WorldWideScience

Sample records for assistance force joint

  1. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.

    Science.gov (United States)

    Li, Zhijun; Wang, Baocheng; Sun, Fuchun; Yang, Chenguang; Xie, Qing; Zhang, Weidong

    2014-05-01

    This paper investigates two surface electromyogram (sEMG)-based control strategies developed for a power-assist exoskeleton arm. Different from most of the existing position control approaches, this paper develops force control methods to make the exoskeleton robot behave like humans in order to provide better assistance. The exoskeleton robot is directly attached to a user's body and activated by the sEMG signals of the user's muscles, which reflect the user's motion intention. In the first proposed control method, the forces of agonist and antagonist muscles pair are estimated, and their difference is used to produce the torque of the corresponding joints. In the second method, linear discriminant analysis-based classifiers are introduced as the indicator of the motion type of the joints. Then, the classifier's outputs together with the estimated force of corresponding active muscle determine the torque control signals. Different from the conventional approaches, one classifier is assigned to each joint, which decreases the training time and largely simplifies the recognition process. Finally, the extensive experiments are conducted to illustrate the effectiveness of the proposed approaches.

  2. Template model inspired leg force feedback based control can assist human walking.

    Science.gov (United States)

    Zhao, Guoping; Sharbafi, Maziar; Vlutters, Mark; van Asseldonk, Edwin; Seyfarth, Andre

    2017-07-01

    We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template model is capable of stabilizing the trunk and reproduce a human-like hip torque during the stance phase of walking. With leg force and joint angle feedback inspired by the VPP template model, our controller provides hip and knee torque assistance during the stance phase. A pilot experiment was conducted with four healthy subjects. Joint kinematics, leg muscle electromyography (EMG), and metabolic cost were measured during walking with and without assistance. Results show that, for 0.6 m/s walking, our controller can reduce leg muscle activations, especially for the medial gastrocnemius (about 16.0%), while hip and knee joint kinematics remain similar to the condition without the controller. Besides, the controller also reduces 10% of the net metabolic cost during walking. This paper demonstrates walking assistance benefits of the VPP template model for the first time. The support of human walking is achieved by a force feedback of leg force applied to the control of hip and knee joints. It can help us to provide a framework for investigating walking assistance control in the future.

  3. Increasing Running Step Rate Reduces Patellofemoral Joint Forces

    Science.gov (United States)

    Lenhart, Rachel L.; Thelen, Darryl G.; Wille, Christa M.; Chumanov, Elizabeth S.; Heiderscheit, Bryan C.

    2013-01-01

    Purpose Increasing step rate has been shown to elicit changes in joint kinematics and kinetics during running, and has been suggested as a possible rehabilitation strategy for runners with patellofemoral pain. The purpose of this study was to determine how altering step rate affects internal muscle forces and patellofemoral joint loads, and then to determine what kinematic and kinetic factors best predict changes in joint loading. Methods We recorded whole body kinematics of 30 healthy adults running on an instrumented treadmill at three step rate conditions (90%, 100%, and 110% of preferred step rate). We then used a 3D lower extremity musculoskeletal model to estimate muscle, patellar tendon, and patellofemoral joint forces throughout the running gait cycles. Additionally, linear regression analysis allowed us to ascertain the relative influence of limb posture and external loads on patellofemoral joint force. Results Increasing step rate to 110% of preferred reduced peak patellofemoral joint force by 14%. Peak muscle forces were also altered as a result of the increased step rate with hip, knee and ankle extensor forces, and hip abductor forces all reduced in mid-stance. Compared to the 90% step rate condition, there was a concomitant increase in peak rectus femoris and hamstring loads during early and late swing, respectively, at higher step rates. Peak stance phase knee flexion decreased with increasing step rate, and was found to be the most important predictor of the reduction in patellofemoral joint loading. Conclusion Increasing step rate is an effective strategy to reduce patellofemoral joint forces and could be effective in modulating biomechanical factors that can contribute to patellofemoral pain. PMID:23917470

  4. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    Science.gov (United States)

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Joint Force Quarterly. Number 4, Spring 1994

    Science.gov (United States)

    1994-05-01

    Martin J. Peters, Jr. Calvin B. Kelley Art Direction Typography and Design Division Government Printing Office Joint Force Quarterly is published by...within larger organizations. For example, the concept 6 JFQ / Spring 1994 of the combined joint task force for Europe is designed to provide just such...or financial, may be the shared outcome for all parties to future conflicts. The image of war, shaped over centuries, is precise, graphic , and

  6. Institutionalizing Security Force Assistance

    National Research Council Canada - National Science Library

    Binetti, Michael R

    2008-01-01

    .... It looks at the manner in which security assistance guidance is developed and executed. An examination of national level policy and the guidance from senior military and civilian leaders highlights the important role of Security Force Assistance...

  7. Can shoulder joint reaction forces be estimated by neural networks?

    NARCIS (Netherlands)

    de Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T.

    2016-01-01

    To facilitate the development of future shoulder endoprostheses, a long term load profile of the shoulder joint is desired. A musculoskeletal model using 3D kinematics and external forces as input can estimate the mechanical load on the glenohumeral joint, in terms of joint reaction forces. For long

  8. Joint Force Quarterly. Number 2, Autumn 1993

    Science.gov (United States)

    1993-09-01

    Typography and Design Division Government Printing Office Joint Force Quarterly is published by the Institute for National Strategic Studies, National...Decisions regard- ing the key force will affect many factors in the new environment. It determines reaction time, how much and what type of force to...shelters destroyed? Only indirectly. Attacks on shel- ters had forced a reaction by the Iraqis, one that caused the loss of their air arm as a force in

  9. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    Science.gov (United States)

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  10. Model Testing of Forces in the Reflector Joint and Mooring Forces on Wave Dragon

    DEFF Research Database (Denmark)

    Gilling, Lasse; Kofoed, Jens Peter; Tedd, James

    This report aims to present the results of a test series analysing the forces in the redesigned reflector joint and the forces in the main mooring link. The resluts presented are intended to be used by WD project partners, for the design and construction of the joint on the prototype Wave Dragon...... at Nissum Bredning and for future North Sea scale Wave Dragon. Lengths, forces and other dimentions presented are scaled to the North sea Wave Dragon unless otherwise specified....

  11. Joint forces and torques when walking in shallow water.

    Science.gov (United States)

    Orselli, Maria Isabel Veras; Duarte, Marcos

    2011-04-07

    This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The constrained control of force and position in multi-joint movements.

    Science.gov (United States)

    van Ingen Schenau, G J; Boots, P J; de Groot, G; Snackers, R J; van Woensel, W W

    1992-01-01

    In many arm or leg movements the hand or foot has to exert an external force on the environment. Based on an inverse dynamical analysis of cycling, it is shown that the distribution of net moments in the joints needed to control the direction of the external force is often opposite to the direction of joint displacements associated with this task. Kinetic and kinematic data were obtained from five experienced cyclists during ergometer cycling by means of film analysis and pedal force measurement. An inverse dynamic analysis, based on a linked segments model, yielded net joint moments, joint powers and muscle shortening velocities of eight leg muscles. Activation patterns of the muscles were obtained by means of surface electromyography. The results show that the transfer of rotations in hip, knee and ankle joints into the translation of the pedal is constrained by conflicting requirements. This occurs between the joint moments necessary to contribute to joint power and the moments necessary to establish a direction of the force on the pedal which allows this force to do work on the pedal. Co-activation of mono-articular agonists and their bi-articular antagonists appear to provide a unique solution for these conflicting requirements: bi-articular muscles appear to be able to control the desired direction of the external force on the pedal by adjusting the relative distribution of net moments over the joints while mono-articular muscles appear to be primarily activated when they are in the position to shorten and thus to contribute to positive work. Examples are given to illustrate the universal nature of this constrained control of force (external) and position (joint). Based on this study and published data it is suggested that different processes may underlie the organization of the control of mono- and bi-articular muscles.

  13. The collision forces and lower-extremity inter-joint coordination during running.

    Science.gov (United States)

    Wang, Li-I; Gu, Chin-Yi; Wang, I-Lin; Siao, Sheng-Wun; Chen, Szu-Ting

    2018-06-01

    The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.

  14. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces

    Science.gov (United States)

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.

    2013-01-01

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941

  15. Rescuing Joint Personnel Recovery: Using Air Force Capability to Address Joint Shortfalls

    Science.gov (United States)

    2011-06-01

    of an IP, the IP is not successfully reintegrated or the lessons learned are not incorporated into other operations. Adversaries will benefit from...Washington, D.C.: Office of Air Force History , United States Air Force, 1980, 117. 47 Durant , Michael J. In the Company of Heroes, Penguin Group... Lessons Learned, 22 September 2005, 3. 2 US Joint Task Force Katrina. The Federal Response to Hurricane Katrina Lessons Learned, February 2006, 54

  16. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System

    Directory of Open Access Journals (Sweden)

    Hyundo Choi

    2018-02-01

    Full Text Available In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  17. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.

    Science.gov (United States)

    Choi, Hyundo; Seo, Keehong; Hyung, Seungyong; Shim, Youngbo; Lim, Soo-Chul

    2018-02-13

    In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor system directly measures the interaction force between the exoskeleton and the lower limb of the user instead of a previously reported force-sensing method, which estimated the hip assistance force from the current of the motor and lookup tables. Furthermore, the sensor system has the advantage of generating torque in the walking-assistant actuator based on directly measuring the hip-assistance force. Thus, the gait-assistance exoskeleton system can control the delivered power and torque to the user. The force sensing structure is designed to decouple the force caused by hip motion from other directional forces to the sensor so as to only measure that force. We confirmed that the hip-assistance force could be measured with the proposed prototype compact force sensor attached to a thigh frame through an experiment with a real system.

  18. Bidirectional transfer between joint and individual actions in a task of discrete force production.

    Science.gov (United States)

    Masumoto, Junya; Inui, Nobuyuki

    2017-07-01

    The present study examined bidirectional learning transfer between joint and individual actions involving discrete isometric force production with the right index finger. To examine the effects of practice of joint action on performance of the individual action, participants performed a pre-test (individual condition), practice blocks (joint condition), and a post-test (individual condition) (IJI task). To examine the effects of practice of the individual action on performance during the joint action, the participants performed a pre-test (joint condition), practice blocks (individual condition), and a post-test (joint condition) (JIJ task). Whereas one participant made pressing movements with a target peak force of 10% maximum voluntary contraction (MVC) in the individual condition, two participants produced the target force of the sum of 10% MVC produced by each of them in the joint condition. In both the IJI and JIJ tasks, absolute errors and standard deviations of peak force were smaller post-test than pre-test, indicating bidirectional transfer between individual and joint conditions for force accuracy and variability. Although the negative correlation between forces produced by two participants (complementary force production) became stronger with practice blocks in the IJI task, there was no difference between the pre- and post-tests for the negative correlation in the JIJ task. In the JIJ task, the decrease in force accuracy and variability during the individual action did not facilitate complementary force production during the joint action. This indicates that practice performed by two people is essential for complementary force production in joint action.

  19. Elbow joint stability in relation to forced external rotation

    DEFF Research Database (Denmark)

    Deutch, S.R.; Jensen, S.L.; Olsen, B.S.

    2003-01-01

    The objective of this study was to evaluate the osseous constraint related to forced forearm external rotation as the initial stage in a posterior elbow dislocation. Six joint specimens without soft tissues were examined in a joint analysis system developed for simulation of dislocation. The osse......The objective of this study was to evaluate the osseous constraint related to forced forearm external rotation as the initial stage in a posterior elbow dislocation. Six joint specimens without soft tissues were examined in a joint analysis system developed for simulation of dislocation...... external forearm rotation until the point of maximal torque decreased from a maximum in full extension to a minimum at 30 degrees of elbow flexion (P =.03). The elbow in a slightly flexed position, varus stress, and forearm external rotation trauma might be the important biomechanical factors...

  20. Neuromuscular adaptations associated with knee joint angle-specific force change.

    Science.gov (United States)

    Noorkõiv, Marika; Nosaka, Kazunori; Blazevich, Anthony J

    2014-08-01

    Neuromuscular adaptations to joint angle-specific force increases after isometric training have not yet been fully elucidated. This study examined angle-specific neuromuscular adaptations in response to isometric knee extension training at short (SL, joint angle 38.1° ± 3.7°) versus long (LL, 87.5° ± 6.0°) muscle lengths. Sixteen men trained three times a week for 6 wk either at SL (n = 8) or LL (n = 8). Voluntary maximal isometric knee extensor (MVC) force, doublet twitch force, EMG amplitudes (EMG/Mmax), and voluntary activation during MVC force (VA%) were measured at eight knee joint angles (30°-100°) at weeks 0, 3, and 6. Muscle volume and cross-sectional area (CSA) were measured from magnetic resonance imaging scans, and fascicle length (Lf) was assessed using ultrasonography before and after training. Clear joint angle specificity of force increase was seen in SL but not in LL. The 13.4% ± 9.7% (P = 0.01) force increase around the training angle in SL was related to changes in vastus lateralis and vastus medialis EMG/Mmax around the training angle (r = 0.84-0.88, P < 0.05), without changes in the doublet twitch force-angle relation or muscle size. In LL, muscle volume and CSA increased and the changes in CSA at specific muscle regions were correlated with changes in MVC force. A 5.4% ± 4.9% (P = 0.001) increase in Lf found in both groups was not associated with angle-specific force changes. There were no angle-specific changes in VA%. The EMG/Mmax, although not VA%, results suggest that neural adaptations underpinned training-related changes at short quadriceps lengths, but hypertrophic changes predominated after training at long lengths. The findings of this study should contribute to the development of more effective and evidence-based rehabilitation and strength training protocols.

  1. The Multinational Logistics Joint Task Force (MLJTF)

    National Research Council Canada - National Science Library

    Higginbotham, Matthew T

    2007-01-01

    In this monograph, by analyzing the UN, NATO and the US Army's evolving Modular Logistics Doctrine, the author integrates the key areas from each doctrine into a multinational logistics joint task force (MLJTF) organization...

  2. Plantar impact causing midfoot fractures result in higher forces in Chopart's joint than in the ankle joint.

    Science.gov (United States)

    Richter, M; Wippermann, B; Thermann, H; Schroeder, G; Otte, D; Troeger, H D; Krettek, C

    2002-03-01

    Force effect (impact, extent of foot compartment deformation) and result (fracture pattern) for midfoot fractures in car occupants is known. An analysis of the processes in the foot was intended to improve car safety. Eleven fresh, unfrozen, unpreserved intact human cadavers (age: 36.8 (16-61) years, gender: male, race: Caucasian) were studied 24-72 h after death. In 3 cadavers (5 feet) the experimental design was established: entire cadaver fixed on a special tray in supine position, pendulum with bar impactor hitting the foot plantar to Lisfranc's joint. A custom-made pressure sensor was inserted in the ankle (A), talonavicular (TN) and calcaneocuboid (CC) joints (resolution: 1 cm2, sampling rate: 500/s). Sixteen feet were measured: midfoot fractures were induced in 11 feet. The maximum pressure amounted to 1.22-2.55 MPa (2.04+/-0.412) at 0.005 0.195 s (0.067+/-0.059) after impact. The maximum pressure occurred in 8 (50%) cases in the ankle, in 7 (44%) of the TN and 1 (6%) of the CC joints. A comparison of the first 200 pressure samples after impact of all sensor fields resulted in higher forces in Chopart's joint than in the ankle (t-test: p < 0.001). These force differences were higher in cases with midfoot fractures (mixed model analysis of variance: p = 0.003). Due to considerable forces in Chopart's joint we recommend a modification of the actual crash test dummy lower extremity model with an additional load cell that detects forces in the longitudinal direction of the foot axis.

  3. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    Science.gov (United States)

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Microstructure and mechanical properties of friction stir lap welded Mg/Al joint assisted by stationary shoulder

    Science.gov (United States)

    Ji, Shude; Li, Zhengwei

    2017-11-01

    Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.

  5. Upper limb joint forces and moments during underwater cyclical movements.

    Science.gov (United States)

    Lauer, Jessy; Rouard, Annie Hélène; Vilas-Boas, João Paulo

    2016-10-03

    Sound inverse dynamics modeling is lacking in aquatic locomotion research because of the difficulty in measuring hydrodynamic forces in dynamic conditions. Here we report the successful implementation and validation of an innovative methodology crossing new computational fluid dynamics and inverse dynamics techniques to quantify upper limb joint forces and moments while moving in water. Upper limb kinematics of seven male swimmers sculling while ballasted with 4kg was recorded through underwater motion capture. Together with body scans, segment inertial properties, and hydrodynamic resistances computed from a unique dynamic mesh algorithm capable to handle large body deformations, these data were fed into an inverse dynamics model to solve for joint kinetics. Simulation validity was assessed by comparing the impulse produced by the arms, calculated by integrating vertical forces over a stroke period, to the net theoretical impulse of buoyancy and ballast forces. A resulting gap of 1.2±3.5% provided confidence in the results. Upper limb joint load was within 5% of swimmer׳s body weight, which tends to supports the use of low-load aquatic exercises to reduce joint stress. We expect this significant methodological improvement to pave the way towards deeper insights into the mechanics of aquatic movement and the establishment of practice guidelines in rehabilitation, fitness or swimming performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Effect of Foot Progression Angle on Knee Joint Compression Force during Walking

    DEFF Research Database (Denmark)

    Baldvinsson, Henrik Koblauch; Heilskov-Hansen, Thomas; Alkjær, Tine

    2013-01-01

    males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait-trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment......It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study...... was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy...

