. The barrier layers on PET and filled PET substrates, for which the barrier performance is within the detectable range of our measurement, have an activation energy to water permeation that increases with the thickness of the silica. For the thickest silica this is an increase of 26 kJ mol-1 over that from the uncoated substrate. We attribute this to the creation of highly tortuous, size-hindered pathways and the decoupling of defects as the coating is deposited in multiple passes. Using a more sensitive detection technique we measure a water vapour transmission rate value as low as 2 x 10-4 g m-2 day-1 for 1 μm thick coatings on PEN. Such a good barrier is observed for these thick coatings due to the high degree of carbon detected in the films that makes them less brittle than pure SiO2 layers. Substrate surface roughness is found to influence the morphology of the SiOx films but does not seem to adversely affect the barrier performance of the composites

  7. Characterization of Thin Films Deposited with Precursor Ferrocene by Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YAO Kailun; ZHENG Jianwan; LIU Zuli; JIA Lihui

    2007-01-01

    In this paper,the characterization of thin films,deposited with the precursor ferrocene(FcH)by the plasma enhanced chemical vapour deposition(PECVD)technique,was investigated.The films were measured by Scanning Electronic Microscopy(SEM),Atomic Force Microscopy(AFM),Electron Spectroscopy for Chemical Analysis(ESCA),and superconducting Quantum Interference Device(SQUID).It was observed that the film's layer is homogeneous in thickness and has a dense morphology without cracks.The surface roughness is about 36 nm.From the results of ESCA,it can be inferred that the film mainly contains the compound FeOOH,and carbon is combined with oxygen in different forms under different supply-powers.The hysteresis loops indicate that the film is of soft magnetism.

  8. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    Highlights: • Carbon nitride films were prepared by using radio frequency plasma enhanced chemical vapour deposition system by altering the electrode distance. • The effect of electrode distance on surface morphology, surface roughness, chemical bonding and hydrophobic behaviour has been studied. • Hydrophobic behaviour were studied by measuring contact angle and calculating surface energy. • CNx nanostructures show super-hydrophobic behaviour. • We report a tunable transition of hydrophilic to super-hydrophobic behaviour of film as electrode distance is reduced. - Abstract: Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films’ structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films’ surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of C=N to C=C and N−H to O−H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films’ characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface

  9. Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, Babu P. [Materials Ireland Polymer Research Centre, Trinity College, Dublin-1 (Ireland); Blau, W.J. [Materials Ireland Polymer Research Centre, Trinity College, Dublin-1 (Ireland); Tyagi, P.K. [Department of Physics, Indian Institute of Technology, Bombay (India); Misra, D.S. [Department of Physics, Indian Institute of Technology, Bombay (India); Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal)]. E-mail: elby@mec.ua.pt

    2006-01-03

    In this paper, we report results from an investigation studying the purification of Co-filled carbon nanotubes (CNTs) using Thermogravimetric analysis (TGA). The as-grown CNTs were prepared using Microwave Plasma Chemical Vapour Deposition (MPCVD). Transmission electron microscopy (TEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy were used to characterise the CNT samples. The CNTs produced by MPCVD were filled with cobalt and consisted of thick multi-walls. After TGA purification at 900 deg. C, 30 wt.% Co-filled CNTs remained in the TGA pan. However, while investigating the un-filled commercial CNTs (thin multiwalled), the sample completely burnt out at around 650 deg. C in the TGA furnace. The high thermal stability and the ability of thick-walled CNTs to act as an effective protective shield which prevents the oxidation of encapsulated cobalt have been demonstrated.

  10. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  11. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  12. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  13. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Functional ZnO/polymer core-shell nanowires fabricated by oxidative chemical vapour deposition

    International Nuclear Information System (INIS)

    Functional ZnO-nanowire/polymer core-shell heterostructures were realized using oxidative chemical vapour deposition (oCVD). This dry and versatile technique allows uniform coating of semiconductor nanowires with polymers and simultaneous doping control of the shell. Here, 100 nm thick, p-doped shells of poly(3,4-ethylenedioxythiophene) (PEDOT) were deposited around n-conductive ZnO nanowires. Energy-dispersive x-ray spectroscopy confirms the incorporation of Br dopants into the PEDOT shell, and the resulting p-conductivity of the polymer shell is demonstrated by electrical measurements on nanowire arrays. Photoluminescence spectroscopy points to reactions of Br with the ZnO surface but proves that the nanowires show only little degradation of their optical properties. (paper)

  15. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-Liang; Wu Er-Xing

    2007-01-01

    The B-and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD) .The microstructures of doped nc-Si:H films are carefully and systematically char acterized by using high resolution electron microscopy (HREM) ,Raman scattering,x-ray diffraction (XRD) ,Auger electron spectroscopy (AES) ,and resonant nucleus reaction (RNR) .The results show that as the doping concentration of PH3 increases,the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously.For the B-doped samples,as the doping concentration of B2H6 increases,no obvious change in the value of d is observed,but the value of Xc is found to decrease.This is especially apparent in the case of heavy B2H6 doped samples,where the films change from nanocrystalline to amorphous.

  16. Investigation of Chemical-Vapour-Deposition Diamond Alpha-Particle Detectors

    Institute of Scientific and Technical Information of China (English)

    GU Bei-Bei; WANG Lin-Jun; ZHANG Ming-Long; XIA Yi-Ben

    2004-01-01

    Diamond films with [100] texture were prepared by a hot-filament chemical vapour deposition technique to fabricate particle detectors. The response of detectors to 5.5 MeV 241 Am particles is studied. The photocurrent increases linearly and then levels off with voltage, and 7hA is obtained at bias voltage of 100 V. The timedependent photocurrent initially increases rapidly and then tends to reach saturation. Furthermore, a little increase of the dark-current after irradiation can be accounted for by the release of the charges captured by the trapping centres at low energy levels during irradiation. An obvious peak of the pulse height distribution can be observed, associated with the energy of 5.5 MeV.

  17. Elaboration of Bi 2Se 3 by metalorganic chemical vapour deposition

    Science.gov (United States)

    Giani, A.; Al Bayaz, A.; Foucaran, A.; Pascal-Delannoy, F.; Boyer, A.

    2002-03-01

    For the first time, Bi 2Se 3 thin films were elaborated by metalorganic chemical vapour deposition (MOCVD) using trimethylbismuth (TMBi) and diethylselenium (DESe) as metalorganic sources. The MOCVD elaboration of Bi 2Se 3 was carried out in a horizontal reactor for a substrate temperature ( Tg) varying from 450°C to 500°C, a total hydrogen flow rate DT=3 l min -1, RVI/V ratio >14 and TMBi partial pressure lower than 1.10 -4 atm. By X-ray diffraction and SEM observation, we noticed the polycrystalline structure of the layers typical preferential c-orientation and confirm the hexagonal structure. The microprobe data indicate that the best stoichiometry of Bi 2Se 3 was achieved. These films always displayed n-type conduction, and the maximum value of thermoelectric power α was found to be close to -120 μV/K.

  18. Synthesis of low leakage current chemical vapour deposited (CVD) diamond films for particle detection

    International Nuclear Information System (INIS)

    We report on synthesis of diamond films by direct current glow discharge chemical vapour deposition (CVD) prepared at different deposition conditions, for application in high energy physics. The synthesis apparatus is briefly described. Continuous undoped diamond samples have been grown onto Mo substrates with a deposition area up to 1 cm2 and an electrical resistivity as high as 1013 Ωcm. The deposition parameters are related to the material properties of the diamonds, investigated by optical spectroscopy, electron microscopy and diffraction analysis. Decreasing the linear growth rate results in good quality films with small remnants of graphite-like phases. The high crystalline quality and phase purity of the films are related to very low values of leakage currents. The particle induced conductivity of these samples is also studied and preliminary results on charge collection efficiency are presented. (orig.)

  19. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  20. Optimization of process parameter for synthesis of silicon quantum dots using low pressure chemical vapour deposition

    Indian Academy of Sciences (India)

    Dipika Barbadikar; Rashmi Gautam; Sanjay Sahare; Rajendra Patrikar; Jatin Bhatt

    2013-06-01

    Si quantum dots-based structures are studied recently for performance enhancement in electronic devices. This paper presents an attempt to get high density quantum dots (QDs) by low pressure chemical vapour deposition (LPCVD) on SiO2 substrate. Surface treatment, annealing and rapid thermal processing (RTP) are performed to study their effect on size and density of QDs. The samples are also studied using Fourier transformation infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence study (PL). The influence of Si–OH bonds formed due to surface treatment on the density of QDs is discussed. Present study also discusses the influence of surface treatment and annealing on QD formation.

  1. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    International Nuclear Information System (INIS)

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: ► Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. ► CVD diamonds have been prepared with magnetic and semiconductor properties. ► Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  2. Low resistance polycrystalline diamond thin films deposited by hot filament chemical vapour deposition

    Indian Academy of Sciences (India)

    Mahtab Ullah; Ejaz Ahmed; Abdelbary Elhissi; Waqar Ahmed

    2014-05-01

    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications.

  3. Corrosion resistant coatings (Al2O3) produced by metal organic chemical vapour deposition using aluminium-tri-sec-butoxide

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1993-01-01

    The metal organic chemical vapour deposition (MOCVD) of amorphous alumina films on steel was performed in nitrogen at atmospheric pressure. This MOCVD process is based on the thermal decomposition of aluminium-tri-sec-butoxide (ATSB). The effect of the deposition temperature (within the range 290–42

  4. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  5. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    International Nuclear Information System (INIS)

    In this study, 4 x 4 mm2 freestanding boron-doped diamond single crystals with thickness up to 260 μm have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 1018 to 1020 cm-3 which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 Ω cm have been obtained.

  6. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Science.gov (United States)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A.; Bisaro, R.; Servet, B.; Garry, G.; Barjon, J.

    2012-03-01

    In this study, 4 × 4 mm2 freestanding boron-doped diamond single crystals with thickness up to 260 μm have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 1018 to 1020 cm-3 which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 Ω cm have been obtained.

  7. Methyldichloroborane evidenced as an intermediate in the chemical vapour deposition synthesis of boron carbide.

    Science.gov (United States)

    Reinisch, G; Patel, S; Chollon, G; Leyssale, J-M; Alotta, D; Bertrand, N; Vignoles, G L

    2011-09-01

    The most recent ceramic-matrix composites (CMC) considered for long-life applications as thermostructural parts in aerospace propulsion contain, among others, boron-rich phases like boron carbide. This compound is prepared by thermal Chemical Vapour Infiltration (CVI), starting from precursors like boron halides and hydrocarbons. We present a study aiming at a precise knowledge of the gas-phase composition in a hot-zone LPCVD reactor fed with BCl3, CH4 and H2, which combines experimental and theoretical approaches. This work has brought strong evidences of the presence of Methydichloroborane (MDB, BCl2CH3) in the process. It is demonstrated that this intermediate, the presence of which had never been formally proved before, appears for processing temperatures slightly lower than the deposition temperature of boron carbide. The study features quantum chemical computations, which provide several pieces of information like thermochemical and kinetic data, as well as vibration and rotation frequencies, reaction kinetics computations, and experimental gas-phase characterization of several species by FTIR, for several processing parameter sets. The main results are presented, and the place of MDB in the reaction scheme is discussed.

  8. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  9. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  10. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    S. Karamat; S. Sonuşen; Ü. Çelik; Y. Uysallı; E. Özgönül; A. Oral

    2015-01-01

    The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties;in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM) value of 30 cm ? 1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm ? 1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm ? 1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm ? 1 as compare to single layer graphene which showed its

  11. High-Rate Growth and Nitrogen Distribution in Homoepitaxial Chemical Vapour Deposited Single-crystal Diamond

    Institute of Scientific and Technical Information of China (English)

    LI Hong-Dong; ZOU Guang-Tian; WANG Qi-Liang; CHENG Shao-Heng; LI Bo; L(U) Jian-Nan; L(U) Xian-Yi; JIN Zeng-Sun

    2008-01-01

    High rate (> 50 μm/h) growth of homoepitaxial single-crystal diamond (SCD) is carried out by microwave plasma chemical vapour deposition (MPCVD) with added nitrogen in the reactant gases of methane and hydrogen,using a polycrystalline-CVD-diamond-film-made seed holder. Photoluminescence results indicate that the nitrogen concentration is spatially inhomogeneous in a large scale,either on the top surface or in the bulk of those as-grown SCDs.The presence of N-distribution is attributed to the facts: (I) a difference in N-incorporation efficiency and (ii) N-diffusion,resulting from the local growth temperatures changed during the high-rate deposition process.In addition,the formed nitrogen-vacancy centres play a crucial role in N-diffusion through the growing crystal.Based on the N-distribution observed in the as-grown crystals,we propose a simple method to distinguish natural diamonds and man-made CVD SCDs.Finally,the disappearance of void defect on the top surface of SCDs is discussed to be related to a filling-in mechanism.

  12. Development and characterization of Undoped Silicon Glass (USG using chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    Jagadeesha T

    2011-02-01

    Full Text Available Sub atmospheric chemical vapour deposition (SACVD is a widely used technique in semiconductor integrated circuit (IC manufacturing, especially to form inter-metal silicon (IMD dioxide thin films. It was designed for commercially available tools in order to satisfy the gap filling requirements necessary for 0.18 and 0.15 lm technology ICs, but it has been successfully extended also for 0.13 lm technological node and over. SACVD technique has a potential impact on device electrical characteristics and metallurgy compatibility, according to process conditions, such as mass flow rate of TEOS, Gasflows, RF power. Present work focuses on development and characterisation of undoped silicate glass that can be used for Flash memory and Logic devices. It is shown that new process yield deposition rate improvement of 51% and throughput improvement of 13%.. Qualitative yield comparison and wafer map to map comparison work is also presented for various technology nodes. Device parameters comparison with the standard process is also included in the present work.

  13. Structural properties of zinc oxide deposited using atmospheric pressure combustion chemical vapour deposition

    International Nuclear Information System (INIS)

    In this study the deposition of thin zinc oxide (ZnO) films under atmospheric pressure conditions was investigated. The deposition technique applied was combustion chemical vapour deposition (CCVD), at which a propane–air mixture was combusted in a burner. Dissolved zinc nitrate was used as precursor, which was guided as aerosol droplets by the processing gas flow directly into the reaction zone. Fundamental investigations were performed to form undoped ZnO. The structural properties of the films were analysed in dependence of the substrate temperature during the coating process. The presence of crystalline ZnO structures was proved and differences in film growth and crystallite sizes are revealed. Additionally, the particles generated by the CCVD-flame are characterised. The thin films showed a slight excess of Zn and several states of binding energy could be observed by fitting the core level spectra. Scanning and transmission electron microscopy also indicated ordered structures and additionally different orientations of crystallites were observed. - Highlights: • Columnar growth structures of ZnO by CCVD were observed. • The presence of polycrystalline ZnO with (002) as main orientation was confirmed. • Initial particles significantly differ from crystallite sizes of the resulting films. • The films show an excess of Zn with a Zn-to-O ratio of around 1.7

  14. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  15. Controlled n-doping in chemical vapour deposition grown graphene by antimony

    International Nuclear Information System (INIS)

    We have studied the effects of antimony (Sb) doping on graphene grown by chemical vapour deposition without any significant change in its electrical properties. By increasing the metal thickness from 1 to 5 nm, we found a shift in the wave numbers of Raman G and two-dimensional (2D) peaks consistent with n-doping and a change in the Fermi level of the graphene into the conduction band. The relative intensity of the D peak to the G peak did not show a significant change and that of the 2D peak to the G peak remained at a large enough number as a function of metal thickness, implying little degradation by the metal dopants. Transport measurements also confirm the n-doping of graphene through a shift of Dirac point in the transfer characteristics and the quality preservation with little changes in mobility. We also report on the formation of a p–n junction by metal doping on selected areas of the graphene and their electrical properties with transfer characteristics and Hall measurements. (paper)

  16. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition

    Science.gov (United States)

    Yu, Qingkai; Jauregui, Luis A.; Wu, Wei; Colby, Robert; Tian, Jifa; Su, Zhihua; Cao, Helin; Liu, Zhihong; Pandey, Deepak; Wei, Dongguang; Chung, Ting Fung; Peng, Peng; Guisinger, Nathan P.; Stach, Eric A.; Bao, Jiming; Pei, Shin-Shem; Chen, Yong P.

    2011-06-01

    The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene’s electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman ‘D’ peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.

  17. Chemical vapour deposition of praseodymium oxide films on silicon: influence of temperature and oxygen pressure

    International Nuclear Information System (INIS)

    Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450-750 deg. C) and oxygen partial pressure (0.027-100 Pa or 0.2-750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40-100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 deg. C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films

  18. Kinetically controlled InN nucleation on GaN templates by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    This paper presents a study on the nucleation and initial growth kinetics of InN on GaN, especially their dependence on metalorganic chemical vapour deposition conditions. It is found that the density and size of separated InN nano-scale islands can be adjusted and well controlled by changing the V/III ratio and growth temperature. InN nuclei density increases for several orders of magnitude with decreasing growth temperature between 525 and 375 0C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters less than 100 nm, whereas at elevated temperatures the InN islands grow larger and become well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. The temperature dependence of InN island density gives two activation energies of InN nucleation behaviour, which is attributed to two different kinetic processes related to In adatom surface diffusion and desorption, respectively.

  19. Structural properties of zinc oxide deposited using atmospheric pressure combustion chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zunke, I., E-mail: iz@innovent-jena.de [Innovent e.V. Technology Development, Department of Surface Engineering, Prüssingstr. 27B, 07745 Jena (Germany); Wolf, S. [University of Jena, Institute for Solid State Physics, Helmholtzweg 3/5, 07745 Jena (Germany); Heft, A.; Schimanski, A.; Grünler, B. [Innovent e.V. Technology Development, Department of Surface Engineering, Prüssingstr. 27B, 07745 Jena (Germany); Ronning, C.; Seidel, P. [University of Jena, Institute for Solid State Physics, Helmholtzweg 3/5, 07745 Jena (Germany)

    2014-08-28

    In this study the deposition of thin zinc oxide (ZnO) films under atmospheric pressure conditions was investigated. The deposition technique applied was combustion chemical vapour deposition (CCVD), at which a propane–air mixture was combusted in a burner. Dissolved zinc nitrate was used as precursor, which was guided as aerosol droplets by the processing gas flow directly into the reaction zone. Fundamental investigations were performed to form undoped ZnO. The structural properties of the films were analysed in dependence of the substrate temperature during the coating process. The presence of crystalline ZnO structures was proved and differences in film growth and crystallite sizes are revealed. Additionally, the particles generated by the CCVD-flame are characterised. The thin films showed a slight excess of Zn and several states of binding energy could be observed by fitting the core level spectra. Scanning and transmission electron microscopy also indicated ordered structures and additionally different orientations of crystallites were observed. - Highlights: • Columnar growth structures of ZnO by CCVD were observed. • The presence of polycrystalline ZnO with (002) as main orientation was confirmed. • Initial particles significantly differ from crystallite sizes of the resulting films. • The films show an excess of Zn with a Zn-to-O ratio of around 1.7.

  20. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    Science.gov (United States)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  1. Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors

    International Nuclear Information System (INIS)

    We report the dc and rf performance of graphene rf field-effect transistors, where the graphene films are grown on copper by using the chemical vapour deposition (CVD) method and transferred to SiO2/Si substrates. Composite materials, benzocyclobutene and atomic layer deposition Al2O3 are used as the gate dielectrics. The observation of n- and p-type transitions verifies the ambipolar characteristics in the graphene layers. While the intrinsic carrier mobility of CVD graphene is extracted to be 1200 cm2/V·s, the parasitic series resistances are demonstrated to have a serious impact on device performance. With a gate length of 1 μm and an extrinsic transconductance of 72 mS/mm, a cutoff frequency of 6.6 GHz and a maximum oscillation frequency of 8.8 GHz are measured for the transistors, illustrating the potential of the CVD graphene for rf applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics

    Science.gov (United States)

    Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet

    2015-03-01

    Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.

  3. Investigation of the nucleation process of chemical vapour deposited diamond films

    International Nuclear Information System (INIS)

    The primary aim of this work was to contribute to the understanding of the bias enhanced nucleation (BEN) process during the chemical vapour deposition (CVD) of diamond on silicon. The investigation of both the gas phase environment above the substrate surface, by in situ mass selective energy analysis of ions, and of the surface composition and structure by in vacuo surface analytic methods (XPS, EELS) have been carried out. In both cases, the implementation of these measurements required the development and construction of special experimental apparatus as well. The secondary aim of this work was to give orientation to our long term goal of growing diamond films with improved quality. For this reason, (1) contaminant levels at the diamond-silicon interface after growth were studied by SIMS, (2) the internal stress distribution of highly oriented free-standing diamond films were studied by Raman spectroscopy, and (3) an attempt was made to produce spatially regular oriented nuclei formation by nucleating on a pattern created by laser treatment on silicon substrates. (orig.)

  4. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing

    OpenAIRE

    Blackman, C. S.; Piccirillo, C.; Binions, R.; Parkin, I. P.

    2009-01-01

    Atmospheric pressure chemical vapour deposition of VCl4, WCl6 and water at 550 degrees C lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 degrees C to - 23 degrees C. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spect...

  5. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  6. Conductive zinc oxide thin film coatings by combustion chemical vapour deposition at atmospheric pressure

    International Nuclear Information System (INIS)

    We have established a combustion chemical vapour deposition (C-CVD) system for the deposition of zinc oxide (ZnO) at atmospheric pressure. This C-CVD process has the advantage of a short exposure of the substrates to the flame. It is also potentially applicable as an inline coating system. Fundamental studies were performed on undoped ZnO. The specific resistivity of these layers strongly depends on the film thickness and decreases with increasing thickness. As the lowest resistivities, values of about 2.0 · 10−1 Ωcm are achieved. Ultra-violet photoemission spectra show the valence band structure of the deposited ZnO. The work function and valence band edge were determined. UV–vis spectra were taken to investigate the transmission of the coated glass samples. From these spectra the band gap energy was obtained. Raman spectroscopy as well as infrared spectroscopy confirmed the presence of ordered ZnO crystallites. The X-ray diffraction verified this result and illustrates the hexagonal structure. In the mid-infrared range precursor deposits were detected for low substrate temperatures. - Highlights: ► Zinc oxide (ZnO) films are conductive in the range of 2.0 · 10−1 Ωcm. ► X-ray diffraction, Raman and infrared spectroscopy indicate crystalline ZnO films. ► Precursor deposits were proved within the films for low growing temperatures. ► Band gap energy changes are achieved due to different growing temperatures

  7. The Role of Plasma in Plasma Enhanced Chemical Vapour Deposition of Nanostructure Growth

    Science.gov (United States)

    Hash, David B.; Meyyappan, M.; Teo, Kenneth B. K.; Lacerda, Rodrigo G.; Rupesinghe, Nalin L.

    2004-01-01

    Chemical vapour deposition (CVD) has become the preferred process for high yield growth of carbon nanotubes and nanofibres because of its ability to pattern growth through lithographic positioning of transition metal catalysts on substrates. Many potential applications of nanotubes such as field emitters [1] require not only patterned growth but also vertical alignment. Some degree of ali,ment in thermal CVD processes can be obtained when carbon nanotubes are grown closely together as a result of van der Waals interactions. The ali,onment however is marginal, and the van der Waals prerequisite makes growth of freestanding nanofibres with thermal CVD unrealizable. The application of electric fields as a means of ali,onment has been shown to overcome this limitation [2-5], and highly aligned nanostructures can be grown if electric fields on the order of 0.5 V/microns are employed. Plasma enhanced CVD in various configurations including dc, rf, microwave, inductive and electron cyclotron resonance has been pursued as a means of enabling alignment in the CVD process. However, the sheath fields for the non-dc sources are in general not sufficient for a high degree of ali,pment and an additional dc bias is usually applied to the growth substrate. This begs the question as to the actual role of the plasma. It is clear that the plasma itself is not required for aligned growth as references [3] and [4] employed fields through small applied voltages (3-20 V) across very small electrode spacings (10-100 microns) and thus avoided striking a discharge.

  8. Low-pressure Chemical Vapour Deposition of Silicon Nanoparticles:Synthesis and Characterisation

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2008-07-01

    Full Text Available emiconductor nanostructures such as quantum wells, quantum wires or quantum dots exhibit superior properties in comparison to their bulk forms. Quantum dots are described aszero-dimensional electron gas system, as carriers are confined in all the three directions. Densityof states is discrete function of energy. Allowed energy spectrum is discrete like in an atom.Energy band gap is broadened due to carriers confinement. Semiconductor quantum dots exhibittypical coulomb blockade characteristic which is exploited for development of new generationof nanoelectronic devices namely single-electron transistor, memories, etc, whose operationdepends on quantum mechanical tunneling of carriers through energy barriers. Thesesemiconductor nanostructures emit light in visible range upon excitation by optical means. Inrecent years,  research  has been focused on different nano-scale materials; metals (Au, Ag, Fe,Mn, Ni, metal oxides (SnO2, ZnO2, compound semiconductors (GaAs, GaAlAs, CdSe, CdS,GaN, and elemental semiconductors (silicon and germanium. As silicon is the most favouredmaterial in the established integrated circuits manufacturing technology, research is being donefor controlled synthesis and characterisation of Si nanoparticles. The Si nanoparticles havebeen synthesised on oxide and nitride layers over  Si substrate by IC technology compatiblelow-pressure chemical vapour deposition technique. Atomic force microscopy (AFMcharacterisation has been extensively carried out on the samples. It is shown that the tip radiusand shape of tip lead to less accurate estimate of the actual size. The AFM images have been evaluated based on the real surface topography and shape of the tip. Photolumine scence (PL studies have been performed to characterise the samples. The PL measurements showed visiblelight emission from synthesised silicon nanoparticles.Defence Science Journal, 2008, 58(4, pp.550-558, DOI:http://dx.doi.org/10.14429/dsj.58.1676

  9. Temporal Stability of Metal-Chloride-Doped Chemical-Vapour-Deposited Graphene.

    Science.gov (United States)

    Kang, Moon H; Milne, William I; Cole, Matthew T

    2016-08-18

    Graphene has proven to be a promising material for transparent flexible electronics. In this study, we report the development of a transfer and doping scheme of large-area chemical vapour deposited (CVD) graphene. A technique to transfer the as-grown material onto mechanically flexible and optically transparent polymeric substrates using an ultraviolet adhesive (UVA) is outlined, along with the temporal stability of the sheet resistance and optical transparency following chemical doping with various metal chlorides (Mx Cly The sheet resistance (RS ) and 550 nm optical transparency (%T550 ) of the transferred un-doped graphene was 3.5 kΩ sq(-1) (±0.2 kΩ sq(-1) ) and 84.1 % (±2.9 %), respectively. Doping with AuCl3 showed a notable reduction in RS by some 71.4 % (to 0.93 kΩ sq(-1) ) with a corresponding %T550 of 77.0 %. After 200 h exposure to air at standard temperature and pressure, the increase in RS was found to be negligible (ΔRS AuCl3 =0.06 kΩ sq(-1) ), indicating that, of the considered Mx Cly species, AuCl3 doping offered the highest degree of time stability under ambient conditions. There appears a tendency of increasing RS with time for the remaining metal chlorides studied. We attribute the observed temporal shift to desorption of molecular dopants. We find that desorption was most significant in RhCl3 -doped samples whereas, in contrast, after 200 h in ambient conditions, AuCl3 -doped graphene showed only marginal desorption. The results of this study demonstrate that chemical doping of UVA-transferred graphene is a promising means for enhancing large-area CVD graphene in order to realise a viable platform for next-generation optically transparent and mechanically flexible electronics. PMID:27165783

  10. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  11. Growth of AlGaN Epitaxial Film with High Al Content by Metalorganic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lan; ZHAO De-Gang; YANG Hui; LIANG Jun-Wu

    2007-01-01

    A high-Al-content AlCaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire bylow pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity,and twisted mosaicity on the conditions of the AlCaN epilayer deposition is evaluated. An AlCaN epilayer withfavourable surface morphology and crystal quality is deposited on a 20nm low-temperature-deposited AlN buffer at a low Ⅴ/Ⅲ flow ratio of 783 and at a low reactor pressure of 100 Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.

  12. Morphology of carbon nanotubes prepared via chemical vapour deposition technique using acetylene: A small angle neutron scattering investigation

    Indian Academy of Sciences (India)

    D Sen; K Dasgupta; J Bahadur; S Mazumder; D Sathiyamoorthy

    2008-11-01

    Small angle neutron scattering (SANS) has been utilized to study the morphology of the multi-walled carbon nanotubes prepared by chemical vapour deposition of acetylene. The effects of various synthesis parameters like temperature, catalyst concentration and catalyst support on the size distribution of the nanotubes are investigated. Distribution of nanotube radii in two length scales has been observed. The number density of the smaller diameter tubes was found more in number compared to the bigger one for all the cases studied. No prominent scaling of the structure factor was observed for the different synthesis conditions.

  13. Nitrogen-Doped Chemical Vapour Deposited Diamond: a New Material for Room-Temperature Solid State Maser

    Institute of Scientific and Technical Information of China (English)

    N. A. Poklonski; N. M. Lapchuk; A. V. Khomich; LU Fan-Xiu; TANG Wei-Zhong; V. G. Ralchenko; I. I. Vlasov; M. V. Chukichev; Sambuu Munkhtsetseg

    2007-01-01

    Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8 × 1018 cm-3 are also characterized by Raman, cathodoluminescence and optical absorption spectra. The ESR signal from P1 centre with g-factor of 2.0024 (nitrogen impurity atom occupying C site in diamond lattice) is found to exhibit an inversion with increasing the microwave power in an H102 resonator. The spin inversion effect could be of interest for further consideration of N-doped diamonds as a medium for masers operated at room temperature.

  14. Review of analytical techniques to determine the chemical forms of vapours and aerosols released from overheated fuel

    International Nuclear Information System (INIS)

    A comprehensive review has been undertaken of appropriate analytical techniques to monitor and measure the chemical effects that occur in large-scale tests designed to study severe reactor accidents. Various methods have been developed to determine the chemical forms of the vapours, aerosols and deposits generated during and after such integral experiments. Other specific techniques have the long-term potential to provide some of the desired data in greater detail, although considerable efforts are still required to apply these techniques to the study of radioactive debris. Such in-situ and post-test methods of analysis have been also assessed in terms of their applicability to the analysis of samples from the Phebus-FP tests. The recommended in-situ methods of analysis are gamma-ray spectroscopy, potentiometry, mass spectrometry, and Raman/UV-visible absorption spectroscopy. Vapour/aerosol and deposition samples should also be obtained at well-defined time intervals during each experiment for subsequent post-test analysis. No single technique can provide all the necessary chemical data from these samples, and the most appropriate method of analysis involves a complementary combination of autoradiography, AES, IR, MRS, SEMS/EDS, SIMS/LMIS, XPS and XRD

  15. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bollani, M; Fedorov, A [CNISM and L-NESS, Dipartimento di Fisica del Politecnico di Milano, Polo Regionale di Como, Via Anzani 42, I-22100 Como (Italy); Chrastina, D; Sordan, R [L-NESS, Dipartimento di Fisica del Politecnico di Milano, Polo Regionale di Como, Via Anzani 42, I-22100 Como (Italy); Picco, A; Bonera, E, E-mail: monica.bollani@mater.unimib.it [Dipartimento di Scienza dei Materiali, and L-NESS, Universita degli Studi di Milano-Bicocca, via Cozzi 53, I-20125 Milano (Italy)

    2010-11-26

    Si{sub 1-x}Ge{sub x} islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si{sub 1-x}Ge{sub x} islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by {mu}Raman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s{sup -1}) and low temperature (650 deg. C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  16. Inline atmospheric pressure metal-organic chemical vapour deposition for thin film CdTe solar cells

    International Nuclear Information System (INIS)

    A detailed study has been undertaken to assess the deposition of CdTe for thin film devices via an inline atmospheric pressure metal-organic chemical vapour deposition (AP-MOCVD) reactor. The precursors for CdTe synthesis were released from a showerhead assembly normal to a transparent conductive oxide (TCO)/glass substrate, previously coated with a CdZnS window layer using a conventional batch AP-MOCVD reactor with horizontal flow delivery. Under a simulated illumination with air mass coefficient 1.5 (AM1.5), the initial best cell conversion efficiency (11.2%) for such hybrid cells was comparable to a reference device efficiency (∼ 13%), grown entirely in the AP-MOCVD batch reactor. The performance and structure of the hybrid and conventional devices are compared for spectral response, CdTe grain morphology and crystal structure. These preliminary results reported on the transfer from a batch to an inline AP-MOCVD reactor which holds a good potential for the large-scale production of thin film photovoltaics devices and related materials. - Highlights: • Inline metal-organic chemical vapour deposition (MOCVD) used to grow CdTe films • Desired dopant profiles in CdTe:As achieved with inline MOCVD reactor • Initial conversion efficiency of 11.2% was comparable to batch devices (∼ 13%). • Inline MOCVD holds a good potential for large-scale thin film photovoltaics production

  17. Fabrication and characterization of kesterite Cu2ZnSnS4 thin films deposited by electrostatic spray assisted vapour deposition method

    OpenAIRE

    J.P. Liu; Choy, Kwang-Leong; Placidi, M.; J. López-García; Saucedo, Edgardo; Colombara, Diego; Robert, Erika

    2014-01-01

    Most of the high efficiency kesterite solar cells are fabricated by vacuum or hydrazine-based solution methods which have drawbacks, such as high cost, high toxicity or explosivity. In our contribution, an alternative non-vacuum and environmental friendly deposition technology called electrostatic spray assisted vapour deposition (ESAVD) has been used for the cost-effective growth of Cu2ZnSnS4 (CZTS) thin films with well controlled structure and composition. CZTS films have been characterized...

  18. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Malik Anushree

    2010-11-01

    Full Text Available Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM/Atomic force microscopy (AFM and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita and eucalyptus (Eucalyptus globulus essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l was significantly higher than that in the vapour phase (32.7 mg/l and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%; α-citral or geranial (36.2% and β-citral or neral (26.5%, monoterpene hydrocarbons (7.9% and sesquiterpene hydrocarbons (3.8%. Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious

  19. Growth of aligned single-walled carbon nanotubes under ac electric fields through floating catalyst chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Dou Xin-Yuan; Luo Shu-Dong; Zhang Zeng-Xing; Liu Dong-Fang; Wang Jian-Xiong; Gao Yan; Zhou Wei-Ya; Wang Gang; Zhou Zhen-Ping; Tan Ping-Heng; Zhou Jian-Jun; Song Li; Sun Lian-Feng; Jiang Peng; Liu Li-Feng; Zhao Xiao-Wei

    2005-01-01

    Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280℃). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.

  20. Properties of MgB{sub 2} films grown at various temperatures by hybrid physical-chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke; Veldhorst, Menno; Li, Qi; Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lee, Che-Hui; Lamborn, Daniel R; DeFrain, Raymond; Redwing, Joan M [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-09-15

    A hybrid physical-chemical vapour deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB{sub 2} thin films and thick films at various temperatures. We are able to grow superconducting MgB{sub 2} thin films at temperatures as low as 350 deg. C with a T{sub c0} of 35.5 K. MgB{sub 2} films up to 4 {mu}m in thickness grown at 550 deg. C have J{sub c} over 10{sup 6} A cm{sup -2} at 5 K and zero applied field. The low deposition temperature of MgB{sub 2} films is desirable for all-MgB{sub 2} tunnel junctions and MgB{sub 2} thick films are important for applications in coated conductors.

  1. The properties of GaMnN films grown by metalorganic chemical vapour deposition using Raman spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Xing Hai-Ying; Niu Ping-Juan; Xie Yu-Xin

    2012-01-01

    An investigation of room-temperature Raman scattering is carried out on ferromagnetic semiconductor GaMnN films grown by metalorganic chemical vapour deposition with different Mn content values.New bands around 300 and 669 cm-1,that are not observed in undoped GaN,are found.They are assigned to disorder-activated mode and local vibration mode (LVM),respectively.After annealing,the intensity ratio between the LVM and E2(high) mode,i.e.,ILVM/IE2(high),increases.The LO phonon-plasmon coupled (LOPC) mode is found in GaMnN,and the frequency of the LOPC mode of GaMnN shifting toward higher side is observed with the increase in the Mn doping in GaN.The ferromagnetic character and the carrier density of our GaMnN sample are discussed.

  2. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-Bin; ZHANG Feng-Ming; DU You-Wei; HUANG Zhi-Gao; ZHENG Jian-Guo; LU Zhi-Hai; ZOU Wen-Qin; LU Zhong-Lin; XU Jian-Ping; JI Jian-Ti; LIU Xing-Chong; WANG Jian-Feng; LV Li-Ya

    2007-01-01

    Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Zn1-xMnxO films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.

  3. Structural and Luminescent Properties of ZnO Thin Films Deposited by Atmospheric Pressure Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-Liang; LIN Bi-Xia; HONG Liang; MENG Xiang-Dong; FU Zhu-Xi

    2004-01-01

    ZnO thin films were successfully deposited on Si (100) substrates by chemical vapour deposition (CVD) at atmospheric pressure (1 atm). The only solid source used here is zinc acetate, (CHsCOO)2Zn, and the carrier gas is nitrogen. The sample, which was prepared at 550℃ during growth and then annealed in air at 900℃ , has only a ZnO (002) diffraction peak at 34.6° with its FWHM of 0.23° in the XRD pattern. The room-temperature PL spectrum shows a strong ultraviolet emission with the peak centred at 380nm. We analysed the effects of many factors, such as the source, substrates, growth and annealing temperatures, and annealing ambience, on the structural and optical properties of our prepared ZnO films.

  4. Atmospheric pressure chemical vapour deposition of NbSe2-TiSe2 composite thin films

    International Nuclear Information System (INIS)

    Atmospheric pressure chemical vapour deposition of titanium tetrachloride and niobium pentachloride with di-tert-butyl selenide at 550 deg. C was investigated for different precursors' flow rates. Scanning electron microscopy of the films showed that they were composed of two different kinds of plate-like crystallites. Point wavelength dispersive X-ray (WDX) analyses of the crystallites revealed that they either had the NbSe2 or the TiSe2 composition. The presence of the two phases was confirmed by X-ray diffraction (XRD) and the calculated cell parameters indicate that niobium or titanium was not incorporated into each others' lattice. WDX and XRD analyses highlighted how the NbSe2:TiSe2 ratio in the composite films could be controlled by precursor flow rate.

  5. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene

    Science.gov (United States)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-01-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication. PMID:27381715

  6. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene.

    Science.gov (United States)

    Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz

    2016-01-01

    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication. PMID:27381715

  7. Low Density Self-Assembled InAs/GaAs Quantum Dots Grown by Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Lin; LIU Guo-Jun; WANG Xiao-Hua; LI Mei; LI Zhan-Guo; WAN Chun-Ming

    2008-01-01

    The serf-assembled InAs quantum dots (QDs) on GaAs substrates with low density (5×108cm-2) are achieved using relatively higher growth temperature and low InAs coverage by low-pressure metal-organic chemical vapour deposition.The macro-PL spectra exhibit three emission peaks at 1361,1280 and 1204nm,corresponding to the ground level (GS),the first excited state (ES1) and the second excited state (ES2) of the QDs,respectively,which are obtained when the GaAs capping layer/s grown using triethylgallium and tertiallybutylarsine.As a result of micro-PL,only a few peaks from individual dots have been observed.The exciton-biexciton behaviour was clearly observed at low temperature.

  8. Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Gu Guang-Rui; Wu Bao-Jia; Jin Zhe; Ito Toshimichi

    2008-01-01

    This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture.The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy,respectively.The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm2 and a current density of 3.2mA/cm2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%.The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.

  9. Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition

    Science.gov (United States)

    Gu, Guang-Rui; Wu, Bao-Jia; Jin, Zhe; Ito, Toshimichi

    2008-02-01

    This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm2 and a current density of 3.2mA/cm2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.

  10. Growth of a Novel Periodic Structure of SiC/AlN Multilayers by Low Pressure Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-Mei; SUN Guo-Sheng; LI Jia-Ye; LIU Xing-Fang; WANG Lei; ZHAO Wan-Shun; LI Jin-Min

    2007-01-01

    A novel 10-period SiC/AlN multilayered structure with a SiC cap layer is prepared by low pressure chemical vapour deposition (LPCVD). The structure with total Sim thickness of about 1.45μm is deposited on a Si (111) substrate and shows good surface morphology with a smaller rms surface roughness of 5.3 nm. According to the secondary ion mass spectroscopy results, good interface of the 10 period SiC/AlN structure and periodic changes of depth profiles of C, Si, Al, N components are obtained by controlling the growth procedure. The structure exhibits the peak reflectivity close to 30% near the wavelength of 322 nm. To the best of our knowledge, this is the first report of growth of the SiC/AlN periodic structure using the home-made LPCVD system.