  7. Estimation of the forces acting on the tibiofemoral joint during knee extension exercises

    Directory of Open Access Journals (Sweden)

    Rodrigo Rico Bini

    2008-02-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n1p35 The objectives of this study were to: (1 evaluate the resistive torque of an open kinetic chain strength-training machine for performing knee extensions, and (2 perform an analysis estimating internal forces in the tibiofemoral joint. During a fi rst phase of the study, measurements were taken of the machine under analysis (external forces, and then calculations were performed to estimate forces on the lower limb (internal forces. Equations were defi ned to calculate human force (HF, and the moment of muscular force (MMF. Perpendicular muscular force (MFp and joint force (JFp, axial muscular force (MF” and joint force (JF”, and total muscular force (MF and joint force (JF were all calculated. Five knee angles were analyzed (zero, 30, 45, 60, and 90 degrees. A reduction was observed in HF at higher knee angles, while MF and JF also increased at the same time. HF was always lower than the load selected on the machine, which indicates a reduced overload imposed by the machine. The reduction observed in MFp and JFp at higher knee angles indicates a lower tendency to shear the tibia in relation to the femur. At the same time, there was an increase in JF” due to higher MF”. The biomechanical model proposed in this study has shown itself adequate for the day-to-day needs of professionals who supervise orient strength training.

  8. Accuracy of non assisted glenohumeral joint injection in the office setting

    Energy Technology Data Exchange (ETDEWEB)

    Sidon, Eliezer, E-mail: eli.sidon@gmail.com [Department of Orthopedics, Rabin Medical Center, Beilinson Campus, Petach Tikva 49100 (Israel); Velkes, Steven, E-mail: velkes@yahoo.com [Department of Orthopedics, Rabin Medical Center, Beilinson Campus, Petach Tikva 49100 (Israel); Shemesh, Shai, E-mail: shai.shemesh@gmail.com [Department of Orthopedics, Rabin Medical Center, Beilinson Campus, Petach Tikva 49100 (Israel); Levy, Jakob, E-mail: Jlevy@clalit.org.il [Department of Imaging, Rabin Medical Center, Beilinson Campus, Petach Tikva 49100 (Israel); Glaser, Ernesto, E-mail: glaser.ernesto@gmail.com [Department of Imaging, Rabin Medical Center, Beilinson Campus, Petach Tikva 49100 (Israel); Kosashvili, Yona, E-mail: yonasofi@gmail.com [Department of Orthopedics, Rabin Medical Center, Beilinson Campus, Petach Tikva 49100 (Israel)

    2013-12-01

    Purpose: The diagnostic and therapeutic success of shoulder joint injection depends on its accuracy. Two recent studies reported high success (93–96%) for non-imaging-assisted anterior injection in anesthetized patients. This study examined the accuracy of anterior shoulder injection in awake patients under conditions similar to the office setting. Methods: The study group consisted of 166 consecutive patients with shoulder pain who underwent diagnostic magnetic resonance arthrography at a tertiary medical center in 2011–2012. As part of the examination, contrast material was injected into the glenohumeral joint via an anterior approach by a certified musculoskeletal radiologist without any image assistance. Success was defined as contrast material limited to the intra-articular joint on the scan, without scatter to the periauricular tissue. Results: A successful injection was verified by magnetic resonance arthography in 163 patients (98.2%). Conclusions: Non-assisted anterior shoulder injection is highly accurate (98.2%) in the hands of an experienced radiologist, even in awake patients.

  9. Can NATO's new Very High Readiness Joint Task Force deter?

    DEFF Research Database (Denmark)

    Rynning, Sten; Ringsmose, Jens

    2017-01-01

    ” a distinct strategic rival – Russia. Chief among the Welsh summit initiatives was the decision to set up a new multinational spearhead force – the Very High Readiness Joint Task Force (VJTF) – as part of an enhanced NATO Response Force (NRF) and within the framework of a so-called Readiness Action Plan (RAP...

  10. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    Science.gov (United States)

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  11. A clamping force measurement system for monitoring the condition of bolted joints on railway track joints and points

    International Nuclear Information System (INIS)

    Tesfa, B; Horler, G; Thobiani, F Al; Gu, F; Ball, A D

    2012-01-01

    Many industrial structures associated with railway infrastructures rely on a large number of bolted joint connections to ensure safe and reliable operation of the track and trackside furniture. Significant sums of money are spent annually to repair the damage caused by bolt failures and to maintain the integrity of bolted structures. In the UK, Network Rail (the organization responsible for rail network maintenance and safety) conducts corrective and preventive maintenance manually on 26,000 sets of points (each having approximately 30 bolted joints per set), in order to ensure operational success and safety for the travelling public. Such manual maintenance is costly, disruptive, unreliable and prone to human error. The aim of this work is to provide a means of automatically measuring the clamping force of each individual bolted joint, by means of an instrumented washer. This paper describes the development of a sensor means to be used in the washer, which satisfies the following criteria. 1. Sense changes in the clamping force of the joint and report this fact. 2. Provide compatibility with the large dynamic range of clamping force. 3. Satisfy the limitations in terms of physical size. 4. Provide the means to electronically interface with the washer. 5. Provide a means of powering the washer in situ. 6. Provide a solution at an acceptable cost. Specifically the paper focuses on requirements 1, 2 and 3 and presents the results that support further development of the proposed design and the realization of a pre-prototype system. In the paper, various options for the force sensing element (strain gage, capacitor, piezo-resistive) have been compared, using design optimization techniques. As a result of the evaluation, piezo-resistive sensors in concert with a proprietary force attenuation method, have been found to offer the best performance and cost trade-off The performance of the novel clamping force sensor has been evaluated experimentally and the results show

  12. A feasibility study for experimentally determining dynamic force distribution in a lap joint

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Randall Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.

  13. A Common Force-Sharing Pattern in Joint Action That Consists of Four People.

    Science.gov (United States)

    Masumoto, Junya; Inui, Nobuyuki

    2017-12-20

    The authors examined the force-sharing patterns in a joint action performed by a group of two, three, or four people compared with a solo action. In the joint actions, 28 participants produced periodic isometric forces such that the sum of forces they produced cycled between 5% and 10% maximum voluntary contraction with the right hand at 1 Hz. In both the three- and four-person tasks, the correlation between forces produced by two of the three or four participants was negative, and the remaining one or two participants produced intermediate forces. The errors of force and interval and force variabilities were smaller in four- and three-people groups than individuals. Four- and three-people groups thus performed better than individuals.

  14. Application of computer-assisted imaging technology in human musculoskeletal joint research

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    2014-01-01

    Full Text Available Computer-assisted imaging analysis technology has been widely used in the musculoskeletal joint biomechanics research in recent years. Imaging techniques can accurately reconstruct the anatomic features of the target joint and reproduce its in vivo motion characters. The data has greatly improved our understanding of normal joint function, joint injury mechanism, and surgical treatment, and can provide foundations for using reverse-engineering methods to develop biomimetic artificial joints. In this paper, we systematically reviewed the investigation of in vivo kinematics of the human knee, shoulder, lumber spine, and ankle using advanced imaging technologies, especially those using a dual fluoroscopic imaging system (DFIS. We also briefly discuss future development of imaging analysis technology in musculoskeletal joint research.

  15. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    Science.gov (United States)

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  16. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Gilbart, Michael K

    2010-01-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints

  17. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    Science.gov (United States)

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. JOINT FORCE AND CONTEMPORARY MILITARY ACTIONS

    Directory of Open Access Journals (Sweden)

    Codrin HERTANU

    2012-01-01

    Full Text Available In the current changing international context, the worldwide power balance along with its inter-dependencies shows that mankind is facing problems and pressures posed by resources limitation (the oil ones being the most relevant dramatic climate evolution and a decisive impact of technologies. The approach of the armed forces to the national defense related interests, as well as to the asymmetrical and irregular threats underlines the joint force’s capacity to be the most powerful and adequate tool to address all of these.

  19. Normalized patellofemoral joint reaction force is greater in individuals with patellofemoral pain.

    Science.gov (United States)

    Thomeer, Lucas T; Sheehan, Frances T; Jackson, Jennifer N

    2017-07-26

    Patellofemoral pain is a disabling, highly prevalent pathology. Altered patellofemoral contact forces are theorized to contribute to this pain. Musculoskeletal modeling has been employed to better understand the etiology of patellofemoral pain. Currently, there are no data on the effective quadriceps moment arm for individuals with patellofemoral pain, forcing researchers to apply normative values when modeling such individuals. In addition, the ratio of patellofemoral reaction force to quadriceps force is often used as a surrogate for patellofemoral joint contact force, ignoring the fact that the quadriceps efficiency can vary with pathology and intervention. Thus, the purposes of this study were to: (1) quantify the effective quadriceps moment arm in individuals with patellofemoral pain and compare this value to a control cohort and (2) develop a novel methodology for quantifying the normalized patellofemoral joint reaction force in vivo during dynamic activities. Dynamic MR data were captured as subjects with patellofemoral pain (30F/3M) cyclically flexed their knee from 10° to 40°. Data for control subjects (29F/9M) were taken from a previous study. The moment arm data acquired across a large cohort of individuals with patellofemoral pain should help advance musculoskeletal modeling. The primary finding of this study was an increased mean normalized patellofemoral reaction force of 14.9% (maximum values at a knee angle of 10°) in individuals with patellofemoral pain. Understanding changes in the normalized patellofemoral reaction force with pathology may lead to improvements in clinical decision making, and consequently treatments, by providing a more direct measure of altered patellofemoral joint forces. Copyright © 2017. Published by Elsevier Ltd.

  20. GPS and the Joint Force Commander: Critical Asset, Critical Vulnerability

    National Research Council Canada - National Science Library

    McPherson, Michael

    2001-01-01

    Joint Force Commanders (JFCs) have become over reliant on military and commercial satellite systems for intelligence gathering and dissemination, weather, command, control, communications, and navigation/guidance functions, to name a few...

  1. The International Criminal Court: Considerations for the Joint Force Commander

    National Research Council Canada - National Science Library

    Sutton, Michael

    2003-01-01

    An analysis of the issues and remedies a Joint Force Commander should be concerned about because of the relationship between the United States and the newly-created International Criminal Court (ICC...

  2. Bilateral ground reaction forces and joint moments for lateral sidestepping and crossover stepping tasks

    Science.gov (United States)

    Kuntze, Gregor; Sellers, William I.; Mansfield, Neil

    2009-01-01

    Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS) and crossover stepping (XS) movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work. Key pointsGround reaction forces and joint moments during lateral stepping are smaller in magnitude than those experienced during moderate running.Force exposure in SS and XS gaits in normal play does not appear to contribute to the development of

  3. Championing the Joint Force: A Job for the Public and our Political Leaders – Not Just Military Professionals Alone

    Directory of Open Access Journals (Sweden)

    Stuart Beare

    2015-11-01

    Full Text Available Canada’s security interests and the mission of our Armed Forces – that is to defend Canada, defend North America and to promote peace and security abroad – may largely remain unchanged and timeless. The nature of the security environment, however, has not – nor will it be in the years to come. An effective and relevant Canadian Armed Forces will continue to require capable, wellequipped and operationally-ready maritime, air and land forces who are largely raised and trained within our Army, Navy and Air Force. But in order for Defence to remain relevant and effective in an era of increased instability, volatility and unpredictability, our Armed Forces need the ability and capacity to match these with an increased understanding of what is going on, and preparedness for what is to come. This is the business of our military’s Joint Forces – those beyond the tactical units that the services provide. It is the joint organizations and networks within the institution that generate intelligence, provide understanding and lead the partnering, planning, force posturing and practicing so essential to the anticipation of, preparation for, and conduct of, operations – in particular in a world of unrelenting complexity. A decade after General Rick Hillier’s extraordinary initiatives to transform our Armed Forces from a service-centric machine-age force to one focused on the business of operations, one that thinks and acts Canadian Forces (joint first, we do see evidence of real progress in the approach to joint operations and improved appreciation of our military’s joint functions and capabilities. Unlike the political and public calls for strong services and the modernization of their major platforms, however, this progress has been realized largely through efforts internal to the Armed Forces themselves. The initiative has been without political leadership and external policy topcover, rendering this progress and its future vulnerable and

  4. Joint Force Quarterly. Number 26, Autumn 2000

    Science.gov (United States)

    2001-01-01

    Compañía Impresora Ar- gentina, 1990). Caribbean, Central America, and Mex- ico, have become a parallel power to the state in controlling national terri...and regimen- tal service (1917–19); commanded 3d Battalion, 22d Infantry, in France (1919); assistant chief of staff, American Forces, Germany (1920–21

  5. Joint Force Quarterly. Issue 57, 2nd Quarter 2010

    Science.gov (United States)

    2010-04-01

    specialized equipment and chemicals.18 While this early work provides a proof of concept, genetic engineering and combinatorial chemistry in the future will...is, entails three steps. Using the reverse planning rubric , the first step is to determine the endstate or goal of joint force development, next

  6. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.

    Science.gov (United States)

    Ostaszewski, Michal; Pauk, Jolanta

    2018-05-16

    Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.

  7. Anatomical kinematic constraints: consequences on muscular forces and joint reactions

    OpenAIRE

    MOISSENET, F; CHEZE, L; DUMAS, R

    2011-01-01

    This paper presents a method to determine musculo-tendon forces and joint reactions during gait, using a 3D right leg model with 5 DoFs: spherical joint at the hip and parallel mechanisms at both knee and ankle. A typical set of natural coordinates is used to obtain the dynamic equations. First, using a global optimization method, "anatomical" kinematic constraints (i.e., parallel mechanisms) are applied on the kinematics obtained from motion capture data. Consistent derivatives are computed ...

  8. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement.

    Directory of Open Access Journals (Sweden)

    Robert Rasnick

    Full Text Available Total knee replacement (TKR is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05. No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups.

  9. BILATERAL GROUND REACTION FORCES AND JOINT MOMENTS FOR LATERAL SIDESTEPPING AND CROSSOVER STEPPING TASKS

    Directory of Open Access Journals (Sweden)

    William I. Sellers

    2009-03-01

    Full Text Available Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS and crossover stepping (XS movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work

  10. Report of the Office of Nuclear Reactor Regulation technical assistance task force

    International Nuclear Information System (INIS)

    1981-11-01

    In 1981, the Director of the Office of Nuclear Reactor Regulation (NRR) of the Nuclear Regulatory Commission (NRC) chartered a task force to assess the office program of technical assistance and to recommend improvements. The task force divided the technical assistance program into four areas, and the practices in each area were assessed through a series of surveys of staff, management, and contractor personnel. The task force placed emphasis in its interview and assessment process on the problem areas that exist in the technical assistance program. The report thus reflects a weight on the faults found as a result of the inquiries made. The four major areas of technical assistance contracting studied were program planning, program management and execution, program control and management information systems, and program administration and coordination

  11. Strategic Change and the Joint Terrorism Task Force: Ideas and Recommendations

    National Research Council Canada - National Science Library

    D'Angelo, Anthony P

    2007-01-01

    ... and the multidisciplinary Joint Terrorism Task Forces. The terrorist attacks served as a catalyst for evaluating cultural, psychological and organizational processes, policies and procedures that influenced the FBI and impacted the JTTF program...

  12. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.

    Science.gov (United States)

    Currie, Maria E; Talasaz, Ali; Rayman, Reiza; Chu, Michael W A; Kiaii, Bob; Peters, Terry; Trejos, Ana Luisa; Patel, Rajni

    2017-09-01

    The objective of this work was to determine the effect of both direct force feedback and visual force feedback on the amount of force applied to mitral valve tissue during ex vivo robotics-assisted mitral valve annuloplasty. A force feedback-enabled master-slave surgical system was developed to provide both visual and direct force feedback during robotics-assisted cardiac surgery. This system measured the amount of force applied by novice and expert surgeons to cardiac tissue during ex vivo mitral valve annuloplasty repair. The addition of visual (2.16 ± 1.67), direct (1.62 ± 0.86), or both visual and direct force feedback (2.15 ± 1.08) resulted in lower mean maximum force applied to mitral valve tissue while suturing compared with no force feedback (3.34 ± 1.93 N; P forces on cardiac tissue during robotics-assisted mitral valve annuloplasty suturing, force feedback may be required. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Can NATO's new very high readiness joint task force deter?

    DEFF Research Database (Denmark)

    Rynning, Sten; Ringsmose, Jens

    2017-01-01

    When NATO-allies met at their Wales summit in September 2014, the D-word was back in vogue. Not in a muttering, shy or implicit way, but unambiguously and straightforward. For the first time in more than two decades NATO’s heads of states and governments openly discussed how best to “deter......” a distinct strategic rival – Russia. Chief among the Welsh summit initiatives was the decision to set up a new multinational spearhead force – the Very High Readiness Joint Task Force (VJTF) – as part of an enhanced NATO Response Force (NRF) and within the framework of a so-called Readiness Action Plan (RAP...

  14. Developing Doctrine for the Future Joint Force:. Creating Synergy and Minimizing Seams

    National Research Council Canada - National Science Library

    Brown Jr, Charles Q

    2005-01-01

    ..., networked, decentralized, adaptable, decision superior, and lethal. Recent contingencies displayed rapidly executable, globally and operationally distributed, simultaneous, and sequential operations characteristic of the future joint force...

  15. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami

    2004-06-17

    The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.

  16. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    Science.gov (United States)

    Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.

    2016-01-01

    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (pknee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086

  17. Multiple joint muscle function with ageing: the force-velocity and power-velocity relationships in young and older men.

    Science.gov (United States)

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P

    2013-05-01

    Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.

  18. Forces on bends and T-joints due to multiphase flow

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating

  19. Forced-air warming discontinued: periprosthetic joint infection rates drop

    Directory of Open Access Journals (Sweden)

    Scott D. Augustine

    2017-06-01

    Full Text Available Several studies have shown that the waste heat from forced-air warming (FAW escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002. The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.

  20. Exotendons for assistance of human locomotion

    Directory of Open Access Journals (Sweden)

    van den Bogert Antonie J

    2003-10-01

    Full Text Available Abstract Background Powered robotic exoskeletons for assistance of human locomotion are currently under development for military and medical applications. The energy requirements for such devices are excessive, and this has become a major obstacle for practical applications. Legged locomotion in many animals, however, is very energy efficient. We propose that poly-articular elastic mechanisms are a major contributor to the economy of locomotion in such specialized animals. Consequently, it should be possible to design unpowered assistive devices that make effective use of similar mechanisms. Methods A passive assistive technology is presented, based on long elastic cords attached to an exoskeleton and guided by pulleys placed at the joints. A general optimization procedure is described for finding the best geometrical arrangement of such "exotendons" for assisting a specific movement. Optimality is defined either as minimal residual joint moment or as minimal residual joint power. Four specific exotendon systems with increasing complexity are considered. Representative human gait data were used to optimize each of these four systems to achieve maximal assistance for normal walking. Results The most complex exotendon system, with twelve pulleys per limb, was able to reduce the joint moments required for normal walking by 71% and joint power by 74%. A simpler system, with only three pulleys per limb, could reduce joint moments by 46% and joint power by 47%. Conclusion It is concluded that unpowered passive elastic devices can substantially reduce the muscle forces and the metabolic energy needed for walking, without requiring a change in movement. When optimally designed, such devices may allow independent locomotion in patients with large deficits in muscle function.

  1. Flange joint system for SRF cavities utilizing high force spring clamps for low particle generation

    Science.gov (United States)

    None

    2017-09-05

    A flange joint system for SRF cavities. The flange joint system includes a set of high force spring clamps that produce high force on the simple flanges of Superconducting Radio Frequency (SRF) cavities to squeeze conventional metallic seals. The system establishes the required vacuum and RF-tight seal with minimum particle contamination to the inside of the cavity assembly. The spring clamps are designed to stay within their elastic range while being forced open enough to mount over the flange pair. Upon release, the clamps have enough force to plastically deform metallic seal surfaces and continue to a new equilibrium sprung dimension where the flanges remain held against one another with enough preload such that normal handling will not break the seal.

  2. Can the Army Provide Bulk Petroleum Support to Joint Force 2020?

    Science.gov (United States)

    2013-03-01

    Petroleum Officer (JPO) and one or more Sub Area Petroleum Officers ( SAPO ). The JPO coordinates petroleum support to all forces in a theater on behalf...position is the SAPO , established by the Combatant Commander or a Joint Force Commander (JFC) to fulfill bulk petroleum planning and execution in a...section of the theater for which the JPO is responsible.7 A key duty of the SAPO is to advise the JFC and his/her staff on petroleum logistics

  3. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.

    Science.gov (United States)

    Thangavel, Pavithra; Vidhya, S; Li, Junhua; Chew, Effie; Bezerianos, Anastasios; Yu, Haoyong

    2017-07-01

    Since manual rehabilitation therapy can be taxing for both the patient and the physiotherapist, a gait rehabilitation robot has been built to reduce the physical strain and increase the efficacy of the rehabilitation therapy. The prototype of the gait rehabilitation robot is designed to provide assistance while walking for patients with abnormal gait pattern and it can also be used for rehabilitation therapy to restore an individual's normal gait pattern by aiding motor recovery. The Gait Rehabilitation Robot uses gait event based synchronization, which enables the exoskeleton to provide synchronous assistance during walking that aims to reduce the lower-limb muscle activation. This study emphasizes on the biomechanical effects of assisted walking on the lower limb by analyzing the EMG signal, knee joint kinematics data that was collected from the right leg during the various experimental conditions. The analysis of the measured data shows an improved knee joint trajectory and reduction in muscle activity with assistance. The result of this study does not only assess the functionality of the exoskeleton but also provides a profound understanding of the human-robot interaction by studying the effects of assistance on the lower limb.

  4. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Nahavandi, Saeid; Smith, Julian

    2014-06-01

    Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems. The proposed methods and studies have some shortcomings. The main focus of this research is to overcome some of these limitations and to study the effects of force feedback in palpation in a more realistic fashion. A parallel robot assisted minimally invasive surgery system (PRAMiSS) with force feedback capabilities was employed to study the effects of realistic force feedback in palpation of artificial tissue samples. PRAMiSS is capable of actually measuring the tip/tissue interaction forces directly from the surgery site. Four sets of experiments using only vision feedback, only force feedback, simultaneous force and vision feedback and direct manipulation were conducted to evaluate the role of sensory feedback from sideways tip/tissue interaction forces with a scale factor of 100% in characterising tissues of varying stiffness. Twenty human subjects were involved in the experiments for at least 1440 trials. Friedman and Wilcoxon signed-rank tests were employed to statistically analyse the experimental results. Providing realistic force feedback in robotic assisted surgery systems improves the quality of tissue characterization procedures. Force feedback capability also increases the certainty of characterizing soft tissues compared with direct palpation using the lateral sides of index fingers. The force feedback capability can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations.

  5. Reductions in knee joint forces with weight loss are attenuated by gait adaptations in class III obesity.

    Science.gov (United States)

    DeVita, Paul; Rider, Patrick; Hortobágyi, Tibor

    2016-03-01

    A consensus exists that high knee joint forces are a precursor to knee osteoarthritis and weight loss reduces these forces. Because large weight loss also leads to increased step length and walking velocity, knee contact forces may be reduced less than predicted by the magnitude of weight loss. The purpose was to determine the effects of weight loss on knee muscle and joint loads during walking in Class III obese adults. We determined through motion capture, force platform measures and biomechanical modeling the effects of weight loss produced by gastric bypass surgery over one year on knee muscle and joint loads during walking at a standard, controlled velocity and at self-selected walking velocities. Weight loss equaling 412 N or 34% of initial body weight reduced maximum knee compressive force by 824 N or 67% of initial body weight when walking at the controlled velocity. These changes represent a 2:1 reduction in knee force relative to weight loss when walking velocity is constrained to the baseline value. However, behavioral adaptations including increased stride length and walking velocity in the self-selected velocity condition attenuated this effect by ∼50% leading to a 392 N or 32% initial body weight reduction in compressive force in the knee joint. Thus, unconstrained walking elicited approximately 1:1 ratio of reduction in knee force relative to weight loss and is more indicative of walking behavior than the standard velocity condition. In conclusion, massive weight loss produces dramatic reductions in knee forces during walking but when patients stride out and walk faster, these favorable reductions become substantially attenuated. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Adaptation of multi-joint balance coordination to whole body force fields

    NARCIS (Netherlands)

    Engelhart, Denise; Schouten, Alfred Christiaan; Pasma, Jantsje; Aarts, Ronald G.K.M.; Pasma, J.; Meskers, Carel; Maier, Andrea; van der Kooij, Herman

    2014-01-01

    Background and aim: The ankles and the hips play an important role in standing balance. Multi-joint coordination adapts with task, the magnitude and type of disturbance [1]. Arm studies show that postural responses are highly dependent on externally applied force fields [2]. Our aim is to study how

  7. Range of motion exercise of temporo-mandibular joint with hot pack increases occlusal force in patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Nozaki, S; Kawai, M; Shimoyama, R; Futamura, N; Matsumura, T; Adachi, K; Kikuchi, Y

    2010-12-01

    The purpose of this study is to evaluate whether the range of motion exercise of the temporo-mandibular joint (jaw ROM exercise) with a hot pack and massage of the masseter muscle improve biting disorder in Duchenne muscular dystrophy (DMD). The subjects were 18 DMD patients (21.3+/- 4.1 years old). The jaw ROM exercise consisted of therapist-assisted training (2 times a week) and self-training (before each meal every day). The therapist-assisted training consisted of the application of a hot pack on the cheek of the masseter muscle region (15 minutes), the massage of the masseter (10 minutes), and jaw ROM exercise (5 minutes). The self-training involved jaw ROM exercise by opening the mouth to the maximum degree, ten times. These trainings continued for six months. Outcomes were evaluated by measuring the greatest occlusal force and the distance at the maximum degree of mouth opening between an incisor of the top and that of the bottom. Six months later, the greatest occlusal force had increased significantly compared with that at the start of jaw ROM exercise (intermediate values: from 73.8N to 97.3N) (p = 0.005) as determined by the Friedman test and Scheffi's nonparametric test. The patients' satisfaction with meals increased. However, the maximum degree of mouth opening did not change after six months of jaw ROM exercise. Jaw ROM exercise in DMD is effective for increasing the greatest occlusal force.

  8. Force-Sensing Actuator with a Compliant Flexure-Type Joint for a Robotic Manipulator

    Directory of Open Access Journals (Sweden)

    Mathieu Grossard

    2015-12-01

    Full Text Available This paper deals with the mechatronic design of a novel self-sensing motor-to-joint transmission to be used for the actuation of robotic dexterous manipulators. Backdrivability, mechanical simplicity and efficient flexure joint structures are key concepts that have guided the mechanical design rationale to provide the actuator with force sensing capabilities. Indeed, a self-sensing characteristic is achieved by the specific design of high-resolution cable-driven actuators based on a DC motor, a ball-screw and a monolithic compliant anti-rotation system together with a novel flexure pivot providing a frictionless mechanical structure. That novel compliant pivot with a large angular range and a small center shift has been conceived of to provide the inter-phalangeal rotational degree of freedom of the fingers’ joints to be used for integration in a multi-fingered robotic gripper. Simultaneously, it helps to remove friction at the joint level of the mechanism. Experimental tests carried out on a prototype show an accurate matching between the model and the real behavior. Overall, this mechatronic design contributes to the improvement of the manipulation skills of robotic grippers, thanks to the combination of high performance mechanics, high sensitivity to external forces and compliance control capability.

  9. Summary of the 19th Joint EU-US Transport Task Force Workshop

    DEFF Research Database (Denmark)

    Angioni, C.; Mantica, P.; Naulin, Volker

    2015-01-01

    This conference report summarizes the contributions to, and discussions at, the 19th Joint EU-US Transport Task Force workshop, held in Culham, UK, during 8-11 September 2014. The workshop was organized under six topics: momentum transport, energetic particles, challenges in modelling transport i...

  10. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-09-29

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  11. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2017-09-01

    Full Text Available By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  12. Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements

    Science.gov (United States)

    Amirouche, Farid

    2008-06-01

    Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As

  13. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    Science.gov (United States)

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Towards computer-assisted surgery in shoulder joint replacement

    Science.gov (United States)

    Valstar, Edward R.; Botha, Charl P.; van der Glas, Marjolein; Rozing, Piet M.; van der Helm, Frans C. T.; Post, Frits H.; Vossepoel, Albert M.

    A research programme that aims to improve the state of the art in shoulder joint replacement surgery has been initiated at the Delft University of Technology. Development of improved endoprostheses for the upper extremities (DIPEX), as this effort is called, is a clinically driven multidisciplinary programme consisting of many contributory aspects. A part of this research programme focuses on the pre-operative planning and per-operative guidance issues. The ultimate goal of this part of the DIPEX project is to create a surgical support infrastructure that can be used to predict the optimal surgical protocol and can assist with the selection of the most suitable endoprosthesis for a particular patient. In the pre-operative planning phase, advanced biomechanical models of the endoprosthesis fixation and the musculo-skeletal system of the shoulder will be incorporated, which are adjusted to the individual's morphology. Subsequently, the support infrastructure must assist the surgeon during the operation in executing his surgical plan. In the per-operative phase, the chosen optimal position of the endoprosthesis can be realised using camera-assisted tools or mechanical guidance tools. In this article, the pathway towards the desired surgical support infrastructure is described. Furthermore, we discuss the pre-operative planning phase and the per-operative guidance phase, the initial work performed, and finally, possible approaches for improving prosthesis placement.

  15. PRELIMINARY STUDIES OF RIVETED JOINTS AT FEED FORCE

    Directory of Open Access Journals (Sweden)

    Radosław Bielawski

    2015-08-01

    Full Text Available The aim of the study was to determine the feasibility of riveted joints in composites materials. Static tensile test method was used. In the test one type of glass fabric was used (Interglas 92140 from which two types of composite samples were prepared. In each sample the same type of fiber with the same fiber orientation – 3 layers - was used. The samples had dimensions of 100×100 mm and thickness of approximately 1 mm. The composite probes were located in a metal frame with a screw connection which was made of screws with nominal thread pitch M5. Screws were tightened with constant torque. It was to provide an axial force to the sample during the tensile test. The frame was placed between cross-bars of tensile machine INSTRON 8516. The samples were stretched at a speed of 0.05 mm/s at a distance up to 16 mm. During the tensile test displacement of the samples and pull force were registered. Depending on the fibre orientations and the value of feed force, damage models were described. On the basis of the results the possibility of usage of aluminium rivet nuts connections in composite materials was determined.

  16. Reductions in knee joint forces with weight loss are attenuated by gait adaptations in class III obesity

    NARCIS (Netherlands)

    DeVita, Paul; Rider, Patrick; Hortobagyi, Tibor

    A consensus exists that high knee joint forces are a precursor to knee osteoarthritis and weight loss reduces these forces. Because large weight loss also leads to increased step length and walking velocity, knee contact forces may be reduced less than predicted by the magnitude of weight loss. The

  17. A numerical study on stress distribution across the ankle joint: Effects of material distribution of bone, muscle force and ligaments.

    Science.gov (United States)

    Mondal, Subrata; Ghosh, Rajesh

    2017-09-01

    The goal of this study is to develop a realistic three dimensional FE model of intact ankle joint. Three dimensional FE model of the intact ankle joint was developed using computed tomography data sets. The effect of muscle force, ligaments and proper material property distribution of bone on stress distribution across the intact ankle joint was studied separately. Present study indicates bone material property, ligaments and muscle force have influence on stress distribution across the ankle joint. Proper bone material, ligaments and muscle must be considered in the computational model for pre-clinical analysis of ankle prosthesis.

  18. Biomechanical Evaluation of an Electric Power-Assisted Bicycle by a Musculoskeletal Model

    Science.gov (United States)

    Takehara, Shoichiro; Murakami, Musashi; Hase, Kazunori

    In this study, we construct an evaluation system for the muscular activity of the lower limbs when a human pedals an electric power-assisted bicycle. The evaluation system is composed of an electric power-assisted bicycle, a numerical simulator and a motion capture system. The electric power-assisted bicycle in this study has a pedal with an attached force sensor. The numerical simulator for pedaling motion is a musculoskeletal model of a human. The motion capture system measures the joint angles of the lower limb. We examine the influence of the electric power-assisted force on each muscle of the human trunk and legs. First, an experiment of pedaling motion is performed. Then, the musculoskeletal model is calculated by using the experimental data. We discuss the influence on each muscle by electric power-assist. It is found that the muscular activity is decreased by the electric power-assist bicycle, and the reduction of the muscular force required for pedaling motion was quantitatively shown for every muscle.

  19. Development of Power Assisting Suit

    Science.gov (United States)

    Yamamoto, Keijiro; Ishii, Mineo; Hyodo, Kazuhito; Yoshimitsu, Toshihiro; Matsuo, Takashi

    In order to realize a wearable power assisting suit for assisting a nurse to carry a patient in her arms, the power supply and control systems of the suit have to be miniaturized, and it has to be wireless and pipeline-less. The new wearable suit consists of shoulders, arms, back, waist and legs units to be fitted on the nurse's body. The arms, waist and legs have new pneumatic rotary actuators driven directly by micro air pumps supplied by portable Ni-Cd batteries. The muscle forces are sensed by a new muscle hardness sensor utilizing a sensing tip mounted on a force sensing film device. An embedded microcomputer is used for the calculations of control signals. The new wearable suit was applied practically to a human body and a series of movement experiments that weights in the arms were held and taken up and down was performed. Each unit of the suit could transmit assisting torque directly to each joint verifying its practicability.

  20. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2016-08-01

    Full Text Available Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  1. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi

    2016-08-11

    Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  2. Trust: The Key to the Success of Mission Command in the Joint Force

    Science.gov (United States)

    2015-05-18

    Malaysia , Kuala Lumpur: International Conference on ISO9000. Schmidt, Todd A. “Design, Mission Command and the Network: Enabling Organization...trust.pdf. Steele , Dennis. “Setting the Azimuth for Joint Force 2020: Globally Integrated Operations and Mission Command.” Army Magazine, November

  3. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Directory of Open Access Journals (Sweden)

    Kristel Knaepen

    Full Text Available In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support. Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  4. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Science.gov (United States)

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  5. An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint.

    Science.gov (United States)

    Westerhoff, P; Graichen, F; Bender, A; Rohlmann, A; Bergmann, G

    2009-03-01

    To improve implant design, fixation and preclinical testing, implant manufacturers depend on realistic data of loads acting on the shoulder joint. Furthermore, these data can help to optimize physiotherapeutic treatment and to advise patients in their everyday living conditions. Calculated shoulder joint loads vary extremely among different authors [Anglin C, Wyss UP, Pichora DR. Glenohumeral contact forces. Proc Inst Mech Eng [H] 2000;214:637-44]. Additionally the moments acting in the joint caused by friction or incongruent articular surfaces, for example, are not implemented in most models. An instrumented shoulder joint implant was developed to measure the contact forces and the contact moments acting in the glenohumeral joint. This article provides a detailed description of the implant, containing a nine-channel telemetry unit, six load sensors and an inductive power supply, all hermetically sealed inside the implant. The instrumented implant is based on a clinically proven BIOMET Biomodular shoulder replacement and was calibrated before implantation by using complex mathematical calculation routines in order to achieve an average measuring precision of approximately 2%.