  11. Chemical-vapour-deposition growth and electrical characterization of intrinsic silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salem, B. [Laboratoire des Technologies de la Microelectronique (LTM)-UMR 5129 CNRS, CEA-Grenoble, 17 Rue des Martyrs, F-38054 Grenoble (France)], E-mail: bassem.salem@cea.fr; Dhalluin, F.; Baron, T. [Laboratoire des Technologies de la Microelectronique (LTM)-UMR 5129 CNRS, CEA-Grenoble, 17 Rue des Martyrs, F-38054 Grenoble (France); Jamgotchian, H.; Bedu, F.; Dallaporta, H. [CRMC-N, Faculte des Sciences de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Gentile, P.; Pauc, N. [CEA-DRFMC/SiNaPS, 17 Rue des Martyrs, F-38054 Grenoble (France); Hertog, M.I. den; Rouviere, J.L. [CEA-DRFMC/SP2M/LEMMA GEM-minatec, 17 Rue des Martyrs, F-38054 Grenoble (France); Ferret, P. [CEA-Leti, DOPT, 17 Rue des Martyrs, F-38054 Grenoble (France)

    2009-03-15

    In this work, we present the elaboration and the electrical characterisation of undoped silicon nanowires (SiNWs) which are grown via vapour-liquid-solid mechanism using Au nucleation catalyst and SiH{sub 4} as the silicon source. The nanowires were investigated by high-resolution transmission electron microscopy. An electrical test structure was realized by a dispersion of the nanowires on SiO{sub 2}/Si substrate with photolithography pre-patterned Au/Ti microelectrodes. The connexion is made on a single nanowire using a cross beam plate form allowing scanning electron microscopy imaging and the deposition of tungsten wiring by focussed ion beam deposition. The current-voltage characteristics of the nanowires are linear which indicates an ohmic contact between tungsten allow and SiNWs. The total resistance of the nanowires increases from 135 M{omega} to 5 G{omega} when the diameter decreases from 190 to 130 nm. This effect is may be due to the reduction of the conductive inner volume of the nanowires and to charged defects at the Si-SiO{sub 2} interface if we assume that the contact resistance is constant. Moreover, gate-dependent current versus bias voltage measurement show that the nanowires exhibit a field effect response characteristic of a p-type semiconductor.

  12. The effect of thermal annealing on the properties of alumina films prepared by metal organic chemical vapour deposition at atmospheric pressure

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin films deposited at 330°C by metal organic chemical vapour deposition on stainless steel, type AISI 304, were annealed in a nitrogen atmosphere for 1, 2 and 4 h at 600, 700 and 800°C. The film properties, including the protection of the underlying substrate against high temperature corrosion, th

  13. The protective properties of thin alumina films deposited by metal organic chemical vapour deposition against high-temperature corrosion of stainless steels

    NARCIS (Netherlands)

    Morssinkhof, R.W.J.; Fransen, T.; Heusinkveld, M.M.D.; Gellings, P.J.

    1989-01-01

    Coatings of Al2O3 were deposited on Incoloy 800H and AISI 304 by means of metal organic chemical vapour deposition. Diffusion limitation was the rate-determining step above 420 °C. Below this temperature, the activation energy of the reaction appeared to be 30 kJ mol−1. Coating with Al2O3 increases

  14. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in hte presence of small amounts of water

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Rem, J.B.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films were deposited on stainless steel, type AISI 304. The deposition process was carried out in nitrogen with low partial pressures of water (0–2.6 × 10−2 kPa (0−0.20 mmHg)) by metal-organic chemical vapour deposition (MOCVD) with aluminium-tri-sec-butoxide (ATSB) as the precursor. Al

  15. Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Taraneh [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada); Laurent, Sophie; Stanicki, Dimitri [University of Mons, Laboratory of NMR and Molecular Imaging (Belgium); Raphael, Wendell; Tavares, Jason Robert, E-mail: jason.tavares@polymtl.ca [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada)

    2015-12-15

    Diverse applications of superparamagnetic iron oxide nanoparticles (SPIONs) in the chemical and biomedical industry depend on their surface properties. In this paper, we investigate the effect of initial surface charge (bare, positively and negatively charged SPIONs) on the resulting physicochemical properties of the particles following treatment through photo-initiated chemical vapour deposition (PICVD). Transmission electron microscopy shows a nanometric polymer coating on the SPIONs and contact angle measurements with water demonstrate that their surface became non-polar following functionalization using PICVD. FTIR and XPS data confirm the change in the chemical composition of the treated SPIONs. Indeed, XPS data reveal an initial charge-dependent increase in the surface oxygen content in the case of treated SPIONs. The O/C percentage ratios of the bare SPIONs increase from 1.7 to 1.9 after PICVD treatment, and decrease from 1.7 to 0.7 in the case of negatively charged SPIONs. The ratio remains unchanged for positively charged SPIONs (1.7). This indicates that bare and negatively charged SPIONs showed opposite preference for the oxygen or carbon attachment to their surface during their surface treatment. These results reveal that both the surface charge and stereochemical effects have determinant roles in the polymeric coating of SPIONs with PICVD. Our findings suggest that this technique is appropriate for the treatment of nanoparticles.Graphical Abstract.

  16. Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition

    International Nuclear Information System (INIS)

    Diverse applications of superparamagnetic iron oxide nanoparticles (SPIONs) in the chemical and biomedical industry depend on their surface properties. In this paper, we investigate the effect of initial surface charge (bare, positively and negatively charged SPIONs) on the resulting physicochemical properties of the particles following treatment through photo-initiated chemical vapour deposition (PICVD). Transmission electron microscopy shows a nanometric polymer coating on the SPIONs and contact angle measurements with water demonstrate that their surface became non-polar following functionalization using PICVD. FTIR and XPS data confirm the change in the chemical composition of the treated SPIONs. Indeed, XPS data reveal an initial charge-dependent increase in the surface oxygen content in the case of treated SPIONs. The O/C percentage ratios of the bare SPIONs increase from 1.7 to 1.9 after PICVD treatment, and decrease from 1.7 to 0.7 in the case of negatively charged SPIONs. The ratio remains unchanged for positively charged SPIONs (1.7). This indicates that bare and negatively charged SPIONs showed opposite preference for the oxygen or carbon attachment to their surface during their surface treatment. These results reveal that both the surface charge and stereochemical effects have determinant roles in the polymeric coating of SPIONs with PICVD. Our findings suggest that this technique is appropriate for the treatment of nanoparticles.Graphical Abstract

  17. Determination and characterization of phytochelatins by liquid chromatography coupled with on line chemical vapour generation and atomic fluorescence spectrometric detection.

    Science.gov (United States)

    Bramanti, Emilia; Toncelli, Daniel; Morelli, Elisabetta; Lampugnani, Leonardo; Zamboni, Roberto; Miller, Keith E; Zemetra, Joseph; D'Ulivo, Alessandro

    2006-11-10

    Liquid chromatography (LC) coupled on line with UV/visible diode array detector (DAD) and cold vapour generation atomic fluorescence spectrometry (CVGAFS) has been developed for the speciation, determination and characterization of phytochelatins (PCs). The method is based on a bidimensional approach, e.g. on the analysis of synthetic PC solutions (apo-PCs and Cd(2+)-complexed PCs) (i) by size exclusion chromatography coupled to UV diode array detector (SEC-DAD); (ii) by the derivatization of PC -SH groups in SEC fractions by p-hydroxymercurybenzoate (PHMB) and the indirect detection of PC-PHMB complexes by reversed phase liquid chromatography coupled to atomic fluorescence detector (RPLC-CVGAFS). MALDI-TOF/MS (matrix assisted laser desorption ionization time of flight mass spectrometry) analysis of underivatized synthetic PC samples was performed in order have a qualitative information of their composition. Quantitative analysis of synthetic PC solutions has been performed on the basis of peak area of PC-PHMB complexes of the mercury specific chromatogram and calibration curve of standard solution of glutathione (GSH) complexed to PHMB (GS-PHMB). The limit of quantitation (LOQ) in terms of GS-PHMB complex was 90 nM (CV 5%) with an injection volume of 35 microL, corresponding to 3.2 pmol (0.97 ng) of GSH. The method has been applied to analysis of extracts of cell cultures from Phaeodactylum tricornutum grown in Cd-containing nutrient solutions, analysed by SEC-DAD-CVGAFS and RPLC-DAD-CVGAFS.

  18. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification.

    Science.gov (United States)

    Su, Ren; Forde, Michael M; He, Qian; Shen, Yanbin; Wang, Xueqin; Dimitratos, Nikolaos; Wendt, Stefan; Huang, Yudong; Iversen, Bo B; Kiely, Christopher J; Besenbacher, Flemming; Hutchings, Graham J

    2014-10-28

    As co-catalyst materials, metal nanoparticles (NPs) play crucial roles in heterogeneous photocatalysis. The photocatalytic performance strongly relies on the physical properties (i.e., composition, microstructure, and surface impurities) of the metal NPs. Here we report a convenient chemical vapour impregnation (CVI) approach for the deposition of monometallic-, alloyed, and core-shell structured metal co-catalysts onto the TiO2 photocatalyst. The as-synthesised metal NPs are highly dispersed on the support and show narrow size distributions, which suit photocatalysis applications. More importantly, the surfaces of the as-synthesised metal NPs are free of protecting ligands, enabling the photocatalysts to be ready to use without further treatment. The effect of the metal identity, the alloy chemical composition, and the microstructure on the photocatalytic performance has been investigated for hydrogen production and phenol decomposition. Whilst the photocatalytic H2 production performance can be greatly enhanced by using the core-shell structured co-catalyst (Pdshell-Aucore and Ptshell-Aucore), the Ptshell-Aucore modified TiO2 yields enhanced quantum efficiency but a reduced effective decomposition of phenol to CO2 compared to that of the monometallic counterparts. We consider the CVI approach provides a feasible and elegant process for the decoration of photocatalyst materials. PMID:24970298

  19. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide: design and simulation

    Science.gov (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.

  20. Spark assisted chemical engraving (SACE) in microfactory

    Science.gov (United States)

    Wüthrich, R.; Fujisaki, K.; Couthy, Ph; Hof, L. A.; Bleuler, H.

    2005-10-01

    Spark assisted chemical engraving (SACE) is a method for 3D microstructuring of glass or other non-conductive materials with high aspect ratio and smooth surface quality. It is applicable for rapid prototyping of microfluidic devices, for MEMS interfacing and similar applications. Typical feature size is in the hundreds of micrometres, down to a few tens of micrometres. It is a table-top technology requiring no clean rooms and no masks and with very modest space usage. It is thus well suited for microfactories. This paper gives a basic introduction to SACE and some machining examples.

  1. PENGARUH KATALIS Co DAN Fe TERHADAP KARAKTERISTIK CARBON NANOTUBES DARI GAS ASETILENA DENGAN MENGGUNAKAN PROSES CATALYTIC CHEMICAL VAPOUR DEPOSITION (CCVD

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2013-11-01

    Full Text Available EFFECT OF Co AND Fe ON CARBON NANOTUBES CHARACTERISTICS FROM ACETYLENE USING CATALYTIC CHEMICAL VAPOUR DEPOSITION (CCVD PROCESS. Carbon Nanotubes (CNTs is one of the most well known nano-technology applications which the most of attracting the attention of researchers, because it has more advantages than other materials. The application of the CNT has extended into various aspects, such as electronics, materials, biology and chemistry. This research uses a system of Catalytic Chemical Vapour Deposition (CCVD, which aims to determine the influence of Co and Fe as a catalyst and zeolite 4A as a support catalyst with acetylene gas (C2H2 as carbon source in the synthesis of Carbon Nanotubes (CNTs. In this experiment, used the ratio of acetylene gas and flow rate of N2 gas is 1:1 by weight of the catalyst Co/Zeolite and Fe/Zeolite amounted to 0.5 grams at the operating temperature of 700oC for 20 minutes. N2 gas serves to minimize the occurrence of oxidation reaction (explosion when operating. From analysis result by Scanning Electron Microscopy (SEM shows the CNTs formed a type of MWNT with different of diameter size and product weight, depending on the size of the active component concentration on the catalyst. The larger of active components produced CNTs with larger diameter, whereas product weight syntheses result smaller. Use of the catalyst Fe/Zeolite produce CNTs with a diameter larger than the catalyst Co/Zeolite.  Carbon Nanotubes (CNTs merupakan salah satu aplikasi nanoteknologi yang paling terkenal dan banyak menarik perhatian para peneliti, karena memiliki beberapa kelebihan daripada material lainnya. Aplikasi dari CNT telah merambah ke berbagai aspek, seperti bidang elektronika, material, biologi dan kimia. Penelitian ini menggunakan sistem Catalytic Chemical Vapour Deposition (CCVD yang bertujuan untuk mengetahui pengaruh variasi Cobalt (Co dan Ferrum (Fe sebagai katalis dan zeolit tipe 4A sebagai penyangga katalis dengan gas

  2. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Science.gov (United States)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  3. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    Indian Academy of Sciences (India)

    Kaushik Patel; Jagdish Prajapati; Rajiv Vaidya; S G Patel

    2005-08-01

    Single crystals of the lamellar compound, ZrSe3, were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700–1450 nm. The indirect as well as direct band gap of ZrSe3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303–423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail.

  4. Structural and Compositional Study of Graphene grown on SrTiO3 by Chemical Vapour Deposition

    Science.gov (United States)

    Karamat, Shumaila; Celik, Umit; Oral, Ahmet

    Graphene, a monolayer of sp2 bonded carbon atom, is considered as one of the most promising candidate materials for future electronics. The most critical step in graphene research is its transfer from the growth catalyst to the dielectric substrate, many unavoidable issues in the transfer process are: contamination from etchants, photoresist residues, wrinkles, and mechanical breakage. The direct growth of graphene on the substrates without using catalyst offer new opportunities in device fabrication without any transfer process. But till now, the field of direct graphene growth on dielectrics or insulating substrates is not mature like growth on metallic catalysts using CVD. We used chemical vapour deposition to grow graphene on SrTiO3 (110) substrates. The growth was carried out in presence of methane, argon and hydrogen. Raman Spectrum clearly showed the D and G peaks which were absent in bare substrate. XPS was used to get information about the presence of necessary elements, their bonding with STO substrates. AFM imaging clearly showed graphene island formation on substrates.

  5. Role of Duty Ratio in Diamond Growth by Pulsed DC-Bias Enhanced Hot Filament Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    MENG Liang; ZHOU Haiyang; ZHU Xiaodong

    2007-01-01

    In this study, the role of the pulse duty ratio was investigated during the deposition of diamond films in a hot filament chemical vapour deposition reactor with a pulsed-dc biased substrate positively relative to the hot filaments. The voltage-current characteristics showed that the discharge current rose with the increase of biasing voltage, which was modified by the duty ratio. Before deposition, two approaches were adopted for the pre-treatment of the silicon substrates, respectively, and the substrates were scratched by diamond paste or seeded by diamond powders using the so-called 'soft dry polished' technique. Diamond films were deposited under a fixed discharge power by changing the duty ratios. In the first group with scratched substrates, it was found that under a high duty ratio the diamond grew slowly with quite poor nucleation, while in the second case a high duty ratio induced a high deposition rate and good diamond quality. Reactive hydrocarbon species with high energy are essential for the initial nucleation process, which is more effectively achieved at a high biasing voltage in the condition of a low duty ratio. In the film growth process, the large discharge current at a high duty ratio represents an increased concentration of electrons and reactive species as well, promoting the growth of diamond films.

  6. InGa1−N fibres grown on Au/SiO2 by chemical vapour deposition

    Indian Academy of Sciences (India)

    A Ramos-Carrazco; R García; M Barboza-Flores; R Rangel

    2014-12-01

    The growth of InGa1−N films ( = 0.1 and = 0.2) on a thin gold layer (Au/SiO2) by chemical vapour deposition (CVD) at 650 °C is reported. As a novelty, the use of a Ga–In metallic alloy to improve the indium incorporation in the InGa1−N is proposed. The results of high quality InGa1−N films with a thickness of three micrometres and the formation of microfibres on the surface are presented. A morphological comparison between the InGa1−N and GaN films is shown as a function of the indium incorporation. The highest crystalline InGa1−N films structure was obtained with an indium composition of = 0.20. Also, the preferential growth on the (002) plane over In0.2Ga0.8N was observed by means of X-ray diffraction. The thermoluminescence (TL) of the InGa1−N films after beta radiation exposure was measured indicating the presence of charge trapping levels responsible for a broad TL glow curve with a maximum intensity around 150 °C. The TL intensity was found to depend on composition being higher for = 0.1 and increases as radiation dose increases.

  7. In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition

    Indian Academy of Sciences (India)

    Preetam Singh; Ashvani Kumar; Ajay Kaushal; Davinder Kaur; Ashish Pandey; R N Goyal

    2008-06-01

    Ultrasonic mist chemical vapour deposition (UM–CVD) system has been developed to prepare ZnO nanopowder. This is a promising method for large area deposition at low temperature inspite of being simple, inexpensive and safe. The particle size, lattice parameters and crystal structure of ZnO nanopowder are characterized by in situ high temperature X-ray diffraction (XRD). Surface morphology of powder was studied using transmission electron microscopy (TEM) and field emission electron microscope (FESEM). The optical properties are observed using UV-visible spectrophotometer. The influence of high temperature vacuum annealing on XRD pattern is systematically studied. Results of high temperature XRD showed prominent 100, 002 and 101 reflections among which 101 is of highest intensity. With increase in temperature, a systematic shift in peak positions towards lower 2 values has been observed, which may be due to change in lattice parameters. Temperature dependence of lattice constants under vacuum shows linear increase in their values. Diffraction patterns obtained from TEM are also in agreement with the XRD data. The synthesized powder exhibited the estimated direct bandgap (g) of 3.43 eV. The optical bandgap calculated from Tauc’s relation and the bandgap calculated from the particle size inferred from XRD were in agreement with each other.

  8. Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    The electrical properties of zinc oxide (ZnO) thin films of various thicknesses (0.3–4.4 µm) grown by metalorganic chemical vapour deposition on glass substrates have been studied by using temperature-dependent Hall-effect (TDH) measurements in the 18–300 K range. The high quality of the layers has been confirmed with x-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence techniques. TDH measurements indicate the presence of a degenerate layer which significantly influences the low-temperature data. It is found that the measured mobility generally increases with increasing layer thickness, reaching a value of 120 cm2 V−1 s−1 at room temperature for the 4.4 µm thick sample. The lateral grain size of the layers is also found to increase with thickness indicating a clear correlation between the size of the surface grains and the electrical properties of corresponding films. Theoretical fits to the Hall data suggest that the bulk conduction of the layers is dominated by a weakly compensated donor with activation energy in the 33–41 meV range and concentration of the order of 1017 cm−3, as well as a total acceptor concentration of mid-1015 cm−3. Grain boundary scattering is found to be an important limiting factor of the mobility throughout the temperature range considered

  9. Atmospheric pressure chemical vapour deposition of SnSe and SnSe{sub 2} thin films on glass

    Energy Technology Data Exchange (ETDEWEB)

    Boscher, Nicolas D.; Carmalt, Claire J.; Palgrave, Robert G. [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ (United Kingdom); Parkin, Ivan P. [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ (United Kingdom)], E-mail: i.p.parkin@ucl.ac.uk

    2008-06-02

    Atmospheric pressure chemical vapour deposition of tin monoselenide and tin diselenide films on glass substrate was achieved by reaction of diethyl selenide with tin tetrachloride at 350-650 {sup o}C. X-ray diffraction showed that all the films were crystalline and matched the reported pattern for SnSe and/or SnSe{sub 2}. Wavelength dispersive analysis by X-rays show a variable Sn:Se ratio from 1:1 to 1:2 depending on conditions. The deposition temperature, flow rates and position on the substrate determined whether mixed SnSe-SnSe{sub 2}, pure SnSe or pure SnSe{sub 2} thin films could be obtained. SnSe films were obtained at 650 {sup o}C with a SnCl{sub 4} to Et{sub 2}Se ratio greater than 10. The SnSe films were silver-black in appearance and adhesive. SnSe{sub 2} films were obtained at 600-650 {sup o}C they had a black appearance and were composed of 10 to 80 {mu}m sized adherent crystals. Films of SnSe only 100 nm thick showed complete absorbtion at 300-1100 nm.

  10. Surface and Compositional Study of Graphene grown on Lithium Niobate (LiNbO3) substrates by Chemical Vapour Deposition

    Science.gov (United States)

    Karamat, Shumaila; Celik, Umit; Oral, Ahmet

    The diversity required in the designing of electronic devices motivated the community to always attempt for new functional materials and device structures. Graphene is considered as one of the most promising candidate materials for future electronics and carbon based devices. It is very exciting to combine graphene with new dielectric materials which exhibit multifunctional properties. Lithium Niobate exhibits ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as strong photorefractive and photovoltaic effects which made it one of the most extensively studied materials over the last 50 years. We used ambient pressure chemical vapour deposition to grow graphene on LiNbO3 substrates without any catalyst. The growth was carried out in presence of methane, argon and hydrogen. AFM imaging showed very unique structures on the surface which contains triangular domains. X-ray photoelectron spectroscopy (XPS) was used to get information about the presence of necessary elements, their bonding with LiNbO3 substrates. Detailed characterization is under process which will be presented later.

  11. Photoluminescence and lasing properties of InAs/GaAs quantum dots grown by metal-organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Liang Song; Wang Wei; Zhu Hong-Liang; Pan Jiao-Qing; Zhao Ling-Juan; Wang Lu-Feng; Zhou Fan; Shu Hui-Yun; Bian Jing; An Xin

    2008-01-01

    Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied.PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample.During rapid thermal annealing,however,the low growth rate sample shows a greater blueshift of PL peak wavelength.This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample.A growth technique including growth interruption and in-situ annealing,named indium flush method,is used during the growth of GaAs cap layer,which can flatten the GaAs surface effectively.Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width,it is essential for the fabrication of room temperature working QD lasers.

  12. Metal organic chemical vapour deposition of SrRuO3 thin films on SrTiO3

    International Nuclear Information System (INIS)

    SrRuO3 with pseudo-cubic crystalline structure (a=0.393 nm) appears to be one of the most suitable conductive oxides to be used as bottom electrode for the oxide-based electronic devices, due to its high conductivity and low lattice misfit with many functional perovskite transition metal oxides. Furthermore, this electrode has a lower density of defects (oxygen vacancies, dislocations, dead layer) compared with metal electrodes (Pt,Ru,Ir). A vertical liquid-delivery metal-organic chemical vapour deposition (MO-CVD) reactor was used to deposit (100)-oriented SrRuO3 films on vicinal SrTiO3(100) substrates. In order to grow epitaxial thin films with low defect density and high electrical conductivity and to optimise the deposition parameters, the influence of deposition temperature (500-700 C), argon/oxygen ratio (1.6-3.3), total gas flow (4875-8125 sccm) and reactor pressure (12 mbar-40 mbar) was investigated. Composition of the films was identified by GDOES technique. Raman and XRD were used to determine film orientation and the surface morphology and roughness was analysed by AFM and SEM microscopy

  13. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-01-01

    Full Text Available The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide (PLGA membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD, onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR. HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.

  14. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  15. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    International Nuclear Information System (INIS)

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiNX) and silicon dioxide (SiO2), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiNX buffer layer is wider than SiO2 and the maximum grain size slightly increased

  16. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joong-Hyun [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Han, Sang-Myeon [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Park, Sang-Geun [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Han, Min-Koo [School of Electrical Engineering (50), Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul (Korea, Republic of); Shin, Moon-Young [LTPS Team, AMLCD Business, Samsung Electronics Co., Giheung, Yongin City (Korea, Republic of)

    2006-09-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN{sub X}) and silicon dioxide (SiO{sub 2}), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,{lambda}=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN{sub X} buffer layer is wider than SiO{sub 2} and the maximum grain size slightly increased.

  17. Influence of hydrogen on chemical vapour synthesis of different carbon nanostructures using propane as precursor and nickel as catalyst

    Indian Academy of Sciences (India)

    R K Sahoo; H Mamgain; C Jacob

    2014-10-01

    The role of hydrogen in the catalytic chemical vapour deposition of carbon nanotubes using sputtered nickel thin film as a catalyst is explained in this work. The growth of different carbon nanostructures with the variation in the precursor gas content was studied by keeping all other process parameters constant and using sputtered Ni thin film as a catalyst. The catalyst granule size, its external morphology and the resulting products were analysed. Carbon nanotubes (CNTs), carbon nanofibres (CNFs) and carbon nanoribbons (CNRs) were observed under different growth conditions. The different conditions of growth leading to form tubes, fibres or ribbons were analysed by varying the flow ratio of propane and hydrogen gas during the high temperature growth. Scanning and transmission electron microscopies confirmed the above structures under different growth conditions. The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its correlative effect on the growth of carbon nanostructures is analysed. This direct approach can, in principle, be used to synthesize different types of carbon nanostructures by tailoring the hydrogen concentration.

  18. Metal-organic chemical vapour deposition of lithium manganese oxide thin films via single solid source precursor

    Directory of Open Access Journals (Sweden)

    Oyedotun K.O.

    2015-12-01

    Full Text Available Lithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 °C with a flow rate of 2.5 dm3/min for two-hour deposition period. Rutherford backscattering spectroscopy (RBS, UV-Vis spectrophotometry, X-ray diffraction (XRD spectroscopy, atomic force microscopy (AFM and van der Pauw four point probe method were used for characterizations of the film samples. RBS studies of the films revealed fair thickness of 1112.311 (1015 atoms/cm2 and effective stoichiometric relationship of Li0.47Mn0.27O0.26. The films exhibited relatively high transmission (50 % T in the visible and NIR range, with the bandgap energy of 2.55 eV. Broad and diffused X-ray diffraction patterns obtained showed that the film was amorphous in nature, while microstructural studies indicated dense and uniformly distributed layer across the substrate. Resistivity value of 4.9 Ω·cm was obtained for the thin film. Compared with Mn0.2O0.8 thin film, a significant lattice absorption edge shift was observed in the Li0.47Mn0.27O0.26 film.

  19. Titania Coated Mica via Chemical Vapour Deposition, Post N-doped by Liquid Ammonia Treatment

    Science.gov (United States)

    Powell, Michael J.; Parkin, Ivan P.

    TiO2 films were successfully grown on synthetic mica powders via Chemical Vapor Deposition (CVD). The CVD rig is a cold-walled design that allows surface coverage of a powder to be successfully achieved. The TiO2 was produced by the reaction between TiCl4 and Ethyl Acetate. The powder produced could be successfully N-doped using post liquid ammonia treatment. The TiO2 powder produced could have potential applications in self-cleaning surfaces or antimicrobial paints.

  20. Biocidal Silver and Silver/Titania Composite Films Grown by Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    D. W. Sheel

    2008-01-01

    Full Text Available This paper describes the growth and testing of highly active biocidal films based on photocatalytically active films of TiO2, grown by thermal CVD, functionally and structurally modified by deposition of nanostructured silver via a novel flame assisted combination CVD process. The resulting composite films are shown to be highly durable, highly photocatalytically active and are also shown to possess strong antibacterial behaviour. The deposition control, arising from the described approach, offers the potential to control the film nanostructure, which is proposed to be crucial in determining the photo and bioactivity of the combined film structure, and the transparency of the composite films. Furthermore, we show that the resultant films are active to a range of organisms, including Gram-negative and Gram-positive bacteria, and viruses. The very high-biocidal activity is above that expected from the concentrations of silver present, and this is discussed in terms of nanostructure of the titania/silver surface. These properties are especially significant when combined with the well-known durability of CVD deposited thin films, offering new opportunities for enhanced application in areas where biocidal surface functionality is sought.

  1. A Passively Mode-Locked Diode-End-Pumped Nd:YAG Laser with a Semiconductor Saturable Absorber Mirror Grown by Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    王勇刚; 马骁宇; 李春勇; 张治国; 张丙元; 张志刚

    2003-01-01

    We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror(SESAM)from which we achieved a 10ps pulse duration at 150MHz repetition rate.The SESAM was grown by metal organic chemical vapour deposition at low temperature.The recovery time was measured to be 0.5 ps,indicating the potential pulse compression to sub-picoseconds.

  2. Substrate and material transfer effects on the surface chemistry and texture of diamond-like carbon deposited by plasma-enhanced chemical vapour deposition

    OpenAIRE

    Jones, Benjamin; Ojeda, J. J.

    2012-01-01

    Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp2/sp3 ratios were calculated both by the deconvolut...

  3. Growth of AlGaSb Compound Semiconductors on GaAs Substrate by Metalorganic Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    A. H. Ramelan

    2010-01-01

    Full Text Available Epitaxial AlxGa1-xSb layers on GaAs substrate have been grown by atmospheric pressure metalorganic chemical vapour deposition using TMAl, TMGa, and TMSb. We report the effect of V/III flux ratio and growth temperature on growth rate, surface morphology, electrical properties, and composition analysis. A growth rate activation energy of 0.73 eV was found. For layers grown on GaAs at 580∘C and 600∘C with a V/III ratio of 3 a high quality surface morphology is typical, with a mirror-like surface and good composition control. It was found that a suitable growth temperature and V/III flux ratio was beneficial for producing good AlGaSb layers. Undoped AlGaSb grown at 580∘C with a V/III flux ratio of 3 at the rate of 3.5 μm/hour shows p-type conductivity with smooth surface morphology and its hole mobility and carrier concentration are equal to 237 cm2/V.s and 4.6 × 1017 cm-3, respectively, at 77 K. The net hole concentration of unintentionally doped AlGaSb was found to be significantly decreased with the increased of aluminium concentration. All samples investigated show oxide layers (Al2O3, Sb2O3, and Ga2O5 on their surfaces. In particular the percentage of aluminium-oxide was very high compared with a small percentage of AlSb. Carbon content on the surface was also very high.

  4. Investigation of optical and electronic properties of hafnium aluminate films deposited by Metal-Organic Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Alloying elemental high-k metal oxides (such as HfO2) with other metals is seen as an effective method of controlling the properties of the dielectric based on the concentration of cations in the mixture; in particular, mixing HfO2 with Al2O3, and forming hafnium aluminate layers which will still have a relatively high dielectric constant (typically k ∼ 15) and remain amorphous up to high processing temperatures. This paper summarizes the results of physical and electrical characterisation of hafnium aluminate (HfAl xO y) films prepared by Metal-Organic Chemical Vapour Deposition. We show how, using ultraviolet-visible, single angle ellipsometry, the thickness and composition of the deposited and of the transition/interfacial layers can be extracted, and further used for the estimation of the relative dielectric constant. Moreover, a methodology for extracting the band gap of these materials and its dependence on the aluminium concentration is presented. This has been achieved by using a simple parameterization model (Wemple-Di Domenico) to account for the optical dispersion of the films. Preparing thin films with a relatively high dielectric constant and with an amorphous structure even at high processing temperatures, are not the only requirements to be achieved when such layers are to be used as gate dielectrics. The electrical characteristics - such as leakage current, density of interface states, fixed charge in the oxide - are extremely important. The results obtained through capacitance-voltage and current-voltage measurements show the possibility of adjusting the relative dielectric constant of the layers in a wide range (9-16), when the aluminium concentration varies between 4% and 38%. The minimum leakage current occurs for Al concentrations up to 9%. The thinner films show Fowler-Nordheim conduction even at higher concentrations of Al into the film, while thicker films show a higher hysteresis due to an increased number of slow trapping centres in the

  5. CdTe thin film solar cells produced using a chamberless inline process via metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Cd1−xZnxS and CdTe:As thin films were deposited using a recently developed chamberless inline process via metalorganic chemical vapour deposition (MOCVD) at atmospheric pressure and assessed for fabrication of CdTe photovoltaic (PV) solar cells. Initially, CdS and Cd1−xZnxS coatings were applied onto 15 × 15 cm2 float glass substrates, characterised for their optical properties, and then used as the window layer in CdTe solar cells which were completed in a conventional MOCVD (batch) reactor. Such devices provided best conversion efficiency of 13.6% for Cd0.36Zn0.64S and 10% for CdS which compare favourably to the existing baseline MOCVD (batch reactor) devices. Next, sequential deposition of Cd0.36Zn0.64S and CdTe:As films was realised by the chamberless inline process. The chemical composition of a 1 μm CdTe:As/150 nm Cd0.36Zn0.64S bi-layer was observed via secondary ions mass spectroscopy, which showed that the key elements are uniformly distributed and the As doping level is suitable for CdTe device applications. CdTe solar cells formed using this structure provided a best efficiency of 11.8% which is promising for a reduced absorber thickness of 1.25 μm. The chamberless inline process is non-vacuum, flexible to implement and inherits from the legacy of MOCVD towards doping/alloying and low temperature operation. Thus, MOCVD enabled by the chamberless inline process is shown to be an attractive route for thin film PV applications. - Highlights: • CdS, CdZnS and CdTe thin films grown by a chamberless inline process • The inline films assessed for fabricating CdTe solar cells • 13.6% conversion efficiency obtained for CdZnS/CdTe cells

  6. a Study of Volatile Precursors for the Growth of Cadmium Sulphide and Cadmium Selenide by Metal Organic Chemical Vapour Deposition.

    Science.gov (United States)

    Beer, Michael P.

    Available from UMI in association with The British Library. The wide-band-gap semiconductors, cadmium sulphide and cadmium selenide, may be grown by Metal Organic Chemical Vapour Deposition (MOCVD). This method typically involves the reaction of gaseous streams of Me_2 Cd and H_2Y (Y = S, Se) over a heated substrate (usually gallium arsenide) on which the desired compound is grown as an epitaxial layer. Unfortunately, the precursors start to react in the cold zone of the reactor, that is before they reach the heated substrate. This problem is known as prereaction. The problem of prereaction is partially reduced by the use of adducts of dimethyl cadmium in place of the free dialkyl compound although the mechanism by which such adducts block prereaction is unknown. Accordingly, a study of adducts of dimethyl cadmium was undertaken with a view to determining their properties in all phases. The adduct of Me_2Cd with 2,2^ '-bipyridyl was found to be monomeric in the solid state while that with 1,4-dioxane, a volatile compound used for prereaction reduction, was found to be polymeric. A study of adducts in the gas phase using mass spectrometry and gas phase Fourier transform infrared spectroscopy gave no evidence to suggest there is any gas phase association between 1,4-dioxane and dimethyl cadmium. With the 2,2 ^'-bipyridyl adduct some evidence for partial retention of coordinate bonds upon sublimation was obtained. The solid adduct of Me _2Cd with N,N,N^' ,N^'-tetramethylethylenediamine (TMEDA) was prepared as it was hoped that the flexibility of the aliphatic Lewis base would permit the formation of an adduct containing strong co-ordinate bonds which would remain intact upon sublimation. Using gas phase electron diffraction, the structure of the adduct of Me_2Cd and TMEDA was determined. It was shown to exist in the gas phase purely as the associated monomeric species. The adduct was then employed for the growth of CdS and CdSe in an industrial MOCVD apparatus. The

  7. Mechanical alloying and sintering of aluminum reinforced with SiC nanopowders produced by plasma-enhanced chemical-vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Costa, J.; Fort, J.; Roura, P. [GRM, Dept. de Enginyeria Industrial, Universitat de Girona (Spain); Froyen, L. [MTM Katholieke Universiteit Leuven (Belgium); Viera, G.; Bertran, E. [FEMAN, Dept. Fisica Aplicada i Optica, Universitat de Barcelona (Spain)

    2000-07-01

    Nanometric powders of stoichiometric SiC have been synthesised by plasma-enhanced chemical-vapour deposition. These are constituted by amorphous particles with diameters ranging from 10 to 100 nm. Due to their high hydrogen content, a heat treatment at 900 C was needed to prevent spontaneous oxidation. The stabilized SiC powder was mechanically alloyed with aluminum particles of 40 {mu}m in diameter and the alloy was formed by hot isostatic sintering. The SiC content ranged from 0 to 5% in weight. A detailed analysis of the alloyed powder microstructure is presented as well as preliminary results concerning the mechanical properties after sintering. (orig.)

  8. Evolution of Structural Defects in SiOx Films Fabricated by Electron Cyclotron Resonance Plasma Chemical Vapour Deposition upon Annealing Treatment

    Institute of Scientific and Technical Information of China (English)

    HAO Xiao-Peng; WANG Bao-Yi; Yu Run-Sheng; WEI Long; WANG Hui; ZHAO De-Gang; HAO Wei-Chang

    2008-01-01

    @@ We study the structural defects in the SiOx film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution.The photoluminescence property is observed in the as-deposited and annealed samples.[-SiO3]2- defects are the luminescence centres of the ultraviolet photoluminescence(PL)from the Fourier transform infrared spectroscopy and PL measurements.[-SiO3]2- is observed by positron annihilation spectroscopy,and this defect can make the S parameters increase.After 1000℃ annealing,[-SiO3]2- defects still exist in the films.

  9. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland

    Science.gov (United States)

    Pyysalo, Heikki; Tuominen, Jari; Wickström, Kim; Skyttä, Eija; Tikkanen, Leena; Salomaa, Sisko; Sorsa, Marja; Nurmela, Tuomo; Mattila, Tiina; Pohjola, Veijo

    Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m -3 in late spring and from 17 to 83 ng m -3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.

  10. Atmospheric pressure chemical vapour deposition of vanadium arsenide thin films via the reaction of VCl4 or VOCl3 with tBuAsH2

    International Nuclear Information System (INIS)

    Thin films of vanadium arsenide were deposited via the dual-source atmospheric pressure chemical vapour deposition reactions of VCl4 or VOCl3 with tBuAsH2. Using the vanadium precursor VCl4, films were deposited at substrate temperatures of 550–600 °C, which were black-gold in appearance and were found to be metal-rich with high levels of chlorine incorporation. The use of VOCl3 as the vanadium source resulted in films being deposited between 450 and 600 °C and, unlike when using VCl4, were silver in appearance. The films deposited using VOCl3 demonstrated vanadium to arsenic ratios close to 1:1, and negligible chlorine incorporation. Films deposited using either vanadium precursor were identified as VAs using powder X-ray diffraction and possessed borderline metallic/semiconductor resistivities. - Highlights: • Formation of VAs films via atmospheric pressure chemical vapour deposition. • Films formed using VCl4 or VOCl3 and tBuAsH2. • Powder X-ray diffraction showed that crystalline VAs films were deposited. • Films from VOCl3 had a V:As ratio close to 1 with negligible Cl incorporation. • Films were silver and possessed borderline metallic/semiconductor resistivities

  11. Characterisation of Pristine and Recoated electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings on AISI M2 steel and WC-Co substrates

    International Nuclear Information System (INIS)

    This paper is focussed on the characterisation of electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings deposited on AISI M2 steel and hardmetal (K10) substrates in two different conditions: Pristine (i.e., coated) and Recoated (i.e., stripped and recoated). Analytical methods, including X-ray diffraction (XRD), scanning electron microscopy, scratch adhesion and pin-on-disc tests were used to evaluate several coating properties. XRD analyses indicated that both Pristine and Recoated coatings consisted of a mixture of hexagonal Cr2N and cubic CrN, regardless of substrate type. For the M2 steel substrate, only small differences were found in terms of coating phases, microstructure, adhesion, friction and wear coefficients between Pristine and Recoated. Recoated on WC-Co (K10) exhibited a less dense microstructure and significant inferior adhesion compared to Pristine on WC-Co (K10). The wear coefficient of Recoated on WC-Co was 100 times higher than those exhibited by all other specimens. The results obtained confirm that the stripping process did not adversely affect the Cr-N properties when this coating was deposited onto M2 steel substrates, but it is clear from the unsatisfactory tribological performance of Recoated on WC-Co that the stripping process is unsuitable for hardmetal substrates

  12. Room-Temperature Ferromagnetism of Ga1-xMnxN Grown by Low-Pressure Metalorganic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Tao; ZHANG Guo-Yi; SU Yue-Yong; YANG Zhi-Jian; ZHANG Yan; ZHANG Bin; GUO Li-Ping; XU Ke; PAN Yao-Bao; ZHANG Han

    2006-01-01

    @@ Epitaxial films of Ga1-xMnxN have been grown on c-sapphire substrates by low-pressure metal-organic vapour phase epitaxy. The samples show ferromagnetic behaviour up to a temperature of T = 380 K with hysteresis curves showing a coercivity of 50-100Oe. No ferromagnetic second phases and no significant deterioration in crystal quality with the incorporation of Mn can be detected by high-resolution x-ray diffraction. The result of x-ray absorption near-edge structures indicates that Mn atoms substitute for Ga atoms. The Mn concentrations of the layers are determined to reach x = 0.038 by proton-induced x-ray emission.

  13. Sensitive chemical compass assisted by quantum criticality

    Science.gov (United States)

    Cai, C. Y.; Ai, Qing; Quan, H. T.; Sun, C. P.

    2012-02-01

    A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction. The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup, inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of weak magnetic fields.

  14. Sensitive Chemical Compass Assisted by Quantum Criticality

    CERN Document Server

    Cai, C Y; Quan, H T; Sun, C P

    2011-01-01

    The radical-pair-based chemical reaction could be used by birds for the navigation via the geomagnetic direction. An inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could response to the weak magnetic field and be sensitive to the direction of such a field and then results in different photopigments in the avian eyes to be sensed. Here, we propose a quantum bionic setup for the ultra-sensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via the recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of the detection of the weak magnetic field.

  15. Grafting 4f and 3d metal complexes into mesoporous MCM-41 silica by wet impregnation and by chemical vapour infiltration

    International Nuclear Information System (INIS)

    Hybrid organic/inorganic materials have been prepared by reacting mesoporous MCM-41 silica with transition metal β-diketonates, either by wet impregnation (WI) or by chemical vapour infiltration (CVI). Compounds obtained from Eu(III) or Gd(III) β-diketonates, both by wet impregnation and by CVI, contain chemisorbed metalorganic species with strong Si-O-Ln bonding. Compounds prepared (by CVI only) from Cu(II) or Mn(III) β-diketonates show a more complex absorption process than the lanthanides, since upon heating under dynamic vacuum they release part of the absorbed metal complex. Eu(thd)3 was more specifically used to prepare luminescent materials. It was used either alone, or with phenanthroline as an additional ligand in order to promote the so called 'antenna effect'

  16. Characterization of thin TiO{sub 2} films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk-Guzenda, A., E-mail: asobczyk@p.lodz.p [Institute of Materials Science and Engineering, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Gazicki-Lipman, M.; Szymanowski, H.; Kowalski, J. [Institute of Materials Science and Engineering, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Wojciechowski, P.; Halamus, T. [Department of Molecular Physics, Technical University of Lodz, Stefanowskiego 1, 90-924 Lodz (Poland); Tracz, A. [Centre for Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz (Poland)

    2009-07-31

    Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 {sup o}C disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.

  17. An investigation into the optimum thickness of titanium dioxide thin films synthesized by using atmospheric pressure chemical vapour deposition for use in photocatalytic water oxidation.

    Science.gov (United States)

    Hyett, Geoffrey; Darr, Jawwad A; Mills, Andrew; Parkin, Ivan P

    2010-09-10

    Twenty eight films of titanium dioxide of varying thickness were synthesised by using atmospheric pressure chemical vapour deposition (CVD) of titanium(IV) chloride and ethyl acetate onto glass and titanium substrates. Fixed reaction conditions at a substrate temperature of 660 °C were used for all depositions, with varying deposition times of 5-60 seconds used to control the thickness of the samples. A sacrificial electron acceptor system composed of alkaline sodium persulfate was used to determine the rate at which these films could photo-oxidise water in the presence of 365 nm light. The results of this work showed that the optimum thickness for CVD films on titanium substrates for the purposes of water oxidation was ≈200 nm, and that a platinum coating on the reverse of such samples leads to a five-fold increase in the observed rate of water oxidation. PMID:20645333

  18. Growth of MgB2 Thin Films by Chemical Vapour Deposition Using B2H6 as a boron Source

    Institute of Scientific and Technical Information of China (English)

    王淑芳; 朱亚彬; 刘震; 周岳亮; 张芹; 陈正豪; 吕惠宾; 杨国桢

    2003-01-01

    Superconducting MgB2 thin films were grown on single crystal Al2O3 (0001) by chemical vapour deposition using B2H6 as a boron source. MgB2 film was then accomplished by annealing the boron precursor films in the presence of high-purity magnesium bulk at 890℃ in vacuum. The as-grown MgB2 films are smooth and c-axis-oriented.The films exhibit a zero-resistance transition of about 38K with a narrow transition width of 0.2 K. Magnetic hysteresis measurements yield the critical current density of 1.9 × 107 A/cm2 at 10 K in zero field.

  19. Influence of double AlN buffer layers on the qualities of GaN films prepared by metal-organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Lin Zhi-Yu; Hao Yue; Zhang Jin-Cheng; Zhou Hao; Li Xiao-Gang; Meng Fan-Na; Zhang Lin-Xia; Ai Shan; Xu Sheng-Rui; Zhao Yi

    2012-01-01

    In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double AlN buffer layers.The buffer layer consists of a low-temperature (LT) AlN layer and a high-temperature (HT) AlN layer that are grown at 600 ℃ and 1000 ℃,respectively.It is observed that the thickness of the LT-AlN layer drastically influences the quality of GaN thin film,and that the optimized 4.25-min-LT-AlN layer minimizes the dislocation density of GaN thin film.The reason for the improved properties is discussed in this paper.

  20. Ellipsometric and Rutherford Back scattering Spectrometry studies of SiO(X)N(Y) films elaborated by plasma-enhanced chemical vapour deposition technique.

    Science.gov (United States)

    Mahamdi, R; Boulesbaa, M; Saci, L; Mansour, F; Molliet, C; Collet, M; Temple-Boyer, P

    2011-10-01

    Silicon oxynitride (SiO(X)N(Y)) thin films were deposited by plasma-enhanced chemical vapour deposition technique (PECVD) from silane (SiH4), nitrous oxide (N2O), ammonia (NH3) and nitrogen (N2) mixture. Spectroscopic ellipsometry (SE), in the range of wavelengths 450-900 nm, was used to define the film thickness and therefore the deposition rate, as well as the refractive index as a function of the N2O gaseous flow. While considering the (Si3N4, SiO2, H2 or void) heterogeneous mixture, Maxwell Garnett (MG) theory allows to fit the SE measurements and to define the volume fraction of the different phases. Finally, Rutherford Backscattering Spectrometry (RBS) results showed that x = O/Si ratio increases gradually with increasing the N2O flow, allowing the correlation of the SiO(X)N(Y) films main parameters. PMID:22400311

  1. Effect of Al Doping in the InGaN/GaN Multiple Quantum Well Light Emitting Diodes Grown by Metalorganic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Yu; YANG Zhi-Jian; PAN Yao-Bo; XU Ke; HU Xiao-Dong; ZHANG Bei; ZHANG Guo-Yi

    2006-01-01

    The effect of Al doping in the GaN layer of InGaN/GaN multiple quantum-well light emitting diodes (LEDs) grown by metalorganic chemical vapour deposition is investigated by using photoluminescence (PL) and high-resolution x-ray diffraction. The full width at half maximum of PL of Al doped LEDs is measured to be about 12nm. The band edge photoluminescence emission intensity is enhanced significantly. In addition, the in-plane compressive strain in the Al-doped LEDs is improved significantly and measured by reciprocal space map. The output power of Al-doped LEDs is 130mW in the case of the induced current of 200mA.

  2. The physics of plasma-enhanced chemical vapour deposition for large-area coating: industrial application to flat panel displays and solar cells

    International Nuclear Information System (INIS)

    Designing plasma-enhanced chemical vapour deposition (PECVD) reactors to coat large-area glass plates (∼1 m2) for flat panel display or solar cell manufacturing raises challenging issues in physics and chemistry as well as mechanical, thermal, and electrical engineering, and material science. In such reactive glow discharge plasma slabs, excited at RF frequency (from 13.56 MHz up to ∼100 MHz), the thin-film deposition uniformity is determined by the gas flow distribution, as well as the RF voltage distribution along the electrodes, and by local plasma perturbations at the reactor boundaries. All these aspects can be approached by analytical and numerical modelling. Moreover, the film properties are largely determined by the plasma chemistry involving the neutral radicals contributing to film growth, the effect of ion bombardment, and the formation and trapping of dust triggered by homogeneous nucleation. This paper will review progress in this field, with particular emphasis on modelling developments. (author)

  3. Study of a new hybrid process combining slurry infiltration and Reactive Chemical Vapour Infiltration for the realisation of Ceramic Matrix Composites

    International Nuclear Information System (INIS)

    Ceramic matrix composites were originally developed for aerospace,military aeronautics or energy applications thanks to their good properties at high temperature. They are generally made by Chemical Vapor Infiltration (CVI). A new short hybrid process combining fiber preform slurry impregnation of ceramic powders with an innovative Reactive CVI (RCVI) route is proposed to reduce the production time. This route is based on the combination of Reactive Chemical Vapour Deposition (RCVD), which is often used to deposit coatings on fibres, with the Chemical Vapor Infiltration (CVI).In RCVD, the absence of one element of the deposited carbide in the initial gas phase involves the consumption/conversion of the solid substrate. In this work, the RCVD growth and the associated consumption were studied with different parameters in the Ti-H-Cl-C chemical system. The study has been completed with the chemical products analysis, combining XRD, XPS and FTIR. Then, the partial conversion of sub-micrometer carbon powders into titanium carbide and the consolidation of green bodies by RCVI from H2/TiCl4 gaseous infiltration were studied. The residual porosity and the final TiC content were measured in the bulk of the infiltrated powders by image analysis from scanning electron microscopy. Depending on temperature, few hundred micrometers-depth infiltrations are obtained.Finally, the results have been transposed to the RCVI into CMC-type pre-forms. Despite a minimal TiC content of 25% in the overall preform, the results shown a bad homogeneity of the infiltration and a poor cohesion of fibres with RCVI consolidated powder of their environment. (author)

  4. Evaluation of water vapour assimilation in the tropical upper troposphere and lower stratosphere by a chemical transport model

    Science.gov (United States)

    Payra, Swagata; Ricaud, Philippe; Abida, Rachid; El Amraoui, Laaziz; Attié, Jean-Luc; Rivière, Emmanuel; Carminati, Fabien; von Clarmann, Thomas

    2016-09-01

    The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project "Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics" (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316-5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the

  5. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  6. ZT thin films produced by metal organic-chemical vapour deposition to be used as high-k dielectrics

    International Nuclear Information System (INIS)

    In this work the synthesis and characterisation of ZrxTi1-xO2 (ZT) grown via a non conventional MOCVD apparatus on both silicon and platinum coated substrates are described. The samples have been chemically, morphologically and structurally characterised by AFM, XRD, SEM + FEG and XPS. Also high and low frequencies electrical characterisation has been performed to evaluate a possible application of such materials as high-k dielectrics

  7. Effect of Postdeposition Heat Treatment on the Crystallinity, Size, and Photocatalytic Activity of TiO2 Nanoparticles Produced via Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2010-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles were produced using chemical vapour deposition (CVD at different deposition temperatures (300–700°C. All the samples were heat treated at their respective deposition temperatures and at a fixed temperature of 400°C. A scanning electron microscope (SEM, a transmission electron microscope (TEM, and X-ray diffraction (XRD were used to characterize the nanoparticles in terms of size and crystallinity. The photocatalytic activity was investigated via degradation of methylene blue under UV light. The effects of post deposition heat treatment are discussed in terms of crystallinity, nanoparticle size as well as photocatalytic activity. Crystallinity was found to have a much larger impact on photocatalytic activity compared to nanoparticle size. Samples having a higher degree of crystallinity were more photocatalytically active despite being relatively larger in size. Surprisingly, the photocatalytic activity of the samples reduced when heat treated at temperatures lower than the deposition temperature despite showing an improvement in crystallinity.

  8. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  9. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Wen-Juan; XIE Fen-Yan; CHEN Qiang; WENG Jing

    2008-01-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  10. Pengaruh Temperatur, Massa Zink, Substrat Dan Waktu Tahan Terhadap Struktur Dan Morfologi Zno Hasil Sintesis Dengan Metode Chemical Vapour Transport (CVT

    Directory of Open Access Journals (Sweden)

    Arisela Distyawan

    2013-09-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Material Zink Oksida (ZnO telah berhasil disintesis menggunakan metode Chemical Vapour Transport dengan bahan dasar prekursor berupa serbuk Zn yang dipanaskan hingga mencapai temperatur uap dalam furnace horisontal. Adapun variasi yang diberikan dalam penelitian adalah berupa temperatur pemanasan (850, 900, dan 950oC, massa prekursor Zn (0,15, 0,25, dan 0,35g, lama waktu sputtering substrat (90 dan 180 detik, dan waktu tahan khusus untuk mengetahui initial growth ZnO (10, 20, 30, 40, 50, dan 60 menit. Pembentukan Zink Oksida (ZnO dikonfirmasi melalui data X-RD, dimana telah terbentuk material ZnO dengan struktur hexagonal wurtzite. Berdarsarkan data XRD juga diketahui ukuran kristal pada sampel sputtering 90 detik mengalami penurunan bersamaan penambahan massa Zn. Dari hasil pengamatan SEM didapatkan bahwa morfologi permukaan lapisan tipis ZnO terdiri dari berbagai macam bentuk berupa nanoparticle, nanowires, nanorods, dan nanotetrapod. Lapisan Zno paling tebal sebesar ±350 nm pada sampel 950oC-0,15g sputter 90 detik. Semakin tinggi temperatur operasi berdampak peningkatan ukuran partikel. Pengujian FTIR turut menguatkan terbentuknya lapisan tipis di permukaan substrat Alumina. Hal ini didasarkan terjadinya penyerapan vibrasi yang membentuk lekukan pada kisaran area 509 cm-1 dari masing-masing sampel.

  11. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  12. A chemical assessment of the suitability of allyl- iso-propyltelluride as a Te precursor for metal organic vapour phase epitaxy

    Science.gov (United States)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William; Foster, Douglas F.; Ellis, David

    2001-04-01

    The chemical studies, which led to the testing of allyl- iso-propyltelluride (allylTePr i) as a Te precursor in metal organic vapour phase epitaxy are presented. The pyrolysis in hydrogen of allylTePr i gave products including 1,5-hexadiene, propane and propene. Co-pyrolysis of dimethylcadmium (Me 2Cd) and allylTePr i gave the hydrocarbons expected from the pyrolysis of the individual precursors plus additional hydrocarbons including 2-methylpropane and 1-butene. Plots of percentage decomposition versus temperature, which proved extremely useful in determining the likely growth temperatures for both CdTe and HgTe, showed that allylTePr i is less stable than both Pr 2iTe (di- iso-propyltelluride) and Me 2Cd. The possible role of Hg in the growth of CdTe is also discussed. The chemistry of allylTePr i is well suited for use as an efficient precursor for epitaxial growth of tellurium containing semiconductors since there is very little formation of other organotellurium compounds on pyrolysis.

  13. Effect of gas flow rates on the anatase-rutile transformation temperature of nanocrystalline TiO2 synthesised by chemical vapour synthesis.

    Science.gov (United States)

    Ahmad, Md Imteyaz; Bhattacharya, S S; Fasel, Claudia; Hahn, Horst

    2009-09-01

    Of the three crystallographic allotropes of nanocrystalline titania (rutile, anatase and brookite), anatase exhibits the greatest potential for a variety of applications, especially in the area of catalysis and sensors. However, with rutile being thermodynamically the most stable phase, anatase tends to transform into rutile on heating to temperatures in the range of 500 degrees C to 700 degrees C. Efforts made to stabilize the anatase phase at higher temperatures by doping with metal oxides suffer from the problems of having a large amorphous content on synthesis as well as the formation of secondary impurity phases on doping. Recent studies have suggested that the as-synthesised phase composition, crystallite size, initial surface area and processing conditions greatly influence the anatase to rutile transformation temperature. In this study nanocrystalline titania was synthesised in the anatase form bya chemical vapour synthesis (CVS) method using titanium tetra iso-propoxide (TTIP) as a precursor under varying flow rates of oxygen and helium. The anatase to rutile transformation was studied using high temperature X-ray diffraction (HTXRD) and simultaneous thermogravimetric analysis (STA), followed by transmission electron microscopy (TEM). It was demonstrated that the anatase-rutile transformation temperatures were dependent on the oxygen to helium flow rate ratio during CVS and the results are presented and discussed. PMID:19928267

  14. Structural and optical investigation of nonpolar a-plane GaN grown by metal-organic chemical vapour deposition on r-plane sapphire by neutron irradiation

    Institute of Scientific and Technical Information of China (English)

    Xu Sheng-Rui; Zhang Jin-Feng; Gu Wen-Ping; Hao Yue; Zhang Jin-Cheng; Zhou Xiao-Wei; Lin Zhi-Yu; Mao Wei

    2012-01-01

    Nonpolar (11(2)0) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1(1)02) sapphire.The samples are irradiated with neutrons under a dose of 1 × 1015 cm-2.The surface morphology,the crystal defects and the optical properties of the samples before and after irradiation are analysed using atomic force microscopy (AFM),high resolution X-ray diffraction (HRXRD) and photoluminescence (PL).The AFM result shows deteriorated sample surface after the irradiation.Careful fitting of the XRD rocking curve is carried out to obtain the Lorentzian weight fraction.Broadening due to Lorentzian type is more obvious in the as-grown sample compared with that of the irradiated sample,indicating that more point defects appear in the irradiated sample.The variations of line width and intensity of the PL band edge emission peak are consistent with the XRD results.The activation energy decreases from 82.5 meV to 29.9 meV after irradiation by neutron.

  15. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  16. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Science.gov (United States)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-01

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm2 at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O2) plasma for 5 min and again field emission characteristics were measured. The O2 plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm2 at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O2 plasma treatment and the findings are being reported in this paper.

  17. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  18. A Simple Route of Morphology Control and Structural and Optical Properties of ZnO Grown by Metal-Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    FAN Hai-Bo; YANG Shao-Yan; ZHANG Pan-Feng; WEI Hong-Yuan; LIU Xiang-Lin; JIAO Chun-Mei; ZHU Qin-Sheng; CHEN Yong-Hai; WANG Zhan-Guo

    2008-01-01

    @@ Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 20 locations of ZnO (002) face in the XRD patterns and the E2 (high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopyresults show all the samples have a sharp ultraviolet luminescent band without any defects-related emission.Upon the experiments a possible growth mechanism is proposed.

  19. Thermal Modification of a-SiC:H Films Deposited by Plasma Enhanced Chemical Vapour Deposition from CH4+SiH4 Mixtures

    Institute of Scientific and Technical Information of China (English)

    刘玉学; 王宁会; 刘益春; 申德振; 范希武; 李灵燮

    2001-01-01

    The effects of thermal annealing on photoluminescence (PL) and structural properties of a-Si1-xCx :H films deposited by plasma enhanced chemical vapour deposition from CH4+SiH4 mixtures are studied by using infrared, PL and transmittance-reflectance spectra. In a-SiC:H network, high-temperature annealing gives rise to the effusion of hydrogen from strongly bonded hydrogen in SiH, SiH2, (SiH2)n, SiCHn and CHn configurations and the break of weak C-C, Si-Si and C-Si bonds. A structural rearrangement will occur, which causes a significant correlation of the position and intensity of the PL signal with the annealing temperature. The redshift of the PL peak is related to the destruction of the confining power of barriers. However, the PL intensity does not have a significant correlation with the annealing temperature for a C-rich a-SiC:H network, which refers to the formation of π-bond cluster as increasing carbon content. It is indicated that the thermal stability of C-rich a-Si1-xCx:H films is better than that of Si-like a-Si1-xCx :H films.

  20. Effects of annealing temperature on crystallisation kinetics and properties of polycrystalline Si thin films and solar cells on glass fabricated by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tao Yuguo, E-mail: yuguo.tao@hotmail.com [Photovoltaics Centre of Excellence, University of New South Wales, Sydney NSW 2052 (Australia); Varlamov, Sergey; Jin, Guangyao [Photovoltaics Centre of Excellence, University of New South Wales, Sydney NSW 2052 (Australia); Wolf, Michael; Egan, Renate [CSG Solar Pty Ltd, Sydney, NSW (Australia)

    2011-10-31

    Solid-phase crystallisation of Si thin films on glass fabricated by plasma enhanced chemical vapour deposition is compared at different annealing temperatures. Four independent techniques, optical transmission microscopy, Raman and UV reflectance spectroscopy, and X-ray diffraction, are used to characterise the crystallisation kinetics and film properties. The 1.5 {mu}m thick films with the n+/p-/p+ solar cell structure have incubation times of about 300, 53, and 14 min and full crystallisation times of about 855, 128, and 30 min at 600 deg. C, 640 deg. C, and 680 deg. C respectively. Estimated activation energies for incubation and crystal growth are 2.7 and 3.2 eV respectively. The average grain size in the resulting polycrystalline Si films measured from scanning electron microscopy images gradually decreases with a higher annealing temperature and the crystal quality becomes poorer according to the Raman, UV reflection, and X-ray diffraction results. The dopant activation and majority carrier mobilities in heavily doped n+ and p+ layers are similar for all crystallisation temperatures. Both the open-circuit voltage and the spectral response are lower for the cells crystallised at higher temperatures and the minority carrier diffusion lengths are shorter accordingly although they are still longer than the cell thickness for all annealing temperatures. The results indicate that shortening the crystallisation time by merely increasing the crystallisation temperature offers little or no merits for PECVD polycrystalline Si thin-film solar cells on glass.

  1. Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapour deposition for high electron mobility transistor applications

    Indian Academy of Sciences (India)

    Bhubesh Chander Joshi; Manish Mathew; B C Joshi; D Kumar; C Dhanavantri

    2010-01-01

    GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers respectively. High resolution XRD (HRXRD) peaks show FWHM of 272 and 296 arcsec for the (0 0 0 2) plane of GaN and GaN in GaN/AlGaN respectively. For GaN buffer layer, the Hall mobility is 346 cm2/V-s and carrier concentration is 4.5 × 1016 /cm3. AFM studies on GaN buffer layer show a dislocation density of 2 × 108/cm2 by wet etching in hot phosphoric acid. The refractive indices of GaN buffer layer on sapphire at 633 nm are 2.3544 and 2.1515 for TE and TM modes respectively.

  2. Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Li Hai-Ou; Huang Wei; Tang Chak Wah; Deng Xiao-Fang; Lau Kei May

    2011-01-01

    The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported.By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω-mm. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD.The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6. Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.

  3. Large-scale synthesis of single-crystal molybdenum trioxide nanobelts by hot-wire chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianjun, E-mail: chen@zstu.edu.cn [Department of Materials Forming and Control Engineering, College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Wang, Mingming; Liao, Xin; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan [Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Gao, Li [Department of Materials Forming and Control Engineering, College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Li, Ye [Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-01-15

    Graphical abstract: Bulk quantities of α-MoO{sub 3} nanobelts were synthesized by a simple hot wire chemical vapor deposition on the surface of commercial U shape MoSi{sub 2} rod electric heater. - Highlights: • The hot-wire CVD technique is introduced for the preparation of α-MoO{sub 3} nanobelts. • The MoO{sub 3} nanobelts grown on each commercial MoSi{sub 2} rod were up to 20 g in weight. • The possible vapor–solid growth mechanism of MoO{sub 3} nanobelts was discussed. • This technique also provides valuable information for high-capacity Li-ion battery. - Abstract: Bulk quantities of molybdenum trioxide (α-MoO{sub 3}) nanobelts were synthesized via hot wire chemical vapor deposition on the surface of the MoSi{sub 2} rod electric heater at 600 °C under air atmosphere. The MoO{sub 3} nanobelts grown on each MoSi{sub 2} rod were up to 20 g in weight. The possible vapor–solid growth mechanism was discussed. Before the growth of MoO{sub 3} nanobelts, SiO{sub 2} protective layers of MoSi{sub 2} rod electric heater were deoxidized by the carbothermal reduction reaction, and Mo{sub 2}C was formed on the surface of the MoSi{sub 2} rods. When Mo{sub 2}C was oxidized under air atmosphere, Mo-O vapor was deposited on the hot MoSi{sub 2} rod surface to form yellow MoO{sub 3} nanobelts. The hot wire chemical vapor deposition technique is desirable for the large-scale production of MoO{sub 3} nanomaterials.

  4. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  5. Azo dye decolorization assisted by chemical and biogenic sulfide

    International Nuclear Information System (INIS)

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection

  6. Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Syazwan Afif Mohd Zobir

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD method at 800–1000°C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO, ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G′ bands were observed at 1336–1364, 1559–1680, and 2667–2682 cm-1, respectively. Carbon nanotubes (CNTs with the highest degree of crystallinity were obtained at around 8000°C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000°C.

  7. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  8. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  9. Surface transformations of carbon (graphene, graphite, diamond, carbide), deposited on polycrystalline nickel by hot filaments chemical vapour deposition

    International Nuclear Information System (INIS)

    The deposition of carbon has been studied at high temperature on polycrystalline nickel by hot filaments activated chemical vapor deposition (HFCVD). The sequences of carbon deposition are studied by surface analyses: Auger electron spectroscopy (AES), electron loss spectroscopy (ELS), X-ray photoelectron spectroscopy (XPS) in a chamber directly connected to the growth chamber. A general scale law of the (C/Ni) intensity lines is obtained with a reduced time. Both, shape analysis of the AES C KVV line and the C1s relative intensity suggest a three-step process: first formation of graphene and a highly graphitic layer, then multiphase formation with graphitic, carbidic and diamond-like carbon and finally at a critical temperature that strongly depends on the pretreatment of the polycrystalline nickel surface, a rapid transition to diamond island formation. Whatever the substrate diamond is always the final product and some graphene layers the initial product. Moreover it is possible to stabilize a few graphene layers at the initial sequences of carbon deposition. The duration of this stabilization step is strongly depending however on the pre-treatment of the Ni surface.

  10. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  11. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer

  12. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead η to decrease. In contrast, η was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp2 phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  13. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Science.gov (United States)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  14. Comparison of the Er,Cr:YSGG laser with a chemical vapour deposition bur and conventional techniques for cavity preparation: a microleakage study.

    Science.gov (United States)

    Yazici, A Rüya; Yıldırım, Zeren; Antonson, Sibel A; Kilinc, Evren; Koch, Daniele; Antonson, Donald E; Dayangaç, Berrin; Ozgünaltay, Gül

    2012-01-01

    The aim of this study was to compare the effects of the Er,Cr:YSGG laser using chemical vapour deposition (CVD) bur cavity preparation with conventional preparation methods including a diamond bur and a carbide bur on the microleakage with two different adhesive systems. A total of 40 extracted human premolars were randomly assigned to four experimental groups according to the cavity preparation technique: group I diamond bur (Diatech); group II carbide bur (Diatech); group III Er,Cr:YSGG laser (Biolase Millennium II); and group IV CVD bur (CVDentUS). Using the different preparation techniques, Class V standardized preparations were performed on the buccal and lingual surfaces with gingival margins on the dentin and occlusal margins on the enamel. Each preparation group was randomly assigned to two subgroups (five teeth, ten preparations) according to the type of adhesive: an etch-and-rinse adhesive (Adper Single Bond), and a single-step self-etch adhesive (AdheSE One). All preparations were restored with a nanohybrid composite resin in a single increment. Following thermocycling (×500; 5-55°C), the teeth were immersed in basic fuchsin and sectioned in the orovestibular direction. Dye penetration was evaluated under a light microscope by two blinded examiners. Data were statistically analysed with the Kruskal-Wallis and Wilcoxon tests (p0.05). Comparing the enamel and dentin leakage scores within each group, no statistically significant differences were found (p>0.05). The Er,Cr:YSGG laser cavity preparation did not differ from preparation with CVD, diamond or carbide bur in terms of microleakage with the different adhesive systems.

  15. Determination of the optical parameters of a-Si:H thin films deposited by hot wire–chemical vapour deposition technique using transmission spectrum only

    Indian Academy of Sciences (India)

    Nabeel A Bakr; A M Funde; V S Waman; M M Kamble; R R Hawaldar; D P Amalnerkar; S W Gosavi; S R Jadkar

    2011-03-01

    Three demonstration samples of intrinsic hydrogenated amorphous silicon (a-Si:H) films were deposited using hot wire–chemical vapour deposition (HW–CVD) technique. The optical parameters and the thickness were determined from the extremes of the interference fringes of transmission spectrum in the range of 400–2500 nm using the envelope method. The calculated values of the refractive index () were fitted using the two-term Cauchy dispersion relation and the static refractive index values (0) obtained were 2.799, 2.629 and 3.043 which were in the range of the reported values. The calculated thicknesses for all samples were cross-checked with Taly-Step profilometer and found to be almost equal. Detailed analysis was carried out to obtain the optical band gap (g) using Tauc’s method and the estimated values were 1.99, 2.01 and 1.75 eV. The optical band gap values were correlated with the hydrogen content (H) in the samples calculated from Fourier transform infrared (FTIR) analysis. An attempt was made to apply Wemple–DiDomenico single-effective oscillator model to the a-Si:H samples to calculate the optical parameters. The optical band gap obtained by Tauc’s method and the static refractive index calculated from Cauchy fitting are in good agreement with those obtained by the single-effective oscillator model. The real and the imaginary parts of dielectric constant (r, ), and the optical conductivity () were also calculated.

  16. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  17. Waste remediation using in situ magnetically assisted chemical separation

    International Nuclear Information System (INIS)

    The magnetically assisted chemical separation process (MACS) combines the selective and efficient separation afforded by chemical sorption with the magnetic recovery of ferromagnetic particles. This process is being developed for treating the underground storage tanks at Hanford. These waste streams contain cesium, strontium, and transuranics (TRU) that must be removed before this waste can be disposed of as grout. The separation process uses magnetic particles coated with either (1) a selective ion exchange material or an organic extractant containing solvent (for cesium and strontium removal) or (2) solvents for selective separation of TRU elements (e.g., TRUEX process). These coatings, by their chemical nature, selectively separate the contaminants onto the particles, which can then be recovered from the tank using a magnet. Once the particles are removed, the contaminants can either be left on the loaded particles and added to the glass feed slurry or stripped into a small volume of solution so that the extracting particles can be reused. The status of chemistry and separation process is discussed in this paper

  18. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition; Sistema RTP: uma tecnica poderosa para o monitoramento da formacao de nanotubos de carbono durante o processo por deposicao de vapor quimico

    Energy Technology Data Exchange (ETDEWEB)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero, E-mail: rochel@ufmg.b [Universidade Federal de Minas Gerais (DQ/UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Sapag, Karim [Universidade Nacional de San Luis (Argentina). Lab. de Ciencias de Superficies y Medios Porosos

    2010-07-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al{sub 2}O{sub 3} and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  19. Radiolysis and hydrolysis of magnetically assisted chemical separation particles

    International Nuclear Information System (INIS)

    The magnetically assisted chemical separation (MACS) process is designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste. Magnetic microparticles (1--25 μm) were coated with octyl (phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP) and tested for removing TRU elements from acidic nitrate solutions. The particles were contacted with nitric acid solutions and Hanford plutonium finishing plant (PFP) simulant, irradiated with a high intensity 60Co γ-ray source, and evaluated for effectiveness in removing TRU elements from 2m HNO3 solutions. The resistance of the coatings and magnetic cores to radiolytic damage and hydrolytic degradation was investigated by irradiating samples of particles suspended in a variety of solutions with doses of up to 5 Mrad. Transmission electron microscopy (TEM), magnetic susceptibility measurements, and physical observations of the particles and suspension solutions were used to assess physical changes to the particles. Processes that affect the surface of the particles dramatically alter the binding sites for TRU in solution. Hydrolysis played a larger role than radiolysis in the degradation of the extraction capacity of the particles

  20. Preparation of Ru/HSAG Catalysts for Ammonia Synthesis via Metal-Organic Chemical Vapour Deposition Technology%MOCVD法制备Ru/HSAG氨合成催化剂

    Institute of Scientific and Technical Information of China (English)

    严海宇; 黄仕良; 韩文锋; 刘化章

    2014-01-01

    Ruthenium catalysts supported on high surface area graphite (HSAG), impregnated with KNO3 and Ba(NO3)2,was prepared via metal-organic chemical vapour deposition technology(MOCVD) with tri-ruthenium dodecacarbonyl as the Ru precursor. The catalysts were characterized by X-ray diffraction, N2 physical adsorption and transmission electron microscope. The activity of the Ru catalyst for ammonia synthesis was evaluated. The results showed that the sublimation rate of tri-ruthenium dodecacarbony depends on temperature under vacuum and dark conditions. It is confirmed that uniform dispersion can be achieved via MOCVD route with Ru nanoparticle sizes around 2 nm. As Ru3(CO)12 commences to decompose at 130℃ and reach maximum decomposition rate at 175℃, the sublimation temperature is suggested to be 110-130℃. With the increase in Ru loading from 3.2% to 6.0%, as evidenced by TEM experiments, Ru nanoparticle size keeps unchanged (around 2 nm), while the activity for ammonia synthesis is enhanced dramatically, especially at low temperature (375℃).%采用金属有机物化学气相沉积技术(MOCVD)将羰基钌升华至已浸渍 KNO3和 Ba(NO3)2的高比表面石墨(HSAG)上,制备了一系列Ru/HSAG催化剂。采用X射线衍射、透射电镜(TEM)和N2物理吸附等表征手段,考察了催化剂的物相和表面结构性质及氨合成催化活性。结果表明,以化学气相沉积技术制备的催化剂,能使钌均匀地分散于载体中,形成较小的钌粒子,从而得到高活性的氨合成催化剂。羰基钌的加热温度对升华速率有很大影响,但对沉积效果和催化活性没有明显影响,负载的羰基钌含量对催化剂活性有显著影响。羰基钌在130℃开始分解,并在175℃达到最大分解速率,因此合适的升华温度为110~130℃。催化剂的钌负载量(质量分数)从3.2%增至6.0%时,低反应温度(375℃)下,氨合成活性明显提高。在实验负载量范围内

  1. Plasma-assisted partial oxidation of methane at low temperatures: numerical analysis of gas-phase chemical mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, Valentin; Nozaki, Tomohiro; Yuzawa, Shuhei; Okazaki, Ken [Department of Mechanical and Control Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, 1528552, Tokyo (Japan); Agiral, Anil, E-mail: tnozaki@mech.titech.ac.jp [Mesoscale Chemical Systems, MESA Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede (Netherlands)

    2011-07-13

    Methane partial oxidation was investigated using a plasma microreactor. The experiments were performed at 5 and 300 deg. C. Microreactor configuration allows an efficient evacuation of the heat generated by methane partial oxidation and dielectric barrier discharges, allowing at the same time a better temperature control. At 5 deg. C, liquid condensation of low vapour pressure compounds, such as formaldehyde and methanol, occurs. {sup 1}H-NMR analysis allowed us to demonstrate significant CH{sub 3}OOH formation during plasma-assisted partial oxidation of methane. Conversion and product selectivity were discussed for both temperatures. In the second part of this work, a numerical simulation was performed and a gas-phase chemical mechanism was proposed and discussed. From the comparison between the experimental results and the simulation it was found that CH{sub 3}OO{center_dot} formation has a determinant role in oxygenated compound production, since its fast formation disfavoured radical recombination. At 5 deg. C the oxidation leads mainly towards oxygenated compound formation, and plasma dissociation was the major phenomenon responsible for CH{sub 4} conversion. At 300 deg. C, higher CH{sub 4} conversion resulted from oxidative reactions induced by {center_dot}OH radicals with a chemistry predominantly oxidative, producing CO, H{sub 2}, CO{sub 2} and H{sub 2}O.

  2. Absence of the 90 K structural transition in CuV{sub 2}S{sub 4} crystals grown by chemical vapour transport using TeCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Crandles, D A [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Reedyk, M [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Wardlaw, G [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Razavi, F S [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Hagino, T [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8535 (Japan); Nagata, S [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8535 (Japan); Shimono, I [Hokkaido Industrial Technology Centre, 379 Kikyo-cho, Hakodate, Hokkaido 041-0801 (Japan); Kremer, R K [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2005-08-03

    Various physical properties (magnetization, specific heat, optical reflectance, electrical resistivity) of CuV{sub 2}S{sub 4} crystals grown by chemical vapour transport using TeCl{sub 4} as the transporting agent have been measured. The data show slight differences compared to samples grown using different techniques. These differences include the absence of a sharp drop in magnetization and the absence of a peak in the heat capacity near 90 K. These differences suggest that the cubic-tetragonal phase transition near 90 K does not occur in these particular crystals. The reflectance of the same crystals has been studied from (70-20 000 cm{sup -1}) for temperatures between 40 and 300 K and the data are consistent with those for a disordered metal. A high frequency absorption, perhaps an interband transition, has been observed in addition to absorption due to strongly scattered free carriers.

  3. Legal aspects and international assistance related to the deliberate use of chemicals to cause harm.

    Science.gov (United States)

    Kenyon, Ian R; Gutschmidt, Kersten; Cosivi, Ottorino

    2005-10-30

    National and international law is an essential component of the array of measures serving to protect against the hostile release of biological or chemical agents, and to help to mitigate the consequences should such a release nevertheless take place. These includes the Geneva Protocol of 1925, the Chemical Weapons Convention of 1993, for which the Organization for the Prohibition of Chemical Weapons (OPCW) has been established in 1997. In addition to the OPCW, the international community has made preparations through the United Nations (e.g. United Nations Office for the Coordination of Humanitarian Affairs, World Health Organization) for assistance to governments against which biological and chemical weapons might be used. This paper provides an overview of the international mechanisms for assistance and is based on the Second Edition of the Public Health Response to Biological and Chemical Weapons: WHO Guidance (). Toxicologists throughout the world should know these regulations and act accordingly.

  4. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    Energy Technology Data Exchange (ETDEWEB)

    Fadhel, M.I. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia); Sopian, K.; Daud, W.R.W.; Alghoul, M.A. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-02-15

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  5. Spontaneuos and Parametric Processes in Warm Rubidium Vapours

    Directory of Open Access Journals (Sweden)

    Dąbrowski M.

    2014-12-01

    Full Text Available Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the Λ-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

  6. Preparation and Properties of N-Doped p-Type ZnO Films by Solid-Source Chemical Vapour Deposition with the c-Axis Parallel to the Substrate

    Institute of Scientific and Technical Information of China (English)

    吕建国; 叶志镇; 汪雷; 赵炳辉; 黄靖云

    2002-01-01

    We report on N-doped p-type ZnO films with the c-axis parallel to the substrate. ZnO films were prepared onan α-A12O3 (0001) substrate by solid-source chemical vapour deposition (CVD). Zn( CH3COO)2.2H2O was usedas the precursor and CH3COONH4 as the nitrogen source. The growth temperature was varied from 300℃ C to600℃ C. The as-grown ZnO film deposited at 500° C showed p-type conduction with its resistivity of 42 Ωcrm, carrierdensity 3.7 × 1017 cm-3 and Hall mobility 1.26cm2V-1.s-1 at room temperature, which are the best propertiesfor p-type ZnO deposited by CVD. The p-type ZnO film possesses a transmittance of about 85% in the visibleregion and a bandgap of 3.21 eV at room temperature.

  7. A catalyst-free synthesis of germanium nanowires obtained by combined X-ray chemical vapour deposition of GeH$_4$ and low-temperature thermal treatment techniques

    Indian Academy of Sciences (India)

    CHIARA DEMARIA; ALDO ARRAIS; PAOLA BENZI; ENRICO BOCCALERI; PAOLA ANTONIOTTI; ROBERTO RABEZZANA; LORENZA OPERTI

    2016-04-01

    A catalyst-free innovative synthesis, by combined X-ray chemical vapour deposition and lowtemperature thermal treatments, which has not been applied since so far to the growth of germanium nanowires (Ge-NWs), produced high yields of the nanoproducts with theGeH4 reactant gas. Nanowires were grown on both surfaces of a conventional deposition quartz substrate. They were featured with high purity and very large aspect ratios (ranging from 100 to 500). Products were characterized by scanning electron microscopy with energy-dispersiveatomic X-ray fluorescence and transmission electron microscopies, X-ray powder diffraction diffractometry, thermogravimetric analysis with differential scanning calorimetry, vibrational infrared and Raman and ultraviolet–visible–near infrared spectroscopies. A quantitative nanowire bundles formation was observed in the lower surface of the quartz substrate positioned over a heating support, whilst spots of nanoflowers constituted by Ge-NWs emerged from a bulk amorphous germanium film matter, deposited on the upper surface of the substrate. Thenanoproducts were characterized by crystalline core morphology, providing semiconductive features and optical band gap of about 0.67 eV. The possible interpretative base-growth mechanisms of the nanowires, stimulated bythe concomitant application of radiant and thermal conditions with no specific added metal catalyst, are hereafter investigated and presented.

  8. On-line speciation of inorganic and methyl mercury in waters and fish tissues using polyaniline micro-column and flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS).

    Science.gov (United States)

    Krishna, M V Balarama; Chandrasekaran, K; Karunasagar, D

    2010-04-15

    A simple and efficient method for the determination of ultra-trace amounts of inorganic mercury (iHg) and methylmercury (MeHg) in waters and fish tissues was developed using a micro-column filled with polyaniline (PANI) coupled online to flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS) system. Preliminary studies indicated that inorganic and methyl mercury species could be separated on PANI column in two different speciation approaches. At pH extraction of the mercury species from biological samples, was used directly to separate MeHg from iHg in the fish tissues (tuna fish ERM-CE 463, ERM-CE 464 and IAEA-350) by PANI column using speciation procedure 1. The determined values were in good agreement with certified values. Under optimal conditions, the limits of detection (LODs) were 2.52 pg and 3.24 pg for iHg and MeHg (as Hg) respectively. The developed method was applied successfully to the direct determination of iHg and MeHg in various waters (tap water, lake water, ground water and sea-water) and the recoveries for the spiked samples were in the range of 96-102% for both the Hg species.

  9. Comparative Study of Properties of ZnO/GaN/Al2O3 and ZnO/Al2O3 Films Grown by Low-Pressure Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    赵佰军; 杨洪军; 杜国同; 缪国庆; 杨天鹏; 张源涛; 高仲民; 王金忠; 方秀军; 刘大力; 李万成; 马燕; 杨晓天; 刘博阳

    2003-01-01

    ZnO films were deposited by low-pressure metal organic chemical vapour deposition on epi-GaN/Al2O3 films and c-Al2O3 substrates.The structure and optical properties of the ZnO/GaN/Al2O3 and ZnO/Al2O3 films have been investigated to determine the differences between the two substrates.ZnO films on GaN/Al2O3 show very strong emission features associated with exciton transitions,just as ZnO films on Al2O3,while the crystalline structural qualities for ZnO films on GaN/Al2O3 are much better than those for ZnO films directly grown on Al2O3 substrates.Zn and O elements in the deposited ZnO/GaN/Al2O3 and ZnO/Al2O3 films are investigated and compared by x-ray photoelectron spectroscopy.According to the statistical results,the Zn/O ratio changes from Zn-rich for ZnO/Al2O3 films to O-rich for ZnO/GaN/Al2O3 films.

  10. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility

    Science.gov (United States)

    Alcotte, R.; Martin, M.; Moeyaert, J.; Cipro, R.; David, S.; Bassani, F.; Ducroquet, F.; Bogumilowicz, Y.; Sanchez, E.; Ye, Z.; Bao, X. Y.; Pin, J. B.; Baron, T.

    2016-04-01

    Metal organic chemical vapor deposition of GaAs on standard nominal 300 mm Si(001) wafers was studied. Antiphase boundary (APB) free epitaxial GaAs films as thin as 150 nm were obtained. The APB-free films exhibit an improvement of the room temperature photoluminescence signal with an increase of the intensity of almost a factor 2.5. Hall effect measurements show an electron mobility enhancement from 200 to 2000 cm2/V s. The GaAs layers directly grown on industrial platform with no APBs are perfect candidates for being integrated as active layers for nanoelectronic as well as optoelectronic devices in a CMOS environment.

  11. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001 substrate by metalorganic chemical vapour deposition with high mobility

    Directory of Open Access Journals (Sweden)

    R. Alcotte

    2016-04-01

    Full Text Available Metal organic chemical vapor deposition of GaAs on standard nominal 300 mm Si(001 wafers was studied. Antiphase boundary (APB free epitaxial GaAs films as thin as 150 nm were obtained. The APB-free films exhibit an improvement of the room temperature photoluminescence signal with an increase of the intensity of almost a factor 2.5. Hall effect measurements show an electron mobility enhancement from 200 to 2000 cm2/V s. The GaAs layers directly grown on industrial platform with no APBs are perfect candidates for being integrated as active layers for nanoelectronic as well as optoelectronic devices in a CMOS environment.