  6. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    Science.gov (United States)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  7. Joint Force Quarterly. Issue 41, 2nd Quarter, April 2006

    Science.gov (United States)

    2006-04-01

    companies participated, a million more people would be actively looking for threats. Aguas de Amazonas, a subsidiary of Suez Environnement, a...9 Richard B. Myers, “A Word from the Chair- man,” Joint Force Quarterly 37 (2d Quarter 2005), 5. 10 Wald, 26. 11 “Suez— Aguas de Amazonas Water for...humanitarian duties. They have overseen over 130 humani- tarian projects worth in excess of $7.6 million and ranging from a medical center, to potable

  8. Linear-hall sensor based force detecting unit for lower limb exoskeleton

    Science.gov (United States)

    Li, Hongwu; Zhu, Yanhe; Zhao, Jie; Wang, Tianshuo; Zhang, Zongwei

    2018-04-01

    This paper describes a knee-joint human-machine interaction force sensor for lower-limb force-assistance exoskeleton. The structure is designed based on hall sensor and series elastic actuator (SEA) structure. The work we have done includes the structure design, the parameter determination and dynamic simulation. By converting the force signal into macro displacement and output voltage, we completed the measurement of man-machine interaction force. And it is proved by experiments that the design is simple, stable and low-cost.

  9. Protocol for concomitant temporomandibular joint custom-fitted total joint reconstruction and orthognathic surgery utilizing computer-assisted surgical simulation.

    Science.gov (United States)

    Movahed, Reza; Teschke, Marcus; Wolford, Larry M

    2013-12-01

    Clinicians who address temporomandibular joint (TMJ) pathology and dentofacial deformities surgically can perform the surgery in 1 stage or 2 separate stages. The 2-stage approach requires the patient to undergo 2 separate operations and anesthesia, significantly prolonging the overall treatment. However, performing concomitant TMJ and orthognathic surgery (CTOS) in these cases requires careful treatment planning and surgical proficiency in the 2 surgical areas. This article presents a new treatment protocol for the application of computer-assisted surgical simulation in CTOS cases requiring reconstruction with patient-fitted total joint prostheses. The traditional and new CTOS protocols are described and compared. The new CTOS protocol helps decrease the preoperative workup time and increase the accuracy of model surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty.

    Science.gov (United States)

    Liou, William; Yang, Yang; Petersen-Fitts, Graysen R; Lombardo, Daniel J; Stine, Sasha; Sabesan, Vani J

    2017-04-01

    Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimize performance in rotator cuff-deficient shoulders. These advancements are not without tradeoffs and can have negative biomechanical effects. The objective of this study was to develop an integrated finite element analysis-kinematic model to compare the muscle forces and joint reaction forces (JRFs) of 3 different RSA designs. A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the well-validated OpenSim shoulder model. Static optimizations then allowed for calculation of the individual muscle forces, moment arms, and JRFs relative to net joint moments. Three-dimensional computer models of 3 RSA designs-humeral lateralized design (HLD), glenoid lateralized design, and Grammont design-were integrated, and parametric studies were performed. Overall, there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal rotation and external rotation. The JRFs in abduction and flexion decreased similarly for all RSA designs compared with the normal shoulder model, with the greatest decrease seen in the HLD model. These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in mechanical differences most prominently seen in the deltoid muscle and overall JRFs. Further research using this novel integrated model can help guide continued optimization of RSA design and clinical outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. The importance of position and path repeatability on force at the knee during six-DOF joint motion.

    Science.gov (United States)

    Darcy, Shon P; Gil, Jorge E; Woo, Savio L-Y; Debski, Richard E

    2009-06-01

    Mechanical devices, such as robotic manipulators have been designed to measure joint and ligament function because of their ability to position a diarthrodial joint in six degrees-of-freedom with fidelity. However, the precision and performance of these testing devices vary. Therefore, the objective of this study was to determine the effect of systematic errors in position and path repeatability of two high-payload robotic manipulators (Manipulators 1 and 2) on the resultant forces at the knee. Using a porcine knee, the position and path repeatability of these manipulators were determined during passive flexion-extension with a coordinate measuring machine. The position repeatability of Manipulator 1 was 0.3 mm in position and 0.2 degrees in orientation while Manipulator 2 had a better position repeatability of 0.1 mm in position and 0.1 degrees in orientation throughout the range of positions examined. The corresponding variability in the resultant force at the knee for these assigned positions was 32+/-33 N for Manipulator 1 and 4+/-1 N for Manipulator 2. Furthermore, the repeatability of the trajectory of each manipulator while moving between assigned positions (path repeatability) was 0.8 mm for Manipulator 1 while the path repeatability for Manipulator 2 was improved (0.1 mm). These path discrepancies produced variability in the resultant force at the knee of 44+/-24 and 21+/-8 N, respectively, for Manipulators 1 and 2 primarily due to contact between the articular surfaces of the tibia and femur. Therefore, improved position and path repeatability yields lower variability in the resultant forces at the knee. Although position repeatability has been the most common criteria for evaluating biomechanical testing devices, the current study has clearly demonstrated that path repeatability can have an even larger effect on the variability in resultant force at the knee. Consequently, the repeatability of the path followed by the joint throughout its prescribed

  12. Operational Maneuver from the Sea and Amphibious Command Relationships: Is It time for a Joint Force Amphibious Component Commander?

    National Research Council Canada - National Science Library

    Bennett, Michael

    2004-01-01

    .... In a joint community that is becoming increasingly dependant on the use of functional component commanders in the execution of major operations, the need for a Joint Force Amphibious Component Commander (JFAMCC...

  13. The influence of simulated transversus abdominis muscle force on sacroiliac joint flexibility during asymmetric moment application to the pelvis.

    Science.gov (United States)

    Gnat, Rafael; Spoor, Kees; Pool-Goudzwaard, Annelies

    2015-10-01

    The role of so-called local muscle system in motor control of the lower back and pelvis is a subject of ongoing debate. Prevailing beliefs in stabilizing function of this system were recently challenged. This study investigated the impact of in vitro simulated force of transversely oriented fibres of the transversus abdominis muscle (a part of the local system) on flexibility of the sacroiliac joint during asymmetric moment application to the pelvis. In 8 embalmed specimens an incremental moment was applied in the sagittal plane to one innominate with respect to the fixed contralateral innominate. Ranges of motion of the sacroiliac joint were recorded using the Vicon Motion Capture System. Load-deformation curves were plotted and flexibility of the sacroiliac joint was calculated separately for anterior and posterior rotations of the innominate, with and without simulated muscle force. Flexibility of the sacroiliac joint was significantly bigger during anterior rotation of the innominate, as compared to posterior rotation (Anova Psacroiliac joint was demonstrated. Earlier hypotheses suggesting a stiffening influence of this muscle on the pelvis cannot be confirmed. Consistent with previous findings smaller flexibility of the joint recorded during posterior rotation of the innominate may be of clinical importance for physio- and manual therapists. However, major limitations of the study should be acknowledged: in vitro conditions and simulation of only solitary muscle force. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Novel swing-assist un-motorized exoskeletons for gait training

    Directory of Open Access Journals (Sweden)

    Banala Sai K

    2009-07-01

    Full Text Available Abstract Background Robotics is emerging as a promising tool for functional training of human movement. Much of the research in this area over the last decade has focused on upper extremity orthotic devices. Some recent commercial designs proposed for the lower extremity are powered and expensive – hence, these could have limited affordability by most clinics. In this paper, we present a novel un-motorized bilateral exoskeleton that can be used to assist in treadmill training of motor-impaired patients, such as with motor-incomplete spinal cord injury. The exoskeleton is designed such that the human leg will have a desirable swing motion, once it is strapped to the exoskeleton. Since this exoskeleton is un-motorized, it can potentially be produced cheaply and could reduce the physical demand on therapists during treadmill training. Results A swing-assist bilateral exoskeleton was designed and fabricated at the University of Delaware having the following salient features: (i The design uses torsional springs at the hip and the knee joints to assist the swing motion. The springs get charged by the treadmill during stance phase of the leg and provide propulsion forces to the leg during swing. (ii The design of the exoskeleton uses simple dynamic models of sagittal plane walking, which are used to optimize the parameters of the springs so that the foot can clear the ground and have a desirable forward motion during walking. The bilateral exoskeleton was tested on a healthy subject during treadmill walking for a range of walking speeds between 1.0 mph and 4.0 mph. Joint encoders and interface force-torque sensors mounted on the exoskeleton were used to evaluate the effectiveness of the exoskeleton in terms of the hip and knee joint torques applied by the human during treadmill walking. Conclusion We compared two different cases. In case 1, we estimated the torque applied by the human joints when walking with the device using the joint kinematic

  15. Microstructure-sensitive flow stress modeling for force prediction in laser assisted milling of Inconel 718

    Directory of Open Access Journals (Sweden)

    Pan Zhipeng

    2017-01-01

    Full Text Available Inconel 718 is a typical hard-to-machine material that requires thermally enhanced machining technology such as laser-assisted milling. Based upon finite element analysis, this study simulates the forces in the laser-assisted milling process of Inconel 718 considering the effects of grain growth due to γ' and γ" phases. The γ" phase is unstable and becomes the δ phase, which is likely to precipitate at a temperature over 750 °C. The temperature around the center of spot in the experiments is 850 °C, so the phase transformation and grain growth happen throughout the milling process. In the analysis, this study includes the microstructure evolution while accounting for the effects of dynamic recrystallization and grain growth through the Avrami model. The grain growth reduces the yield stress and flow stress, which improves the machinability. In finite element analysis (FEA, several boundary conditions of temperature varying with time are defined to simulate the movement of laser spot, and the constitutive model is described by Johnson-Cook equation. In experiments, this study collects three sets of cutting forces and finds that the predicted values are in close agreements with measurements especially in feed direction, in which the smallest error is around 5%. In another three simulations, this study also examines the effect of laser preheating on the cutting forces by comparison with a traditional milling process without laser assist. When the laser is off, the forces increase in all cases, which prove the softening effect of laser-assisted milling. In addition, when the axial depth of milling increases, the laser has a more significant influence, especially in axial direction, in which the force with laser is more than 18% smaller than the one without laser. Overall, this study validates the influence of laser-assisted milling on Inconel 718 by predicting the cutting forces in FEA.

  16. Centralized Command and Control of Theater Missile Defense: The Joint Force Missile Defense Component Coordinator

    National Research Council Canada - National Science Library

    Bucey, William H

    2006-01-01

    .... The numerous commands, decentralized command and control, and limited and expensive resources involved in TMD require changes to the joint doctrine in order to provide unity of command and economy of force...

  17. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature

    Directory of Open Access Journals (Sweden)

    Chongjun Yang

    2018-02-01

    Full Text Available Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  18. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature.

    Science.gov (United States)

    Yang, Chongjun; Xie, Yu; Liu, Shuang; Sun, Dong

    2018-02-12

    Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  19. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  20. A Joint Force Medical Command is Required to Fix Combat Casualty Care

    Science.gov (United States)

    2017-10-05

    DISTRIBUTION STATEMENT: A Approved for Public Release Distribution is Unlimited The views expressed herein are those of the author(s) and do not...MHS) is required to provide medical operational forces for military and contingency operations while also providing services that maintain a healthy...provide timely support of joint forcible entry or other contingencies requiring rapid response. Further, the complexity and cost of the beneficiary

  1. How operator admittance affects the response of a teleoperation system to assistive forces – A model analytic study and simulation

    International Nuclear Information System (INIS)

    Wildenbeest, J.G.W.; Abbink, D.A.; Boessenkool, H.; Heemskerk, C.J.M.; Koning, J.F.

    2013-01-01

    Highlights: ► We developed a computational model of a human operator controlling a teleoperation system based on feedforward control, while performing a free-space motion. ► We studied how assistive forces affect the response of the combined system of telemanipulator and operator, when operator admittance changes due to task instruction or arm configuration. ► Inappropriate assistive forces can lead to assistive forces that are either not perceived, or deflect the combined system; assistive forces should be tailored to operator admittance. ► It is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail. -- Abstract: Haptic shared control is a promising approach to increase the effectiveness of remote handling operations. While in haptic shared control the operator is continuously guided with assistive forces, the operator's response to forces is not fully understood. This study describes the development of a computational model of a human operator controlling a teleoperation system based on feedforward control. In a simulation, the operator's response to repulsive forces in free-space motions was modeled for two degrees of freedom, for two operator endpoint admittances (estimated by means of closed-loop identification techniques). The simulation results show that similar repulsive forces lead to substantial discrepancies in response when admittance settings mismatch; wrongly estimated operator admittances can lead to assistive forces that are either not perceived, or deflect the combined system of human operator and telemanipulator. It is concluded that assistive forces should be tailored to the arm configuration and the type of task performed. In order to utilize haptic shared control to its full potential, it is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail

  2. How operator admittance affects the response of a teleoperation system to assistive forces – A model analytic study and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wildenbeest, J.G.W., E-mail: j.g.w.wildenbeest@tudelft.nl [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2626 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Abbink, D.A. [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2626 CD Delft (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute of Fundamental Energy Research), Association EUROTOM-FOM, Partner in the Trilateral Eurogio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M.; Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); FOM Institute DIFFER (Dutch Institute of Fundamental Energy Research), Association EUROTOM-FOM, Partner in the Trilateral Eurogio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2013-10-15

    Highlights: ► We developed a computational model of a human operator controlling a teleoperation system based on feedforward control, while performing a free-space motion. ► We studied how assistive forces affect the response of the combined system of telemanipulator and operator, when operator admittance changes due to task instruction or arm configuration. ► Inappropriate assistive forces can lead to assistive forces that are either not perceived, or deflect the combined system; assistive forces should be tailored to operator admittance. ► It is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail. -- Abstract: Haptic shared control is a promising approach to increase the effectiveness of remote handling operations. While in haptic shared control the operator is continuously guided with assistive forces, the operator's response to forces is not fully understood. This study describes the development of a computational model of a human operator controlling a teleoperation system based on feedforward control. In a simulation, the operator's response to repulsive forces in free-space motions was modeled for two degrees of freedom, for two operator endpoint admittances (estimated by means of closed-loop identification techniques). The simulation results show that similar repulsive forces lead to substantial discrepancies in response when admittance settings mismatch; wrongly estimated operator admittances can lead to assistive forces that are either not perceived, or deflect the combined system of human operator and telemanipulator. It is concluded that assistive forces should be tailored to the arm configuration and the type of task performed. In order to utilize haptic shared control to its full potential, it is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail.

  3. Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint.

    Science.gov (United States)

    Beil, Jonas; Marquardt, Charlotte; Asfour, Tamim

    2017-07-01

    Kinematic compatibility is of paramount importance in wearable robotic and exoskeleton design. Misalignments between exoskeletons and anatomical joints of the human body result in interaction forces which make wearing the exoskeleton uncomfortable and even dangerous for the human. In this paper we present a kinematically compatible design of an exoskeleton hip to reduce kinematic incompatibilities, so called macro- and micro-misalignments, between the human's and exoskeleton's joint axes, which are caused by inter-subject variability and articulation. The resulting design consists of five revolute, three prismatic and one ball joint. Design parameters such as range of motion and joint velocities are calculated based on the analysis of human motion data acquired by motion capture systems. We show that the resulting design is capable of self-aligning to the human hip joint in all three anatomical planes during operation and can be adapted along the dorsoventral and mediolateral axis prior to operation. Calculation of the forward kinematics and FEM-simulation considering kinematic and musculoskeletal constraints proved sufficient mobility and stiffness of the system regarding the range of motion, angular velocity and torque admissibility needed to provide 50 % assistance for an 80 kg person.

  4. Summary of 21st joint EU-US transport task force workshop.

    Czech Academy of Sciences Publication Activity Database

    Mantica, P.; Bourdelle, C.; Camenen, Y.; Dejarnac, Renaud; Evans, T.; Görler, T.; Hillesheim, J.; Idomura, Y.; Jakubowski, M.; Ricci, P.; White, A.

    2017-01-01

    Roč. 57, č. 8 (2017), č. článku 087001. ISSN 0029-5515. [Joint EU-US Transport Task Force workshop/21./. Leysin, 05.09.2016-08.09.2016] EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : transport * confinement * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa753f/meta

  5. Quantum jointly assisted cloning of an unknown three-dimensional equatorial state

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-02-01

    We present two schemes for perfectly cloning an unknown single-qutrit equatorial state with assistance from two and N state preparers, respectively. In the first scheme, the sender wishes to teleport an unknown single-qutrit equatorial state from two state preparers to a remote receiver, and then to create a perfect copy of the unknown state at her location. The scheme consists of two stages. The first stage of the scheme requires the usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform single-qutrit projective measurements on their own qutrits from the sender, then the sender can acquire a perfect copy of the unknown state. It is shown that, only if the two state preparers collaborate with each other, the sender can create a copy of the unknown state by means of some appropriate unitary operations. In the second scheme, we generalized the jointly assisted cloning in the first scheme to the case of N state prepares. In the present schemes, the total probability of success for assisted cloning of a perfect copy of the unknown state can reach 1.

  6. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.

    Science.gov (United States)

    Yap, Hong Kai; Lim, Jeong Hoon; Nasrallah, Fatima; Yeow, Chen-Hua

    2017-01-01

    Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL) of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM) and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In conclusion, this paper

  7. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion.