  12. Chemical vapour deposition of graphene on Nk(111) and Co(0001) and intercalation with Au to study Dirac Cone Formation and Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Barriga, J.; Vescovo, E.; Varykhalov, A.; Scholz, M.R.; Rader, O.; Marchenko, D.; Rybkin, A.

    2010-01-01

    We show in detail monitoring by photoelectron spectroscopy how graphene can be grown by chemical vapor deposition on the transition-metal surfaces Ni(111) and Co(0001) and intercalated by a monoatomic layer of Au. For both systems, a linear E(k) dispersion of massless Dirac fermions appears in the graphene {pi}-band in the vicinity of the Fermi energy. In order to study ferromagnetism and spin-orbit effects by spin- and angle-resolved photoelectron spectroscopy, the sample must be magnetized in remanence. To this end, a W(110) substrate is prepared, its cleanliness verified by photoemission from W(110) surface states and surface core levels, and epitaxial Ni(111) and Co(0001) thin films are grown on top. Spin-resolved photoemission from the {pi}-band shows that the ferromagnetic polarization of graphene/Ni(111) and graphene/Co(0001) is negligible and that graphene on Ni(111) is after intercalation of Au spin-orbit split by the Rashba effect.

  13. Porous Silicon & Titanium Dioxide Coatings Prepared by Atmospheric Pressure Plasma Jet Chemical Vapour Deposition Technique-A Novel Coating Technology for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    S. Bhatt

    2011-01-01

    Full Text Available Atmospheric Pressure Plasma Jet (APPJ is an alternative for wet processes used to make anti reflection coatings and smooth substrate surface for the PV module. It is also an attractive technique because of it’s high growth rate, low power consumption, lower cost and absence of high cost vacuum systems. This work deals with the deposition of silicon oxide from hexamethyldisiloxane (HMDSO thin films and titanium dioxide from tetraisopropyl ortho titanate using an atmospheric pressure plasma jet (APPJ system in open air conditions. A sinusoidal high voltage with a frequency between 19-23 kHz at power up to 1000 W was applied between two tubular electrodes separated by a dielectric material. The jet, characterized by Tg ~ 600-800 K, was mostly laminar (Re ~ 1200 at the nozzle exit and became partially turbulent along the jet axis (Re ~ 3300. The spatially resolved emission spectra showed OH, N2, N2+ and CN molecular bands and O, H, N, Cu and Cr lines as well as the NO2 chemiluminescence continuum (450-800 nm. Thin films with good uniformity on the substrate were obtained at high deposition rate, between 800 -1000 nm.s-1, and AFM results revealed that coatings are relatively smooth (Ra ~ 2 nm. The FTIR and SEM analyses were better used to monitor the chemical composition and the morphology of the films in function of the different experimental conditions.

  14. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation.

    Science.gov (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh

    2016-06-01

    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis.

  15. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation.

    Science.gov (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh

    2016-06-01

    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis. PMID:26976013

  16. Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Funde, A.M.; Bakr, Nabeel Ali; Kamble, D.K. [School of Energy Studies, University of Pune, Pune 411 007 (India); Hawaldar, R.R.; Amalnerkar, D.P. [Center for Materials for Electronics Technology (C-MET), Panchawati, Pune 411 008 (India); Jadkar, S.R. [Department of Physics, University of Pune, Ganeshkhind Road, Pune 411 007 (India)

    2008-10-15

    Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by conventional plasma enhanced chemical vapour deposition (PE-CVD) method at low temperature (200 C) using high rf power. The structural, optical and electrical properties of these films are carefully and systematically investigated as a function of hydrogen dilution of silane (R). Characterization of these films with low angle X-ray diffraction and Raman spectroscopy revealed that the crystallite size in the films tends to decrease and at same time the volume fraction of crystallites increases with increase in R. The Fourier transform infrared (FTIR) spectroscopic analysis showed at low values of R, the hydrogen is predominantly incorporated in the nc-Si:H films in the mono-hydrogen (Si-H) bonding configuration. However, with increasing R the hydrogen bonding in nc-Si:H films shifts from mono-hydrogen (Si-H) to di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2}){sub n} complexes. The hydrogen content in the nc-Si:H films decreases with increase in R and was found less than 10 at% over the entire studied range of R. On the other hand, the Tauc's optical band gap remains as high as 2 eV or much higher. The quantum size effect may responsible for higher band gap in nc-Si:H films. A correlation between electrical and structural properties has been found. For optimized deposition conditions, nc-Si:H films with crystallite size {proportional_to}7.67 nm having good degree of crystallinity ({proportional_to}84%) and high band gap (2.25 eV) were obtained with a low hydrogen content (6.5 at%). However, for these optimized conditions, the deposition rate was quite small (1.6 Aa/s). (author)

  17. Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching

    Directory of Open Access Journals (Sweden)

    Leu Ing-Chi

    2011-01-01

    Full Text Available Abstract In this article, a simple and cost-effective method to create patterned nanoindentations on Al surface via mold-assisted chemical etching process is demonstrated. This report shows the reaction-diffusion method which formed nanoscale shallow etch pits by the absorption/liberation behaviors of chemical etchant in poly(dimethylsiloxane stamp. During subsequent anodization, it was possible to obtain the ordered nanopore arrays with 277 nm pitch that were guided by the prepatterned etch pits. The prepatterned etch pits obtained can guide the growth of AAO nanopores during anodization and facilitate the preparation of ordered nanopore arrays.

  18. Laser-assisted chemical liquid-phase deposition of metals for micro- and optoelectronics

    OpenAIRE

    Kordás, K. (Krisztián)

    2002-01-01

    Abstract The demands toward the development of simple and cost-effective fabrication methods of metallic structures with high lateral resolution on different substrates - applied in many fields of technology, such as in microelectronics, optoelectronics, micromechanics as well as in sensor and actuator applications - gave the idea to perform this research. Due to its simplicity, laser-assisted chemical liquid-phase deposition (LCLD) has been investigated and applied for the metallization o...

  19. Estimation of vapour pressure and partial pressure of subliming compounds by low-pressure thermogravimetry

    Indian Academy of Sciences (India)

    G V Kunte; Ujwala Ail; P K Ajikumar; A K Tyagi; S A Shivashankar; A M Umarji

    2011-12-01

    A method for the estimation of vapour pressure and partial pressure of subliming compounds under reduced pressure, using rising temperature thermogravimetry, is described in this paper. The method is based on our recently developed procedure to estimate the vapour pressure from ambient pressure thermogravimetric data using Langmuir equation. Using benzoic acid as the calibration standard, vapour pressure–temperature curves are calculated at 80, 160 and 1000 mbar for salicylic acid and vanadyl bis-2,4-pentanedionate, a precursor used for chemical vapour deposition of vanadium oxides. Using a modification of the Langmuir equation, the partial pressure of these materials at different total pressures is also determined as a function of temperature. Such data can be useful for the deposition of multi-metal oxide thin films or doped thin films by chemical vapour deposition (CVD).

  20. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    be eliminated. Further opportunities arise when exchanging the copper foil for copper thin film on a wafer e.g. better integration with current cleanroom processing of devices and better control over the copper crystallinity. Typical strategies for controlling the temperature during CVD fabrication of graphene...

  1. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  2. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  3. Low Temperature Growth of In2O3and InN Nanocrystals on Si(111 via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    Directory of Open Access Journals (Sweden)

    Tsokkou Demetra

    2009-01-01

    Full Text Available Abstract Indium oxide (In2O3 nanocrystals (NCs have been obtained via atmospheric pressure, chemical vapour deposition (APCVD on Si(111 via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl which is incorporated into the In under a gas flow of nitrogen (N2. Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forT G < 900 °C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111 where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111. The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111 with an average diameter of 300 nm.

  4. The metal-organic chemical vapour deposition and optical studies of ZnSe1-xTex and CdS1-xTex epilayers and tellurium doped ZnS/CdS superlattices

    International Nuclear Information System (INIS)

    This work sought to achieve efficient room temperature blue photoluminescence (PL) from II-VI superlattices by incorporation of tellurium (Te) exciton traps into the wells. In preparation for this, the growth and optical properties of ZnSe1-xTex and CdS1-xTex dilute alloy epilayers were first investigated. The epilayer and superlattice samples were prepared using atmospheric pressure metal-organic chemical vapour deposition (AP-MOCVD). The dependence of Te concentration (x) on the growth precursors and conditions used was investigated. This led to an understanding of the relative stabilities of the precursors used, as well as the best growth conditions required to control Te concentrations. A diffusion doping technique was also developed for growth of low Te concentration ZnSe:Te and CdS:Te epilayers. The corresponding concentration and PL results for these layers were used to confirm the expected microscopic nature of the Te centres. The low temperature (1.8K) PL emission intensities from ZnSe1-xTex and CdS1-xTex epilayers were intense, but found to decrease rapidly with increasing temperature despite the large exciton trapping energies. A theoretical capture cross section model was thus developed to explain these observations. In addition, application of this model allowed the microscopic size of Te centres to be obtained, thereby explaining the different appearance of corresponding PL bands. In view of the more persistent emissions from CdS1-xTex layers compared with those of ZnSe1-xTex, it was decided to grow Te doped ZnS/CdS:Te superlattices. The ZnS/CdS:Te superlattices were found give the intended blue emission. However, structural disruption in these superlattice samples led to quenching of this emission at room temperature. Finally, it was found that the degree of electron-phonon coupling to Te centres was less in superlattice structures compared to epilayers. (author)

  5. The Research on Atmospheric Pressure Water Vapour Plasma Generation and Application for the Destruction of Wastes

    Directory of Open Access Journals (Sweden)

    Viktorija Grigaitiene

    2013-01-01

    Full Text Available In the Lithuanian Energy Institute an experimental atmospheric pressure Ar/water vapour plasma torch has been designed and tested. The power of plasma torch was estimated 40 ÷ 69 kW, the mean temperature of plasma jet at the exhaust nozzle was 2300÷2900K. The chemical compositionof water vapour plasma was established from the emission spectrum lines at 300 ÷ 800nm range. The main species observed in Ar/water vapour plasma were: Ar, OH, H, O, Cu. The experiments on water vapour steam reforming were performed. The results confirmed that water vapour plasma has the unique properties – high enthalpy and environmentally friendly conditions. It could be employed for environmental purposes such as destruction of wastes into simple molecules or conversion to synthetic gas.

  6. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    International Nuclear Information System (INIS)

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration

  7. Performance analysis of solar-assisted chemical heat-pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Fadhel, M.I. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka (Malaysia); Sopian, K.; Daud, W.R.W. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2010-11-15

    A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experiment of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)

  8. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F. [Argonne National Lab., IL (United States); Landsberger, S. [Univ. of Illinois, Urbana, IL (United States)

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration.

  9. Review and evaluation of extractants for strontium removal using magnetically assisted chemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.B.; Rogers, R.D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Chemistry; Nunez, L.; Ziemer, M.D.; Pleune, T.T.; Vandegrift, G.F. [Argonne National Lab., IL (United States)

    1995-11-01

    A literature review on extractants for strontium removal was initially performed at Northern Illinois University to assess their potential in magnetically assisted chemical separation. A series of potential strontium extractants was systematically evaluated there using radioanalytical methods. Initial experiments were designed to test the uptake of strontium from nitric acid using several samples of magnetic extractant particles that were coated with various crown ether ligands. High partition coefficient (K{sub d}) values for stimulant tank waste were obtained. Further studies demonstrated that the large partitioning was due to uncoated particles.

  10. The Vapour Pressure of Plutonium

    International Nuclear Information System (INIS)

    The vapour pressure of liquid plutonium has been determined over the temperature range 1100 to 1800°K by the Knudsen effusion method. The least-squares equation which fits the data is log10p(atm) = -17 420/T(°K) + 4.913. The standard deviation corresponds to about ±10% in the pressures calculated from this equation. The heat of vaporization computed from the temperature dependence of the experimental data is ΔH0298 = 82.3 kcal/g-at. The heat computed by combining independent entropy and heat capacity data with the present measurements is ΔH0298 = 82.1 kcal/g-at. Effects of oxygen upon the volatility of liquid plutonium were sought by comparing the vapour pressures observed with the liquid in contact with tantalum, tantalum carbide, magnesia, and plutonium sesquioxide. No differences were found. In addition, the vapour pressure was measured with different degrees of vacuum in the system. No effect was found here either, except that in very poor vacuums a surface film of oxide apparently formed and reduced the volatility by about a factor of 2. (author)

  11. Chemicals loading in acetylated bamboo assisted by supercritical CO2 based on phase equilibrium data

    Science.gov (United States)

    Silviana, Petermann, M.

    2015-12-01

    Indonesia has a large tropical forest. However, the deforestation still appears annually and vastly. This reason drives a use of bamboo as wood alternative. Recently, there are many modifications of bamboo in order to prolong the shelf life. Unfortunately, the processes need more chemicals and time. Based on wood modification, esterifying of bamboo was undertaken in present of a dense gas, i.e. supercritical CO2. Calculation of chemicals loading referred to ASTM D1413-99 by using the phase equilibrium data at optimum condition by a statistical design. The results showed that the acetylation of bamboo assisted by supercritical CO2 required 14.73 kg acetic anhydride/m3 of bamboo for a treatment of one hour.

  12. Laser assisted chemically shaped unstable resonator, for high power coherent laser diodes

    International Nuclear Information System (INIS)

    Laser assisted chemical etching (LACE) is used to etch a continuous graded channel, set inside a wide stripe graded-index and separate confinement heterostructure (GRIN-SCH) for laser diodes, grown by metal organic chemical vapor deposition (MOCVD). After a procedure of growing-etching-regrowing, a two-part waveguide is formed inside such modified structure, that is characterized by a negative change in the lateral effective refractive index (ERI). This effects the cavity to work as an unstable resonator. Procedures on the photo etching process are described, including the GaAs photochemistry and the optical system, with special emphasis on the fabrication of the approximately parabolic channels, as this represents a novel step. We call the cavity fabricated by this method, the shaped unstable resonator (SHUR). (Author)

  13. Sistema RTP: uma técnica poderosa para o monitoramento da formação de nanotubos de carbono durante o processo por deposição de vapor químico TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Tristão

    2010-01-01

    Full Text Available In this work, a TPR (Temperature Programmed Reduction system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition, The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al2O3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields.

  14. Aerosol-Assisted Chemical Vapor Deposited Thin Films for Space Photovoltaics

    Science.gov (United States)

    Hepp, Aloysius F.; McNatt, Jeremiah; Dickman, John E.; Jin, Michael H.-C.; Banger, Kulbinder K.; Kelly, Christopher V.; AquinoGonzalez, Angel R.; Rockett, Angus A.

    2006-01-01

    Copper indium disulfide thin films were deposited via aerosol-assisted chemical vapor deposition using single source precursors. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties in order to optimize device-quality material. Growth at atmospheric pressure in a horizontal hot-wall reactor at 395 C yielded best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier, smoother, denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands (1.45, 1.43, 1.37, and 1.32 eV) and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was 1.03 percent.

  15. Graphene-assisted growth of high-quality AlN by metalorganic chemical vapor deposition

    Science.gov (United States)

    Zeng, Qing; Chen, Zhaolong; Zhao, Yun; Wei, Tongbo; Chen, Xiang; Zhang, Yun; Yuan, Guodong; Li, Jinmin

    2016-08-01

    High-quality AlN films were directly grown on graphene/sapphire substrates by metalorganic chemical vapor deposition (MOCVD). The graphene layers were directly grown on sapphire by atmospheric-pressure chemical vapor deposition (APCVD), a low-cost catalyst-free method. We analyzed the influence of the graphene layer on the nucleation of AlN at the initial stage of growth and found that sparse AlN grains on graphene grew and formed a continuous film via lateral coalescence. Graphene-assisted AlN films are smooth and continuous, and the full width at half maximum (FWHM) values for (0002) and (10\\bar{1}2) reflections are 360 and 622.2 arcsec, which are lower than that of the film directly grown on sapphire. The high-resolution TEM images near the AlN/sapphire interface for graphene-assisted AlN films clearly show the presence of graphene, which kept its original morphology after the 1200 °C growth of AlN.

  16. Use of computer-assisted prediction of toxic effects of chemical substances

    International Nuclear Information System (INIS)

    The current revision of the European policy for the evaluation of chemicals (REACH) has lead to a controversy with regard to the need of additional animal safety testing. To avoid increases in animal testing but also to save time and resources, alternative in silico or in vitro tests for the assessment of toxic effects of chemicals are advocated. The draft of the original document issued in 29th October 2003 by the European Commission foresees the use of alternative methods but does not give further specification on which methods should be used. Computer-assisted prediction models, so-called predictive tools, besides in vitro models, will likely play an essential role in the proposed repertoire of 'alternative methods'. The current discussion has urged the Advisory Committee of the German Toxicology Society to present its position on the use of predictive tools in toxicology. Acceptable prediction models already exist for those toxicological endpoints which are based on well-understood mechanism, such as mutagenicity and skin sensitization, whereas mechanistically more complex endpoints such as acute, chronic or organ toxicities currently cannot be satisfactorily predicted. A potential strategy to assess such complex toxicities will lie in their dissection into models for the different steps or pathways leading to the final endpoint. Integration of these models should result in a higher predictivity. Despite these limitations, computer-assisted prediction tools already today play a complementary role for the assessment of chemicals for which no data is available or for which toxicological testing is impractical due to the lack of availability of sufficient compounds for testing. Furthermore, predictive tools offer support in the screening and the subsequent prioritization of compound for further toxicological testing, as expected within the scope of the European REACH program. This program will also lead to the collection of high-quality data which will broaden the

  17. Condensation of water vapour on moss-dominated biological soil crust, NW China

    Indian Academy of Sciences (India)

    Xin-Ping Wang; Yan-Xia Pan; Rui Hu; Ya-Feng Zhang; Hao Zhang

    2014-03-01

    Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3°C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4°C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to

  18. Isothermal vapour flow in extremely dry soils

    Science.gov (United States)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapour flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapour pressure of the surrounding air, thus temperature or solute gradients can drive vapour flows. However, in extremely dry soils where water is retained by adsorptive forces rather than capillarity, vapour flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapour pressure in the soil, and hence small differences in water content can initiate vapour pressure gradients. In many field conditions this effect may be negligible compared to vapour flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapour phase. Experiments were performed in laboratory conditions using marine sand that had previously been oven dried and cooled. This dry sand was used to represent the desert conditions in which this irrigation system is intended for use. Experimental results show that isothermal vapour flows can significantly affect the performance of such irrigation systems due to the rapid transport of water through the soil via the vapour phase. When the irrigation pipe was buried at a depth of 10cm a vapour flow from the soil surface was observed in less than 2 hours. These flows therefore affect the loss of mass into the atmosphere and thus must be considered when evaluating the availability of water for the irrigated crop. The experiments also provide a rare opportunity to observe isothermal vapour flows initiating from a subsurface source. Such experiments allow the significance of these flows to be quantified and potentially applied to other areas of arid zone hydrology.

  19. Fission product vapour - aerosol interactions in the containment: simulant fuel studies

    International Nuclear Information System (INIS)

    Experiments have been conducted in the Falcon facility to study the interaction of fission product vapours released from simulant fuel samples with control rod aerosols. The aerosols generated from both the control rod and fuel sample were chemically distinct and had different deposition characteristics. Extensive interaction was observed between the fission product vapours and the control rod aerosol. The two dominant mechanisms were condensation of the vapours onto the aerosol, and chemical reactions between the two components; sorption phenomena were believed to be only of secondary importance. The interaction of fission product vapours and reactor materials aerosols could have a major impact on the transport characteristics of the radioactive emission from a degrading core. (author)

  20. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico); Pérez-García, S.A. [Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Apodaca, Nuevo León 66600 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico)

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  1. Program of technical assistance to the organization for the prohibition of chemical weapons, informal report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Currently, U.S. organizations provide technical support to the U.S. Delegation for its work as part of the Preparatory Commission (PrepCom) of the Organization for the Prohibition of Chemical Weapons (OPCW) in The Hague. The current efforts of the PrepCom are focussed on preparations for the Entry-Into-Force (EIF) of the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons (often referred to as the {open_quotes}Chemical Weapons Convention{close_quotes} (CWC)). EIF of the CWC is expected in 1995, and shortly thereafter the PrepCom will cease to exist, with the OPCW taking over responsibilities under the CWC. A U.S. program of technical assistance to the OPCW for its verification responsibilities may be created as part of U.S. policy objectives after EIF of the CWC. In the summary below, comments by participants are presented in Square Brackets Some of the same points arose several times during the discussions; they are grouped together under the most pertinent heading.

  2. A group contribution method for estimating the vapour pressures of α-pinene oxidation products

    OpenAIRE

    J. F. Müller; Capouet, M.

    2005-01-01

    A prediction method based on group contribution principles is proposed for estimating the vapour pressure of α-pinene oxidation products. Temperature dependent contributions are provided for the following chemical groups: carbonyl, nitrate, hydroxy, hydroperoxide, acyl peroxy nitrate and acid. On the basis of observed vapour pressure differences between isomers of diols and dinitrates, a simple refinement is introduced in the method, which allows to account for the influence of the subs...

  3. Biological functionalization and patterning of porous silicon prepared by Pt-assisted chemical etching

    International Nuclear Information System (INIS)

    Porous silicon fabricated via Pt-assisted chemical etching of p-type Si (1 0 0) in 1:1:1 EtOH/HF/H2O2 solution possesses a longer durability in air and in aqueous media than anodized one, which is advantageous for biomedical applications. Its surface SiHx (x = 1 and 2) species can react with 10-undecylenic acid completely under microwave irradiation, and subsequent derivatizations of the end carboxylic acid result in affinity capture of proteins. We applied two approaches to produce protein microarrays: photolithography and spotting. The former provides a homogeneous microarray with a very low fluorescence background, while the latter presents an inhomogeneous microarray with a high noise background.

  4. Bilayer–metal assisted chemical etching of silicon microwire arrays for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    R. W. Wu

    2016-02-01

    Full Text Available Silicon microwires with lateral dimension from 5 μm to 20 μm and depth as long as 20 μm are prepared by bilayer metal assisted chemical etching (MaCE. A bilayer metal configuration (Metal 1 / Metal 2 was applied to assist etching of Si where metal 1 acts as direct catalyst and metal 2 provides mechanical support. Different metal types were investigated to figure out the influence of metal catalyst on morphology of etched silicon. We find that silicon microwires with vertical side wall are produced when we use Ag/Au bilayer, while cone–like and porous microwires formed when Pt/Au is applied. The different micro-/nano-structures in as-etched silicon are demonstrated to be due to the discrepancy of work function of metal catalyst relative to Si. Further, we constructed a silicon microwire arrays solar cells in a radial p–n junction configurations in a screen printed aluminum paste p–doping process.

  5. Gas and vapour detection using polypyrrole

    NARCIS (Netherlands)

    Leur, R.H.M. van de; Waal, A. van der

    1999-01-01

    The vapours of organic solvents like toluene, butanon, and ethanol do effect the electrical conductivity of electrochemically synthesised polypyrrole. This property allows the use of polypyrrole in sensors for vapour detection. The conductivity is also a function of temperature and the history of th

  6. Intercomparison on measurement of water vapour permeability

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard

    Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001).......Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001)....

  7. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  8. Development of aerosol assisted chemical vapor deposition for thin film fabrication

    Science.gov (United States)

    Maulana, Dwindra Wilham; Marthatika, Dian; Panatarani, Camellia; Mindara, Jajat Yuda; Joni, I. Made

    2016-02-01

    Chemical vapor deposition (CVD) is widely used to grow a thin film applied in many industrial applications. This paper report the development of an aerosol assisted chemical vapor deposition (AACVD) which is one of the CVD methods. Newly developed AACVD system consists of a chamber of pyrex glass, two wire-heating elements placed to cover pyrex glass, a substrate holder, and an aerosol generator using an air brush sprayer. The temperature control system was developed to prevent condensation on the chamber walls. The control performances such as the overshoot and settling time were obtained from of the developed temperature controller. Wire-heating elements were controlled at certain setting value to heat the injected aerosol to form a thin film in the substrate. The performance of as-developed AACVD system tested to form a thin film where aerosol was sprayed into the chamber with a flow rate of 7 liters/minutes, and vary in temperatures and concentrations of precursor. The temperature control system have an overshoot around 25 °C from the desired set point temperature, very small temperature ripple 2 °C and a settling time of 20 minutes. As-developed AACVD successfully fabricated a ZnO thin film with thickness of below 1 µm. The performances of system on formation of thin films influenced by the generally controlled process such as values of setting temperature and concentration where the aerosol flow rate was fixed. Higher temperature was applied, the more uniform ZnO thin films were produced. In addition, temperature of the substrate also affected on surface roughness of the obtained films, while concentration of ZnO precursor determined the thickness of produce films. It is concluded that newly simple AACVD can be applied to produce a thin film.

  9. Surface chemical studies of chemical vapour deposited diamond thin films

    CERN Document Server

    Proffitt, S

    2001-01-01

    could not easily be correlated to the bulk film properties. It is suggested that electron emission arises from the graphite component of graphite- diamond grain boundaries that are present in the nanocrystalline films. species. The adsorbed O and Cl species are more strongly bound to the K layer than they are to the diamond substrate, so thermal desorption of K from the K/CI/diamond or K/O/diamond surface results also in the simultaneous loss ofO and Cl. The phosphorus precursor trisdimethylaminophosphine (TDMAP) has a negligible reactive sticking probability on the clean diamond surface. This can be increased by thermal cracking of the gas phase precursor by a heated filament, resulting in non-activated adsorption to produce an adlayer containing a mixture of surface-bound ligands and phosphorus containing species. The ligands were readily lost upon heating, leaving P, some of which was lost from the surface at higher temperatures. Pre-hydrogenation of the diamond surface inhibited the uptake of cracked TDMA...

  10. Grand Equilibrium: vapour-liquid equilibria by a new molecular simulation method

    CERN Document Server

    Vrabec, J

    2009-01-01

    A new molecular simulation method for the calculation of vapour-liquid equilibria of mixtures is presented. In this method, the independent thermodynamic variables are temperature and liquid composition. In the first step, one isobaric isothermal simulation for the liquid phase is performed, in which the chemical potentials of all components and their derivatives with respect to the pressure, i.e., the partial molar volumes, are calculated. From these results, first order Taylor series expansions for the chemical potentials as functions of the pressure $\\mu_i(p)$ at constant liquid composition are determined. That information is needed, as the specified pressure in the liquid will generally not be equal to the equilibrium pressure, which has to be found in the course of a vapour simulation. In the second step, one pseudo grand canonical simulation for the vapour phase is performed, where the chemical potentials are set according to the instantaneous pressure $p^v$ using the previously determined function $\\mu...

  11. Etchant wettability in bulk micromachining of Si by metal-assisted chemical etching

    Science.gov (United States)

    Yoon, Sung-Soo; Lee, Yeong Bahl; Khang, Dahl-Young

    2016-05-01

    Wet bulk micromachining of Si by metal-assisted chemical etching (MaCE) has successfully been demonstrated. Based on the mechanism of defective etching results from Ag and Au metal catalyst experiments, the wettability of etchant solution, in addition to metal type, has been found to have profound effect on the etching process. Addition of low surface tension co-solvent, ethanol in this work, into conventional etchant formulation has enabled complete wetting of etchant on surface, which prevents hydrogen bubble attachment on sample surface during the etching. The complete elimination of bubble attachment guarantees very uniform etch rate on all over the sample surface, and thus prevents premature fragmentation/rupture of catalyst metal layer. Under the optimized etching conditions, the MaCE could be done for up to 12 h without any noticeable film rupture and thus etching defects. Thanks to very smooth surface of the etched patterns, conformal contact and direct bonding of elastomer on such surface has been easily accomplished. The method demonstrated here can pave the way for application of simple, low-cost MaCE process in the bulk micromachining of Si for various applications.

  12. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    Science.gov (United States)

    Kessler, Felipe; da Rocha, Caique O. C.; Medeiros, Gabriela S.; Fechine, Guilhermino J. M.

    2016-03-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased.

  13. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition

    Science.gov (United States)

    Song, Yangxi; Li, Bin; Yang, Siwei; Ding, Guqiao; Zhang, Changrui; Xie, Xiaoming

    2015-05-01

    Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relatively low temperature of 900 °C. The three-dimensional structure of the BN aerogels was achieved through the structural design of carbon aerogel templates. The BN aerogels have an ultrahigh specific surface area, ultralow density, excellent oil absorbing ability, and high temperature oxidation resistance. The specific surface area of BN aerogels can reach up to 1051 m2 g-1, 2-3 times larger than the reported BN aerogels. The mass density can be as low as 0.6 mg cm-3, much lower than that of air. The BN aerogels exhibit high hydrophobic properties and can absorb up to 160 times their weight in oil. This is much higher than porous BN nanosheets reported previously. The BN aerogels can be restored for reuse after oil absorption simply by burning them in air. This is because of their high temperature oxidation resistance and suggests broad utility as water treatment tools.

  14. Metal-assisted chemical etching of Ge surface and its effect on photovoltaic devices

    Science.gov (United States)

    Lee, Seunghyo; Choo, Hyeokseong; Kim, Changheon; Oh, Eunseok; Seo, Dongwan; Lim, Sangwoo

    2016-05-01

    Ge surfaces were etched by means of metal-assisted chemical etching (MaCE). The behavior of the MaCE reaction in diluted H2O2 was compared with that of a conventional etchant of HF/H2O2/H2O mixture (FPM). Herein we first report that a pyramidal structure on Ge (0 0 1) can be prepared by MaCE in dilute H2O2 solution, without the use of HF. Contrastingly, an octagonal trench structure was prepared by 4/5/1 FPM treatment of Ge (0 0 1) surface. This octagonal structure consisted of a square base, four large facets connected to the base, and other four small facets adjacent to the four large facets, which were considered to be (0 0 1), {1 1 0}, and {1 1 1}, respectively. The octagonal trench was formed as a result of the difference in etch rate of Ge depending on the orientation: {1 0 0} > {1 1 0} > {1 1 1}. Ge surfaces treated by MaCE exhibited improved solar cell efficiency due to their improved light absorption, which led to significant increases in the cells' short circuit current and fill factor. The results suggest that optimized MaCE procedures can be an effective method to improve the performance of Ge-based photovoltaic devices.

  15. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.

    Science.gov (United States)

    Palgrave, Robert G; Parkin, Ivan P

    2006-02-01

    Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films. PMID:16448130

  16. Physical and Chemical Roles of Metalworking Fluids in a Vibration-Assisted Tapping System

    Science.gov (United States)

    Nogami, Takeshi; Nakano, Ken

    A vibration-assisted tapping system has been developed in which a piezoelectric-zirconate-titanate (PZT) oscillator applies small-amplitude vibrations to a workpiece and a torque transducer measures the time-evolving torque during the tapping process. To investigate the roles of metalworking fluids, four different metalworking conditions have been examined: without metalworking fluids (dry), with an additive-free fluid (base oil), with an oiliness-agent-containing fluid (fluid A), and with an extreme-pressure-agent-containing fluid (fluid B). The time evolutions of the tapping torque have been obtained for tapping M3 threads in S45C steel with varying vibration amplitudes, vibration frequencies, and tapping speed. It has been found that the present system decreases the tapping torque; in particular, a decrement of up to 14% in the tapping torque is obtained for fluid A using 800-Hz vibrations with an amplitude of 5 μm at a tapping speed of 3 rpm. Increments in the vibration amplitude and frequency lead to decrements in the tapping torque, but the effect of the vibration tends to fade with increasing tapping speeds. It appears that vibrations enhance not only the physical effects but also the chemical effects of metalworking fluids.

  17. Vapour-liquid equilibrium in the monoethylene glycol - methane system at elevated pressures

    OpenAIRE

    Bersås, Anita

    2012-01-01

    A range of different chemicals are used in natural gas processing. The systems operate in closed loops, but a small amount of the chemicals are lost due to the solubility of the chemical in the gas phase. This leads to increased operational costs, it may cause HSE related problems, and it can lead to operational difficulties and contamination of downstream processes and products. A limited number of vapour-liquid equilibrium, VLE, data for processing chemicals in methane are available in...

  18. Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Tianyu; Xu, Youlong, E-mail: ylxu@mail.xjtu.edu.cn; Zhang, Zhengwei; Mao, Shengchun

    2015-08-30

    Graphical abstract: - Highlights: • How Ag transfers F{sup −} to the adjacent Si atom was investigated and deduced by DFT at atomic scale. • Three-electrode CV tests proved the transferring function of Ag in the etching reaction. • Uniform SiNWAs were fabricated on unpolished silicon wafers with KOH pretreatment. - Abstract: Uniform silicon nanowires arrays (SiNWAs) were fabricated on unpolished rough silicon wafers through KOH pretreatment followed by silver-assisted chemical etching (SACE). Density functional theory (DFT) calculations were used to investigate the function of silver (Ag) at atomic scale in the etching process. Among three adsorption sites of Ag atom on Si(1 0 0) surface, Ag(T4) above the fourth-layer surface Si atoms could transfer fluorinion (F{sup −}) to adjacent Si successfully due to its stronger electrostatic attraction force between Ag(T4) and F{sup −}, smaller azimuth angle of F−Ag(T4)−Si, shorter bond length of F−Si compared with F−Ag. As F{sup −} was transferred to adjacent Si by Ag(T4) one by one, the Si got away from the wafer in the form of SiF{sub 4} when it bonded with enough F{sup −} while Ag(T4) was still attached onto the Si wafer ready for next transfer. Cyclic voltammetry tests confirmed that Ag can improve the etching rate by transferring F{sup −} to Si.

  19. Aerosol assisted atmospheric pressure chemical vapor deposition of silicon thin films using liquid cyclic hydrosilanes

    International Nuclear Information System (INIS)

    Silicon (Si) thin films were produced using an aerosol assisted atmospheric pressure chemical vapor deposition technique with liquid hydrosilane precursors cyclopentasilane (CPS, Si5H10) and cyclohexasilane (CHS, Si6H12). Thin films were deposited at temperatures between 300 and 500 °C, with maximum observed deposition rates of 55 and 47 nm/s for CPS and CHS, respectively, at 500 °C. Atomic force microscopic analyses of the films depict smooth surfaces with roughness of 4–8 nm. Raman spectroscopic analysis indicates that the Si films deposited at 300 °C and 350 °C consist of a hydrogenated amorphous Si (a-Si:H) phase while the films deposited at 400, 450, and 500 °C are comprised predominantly of a hydrogenated nanocrystalline Si (nc-Si:H) phase. The wide optical bandgaps of 2–2.28 eV for films deposited at 350–400 °C and 1.7–1.8 eV for those deposited at 450–500 °C support the Raman data and depict a transition from a-Si:H to nc-Si:H. Films deposited at 450 oC possess the highest photosensitivity of 102–103 under AM 1.5G illumination. Based on the growth model developed for other silanes, we suggest a mechanism that governs the film growth using CPS and CHS. - Highlights: • Si films via AA-APCVD are realized using cyclopentasilane (CPS) and cyclohexasilane (CHS). • Low activation energies of CPS and CHS allow Si thin films at low temperatures (300 °C). • High growth rates of 47–55 nm/s were obtained at 500 °C • Near device quality Si thin films with 2–3 orders of photosensitivity • Si thin films via AA-APCVD are amenable to continuous roll-to-roll manufacturing

  20. Componentry, constructive and process solutions of sodium vapour precipitation problem

    International Nuclear Information System (INIS)

    Sodium vapour trap for periodic operation (SVT) is installed to present of sodium vapour emissions after response of safety valve on tanks with sodium and to provide protection from sodium vapour during planned argon blowing from tanks. It is recommended that SVT be placed directly above tanks with sodium. But the main problem of BN-600 and BN-800 componentry (grouping) is the lack of premises. So, the recommended placement is impossible. The principal scheme of SVT piping BN-800. Argon purification from sodium vapor is carried out by air refrigerating. Refrigerating degree is regulated by control valve on the air delivery pipe to SVT. There is montejus tank in the scheme of SVT piping for liquid sodium drainage that is condensed in SVT. Sodium drainage pipe is combined with argon delivery pipe (line E). There are two main problems with the present construction of SVT based on operation experience of BN-600: 1. The horizontal pipeline 'Ar+Na' before the SVT entrance is a dangerous section of this piping. Electric heating of this pipeline is always 'on'. Inspite of this, sodium vapour condenses before SVT. It means that the pipeline becomes progressively clogged up. 2. Two substances (argon with sodium vapour and liquid sodium) are moving towards each other in one pipeline (line E). This is the most probable place of clogging by sodium, especially branch-pipe in the connection point of line E with SVT. Sodium cruds turn into solid state in the process of argon delivery pipe clogging.In most cases solid scrubs melting temperature exceeds 400-500C depending on chemical composition of crud (for example caustic soda - 1200C). It means that it is almost impossible to heat the pipeline to restore its passability. The only measure in this case is the change of pipe section during BN stop. The first problem can be solved by: - Increasing the diameter (which was DN40 in the project of BN-600, and is DN80 in BN-800); - Increasing the temperature of electric heating

  1. Co-TPP functionalized carbon nanotube composites for detection of nitrobenzene and chlorobenzene vapours

    Indian Academy of Sciences (India)

    Swasti Saxena; G S S SAINI; A L Verma

    2015-04-01

    We report preparation of nanocomposites by non-covalent functionalization of carbon nanotubes (CNTs) with metal-tetraphenylporphyrins (M-TPP). Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) results suggest formation of nanosized clusters of Co-TPP around the CNTs surface. X-ray diffraction studies indicate electronic charge re-distribution and strong interactions among CNTs and Co-TPP on functionalization. The films of the hybrid CNT–M-TPP nanocomposite exhibit change in conductivity on exposure to some chemical vapours. In the present work, the films prepared from the cobalt-TPP functionalized CNTs hybrid composites have been investigated for the detection of chlorobenzene (CB) and nitrobenzene (NB) vapours at room temperature. The films show response time of few seconds on exposure to both the NB and CB vapours while the recovery time for NB is significantly different compared to CB. A distinct and highly reproducible response pattern in the relative changes in resistance, recovery and response times on exposure to the vapours of NB, CB and few other chemicals at room temperature has been exploited to differentiate CB and NB vapours from one another.

  2. Chemically Compatible Sacrificial Layer-Assisted Lift-Off Patterning Method for Fabrication of Organic Light-Emitting Displays

    Science.gov (United States)

    Choi, Wonsuk; Kim, Min-Hoi; Lee, Sin-Doo

    2011-08-01

    We developed a generic platform to pattern combinatorial functional layers composed of different classes of organic materials using a repetitive lift-off method based on a chemically compatible sacrificial layer (SL) for organic light-emitting diodes (OLEDs). The essential features come from the chemically compatible SL of a fluorous-polymer that can be generated by laser-inscription or transfer-printing. The precise registration of lateral patterns of different materials was achieved on a single substrate through a series of SL-assisted lift-off processes. The chemical compatibility of the SL and the stability of the light-emitting characteristics were shown in a fluorous-solvent treated monochrome OLEDs.

  3. Solvents for CO2 capture. Structure-activity relationships combined with vapour-liquid-equilibrium measurements

    NARCIS (Netherlands)

    Mergler, Y.L.; Rumley-Van Gurp, R.; Brasser, P.; Koning, M.C. de; Goetheer, E.L.V.

    2011-01-01

    In this study a systematic approach was chosen to test and characterize amine systems for CO2 capture. Vapour-liquid-equilibrium measurements were performed on a homologue series of amines, with ethylene amine as base structure. Various functional groups were used that ranged in chemical and physica

  4. Modelling vapour transport in Surtseyan bombs

    Science.gov (United States)

    McGuinness, Mark J.; Greenbank, Emma; Schipper, C. Ian

    2016-05-01

    We address questions that arise if a slurry containing liquid water is enclosed in a ball of hot viscous vesicular magma ejected as a bomb in the context of a Surtseyan eruption. We derive a mathematical model for transient changes in temperature and pressure due to flashing of liquid water to vapour inside the bomb. The magnitude of the transient pressure changes that are typically generated are calculated together with their dependence on material properties. A single criterion to determine whether the bomb will fragment as a result of the pressure changes is derived. Timescales for ejection of water vapour from a bomb that remains intact are also revealed.

  5. The condensation of sodium vapour bubbles

    International Nuclear Information System (INIS)

    This is a preliminary analytic study of the violent collapse of a vapour bubble by condensation in cold liquid. A calculation method is described and is applied to the condensation of sodium vapour bubbles such as might be formed in an overheating accident in a fast reactor. The method is not satisfactory, and a more thorough study of the problem is needed, but these preliminary results suggest that while the violent collapse is unlikely to do much mechanical damage, it produces a considerable amount of acoustic energy. (author)

  6. U.S. assistance in the destruction of Russia's chemical weapons

    OpenAIRE

    Mostoller, Eric Charles

    2000-01-01

    The thesis examines the present status of Russia's chemical weapons destruction program, which is to be implemented according to the 1993 Chemical Weapons Convention (CWC). It assesses the magnitude of the challenges in destroying the world's largest chemical weapons stockpile, which is located at seven sites in western Russia. It also evaluates the environmental and international security concerns posed by the conditions at these sites and the disastrous implications of a failure of this che...

  7. Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation

    International Nuclear Information System (INIS)

    We investigated micro- and nano-fabrication of wide band-gap semiconductor gallium nitride (GaN) using a femtosecond (fs) laser. Nanoscale craters were successfully formed by wet-chemical-assisted fs-laser ablation, in which the laser beam is focused onto a single-crystal GaN substrate in a hydrochloric acid (HCl) solution. This allows efficient removal of ablation debris produced by chemical reactions during ablation, resulting in high-quality ablation. However, a two-step processing method involving irradiation by a fs-laser beam in air followed by wet etching, distorts the shape of the crater because of residual debris. The threshold fluence for wet-chemical-assisted fs-laser ablation is lower than that for fs-laser ablation in air, which is advantageous for improving fabrication resolution since it reduces thermal effects. We have fabricated craters as small as 510 nm by using a high numerical aperture (NA) objective lens with an NA of 0.73. Furthermore, we have formed three-dimensional hollow microchannels in GaN by fs-laser direct-writing in HCl solution.

  8. Source Allocation of Long-Range Asian Dusts Transportation across the Taiwan Strait by Innovative Chemical-Assisted Identification Methods

    Directory of Open Access Journals (Sweden)

    Yi-Hsiu Jen

    2014-01-01

    Full Text Available This study used the backward trajectory calculation to obtain the transportation routes of Asian dusts and further combined the chemical composition with the enrichment factor (EF and the grey relational analysis (GR to identify the potential sources of eighteen Asian dust storm (ADS events. The results showed that the chemical compositions of atmospheric particles sampled at the Pescadores Islands were very similar to source soils fugitively emitted from Inner Mongolia, which could assist in identifying the source regions of Asian dusts. This study further compared the source allocation of Asian dusts obtained from EF, GR, and backward trajectory, which showed that the source regions of Asian dusts obtained from these three methods were quite similar. The similarity of backward trajectory and GR reached as high as 83.3%. Moreover, the similarity of backward trajectory calculation and EF or GR was up to 77.8% while that of the GR and EF was up to 83.3%. Overall, these three methods can successfully allocate the source regions of Asian dusts by 66.7%. Moreover, these innovative chemical-assisted methods can be successfully applied to identify the source regions of Asian dusts for 18 ADS events.

  9. Collision induced photon echo in ytterbium vapour

    NARCIS (Netherlands)

    Rubtsova, N. N.; Khvorostov, E. B.; Kochubei, S. A.; Ishchenko, V. N.; Yevseyev, I. V.

    2006-01-01

    Collision induced photon echo observed in ytterbium vapour at the inter-combination transition (6s6p) P-8(1) (6s(2)) S-1(0) in the presence of Kr gas as buffer. Collision echo is generated by two unidirectional resonant dye laser pulses of linear mutually orthogonal polarizations. There is practical

  10. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  11. Developments in vapour cloud explosion blast modeling

    NARCIS (Netherlands)

    Mercx, W.P.M.; Berg, A.C. van den; Hayhurst, C.J.; Robertson, N.J.; Moran, K.C.

    2000-01-01

    TNT Equivalency methods are widely used for vapour cloud explosion blast modeling. Presently, however, other types of models are available which do not have the fundamental objections TNT Equivalency models have. TNO Multi-Energy method is increasingly accepted as a more reasonable alternative to be

  12. Vapour-density determinations of Group 5 pentafluorides

    International Nuclear Information System (INIS)

    Vapour-density determinations on the saturated vapours of NbF5, TaF5, and SbF5 at temperatures above their boiling points have been made by a modified Dumas method. The average molecular weights of the vapour-phase species near the boiling points are close to those for the respective trimers. Approaching 4000C (or 3000C for SbF5), however, the major constituent of the vapour is the monomeric pentafluoride. (author)

  13. Direct Fabrication of Carbon Nanotubes STM Tips by Liquid Catalyst-Assisted Microwave Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Fa-Kuei Tung

    2009-01-01

    Full Text Available Direct and facile method to make carbon nanotube (CNT tips for scanning tunneling microscopy (STM is presented. Cobalt (Co particles, as catalysts, are electrochemically deposited on the apex of tungsten (W STM tip for CNT growth. It is found that the quantity of Co particles is well controlled by applied DC voltage, concentration of catalyst solution, and deposition time. Using optimum growth condition, CNTs are successfully synthesized on the tip apex by catalyst-assisted microwave-enhanced chemical vapor deposition (CA-MPECVD. A HOPG surface is clearly observed at an atomic scale using the present CNT-STM tip.

  14. The experiment on the saturation polarization of Rb vapour

    Institute of Scientific and Technical Information of China (English)

    Huang Xiang-You; You Pei-Lin; Du Wei-Min

    2004-01-01

    @@ A cylindrical capacitor containing rubidium vapour is made. The capacitance of it at. different voltages is measured under a certain Rb vapour pressure. The experimental C-V curve shows that the saturation polarization of Rb vapour is easily observed. The experiment further supports the idea that the Rb atom has a large permanent electric dipole moment.

  15. Role of fluorine atoms in the oxidation-hydrolysis process of plasma assisted chemical vapor deposition fluorinated silicon nitride film

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, O.; Gomez-Aleixandre, C.; Palacio, C. (Universidad Autonoma de Madrid (Spain))

    The oxidation and/or hydrolysis of a plasma assisted chemical vapor deposition fluorinated silicon nitride film in a moisture atmosphere has been studied. The film presents fluorine atoms incorporated as -SiF, -SiF[sub 2], -SiF[sub 3], and [-SiF[sub 2]-][sub n] groups. The open structure of the film, due to the high fluorine content as [-SiF[sub 2]-][sub n], favors the penetration of oxygen and water molecules in the network. The evolution of the film has been explained by the different reactivity of the silicon atoms depending on their chemical environment. The role of fluorine atoms incorporated into the film has been established. 12 refs., 3 figs., 1 tab.

  16. Microwave assisted rapid growth of Mg(OH){sub 2} nanosheet networks for ethanol chemical sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hazmi, Faten [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Umar, Ahmad, E-mail: ahmadumar786@gmail.com [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Dar, G.N. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Al-Ghamdi, A.A.; Al-Sayari, S.A. [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Al-Hajry, A. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Kim, S.H. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Al-Tuwirqi, Reem M. [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Alnowaiserb, Fowzia [Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer A facile microwave-assisted synthesis and characterizations of magnesium hydroxide (Mg(OH){sub 2}) nanosheet networks. Black-Right-Pointing-Pointer Fabrication of ethanol sensor based on (Mg(OH){sub 2}) nanosheet networks. Black-Right-Pointing-Pointer Good sensitivity ({approx}3.991 {mu}A cm{sup -2} mM{sup -1}) and lower detection limit (5 {mu}M). Black-Right-Pointing-Pointer This research opens a way to utilize Mg(OH){sub 2} nanostructures for chemical sensors applications. - Abstract: This paper reports a facile microwave-assisted synthesis of magnesium hydroxide (Mg(OH){sub 2}) nanosheet networks and their utilization for the fabrication of efficient ethanol chemical sensor. The synthesized nanosheets networks were characterized in terms of their morphological, structural and optical properties using various analysis techniques such as field emission scanning electron microscopy (FESEM), X-ray diffraction pattern (XRD), Fourier transform infrared (FTIR) and UV-Vis spectroscopy. The detailed morphological and structural investigations reveal that the synthesized (Mg(OH){sub 2}) products are nanosheet networks, grown in high density, and possessing hexagonal crystal structure. The optical band gap of as-synthesized Mg(OH){sub 2} nanosheet networks was examined by UV-Vis absorption spectrum, and found to be 5.76 eV. The synthesized nanosheet networks were used as supporting matrices for the fabrication of I-V technique based efficient ethanol chemical sensor. The fabricated ethanol sensor based on nanosheet networks exhibits good sensitivity ({approx}3.991 {mu}A cm{sup -2} mM{sup -1}) and lower detection limit (5 {mu}M), with linearity (R = 0.9925) in short response time (10.0 s). This work demonstrate that the simply synthesized Mg(OH){sub 2} nanosheet networks can effectively be used for the fabrication of efficient ethanol chemical sensors.

  17. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO / H2O variations

    Science.gov (United States)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2015-06-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes which determine the patterns in the stratospheric water isotope composition and in the water vapour budget itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21-year time series. The two quantities depend on the same processes; however, they are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane have a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal-summer signal of isotopically enriched water vapour reveals that in-mixing of old stratospheric air from the extratropics and the intrusion of tropospheric water vapour into the stratosphere complement each other in order to create the stratospheric isotope ratio tape recorder signal. For this, the effect of ice lofting in monsoon systems is shown to play a crucial role. Furthermore, we describe a possible pathway of isotopically enriched water vapour through the tropopause into the tropical stratosphere.

  18. Effect of MW-assisted roasting on nutritional and chemical properties of hazelnuts

    OpenAIRE

    Fatih Kalkan; Sai Kranthi Vanga; Yvan Gariepy; Vijaya Raghavan

    2015-01-01

    In order to enhance the flavor, texture, color, and appearance of hazelnuts, they are roasted during postharvest processing. In this study, raw hazelnuts (Corylus avellana L.) were roasted using microwave (MW) and MW-assisted hot air methods under various roasting conditions. The hazelnuts roasted were then examined to determine the percent DPPH radical scavenging activity, antioxidant capacity, total phenolic content, resistant starch, non-resistant starch, total starch, and protein concentr...

  19. The Influence of Computer-Assisted Instruction on Students' Conceptual Understanding of Chemical Bonding and Attitude toward Chemistry: A Case for Turkey

    Science.gov (United States)

    Ozmen, Haluk

    2008-01-01

    In this study, the effect of computer-assisted instruction on conceptual understanding of chemical bonding and attitude toward chemistry was investigated. The study employed a quasi-experimental design involving 11 grade students; 25 in an experimental and 25 in a control group. The Chemical Bonding Achievement Test (CBAT) consisting of 15…

  20. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    Directory of Open Access Journals (Sweden)

    Hideharu Shimizu, Shuji Nagano, Akira Uedono, Nobuo Tajima, Takeshi Momose and Yukihiro Shimogaki

    2013-01-01

    Full Text Available Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs, with a low dielectric constant (k-value and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si–C2H4–Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si–C2H4–Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer.

  1. Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

    International Nuclear Information System (INIS)

    Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs), with a low dielectric constant (k-value) and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theoretical computations, we have designed ideal dielectrics: SiCH films with Si–C2H4–Si networks. Such films were estimated to have low porosity and low k; thus they are the key to realizing a cap layer with a low k and strong barrier properties against diffusion. For fabricating these ideal SiCH films, we designed four novel precursors: isobutyl trimethylsilane, diisobutyl dimethylsilane, 1, 1-divinylsilacyclopentane and 5-silaspiro [4,4] noname, based on quantum chemical calculations, because such fabrication is difficult by controlling only the process conditions in plasma-enhanced chemical vapor deposition (PECVD) using conventional precursors. We demonstrated that SiCH films prepared using these newly designed precursors had large amounts of Si–C2H4–Si networks and strong barrier properties. The pore structure of these films was then analyzed by positron annihilation spectroscopy, revealing that these SiCH films actually had low porosity, as we designed. These results validate our material and precursor design concepts for developing a PECVD process capable of fabricating a low-k cap layer. (paper)

  2. US technical assistance to the IAEA and the chemical weapons convection (CWC) - a review and look to the future

    Energy Technology Data Exchange (ETDEWEB)

    Indusi, J.; Parsick, R.J.; Reisman, A.W.

    1997-08-01

    This paper reviews the Safeguards mandate of the International Atomic Energy Agency (IAEA) and describes U.S. technical support programs. We also review the mandate of the Chemical Weapons Convention (CWC) and speculate on the technical areas where U.S. assistance may prove useful. The IAEA was organized in 1957 in response to President Eisenhower`s {open_quotes}Atoms for Peace{close_quotes} initiative presented to the UN General Assembly on December 8, 1953. The Organization for the Prohibition of Chemical Weapons (OPCW) has been organized by a Preparatory Commission (PREPCOM) to prepare for the entry-into-force of this new convention which prohibits the development, production, stockpiling and use of chemical weapons and on their destruction. The safeguards mandate of the IAEA is to carry out verifications of nuclear material pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and other voluntary but legally binding agreements. U.S. technical support programs have provided and continue to provide assistance in the form of Cost-Free Experts (CFE`s), systems studies on new safeguards approaches, training, computerized information systems, and equipment for nuclear materials measurements and containment and surveillance systems. Because the CWC just recently entered into force (April 29, 1997), verification procedures of the OPCW are not yet fully developed. However, it is expected, and can already be seen for many aspects of the technical task, that there are many similarities between the verification activities of the OPCW and those carried out by the IAEA. This paper will discuss potential technical support areas that can help strengthen the OPCW. 9 refs.

  3. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.G.; Newland, M.S. [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  4. Vapour liquid equilibrium measurements for process design

    OpenAIRE

    Uusi-Kyyny, Petri

    2004-01-01

    In recent years it has become increasingly important to develop new oxygenate and isooctane technologies and processes that meet the continuously stricter environmental requirements. Some of the new process schemes use renewable raw materials in order to meet the European Union biofuel requirements. One of the most important requirements for the design of such separation processes includes the knowledge of vapour liquid equilibrium (VLE) behaviour. There are methods to estimate VLE but for th...

  5. A water vapour monitor at Paranal Observatory

    Science.gov (United States)

    Kerber, Florian; Rose, Thomas; Chacón, Arlette; Cuevas, Omar; Czekala, Harald; Hanuschik, Reinhard; Momany, Yazan; Navarrete, Julio; Querel, Richard R.; Smette, Alain; van den Ancker, Mario E.; Cure, Michel; Naylor, David A.

    2012-09-01

    We present the performance characteristics of a water vapour monitor that has been permanently deployed at ESO's Paranal observatory as a part of the VISIR upgrade project. After a careful analysis of the requirements and an open call for tender, the Low Humidity and Temperature Profiling microwave radiometer (LHATPRO), manufactured by Radiometer Physics GmbH (RPG), has been selected. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.5 mm). The unit comprises the above humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared radiometer (~10 μm) for cloud detection. The instrument has been commissioned during a 2.5 week period in Oct/Nov 2011, by comparing its measurements of PWV and atmospheric profiles with the ones obtained by 22 radiosonde balloons. In parallel an IR radiometer (Univ. Lethbridge) has been operated, and various observations with ESO facility spectrographs have been taken. The RPG radiometer has been validated across the range 0.5 - 9 mm demonstrating an accuracy of better than 0.1 mm. The saturation limit of the radiometer is about 20 mm. Currently, the radiometer is being integrated into the Paranal infrastructure to serve as a high time-resolution monitor in support of VLT science operations. The water vapour radiometer's ability to provide high precision, high time resolution information on this important aspect of the atmosphere will be most useful for conducting IR observations with the VLT under optimal conditions.

  6. Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization.

    Science.gov (United States)

    Bilgin Oncu, Nalan; Akmehmet Balcioglu, Isil

    2013-10-01

    Microwave-assisted hydrogen peroxide (MW/H2O2) treatment and microwave-assisted persulfate (MW/S2O8(2-)) treatment of biological waste sludge were compared in terms of simultaneous antibiotic degradation and sludge solubilization. A 2(3) full factorial design was utilized to evaluate the influences of temperature, oxidant dose, and holding time on the efficiency of these processes. Although both MW/H2O2 and MW/S2O8(2-) yielded ≥97% antibiotic degradation with 1.2g H2O2 and 0.87 g S2O8(2-) per gram total solids, respectively, at 160 °C in 15 min, MW/S2O8(2-) was found to be more promising for efficient sludge treatment at a lower temperature and a lower oxidant dosage, as it allows more effective activation of persulfate to produce the SO4(-) radical. Relative to MW/H2O2, MW/S2O8(2-) gives 48% more overall metal solubilization, twofold higher improvement in dewaterability, and the oxidation of solubilized ammonia to nitrate in a shorter treatment period. PMID:23928124

  7. Effect of MW-assisted roasting on nutritional and chemical properties of hazelnuts

    Directory of Open Access Journals (Sweden)

    Fatih Kalkan

    2015-12-01

    Full Text Available In order to enhance the flavor, texture, color, and appearance of hazelnuts, they are roasted during postharvest processing. In this study, raw hazelnuts (Corylus avellana L. were roasted using microwave (MW and MW-assisted hot air methods under various roasting conditions. The hazelnuts roasted were then examined to determine the percent DPPH radical scavenging activity, antioxidant capacity, total phenolic content, resistant starch, non-resistant starch, total starch, and protein concentration. The roasting experiments were done using a completely randomized factorial arrangement of two roasting types by three roasting times (9, 15, and 21 min by three roasting temperatures (70, 90, and 110°C using three replications within each experiment. These roasting methods were found to yield significant differences in antioxidant capacity, total phenolic content, resistant starch, non-resistant starch, and protein concentration between MW and MW-assisted hot air roasting processes, while no difference was found in percent DPPH radical scavenging activity and total starch. The results obtained may be of great importance to the food research community and industrial hazelnut roasting technologies.

  8. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    K Pramoda; S Suresh; H S S Ramakrishna Matte; A Govindaraj

    2013-08-01

    Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force microscopy and other techniques. Magnetite particles chemically bonded to graphene dispersible in various solvents have been prepared and they exhibit fairly high magnetization.

  9. Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching

    International Nuclear Information System (INIS)

    Highlights: • Porous silicon/TiO2 nanocomposites have been investigated. • Morphology and chemical composition of PSi/TiO2 nanocomposites were established. • Valence-band XPS maximums for PSi/TiO2 nanocomposites were found and analyzed. - Abstract: PSi/TiO2 nanocomposites fabricated by atomic layer deposition (ALD) and metal-assisted chemical etching (MACE) were investigated. The morphology and phase structure of PSi/TiO2 nanocomposites were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) with an energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The mean size of TiO2 nanocrystals was determined by TEM and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical elemental composition by observing the behavior of the Ti 2p, O 1s and Si 2p lines. TEM, Raman spectroscopy and XPS binding energy analysis confirmed the formation of TiO2 anatase phase inside the PSi matrix. The XPS valence band analysis was performed in order to investigate the modification of PSi/TiO2 nanocomposites electronic structure. Surface defects states of Ti3+ at PSi/TiO2 nanocomposites were identified by analyzing of XPS valence band spectra

  10. Highly efficient and reliable chemically assisted enucleation method for handmade cloning in cattle

    DEFF Research Database (Denmark)

    Vajta, Gábor; Maddox-Hyttel, Poul; Skou, Christina T.;

    2005-01-01

    The purpose of the present study was to find an efficient and reliable assisted procedure for enucleation related to the handmade cloning (HMC) technique. After in vitro maturation oocytes were incubated in 0.5 µgmL-¹ demecolcine for 2 h. Subsequently, zonae pellucidae were digested with pronase......, and one-third of the cytoplasm connected to an extrusion cone was removed by hand using a microblade. The remaining two-thirds were used as recipients for HMC, and reconstructed and activated embryos were cultured for 7 days. The time-dependent manner of the development of extrusion cones, the efficiency...... ultrastructure of the oocyte organelles, however, appeared to be unaltered by the treatments. Considering that no oocyte selection based on polar body presence was performed, this system seems to be more efficient and reliable than any other enucleation method. Moreover, expensive equipment (inverted...

  11. Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems

    KAUST Repository

    Cotter, Simon L.

    2013-01-01

    Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.

  12. Metal Vapour Lasers: Physics, Engineering and Applications

    Science.gov (United States)

    Little, Christopher E.

    1999-03-01

    Metal Vapour Lasers Christopher E. Little University of St Andrews, St Andrews, Scotland Since the first successful demonstration of a metal vapour laser (MVL) in 1962, this class of laser has become widely used in a broad range of fields including precision materials processing, isotope separation and medicine. The MVLs that are used today have a range of impressive characteristics that are not readily available using other technologies. In particular, the combination of high average output powers, pulse recurrence frequencies and beam quality available from green/yellow Cu vapour lasers (CVLs) and Cu bromide lasers, coupled with the high-quality, multiwatt ultraviolet (265-289 nm) radiation that can be produced using simple nonlinear optical techniques, means that Cu lasers will continue to be important for many years. Metal Vapour Lasers covers all the most commercially important and scientifically interesting pulsed and continuous wave (CW) gas-discharge MVLs, and includes device histories, operating characteristics, engineering, kinetics, commercial exploitation and applications. Short descriptions of gas discharges and excitation techniques make this volume self-consistent. A comprehensive bibliography is also provided. The greater part of this book is devoted to CVLs and their variants, including new sealed-off, high-power 'kinetically enhanced' CVLs and Cu bromide lasers. However, many other self-terminating MVLs are also discussed, including the red AuVL, green/infrared MnVL and infrared BaVL. Pulsed, high-gain, high average power lasers in the UV/violet (373.7, 430.5 nm) spectral regions are represented by Sr¯+ and Ca¯+ discharge-afterglow recombination lasers. The most commercially successful of the MVLs - the CW, UV/blue cataphoretic He-Cd¯+ ion laser - is described. Hollow cathode lasers are represented in two guises: 'white light' (blue/green/red) He-Cd¯+ ion lasers and UV/infrared Ne/He-Cu¯+ ion lasers. This unique volume is an

  13. Characterization of TiO{sub 2} thin films obtained by metal-organic chemical vapour deposition; Caracterizacao de filmes finos de TiO{sub 2} obtidos por deposicao quimica em fase vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carriel, Rodrigo Crociati

    2015-07-01

    Titanium dioxide (TiO{sub 2}) thin films were grown on silicon substrate (100) by MOCVD process (chemical deposition of organometallic vapor phase). The films were grown at 400, 500, 600 and 700 ° C in a conventional horizontal equipment. Titanium tetraisopropoxide was used as source of both oxygen and titanium. Nitrogen was used as carrier and purge gas. X-ray diffraction technique was used for the characterization of the crystalline structure. Scanning electron microscopy with field emission gun was used to evaluate the morphology and thickness of the films. The films grown at 400 and 500°C presented anatase phase. The film grown at 600ºC presented rutile besides anatase phase, while the film grown at 700°C showed, in addition to anatase and rutile, brookite phase. In order to evaluate the electrochemical behavior of the films cyclic voltammetry technique was used. The tests revealed that the TiO2 films formed exclusively by the anatase phase exhibit strong capacitive character. The anodic current peak is directly proportional to the square root of the scanning rate for films grown at 500ºC, suggesting that linear diffusion is the predominant mechanism of cations transport. It was observed that in the film grown during 60 minutes the Na+ ions intercalation and deintercalation easily. The films grown in the other conditions did not present the anodic current peak, although charge was accumulated in the film. (author)

  14. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  15. Vapour Recoil Effect on a Vapour-Liquid System with a Deformable Interface

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Qiu-Sheng

    2006-01-01

    @@ A new two-sided model of vapour-Iiquid layer system with a deformable interface is proposed. In this model,the vapour recoil effect on the Marangoni-Bénard instability of a thin evaporating liquid layer can be examined only when the interface deflexion is considered. The instability of a liquid layer undergoing steady evaporation induced by the coupling of vapour recoil effect and the Marangoni effect is analysed using a linear stability theory.We modify and develop the Chebyshev-Tau method to solve the instability problem of a deformable interface system by introducing a new equation at interface boundary. New instability behaviour of the system has been found and the self-amplification mechanism between the evaporation flux and the interface deflexion is discussed.

  16. Synthesis of diamond-like carbon films on Si substrates by photoemission-assisted plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Meng [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Ogawa, Shuichi, E-mail: ogasyu@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Takabayashi, Susumu; Otsuji, Taiichi [Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, K' s Gobancho Bldg., 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan); Takakuwa, Yuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-11-15

    Diamond-like carbon (DLC) films grown by photoemission-assisted plasma-enhanced chemical vapor deposition (PA-PECVD) have attracted attention as a gate insulator for graphene-channel field effect transistors (GFETs). In this study, the possibility of using PA-PECVD to grow insulating DLC films for GFETs is explored by focusing on the growth rate and uniformity of DLC films on Si substrates. Initially, the DLC films were formed at a constant rate but the growth rate decreased rapidly when the thickness reached approximately 400 nm. This is because of a decrease in photoelectron emissions from the Si substrates as they are covered by DLC films which absorb UV photons. However, the DLC films formed uniformly at thicknesses less than 16%. This result indicates that PA-PECVD is a promising method for growing DLC films as the gate dielectric layer of GFETs.

  17. The Enhanced Light Absorptance and Device Application of Nanostructured Black Silicon Fabricated by Metal-assisted Chemical Etching.

    Science.gov (United States)

    Zhong, Hao; Guo, Anran; Guo, Guohui; Li, Wei; Jiang, Yadong

    2016-12-01

    We use metal-assisted chemical etching (MCE) method to fabricate nanostructured black silicon on the surface of C-Si. The Si-PIN photoelectronic detector based on this type of black silicon shows excellent device performance with a responsivity of 0.57 A/W at 1060 nm. Silicon nanocone arrays can be created using MCE treatment. These modified surfaces show higher light absorptance in the near-infrared range (800 to 2500 nm) compared to that of C-Si with polished surfaces, and the variations in the absorption spectra of the nanostructured black silicon with different etching processes are obtained. The maximum light absorptance increases significantly up to 95 % in the wavelength range of 400 to 2500 nm. Our recent novel results clearly indicate that nanostructured black silicon made by MCE has potential application in near-infrared photoelectronic detectors. PMID:27368764

  18. Pulse Operation of Chemical Oxygen-Iodine Laser by Pulsed Gas Discharge with the Assistance of Spark Pre-ionization

    Institute of Scientific and Technical Information of China (English)

    LI Guo-Fu; YU Hai-Jun; DUO Li-Ping; JIN Yu-Qi; WANG Jian; SANG Feng-Ting; FANG Ben-Jie; WANG De-Zhen

    2009-01-01

    The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pulsed gas discharge with the assistance of spark pre-ionization to achieve the pulsed goal. The influence of spark pre-ionization on discharge homogeneity is discussed. Voltage-current characteristics are shown and discussed in existence of the pre-ionization capacitor and peaking capacitor. The spark pre-ionization and peaking capacitor are very helpful in obtaining a stable and homogeneous discharge. The lasing is achieved at the total pressure of 2.2-2.9 kPa and single pulse energy is up to 180m J, the corresponding specific output energy is 1.0 J/L.

  19. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  20. Photocatalytic activity of tin-doped TiO{sub 2} film deposited via aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chua, Chin Sheng, E-mail: cschua@simtech.a-star.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Tan, Ooi Kiang; Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Ding, Xingzhao [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore)

    2013-10-01

    Tin-doped TiO{sub 2} films are deposited via aerosol assisted chemical vapor deposition using a precursor mixture composing of titanium tetraisopropoxide and tetrabutyl tin. The amount of tin doping in the deposited films is controlled by the volume % concentration ratio of tetrabutyl tin over titanium tetraisopropoxide in the mixed precursor solution. X-ray diffraction analysis results reveal that the as-deposited films are composed of pure anatase TiO{sub 2} phase. Red-shift in the absorbance spectra is observed attributed to the introduction of Sn{sup 4+} band states below the conduction band of TiO{sub 2}. The effect of tin doping on the photocatalytic property of TiO{sub 2} films is studied through the degradation of stearic acid under UV light illumination. It is found that there is a 10% enhancement on the degradation rate of stearic acid for the film with 3.8% tin doping in comparison with pure TiO{sub 2} film. This improvement of photocatalytic performance with tin incorporation could be ascribed to the reduction of electron-hole recombination rate through charge separation and an increased amount of OH radicals which are crucial for the degradation of stearic acid. Further increase in tin doping results in the formation of recombination site and large anatase grains, which leads to a decrease in the degradation rate. - Highlights: ► Deposition of tin-doped TiO{sub 2} film via aerosol assisted chemical vapor deposition ► Deposited anatase films show red-shifted in UV–vis spectrum with tin-dopants. ► Photoactivity improves at low tin concentration but reduces at higher concentration. ► Improvement in photoactivity due to bandgap narrowing from Sn{sup 4+} band states ► Maximum photoactivity achieved occurs for films with 3.8% tin doping.

  1. Selective removal technology using chemical etching and excimer assistance in precision recycle of color filter

    Institute of Scientific and Technical Information of China (English)

    Pai shan PA

    2011-01-01

    Color filters are produced using semiconductor production techniques although problems with Iow yield remain to be addressed. This study presents a new means of selective removal using excimer irradiation, chemical etching, or electrochemical machining on the fifth generation TFT LCDs. The selective removal of microstructure layers from the color filter surface of an optoelectronic flat panel display, as well as complete removal of the ITO thin-films, RGB layer, or resin black matrix (BM) layer from the substrate is possible. Individual defective film layers can be removed, or all films down to the Cr layer or bare glass can be completely eliminated. Experimental results demonstrate that defective ITO thin-films, RGB layers, or the resin BM layer can now be recycled with a great precision. When the ITO or RGB layer proves difficult to remove, excimer light can be used to help with removal. During this recycling process, the use of 225 nm excimer irradiation before chemical etching, or electrochemical machining, makes removal of stubborn film residues easy, effectively improving the quality of recycled color filters and reducing fabrication cost.

  2. G3 Assisted Rational Design of Chemical Sensor Array Using Carbonitrile Neutral Receptors

    Directory of Open Access Journals (Sweden)

    Yatimah Alias

    2013-10-01

    Full Text Available Combined computational and experimental strategies for the systematic design of chemical sensor arrays using carbonitrile neutral receptors are presented. Binding energies of acetonitrile, n-pentylcarbonitrile and malononitrile with Ca(II, Mg(II, Be(II and H+ have been investigated with the B3LYP, G3, CBS-QB3, G4 and MQZVP methods, showing a general trend H+ > Be(II > Mg(II > Ca(II. Hydrogen bonding, donor-acceptor and cation-lone pair electron simple models were employed in evaluating the performance of computational methods. Mg(II is bound to acetonitrile in water by 12.5 kcal/mol, and in the gas phase the receptor is more strongly bound by 33.3 kcal/mol to Mg(II compared to Ca(II. Interaction of bound cations with carbonitrile reduces the energies of the MOs involved in the proposed σ-p conjugated network. The planar malononitrile-Be(II complex possibly involves a π-network with a cationic methylene carbon. Fabricated potentiometric chemical sensors show distinct signal patterns that can be exploited in sensor array applications.

  3. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    Science.gov (United States)

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  4. Chlorine-free plasma-based vapour growth of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Siche, D.; Kachel, K.; Zwierz, R.; Golka, S.; Sudhoff, P.; Gogova, D. [Leibniz-Institut fuer Kristallzuechtung, Berlin (Germany); Vodopyanov, A.; Izotov, I.; Sennikov, P.; Golubev, S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation); Franke, K.P. [Institute fuer Umwelttechnologien GmbH, Berlin (Germany)

    2012-03-15

    In pure physical vapour transport process for GaN growth, the liquid Ga source has to be kept at temperatures about 1300-1400 C to provide sufficient Ga vapour pressure for reasonably large growth rates. The growth temperature needs to be slightly lower to prevent droplet formation in the Ga vapour. At such high temperatures, however, the early ammonia decomposition prevents the favorable growth with reactive nitrogen in excess. The vapour processes under development in this study aim at overcoming the drawbacks of the reaction of physically or chemically transported Ga and ammonia. For this purpose, the reactive nitrogen will be supplied by plasma excitation of N{sub 2}. First, the results on ammonia-based GaN growth and their disadvantages are discussed. Then, the challenges in designing of a new type of plasma sources (a microwave and a dielectric barrier discharge) and the first experimental results on the ammonia-free process development are presented. The microwave approach seems to be very promising in terms of GaN growth. It has higher growth rates than the dielectric barrier discharge method and therefore it is more cost-effective. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Wagner liquid-vapour pressure equation constants from a simple methodology

    Energy Technology Data Exchange (ETDEWEB)

    Forero G, Luis A., E-mail: forerogaviria@yahoo.com [Pulp and Paper Research Group, Faculty of Chemical Engineering, Universidad Pontificia Bolivariana, Circular 1a 70-01 Medellin, Antioquia (Colombia); Velasquez J, Jorge A., E-mail: jorge.velasquezj@upb.edu.co [Pulp and Paper Research Group, Faculty of Chemical Engineering, Universidad Pontificia Bolivariana, Circular 1a 70-01 Medellin, Antioquia (Colombia)

    2011-08-15

    Highlights: > Simple methodology to estimate Wagner vapor pressure equation constants. > Full range liquid-vapor pressure predictions from limited data. > Constants satisfy the Waring criterion. - Abstract: A methodology to determine the A, B, C, and D constants from the Wagner equation is presented. The constants for 274 pure substances were determined by minimization in the sum of the squares of the relative deviation in liquid vapour pressure. For 69 chemical compounds, vapour pressures exist over the range from 1 kPa to the critical pressure and an average absolute deviation in vapour pressure of 0.039% was calculated. Using Antoine equation coefficients and initial guesses for a correlation in terms of the acentric factor, Wagner constants were estimated for substances with limited data within the range from (1 to 200) kPa. To validate the proposed methodology, vapour pressure predictions from 1 kPa to the critical pressure were made for 52 substances using Wagner parameters estimated from limited data. A value of 0.27% in average absolute deviation results for those substances. Finally the Waring criterion was applied to check the constants presented in this paper.

  6. Ultrafast vapourization dynamics of laser-activated polymeric microcapsules

    Science.gov (United States)

    Lajoinie, Guillaume; Gelderblom, Erik; Chlon, Ceciel; Böhmer, Marcel; Steenbergen, Wiendelt; de Jong, Nico; Manohar, Srirang; Versluis, Michel

    2014-04-01

    Precision control of vapourization, both in space and time, has many potential applications; however, the physical mechanisms underlying controlled boiling are not well understood. The reason is the combined microscopic length scales and ultrashort timescales associated with the initiation and subsequent dynamical behaviour of the vapour bubbles formed. Here we study the nanoseconds vapour bubble dynamics of laser-heated single oil-filled microcapsules using coupled optical and acoustic detection. Pulsed laser excitation leads to vapour formation and collapse, and a simple physical model captures the observed radial dynamics and resulting acoustic pressures. Continuous wave laser excitation leads to a sequence of vapourization/condensation cycles, the result of absorbing microcapsule fragments moving in and out of the laser beam. A model incorporating thermal diffusion from the capsule shell into the oil core and surrounding water reveals the mechanisms behind the onset of vapourization. Excellent agreement is observed between the modelled dynamics and experiment.

  7. Tuning the Electrical Properties of Graphene via Nitrogen Plasma-Assisted Chemical Modification.

    Science.gov (United States)

    Jung, Min Wook; Song, Wooseok; Jung, Dae Sung; Lee, Sun Sook; Park, Chong-Yun; An, Ki-Seok

    2016-03-01

    The control in electrical properties of graphene is essentially required in order to realize graphenebased nanoelectronics. In this study, N-doped graphene was successfully obtained via nitrogen plasma treatment. Graphene was synthesized on copper foil using thermal chemical vapor deposition. After N2 plasma treatment, the G-band of the graphene was blueshifted and the intensity ratio of 2D- to G-bands decreased with increasing the plasma power. Pyrrolic-N bonding configuration induced by N2 plasma treatment was studied by X-ray photoelectron spectroscopy. Remarkably, electrical characterization including Hall measurement and I-V characteristics of the N-doped graphene exhibit semiconducting behavior as well as the n-type doping effect. PMID:27455703

  8. Tuning the Electrical Properties of Graphene via Nitrogen Plasma-Assisted Chemical Modification.

    Science.gov (United States)

    Jung, Min Wook; Song, Wooseok; Jung, Dae Sung; Lee, Sun Sook; Park, Chong-Yun; An, Ki-Seok

    2016-03-01

    The control in electrical properties of graphene is essentially required in order to realize graphenebased nanoelectronics. In this study, N-doped graphene was successfully obtained via nitrogen plasma treatment. Graphene was synthesized on copper foil using thermal chemical vapor deposition. After N2 plasma treatment, the G-band of the graphene was blueshifted and the intensity ratio of 2D- to G-bands decreased with increasing the plasma power. Pyrrolic-N bonding configuration induced by N2 plasma treatment was studied by X-ray photoelectron spectroscopy. Remarkably, electrical characterization including Hall measurement and I-V characteristics of the N-doped graphene exhibit semiconducting behavior as well as the n-type doping effect.

  9. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints.

    Science.gov (United States)

    Chen, Jonathan L; Bellaousov, Stanislav; Tubbs, Jason D; Kennedy, Scott D; Lopez, Michael J; Mathews, David H; Turner, Douglas H

    2015-11-17

    Knowledge of RNA structure is necessary to determine structure-function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5' to 3' directionality of base pairs in helices. The 5' to 3' directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure.

  10. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J.; Ovarlez, H. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1997-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  11. The Water Vapour Radiometer at Effelsberg

    Science.gov (United States)

    Roy, A. L.; Teuber, U.; Keller, R.

    We have installed a scanning 18 GHz to 26 GHz water vapour radiometer on the focus cabin of the Effelsberg 100 m telescope for tropospheric phase, delay and opacity correction during high-frequency VLBI observations. It is based on the design by Tahmoush & Rogers (2000) but with noise injection for calibration, weather-proof housing, and temperature stabilization. The radiometer is delivering data into an archive since July 2003, from which they are available for download. The data will be delivered automatically to PIs of EVN experiments in a calibration table attached by the EVN calibration pipeline. This paper describes the radiometer and its performance.

  12. Responses in tropospheric chemistry to changes in UV fluxes, temperatures and water vapour densities

    OpenAIRE

    Fuglestvedt, Jan S.; Jonson, J.E.; WANG, WEI-CHYUNG; Isaksen, Ivar S.A.

    1994-01-01

    A two-dimensional chemistry/transport model of the global troposphere is used to study the chemical response to i) increased UV-radiation from stratospheric ozone depletion and ii) increased temperatures and water vapour densities that follow from in-creased levels of greenhouse gases. Increased UV radiation increases the photolysis rates for several tropospheric gases, in particular ozone. This leads to enhanced levels of odd hydrogen and reduced concentrations of tropospheric ozone. Increas...

  13. Synthesis of CdS nanostructures using template-assisted ammonia-free chemical bath deposition

    Science.gov (United States)

    Preda, N.; Enculescu, M.; Gherendi, F.; Matei, E.; Toimil-Molares, M. E.; Enculescu, I.

    2012-09-01

    CdS micro- and nano-structures (micro/nanotubes and nanostructured films) were obtained by ammonia-free chemical bath deposition using polymer templates (ion track-etched polycarbonate membranes and poly(styrene-hydroxyethyl methacrylate) nanosphere arrays). The semiconductor structures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), optical absorption, photoluminescence and electrical measurements. The diameters of CdS tubes are between 300 nm and few microns and the lengths are up to tens of micrometers. The SEM images prove that the CdS films are nanostructured due to the deposition on the polymer nanosphere arrays. For both CdS structures (tubes and films) the XRD patterns show a hexagonal phase. The optical studies reveal a band gap value of about 2.5-2.6 eV and a red luminescence at ˜1.77 eV. A higher increase of conductivity is observed for illuminating the CdS nanostructured film when compared to the simple semiconductor film. This is a consequence of the periodic patterning induced by the polymer nanosphere array.

  14. Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.

    Science.gov (United States)

    Pandey, Sadanand; Ramontja, James

    2016-08-01

    Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. PMID:27118045

  15. Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    Recently there has been much interest in developing processes for producing liquid fuels from renewable resources. The most logical long term approach in terms of economics derives the carbohydrate substrate for fermentation from the hydrolysis of cellulosic crop and forest residues rather than from grains or other high grade food materials (1,2). Since the presence of lignin is the main barrier to the hydrolysis of cellulose from lignocellulosic materials, delignification processes developed by the wood pulping industry have been considered as possible prehydrolysis treatments. The delignification process under study in our laboratory is envisioned as a synthesis of two recently developed pulping processes. In the first step, called autohydrolysis, hot water is used directly to solubilize hemicellulose and to depolymerize lignin (3). Then, in a second step known as organosolv pulping (4), the autohydrolyzed material is extracted with aqueous alcohol. A s shown in Figure 1, this process can separate the original lignocellulosic material into three streams--hemicellulose in water, lignin in aqueous alcohol, and a cellulose pulp. Without further mechanical milling, delignified cellulose can be enzymatically hydrolyzed at 45-50 C to greater than 80% theoretical yield of glucose using fungal cellulases (5, 6). The resulting glucose syrup can then be fermented by yeast to produce ethanol or by selected bacteria to produce acetone and butanol or acetic and propionic acids (7). One objection to such a process, however, is the large energy input that is required. In order to extend our supplies of liquid fuels and chemicals, it is important that the use of fossil fuels in any lignocellulosic conversion process be minimized. The direct use of geothermal hot water in carrying out the autohydrolysis and extraction operations, therefore, seems especially attractive. On the one hand, it facilitates the conversion of non-food biomass to fuels and chemicals without wasting fossil

  16. Generation and spectroscopic investigation of an atmospheric pressure water vapour plasma jet

    International Nuclear Information System (INIS)

    Water vapour plasma technologies could be used for the conversion of biomass to hydrogen rich synthetic gas and for the neutralization and utilization of hazardous wastes. Formation of water vapour plasma has been investigated using a linear direct current plasma torch with stair stepped anode. A new device with a unique structure, operating at atmospheric pressure has been designed and tested at Lithuanian Energy Institute, Plasma Processing Laboratory for the innovative and environmental friendly plasma treatment of organic materials. The main operating conditions of plasma torch and main parameters of water vapour plasma jet were investigated. The power of plasma torch was 25–45kW; arc current was 140–180 A, the arc voltage was 172–231 V, the efficiency was 0.5–0.78. The average temperature of water vapour plasma jet in exhaust nozzle was 2600–3500 K, and the plasma jet velocity was 200–310 m/s. Emission lines, registered by the optical emission spectrometer AOS4-1, are analysed to observe the chemical composition of water vapour plasma jet. The optical emission spectrum measurement shows that the water molecule in the plasma is decomposed into H, OH and O radicals. Hydrogen is very desirable in the formation of high caloric synthetic gas (CO+H2) during thermal plasma gasification of organic materials. The summarized results can help to calculate and design gasification systems of biomass, to establish optimal parameters for stable operation of plasma generator and regulate the process parameters. (author)

  17. Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure

    Science.gov (United States)

    Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete

    2016-04-01

    Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003

  18. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  19. Is there a solar signal in lower stratospheric water vapour?