    Science.gov (United States)

    Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A

    2015-06-01

    Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P  .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P  .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Joint Operation Planning

    National Research Council Canada - National Science Library

    2006-01-01

    .... It sets forth joint doctrine to govern the joint operation planning activities and performance of the Armed Forces of the United States in joint operations, and provides the joint doctrinal basis...

  9. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Shamdani, Amir Hossein; Smith, Julian; Zhong, Yongmin

    2014-03-01

    Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed. An actuated modular force feedback-enabled laparoscopic instrument was proposed that is able to measure tip-tissue lateral interaction forces as well as normal grasping forces. The instrument has also the capability to adjust the grasping direction inside the patient body. In order to measure the interaction forces, strain gauges were employed. A series of finite element analyses were performed to gain an understanding of the actual magnitude of surface strains where gauges are applied. The strain gauge bridge configurations were calibrated. A series of experiments was conducted and the results were analysed. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities (e.g. cutter, grasper, dissector). Calibration results of the strain gauges incorporated into the tube and at the base of the instrument presented the monotonic responses for these strain gauge configurations. Experimental results from tissue probing and tissue characterization experiments verified the capability of the proposed instrument in measuring lateral probing forces and characterizing artificial tissue samples of varying stiffness. The proposed instrument can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Effect of Chord Splice Joints on Force Distribution and Deformations in Trusses with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2007-01-01

    The span of roof trusses with punched metal plate fasteners (nail plates) makes it often necessary to use splice joints in the top and bottom chords. In the finite element models used for design of the trusses these splice joints are normally assumed to be either rotationally stiff or pinned....... Timber-to-timber contact and non-linear elastic behaviour are included in the model. Results from tests with joints under fourpoint bending are compared with predictions given by TrussLab, and a good agreement is found. Splice joints in trusses with nail plates may be assumed to be rotationally stiff...... if their deformation has no significant effect upon the distribution of member forces according to Eurocode 5. Two simple guidelines for the design and location of splice joints are given in Eurocode 5 for treating the splice joints as rotationally stiff. The reasonability of these guidelines and the influence...

  11. Security Force Assistance: Building Foreign Security Forces and Joint Doctrine for the Future of U.S. Regional Security

    National Research Council Canada - National Science Library

    Sullivan, Michael D

    2008-01-01

    .... From training the Nicaraguan National Guard to the most recent efforts in Iraq, the U.S. Military has repeatedly shown a need for a coherent and comprehensive plan to develop foreign security forces. U.S...

  12. Kinematics and Dynamics Analysis of a 3-DOF Upper-Limb Exoskeleton with an Internally Rotated Elbow Joint

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2018-03-01

    Full Text Available The contradiction between self-weight and load capacity of a power-assisted upper-limb exoskeleton for material hanging is unresolved. In this paper, a non-anthropomorphic 3-degree of freedom (DOF upper-limb exoskeleton with an internally rotated elbow joint is proposed based on an anthropomorphic 5-DOF upper-limb exoskeleton for power-assisted activity. The proposed 3-DOF upper-limb exoskeleton contains a 2-DOF shoulder joint and a 1-DOF internally rotated elbow joint. The structural parameters of the 3-DOF upper-limb exoskeleton were determined, and the differences and singularities of the two exoskeletons were analyzed. The workspace, the joint torques and the power consumption of two exoskeletons were analyzed by kinematics and dynamics, and an exoskeleton prototype experiment was performed. The results showed that, compared with a typical anthropomorphic upper-limb exoskeleton, the non-anthropomorphic 3-DOF upper-limb exoskeleton had the same actual workspace; eliminated singularities within the workspace; improved the elbow joint force situation; and the maximum elbow joint torque, elbow external-flexion/internal-extension and shoulder flexion/extension power consumption were significantly reduced. The proposed non-anthropomorphic 3-DOF upper-limb exoskeleton can be applied to a power-assisted upper-limb exoskeleton in industrial settings.

  13. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Hong Kai Yap

    2017-10-01

    Full Text Available Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In

  14. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Furmanek Mariusz P.

    2018-03-01

    Full Text Available The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS and force production sense (FPS. The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6. Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976, its relative error (p = 0.295, and its variable error (p = 0.489; the FPS’s absolute error (p = 0.688, its relative error (p = 0.193, and its variable error (p = 0.123. The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group.

  15. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Science.gov (United States)

    Furmanek, Mariusz P.; Słomka, Kajetan J.; Sobiesiak, Andrzej; Rzepko, Marian; Juras, Grzegorz

    2018-01-01

    Abstract The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS) and force production sense (FPS). The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6). Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA) did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976), its relative error (p = 0.295), and its variable error (p = 0.489); the FPS’s absolute error (p = 0.688), its relative error (p = 0.193), and its variable error (p = 0.123). The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group. PMID:29599858

  16. Objective Assessment of Joint Stiffness: A Clinically Oriented Hardware and Software Device with an Application to the Shoulder Joint.

    Science.gov (United States)

    McQuade, Kevin; Price, Robert; Liu, Nelson; Ciol, Marcia A

    2012-08-30

    Examination of articular joints is largely based on subjective assessment of the "end-feel" of the joint in response to manually applied forces at different joint orientations. This technical report aims to describe the development of an objective method to examine joints in general, with specific application to the shoulder, and suitable for clinical use. We adapted existing hardware and developed laptop-based software to objectively record the force/displacement behavior of the glenohumeral joint during three common manual joint examination tests with the arm in six positions. An electromagnetic tracking system recorded three-dimensional positions of sensors attached to a clinician examiner and a patient. A hand-held force transducer recorded manually applied translational forces. The force and joint displacement were time-synchronized and the joint stiffness was calculated as a quantitative representation of the joint "end-feel." A methodology and specific system checks were developed to enhance clinical testing reproducibility and precision. The device and testing protocol were tested on 31 subjects (15 with healthy shoulders, and 16 with a variety of shoulder impairments). Results describe the stiffness responses, and demonstrate the feasibility of using the device and methods in clinical settings.

  17. Development of a procedure for forming assisted thermal joining of tubes

    Science.gov (United States)

    Chen, Hui; Löbbe, Christian; Staupendahl, Daniel; Tekkaya, A. Erman

    2018-05-01

    With the demand of lightweight design in the automotive industry, not only the wall-thicknesses of tubular components of the chassis or spaceframe are continuously decreased. Also the thicknesses of exhaust system parts are reduced to save material and mass. However, thinner tubular parts bring about additional challenges in joining. Welding or brazing methods, which are utilized in joining tubes with specific requirements concerning leak tightness, are sensitive to the gap between the joining partners. Furthermore, a large joining area is required to ensure the durability of the joint. The introduction of a forming step in the assembled state prior to thermal joining can define and control the gap for subsequent brazing or welding. The mechanical pre-joint resulting from the previously described calibration step also results in easier handling of the tubes prior to thermal joining. In the presented investigation, a spinning process is utilized to produce force-fit joints of varying lengths and diameter reduction and form-fit joints with varying geometrical attributes. The spinning process facilitates a high formability and geometrical flexibility, while at the achievable precision is high and the process forces are low. The strength of the joints is used to evaluate the joint quality. Finally, a comparison between joints produced by forming with subsequent brazing and original tube is conducted, which presents the high performance of the developed procedure for forming assisted thermal joining.

  18. Joint force protection advanced security system (JFPASS) "the future of force protection: integrate and automate"

    Science.gov (United States)

    Lama, Carlos E.; Fagan, Joe E.

    2009-09-01

    The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.

  19. 3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model.

    Science.gov (United States)

    Liu, Chao; Moreira, Pedro; Zemiti, Nabil; Poignet, Philippe

    2011-01-01

    Current cardiac surgery faces the challenging problem of heart beating motion even with the help of mechanical stabilizer which makes delicate operation on the heart surface difficult. Motion compensation methods for robotic-assisted beating heart surgery have been proposed recently in literature, but research on force control for such kind of surgery has hardly been reported. Moreover, the viscoelasticity property of the interaction between organ tissue and robotic instrument further complicates the force control design which is much easier in other applications by assuming the interaction model to be elastic (industry, stiff object manipulation, etc.). In this work, we present a three-dimensional force control method for robotic-assisted beating heart surgery taking into consideration of the viscoelastic interaction property. Performance studies based on our D2M2 robot and 3D heart beating motion information obtained through Da Vinci™ system are provided.

  20. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  1. Force sharing and other collaborative strategies in a dyadic force perception task.

    Science.gov (United States)

    Tatti, Fabio; Baud-Bovy, Gabriel

    2018-01-01

    When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often.

  2. The independent effects of speed and propulsive force on joint power generation in walking.

    Science.gov (United States)

    Browne, Michael G; Franz, Jason R

    2017-04-11

    Walking speed is modulated using propulsive forces (F P ) during push-off and both preferred speed and F P decrease with aging. However, even prior to walking slower, reduced F P may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time F P measurements to decouple and investigate the interaction between joint-level coordination, whole-body F P , and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9-1.3m/s). We immediately calculated the average F P from each speed. Subjects then walked at 1.3m/s while completing a series of biofeedback trials with instructions to match their instantaneous F P to their averaged F P from slower speeds. Walking slower decreased F P and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced F P , not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body F P , and walking speed in our aging population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. PVC gel soft actuator-based wearable assist wear for hip joint support during walking

    Science.gov (United States)

    Li, Yi; Hashimoto, Minoru

    2017-12-01

    Plasticized polyvinyl chloride (PVC) gel and mesh electrode-based soft actuators have considerable potential to provide new types of artificial muscle, exhibiting similar responsiveness to biological muscle in air, >10% deformation, >90 kPa output stress, variable stiffness, long cycle life (>5 million cycles), and low power consumption. We have designed and fabricated a prototype of walking assist wear using the PVC gel actuator in previous study. The system has several advantages compared with traditional motor-based exoskeletons, including lower weight and power consumption, and no requirement for rigid external structures that constrain the wearer’s joints. In this study, we designed and established a control and power system to making the whole system portable and wearable outdoors. And we designed two control strategies based on the characteristics of the assist wear and the biological kinematics. In a preliminary experimental evaluation, a hemiparetic stroke patient performed a 10 m to-and-fro straight line walking task with and without assist wear on the affected side. We found that the assist wear enabled natural movement, increasing step length and decreasing muscular activity during straight line walking. We demonstrated that the assistance effect could be adjusted by controlling the on-off time of the PVC gel soft actuators. The results show the effectiveness of the proposed system and suggest the feasibility of PVC gel soft actuators for developing practical soft wearable assistive devices, informing the development of future wearable robots and the other soft actuator technologies for human movement assistance and rehabilitation.

  4. Estimation of Joint Forces and Moments for the In-Run and Take-Off in Ski Jumping Based on Measurements with Wearable Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Grega Logar

    2015-05-01

    Full Text Available This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton–Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers’ body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  5. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors.

    Science.gov (United States)

    Logar, Grega; Munih, Marko

    2015-05-13

    This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton-Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers' body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  6. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics.

    Science.gov (United States)

    Swinnen, Eva; Baeyens, Jean-Pierre; Knaepen, Kristel; Michielsen, Marc; Clijsen, Ron; Beckwée, David; Kerckhofs, Eric

    2015-03-01

    Little attention has been devoted to the thorax and pelvis movements during gait. The aim of this study is to compare differences in the thorax and pelvis kinematics during unassisted walking on a treadmill and during walking with robot assistance (Lokomat-system (Hocoma, Volketswil, Switzerland)). 18 healthy persons walked on a treadmill with and without the Lokomat system at 2kmph. Three different conditions of guidance force (30%, 60% and 100%) were used during robot-assisted treadmill walking (30% body weight support). The maximal movement amplitudes of the thorax and pelvis were measured (Polhemus Liberty™ (Polhemus, Colchester, Vermont, USA) (240/16)). A repeated measurement ANOVA was conducted. Robot-assisted treadmill walking with different levels of guidance force showed significantly smaller maximal movement amplitudes for thorax and pelvis, compared to treadmill walking. Only the antero-posterior tilting of the pelvis was significantly increased during robot-assisted treadmill walking compared to treadmill walking. No significant changes of kinematic parameters were found between the different levels of guidance force. With regard to the thorax and pelvis movements, robot-assisted treadmill walking is significantly different compared to treadmill walking. It can be concluded that when using robot assistance, the thorax is stimulated in a different way than during walking without robot assistance, influencing the balance training during gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    Science.gov (United States)

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep

  8. Output Force Enhancement of Scratch Drive Actuator in Low-Voltage Region by Using Flexible Joint

    Directory of Open Access Journals (Sweden)

    Shawn CHEN

    2010-04-01

    Full Text Available Here a low-voltage scratch drive actuator (LVSDA is proposed by incorporating flexible joint into the conventional SDA to improve performance in low-voltage region. Experimental results show that, at the same total plate length of 80 mm and width of 65 mm, the proposed LVSDA can be actuated as low as 40 V, much lower than 80 V, the minimum required input voltage of the conventional SDA. From finite element analysis by CosmosWorks, yielding effect is found to be a critical factor. Before yielding, LVSDA can provide better performance than SDA at the same input voltage. However, the yielding stress in flexible joint would limit the achievable maximum output force in high-voltage region. By varying joint length, width, or location, LVSDA is shown to be operated in low-voltage region where the conventional SDA can not be operated, and can still provide comparable performance as SDA in high-voltage region.

  9. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force

    Science.gov (United States)

    Rizzo, Joseph F., III; Ayton, Lauren N.

    2014-04-01

    Recent advances in the field of visual prostheses, as showcased in this special feature of Journal of Neural Engineering , have led to promising results from clinical trials of a number of devices. However, as noted by these groups there are many challenges involved in assessing vision of people with profound vision loss. As such, it is important that there is consistency in the methodology and reporting standards for clinical trials of visual prostheses and, indeed, the broader vision restoration research field. Two visual prosthesis research groups, the Boston Retinal Implant Project (BRIP) and Bionic Vision Australia (BVA), have agreed to work cooperatively to establish a multi-national Joint Task Force. The aim of this Task Force will be to develop a consensus statement to guide the methods used to conduct and report psychophysical and clinical results of humans who receive visual prosthetic devices. The overarching goal is to ensure maximum benefit to the implant recipients, not only in the outcomes of the visual prosthesis itself, but also in enabling them to obtain accurate information about this research with ease. The aspiration to develop a Joint Task Force was first promulgated at the inaugural 'The Eye and the Chip' meeting in September 2000. This meeting was established to promote the development of the visual prosthetic field by applying the principles of inclusiveness, openness, and collegiality among the growing body of researchers in this field. These same principles underlie the intent of this Joint Task Force to enhance the quality of psychophysical research within our community. Despite prior efforts, a critical mass of interested parties could not congeal. Renewed interest for developing joint guidelines has developed recently because of a growing awareness of the challenges of obtaining reliable measurements of visual function in patients who are severely visually impaired (in whom testing is inherently noisy), and of the importance of

  10. Force sharing and other collaborative strategies in a dyadic force perception task

    Science.gov (United States)

    Tatti, Fabio

    2018-01-01

    When several persons perform a physical task jointly, such as transporting an object together, the interaction force that each person experiences is the sum of the forces applied by all other persons on the same object. Therefore, there is a fundamental ambiguity about the origin of the force that each person experiences. This study investigated the ability of a dyad (two persons) to identify the direction of a small force produced by a haptic device and applied to a jointly held object. In this particular task, the dyad might split the force produced by the haptic device (the external force) in an infinite number of ways, depending on how the two partners interacted physically. A major objective of this study was to understand how the two partners coordinated their action to perceive the direction of the third force that was applied to the jointly held object. This study included a condition where each participant responded independently and another one where the two participants had to agree upon a single negotiated response. The results showed a broad range of behaviors. In general, the external force was not split in a way that would maximize the joint performance. In fact, the external force was often split very unequally, leaving one person without information about the external force. However, the performance was better than expected in this case, which led to the discovery of an unanticipated strategy whereby the person who took all the force transmitted this information to the partner by moving the jointly held object. When the dyad could negotiate the response, we found that the participant with less force information tended to switch his or her response more often. PMID:29474433

  11. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.

    Science.gov (United States)

    Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk

    2016-04-01

    The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials. © IMechE 2016.

  12. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    Science.gov (United States)

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  13. Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.

    Science.gov (United States)

    Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro

    2014-12-01

    We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Exploring the effects of dimensionality reduction in deep networks for force estimation in robotic-assisted surgery

    Science.gov (United States)

    Aviles, Angelica I.; Alsaleh, Samar; Sobrevilla, Pilar; Casals, Alicia

    2016-03-01

    Robotic-Assisted Surgery approach overcomes the limitations of the traditional laparoscopic and open surgeries. However, one of its major limitations is the lack of force feedback. Since there is no direct interaction between the surgeon and the tissue, there is no way of knowing how much force the surgeon is applying which can result in irreversible injuries. The use of force sensors is not practical since they impose different constraints. Thus, we make use of a neuro-visual approach to estimate the applied forces, in which the 3D shape recovery together with the geometry of motion are used as input to a deep network based on LSTM-RNN architecture. When deep networks are used in real time, pre-processing of data is a key factor to reduce complexity and improve the network performance. A common pre-processing step is dimensionality reduction which attempts to eliminate redundant and insignificant information by selecting a subset of relevant features to use in model construction. In this work, we show the effects of dimensionality reduction in a real-time application: estimating the applied force in Robotic-Assisted Surgeries. According to the results, we demonstrated positive effects of doing dimensionality reduction on deep networks including: faster training, improved network performance, and overfitting prevention. We also show a significant accuracy improvement, ranging from about 33% to 86%, over existing approaches related to force estimation.