    Science.gov (United States)

    Schieferdecker, Tobias; Lossow, Stefan; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60 deg S and 60 deg N and 15 to 30 km, and covering the years 1992 to 2012, was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  20. Chemical-Assisted Femtosecond Laser Writing of Lab-in-Fiber Sensors

    Science.gov (United States)

    Haque, Moez

    fringe contrast and peak resolution beyond that available with FPIs and offer a significant theoretical improvement in refractometer sensitivity. The advanced laser processes optimized here may provide a new base for photonics, microfluidics, and optofluidics fabrication in a LIF platform with multiplexed functionality and rapid prototyping capabilities of fully integrable 3D optofluidic systems. The proposed LIF devices define new micro-systems for temperature, strain, pressure, refractive index, and bend strain sensing that may find application in the acoustic, aerospace, automotive, biological, chemical, civil, or medical fields.

  1. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    OpenAIRE

    Mugabi, James Atwoki; Bjerrum, Niels J.; Petrushina, Irina; Christensen, Erik; Eriksen, Søren

    2014-01-01

    Tantals korrosionsbestandighed i varme sure miljøer samt dets overlegne metalliske egenskaber har gjort det til en førsteklasses løsning som konstruktionsmateriale eller som beskyttende belægning til udstyr beregnet til brug under barske kemiske og fysiske forhold. Den høje pris på tantalmetal begrænser imidlertid dets anvendelse som et grundmateriale til procesudstyr. Et billigere alternativ er at fremstille udstyret af stål for derefter at beskytte det med et tyndt, men effektivt lag af tan...

  2. Chemical vapour deposition (CVD) diamond as thermoluminescence (Tl) dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Furetta, C. [Physics Department, University of Rome La Sapienza, Piazzale A. Moro 2, 00185 Rome (Italy)

    1999-07-01

    The aim of this paper is to present a review of the most recent experimental data concerning the CVD diamond as a thermoluminescence detector. Batches of different production have been investigated and the most important dosimetric properties are here reported. The kinetics parameters, such as activation energy, E, frequency factor, s, and kinetic order, b, have been also studied and a phenomenological model of the Tl emission is proposed for the supra linearity behavior of some diamond samples. (Author)

  3. Chemical vapour deposition of vanadium oxide thermochromic thin films

    OpenAIRE

    Piccirillo, Clara

    2012-01-01

    Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thi...

  4. Aluminium nitride coatings preparation using a chemical vapour deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Armas, B.; Combescure, C.; Icaza Herrera, M. de; Sibieude, F. [Centre National de la Recherche Scientifique (CNRS), 66 - Font-Romeu (France). Inst. de Science et du Genie des Materiaux et des Procedes

    2000-07-01

    Aluminium nitride was obtained in a cold wall reactor using AlCl{sub 3} and NH{sub 3} as precursors and N{sub 2} as a carrier gas. AlCl{sub 3} was synthesized << in situ >> by means of an original method based on the reaction of SiCl{sub 4(g)} with Al{sub (S)}. The substrate used was a cylinder of graphite coated with SiC and heated by high frequency induction. The deposition rate was studied as a function of temperature in the range 900 - 1500 C, the total pressure varying from 2 to 180 hPa. At low temperatures an Arrhenius type representation of the kinetics for several pressures indicated a thermally activated process with an apparent activation energy of about 80 kJ.mol{sup -1}. At high deposition temperatures, the deposition rate was almost constant, indicating that the growth was controlled by a diffusion process. The influence of gas composition and total AlCl{sub 3} flow rate was also discussed. The different layers were characterised particularly by means of X-ray diffraction and SEM. The influence of temperature and total pressure on crystallization and morphology was studied. (orig.)

  5. Beam-profile monitor using a sodium-vapour

    CERN Multimedia

    1972-01-01

    Beam-profile monitor using a sodium-vapour curtain at 45 degrees to the ISR beam in Ring I (sodium generator is in white cylinder just left of centre). Electrons produced by ionization of the sodium vapour give an image of the beam on a fluorescent screen that is observed by a TV camera (at upper right).

  6. Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis Fungus UM01.

    Science.gov (United States)

    Cheong, Kit-Leong; Wang, Lan-Ying; Wu, Ding-Tao; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2016-09-01

    Cordyceps sinensis is a well-known tonic food with broad medicinal properties. The aim of the present study was to investigate the optimization of microwave-assisted extraction (MAE) and characterize chemical structures and chain conformation of polysaccharides from a novel C. sinensis fungus UM01. Ion-exchange and gel filtration chromatography were used to purify the polysaccharides. The chemical structure of purified polysaccharide was determined through gas chromatography-mass spectrometry. Moreover, high performance size exclusion chromatography combined with refractive index detector and multiangle laser light scattering were conducted to analyze the molecular weight (Mw ) and chain conformation of purified polysaccharide. Based on the orthogonal design L9 , optimal MAE conditions could be obtained through 1300 W of microwave power, with a 5-min irradiation time at a solid to water ratio of 1:60, generating the highest extraction yield of 6.20%. Subsequently, the polysaccharide UM01-S1 was purified. The UM01-S1 is a glucan-type polysaccharide with a (1→4)-β-d-glucosyl backbone and branching points located at O-3 of Glcp with a terminal-d-Glcp. The Mw , radius of gyration (Rg ) and hydrodynamic radius (Rh ) of UM01-S1 were determined as 5.442 × 10(6)  Da, 21.8 and 20.2 nm, respectively. Using the polymer solution theory, the exponent (ν) value of the power law function was calculated as 0.38, and the shape factor (ρ = Rg /Rh ) was 1.079, indicating that UM01-S1 has a sphere-like conformation with a branched structure in an aqueous solution. These results provide fundamental information for the future application of polysaccharides from cultured C. sinensis in health and functional food area. PMID:27514485

  7. Effect of Water Vapour to Temperature Inside Sonoluminescing Bubble

    Institute of Scientific and Technical Information of China (English)

    安宇; 谢崇国; 应崇福

    2003-01-01

    Using the model based on the homo-pressure approximation, we explain why the maximum temperature is sensitive to the ambient temperature in the single bubble sonoluminescence. The numerical simulation shows that the maximum temperature inside a sonoluminescing bubble depends on how much water vapour evaporates or coagulates at the bubble wall during the bubble shrinking to its minimum size. While the amount of water vapour inside the bubble at the initial and the final state of the compression depends on the saturated water vapour pressure which is sensitive to the ambient temperature. The lower the saturated vapour pressure is, the higher the maximum temperature is. This may lead to more general conclusion that those liquids with lower saturated vapour pressure are more favourable for the single bubble sonoluminescence. We also compare those bubbles with different noble gases, the result shows that the maximum temperatures in the different gas bubbles are almost the same for those with the same ambient temperature.

  8. A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application

    Science.gov (United States)

    Wang, Yiliang; Xuan, Huaqing; Lin, Gaoxin; Wang, Fan; Chen, Zhi; Dong, Xiaoping

    2016-07-01

    N-doped activated carbon sheets (NACS) have been successfully synthesized using glucose as carbon source via melamine-assisted chemical blowing and sequent KOH-activation method. The obtained carbon material possesses a sheet-like morphology with ultrathin thickness, hierarchical micro/mesoporous structure, high specific surface area (up to 1997.5 m2 g-1) and high pore volume (0.94 cm3 g-1). Besides, NACS material with a nitrogen content of 3.06 wt% presents a maximum specific capacitance of 312 F g-1 at a current density of 0.5 A g-1 in 6 M KOH aqueous electrolyte due to the cocontribution of double layer capacitance and pseudocapacitance. It also displays good rate performance (246 F g-1 at 30 A g-1) and cycle stability (∼91.3% retention after 4000 galvanostatic charge-discharge cycles). The assembled NACS-based symmetric capacitor exhibits a maximum energy density of 20.2 Wh kg-1 at a power density of 448 W kg-1 within a voltage range of 0-1.8 V in 0.5 M Na2SO4 aqueous electrolyte. Thus, the unique porous sheet structure and nitrogen-doping characteristic endue the electrode material a potential application for high-performance supercapacitors.

  9. Antibacterial properties and chemical characterization of the essential oils from summer savory extracted by microwave-assisted hydrodistillation

    Directory of Open Access Journals (Sweden)

    Shila Rezvanpanah

    2011-12-01

    Full Text Available Antibacterial properties and chemical characterization of the essential oils from summer savory (Satureja hortensis extracted by microwave-assisted hydrodistillation (MAHD were compared with those of the essential oils extracted using the traditional hydrodistillation (HD method. While MAHD at 660 W required half as much time as HD needed, similar antibacterial efficacies were found from the essential oils obtained by the two extraction methods on two food pathogens (Staphylococcus aureus, a gram positive bacterium, and Escherchia coli, a gram negative bacterium. Also, as it was the case with the essential oils extracted by HD, that of MAHD indicated greater influence on S. aureus than on E. coli. The compositions of the extracted essential oils were also studied using GC-MS analysis. The same components with negligible differences in their quantities were found in the extracted essential oils using the two methods outlined above. Overall, to reduce the extraction time, MAHD can be applied at higher microwave levels without any compromise in the antibacterial properties of the essential oils extracted.

  10. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching

    Science.gov (United States)

    Brodoceanu, D.; Alhmoud, H. Z.; Elnathan, R.; Delalat, B.; Voelcker, N. H.; Kraus, T.

    2016-02-01

    We present an elegant route for the fabrication of ordered arrays of vertically-aligned silicon nanowires with tunable geometry at controlled locations on a silicon wafer. A monolayer of transparent microspheres convectively assembled onto a gold-coated silicon wafer acts as a microlens array. Irradiation with a single nanosecond laser pulse removes the gold beneath each focusing microsphere, leaving behind a hexagonal pattern of holes in the gold layer. Owing to the near-field effects, the diameter of the holes can be at least five times smaller than the laser wavelength. The patterned gold layer is used as catalyst in a metal-assisted chemical etching to produce an array of vertically-aligned silicon nanowires. This approach combines the advantages of direct laser writing with the benefits of parallel laser processing, yielding nanowire arrays with controlled geometry at predefined locations on the silicon surface. The fabricated VA-SiNW arrays can effectively transfect human cells with a plasmid encoding for green fluorescent protein.

  11. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization

    International Nuclear Information System (INIS)

    Continuous-wave chemical oxygen-iodine lasers (COILs) can be operated in a pulsed operation mode to obtain a higher peak power. The key point is to obtain a uniform and stable glow discharge in the mixture of singlet delta oxygen and iodide. We propose using an electrode system with the assistance of surface sliding pre-ionization to solve the problem of the stable glow discharge with a large aperture. The pre-ionization unit is symmetrically fixed on the plane of the cathode surface. A uniform and stable glow discharge is obtained in a mixture of iodide (such as CH3I) and nitrogen at the specific deposition energy of 4.5 J/L, pressure of 1.99–3.32 kPa, aperture size of 11 cm × 10 cm. The electrode system is applied in a pulsed COIL. Laser energy up to 4.4 J is obtained and the specific energy output is 2 J/L. (fundamental areas of phenomenology(including applications))

  12. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  13. Kinetics of Laser-Assisted Carbon Nanotube Growth

    CERN Document Server

    van de Burgt, Yoeri; Mandamparambil, Rajesh

    2014-01-01

    Laser-assisted chemical vapour deposition (CVD) growth is an attractive mask-less process for growing locally aligned carbon nanotubes (CNTs) in selected places on temperature sensitive substrates. The nature of the localized process results in fast carbon nanotube growth with high experimental throughput. Here, we report on detailed investigation of growth kinetics related to physical and chemical process characteristics. Specifically, the growth kinetics is investigated by monitoring the dynamical changes of reflected laser beam intensity during growth. Benefiting from the fast growth and high experimental throughput, we investigate a wide range of experimental conditions and propose several growth regimes. Rate-limiting steps are determined using rate equations linked to the proposed growth regimes, which are further characterized by Raman spectroscopy and Scanning Electron Microscopy (SEM), therefore directly linking growth regimes to the structural quality of the CNTs. Activation energies for the differe...

  14. Localisation of an unknown number of land mines using a network of vapour detectors.

    Science.gov (United States)

    Chhadé, Hiba Haj; Abdallah, Fahed; Mougharbel, Imad; Gning, Amadou; Julier, Simon; Mihaylova, Lyudmila

    2014-11-06

    We consider the problem of localising an unknown number of land mines using concentration information provided by a wireless sensor network. A number of vapour sensors/detectors, deployed in the region of interest, are able to detect the concentration of the explosive vapours, emanating from buried land mines. The collected data is communicated to a fusion centre. Using a model for the transport of the explosive chemicals in the air, we determine the unknown number of sources using a Principal Component Analysis (PCA)-based technique. We also formulate the inverse problem of determining the positions and emission rates of the land mines using concentration measurements provided by the wireless sensor network. We present a solution for this problem based on a probabilistic Bayesian technique using a Markov chain Monte Carlo sampling scheme, and we compare it to the least squares optimisation approach. Experiments conducted on simulated data show the effectiveness of the proposed approach.

  15. Investigation of shock-induced and shock-assisted chemical reactions in molybdenum-silicon powder mixtures

    Science.gov (United States)

    Vandersall, Kevin Stewart

    1999-10-01

    In this research, chemical reactions occurring in molybdenum and silicon powder mixtures under "shock-induced" (those occurring during the high-pressure shock state) and "shock-assisted" (those occurring subsequent to the shock event, but due to bulk temperature increases) conditions were investigated. Differences in the densities and yield strengths of the two constituents, in addition to the large heat of reaction associated with molybdenum disilicide (MoSi2) formation can lead to shock-induced as well as shock-assisted reactions, which make this an ideal system to delineate the kinetics and mechanisms of reactions occurring in shock-compressed powder mixtures. Shock recovery experiments performed on Mo + 2 Si powder mixtures employing cylindrical implosion geometry showed thermally initiated reactions. A mixed phase eutectic type microstructure of MoSi2 and Mo 5Si3, resulting from reaction occurring due to melting of both reactants, was observed in axial regions of the cylindrical compacts. In regions surrounding the mach stem, melting of only silicon and reaction occurring via dissolution and re-precipitation forming MoSi2 spherules surrounding molybdenum particles in a melted and solidified silicon matrix was observed. The planar pressure shock recovery geometry showed a single phase MoSi2, microstructure formed due to a solid-state pressure-induced reaction process. The time-resolved instrumented experiments were performed using a single stage gas gun in the velocity range of 500 m/s to 1 km/s, and employed poly-vinyl di-flouride (PVDF) stress gauges placed at the front and rear surfaces of the powder to determine the crush strength, densification history, and reaction initiation threshold conditions. Time-resolved experiments performed on ˜58% dense Mo + 2 Si powder mixtures at input stresses less than 4 GPa, showed characteristics of powder densification and dispersed propagated wave stress profiles with rise time >˜40 nanoseconds. At input stress between

  16. The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals

    Science.gov (United States)

    Zhao, Pei; Cheng, Yu; Zhao, Dongchen; Yin, Kun; Zhang, Xuewei; Song, Meng; Yin, Shaoqian; Song, Yenan; Wang, Peng; Wang, Miao; Xia, Yang; Wang, Hongtao

    2016-03-01

    Involving oxygen in the traditional chemical vapor deposition (CVD) process has proven a promising approach to achieve large-scale graphene single crystals (GSCs), but its many relevant fundamental aspects are still not fully understood. Here we report a systematic study on the role of hydrogen in the growth of millimeter-sized GSCs using enclosure-like Cu structures via the oxygen-assisted CVD process. Results show that GSCs have different first layer growth behaviors on the inside and outside surfaces of a Cu enclosure when the H2 environment is varied, and these behaviors will consequently and strongly influence the adlayer formation in these GSCs, leading to two entirely different growth modes. Low H2 partial pressure (PH2) tends to result in fast growth of dendritically shaped GSCs with multiple small adlayers, but high PH2 can modify the GSC shape into hexagons with single large adlayer nuclei. This difference of adlayers is attributed to the different C diffusion paths determined by the shapes of their host GSCs. On the basis of these observations, we developed an isothermal two-step method to obtain GSCs with significantly improved growth rate and sample quality, in which low PH2 is first set to accelerate the growth rate followed by high PH2 to restrict the adlayer nuclei. Our results prove that the growth of GSCs can reach a reasonable optimization between their growth rates and sample quality by simply adjusting the CVD H2 environment, which we believe will lead to more improvements in graphene synthesis and fundamental insight into the related growth mechanisms.Involving oxygen in the traditional chemical vapor deposition (CVD) process has proven a promising approach to achieve large-scale graphene single crystals (GSCs), but its many relevant fundamental aspects are still not fully understood. Here we report a systematic study on the role of hydrogen in the growth of millimeter-sized GSCs using enclosure-like Cu structures via the oxygen-assisted CVD

  17. A solar signal in lower stratospheric water vapour?

    OpenAIRE

    T. Schieferdecker; S. Lossow; Stiller, G. P.; von Clarmann, T.

    2015-01-01

    A merged time series of stratospheric water vapour built from HALOE and MIPAS data between 60° S and 60° N and 15 to 30 km and covering the years 1992 to 2012 was analyzed by multivariate linear regression including an 11 year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second compon...

  18. The influence of H2O2 concentration to the structure of silicon nanowire growth by metal-assisted chemical etching

    Science.gov (United States)

    Omar, Hafsa; Jani, Abdul Mutalib Md.; Rusop, Mohamad; Abdullah, Saifollah

    2016-07-01

    A simple and low cost method to produce well aligned silicon nanowires at large areas using Ag-assisted chemical etching at room temperature were presented. The structure of silicon nanowires growth by metal-assisted chemical etching was observed. Prior to the etching, the silicon nanowires were prepared by electroless metal deposited (EMD) in solution containing hydrofluoric acid and hydrogen peroxide in Teflon vessel. The silver particle was deposited on substrate by immersion in hydrofluoric acid and silver nitrate solution for sixty second. The silicon nanowires were growth in different hydrogen peroxide concentration which are 0.3M, 0.4M, 0.5M and 0.6M and 0.7M.The influence of hydrogen peroxide concentration to the formation of silicon nanowires was studied. The morphological properties of silicon nanowires were investigated using field emission scanning electron microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS).

  19. Precursor design of vapour deposited cubic boron nitride versus diamond

    International Nuclear Information System (INIS)

    The similarities and dissimilarities in the growth of diamond vs. cubic boron nitride (c-BN) were studied using quantum mechanical calculations. Great similarities were observed when considering the surface stabilization by H atoms. Very great similarities were recorded when considering the adsorption of various growth species to these materials. It was found necessary to avoid mixtures of B- and N-containing species in the gas phase during c-BN growth, since they should most probably result in a mixture of these species also on the surfaces. Greater dissimilarities were observed when studying the surface migrations on the diamond and c-BN surfaces and nucleation of the cubic phases on the corresponding hexagonal ones. Nucleation of diamond/c-BN on graphite/h-BN was found to be energetically feasible. This was calculated to be especially the situation for the armchair edge of the basal plane of h-BN and of the zigzag edge of the basal plane of graphite. These theoretical results can be used as guidelines in the strive towards thin film deposition of c-BN using gentle chemical vapour deposition methods like atomic layer deposition. (author)

  20. Performance Analysis of Vapour Compression Refrigeration System Utilizing Different Refrigerant

    OpenAIRE

    Ashish Patidar 1; Amitesh Paul

    2014-01-01

    The performance of heat transfer is one of the most important research areas in the field of thermal engineering. There are a large number of refrigerants, which are used to transfer heat from low temperature reservoir to high temperature reservoir by using vapour compression refrigeration system. This paper presents a performance analysis of vapour compression refrigeration system with using refrigerants like R-134a & Blend of R-290(propane) (50%) and R-600a (50% Isobutane). ...

  1. Variability of winter-time middle atmospheric water vapour over the Arctic as observed with a ground-based microwave radiometer

    Science.gov (United States)

    Tschanz, Brigitte; Kivi, Rigel; Rüfenacht, Rolf; Kämpfer, Niklaus

    2014-05-01

    Middle atmospheric water vapour has a long chemical lifetime and can therefore be used as a tracer for dynamics. The ground-based microwave radiometer MIAWARA-C is designed for the use on campaigns and measures profiles of water vapour in the upper stratosphere and mesosphere and thus provides valuable data for the investigation of atmospheric processes. It has been operational for five years and has successfully participated in measurement campaigns under various climatic conditions in Germany, Switzerland, California, Finland and on la Réunion. The temporal resolution of the obtained water vapour profiles approximately 2 hours depending on tropospheric conditions. During two campaigns from January to June 2010 and from July 2011 to April 2013 in Sodankylä, Finland, MIAWARA-C monitored time series of polar middle atmospheric water vapour for three winters with three Sudden Stratospheric Warmings (SSW) occurring in early 2010, 2012 and 2013. The obtained time series are used to study the effects of the three SSWs on middle-atmospheric water vapour. During an SSW, humid mid- to low-latitude air is transported towards the polar region resulting in a fast increase in water vapour. The descent of water vapour after the SSW allows the estimation of the descent rate over the polar region as the normal wintertime circulation reforms. Results from the three SSWs are compared. The ground-based water vapour data is combined with sonde data of the Finnish Meteorological Institute and ground-based microwave wind measurements for one winter in order to obtain a more complete picture of the dynamics in the polar winter atmosphere.

  2. Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition

    Science.gov (United States)

    Nad, Shreya

    Single crystal diamond (SCD) substrates can be utilized in a wide range of applications. Important issues in the chemical vapor deposition (CVD) of such substrates include: shrinking of the SCD substrate area, stress and cracking, high defect density and hence low electronic quality and low optical quality due to high nitrogen impurities. The primary objective of this thesis is to begin to address these issues and to find possible solutions for enhancing the substrate dimensions and simultaneously improving the quality of the grown substrates. The deposition of SCD substrates is carried out in a microwave cavity plasma reactor via the microwave plasma assisted chemical vapor deposition technique. The operation of the reactor was first optimized to determine the safe and efficient operating regime. By adjusting the matching of the reactor cavity with the help of four internal tuning length variables, the system was further matched to operate at a maximum overall microwave coupling efficiency of ˜ 98%. Even with adjustments in the substrate holder position, the reactor remains well matched with a coupling efficiency of ˜ 95% indicating good experimental performance over a wide range of operating conditions. SCD substrates were synthesized at a high pressure of 240 Torr and with a high absorbed power density of 500 W/cm3. To counter the issue of shrinking substrate size during growth, the effect of different substrate holder designs was studied. An increase in the substrate dimensions (1.23 -- 2.5 times) after growth was achieved when the sides of the seeds were shielded from the intense microwave electromagnetic fields in a pocket holder design. Using such pocket holders, high growth rates of 16 -- 32 mum/hr were obtained for growth times of 8 -- 72 hours. The polycrystalline diamond rim deposition was minimized/eliminated from these growth runs, hence successfully enlarging the substrate size. Several synthesized CVD SCD substrates were laser cut and separated

  3. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  4. Absorption spectroscopy of laser excited europium vapour

    International Nuclear Information System (INIS)

    Absorption spectra of europium vapour irradiated by intense, monochromatic resonance radiation at the wavelengths of the three principal resonance lines, 4f76s2, 8S(J=7/2)→4f76s6p, y 8P(J=5/2, 7/2 and 9/2) at 466.2, 462.7 and 459.4 nm respectively, have been photographed at high resolution. Pulsed resonance radiation was obtained from a tunable, narrow-band dye laser pumped by a nitrogen laser: a broad-band dye laser pumped by the same nitrogen laser provided background radiation. Our spectra covered the ranges 380-400 nm, and 410-450 nm, each one showing transitions from a single resonance level to upper levels in the region of either the 4f76s, 7S or the 4f76s, 9S ionization limit of EuII. In the shorter wavelength range the spectra consisted of weak autoionized series converging towards the 7S limit. In the longer wavelength range the three spectra were surprisingly dissimilar. The majority of the upper levels could be arranged into five highly-perturbed series, one corresponding to each of the J values 3/2, 5/2, 7/2, 9/2 and 11/2. These series arose from excitation of the 6p electron to high lying d-orbitals. The absorption transitions to the series members are only prominent in regions where the series are strongly perturbed, indicating that most of the line strength is derived from the perturbing levels. Possible origins for the perturbing levels are discussed. Little evidence was found for a series arising from excitation of the 6p electron to high lying s-orbitals. (author)

  5. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  6. RESEARCH NOTE WCA repulsive and attractive contributions to the thermodynamic properties at the vapour-liquid equilibrium

    Science.gov (United States)

    Cuadros, F.; Mulero, A.; Faundez, C. A.

    The Lennard-Jones attractive and repulsive contributions of intermolecular forces (as separated in the Weeks-Chandler-Andersen (WCA) theory) to the pressure and chemical potential of coexisting vapour and liquid phases are obtained by using an equation of state recently proposed by us. Some comments are given about the computer simulation results obtained by Plackov and Sadus (1997, Fluid Phase Equilib., 134, 77) using the McQuarrie-Katz separation of the intermolecular potential.

  7. Landmine Detection Technologies to TraceExplosive Vapour Detection Techniques

    Directory of Open Access Journals (Sweden)

    J. C. Kapoor

    2007-11-01

    Full Text Available Large quantity of explosive is manufactured worldwide for use in various types of ammunition,arms, and mines, and used in armed conflicts. During manufacturing and usage of the explosiveequipment, some of the explosive residues are released into the environment in the form ofcontaminated effluents, unburnt explosives fumes and vapours. Limited but uncontrolledcontinuous release of trace vapours also takes place when explosive-laden landmines are deployedin the field. One of the major technological challenges in post-war scenario worldwide is thedetection of landmines using these trace vapour signatures and neutralising them safely.  Differenttypes of explosives are utilised as the main charge in antipersonnel and antitank landmines. Inthis paper, an effort has been made to review the techniques so far available based on explosivevapour detection especially to detect the landmines. A comprehensive compilation of relevantinformation on the techniques is presented, and their maturity levels, shortcomings, and difficultiesfaced are highlighted.

  8. Solvent vapour detection with a charge flow transistor

    Energy Technology Data Exchange (ETDEWEB)

    Wilkop, T; Ray, A K [Sheffield Hallam University, School of Engineering, Physical Electronics and Fibre Optics Research Laboratories, City Campus, Pond Street, Sheffield (United Kingdom)

    2002-10-21

    A novel method to detect reversibly high concentrations of organic vapours in air has been developed by combining an intrinsically low conductive membrane of the calix[4]resorcinarene [C{sub 7}H{sub 15}] derivative with a charge flow transistor. The modulation of the turn-on response for the transistor upon exposure to acetone, chloroform, methanol, hexane and water is presented. The increase in the membrane conductivity is partially attributed to condensation of the vapours in the highly microporous membrane even below the saturation vapour pressure and partially to the effect of the polar analyte molecules complexing inside and between the OH groups of the cavities. The observed sensitivity is in the order chloroform chloroform >> acetone >> methanol >> hexane >> water.

  9. Simultaneous negative permittivity and permeability in a coherent atomic vapour

    Institute of Scientific and Technical Information of China (English)

    Shen Jian-Qi

    2007-01-01

    A new quantum optical mechanism to realize simultaneously negative electric permittivity and magnetic permeability is suggested. In order to obtain a negative permeability, we choose a proper atomic configuration that can dramatically enhance the contribution of the magnetic-dipole allowed transition via the atomic phase coherence. It is shown that the atomic system chosen with proper optical parameters can give rise to striking electromagnetic responses (leading to a negative refractive index) and that the atomic vapour becomes a left-handed medium in an optical frequency band. Differing from the previous schemes of artificial composite metamaterials (based on classical electromagnetic theory) to achieve the left-handed materials, which consist of anisotropic millimetre-scale composite structure units, the left-handed atomic vapour presented here is isotropic and homogeneous at the atomic-scale level. Such an advantage may be valuable in realizing the superlens (and hence perfect image) with left-handed atomic vapour.

  10. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    Science.gov (United States)

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well. PMID:25498927

  11. Validation of SCIAMACHY AMC-DOAS water vapour columns

    Directory of Open Access Journals (Sweden)

    S. Noël

    2005-04-01

    Full Text Available A first validation of water vapour total column amounts derived from measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY in the visible spectral region has been performed. For this purpose, SCIAMACHY water vapour data have been determined for the year 2003 using an extended version of the Differential Optical Absorption Spectroscopy (DOAS method, called Air Mass Corrected (AMC-DOAS. The SCIAMACHY results are compared with corresponding water vapour measurements by the Special Sensor Microwave Imager (SSM/I and with model data from the European Centre for Medium-Range Weather Forecasts (ECMWF.

    In confirmation of previous results it could be shown that SCIAMACHY derived water vapour columns are typically slightly lower than both SSM/I and ECMWF data, especially over ocean areas. However, these deviations are much smaller than the observed scatter of the data which is caused by the different temporal and spatial sampling and resolution of the data sets. For example, the overall difference with ECMWF data is only −0.05 g/cm2 whereas the typical scatter is in the order of 0.5 g/cm2. Both values show almost no variation over the year.

    In addition, first monthly means of SCIAMACHY water vapour data have been computed. The quality of these monthly means is currently limited by the availability of calibrated SCIAMACHY spectra. Nevertheless, first comparisons with ECMWF data show that SCIAMACHY (and similar instruments are able to provide a new independent global water vapour data set.

  12. Intercomparison of TCCON and MUSICA Water Vapour Products

    Science.gov (United States)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  13. SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation

    DEFF Research Database (Denmark)

    Boy, M.; Sogachev, Andrey; Lauros, J.;

    2011-01-01

    Chemistry in the atmospheric boundary layer (ABL) is controlled by complex processes of surface fluxes, flow, turbulent transport, and chemical reactions. We present a new model SOSA (model to simulate the concentration of organic vapours and sulphuric acid) and attempt to reconstruct the emissions...

  14. SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation

    DEFF Research Database (Denmark)

    Boy, M.; Sogachev, Andrey; Lauros, J.;

    2010-01-01

    Chemistry in the atmospheric boundary layer (ABL) is controlled by complex processes of surface fluxes, flow, turbulent transport, and chemical reactions. We present a new model SOSA (model to simulate the concentration of organic vapours and sulphuric acid) and attempt to reconstruct the emissions...

  15. An Investigative and Concise Review on Evaporation and Condensation Processes Using Vapour Adsorption Technique

    Directory of Open Access Journals (Sweden)

    Dim Dim Kumar

    2014-10-01

    Full Text Available The vapour adsorption refrigeration is based on the evaporation and condensation of a refrigerant combined with adsorption or chemical reaction. The towering fossil fuel price and the responsiveness of environmental problems offer many potential applications to thermal powered adsorption cooling. However, the adsorption cooling machines still have some disadvantages that hinder their wide application. The patents surveyed are classified into four main groups: adsorption system development, adsorbent bed innovation, adsorbent/adsorbate material development and novel application of adsorption cooling system. The adsorption refrigeration is based on the evaporation and condensation of a refrigerant combined with adsorption or chemical reaction. Important targets are to reach a high efficiency through optimization measures at various components and the control system. On the other hand measures are to verify to simplify the construction with regard to a low-cost manufacturing, as well as to reach long periods with maintenance-free operation. This review paper gives a comprehensive review on the work carried out on vapour adsorption refrigeration for cryogenic applications.

  16. Could water vapour be the culprit in global warming?

    International Nuclear Information System (INIS)

    It is easy to understand why most people - and many governments - are quick to blame ''global warming'' for apparently extreme variations in weather and seasonal trends. ''Greenhouse gases'' have long received a bad press, and carbon dioxide is often singled out as the culprit in global warming. Yet a recent study led by Richard Learner of Imperial College in London supports the possibility that water vapour could be a major contributor to atmospheric heating (D Belmiloud et al. 2000 Geophysical Res. Lett. 27 3703). In the February issue of Physics World, Ahilleas Maurellis of the Space Research Organisation Netherlands (SRON), Utrecht, reveals the role water vapour plays in our atmosphere. (U.K.)

  17. A Discharge-Excited SrBr2 Vapour Laser

    Institute of Scientific and Technical Information of China (English)

    潘佰良; 姚志欣; 陈钢

    2002-01-01

    A new-style discharge tube for a metal vapour laser has been designed and built. SrBr2 was successfullyused to replace the metal strontium as a working medium. Multi-line laser oscillations from resonance tometastable transition of strontium atoms (6.45um), ions (1.03um/1.O9um) and from strontium ion recombi-nation (416.2nm/430.5nm) have been obtained through longitudinal pulsed discharge. The problem of an in-compatibility reaction between metallic strontium and the discharge tube in the strontium vapour laser has beensolved. Some proposals are presented for further developments of strontium halide lasers.

  18. Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Boileau, Alexis; Gries, Thomas; Noël, Cédric; Perito Cardoso, Rodrigo; Belmonte, Thierry

    2016-11-01

    Micro and nano-patterning of surfaces is an increasingly popular challenge in the field of the miniaturization of devices assembled via top-down approaches. This study demonstrates the possibility of depositing sub-micrometric localized coatings—spots, lines or even more complex shapes—made of amorphous hydrogenated carbon (a-C:H) thanks to a moving XY stage. Deposition was performed on silicon substrates using chemical vapor deposition assisted by an argon atmospheric-pressure plasma jet. Acetylene was injected into the post-discharge region as a precursor by means of a glass capillary with a sub-micrometric diameter. A parametric study was carried out to study the influence of the geometric configurations (capillary diameter and capillary-plasma distance) on the deposited coating. Thus, the patterns formed were investigated by scanning electron microscopy and atomic force microscopy. Furthermore, the chemical composition of large coated areas was investigated by Fourier transform infrared spectroscopy according to the chosen atmospheric environment. The observed chemical bonds show that reactions of the gaseous precursor in the discharge region and both chemical and morphological stability of the patterns after treatment are strongly dependent on the surrounding gas. Various sub-micrometric a-C:H shapes were successfully deposited under controlled atmospheric conditions using argon as inerting gas. Overall, this new process of micro-scale additive manufacturing by atmospheric plasma offers unusually high-resolution at low cost.

  19. The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations

    Science.gov (United States)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca

    2015-04-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ∼2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (∼10 μm) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space

  20. Properties of GaN on different polarity buffer layers by hydride vapour phase epitaxy

    Institute of Scientific and Technical Information of China (English)

    Qiu Kai; Zhong Fei; Li Xin-Hua; Yin Zhi-Jun; Ji Chang-Jian; Han Qi-Feng; Chen Jia-Rong; Cao Xian-Cun; Wang Yu-Qi

    2007-01-01

    This paper reports on N-, mixed-, and Ga-polarity buffer layers are grown by molecular beam epitaxy (MBE) on sapphire (0001) substrates, with the GaN thicker films grown on the buffer layer with different polarity by hydride vapour epitaxy technique (HVPE). The surface morphology, structural and optical properties of these HVPF-GaN epilayers are characterized by wet chemical etching, scanning electron microscope, x-ray diffraction, and photoluminescence spectrum respectively. It finds that the N-polarity film is unstable against the higher growth temperature and wet chemical etching,while that of GaN polarity one is stable. The results indicate that the crystalline quality of HVPE-GaN epilayers depends on the polarity of buffer layers.

  1. Distillation with Vapour Compression. An Undergraduate Experimental Facility.

    Science.gov (United States)

    Pritchard, Colin

    1986-01-01

    Discusses the need to design distillation columns that are more energy efficient. Describes a "design and build" project completed by two college students aimed at demonstrating the principles of vapour compression distillation in a more energy efficient way. General design specifications are given, along with suggestions for teaching and…

  2. On the kinetic study of electrochemical vapour deposition

    NARCIS (Netherlands)

    Haart, de L.G.J.; Lin, Y.S.; Vries, de K.J.; Burggraaf, A.J.

    1991-01-01

    A theoretical analysis is presented which quantitatively describes the transition behavior of the kinetics of the electrochemical vapour deposition of yttria-stabilized zirconia on porous substrates. It is shown that up to a certain deposition time and corresponding film thickness the rate limiting

  3. Measurement of the Cotton Mouton effect of water vapour

    CERN Document Server

    Della Valle, F; Gastaldi, U; Messineo, G; Milotti, E; Pengo, R; Piemontese, L; Ruoso, G; Zavattini, G

    2013-01-01

    In this paper we report on a measurement of the Cotton Mouton effect of water vapour. Measurement performed at room temperature ($T=301$ K) with a wavelength of 1064 nm gave the value $\\Delta n_u = (6.67 \\pm 0.45) \\cdot 10^{-15}$ for the unit magnetic birefringence (1 T magnetic field and atmospheric pressure).

  4. Breakdown and dc discharge in low-pressure water vapour

    Science.gov (United States)

    Sivoš, J.; Škoro, N.; Marić, D.; Malović, G.; Petrović, Z. Lj

    2015-10-01

    In this paper we report studies of basic properties of breakdown, low-current Townsend discharge and high-current discharge regimes in water vapour. Paschen curves and the corresponding distributions of emission intensities at low current were recorded in the range of pd (pressure x electrode gap) from 0.1 to 10 Torrcm covering the region of Paschen minimum. From the experimental profiles we obtained effective ionization coefficient of water vapour for the E/N range 650 Td-7 kTd and fitted the results by using the extended Townsend analytical formula. Using the obtained ionization coefficient, we calculated the effective yield of secondary electrons from the copper cathode. Results of the measurements of Volt-Ampere characteristics in water vapour were presented together with the images of the axial structure of the discharge in a wide range of discharge currents for two pd values. Recorded profiles showed development of the spatial structure of the discharge in different operating regimes. We were able to identify conditions where processes induced by heavy particles, probably fast hydrogen atoms, are dominant in inducing emission from the discharge. Finally, standard scaling laws were tested for low current and glow discharges in water vapour.

  5. Impact of major volcanic eruptions on stratospheric water vapour

    Science.gov (United States)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  6. Human volunteer study with PGME: Eye irritation during vapour exposure

    NARCIS (Netherlands)

    Emmen, H.H.; Muijser, H.; Arts, J.H.E.; Prinsen, M.K.

    2003-01-01

    The objective of this study was to establish the possible occurrence of eye irritation and subjective symptoms in human volunteers exposed to propylene glycol monomethyl ether (PGME) vapour at concentrations of 0, 100 and 150 ppm. Testing was conducted in 12 healthy male volunteers using a repeated

  7. Effects of vapours of chlorpropham and ethofumesate on wild species

    NARCIS (Netherlands)

    Franzaring, J.; Kempenaar, C.; Eerden, van der L.J.M.

    2001-01-01

    Effects of vapours of two herbicides on plantlets of fourteen wild higher plant species and two bryophytes were screened in fumigation experiments using foliar injury, chlorophyll fluorescence and growth as response parameters. After vaporisation of the herbicides for 48 h, concentrations in the cha

  8. Effect of paint on vapour resistivity in plaster

    Directory of Open Access Journals (Sweden)

    de Villanueva, L.

    2008-12-01

    Full Text Available The vapour resistivity of plaster coatings such as paint and their effectiveness as water repellents were studied in several types of plaster. To this end, painted, unpainted and pigmented specimens were tested. Experimental values were collected on diffusion and vapour permeability, or its inverse, water vapour resistivity.The data obtained were very useful for evaluating moisture exchange between plaster and the surrounding air, both during initial drying and throughout the life of the material. They likewise served as a basis for ensuring the proper evacuation of water vapour in walls, and use of the capacity of the porous network in plaster products to regulate moisture content or serve as a water vapour barrier to avoid condensation.Briefly, the research showed that pigments, water-based paints and silicon-based water repellents scantly raised vapour resistance. Plastic paints, enamels and lacquers, however, respectively induced five-, ten- and twenty-fold increases in vapour resistivity, on average.Se estudia el fenómeno de la resistividad al vapor de los de yeso y el efecto impermeabilizante que producen los recubrimientos de pintura sobre diversos tipos de yeso y escayola. Para ello, se ensayan probetas desnudas y recubiertas con distintos tipos de pintura, así como coloreados en masa. Se obtienen valores experimentales de la difusividad o permeabilidad al vapor o su inverso la resistividad al vapor de agua.Los datos obtenidos son muy útiles para valorar el fenómeno del intercambio de humedad entre el yeso y el ambiente, tanto durante el proceso de su secado inicial, como en el transcurso de su vida. Así como para disponer soluciones adecuadas para la evacuación del vapor de agua a través de los cerramientos, para utilizar la capacidad de regulación de la humedad, que proporciona el entramado poroso de los productos de yeso, o para impedir el paso del vapor de agua y evitar condensaciones.Como resumen de la investigación, se

  9. Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction.

    Science.gov (United States)

    Tu, Zong-Cai; Huang, Tao; Wang, Hui; Sha, Xiao-Mei; Shi, Yan; Huang, Xiao-Qin; Man, Ze-Zhou; Li, De-Jun

    2015-04-01

    In this study, gelatin was extracted from bighead carp (Hypophthalmichthys nobilis) scales by water bath (WB) and ultrasound bath (UB) at 60 °C for 1 h, 3 h and 5 h, named WB1, WB3, WB5, UB1, UB3 and UB5, respectively. The physicochemical properties of gelatin were investigated. The result indicated that gelatin extracted from bighead carp scales had a high protein content (84.15 ~ 91.85 %) with moisture (7.11 ~ 13.65 %), low ash content (0.31 ~ 0.97 %). All extracted gelatin contained α-and β-chains as the predominant components. Gelatin extracted by UB obtained much higher yield (30.94-46.67 %) than that of WB (19.15-36.39 %). More voids and less sheets of gelatin structure were observed, when the gelatin was extracted by UB for longer time. Gelatin of UB-assisted extraction normally exhibited lower gel strength and melting points than that of WB, which may be resulted from the protein degradation reflected by the FTIR spectra and higher free amino group content. However, there was no significant difference between WB1 and UB1. Therefore, the ultrasound assisted extraction in a short time was a promising method to enhance the yield and obtain gelatin with high quality. PMID:25829597

  10. Reviewing Some Crucial Concepts of Gibbs Energy in Chemical Equilibrium Using a Computer-Assisted, Guided-Problem-Solving Approach

    Science.gov (United States)

    Borge, Javier

    2015-01-01

    G, G°, ?rG, ?rG°, ?G, and ?G° are essential quantities to master the chemical equilibrium. Although the number of publications devoted to explaining these items is extremely high, it seems that they do not produce the desired effect because some articles and textbooks are still being written with some of these quantities that appear to be…

  11. Antifungal Activity of Clove Essential Oil and its Volatile Vapour Against Dermatophytic Fungi

    OpenAIRE

    Chee, Hee Youn; Lee, Min Hee

    2007-01-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essen...

  12. Evaluating the vapour shift concept in agriculture: some aspects

    Science.gov (United States)

    Schmidt, S.; Metselaar, K.; van Dam, J. C.; Klik, A.

    2009-04-01

    Human population growth leads to an increasing pressure on freshwater resources. By 2050 Falkenmark et al. (2004) estimate a global water deficit for crop production of 5800 km3.y-1. This has important consequences for management of fresh water resources at different scales, and new strategies at different scales are required. One of the strategies suggested is that of managing crops in such a way that the use of rainfall and irrigation is shifted as much as possible from evaporation towards transpiration, a so-called vapour shift. The suggested savings are in the order of 330 km3.y-1, and are based on estimates of the magnitude of three processes: Reducing early season evaporation; increasing canopy cover; and increasing yield levels. The vapour shift concept was evaluated empirically, and in a simulation study. The empirical evaluation using results for wheat, maize, millet, cotton, and barley suggests the estimate of potential savings is 37% lower than the estimate by Falkenmark et al. (2004). The uncertainty is large and due to the limited number of experiments in which a separation of evapotranspiration in evaporation and transpiration has been made over the entire growing season. This suggests that theoretical support for the vapour shift concept should become more important. In the simulation approach two management options, mulching and planting density, are evaluated for a site in India for an irrigated wheat crop using a simulation approach for water limited crop yield. Given the simulation model used, and the management options investigated, the assumption implicit in the vapour shift concept - decreasing evaporation with increasing yield level - does not hold in irrigated areas, or in areas in which water is the most limiting factor. This suggests that vapour shift will be largest in those areas where nutrients and pests- and diseases are still limiting or reducing crop yields, and measures are taken to reduce those limitations.

  13. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    Science.gov (United States)

    Razavizadeh, Mahmoud; Jamshidi, Masoud

    2016-08-01

    Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  14. Structural and XPS studies of PSi/TiO{sub 2} nanocomposites prepared by ALD and Ag-assisted chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Iatsunskyi, Igor, E-mail: yatsunskiy@gmail.com [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska Str., 61-614 Poznan (Poland); Kempiński, Mateusz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska Str., 61-614 Poznan (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 (Poland); Nowaczyk, Grzegorz; Jancelewicz, Mariusz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska Str., 61-614 Poznan (Poland); Pavlenko, Mykola [Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera Str., 65023 Odessa (Ukraine); Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska Str., 61-614 Poznan (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska Str., 61-614 Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2015-08-30

    Highlights: • Porous silicon/TiO{sub 2} nanocomposites have been investigated. • Morphology and chemical composition of PSi/TiO{sub 2} nanocomposites were established. • Valence-band XPS maximums for PSi/TiO{sub 2} nanocomposites were found and analyzed. - Abstract: PSi/TiO{sub 2} nanocomposites fabricated by atomic layer deposition (ALD) and metal-assisted chemical etching (MACE) were investigated. The morphology and phase structure of PSi/TiO{sub 2} nanocomposites were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) with an energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The mean size of TiO{sub 2} nanocrystals was determined by TEM and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical elemental composition by observing the behavior of the Ti 2p, O 1s and Si 2p lines. TEM, Raman spectroscopy and XPS binding energy analysis confirmed the formation of TiO{sub 2} anatase phase inside the PSi matrix. The XPS valence band analysis was performed in order to investigate the modification of PSi/TiO{sub 2} nanocomposites electronic structure. Surface defects states of Ti{sup 3+} at PSi/TiO{sub 2} nanocomposites were identified by analyzing of XPS valence band spectra.

  15. An emerging reactor technology for chemical synthesis: surface acoustic wave-assisted closed-vessel Suzuki coupling reactions.

    Science.gov (United States)

    Kulkarni, Ketav; Friend, James; Yeo, Leslie; Perlmutter, Patrick

    2014-07-01

    In this paper we demonstrate the use of an energy-efficient surface acoustic wave (SAW) device for driving closed-vessel SAW-assisted (CVSAW), ligand-free Suzuki couplings in aqueous media. The reactions were carried out on a mmolar scale with low to ultra-low catalyst loadings. The reactions were driven by heating resulting from the penetration of acoustic energy derived from RF Raleigh waves generated by a piezoelectric chip via a renewable fluid coupling layer. The yields were uniformly high and the reactions could be executed without added ligand and in water. In terms of energy density this new technology was determined to be roughly as efficient as microwaves and superior to ultrasound.

  16. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    Science.gov (United States)

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols.

  17. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.)

  18. Gradual variation method for thick GaN heteroepitaxy by hydride vapour phase epitaxy

    Institute of Scientific and Technical Information of China (English)

    Du Yan-Hao; Wu Jie-Jun; Luo Wei-Ke; John Goldsmith; Han Tong; Tao Yue-Bin; Yang Zhi-Jian; Yu Tong-Jun; Zhang Guo-Yi

    2011-01-01

    Two strain-state samples of GaN,labelled the strain-relief sample and the quality-improved sample,were grown by hydride vapour phase epitaxy (HVPE),and then characterized by high-resolution X-ray diffraction,photoluminescence and optical microscopy. Two strain states of GaN in HVPE,like 3D and 2D growth modes in metal-organic chemical vapour deposition (MOCVD),provide an effective way to solve the heteroepitaxial problems of both strain relief and quality improvement. The gradual variation method (GVM),developed based on the two strain states,is characterized by growth parameters' gradual variation alternating between the strain-relief growth conditions and the qualityimproved growth conditions. In GVM,the introduction of the strain-relief amplitude,which is defined by the range from the quality-improved growth conditions to the strain-relief growth conditions,makes the strain-relief control concise and effective. The 300-4m thick bright and crack-free GaN film grown on a two-inch sapphire proves the effectiveness of GVM.

  19. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P.R.; Sautray, R.R.; Girard, B.R. [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence

  20. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications.

    Science.gov (United States)

    Alias, Mohd S; Yang, Yang; Ng, Tien K; Dursun, Ibrahim; Shi, Dong; Saidaminov, Makhsud I; Priante, Davide; Bakr, Osman M; Ooi, Boon S

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  1. Use of zirconium oxychloride to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis by ICP-OES.

    Science.gov (United States)

    Dondi, M; Fabbri, B; Mingazzini, C

    1998-04-01

    The use of a zirconium compound (ZrOCl(2)) to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis was tested. Zr is a strong complexing agent for the fluorine ion and permits the determination of those elements which would form insoluble fluorides. The use of Zr implies strong spectral interferences and a high salt content; however, we found that at least 27 elements can be measured with low detection limits, and satisfactory precision and accuracy. In addition, the use of ZrOCl(2) would permit the complete analysis of a ceramic glaze with a single attack when acid-resistant mineral phases are not present. For potassium determinations in acid matrix, the addition of an ionization buffer was studied in order to increase sensitivity, avoiding ionization interferences and non-linear calibration curves. PMID:18967112

  2. Plasma assisted metal-organic chemical vapor deposition of hard chromium nitride thin film coatings using chromium(III) acetylacetonate as the precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arup; Kuppusami, P.; Lawrence, Falix; Raghunathan, V.S.; Antony Premkumar, P.; Nagaraja, K.S

    2004-06-15

    A new technique has been developed for depositing hard nanocrystalline chromium nitride (CrN) thin films on metallic and ceramic substrates using plasma assisted metal-organic chemical vapor deposition (PAMOCVD) technique. In this low temperature and environment-friendly process, a volatile mixture of chromium(III) acetylacetonate and either ammonium iodide or ammonium bifluoride were used as precursors. Nitrogen and hydrogen have been used as the gas precursors. By optimizing the processing conditions, a maximum deposition rate of {approx}0.9 {mu}m/h was obtained. A comprehensive characterization of the CrN films was carried out using X-ray diffraction (XRD), microhardness, and microscopy. The microstructure of the CrN films deposited on well-polished stainless steel (SS) showed globular particles, while a relatively smooth surface morphology was observed for coatings deposited on polished yittria-stabilized zirconia (YSZ)

  3. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications

    KAUST Repository

    Alias, Mohd Sharizal Bin

    2015-12-22

    The high optical gain and absorption of organic–inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  4. Successful definition of nanowire and porous Si regions of different porosity levels by regular positive photoresist using metal-assisted chemical etching

    International Nuclear Information System (INIS)

    A simple and efficient method for selective formation of porous Si areas using regular photoresist as a masking layer is presented. Such a simple masking layer is sufficient to create a wide range of porosity levels through metal-assisted chemical etching (MaCE) using platinum, palladium and silver nanoparticles. Reproducible porous areas with a minimum feature size of 5 µm were produced on Si wafers. The pore size and height are the functions of the etching time and type of nanoparticles. Using Ag nanopaticles we have been able to obtain Si nanowires of about 30 µm height. Based on these results, a combination of positive photoresist and MaCE seems to be a reliable way for micron and submicron patterning of nanowire and porous areas on Si wafers, which is simple, inexpensive and compatible with integrated circuit fabrication techniques

  5. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard;

    2014-01-01

    temperature, and a measured but not controlled relative humidity (RH). This assembly was allowed to reach equilibrium with no vapour movement between the spaces, as tested by a constant RH on each side and by zero flux of water vapour measured in the cold side chamber. The RH and temperature values were...... converted to partial vapour pressure and to vapour concentration in g/m3. The concentrations proved to be more equal on either side of the specimen than the partial vapour pressures. This supports an argument that it is concentration difference that drives diffusion of gases. Isothermal diffusion cannot...

  6. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    Science.gov (United States)

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive

  7. Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization.

    Science.gov (United States)

    Zhao, Yibo; Wei, Huige; Arowo, Moses; Yan, Xingru; Wu, Wei; Chen, Jianfeng; Wang, Yiran; Guo, Zhanhu

    2015-01-14

    Polyaniline (PANI) nanofibers prepared by high gravity chemical oxidative polymerization in a rotating packed bed (RPB) have demonstrated a much higher specific capacitance of 667.6 F g(-1) than 375.9 F g(-1) of the nanofibers produced by a stirred tank reactor (STR) at a gravimetric current of 10 A g(-1). Meanwhile, the cycling stability of the electrode is 62.2 and 65.9% for the nanofibers from RPB and STR after 500 cycles, respectively. PMID:25431883

  8. Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation.

    Science.gov (United States)

    Tang, Bing; Yuan, Liangjun; Shi, Taihong; Yu, Linfeng; Zhu, Youchun

    2009-04-30

    The aim of this study is to develop a new method for the preparation of high-value, environmentally friendly products from spent pickling liquors. An ultrasound treatment was introduced into a chemical co-precipitation process to control the size of the particles produced. The particles were characterized by X-ray powder diffraction and transmission electron microscopy. The magnetic parameter was measured with a magnetic property measurement system. The product consisted of ferrous ferrite (Fe(3)O(4)) nano-sized cubic particles with a high level of crystallinity that exhibited super-paramagnetism. PMID:18762377

  9. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Hiyama, Takaki; Kuwajima, Tomoya; Fujita, Jun-ichi [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573 (Japan); Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, Tsukuba 305-8573 (Japan); Tanaka, Shunsuke; Hirukawa, Ayaka [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573 (Japan); Kano, Emi [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573 (Japan); National Institute for Materials Science, Tsukuba 305-0047 (Japan); Takeguchi, Masaki [National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2015-03-02

    A single layer of graphene with dimensions of 20 mm × 20 mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50 nm to 200 nm.

  10. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds.

    Science.gov (United States)

    Zheng, Quan; Ren, Daoyuan; Yang, Nana; Yang, Xingbin

    2016-10-01

    Artemisia sphaerocephala Krasch seeds polysaccharides have been reported to have a variety of important biological activities. However, effective extraction of Artemisia sphaerocephala Krasch seeds polysaccharides is still an unsolved issue. In this study, the orthogonal rotatable central composite design was employed to optimize ultrasound-assisted extraction conditions of Artemisia sphaerocephala Krasch seeds polysaccharides. Based on a single-factor analysis method, ultrasonic power, extraction time, solid-liquid ratio and extraction temperature were shown to significantly affect the yield of polysaccharides extracted from the A. sphaerocephala Krasch seeds. The optimal conditions for extraction of Artemisia sphaerocephala Krasch seeds polysaccharides were determined as following: ultrasonic power 243W, extraction time 125min, solid-liquid ratio 64:1 and extraction temperature 64°C, where the experimental yield was 14.78%, which was well matched with the predicted value of 14.81%. Furthermore, ASKP was identified as a typical heteropolysaccharide with d-galacturonic acid (38.8%) d-galactose (20.2%) and d-xylose (15.5%) being the main constitutive monosaccharides. Moreover, Artemisia sphaerocephala Krasch seeds polysaccharides exhibited high total reducing power and considerable scavenging activities on DPPH, hydroxyl and superoxide radicals, in a concentration-dependent manner in vitro. PMID:27316764

  11. A new test method for measuring the water vapour permeability of fabrics

    Science.gov (United States)

    Huang, Jianhua; Qian, Xiaoming

    2007-09-01

    The water vapour permeability of textile fabrics is a critical determinant of wearer comfort. Existing test methods are either time consuming or require large amounts of material. A new test apparatus was developed for characterizing the water vapour permeability of fabrics. An aluminium cylinder covered with waterproof and vapour permeable PTFE laminate is used for generating water vapour source on one side of the sample. A dry nitrogen sweep gas stream is used to carry water vapour away. The calculation of the rate of water vapour transmission across the fabric is based on the measurement of the relative humidity of the outgoing nitrogen stream. This new measuring apparatus offers a short test time and calls for a small sample size. The comparison measurements show that the test results correlated well with those obtained from ISO 11092 and ASTM E96. Therefore, this test method provides a new technique to accurately and precisely characterize the water vapour transport properties of fabrics.

  12. Can painted glass felt or glass fibre cloth be used as vapour barrier?

    DEFF Research Database (Denmark)

    El-Khattam, Amira; Andersen, Mie Them; Hansen, Kurt Kielsgaard;

    2014-01-01

    with a ventilated attic where the ceiling may be air tight but has no vapour barrier; post-insulation of the attic may cause the need for a vapour barrier. Placing a vapour barrier above the ceiling can be tiresome and it is difficult to ensure tightness. A simpler way is to paint a vapour barrier directly...... cloth has very little impact. The measured water vapour resistance for specimens with acrylic paint was the highest, these were measured to be up to approximately 3·109 Pa·m 2 ·s/kg which is considerably less than 50·109 Pa·m2·s/kg as recommended for a vapour barrier. Therefore, two layers of ordinary...... acrylic paint on glass felt or glass fibre cloth cannot be used instead of a vapour barrier....

  13. Removal of vapour phase PCDD/Fs in electric arc furnace steelmaking emissions by sorption using plastics.

    Science.gov (United States)

    Ooi, Tze Chean; Ewan, Bruce C R; Cliffe, Keith R; Anderson, David R; Fisher, Raymond; Thompson, Dennis

    2008-08-01

    Plastics are potentially suitable for the removal of vapour phase PCDD/Fs in emissions from the electric arc furnace (EAF) steelmaking process. Three different commercial plastics, i.e. polypropylene BE170MO (Borealis A/S, Denmark), polypropylene in the form of 5 mm spheres (The Precision Plastic Ball Co. Ltd., UK) and polyethylene LD605BA (ExxonMobil Chemical, Belgium), have been studied using a novel experimental apparatus for the removal of vapour phase PCDD/Fs. Polypropylene BE170MO was identified to be the most suitable product amongst the three plastics in terms of PCDD/F sorption and potential industrial application. The optimum temperature for PCDD/F sorption on polypropylene BE170MO was below 90 degrees C for a removal efficiency of >99% at an average vapour phase PCDD/F concentration of 3.5 ng I-TEQ/Nm(3). At 130 degrees C, 53% of the PCDD/Fs trapped on polypropylene BE170MO were desorbed.

  14. Phase Correction for ALMA with 183 GHz Water Vapour Radiometers

    CERN Document Server

    Nikolic, Bojan; Graves, Sarah F; Hills, Richard E; Richer, John S

    2013-01-01

    Fluctuating properties of the atmosphere, and in particular its water vapour content, give rise to phase fluctuations of astronomical signals which, if uncorrected, lead to rapid deterioration of performance of (sub)-mm interferometers on long baselines. The Atacama Large Millimetre/submillimeter Array (ALMA) uses a 183 GHz Water Vapour Radiometer (WVR) system to help correct these fluctuations and provide much improved performance on long baselines and at high frequencies. Here we describe the design of the overall ALMA WVR system, the choice of design parameters and the data processing strategy. We also present results of initial tests that demonstrate both the large improvement in phase stability that can be achieved and the very low contribution to phase noise from the WVRs. Finally, we describe briefly the main limiting factors to the accuracy of phase correction seen in these initial tests; namely, the degrading influence of cloud and the residual phase fluctuations that are most likely to be due to var...

  15. Mini Vapour Cycle System For High Density Electronic Cooling Applications

    OpenAIRE

    Mancin, Simone; Zilio, Claudio; Rossetto, Luisa

    2012-01-01

    This paper reports the preliminary experimental results of a mini Vapour Cycle System (VCS) for electronic thermal management applications. The water cooled miniature scale refrigeration system uses R134a as working fluid and implements a new concept oil-free linear compressor prototype. In the range of operating test conditions investigated, the cooling capacity of the system varied from 46 to 310 W while the coefficient of performance (COP) ranged between 1.05 and 5.54. Particular attention...

  16. Accidental inhalation of mercury vapour: respiratory and toxicologic consequences.

    OpenAIRE

    Lien, D. C.; Todoruk, D. N.; Rajani, H. R.; Cook, D A; Herbert, F. A.

    1983-01-01

    Four adults, including a pregnant woman, and three children were admitted to hospital following accidental exposure to mercury vapour produced by heating mercury-gold amalgam. Initial symptoms and signs included a paroxysmal cough, dyspnea, chest pain, tachypnea, nausea, vomiting, fever and leukocytosis. Pulmonary function testing performed on the second day after exposure revealed air-flow obstruction and minor restrictive defects in three patients. The diffusing capacity of the lung for car...

  17. Investigation of vapour-grown conductive polymer/heteropolyacid electrodes

    International Nuclear Information System (INIS)

    Heteropolyacid-doped conductive polymer coatings were grown by vapour transport of monomer (pyrrole or N-methylpyrrole) onto carbon paper coated with aqueous oxidant solutions (heteropolyacids or iron(III) chloride). Coated electrodes were studied by scanning electron microscopy and cyclic voltammetry. Polymer/heteropolyanion coatings had smooth morphologies giving pseudocapacitance of up to 422 F g-1 (with respect to active polymer material) and 0.45 F cm-2 (geometric area of the electrode)

  18. ADSORPTION OF WATER AND BENZENE VAPOUR IN MESOPOROUS MATERIALS

    OpenAIRE

    Paulina Taba

    2008-01-01

    Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification). MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16) or MCM-41 (C12) respectively and a mixture of cethyltrimethylammoniu...

  19. Liquid-vapour transition of the long range Yukawa fluid.

    OpenAIRE

    Weis, Jean-Jacques; Federica, Lo Verso; Jean-Michel, Caillol; Elisabeth, Schoell-Paschinger

    2007-01-01

    Abstract Two liquid state theories, the self-consistent Ornstein-Zernike equation (SCOZA) and the hierarchical reference theory (HRT) are shown, by comparison with Monte Carlo simulations, to perform extremely well in predicting the liquid-vapour coexistence of the hard core Yukawa (HCY) fluid when the interaction is long range. The long range of the potential is treated in the simulations using both an Ewald sum and hyperspherical boundary conditions. In additi...

  20. Phase correction of VLBI with water vapour radiometry

    OpenAIRE

    Roy, A L; Rottmann, H.; Teuber, U.; Keller, R

    2007-01-01

    We demonstrate phase correction of 3 mm VLBI observations using the scanning 18 GHz to 26 GHz water vapour radiometer at Effelsberg and we demonstrate an absolute accuracy of 15 mm in zenith path delay by comparing with GPS and radiosondes. This accuracy should provide significant improvement in astrometric phase referencing observations. It is not good enough for geodetic VLBI to replace the tropospheric delay estimation but could be used to remove short-term path-length fluctuations and so ...

  1. EXCITATION AND IONIZATION OF LASER-PUMPED Ba VAPOUR

    OpenAIRE

    Huber, M.; Jahreiss, L.

    1985-01-01

    We describe the excitation and ionization of dense Ba vapour (1019 to 2021 m-3) by resonant (λ = 553.5 nm) laser radiation and discuss the processes responsible for the transfer of energy from the laser-excited atoms into ionization. Ionization was found to be density-dependent and this pointed to collision-dominated ionization mechanisms. It has been established that seed electrons were heated in superelastic collisions with laser-excited atoms, and that subsequent electron-impact excitation...

  2. Protection of historical lead against acetic acid vapour

    OpenAIRE

    Pecenová Z.; Kouřil M.

    2016-01-01

    Historical lead artefacts (small figurines, appliques, bull (metal seal) can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous co...

  3. Monitoring water vapour penetration using a contactless technique

    OpenAIRE

    Pélisset, S.; Théron, R.; Barnéoud-Raéis, M.; Perret-Aebi, L.-E.; Benkhaira, M.; Ballif, C.

    2009-01-01

    Some layers of thin film photovoltaic modules maybe critically sensitive to moisture. In this study we present a new tool for monitoring the effect of moisture using a particular Transparent Conductive Oxide (TCO) as a sensor. The moisture content of the encapsulant was determined by Fourier Transform Infra Red (FTIR) spectroscopic measurements. The TCO resistivity was measured using an inductive method. The different spectroscopic results show that the diffusion of water vapour in the encaps...

  4. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching

    Science.gov (United States)

    Dawood, M. K.; Tripathy, S.; Dolmanan, S. B.; Ng, T. H.; Tan, H.; Lam, J.

    2012-10-01

    We report on the structural and vibrational characterization of silicon (Si) nanowire arrays synthesized by metal-assisted chemical etching (MACE) of Si deposited with metal nanoparticles. Gold (Au) and silver (Ag) metal nanoparticles were synthesized by glancing angle deposition, and MACE was performed in a mixture of H2O2 and HF solution. We studied the structural differences between Au and Ag-etched Si nanowires. The morphology of the synthesized nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The optical and vibrational properties of the Si nanostructures were studied by photoluminescence and Raman spectroscopy using three different excitation sources (UV, visible, and near-infrared) and are correlated to their microstructures. The structural differences between Au-etched and Ag-etched nanowires are due to the higher degree of hole injection by the Au nanoparticle and diffusion into the Si nanowires, causing enhanced Si etching by HF on the nanowire surface. Au-etched nanowires were observed to be mesoporous throughout the nanowire while Ag-etched nanowires consisted of a thin porous layer around the crystalline core. In addition, the surface-enhanced resonant Raman scattering observed is attributed to the presence of the sunken metal nanoparticles. Such Si nanostructures may be useful for a wide range of applications such as photovoltaic and biological and chemical sensing.

  5. Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol assisted chemical vapor deposition: Effect of water vapor

    International Nuclear Information System (INIS)

    Aligned multi-walled carbon nanotubes (MWCNTs) with high purity and bulk yield were achieved on a silicon substrate by an aerosol-assisted chemical vapor deposition. The introduction of specific amounts of water vapor played a key role in in situ controlling the purity and surface defects of the nanotubes. The morphology, surface quality and structure of MWCNTs were characterized by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Crystallinity and defects of the MWCNTs' were investigated by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. In this work, water vapor was found to provide a weak oxidative environment, which enhanced and purified the MWCNTs' growth. However, excessive water vapor would inhibit the MWCNTs growth with a poor surface quality. In addition, it has been found that the surface morphology of the CNTs can be modified intentionally through producing some surface defects by tuning the amount of the water vapor, which may offer more nucleation sites on the chemically inert CNT surface for various applications such as catalyst support.

  6. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells.

    Science.gov (United States)

    Taghizadeh, Mohammad Taghi; Vatanparast, Morteza

    2016-12-01

    Zirconium dioxide (ZrO2) nanoparticles were fabricated successfully via ultrasonic-assisted method using ZrO(NO3)2·H2O, ethylenediamine and hydrazine as precursors in aqueous solution. Morphology, structure and composition of the obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS). Then, the synthesized nanoparticles were used to prepare Nafion/ZrO2 nanocomposite membranes. The properties of the membranes were studied by ion exchange capacity (IEC) proton conductivity (σ), thermal stability and water uptake measurements. The ex-situ Fenton's test was used to investigate the chemical stability of the membranes. From our results, compared with Nafion membrane, the nanocomposite membrane exhibited lower fluoride release and weight loss. Therefore, it can concluded that Nafion/ZrO2 nanocomposite exhibit more chemical stability than the pure Nafion membrane. ATR-FTIR spectra and SEM surface images of membranes also confirm these results. PMID:27544443

  7. The vapour pressure of americium(III) chloride

    International Nuclear Information System (INIS)

    Based on the method described by Fischer, an ultramicro-size appratus was developed for static determination of the saturation vapour pressure of highly radioactive materials. The apparatus was tested with MgCl2, MnCl2, HoCl3 and ScF3. The vapour pressure curves of MgCl2 and MnCl2 were in good agreement with other publications and thus proved the efficiency of the apparatus in spite of its difficulties of handling. The values measured for HoCl3 and ScF3 differed from those of earlier publications. However, these deviations have been observed before and may be the result of the different measuring principles of static and dynamic methods. For AmCl3, the following vapour pressure equation was established: log psub(Torr)=-(11826/T)+10.7. The thermodynamic parameters of the evaporation process were calculated on this basis, and the values for AmBr3 and PnCl3 were determined by extrapolation. (orig.)

  8. Nonequilibrium study of the intrinsic free-energy profile across a liquid-vapour interface.

    Science.gov (United States)

    Braga, Carlos; Muscatello, Jordan; Lau, Gabriel; Müller, Erich A; Jackson, George

    2016-01-28

    We calculate an atomistically detailed free-energy profile across a heterogeneous system using a nonequilibrium approach. The path-integral formulation of Crooks fluctuation theorem is used in conjunction with the intrinsic sampling method to calculate the free-energy profile for the liquid-vapour interface of the Lennard-Jones fluid. Free-energy barriers are found corresponding to the atomic layering in the liquid phase as well as a barrier associated with the presence of an adsorbed layer as revealed by the intrinsic density profile. Our findings are in agreement with profiles calculated using Widom's potential distribution theorem applied to both the average and the intrinsic profiles as well as the literature values for the excess chemical potential. PMID:26827224

  9. Nonequilibrium study of the intrinsic free-energy profile across a liquid-vapour interface

    International Nuclear Information System (INIS)

    We calculate an atomistically detailed free-energy profile across a heterogeneous system using a nonequilibrium approach. The path-integral formulation of Crooks fluctuation theorem is used in conjunction with the intrinsic sampling method to calculate the free-energy profile for the liquid-vapour interface of the Lennard-Jones fluid. Free-energy barriers are found corresponding to the atomic layering in the liquid phase as well as a barrier associated with the presence of an adsorbed layer as revealed by the intrinsic density profile. Our findings are in agreement with profiles calculated using Widom’s potential distribution theorem applied to both the average and the intrinsic profiles as well as the literature values for the excess chemical potential

  10. Sudden contact of a hot liquid with a volatile coolant: instability of the created vapour film

    International Nuclear Information System (INIS)

    As the sudden contact of a hot body with a coolant which may evaporate, results, after some delay, in an explosive evaporation, this research thesis proposes an interpretation based on the study of the destabilization of the vapour film which forms at the surface of the hot body. The author reports the modelling of the evolution of the average thickness of the film before the explosion. The possible chemical reactions at the surface of the hot body are taken into account. A base flow is obtained which allows the calculation of the evolution of Rayleigh-Taylor instabilities which may occur at the gas-coolant interface. This study is applied to the interaction between liquid sodium and water

  11. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M23C6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M23C6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  12. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN

    Science.gov (United States)

    Kuritzky, L. Y.; Becerra, D. L.; Saud Abbas, A.; Nedy, J.; Nakamura, S.; DenBaars, S. P.; Cohen, D. A.

    2016-07-01

    We demonstrate a vertical (beam etching (CAIBE) in Cl2 chemistry that is suitable for forming laser diode (LD) facets on nonpolar and semipolar oriented III-nitride devices. The etch profiles were achieved with photoresist masks and optimized CAIBE chamber conditions including the platen tilt angle and Cl2 flow rate. Co-loaded studies showed similar etch rates of ˜60 nm min-1 for (20\\bar{2}\\bar{1}),(20\\bar{2}1), and m-plane orientations. The etched surfaces of LD facets on these orientations are chemically dissimilar (Ga-rich versus N-rich), but were visually indistinguishable, thus confirming the negligible orientation dependence of the etch. Continuous-wave blue LDs were fabricated on the semipolar (20\\bar{2}\\bar{1}) plane to compare CAIBE and reactive ion etch (RIE) facet processes. The CAIBE process resulted in LDs with lower threshold current densities due to reduced parasitic mirror loss compared with the RIE process. The LER, degree of verticality, and model of the 1D vertical laser mode were used to calculate a maximum uncoated facet reflection of 17% (94% of the nominal) for the CAIBE facet. The results demonstrate the suitability of CAIBE for forming high quality facets for high performance nonpolar and semipolar III-N LDs.

  13. Standardisation of a Vapour Generator for Calibration of Environmental Monitoring Instruments

    Directory of Open Access Journals (Sweden)

    Parul Rana

    2003-10-01

    Full Text Available Very low vapour pressure of 2,4,6 trinitrotoulene (TNT yields extremely low vapour concentrations at different flow rates in the air, yet considerable quantity of vapours and TNTdust during handling may be present at the workplace environment which is harmful to the health of the personnel working there. The explosive vapours, such as TNT,  2,6-dinitrotoluene (DNT, etc., though harmful to the health of the personnel, are not covered either in the emission standards or in the ambient air quality standards. Presently, no instrument is available for air monitoring of TNT vapours. These vapours need to be collected on-site to estimate TNT concentration. Realising the need for real-time air monitoring of TNT, efforts have been made to understand and device an instrument for on-site determination of TNT vapours parts per billiion (ppb range. Low-level TNT vapours and TNT buried in the soil in military operations are required to be detected. The instruments for this require careful calibration to yield accurate and reliable results. Hence, an effort has been made to develop a trace-level ppb vapour generator. The vapour generator of a spiral glass column of length 170 cm and inner diameter 4 mm 2 0.5 mm has been used. An activated charcoal glass tube has been used for sampling TNT vapours. The adsorbed TNT vapours were desorbed and analysed using high performance liquid chromatography. Thesolid support used has been studied. These vapours generated at different flow rates have been evaluated. The calibrated instrument can be used for in situ and on-site analysis of samples of TNT and also for samples collected.

  14. In Vitro Durability - Pivot bearing with Diamond Like Carbon for Ventricular Assist Devices

    CERN Document Server

    de Sá, Rosa Corrêa Leoncio; Leão, Tarcísio Fernandes; da Silva, Evandro Drigo; da Fonseca, Jeison Willian Gomes; da Silva, Bruno Utiyama; Leal, Edir Branzoni; Moro, João Roberto; de Andrade, Aron José Pazin; Bock, Eduardo Guy Perpétuo

    2015-01-01

    Institute Dante Pazzanese of Cardiology (IDPC) develops Ventricular Assist Devices (VAD) that can stabilize the hemodynamics of patients with severe heart failure before, during and/or after the medical practice; can be temporary or permanent. The ADV's centrifugal basically consist of a rotor suspended for system pivoting bearing; the PIVOT is the axis with movement of rotational and the bearing is the bearing surface. As a whole system of an implantable VAD should be made of long-life biomaterial so that there is no degradation or deformation during application time; surface modification techniques have been widely studied and implemented to improve properties such as biocompatibility and durability of applicable materials. The Chemical Vapour Deposition technique allows substrates having melting point higher than 300 {\\deg}C to be coated, encapsulated, with a diamond like carbon film (DLC); The test simulated the actual conditions in which the system of support remains while applying a ADV. The results hav...

  15. Selective synthesis of large diameter, highly conductive and high density single-walled carbon nanotubes by a thiophene-assisted chemical vapor deposition method on transparent substrates

    Science.gov (United States)

    Li, Jinghua; Otsuka, Keigo; Zhang, Xiao; Maruyama, Shigeo; Liu, Jie

    2016-07-01

    Selective synthesis of single-walled carbon nanotubes (SWNTs) with controlled properties is an important research topic for SWNT studies. Here we report a thiophene-assisted chemical vapor deposition (CVD) method to directly grow highly conductive SWNT thin films on substrates, including transparent ones. By adding low concentration thiophene into the carbon feedstock (ethanol), the as-prepared carbon nanotubes demonstrate an obvious up-shift in the diameter distribution while the single-walled structure is still retained. In the proposed mechanism, the change in the diameter is sourced from the increase in the carbon yield induced by the sulfur-containing compound. Such SWNTs are found to possess high conductivity with 95% SWNTs demonstrating on/off ratios lower than 100 in transistors. More importantly, it is further demonstrated that this method can be used to directly synthesize dense SWNT networks on transparent substrates which can be utilized as transparent conductive films (TCFs) with very high transparency. Such TCFs can be applied to fabricate a light modulating window as a proof-of-concept. The present work provides important insights into the growth mechanism of SWNTs and great potential for the preparation of TCFs with high scalability, easy operation and low cost.Selective synthesis of single-walled carbon nanotubes (SWNTs) with controlled properties is an important research topic for SWNT studies. Here we report a thiophene-assisted chemical vapor deposition (CVD) method to directly grow highly conductive SWNT thin films on substrates, including transparent ones. By adding low concentration thiophene into the carbon feedstock (ethanol), the as-prepared carbon nanotubes demonstrate an obvious up-shift in the diameter distribution while the single-walled structure is still retained. In the proposed mechanism, the change in the diameter is sourced from the increase in the carbon yield induced by the sulfur-containing compound. Such SWNTs are found to

  16. Effects of precursor evaporation temperature on the properties of the yttrium oxide thin films deposited by microwave electron cyclotron resonance plasma assisted metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Yttrium oxide thin films are deposited using indigenously developed metal organic precursor (2,2,6,6-tetra methyl-3,5-hepitane dionate) yttrium, commonly known as Y(thd)3 (synthesized by ultrasound method). Microwave electron cyclotron resonance plasma assisted metal organic chemical vapor deposition process was used for these depositions. Depositions were carried out at a substrate temperature of 350 oC with argon to oxygen gas flow rates fixed to 1 sccm and 10 sccm respectively throughout the experiments. The precursor evaporation temperature (precursor temperature) was varied over a range of 170-275 oC keeping all other parameters constant. The deposited coatings are characterized by X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and infrared spectroscopy. Thickness and refractive index of the coatings are measured by the spectroscopic ellipsometry. Hardness and elastic modulus of the films are measured by load depth sensing nanoindentation technique. C-Y2O3 phase is deposited at lower precursor temperature (170 oC). At higher temperature (220 oC) cubic yttrium oxide is deposited with yttrium hydroxide carbonate as a minor phase. When the temperature of the precursor increased (275 oC) further, hexagonal Y2O3 with some multiphase structure including body centered cubic yttria and yttrium silicate is observed in the deposited film. The properties of the films drastically change with these structural transitions. These changes in the film properties are correlated here with the precursor evaporation characteristics obtained at low pressures.

  17. Effect of doping on the Structural and Optical Properties of SnO2 Thin Films fabricated by Aerosol Assisted Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    In order to achieve high conductivity and transmittance of transparent conducting oxide (TCO), we attempted to fabricate Mg doped SnO2 (MgxSn1−xO2) thin films and characterized them for their structural and optical properties. The MgxSn1−xO2 thin films have been deposited on glass substrate by using aero-sole assisted chemical vapor deposition (AACVD). The molar concentration of Mg concentration was changed from 0 to 8%. The confirmation of tetragonal structure and particle size (32 to 87nm) has been calculated of thin films by XRD. The surface roughness is decreased with the increase of the dopant concentration, which has been investigated by atomic force microscopy (AFM). The optical transmission has increased from 54 to 78% and the band gape of pure SnO2 has been found to be in the range of 3.76eV and it is shifted to 3.69eV for 6Wt % Mg doping and then increase on further increasing the Mg doping.

  18. Growth of thick La2Zr2O7 buffer layers for coated conductors by polymer-assisted chemical solution deposition

    International Nuclear Information System (INIS)

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La2Zr2O7 (LZO) epitaxial films have been deposited on LaAlO3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa2Cu3O7−x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors

  19. Growth of thick La2Zr2O7 buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Science.gov (United States)

    Zhang, Xin; Zhao, Yong; Xia, Yudong; Guo, Chunsheng; Cheng, C. H.; Zhang, Yong; Zhang, Han

    2015-06-01

    La2Zr2O7 (LZO) epitaxial films have been deposited on LaAlO3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa2Cu3O7-x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  20. Ordered silicon nanowire arrays prepared by an improved nanospheres self-assembly in combination with Ag-assisted wet chemical etching

    Science.gov (United States)

    Jia, Guobin; Westphalen, Jasper; Drexler, Jan; Plentz, Jonathan; Dellith, Jan; Dellith, Andrea; Andrä, Gudrun; Falk, Fritz

    2016-04-01

    An improved Langmuir-Blodgett self-assembly process combined with Ag-assisted wet chemical etching for the preparation of ordered silicon nanowire arrays is presented in this paper. The new process is independent of the surface conditions (hydrophilic or hydrophobic) of the substrate, allowing for depositing a monolayer of closely packed polystyrene nanospheres onto any flat surface. A full control of the morphology of the silicon nanowire is achieved. Furthermore, it is observed that the formation of porous-Si at the tips of the nanowires is closely related to the release of Ag nanoparticles from the Ag mask during the etching, which subsequently redeposit on the surface initially free of Ag, and these Ag nanoparticles catalyze the etching of the tips and lead to the porous-Si formation. This finding will help to improve the resulting nano- and microstructures to get them free of pores, and renders it a promising technology for low-cost high throughput fabrication of specific optical devices, photonic crystals, sensors, MEMS, and NEMS by substituting the costly BOSCH process. It is shown that ordered nanowire arrays free of porous structures can be produced if all sources of Ag nanoparticles are excluded, and structures with aspect ratio more than 100 can be produced.

  1. On the influence of DC electric fields on the aerosol assisted chemical vapor deposition growth of photoactive titanium dioxide thin films.

    Science.gov (United States)

    Romero, Luz; Binions, Russell

    2013-11-01

    Titanium dioxide thin films were deposited on fluorine doped tin oxide glass substrate from the electric field assisted aerosol chemical vapor deposition (EACVD) reaction of titanium isopropoxide (TTIP, Ti(OC3H7)4) in toluene on glass substrates at a temperature of 450 °C. DC electric fields were generated by applying a potential difference between the electrodes of the transparent coated oxide coated glass substrates during the deposition. The deposited films were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and UV-vis spectroscopy. The photoactivity and hydrophilicity of the deposited films were also analyzed using a dye-ink test and water-contact angle measurements. The characterization work revealed that the incorporation of DC electric fields produced significant reproducible changes in the film microstructure, preferred crystallographic orientation, roughness, and film thickness. Photocatalytic activity was calculated from the half-time (t1/2) or time taken to degrade 50% of the initial resazurin dye concentration. A large improvement in photocatalytic activity was observed for films deposited using an electric field with a strong orientation in the (004) direction (t1/2 17 min) as compared to a film deposited with no electric field (t1/2 40 min). PMID:24160408

  2. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    Science.gov (United States)

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-01

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  3. Chemical characteristics of different parts of Coreopsis tinctoria in China using microwave-assisted extraction and high-performance liquid chromatography followed by chemometric analysis.

    Science.gov (United States)

    Lam, Shing-Chung; Liu, Xin; Chen, Xian-Qiang; Hu, De-Jun; Zhao, Jing; Long, Ze-Rong; Fan, Bing; Li, Shao-Ping

    2016-08-01

    Coreopsis tinctoria, also called "snow chrysanthemum" in China, is a flower tea material that has been reported to possess excellent pharmacological properties such as antioxidant and antidiabetic activities. The chemical characteristics of different parts (flowers, buds, seeds, stems, and leaves) of C. tinctoria were investigated based on microwave-assisted extraction and the simultaneous determination of 13 major active compounds by high-performance liquid chromatography, including taxifolin-7-O-glucoside, chlorogenic acid, (R/S)-flavanomarein, isocoreopsin, quercetagetin-7-O-glucoside, isookanin, 5,7,3',5'-tetrahydroxyflavanone-7-O-glucoside, marein, 3,5-dicaffeoylquinic acid, coreopsin, okanin, 5,7,3',5'-tetrahydroxyflavanone, and N(1) ,N(5) ,N(10) ,N(14) -tetra-p-coumaroylspermine. Chemometric analysis based on the contents of investigated compounds from 13 samples showed that C. tinctoria and the related flower tea materials, Chrysanthemum morifolium cv "Hangju" and "Gongju," were in different clusters, and different parts (flowers, buds, seeds, stems, and leaves) of C. tinctoria were obviously different. This study is helpful for the quality control and pharmacological evaluation of different parts from C. tinctoria and its related products. PMID:27291468

  4. Transport properties and microstructure of La0.7Sr0.3MnO3 nanocrystalline thin films grown by polymer-assisted chemical solution deposition

    Institute of Scientific and Technical Information of China (English)

    Min Zhang; Li Lv; Zhantao Wei; Xinsheng Yang; Xin Zhang

    2014-01-01

    Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.