  15. WHO-IAEA join forces to fight cancer. New Joint Programme cements partnership, promotes synergy

    International Nuclear Information System (INIS)

    2009-01-01

    On the 26th May 2009 the World Health Organization (WHO) and the International Atomic Energy Agency (IAEA) announced the launch of a Joint Programme on Cancer Control, aimed at strengthening and accelerating efforts to fight cancer in the developing world. WHO and the IAEA have complementary mandates when it comes to fighting cancer. WHO is the leader amongst the UN family of organizations in terms of health improvement for people, particularly in low- and middle-income countries, while the IAEA's expertise in radiation medicine is a vital element of cancer diagnosis and treatment. The Joint Programme will provide the framework for the two Organizations to dovetail their work, building on their areas of expertise to create a more coordinated and robust approach to combating cancer in poor countries. In practical terms, this will mean working with Member States to integrate diagnostic and treatment-related activities into cancer control plans of the country based on WHO cancer control guidelines and strategies in each region. Efforts in the joint programme are focusing on six PACT Model Demonstration Sites (PMDS) in Albania, Nicaragua, Sri Lanka, Tanzania, Viet Nam and Yemen. They will also respond to requests for cancer control assessment and programme development assistance in low- and middle-income countries

  16. What DoD Homeland Security Roles Should the National Guard Fulfill during This Time of Persistent Conflict?

    Science.gov (United States)

    2010-06-11

    JFHQ Joint Forces Headquarters JFHQ-State Joint Forces Headquarters-State JTF Joint Task Force MACA Military Assistance for Civil Authorities...continuously uses defense support for civil authorities (DSCA) and military assistance for civil authorities ( MACA ) interchangeably with the term

  17. Identifying interactive effects of task demands in lifting on estimates of in vivo low back joint loads.

    Science.gov (United States)

    Gooyers, Chad E; Beach, Tyson A C; Frost, David M; Howarth, Samuel J; Callaghan, Jack P

    2018-02-01

    This investigation examined interactions between the magnitude of external load, movement speed and (a)symmetry of load placement on estimates of in vivo joint loading in the lumbar spine during simulated occupational lifting. Thirty-two participants with manual materials handling experience were included in the study. Three-dimensional motion data, ground reaction forces, and activation of six bilateral trunk muscle groups were captured while participants performed lifts with two loads at two movement speeds and using two load locations. L4-L5 joint compression and shear force-time histories were estimated using an EMG-assisted musculoskeletal model of the lumbar spine. Results from this investigation provide strong evidence that known mechanical low back injury risk factors should not be viewed in isolation. Rather, injury prevention efforts need to consider the complex interactions that exist between external task demands and their combined influence on internal joint loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Independent effects of step length and foot strike pattern on tibiofemoral joint forces during running.

    Science.gov (United States)

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-10-01

    The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (-10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.

  19. Relationship between Joint Position Sense, Force Sense, and Muscle Strength and the Impact of Gymnastic Training on Proprioception

    Directory of Open Access Journals (Sweden)

    Bartłomiej Niespodziński

    2018-01-01

    Full Text Available The aims of this study were (1 to assess the relationship between joint position (JPS and force sense (FS and muscle strength (MS and (2 to evaluate the impact of long-term gymnastic training on particular proprioception aspects and their correlations. 17 elite adult gymnasts and 24 untrained, matched controls performed an active reproduction (AR and passive reproduction (PR task and a force reproduction (FR task at the elbow joint. Intergroup differences and the relationship between JPS, FS, and MS were evaluated. While there was no difference in AR or PR between groups, absolute error in the control group was higher during the PR task (7.15 ± 2.72° than during the AR task (3.1 ± 1.93°. Mean relative error in the control group was 61% higher in the elbow extensors than in the elbow flexors during 50% FR, while the gymnast group had similar results in both reciprocal muscles. There was no linear correlation between JPS and FS in either group; however, FR was negatively correlated with antagonist MS. In conclusion, this study found no evidence for a relationship between the accuracy of FS and JPS at the elbow joint. Long-term gymnastic training improves the JPS and FS of the elbow extensors.

  20. Preliminary analysis of force-torque measurements for robot-assisted fracture surgery.

    Science.gov (United States)

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2015-08-01

    Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.

  1. In-vitro analysis of forces in conventional and ultrasonically assisted drilling of bone.

    Science.gov (United States)

    Alam, K; Hassan, Edris; Imran, Syed Husain; Khan, Mushtaq

    2016-05-12

    Drilling of bone is widely performed in orthopaedics for repair and reconstruction of bone. Current paper is focused on the efforts to minimize force generation during the drilling process. Ultrasonically Assisted Drilling (UAD) is a possible option to replace Conventional Drilling (CD) in bone surgical procedures. The purpose of this study was to investigate and analyze the effect of drilling parameters and ultrasonic parameters on the level of drilling thrust force in the presence of water irrigation. Drilling tests were performed on young bovine femoral bone using different parameters such as spindle speeds, feed rates, coolant flow rates, frequency and amplitudes of vibrations. The drilling force was significantly dropped with increase in drill rotation speed in both types of drilling. Increase in feed rate was more influential in raising the drilling force in CD compared to UAD. The force was significantly dropped when ultrasonic vibrations up to 10 kHz were imposed on the drill. The drill force was found to be unaffected by the range of amplitudes and the amount of water supplied to the drilling region in UAD. Low frequency vibrations with irrigation can be successfully used for safe and efficient drilling in bone.

  2. [Computer-assisted temporomandibular joint reconstruction.

    Science.gov (United States)

    Zwetyenga, N; Mommers, X-A; Cheynet, F

    2013-08-02

    Prosthetic replacement of TMJ is gradually becoming a common procedure because of good functional and aesthetic results and low morbidity. Prosthetic models available can be standard or custom-made. Custom-made prosthesis are usually reserved for complex cases, but we think that computer assistance for custom-made prosthesis should be indicated for each case because it gives a greater implant stability and fewer complications. Computer assistance will further enlarge TMJ prosthesis replacement indications. Copyright © 2013. Published by Elsevier Masson SAS.

  3. Joint made of shape memory alloy

    International Nuclear Information System (INIS)

    Amano, Kazuo; Enomoto, Kunio

    1998-01-01

    The present invention provides a joint which is less loosen even if it is used under a circumference undergoing heat cycles such as in a nuclear power plant. Namely, a liner shape has a structure different between the right-to-left, which is different from existent right and left symmetrical shape. A groove is formed on the side of pipeline to be connected, and upon joint connection, the liner is pushed into the groove formed on the pipeline to connect them by the force caused upon transformation of the shape memory alloy. In the joint having such a structure, the clamping force of the joint is less reduced by the effects of heat cycles. Even when the clamping force is reduced by some or other causes, the joint is not dropped off from the pipeline. Even when the joint made of a shape memory alloy of a type using a liner is used as a joint for connecting longitudinal pipelines of a nuclear power plant, the reliability and the safety can be maintained. (I.S.)

  4. Does Service Interdependence Take Jointness Too Far?

    National Research Council Canada - National Science Library

    Downs, Christopher G

    2008-01-01

    ... integration to support and improve the warfighting effectiveness of joint force commanders. The ability to effectively employ joint forces has increased the lethality, agility, and operational precision of the United States military...

  5. Pharmacy faculty workplace issues: findings from the 2009-2010 COD-COF Joint Task Force on Faculty Workforce.

    Science.gov (United States)

    Desselle, Shane P; Peirce, Gretchen L; Crabtree, Brian L; Acosta, Daniel; Early, Johnnie L; Kishi, Donald T; Nobles-Knight, Dolores; Webster, Andrew A

    2011-05-10

    Many factors contribute to the vitality of an individual faculty member, a department, and an entire academic organization. Some of the relationships among these factors are well understood, but many questions remain unanswered. The Joint Task Force on Faculty Workforce examined the literature on faculty workforce issues, including the work of previous task forces charged by the American Association of Colleges of Pharmacy (AACP). We identified and focused on 4 unique but interrelated concepts: organizational culture/climate, role of the department chair, faculty recruitment and retention, and mentoring. Among all 4 resides the need to consider issues of intergenerational, intercultural, and gender dynamics. This paper reports the findings of the task force and proffers specific recommendations to AACP and to colleges and schools of pharmacy.

  6. Extraction of user's navigation commands from upper body force interaction in walker assisted gait.

    Science.gov (United States)

    Frizera Neto, Anselmo; Gallego, Juan A; Rocon, Eduardo; Pons, José L; Ceres, Ramón

    2010-08-05

    The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 +/- 0.358).10(-2) kgf) and delay ((1.897 +/- 0.3697).10(1)ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.

  7. The Association of Academic Health Sciences Libraries' legislative activities and the Joint Medical Library Association/Association of Academic Health Sciences Libraries Legislative Task Force.

    Science.gov (United States)

    Zenan, Joan S

    2003-04-01

    The Association of Academic Health Sciences Libraries' (AAHSL's) involvement in national legislative activities and other advocacy initiatives has evolved and matured over the last twenty-five years. Some activities conducted by the Medical Library Association's (MLA's) Legislative Committee from 1976 to 1984 are highlighted to show the evolution of MLA's and AAHSL's interests in collaborating on national legislative issues, which resulted in an agreement to form a joint legislative task force. The history, work, challenges, and accomplishments of the Joint MLA/AAHSL Legislative Task Force, formed in 1985, are discussed.

  8. Dynamic optimization of walker-assisted FES-activated paraplegic walking: simulation and experimental studies.

    Science.gov (United States)

    Nekoukar, Vahab; Erfanian, Abbas

    2013-11-01

    In this paper, we propose a musculoskeletal model of walker-assisted FES-activated paraplegic walking for the generation of muscle stimulation patterns and characterization of the causal relationships between muscle excitations, multi-joint movement, and handle reaction force (HRF). The model consists of the lower extremities, trunk, hands, and a walker. The simulation of walking is performed using particle swarm optimization to minimize the tracking errors from the desired trajectories for the lower extremity joints, to reduce the stimulations of the muscle groups acting around the hip, knee, and ankle joints, and to minimize the HRF. The results of the simulation studies using data recorded from healthy subjects performing walker-assisted walking indicate that the model-generated muscle stimulation patterns are in agreement with the EMG patterns that have been reported in the literature. The experimental results on two paraplegic subjects demonstrate that the proposed methodology can improve walking performance, reduce HRF, and increase walking speed when compared to the conventional FES-activated paraplegic walking. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Joint Force Quarterly. Number 34, Spring 2003

    Science.gov (United States)

    2003-07-01

    Office of the Chairman LTG George W. Casey, Jr., USA ■ The Joint Staff MG Reginal G. Clemmons , USA ■ National War College A. Denis Clift ■ Joint...vol. 138, no. 91 (June 23, 1992), p. S 8602. 2 Maurice Matloff, editor, American Military History (Washington: Government Printing Office, 1969), p...was basically flawed and historically inac- curate. During the late 1930s General Maurice Gamelin exacerbated a faulty doctrine by shut- ting off all

  10. Objective Assessment of Joint Stiffness: A Clinically Oriented Hardware and Software Device with an Application to the Shoulder Joint

    OpenAIRE

    McQuade, Kevin; Price, Robert; Liu, Nelson; Ciol, Marcia A

    2012-01-01

    Examination of articular joints is largely based on subjective assessment of the “end-feel” of the joint in response to manually applied forces at different joint orientations. This technical report aims to describe the development of an objective method to examine joints in general, with specific application to the shoulder, and suitable for clinical use. We adapted existing hardware and developed laptop-based software to objectively record the force/displacement behavior of the glenohumeral...

  11. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    Science.gov (United States)

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.

  12. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures.

    Science.gov (United States)

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-11-01

    Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries.

  13. Metallic joints for very high vacuum; Joints metalliques pour ultra-vide

    Energy Technology Data Exchange (ETDEWEB)

    Paigne, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    After defining three main types of joint; three types of distribution of the tightening force in the clamps are demonstrated; the distribution of stresses, distortion and displacements in these clamps is then calculated by means of the theory of elasticity. This is followed by experimental results on a particular means of tightening (i.e. screw-clamps). From a brief discussion on the behaviour of the clamps it is possible finally to define other types of joint deriving from the main types originally foreseen. (author) [French] Apres avoir defini trois principaux types de joints, on met en evidence trois types de distribution des forces de serrage des brides; puis on calcule a l'aide de la theorie de l'elasticite la distribution des contraintes, deformations et deplacements dans ces brides. On donne ensuite des resultats experimentaux sur un mode de serrage particulier (cas des serres-joints). Une discussion sommaire sur le comportement des brides permet de definir finalement d'autres types de joints derivant des types principaux envisages initialement. (auteur)

  14. Extraction of user's navigation commands from upper body force interaction in walker assisted gait

    Directory of Open Access Journals (Sweden)

    Pons José L

    2010-08-01

    Full Text Available Abstract Background The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. Results For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 ± 0.358·10-2 kgf and delay ((1.897 ± 0.3697·101ms. A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. Conclusions The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.

  15. Lithological classification assisted by the joint inversion of electrical and seismic data at a control site in northeast Mexico

    Science.gov (United States)

    Infante, Victor; Gallardo, Luis A.; Montalvo-Arrieta, Juan C.; Navarro de León, Ignacio

    2010-02-01

    In this paper, evidence is presented that the combination of geospectral images and geophysical signatures (resistivity-velocity cross-plots) is a good tool to provide a natural visualization of the distribution and variations of lithological features in a test site. This was confirmed by the correlation between the electrical resistivity and seismic velocity values obtained after cross-gradient joint inversion at two profiles and geotechnical information provided by shallow boreholes in a site located in the Earth Sciences School grounds in Linares, Northeastern Mexico. The results obtained from this study show how the cross-gradient joint inversion facilitates the analysis of hydrological estimates and assists in lithological classification of subsurface materials.

  16. Combined arthroscopically assisted coraco- and acromioclavicular stabilization of acute high-grade acromioclavicular joint separations.

    Science.gov (United States)

    Hann, Carmen; Kraus, Natascha; Minkus, Marvin; Maziak, Nina; Scheibel, Markus

    2018-01-01

    Due to high rate of persisting dynamic posterior translation (DPT) following isolated coracoclavicular double-button technique for reconstruction of the acromioclavicular (AC) joint reported in the literature, an additional acromioclavicular cerclage was added to the procedure. The aim of this study was to evaluate the clinical and radiological results of patients with high-grade AC-joint instability treated with a double TightRope technique with an additional percutaneous acromioclavicular cerclage. Fifty-nine patients (6 f/53 m; median age 38.3 (range 21.5-63.4 years) who sustained an acute high-grade AC-joint dislocation (Rockwood type V) were treated using the above-mentioned technique. At the final follow-up, the constant score (CS), the subjective shoulder value (SSV), the Taft score (TF) and the acromioclavicular joint instability score (ACJI) as well as bilateral anteroposterior stress views with 10 kg of axial load and bilateral modified Alexander views were obtained. At a median follow-up of 26.4 (range 20.3-61.0) months, 34 patients scored a median of 90 (33-100) points in the CS, 90 (25-100) % in the SSV, 11 (4-12) points in the TF and 87 (43-100) points in the ACJI. The coracoclavicular (CC) distance was 12.1 (6.5-19.8) mm and the CC difference 2.0 (0.0-11.0) mm. Two patients (5.8%) showed a complete DPT of the AC joint, and fourteen patients (41.1%) displayed a partial DPT. The overall revision rate was 11.7%. Two patients presented implant irritation, one patient a recurrent instability, and one patient suffered from a local infection. The arthroscopically assisted and image-intensifier-controlled double TightRope technique with an additional percutaneous acromioclavicular cerclage leads to good and excellent clinical results after a follow-up of 2 years. The incidence of persisting dynamic horizontal translation is lower compared to isolated coracoclavicular stabilization. Thus, we recommend using the double TightRope implant with an additional

  17. A Vision-Based Approach for Estimating Contact Forces: Applications to Robot-Assisted Surgery

    Directory of Open Access Journals (Sweden)

    C. W. Kennedy

    2005-01-01

    Full Text Available The primary goal of this paper is to provide force feedback to the user using vision-based techniques. The approach presented in this paper can be used to provide force feedback to the surgeon for robot-assisted procedures. As proof of concept, we have developed a linear elastic finite element model (FEM of a rubber membrane whereby the nodal displacements of the membrane points are measured using vision. These nodal displacements are the input into our finite element model. In the first experiment, we track the deformation of the membrane in real-time through stereovision and compare it with the actual deformation computed through forward kinematics of the robot arm. On the basis of accurate deformation estimation through vision, we test the physical model of a membrane developed through finite element techniques. The FEM model accurately reflects the interaction forces on the user console when the interaction forces of the robot arm with the membrane are compared with those experienced by the surgeon on the console through the force feedback device. In the second experiment, the PHANToM haptic interface device is used to control the Mitsubishi PA-10 robot arm and interact with the membrane in real-time. Image data obtained through vision of the deformation of the membrane is used as the displacement input for the FEM model to compute the local interaction forces which are then displayed on the user console for providing force feedback and hence closing the loop.

  18. Rapid changes in corticospinal excitability during force field adaptation of human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Alain, S; Grey, Michael James

    2012-01-01

    measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during...... the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early...... be explained by changes in background TA EMG activity. These effects seemed specific to walking, as similar changes in TA MEP were not seen when seated subjects were tested during static dorsiflexion. These observations suggest that the corticospinal tract contributes to the adaptation of walking...

  19. The joint FAO and IAEA programme

    International Nuclear Information System (INIS)

    Fried, M.; Lamm, C.G.