  5. Sm-doped CeO{sub 2} single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)], E-mail: yzhao@home.swjtu.edu.cn

    2008-10-20

    An over 150 nm thick Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T{sub c0} = 87 K as well as J{sub c}(0 T, 77 K) {approx} 1 MA/cm{sup 2}. These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO{sub 2} film, which renders it a promising candidate as single buffer layer for YBCO coated conductors.

  6. Sub-micron period grating structures in Ta2O5 thin oxide films patterned using UV laser post-exposure chemically assisted selective etching

    International Nuclear Information System (INIS)

    A high-resolution and low-damage method for patterning relief structures in thin Ta2O5 films by chemically assisted UV laser selective etching is presented. The method is based on the initial exposure of the Ta2O5 films to pulsed UV radiation (quadrupled Nd:YAG laser at 266 nm) at fluences below the ablation threshold, for the creation of volume damage in the exposed areas. Subsequent immersion of the exposed sample in a KOH solution results in selective etching of the UV-exposed areas, developing relief structures of high quality. Interferometric exposure was used for the patterning of such gratings with periods of the order of 500 nm in films with a thickness of 100 and 500 nm. The behaviour of the patterning process is studied using diffraction efficiency measurements and AFM scans. Diffraction efficiency increases by a factor of ∼63, compared to the undeveloped structure, were obtained for gratings exposed with 1000 pulses of 30 mJ/cm2 energy density, which were developed in a KOH solution. The etching method presented is being applied to the fabrication of gratings in optical waveguides

  7. Combined Dial Sounding of Ozone, Water Vapour and Aerosol

    Science.gov (United States)

    Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    Routine high-quality lidar measurements of ozone, water vapour and aerosol at Garmisch-Partenkirchen since 2007 have made possible more comprehensive atmospheric studies and lead to a growing insight concerning the most frequently occurring long-range transport pathways. In this contribution we present as examples results on stratospheric layers travelling in the free troposphere for extended periods of time without eroding. In particular, we present a case of an intrusion layer that subsided over as many as fifteen days and survived the interference by strong Canadian fires. These results impose a challenge on atmospheric modelling that grossly overestimates free-tropospheric mixing.

  8. Phase correction of VLBI with water vapour radiometry

    CERN Document Server

    Roy, A L; Teuber, U; Keller, R

    2007-01-01

    We demonstrate phase correction of 3 mm VLBI observations using the scanning 18 GHz to 26 GHz water vapour radiometer at Effelsberg and we demonstrate an absolute accuracy of 15 mm in zenith path delay by comparing with GPS and radiosondes. This accuracy should provide significant improvement in astrometric phase referencing observations. It is not good enough for geodetic VLBI to replace the tropospheric delay estimation but could be used to remove short-term path-length fluctuations and so improve the geodetic observables. We discuss lessons learned and opportunities for further improvement.

  9. Phase correction of VLBI with water vapour radiometry

    Science.gov (United States)

    Roy, Alan; Rottmann, H.; Teuber, U.; Keller, R.

    We demonstrate phase correction of 3-mm VLBI observations using the scanning 18-GHz to 26GHz water vapour radiometer (WVR) at Effelsberg and we demonstrate an absolute accuracy of 15-mm in zenith path delay by comparing with GPS and radiosondes. This accuracy should provide significant improvement in astrometric phase-referencing observations. It is not good enough for geodetic VLBI to replace the tropospheric delay estimation but could be used to remove short-term path-length fluctuations and so improve the geodetic observables. We discuss lessons learned and opportunities for further improvement.

  10. Ethanol vapour sensing properties of screen printed WO3 thick films

    Indian Academy of Sciences (India)

    R S Khadayate; R B Waghulde; M G Wankhede; J V Sali; P P Patil

    2007-04-01

    This paper presents ethanol vapour sensing properties of WO3 thick films. In this work, the WO3 thick films were prepared by standard screen-printing method. These films were characterized by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM). The ethanol vapour sensing properties of these thick films were investigated at different operating temperatures and ethanol vapour concentrations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity of ∼1424.6% at 400°C in air atmosphere with fast response and recovery time.

  11. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  12. Thermal diffusion of water vapour in porous materials: fact or fiction?

    DEFF Research Database (Denmark)

    Janssen, Hans

    2011-01-01

    its negligible magnitude. It can in conclusion be stated that thermal diffusion is of no importance for building science applications, leaving vapour pressure as the sole significant transport potential for the diffusion of water vapour in porous materials. (C) 2010 Elsevier Ltd. All rights reserved......., thermal diffusion of water vapour in porous materials - diffusion driven by temperature gradients - currently stands out, due to the contradictory findings on the topic. Thermal diffusion proponents uphold that, complementary to vapour pressure gradients, temperature gradients equally yield substantial...

  13. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrll@163.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006 (China); Wang, Lili [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Hu, Tianyu [College of Environment and Resources, Jilin University, Changchun 130024 (China); Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  14. Preparation of highly photocatalytic active CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    International Nuclear Information System (INIS)

    CdS/TiO2 nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption–desorption measurements. The results show that the CdS/TiO2 nanocomposites were composed of anatase TiO2 and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO2 (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO2 nanocomposites. The CdS/TiO2 (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO2 nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO2 nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO2 changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO2 was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of microwave increased. • Compared with TiO2, as-samples show

  15. First Townsend coefficient of organic vapour in avalanche counters

    International Nuclear Information System (INIS)

    A new concept is presented in the paper for implementing the proven method of determining the first Townsend coefficient (α) of gases using an avalanche counter. The A and B gas constants, interrelated by the expression α/p=A exp[-B/(K/p)], are analyzed. Parallel-plate avalanche counters (PPAC) with an electrode spacing d from 0.1 to 0.4 cm have been employed for the investigation, arranged to register low-energy alpha particles at n-heptane vapour pressures of p≥5 Torr. An in-depth discussion is given, covering the veracity and the behaviour vs K/p, of the n-heptane A and B constants determined at reduced electric-field intensity values ranging from 173.5 to 940 V/cm Torr; the constants have been found to depend upon d. The results of the investigation are compared to available data of the α coefficient of organic vapours used in avalanche counters. The PPAC method of determining α reveals some imperfections at very low values of the pd product. (orig.)

  16. Modelling of vapour flow in deep penetration laser welding

    International Nuclear Information System (INIS)

    The pressure induced by vapour flow during keyhole wall evaporation in deep penetration laser welding could have a more significant role in stabilizing keyhole walls, compared to that due to ablation pressure induced by local wall evaporation. In this paper, vapour flow modelling in a blind keyhole is presented by considering both simple geometries such as straight or inclined cylinders and more realistic profiles deduced from a self-consistent equilibrium calculation. The numerical approach used in the discretization is based on the finite element method that allows us to solve a two-dimensional Navier-Stokes set of equations assuming incompressible flow. In our model, the laser beam aperture and multiple reflections effects are taken into account. A ray-tracing procedure allows one to obtain absorbed intensities and thus the local surface temperature on the keyhole walls. The deduced local gas ejection velocities on the edge of the Knudsen layer are thus the boundary conditions of the Navier-Stokes problem. (author)

  17. Improvement of a thermoelectric and vapour compression hybrid refrigerator

    International Nuclear Information System (INIS)

    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decreases by 95% and 20% respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and −4 °C, the oscillation of this temperature is always lower than 0.4 °C, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations. - Highlights: ► Optimization of a vapour compression and thermoelectric hybrid refrigerator. ► Two prototypes built and tested. Computational model for the whole refrigerator. ► Electric power consumption of the modules and the refrigerator 95% and 20% lower. ► New compartment refrigerated with thermoelectric technology. ► Inner temperature adjustable from 0 to −4 °C. Oscillations lower than ±0.2 °C.

  18. All-sky homogeneity of precipitable water vapour over Paranal

    CERN Document Server

    Querel, Richard R

    2014-01-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 {\\mu}m) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5{\\deg} el...

  19. A DLVO model for catalyst motion in metal-assisted chemical etching based upon controlled out-of-plane rotational etching and force-displacement measurements

    Science.gov (United States)

    Hildreth, Owen J.; Rykaczewski, Konrad; Fedorov, Andrei G.; Wong, Ching P.

    2013-01-01

    Metal-assisted Chemical Etching of silicon has recently emerged as a powerful technique to fabricate 1D, 2D, and 3D nanostructures in silicon with high feature fidelity. This work demonstrates that out-of-plane rotational catalysts utilizing polymer pinning structures can be designed with excellent control over rotation angle. A plastic deformation model was developed establishing that the catalyst is driven into the silicon substrate with a minimum pressure differential across the catalyst thickness of 0.4-0.6 MPa. Force-displacement curves were gathered between an Au tip and Si or SiO2 substrates under acidic conditions to show that Derjaguin and Landau, Verwey and Overbeek (DLVO) based forces are capable of providing restorative forces on the order of 0.2-0.3 nN with a calculated 11-18 MPa pressure differential across the catalyst. This work illustrates that out-of-plane rotational structures can be designed with controllable rotation and also suggests a new model for the driving force for catalyst motion based on DLVO theory. This process enables the facile fabrication of vertically aligned thin-film metallic structures and scalloped nanostructures in silicon for applications in 3D micro/nano-electromechanical systems, photonic devices, nanofluidics, etc.Metal-assisted Chemical Etching of silicon has recently emerged as a powerful technique to fabricate 1D, 2D, and 3D nanostructures in silicon with high feature fidelity. This work demonstrates that out-of-plane rotational catalysts utilizing polymer pinning structures can be designed with excellent control over rotation angle. A plastic deformation model was developed establishing that the catalyst is driven into the silicon substrate with a minimum pressure differential across the catalyst thickness of 0.4-0.6 MPa. Force-displacement curves were gathered between an Au tip and Si or SiO2 substrates under acidic conditions to show that Derjaguin and Landau, Verwey and Overbeek (DLVO) based forces are capable of

  20. Silver-Assisted Chemical Etching of Semiconductor Materials%银辅助化学刻蚀半导体材料

    Institute of Scientific and Technical Information of China (English)

    耿学文; 贺春林; 徐仕翀; 李俊刚; 朱丽娟; 赵连城

    2012-01-01

    微电子器件的发展趋势是小型化和多功能化,这就对半导体材料的加工技术提出了更高的要求。与传统的加工技术相比,近年发展起来的贵金属粒子辅助化学刻蚀半导体材料制备微结构技术因操作简单、不需要精密设备、反应迅速和可批量生产等优点引起了国内外学者的广泛关注。本文以Si为主,详细介绍了Ag辅助化学刻蚀半导体材料的机理、反应现象及影响因素,总结了各种微结构的制备技术及其应用。此外,对Ge,Si1-xGex和GaAs等其他半导体材料的贵金属粒子辅助化学刻蚀技术也进行了综述。同时分析了贵金属粒子辅助化学刻蚀半导体目前存在的问题,并对未来的研究方向进行了展望。%Semiconductors with various structural morphologies are widely used in areas of electronics, optoelectronics, photovohaics, sensors and thermoelectrics. The fabrication of solid-state micro/nanostructures has been motivated by the miniaturization and multi-functionality of microelectronic devices. Although some traditional methods can be used for texturization treatment of semiconductors, their applications are limited to some extent owing to their intrinsic disadvantages. Recently, the technologies of noble metal-assisted chemical etching (MacEtch) of semiconductors to produce micro/nanostructures have been paid much attention due to their relatively simple processes, fast reacting rate, low cost, and applicability for mass production etc. In this review, firstly, the MacEtch mechanisms, reaction phenomena and effect factors (including the depositing methods, distribution, sizes, shape of Ag particles, and the composition of etchants) of Ag-assisted chemical etching of Si semiconductor are discussed in detail. And then the fabrication technologies of various microstructures such as porous Si, Si nanostructures, silicon nanowire arrays, and quasi-ordered micro/nanostructures are introduced to

  1. 热力除氧辅助化学除氧技术的工业应用%Industrial applications of thermal deaeration-assisted chemical deaeration technology

    Institute of Scientific and Technical Information of China (English)

    钱淑芳; 杨承谱

    2012-01-01

    介绍了云南云天化国际化工股份有限公司云峰分公司硫酸厂废热锅炉给水热力除氧系统存在的问题和改进措施。采用热力除氧辅助二甲基酮肟法化学除氧后,除氧水ρ(O2)≤0.015 mg/L,200 kt/a和300 kt/a硫酸装置锅炉水指标均达到正常生产要求。今后可考虑将热力除氧温度降低6~7℃,综合除氧成本将降低0.6元/t,预计改进后硫酸厂每年可节省运行费用约63万元。%Problems and improvements of thermal deaeration system for waste heat boiler feed water in Yunnan Yuntianhua International Yunfeng Branch' s sulphuric acid plant are described.After using thermal deaeration-assisted chemical deaeration with dimethyl ketoxime,O2 concentration in treated water was lower than 0.015 mg/L and the boiler water met the normal production requirements of 200 kt/a and 300 kt/a sulphuric acid plants.The temperature of thermal deaerator shall be considered to lower 6-7 ℃ in the future,so the total deaerattion cost will be reduced 0.6 yuan/t and the operating cost will be saved about 630 000 yuan per year.

  2. Growth of thick La{sub 2}Zr{sub 2}O{sub 7} buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin, E-mail: xzhang@my.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Xia, Yudong [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Chunsheng [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhang, Yong [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Han [Department of Physics, Peking University, Beijing 100871 (China)

    2015-06-15

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La{sub 2}Zr{sub 2}O{sub 7} (LZO) epitaxial films have been deposited on LaAlO{sub 3} (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm{sup 2} at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  3. Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition.

    Science.gov (United States)

    Bulusheva, L G; Okotrub, A V; Fedoseeva, Yu V; Kurenya, A G; Asanov, I P; Vilkov, O Y; Koós, A A; Grobert, N

    2015-10-01

    Nitrogen-containing multi-wall carbon nanotubes (N-MWCNTs) were synthesized using aerosol assisted chemical vapor deposition (CVD) techniques in conjunction with benzylamine:ferrocene or acetonitrile:ferrocene mixtures. Different amounts of toluene were added to these mixtures in order to change the N/C ratio of the feedstock. X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy detected pyridinic, pyrrolic, graphitic, and molecular nitrogen forms in the N-MWCNT samples. Analysis of the spectral data indicated that whilst the nature of the nitrogen-containing precursor has little effect on the concentrations of the different forms of nitrogen in N-MWCNTs, the N/C ratio in the feedstock appeared to be the determining factor. When the N/C ratio was lower than ca. 0.01, all four forms existed in equal concentrations, for N/C ratios above 0.01, graphitic and molecular nitrogen were dominant. Furthermore, higher concentrations of pyridinic nitrogen in the outer shells and N2 molecules in the core of the as-produced N-MWCNTs suggest that the precursors were decomposed into individual atoms, which interacted with the catalyst surface to form CN and NH species or in fact diffused through the bulk of the catalyst particles. These findings are important for a better understanding of possible growth mechanisms for heteroatom-containing carbon nanotubes (CNTs) and therefore paving the way for controlling the spatial distribution of foreign elements in the CNTs using CVD processes. PMID:26104737

  4. Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition

    Science.gov (United States)

    Feng, Guo; Xin-Sheng, Wang; Shi-Wei, Zhuang; Guo-Xing, Li; Bao-Lin, Zhang; Pen-Chu, Chou

    2016-02-01

    ZrO2 nanodots are successfully prepared on LaAlO3 (LAO) (100) substrates by photo-assisted metal-organic chemical vapor deposition (MOCVD). It is indicated that the sizes and densities of ZrO2 nanodots are controllable by modulating the growth temperature, oxygen partial pressure, and growth time. Meanwhile, the microwires are observed on the surfaces of substrates. It is found that there is an obvious competitive relationship between the nanodots and the microwires. In a growth temperature range from 500 °C to 660 °C, the microwires turn longest and widest at 600 °C, but in contrast, the nanodots grow into the smallest diameter at 600 °C. This phenomenon could be illustrated by the energy barrier, decomposition rate of Zr(tmhd)4, and mobility of atoms. In addition, growth time or oxygen partial pressure also affects the competitive relationship between the nanodots and the microwires. With increasing oxygen partial pressure from 451 Pa to 752 Pa, the microwires gradually grow larger while the nanodots become smaller. To further achieve the controllable growth, the coarsening effect of ZrO2 is modified by varying the growth time, and the experimental results show that the coarsening effect of microwires is higher than that of nanodots by increasing the growth time to quickly minimize ZrO2 energy density. Project supported by the National Natural Science Foundation of China (Grant No. 51002063) and the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City, China (Grant No. 12ZX68).

  5. Friction and Wear Properties of Selected Solid Lubricating Films. Part 3; Magnetron-Sputtered and Plasma-Assisted, Chemical-Vapor-Deposited Diamondlike Carbon Films

    Science.gov (United States)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the DLC films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N-m or less, respectively. MS DLC films and PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

  6. New Method of Vapour Discrimination Using the Thickness Shear Mode (TSM Resonator

    Directory of Open Access Journals (Sweden)

    J. Siddiqi

    2003-06-01

    Full Text Available The Impedance analysis technique complimented with curve fitting software was used to monitor changes in film properties of Thickness Shear Mode (TSM resonator on vapour exposure. The approach demonstrates how sensor selectivity can be achieved through unique changes in film viscosity caused by organic vapour adsorption.

  7. Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours

    International Nuclear Information System (INIS)

    This report considers a model of aerosol nucleation from the vapour phase which has been developed by Buckle. The applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. (U.K.)

  8. Water Vapour Content of the Atmosphere in Relation to Surface Humidity

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1977-10-01

    Full Text Available The theoretical relationship between precipitate water vapour in the atmosphere & surface humidity has been investigated. By introducing the concept of a lapse parameter alpha, a method has been devised for estimation of precipitable water vapour. Results have been compared for six Indian Stations for which upper air data were available.

  9. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    A. Laaksonen

    2004-11-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulfur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  10. Accuracy of the Water Vapour Content Measurements in the Atmosphere Using Optical Methods

    CERN Document Server

    Galkin, V D; Alekseeva, G A; Novikov, V V; Pakhomov, V P

    2010-01-01

    This paper describes the accuracy and the errors of water vapour content measurements in the atmosphere using optical methods, especially starphotometer. After the general explanations of the used expressions for the star-magnitude observations of the water vapour absorption in section 3 the absorption model for the water vapour band will be discussed. Sections 4 and 5 give an overview on the technique to determine the model parameters both from spectroscopic laboratory and radiosonde observation data. Finally, the sections 6 and 7 are dealing with the details of the errors; that means errors of observable magnitude, of instrumental extraterrestrial magnitude, of atmospheric extinction determination and of water vapour content determination by radiosonde humidity measurements. The main conclusion is: Because of the high precision of the results the optical methods for water vapour observation are suited to validate and calibrate alternative methods (GPS, LIDAR, MICROWAVE) which are making constant progress wo...

  11. Stratospheric water vapour as tracer for Vortex filamentation in the Arctic winter 2002/2003

    Directory of Open Access Journals (Sweden)

    M. Müller

    2003-01-01

    Full Text Available Balloon-borne frost point hygrometers measured three high-resolution profiles of stratospheric water vapour above Ny-Ålesund, Spitsbergen during winter 2002/2003. The profiles obtained on 12 December 2002 and on 17 January 2003 provide an insight into the vertical distribution of water vapour in the core of the polar vortex. The water vapour sounding on 11 February 2003 was obtained within the vortex edge region of the lower stratosphere. Here, a significant reduction of water vapour mixing ratio was observed between 16 and 19 km. The stratospheric temperatures indicate that this dehydration was not caused by the presence of polar stratospheric clouds or earlier PSC particle sedimentation. Ozone observations on this day indicate a large scale movement of the polar vortex and show laminae in the same altitude range as the water vapour profile. The link between the observed water vapour reduction and filaments in the vortex edge region is indicated in the results of the semi-lagrangian advection model MIMOSA, which show that adjacent filaments of polar and mid latitude air can be identified above the Spitsbergen region. A vertical cross-section produced by the MIMOSA model reveals that the water vapour sonde flew through polar air in the lowest part of the stratosphere below 425 K, then passed through filaments of mid latitude air with lower water vapour concentrations, before it finally entered the polar vortex above 450 K. These results indicate that on 11 February 2003 the frost point hygrometer measured different water vapour concentrations as the sonde detected air with different origins. Instead of being linked to dehydration due to PSC particle sedimentation, the local reduction in the stratospheric water vapour profile was in this case caused by dynamical processes in the polar stratosphere.

  12. Cavity-enhanced frequency up-conversion in rubidium vapour

    CERN Document Server

    Offer, Rachel F; Riis, Erling; Franke-Arnold, Sonja; Arnold, Aidan S

    2016-01-01

    We report the first use of a ring cavity to both enhance the output power and dramatically narrow the linewidth ($<1\\,$MHz) of blue light generated by four wave mixing in a rubidium vapour cell. We find that the high output power available in our cavity-free system leads to power broadening of the generated blue light linewidth. Our ring cavity removes this limitation, allowing high output power and narrow linewidth to be achieved concurrently. As the cavity blue light is widely tunable over the $^{85}$Rb 5S$_{1/2} \\,\\,F=3$ $\\rightarrow$ 6P$_{3/2}$ transition, this narrow linewidth light would be suitable for second-stage laser cooling, which could be valuable for efficient $^{85}$Rb BEC production.

  13. Hierarchically arranged helical fibre actuators driven by solvents and vapours.

    Science.gov (United States)

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  14. Estimation of Water Vapour Attenuation And Rain Attenuation

    Directory of Open Access Journals (Sweden)

    K.Kalyana Srinivas

    2015-04-01

    Full Text Available Attenuation due to and water vapour and rain can severely degrade the radio wave propagation at centimeter or millimeter wavelengths. It restricts the path length of radio communication systems and limits the use of higher frequencies for line-of-sight microwave links and satellite communications. The attenuation will pose a greater problem to communication as the frequency of occurrence of heavy rain increases.In a tropical region, like Malaysia, where excessive rainfall is a common phenomenon throughout the year, the knowledge of the rain attenuation at the frequency of operation is extremely required for the design of a reliable terrestrial and earth space communication link at a particular location.

  15. Hierarchically arranged helical fibre actuators driven by solvents and vapours

    Science.gov (United States)

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  16. Heat transfer in vapour-liquid flow of carbon dioxide

    International Nuclear Information System (INIS)

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  17. Heat transfer in vapour-liquid flow of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yagov, V.V. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)], e-mail: YagovVV@mpei.ru

    2009-07-01

    During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO{sub 2} practical using corresponds to high reduced pressures, and a majority of available experimental data on CO{sub 2} flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO{sub 2} flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)

  18. Direct monitoring of organic vapours with amperometric enzyme gas sensors.

    Science.gov (United States)

    Hämmerle, Martin; Hilgert, Karin; Achmann, Sabine; Moos, Ralf

    2010-02-15

    In this study, amperometric enzyme gas sensors for direct monitoring of organic vapours (formaldehyde, ethanol and phenol) are presented using exemplarily different sensing strategies: NADH detection, H(2)O(2) detection and direct substrate recycling, respectively. The presented sensor configurations allow the selective, continuous, online monitoring of organic vapours without prior accumulation or sampling of the analyte. The gaseous samples are provided as headspace above aqueous solutions. The concentration in the gas phase was calculated from the concentration in solution at room temperature according to the respective Henry constants given in the literature. The enzymes employed are NAD-dependent formaldehyde dehydrogenase [EC 1.2.1.46] from Pseudomonas putida, alcohol oxidase [EC 1.1.3.13] from Pichia pastoris, and tyrosinase [EC 1.14.18.1] from mushroom. The gas diffusion working electrodes used in the sensors are based on a porous, hydrophobic PTFE membrane (exposed geometric electrode area: 1.77 cm(2)) covered with a porous layer of gold, platinum or graphite/Teflon. Detection limit, sensitivity, and measuring range are 34 microM (6.5 ppb), 117 nA/mM, and 0.46-66.4 mM for formaldehyde, 9.9 microM (55 ppb), 3.43 microA/mM, and 0.1-30 mM for ethanol, and 0.89 microM (0.36 ppb), 2.4 microA/mM, and 0.01-1 mM for phenol, respectively. Further sensor characteristics such as response time and stability are also determined: t(90%) (formaldehyde: 4.5 min; ethanol: 69 s; phenol: 27 min), stability at permanent exposure (formaldehyde: 63%, 15 h @ 2.62 mM; ethanol: 86%, 18 @ 1 mM; phenol: 86%, 16.5 h @ 0.1 M). PMID:19926472

  19. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shell materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition

  20. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO2 film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MOx/ZnO nanorod core–shell structures, where MOx was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shell materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO2 as anatase. For the multi-layered shell sample, the existence of Fe2O3 as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition, materials absorptance determined from

  1. STUDY OF THE TOXIC EFFECTS OF FORMALDEHYDE VAPOURS WITHIN THE DISSECTION HALL ON THE FIRST YEAR INDIAN MEDICAL STUDENTS

    Directory of Open Access Journals (Sweden)

    Surajit Kundu

    2015-06-01

    Full Text Available Introduction: Formaldehyde has been used since decades as a time tested embalming fluid material either alone or in mixture with methyl alcohol, thymol crystals, glycerin and water. We in Medical College, Raigarh use 37% formaldehyde, 7% methyl alcohol and the remaining water to prepare embalming solution for cadavers. The concentration of formaldehyde is usually expressed in terms of parts per million (1 ppm= 1.248 mg/cu.m.. Vapours emanating out of the cadavers within the dissection hall is a potential source of health hazard for all medical professionals, student, faculty or technicians. The discomfort includes irritation to the mucous membrane of the nose, respiratory tract, eyes and also causes allergic reaction of the skin. Materials and Methods: Keeping track of the unconsciously caused complaints, we made a sincere attempt to chalk out the effects of formaldehyde fumes on 100 first MBBS students of Medical College, Raigarh (C.G as they are virgin in terms of formalin exposure. Results: The obtained results were quite dramatic. Maximum number of students was positive as among the various symptoms described. Discussion: Medical students during their dissection course are exposed to formaldehyde, whose exposure is recently considered to be one of the causes of multiple chemical sensitivity. The present study broadly reflects the toxic effects over the first MBBS Indian medical students Conclusion: The presentation also recommends possible methods for reduction of formalin exposure so that the medical students can enter the dissection hall without any mental tension of toxicity of formalin vapours.

  2. Volatility of components of saturated vapours of UCl4-CsCl and UCl4-LiCl molten mixtures

    International Nuclear Information System (INIS)

    The flow method has been used for measuring the volatility of the components from UCl4-CsCl and UCl4-LiCl melted mixtures containing 2.0, 5.0, 12.0, 25.0, 33.0, 50.0, 67.0, and 83.0 mol.% of UCl4 within the temperature ranges of 903-1188 K and 740-1200 K, respectively. The chemical composition of saturated vapours above the melted salts has been determined. The melted mixtures in question exhibit negative deviation from ideal behaviour. Made was the conclusion about the presence in a vapour phase, along with monomeric UCl4, LiCl, CsCl and Li2Cl2, Cs2Cl2 dimers of double compounds of the MeUCl5 most probable composition. Their absolute contribution into a total pressure above the UCl4-CsCl melted mixtures is considerably smaller than above the UCl4 -LiCl mixtures

  3. Comparison of IASI water vapour products over complex terrain with COPS campaign data

    Directory of Open Access Journals (Sweden)

    Guido Masiello

    2013-08-01

    Full Text Available In this work, we compare IASI-retrieved vertical water vapour profiles and related precipitable water over a complex region, namely the Rhine Valley area, during the pre-operational period of IASI exploitation (June?August 2007. Both IASI water vapour mixing ratio profiles and integrated water vapour content are retrieved from L1C radiances spectra using two techniques and compared with water vapour related observations acquired during the Convective and Orographically-induced Precipitation Study (COPS field campaign that took place in this area at that time (i.e. lidars, radiosoundings and a global positioning system - GPS - station network. This work addresses the issue of IASI vertical spatial resolution and its capability to detect two-layer water vapour structures such as those observed in a mountainous area and which play an important role in convective initiation or inhibition. We found that this capability mostly relies on the type of a-priori background vector (climatology or space-time colocated ECMWF analysis, which is used within the retrieval scheme. Systematic comparison of water vapour products derived from 71 IASI spectra confirms that IASI can retrieve water vapour amounts in 2 km width layers, in the lower troposphere, with an accuracy of approximately 10%.

  4. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  5. Evaluation of Trichloroethylene vapour fluxes using measurements at the soil-air interface and in the atmosphere close to the soil surface

    Science.gov (United States)

    Cotel, Solenn; Nagel, Vincent; Schäfer, Gerhard; Marzougui, Salsabil; Razakarisoa, Olivier; Millet, Maurice

    2013-04-01

    Industrialization during the 19th and 20th century led to the use of chemical products such as chlorinated solvents, e.g., trichloroethylene (TCE). At locations where volatile organic compounds were accidentally spilled on the soil during transport or leaked from their storage places, they could have migrated vertically through the unsaturated zone towards the underlying groundwater. As a result of their high volatility a large vapour plume is consequently formed. Understanding when, at which concentrations and how long, these pollutants will be present in soil, groundwater, atmosphere or indoor air, still remains a challenge up to date. This study was conducted as part of a broader experiment of TCE multiphase mass transfer in a large (25m×12m×3m) well-instrumented artificial basin. TCE was injected as liquid phase in the vadose zone and experiments were conducted during several months. Firstly, TCE vapour fluxes were experimentally determined in two different ways: (a) direct measurements at the soil-air interface using a flux chamber and (b) evaluations based on measurements of TCE concentrations in the air above the soil surface using a modular experimental flume (5m×1m×1m) with a fixed air flow. Secondly, numerical simulations were conducted to analyse the differences between these two types of fluxes. Several positions of the flume on the soil surface were tested. Based on the TCE concentrations measured in the air, vapour fluxes were determined with the aerodynamic method using the modified Thornthwaite-Holzmann equation. It assumes that the concentrations and velocities are temporally and spatially constant in horizontal planes and requires data on the gradients of concentration, horizontal wind velocity and temperature. TCE vapour fluxes measured at the soil-air interface decrease with distance from the source zone. However, this decrease was either high, at the first stage of experiment (120μg/(m2s) near the source zone compared to 1,1μg/(m2s) 2m

  6. Static and dynamic properties of curved vapour-liquid interfaces by massively parallel molecular dynamics simulation

    CERN Document Server

    Horsch, Martin T; Vrabec, Jadran; Glass, Colin W; Niethammer, Christoph; Bernreuther, Martin F; Müller, Erich A; Jackson, George

    2011-01-01

    Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylindrical menisci separating vapour and liquid phases under confinement in planar nanopores. Regarding the emergence of nanodroplets during nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of condensation processes and stationary quantities related to supersaturated vapours are considered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures of quadrupolar fluids confirm the applicability of the capillarity approximation and the classical nucleation theory.

  7. Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids

    Directory of Open Access Journals (Sweden)

    A. M. Booth

    2010-10-01

    Full Text Available Knudsen Effusion Mass Spectrometry (KEMS has been used to measure for the first time the solid state vapour pressures of a series of aliphatic cyclic dicarboxylic acids with increasing ring size. Additionally the atmospherically important compounds; cis-pinonic acid and levoglucosan were also measured. Differential Scanning Calorimetry (DSC was used to measure melting points, enthalpies and entropies of fusion, which were used to determine sub-cooled liquid vapour pressures for the compounds. The sub-cooled liquid vapour pressure of straight chain, branched and cyclic dicarboxylic acids was compared to a selection of estimation methods.

  8. Effects of vapour bubbles on acoustic and temperature distributions of therapeutic ultrasound

    Institute of Scientific and Technical Information of China (English)

    Fan Ting-Bo; Zhang Dong; Zhang Zhe; Ma Yong; Gong Xiu-Fen

    2008-01-01

    This paper describes the evolution of vapour bubbles and its effect on nonlinear ultrnsound propagation and temperature rise through tissues for therapeutic ultrasound.An acoustic-thermo coupling algorithm incorporating nonlinearity,diffraction,and temperature-dependent tissue properties,is employed to describe nonlinear ultrasound propagation and thermal effect.Results demonstrate that an obvious migration of peak pressure toward transducer surface is observed while the position of peak temperature changes little in liver tissue before the generation of vapour bubbles,and that the boiling region enlarges towards the surface of transducer in axial direction but increases slowly in radial direction after the generation of vapour bubbles.

  9. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, E.; Tuller, M.; Møldrup, Per;

    2015-01-01

    vapour sorption, which can be measured within a shorter period of time, have recently been developed. Such models are often based on single-point measurements of water adsorption and do not account for sorption hysteresis or organic matter content. The present study introduces regression relationships...... for estimating clay content from hygroscopic water at different relative humidity (RH) levels while considering hysteresis and organic matter content. Continuous adsorption/desorption vapour sorption isotherm loops were measured for 150 differently textured soils with a state-of-the-art vapour sorption analyser...

  10. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    P N Mahajan

    2001-09-01

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port Blair islands. Algorithm-3 of Schlussel and Emery (1990) performed best. On the basis of this algorithm, distribution of integrated water vapour is determined during the monsoon depression (22nd{27th July, 1992) that formed over the Bay of Bengal.

  11. Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures

    Science.gov (United States)

    Delattre, H.; Vallet-Coulomb, C.; Sonzogni, C.

    2015-09-01

    Stable isotopes of water vapour represent a powerful tool for tracing atmospheric vapour origin and mixing processes. Laser spectrometry recently allowed high time-resolution measurements, but despite an increasing number of experimental studies, there is still a need for a better understanding of the isotopic signal variability at different time scales. We present results of in situ measurements of δ18O and δD during 36 consecutive days in summer 2011 in atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation (Camargue, Rhône River delta, France). The mean composition of atmospheric vapour (δv) is δ18O = -14.66 ‰ and δD = - 95.4 ‰, with data plotting clearly above the local meteoric water line on a δ18O-δD plot, and an average deuterium excess (d) of 21.9 ‰. Important diurnal d variations are observed, and an hourly time scale analysis is necessary to interpret the main processes involved in its variability. After having classified the data according to air mass back trajectories, we analyse the average daily cycles relating to the two main meteorological situations, i.e. air masses originating from North Atlantic Ocean and Mediterranean Sea. In both situations, we show that diurnal fluctuations are driven by (1) the influence of local evaporation, culminating during daytime, and leading to an increase in absolute water vapour concentration associated to a δv enrichment and d increase; (2) vertical air mass redistribution when the Planetary Boundary Layer collapses in the evening, leading to a d decrease, and (3) dew formation during the night, producing a δv depletion with d remaining stable. Using a two-component mixing model, we calculate the average composition of the locally evaporated vapour (δE). We find higher d(E) under North Atlantic air mass conditions, which is consistent with lower humidity conditions. We also suggest that δv measured when the PBL collapses is the most representative of a regional signal

  12. Development of insulated gate bipolar transistor-based power supply for elemental copper vapour laser

    Indian Academy of Sciences (India)

    R K Mishra; S V Nakhe; G N Tiwari; J K Mittal

    2010-11-01

    The elemental copper vapour laser is a widely used laser from a family of metal vapour lasers for applications such as dye laser pumping, micromachining etc. In this paper, we report the development and performance of IGBT-based pulsed power supply that replaced conventional thyratron-based power supply for 4.7 cm diameter, 150 cm long copper vapour laser. The laser tube delivered an average power of 51 W, which with conventional power supply was giving 40 W. The IGBT-based power supply offers considerable reduction in the running cost of the laser. It is more user-friendly when compared with the conventional power supply.

  13. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  14. Influence of chemisorption products of carbon dioxide and water vapour on radiolysis of tritium breeder

    International Nuclear Information System (INIS)

    Highlights: • Chemisorption products affect formation proceses of radiation-induced defects. • Radiolysis of chemisorption products increase amount of radiation-induced defects. • Irradiation atmosphere influence radiolysis of lithium orthosilicate pebbles. - Abstract: Lithium orthosilicate pebbles with 2.5 wt% excess of silica are the reference tritium breeding material for the European solid breeder test blanket modules. On the surface of the pebbles chemisorption products of carbon dioxide and water vapour (lithium carbonate and hydroxide) may accumulate during the fabrication process. In this study the influence of the chemisorption products on radiolysis of the pebbles was investigated. Using nanosized lithium orthosilicate powders, factors, which can influence the formation and radiolysis of the chemisorption products, were determined and described as well. The formation of radiation-induced defects and radiolysis products was studied with electron spin resonance and the method of chemical scavengers. It was found that the radiolysis of the chemisorption products on the surface of the pebbles can increase the concentration of radiation-induced defects and so could affect the tritium diffusion, retention and the released species

  15. All-sky homogeneity of precipitable water vapour over Paranal

    Science.gov (United States)

    Querel, Richard R.; Kerber, Florian

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 μm) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.32 mm (peak to valley) or 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 10-15% (peak to valley) and 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared that can only be conducted during periods of very good atmospheric transmission and hence low PWV. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be

  16. Water Vapour Mixing Ratio Measurements in Potenza in the Frame of the International Network for the Detection of Atmospheric Composition Change - NDACC

    Science.gov (United States)

    De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio

    2016-06-01

    In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.

  17. Vapour phase synthesis of salol over solid acids via transesterification

    Indian Academy of Sciences (India)

    S Z Mohamed Shamshuddin; N Nagaraju

    2010-03-01

    The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO$^{2-}_{4}$ or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flowrate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200°C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO$^{2-}_{4}$ or Mo(VI) ions. The effect of poisoning of acid sites of SO$^{2-}_{4}$ or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.

  18. Water vapour and ozone profiles in the midlatitude upper troposphere

    Directory of Open Access Journals (Sweden)

    G. Vaughan

    2004-12-01

    Full Text Available We present an investigation of upper tropospheric humidity profiles measured with a standard radiosonde, the Vaisala RS80-A, and a commercial frost-point hygrometer, the Snow White. Modifications to the Snow White, to enable the mirror reflectivity and Peltier cooling current to be monitored during flight, were found to be necessary to determine when the instrument was functioning correctly; a further modification to prevent hydrometeors entering the inlet was also implemented. From 23 combined flights of an ozonesonde, radiosonde and Snow White between September 2001 and July 2002, clear agreement was found between the two humidity sensors, with a mean difference of <2% in relative humidity from 2 to 10 km, and 2.2% between 10 and 13 km. This agreement required a correction to the radiosonde humidity, as described by Miloshevich et al. (2001. Using this result, the dataset of 324 ozonesonde/RS80-A profiles measured from Aberystwyth between 1991 and 2002 was examined to derive statistics for the distribution of water vapour and ozone. Supersaturation with respect to ice was frequently seen at the higher levels – 24% of the time in winter between 8 and 10 km. The fairly uniform distribution of relative humidity persisted to 120% in winter, but decreased rapidly above 100% in summer.

  19. Water vapour and ozone profiles in the midlatitude upper troposphere

    Directory of Open Access Journals (Sweden)

    G. Vaughan

    2005-01-01

    Full Text Available We present an investigation of upper tropospheric humidity profiles measured with a standard radiosonde, the Vaisala RS80-A, and a commercial frost-point hygrometer, the Snow White. Modifications to the Snow White, to enable the mirror reflectivity and Peltier cooling current to be monitored during flight, were found to be necessary to determine when the instrument was functioning correctly; a further modification to prevent hydrometeors entering the inlet was also implemented. From 23 combined flights of an ozonesonde, radiosonde and Snow White between September 2001 and July 2002, clear agreement was found between the two humidity sensors, with a mean difference of <2% in relative humidity from 2 to 10km, and 2.2% between 10 and 13km. This agreement required a correction to the radiosonde humidity, as described by Miloshevich et al. (2001. Using this result, the dataset of 324 ozonesonde/RS80-A profiles measured from Aberystwyth between 1991 and 2002 was examined to derive statistics for the distribution of water vapour and ozone. Supersaturation with respect to ice was frequently seen at the higher levels - 24% of the time in winter between 8 and 10km. The fairly uniform distribution of relative humidity persisted to 120% in winter, but decreased rapidly above 100% in summer.

  20. Poly(methyl methacrylate) films for organic vapour sensing

    CERN Document Server

    Capan, R; Hassan, A K; Tanrisever, T

    2003-01-01

    Optical constants and fabrication parameters are investigated using surface plasmon resonance (SPR) studies on spun films of poly(methyl methacrylate) (PMMA) derivatives in contact with two different dielectric media. A value of 1.503 for the refractive index of PMMA films produced from a solution having concentration of 1 mg ml sup - sup 1 at the speed of 3000 rpm is in close agreement with the data obtained from ellipsometric measurements. The film thickness shows a power-law dependence on the spin speed but the thickness increases almost linearly with the concentration of the spreading solution. These results are in good agreement with the hydrodynamic theory for a low-viscosity and highly volatile liquid. On the basis of SPR measurements under dynamic conditions, room temperature response of PMMA films to benzene vapours is found to be fast, highly sensitive and reversible. The sensitivity of detection of toluene, ethyl benzene and m-xylene is much smaller than that of benzene.