    1981-01-01

    In 1964 the FAO and IAEA decided to establish a joint programme for the specific purpose of assisting Member States in applying nuclear techniques to develop their food and agriculture. As a result, the Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy and Agriculture Development was established. The objectives of this joint FAO/IAEA programme are to exploit the potential of isotopes and radiation applications in research and development to increase and stabilize agriculture production, to reduce production costs, to improve the quality of food, to protect agricultural products from spoilage and losses, and to minimize pollution of food and agricultural environment. The activities of the joint programme, which are briefly described, can be grouped under three main headings: co-ordination and support of research; technical assistance including training; and dissemination of information. Tables are shown giving a breakdown of 311 research contracts and agreements held with institutes in Member States and 86 technical assistance projects in 46 developing countries, providing training, expertise and specialized equipment

  20. Joint Forces Command - United Assistance Fiscal Triad

    Science.gov (United States)

    2016-05-17

    determine the division of labor and any additional training that would be required before deploying. The Logistics Civil Augmentation Program (LOGCAP...had established for operations in Afghanistan and Iraq. AFRICOM did not have a dedicated funds cen- ter in the General Fund Enterprise Business ...AT UR ES FE AT UR ES al U.S. military personnel and their equipment. Commercial Shipping Demands to ship test, measure- ment, and diagnostic

  1. An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes

    Science.gov (United States)

    Firouzeh, Amir; Paik, Jamie

    2017-05-01

    Under-actuated robots offer multiple degrees of freedom without much added complexity to the actuation and control. Utilizing adjustable stiffness joints in these robots allows us to control their stable configurations and their mode of interaction with the environment. In this paper, we present the design of tendon-driven robotic origami (robogami) joints with adjustable stiffness. The proposed designs allow us to place joints along any direction in the plane of the robot and in the normal direction to the plane. The layer-by-layer manufacturing of robogamis facilitates the design and manufacturing of robots with different arrangement of joints for different applications. We use thermally activated shape memory polymer to control the joint stiffness. The manufacturing of the polymer layer is compatible with the layer-by-layer manufacturing process of the robogamis which results in scalable and customizable robots. To demonstrate, we prototyped an under-actuated gripper with three fingers and only one input actuation. The grasp mode of the gripper is set by adjusting the configuration of the locked joints and modulating the stiffness of the active joints. We present a model to estimate the configuration and the contact forces of the gripper at different settings that will assist us in design and control of future generation of under-actuated robogamis.

  2. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.

    Science.gov (United States)

    Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S

    2015-10-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    Science.gov (United States)

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  4. Joint contact loading in forefoot and rearfoot strike patterns during running.

    Science.gov (United States)

    Rooney, Brandon D; Derrick, Timothy R

    2013-09-03

    Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (pstrike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Solder joint technology materials, properties, and reliability

    CERN Document Server

    Tu, King-Ning

    2007-01-01

    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  6. Force Protection and Command Relationships: Who's Responsible

    National Research Council Canada - National Science Library

    Moller, James

    1998-01-01

    .... This monograph analyzes the joint force protection program by investigating the terms: command, chain of command, command relationship, and how these terms authorize and empower a commander to implement this program across the joint force...

  7. Fighting Fires with Fire - An Airman's Perspective on the Development of Joint Publication 3-09, Doctrine for Joint Fire Support

    National Research Council Canada - National Science Library

    Vittori, Jay

    1999-01-01

    This study is an Air Force doctrinaire's account of the development of Joint Publication 3-09, Doctrine for Joint Fire Support, the most controversial joint military doctrine publication ever produced...

  8. 15 CFR 296.7 - Joint venture registration.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Joint venture registration. 296.7 Section 296.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL... PROGRAM General § 296.7 Joint venture registration. Joint ventures selected for assistance under the...

  9. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.

    Science.gov (United States)

    Talasaz, A; Patel, R V

    2013-01-01

    Tactile sensing and force reflection have been the subject of considerable research for tumor localization in soft-tissue palpation. The work presented in this paper investigates the relevance of force feedback (presented visually as well as directly) during tactile sensing (presented visually only) for tumor localization using an experimental setup close to one that could be applied for real robotics-assisted minimally invasive surgery. The setup is a teleoperated (master-slave) system facilitated with a state-of-the-art minimally invasive probe with a rigidly mounted tactile sensor at the tip and an externally mounted force sensor at the base of the probe. The objective is to capture the tactile information and measure the interaction forces between the probe and tissue during palpation and to explore how they can be integrated to improve the performance of tumor localization. To quantitatively explore the effect of force feedback on tactile sensing tumor localization, several experiments were conducted by human subjects to locate artificial tumors embedded in the ex vivo bovine livers. The results show that using tactile sensing in a force-controlled environment can realize, on average, 57 percent decrease in the maximum force and 55 percent decrease in the average force applied to tissue while increasing the tumor detection accuracy by up to 50 percent compared to the case of using tactile feedback alone. The results also show that while visual presentation of force feedback gives straightforward quantitative measures, improved performance of tactile sensing tumor localization is achieved at the expense of longer times for the user. Also, the quickness and intuitive data mapping of direct force feedback makes it more appealing to experienced users.

  10. Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.

    Science.gov (United States)

    Pau, James W L; Xie, Shane S Q; Pullan, Andrew J

    2012-09-01

    Assistive devices aim to mitigate the effects of physical disability by aiding users to move their limbs or by rehabilitating through therapy. These devices are commonly embodied by robotic or exoskeletal systems that are still in development and use the electromyographic (EMG) signal to determine user intent. Not much focus has been placed on developing a neuromuscular interface (NI) that solely relies on the EMG signal, and does not require modifications to the end user's state to enhance the signal (such as adding weights). This paper presents the development of a flexible, physiological model for the elbow joint that is leading toward the implementation of an NI, which predicts joint motion from EMG signals for both able-bodied and less-abled users. The approach uses musculotendon models to determine muscle contraction forces, a proposed musculoskeletal model to determine total joint torque, and a kinematic model to determine joint rotational kinematics. After a sensitivity analysis and tuning using genetic algorithms, subject trials yielded an average root-mean-square error of 6.53° and 22.4° for a single cycle and random cycles of movement of the elbow joint, respectively. This helps us to validate the elbow model and paves the way toward the development of an NI.

  11. [Efficacy of Sacroiliac Joint Anterior Approach with Double Reconstruction Plate and Computer Assisted Navigation Percutaneous Sacroiliac Screw for Treating Tile C1 Pelvic Fractures].

    Science.gov (United States)

    Tan, Zhen; Fang, Yue; Zhang, Hui; Liu, Lei; Xiang, Zhou; Zhong, Gang; Huang, Fu-Guo; Wang, Guang-Lin

    2017-09-01

    To compare the efficacy of sacroiliac joint anterior approach with double reconstruction plate and computer assisted navigation percutaneous sacroiliac screw for treating Tile C1 pelvic fractures. Fifty patients with pelvic Tile C1 fractures were randomly divided into two groups ( n =25 for each) in the orthopedic department of West China Hospital of Sichuan University from December 2012 to November 2014. Patients in group A were treated by sacroiliac joint dislocation with anterior plate fixation. Patients in group B were treated with computerized navigation for percutaneous sacroiliac screw. The operation duration,intraoperative blood loss,incision length,and postoperative complications (nausea,vomiting,pulmonary infection,wound complications,etc.) were compared between the two groups. The postoperative fracture healing time,postoperative patient satisfaction,and postoperative fractures MATTA scores (to evaluate fracture reduction),postoperative MAJEED function scores,and SF36 scores of the patients were also recorded and compared. No significant differences in baseline characteristics were found between the two groups of patients. All of the patients in both groups had their operations successfully completed. Patients in group B had significantly shorter operations and lower intraoperative blood loss,incision length and postoperative complications than those in group A ( P 0.05). Sacroiliac joint anterior approach with double reconstruction plate and computer assisted navigation percutaneous sacroiliac screws are both effective for treating Tile C1type pelvic fractures,with similar longterm efficacies. However,computer assisted navigation percutaneous sacroiliac screw has the advantages of less trauma,less bleeding,and quicker.

  12. Experimental joint immobilization in guinea pigs. Effects on the knee joint

    Science.gov (United States)

    Marcondesdesouza, J. P.; Machado, F. F.; Sesso, A.; Valeri, V.

    1980-01-01

    In young and adult guinea pigs, the aftermath experimentally induced by the immobilization of the knee joint in hyperextended forced position was studied. Joint immobilization which varied from one to nine weeks was attained by plaster. Eighty knee joints were examined macro and microscopically. Findings included: (1) muscular hypotrophy and joint stiffness in all animals, directly proportional to the length of immobilization; (2) haemoarthrosis in the first week; (3) intra-articular fibrous tissue proliferation ending up with fibrous ankylosis; (4) hyaline articular cartilage erosions; (5) various degrees of destructive menisci changes. A tentative explanation of the fibrous tissue proliferation and of the cartilage changes is offered.

  13. Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials.

    Science.gov (United States)

    Ma, Xuezhi; Liu, Qiushi; Xu, Da; Zhu, Yangzhi; Kim, Sanggon; Cui, Yongtao; Zhong, Lanlan; Liu, Ming

    2017-11-08

    A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 10 10 cm -2 ) and high carrier mobility (up to 48 820 cm 2 V -1 s -1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.

  14. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.

    Science.gov (United States)

    Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David

    2012-01-01

    Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P push-off in different ways, depending on the phase of stance considered.

  15. Comparison between open and arthroscopic-assisted foveal triangular fibrocartilage complex repair for post-traumatic distal radio-ulnar joint instability.

    Science.gov (United States)

    Luchetti, R; Atzei, A; Cozzolino, R; Fairplay, T; Badur, N

    2014-10-01

    The aim of this study was to assess the objective and subjective functional outcomes after foveal reattachment of proximal or complete ulnar-sided triangular fibrocartilage complex lesions by two surgical procedures: an open technique or an arthroscopically assisted repair. The study was done prospectively on 49 wrists affected by post-traumatic distal radio-ulnar joint instability. Twenty-four patients were treated with the open technique (Group 1) and 25 by the arthroscopically assisted technique (Group 2). Magnetic resonance imaging demonstrated a clear foveal detachment of the triangular fibrocartilage complex in 67% of the cases. Arthroscopy showed a positive ulnar-sided detachment of the triangular fibrocartilage complex (positive hook test) in all cases. Distal radio-ulnar joint stability was obtained in all but five patients at a mean follow-up of 6 months. Both groups had improvement of all parameters with significant differences in wrist pain scores, Mayo wrist score, Disability of the Arm, Shoulder and Hand questionnaire and Patient-Rated Wrist/Hand Evaluation questionnaire scores. There were no significant post-operative differences between the two groups in the outcome parameters except for the Disability of the Arm Shoulder and Hand questionnaire score, which was significantly better in Group 2 (p < 0.001). © The Author(s) 2013.

  16. Joint Space Forces in Theater: Coordination is No Longer Sufficient

    National Research Council Canada - National Science Library

    Livergood, Brian K

    2007-01-01

    .... The explosive growth of and demand for joint space capabilities have outstripped the joint community's ability to provide unifying doctrine and a command and control structure to meet the demands...

  17. Role of U.S. Security Assistance in Modernizing the Portuguese Armed Forces: A Historical Analysis.

    Science.gov (United States)

    1986-09-01

    Portuguese Air Force Fiscal Year 1986 IMET/FMS Training Program Security Assistance Management Manual * "Portuguese Navy: A Naval Fleet that is...of the techniques of fiscal management and, within the limits that he had set for the regime, his program of economic recovery succeeded .... What...1984). Currency: Escudo * Agriculture: generally developed; 8.8,% of GDP; main crops - grains, potatoes, olives, grapes (wine); deficit foods - sugar

  18. Arthroscopic-assisted repair of triangular fibrocartilage complex foveal avulsion in distal radioulnar joint injury

    Science.gov (United States)

    Woo, Sung Jong; Jegal, Midum; Park, Min Jong

    2016-01-01

    Background: Disruption of the triangular fibrocartilage complex (TFCC) foveal insertion can lead to distal radioulnar joint (DRUJ) instability accompanied by ulnar-sided pain, weakness, snapping, and limited forearm rotation. We investigated the clinical outcomes of patients with TFCC foveal tears treated with arthroscopic-assisted repair. Materials and Methods: Twelve patients underwent foveal repair of avulsed TFCC with the assistance of arthroscopy between 2011 and 2013. These patients were followed up for an average of 19 months (range 14–25 months). The avulsed TFCC were reattached to the fovea using a transosseous pull-out suture or a knotless suture anchor. At the final followup, the range of motion, grip strength and DRUJ stability were measured as objective outcomes. Subjective outcomes were assessed using the Visual Analog Scale (VAS) for pain, patient rated wrist evaluation (PRWE), Disabilities of the Arm, Shoulder and Hand questionnaire (DASH score) and return to work. Results: Based on the DRUJ stress test, 5 patients had normal stability and 7 patients showed mild laxity as compared with the contralateral side. Postoperatively, the mean range of pronation supination increased from 141° to 166°, and the mean VAS score for pain decreased from 5.3 to 1.7 significantly. The PRWE and DASH questionnaires also showed significant functional improvement. All patients were able to return to their jobs. However, two patients complained of persistent pain. Conclusions: Arthroscopically assisted repair of TFCC foveal injury can provide significant pain relief, functional improvement and restoration of DRUJ stability. PMID:27293286

  19. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.

    Science.gov (United States)

    Ben-Tzvi, Pinhas; Ma, Zhou

    2015-11-01

    This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.

  20. [The effect of verticalization of the resulting force (R) of weight bearing in the hip joint on morphologic characteristics of the medullary canal in the femoral shaft in patients with coxarthrosis].

    Science.gov (United States)

    Jovanović, S

    1992-01-01

    An influence of verticalization of the resulting force of weight-bearing on the hip joint "R" on the morphological characteristics of the medullar canal on the proximal edge of the shaft of femur was researched. Progressive degenerative changes of the hip joint with a consequent sideways limping or changes of the collodiaphysial angle (ccd angle) were the cause of the verticalization of the resulting force "R". The analysis of patients treated and operated on The Orthopaedic Department of the General Hospital Osijek and The Orthopaedic Clinic of The Medical Faculty of The University of Zagreb. The research, undoubtedly, proved that the patients with coxarthrosis and side-ways in the hip or with changed collodiaphysial angle experienced verticalization of the resulting force of weigh-bearing of the hip joint and the proximal edge of femur which caused morphological changes of the medular canal of the shaft of femur.

  1. The influence of lower leg configurations on muscle force variability.

    Science.gov (United States)

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Force-Time Entropy of Isometric Impulse.

    Science.gov (United States)

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  3. Development of mechanical brake assist; Mechanical brake assist no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, M; Shingyoji, S; Nakamura, I; Tagawa, T; Saito, Y; Ishihara, T; Kobayashi, S; Yoshida, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have recognized that there are drivers who cannot apply strong brake pedal force , in spite of the necessity of hard braking in emergencies. We have developed a `mechanical brake assist system` which assists drivers appropriately, according to the drivers` characteristics based on studying the characteristic`s of conditions of drivers applying the brake pedal force in emergency conditions. 2 refs., 7 figs., 1 tab.

  4. Joint Force Quarterly. Number 30, Spring 2002

    Science.gov (United States)

    2002-05-01

    Clemmons , USA ■ National War College A. Denis Clift ■ Joint Military Intelligence College RADM David R. Ellison, USN ■ Naval Postgraduate School BG Mark P...to determine the main axis of the German advance [General Maurice ] Gamelin dislocated his strategic reserves by committing the French Seventh Army to

  5. Hip joint centre position estimation using a dual unscented Kalman filter for computer-assisted orthopaedic surgery.

    Science.gov (United States)

    Beretta, Elisa; De Momi, Elena; Camomilla, Valentina; Cereatti, Andrea; Cappozzo, Aurelio; Ferrigno, Giancarlo

    2014-09-01

    In computer-assisted knee surgery, the accuracy of the localization of the femur centre of rotation relative to the hip-bone (hip joint centre) is affected by the unavoidable and untracked pelvic movements because only the femoral pose is acquired during passive pivoting manoeuvres. We present a dual unscented Kalman filter algorithm that allows the estimation of the hip joint centre also using as input the position of a pelvic reference point that can be acquired with a skin marker placed on the hip, without increasing the invasiveness of the surgical procedure. A comparative assessment of the algorithm was carried out using data provided by in vitro experiments mimicking in vivo surgical conditions. Soft tissue artefacts were simulated and superimposed onto the position of a pelvic landmark. Femoral pivoting made of a sequence of star-like quasi-planar movements followed by a circumduction was performed. The dual unscented Kalman filter method proved to be less sensitive to pelvic displacements, which were shown to be larger during the manoeuvres in which the femur was more adducted. Comparable accuracy between all the analysed methods resulted for hip joint centre displacements smaller than 1 mm (error: 2.2 ± [0.2; 0.3] mm, median ± [inter-quartile range 25%; inter-quartile range 75%]) and between 1 and 6 mm (error: 4.8 ± [0.5; 0.8] mm) during planar movements. When the hip joint centre displacement exceeded 6 mm, the dual unscented Kalman filter proved to be more accurate than the other methods by 30% during multi-planar movements (error: 5.2 ± [1.2; 1] mm). © IMechE 2014.

  6. Restructuring to Achieve Joint Engineer Integration and Transformation

    National Research Council Canada - National Science Library

    Kelly, Paul

    2003-01-01

    .... Increased joint engineer operations, including new homeland defense support requirements, transformation of the joint force, and the growing need for efficient use of scarce engineer resources...

  7. Theater Logistics Management: A Case for a Joint Distribution Solution

    National Research Council Canada - National Science Library

    Garcia, Jr, Mario V

    2008-01-01

    ...) and Joint Force Commanders (JFC). It explores the factors affecting theater distribution and joint theater logistics management including Joint Reception Staging Onward Movement and Integration (JRSOI) operations...

  8. Arthroscopic-assisted Arthrodesis of the Knee Joint With the Ilizarov Technique: A Case Report and Literature Review.

    Science.gov (United States)

    Waszczykowski, Michal; Niedzielski, Kryspin; Radek, Maciej; Fabis, Jaroslaw

    2016-01-01

    Arthrodesis of the knee joint is a mainly a salvage surgical procedure performed in cases of infected total knee arthroplasty, tumor, failed knee arthroplasty or posttraumatic complication.The authors report the case of 18-year-old male with posttraumatic complication of left knee because of motorbike accident 1 year before. He was treated immediately after the injury in the local Department of Orthopaedics and Traumatology. The examination in the day of admission to our department revealed deformation of the left knee, massive scar tissue adhesions to the proximal tibial bone and multidirectional instability of the knee. The plain radiographs showed complete lack of lateral compartment of the knee joint and patella. The patient complained of severe instability and pain of the knee and a consecutive loss of supporting function of his left limb. The authors decided to perform an arthroscopic-assisted fusion of the knee with Ilizarov external fixator because of massive scar tissue in the knee region and the prior knee infection.In the final follow-up after 54 months a complete bone fusion, good functional and clinical outcome were obtained.This case provides a significant contribution to the development and application of low-invasive techniques in large and extensive surgical procedures in orthopedics and traumatology. Moreover, in this case fixation of knee joint was crucial for providing good conditions for the regeneration of damaged peroneal nerve.

  9. Control of compliant anthropomimetic robot joint

    Directory of Open Access Journals (Sweden)

    Svetozarević Bratislav

    2011-01-01

    Full Text Available In this paper we propose a control strategy for a robot joint which fully mimics the typical human joint structure. The joint drive is based on two actuators (dc motors, agonist and antagonist, acting through compliant tendons and forming a nonlinear multi-input multi-output (MIMO system. At any time, we consider one actuator, the puller, as being responsible for motion control, while the role of the other is to keep its tendon force at some appropriate low level. This human-like and energetically efficient approach requires the control of 'switching', or exchanging roles between actuators. Moreover, an algorithm based on adaptive force reference is used to solve a problem of slacken tendons during the switching and to increase the energy efficiency. This approach was developed and evaluated on increasingly complex robot joint configurations, starting with simple and noncompliant system, and finishing with nonlinear and compliant system.

  10. Joint Force Quarterly. Number 7, Spring 1995

    Science.gov (United States)

    1995-02-01

    agencies which use canines . The Air Force also operates a law enforcement school at Lackland for Navy and Air Force “cops.” In ad- dition, English...were not moving as quickly as marines. This incident caused a debate that rages to this day. On Guam, however, the Army (77th Di- vision) and the

  11. Joint Force Quarterly. Number 25, Summer 2000

    Science.gov (United States)

    2000-09-01

    and Staff College Brig Gen Richard B. Bundy, USAF ■ The Joint Staff VADM Arthur K. Cebrowski, USN ■ Naval War College MG Reginal G. Clemmons , USA...1930s, General Maurice Gamelin, established the high command as the sole arbiter of doctrine early in his tenure. From that point, all articles, books

  12. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    Science.gov (United States)

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  13. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.

    Science.gov (United States)

    Jung, Ku Youl; Min, Byoung-Chul; Ahn, Chiyui; Choi, Gyung-Min; Shin, Il-Jae; Park, Seung-Young; Rhie, Kungwon; Shin, Kyung-Ho

    2013-09-01

    We present a fabrication method for nano-scale magnetic tunnel junctions (MTJs), employing e-beam lithography and lift-off process assisted by the probe tip of atomic force microscope (AFM). It is challenging to fabricate nano-sized MTJs on small substrates because it is difficult to use chemical mechanical planarization (CMP) process. The AFM-assisted lift-off process enables us to fabricate nano-sized MTJs on small substrates (12.5 mm x 12.5 mm) without CMP process. The e-beam patterning has been done using bi-layer resist, the poly methyl methacrylate (PMMA)/ hydrogen silsesquioxane (HSQ). The PMMA/HSQ resist patterns are used for both the etch mask for ion milling and the self-aligned mask for top contact formation after passivation. The self-aligned mask buried inside a passivation oxide layer, is readily lifted-off by the force exerted by the probe tip. The nano-MTJs (160 nm x 90 nm) fabricated by this method show clear current-induced magnetization switching with a reasonable TMR and critical switching current density.

  14. Photo-assisted local oxidation of GaN using an atomic force microscope

    International Nuclear Information System (INIS)

    Hwang, J S; Hu, Z S; Lu, T Y; Chen, L W; Chen, S W; Lin, T Y; Hsiao, C-L; Chen, K-H; Chen, L-C

    2006-01-01

    This paper introduces a photo-assisted atomic force microscope (AFM) local oxidation technique which is capable of producing highly smooth oxide patterns with heights reaching several tens of nanometres on both n- and p-types of GaN (and in principle on most semiconductors) without the use of chemicals. The novel methodology relies on UV illumination of the surface of the substrate during conventional AFM local oxidation. A low 1.2 V threshold voltage for n-type GaN was obtained, which can be explained by UV photo-generation of excess electron-hole pairs in the substrate near the junction, thereby reducing the electric field required to drive carrier flow through the tip-sample Schottky barrier. It was demonstrated that the presence or absence of light alone was sufficient to switch the growth of the oxide on or off. The photo-assisted AFM oxidation technique is of immediate interest to the semiconductor industry for the fabrication of GaN-based complementary metal-oxide-semiconductor devices and nanodevices, improves chances for AFM-type data storage, and presents new degrees of freedom for process control technique

  15. Joint reproductive autonomy: does Evans v Amicus Healthcare Ltd provide for a gender-neutral approach to assisted reproductive rights?

    Science.gov (United States)

    Allin, Michael J

    2015-06-01

    Assisted reproductive technology encompasses methods of achieving pregnancy by artificial or partially artificial means. Whilst these methods are more commonly used by couples suffering from problems of infertility, some forms of assistance are employed by fertile couples, for example pre-implantation genetic diagnosis. The overall regulatory framework in the UK is predominantly found in the Human Fertilisation and Embryology Act 1990. The usual rules relating to consent and autonomy apply and were discussed in depth in Evans v Amicus Healthcare Ltd and later in Evans v United Kingdom. This paper considers whether the Evans litigation envisages the possibility of further encouraging joint autonomy in the use of zygotes and whether there is a continuing right to autonomy by the party not bearing the pregnancy. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Hip and knee joint loading during vertical jumping and push jerking.

    Science.gov (United States)

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony M J

    2013-01-01

    The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. The knee experienced mean peak loadings of 2.4-4.6×body weight at the patellofemoral joint, 6.9-9.0×body weight at the tibiofemoral joint, 0.3-1.4×body weight anterior tibial shear and 1.0-3.1×body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4×body weight and the ankle 8.9-10.0×body weight. The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Evaluation of the magnitude of hip joint deformation in subjects with avascular necrosis of the hip joint during walking with and without Scottish Rite orthosis.

    Science.gov (United States)

    Karimi, Mohammad Taghi; Mohammadi, Ali; Ebrahimi, Mohammad Hossein; McGarry, Anthony

    2017-02-01

    The femoral head in subjects with leg calve perthes disease (LCPD) is generally considerably deformed. It is debatable whether this deformation is due to an increase in applied loads, a decrease in bone mineral density or a change in containment of articular surfaces. The aim of this study was to determine the influence of these factors on deformation of the femoral head. Two subjects with LCPD participated in this study. Subject motion and the forces applied on the affected leg were recorded using a motion analysis system (Qualsis TM ) and a Kistler force plate. OpenSim software was used to determine joint contact force of the hip joint whilst walking with and without a Scottish Rite orthosis. 3D Models of hip joints of both subjects were produced by Mimics software. The deformation of femoral bone was determined by Abaqus. Mean values of the force applied on the leg increased while walking with the orthosis. There was no difference between bone mineral density (BMD) of the femoral bone of normal and LCPD sides (p-value>0.05) and no difference between hip joint contact force of normal and LCPD sides. Hip joint containment appeared to decrease follow the use of the orthosis. It can be concluded that the deformation of femoral head in LCPD may not be due to change in BMD or applied load. Although the Scottish Rite orthosis is used mostly to increase hip joint containment, it appears to reduce hip joint contact area. It is recommended that a similar study is conducted using a higher number of subjects. Copyright © 2016 IPEM. All rights reserved.

  18. BIOMECHANICS AND PATHOMECHANICS OF THE PATELLOFEMORAL JOINT

    Science.gov (United States)

    2016-01-01

    The patellofemoral joint is a joint that can be an area of concern for athletes of various sports and ages. The joint is somewhat complex with multiple contact points and numerous tissues that attach to the patella. Joint forces are variable and depend on the degree of knee flexion and whether the foot is in contact with the ground. The sports medicine specialist must have a good working knowledge of the anatomy and biomechanics of the patellofemoral joint in order to treat it effectively. PMID:27904787

  19. Evaluating the effect of three-dimensional visualization on force application and performance time during robotics-assisted mitral valve repair.

    Science.gov (United States)

    Currie, Maria E; Trejos, Ana Luisa; Rayman, Reiza; Chu, Michael W A; Patel, Rajni; Peters, Terry; Kiaii, Bob B

    2013-01-01

    The purpose of this study was to determine the effect of three-dimensional (3D) binocular, stereoscopic, and two-dimensional (2D) monocular visualization on robotics-assisted mitral valve annuloplasty versus conventional techniques in an ex vivo animal model. In addition, we sought to determine whether these effects were consistent between novices and experts in robotics-assisted cardiac surgery. A cardiac surgery test-bed was constructed to measure forces applied during mitral valve annuloplasty. Sutures were passed through the porcine mitral valve annulus by the participants with different levels of experience in robotics-assisted surgery and tied in place using both robotics-assisted and conventional surgery techniques. The mean time for both the experts and the novices using 3D visualization was significantly less than that required using 2D vision (P robotic system with either 2D or 3D vision (P robotics-assisted mitral valve annuloplasty than during conventional open mitral valve annuloplasty. This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery.

  20. Study on optimization design of superconducting magnet for magnetic force assisted drug delivery system

    International Nuclear Information System (INIS)

    Fukui, S.; Abe, R.; Ogawa, J.; Oka, T.; Yamaguchi, M.; Sato, T.; Imaizumi, H.

    2007-01-01

    Analytical study on the design of the superconducting magnet for the magnetic force assisted drug delivery system is presented in this paper. The necessary magnetic field condition to reside the magnetic drug particle in the blood vessels is determined by analyzing the particle motion in the blood vessel. The design procedure of the superconducting magnet for the M-DDS is presented and some case studies are conducted. The analytical results show that the superconducting magnet to satisfy the magnetic field conduction for the M-DDS is practically feasible

  1. UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: From lotus leaf to gecko foot hairs

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Rhokyun; Khademhosseini, Ali; Suh, Kahp Y.

    2009-01-01

    This feature article provides an overview of the recently developed two-step UV-assisted capillary force lithography and its application to fabricating well-defined micro/nanoscale hierarchical structures. This method utilizes an oxygen inhibition effect in the course of UV irradiation curing and a two-step moulding process, to form multiscale hierarchical or suspended nanobridge structures in a rapid and reproducible manner. After a brief description of the fabrication principles, several examples of the two-step UV-assisted moulding technique are presented. In addition, emerging applications of the multiscale hierarchical structures are briefly described. © The Royal Society of Chemistry 2009.

  2. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants.

    Directory of Open Access Journals (Sweden)

    Ines Kutzner

    Full Text Available Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW. Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated

  3. DEEP-SEE: Joint Object Detection, Tracking and Recognition with Application to Visually Impaired Navigational Assistance

    Directory of Open Access Journals (Sweden)

    Ruxandra Tapu

    2017-10-01

    Full Text Available In this paper, we introduce the so-called DEEP-SEE framework that jointly exploits computer vision algorithms and deep convolutional neural networks (CNNs to detect, track and recognize in real time objects encountered during navigation in the outdoor environment. A first feature concerns an object detection technique designed to localize both static and dynamic objects without any a priori knowledge about their position, type or shape. The methodological core of the proposed approach relies on a novel object tracking method based on two convolutional neural networks trained offline. The key principle consists of alternating between tracking using motion information and predicting the object location in time based on visual similarity. The validation of the tracking technique is performed on standard benchmark VOT datasets, and shows that the proposed approach returns state-of-the-art results while minimizing the computational complexity. Then, the DEEP-SEE framework is integrated into a novel assistive device, designed to improve cognition of VI people and to increase their safety when navigating in crowded urban scenes. The validation of our assistive device is performed on a video dataset with 30 elements acquired with the help of VI users. The proposed system shows high accuracy (>90% and robustness (>90% scores regardless on the scene dynamics.

  4. Lateral collateral ligament of the elbow joint

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Vaesel, M T; Søjbjerg, Jens Ole

    1996-01-01

    The structure and kinematics of the lateral collateral ligament of the elbow joint were investigated in 10 cadaveric specimens. The lateral collateral ligament was observed to be a distinct part of the lateral collateral ligament complex. It contains posterior fibers that pass through the annular....... Division of the posterolateral capsule caused no further laxity. Cutting the lateral collateral ligament induced a maximum laxity of 11.8 degrees at 110 degrees of flexion in forced varus and a maximum laxity of 20.6 degrees at 110 degrees of flexion in forced external rotation. The corresponding maximal...... posterior radial head translation was observed at 80 degrees to 100 degrees of flexion and was 5.7 mm in forced varus and 8.1 mm in forced external rotation. This study suggests the lateral collateral ligament to be an important stabilizer of the humeroulnar joint and the radial head in forced varus...

  5. Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling.

    Science.gov (United States)

    Skipper Andersen, Michael; de Zee, Mark; Damsgaard, Michael; Nolte, Daniel; Rasmussen, John

    2017-09-01

    Knowledge of the muscle, ligament, and joint forces is important when planning orthopedic surgeries. Since these quantities cannot be measured in vivo under normal circumstances, the best alternative is to estimate them using musculoskeletal models. These models typically assume idealized joints, which are sufficient for general investigations but insufficient if the joint in focus is far from an idealized joint. The purpose of this study was to provide the mathematical details of a novel musculoskeletal modeling approach, called force-dependent kinematics (FDK), capable of simultaneously computing muscle, ligament, and joint forces as well as internal joint displacements governed by contact surfaces and ligament structures. The method was implemented into the anybody modeling system and used to develop a subject-specific mandible model, which was compared to a point-on-plane (POP) model and validated against joint kinematics measured with a custom-built brace during unloaded emulated chewing, open and close, and protrusion movements. Generally, both joint models estimated the joint kinematics well with the POP model performing slightly better (root-mean-square-deviation (RMSD) of less than 0.75 mm for the POP model and 1.7 mm for the FDK model). However, substantial differences were observed when comparing the estimated joint forces (RMSD up to 24.7 N), demonstrating the dependency on the joint model. Although the presented mandible model still contains room for improvements, this study shows the capabilities of the FDK methodology for creating joint models that take the geometry and joint elasticity into account.

  6. U.S. Joint Special Operations Forces: Two Few, Overworked, Young, Homogenous & Macho to Fulfill the Unconventional Demands of the Long War?

    Science.gov (United States)

    2008-05-28

    OVERWORKED , YOUNG, HOMOGENOUS, & MACHO TO FULFILL THE UNCONVENTIONAL DEMANDS OF THE LONG WAR? SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR...U.S. Joint Special Operations Forces: Two Few, Overworked , Young, Homogenous & Macho to Fulfill the Unconventional Demands of the Long War? 5a...to be the targets of nearly daily mortar, improvised explosive devices (IEDs), and occasional suicide vehicle-borne IED (SVBIED) attacks. It

  7. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports.

    Science.gov (United States)

    Bishop, Lauri; Khan, Moiz; Martelli, Dario; Quinn, Lori; Stein, Joel; Agrawal, Sunil

    2017-10-01

    Many robotic devices in rehabilitation incorporate an assist-as-needed haptic guidance paradigm to promote training. This error reduction model, while beneficial for skill acquisition, could be detrimental for long-term retention. Error augmentation (EA) models have been explored as alternatives. A robotic Tethered Pelvic Assist Device has been developed to study force application to the pelvis on gait and was used here to induce weight shift onto the paretic (error reduction) or nonparetic (error augmentation) limb during treadmill training. The purpose of these case reports is to examine effects of training with these two paradigms to reduce load force asymmetry during gait in two individuals after stroke (>6 mos). Participants presented with baseline gait asymmetry, although independent community ambulators. Participants underwent 1-hr trainings for 3 days using either the error reduction or error augmentation model. Outcomes included the Borg rating of perceived exertion scale for treatment tolerance and measures of force and stance symmetry. Both participants tolerated training. Force symmetry (measured on treadmill) improved from pretraining to posttraining (36.58% and 14.64% gains), however, with limited transfer to overground gait measures (stance symmetry gains of 9.74% and 16.21%). Training with the Tethered Pelvic Assist Device device proved feasible to improve force symmetry on the treadmill irrespective of training model. Future work should consider methods to increase transfer to overground gait.

  8. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    International Nuclear Information System (INIS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  9. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    Science.gov (United States)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  10. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.

    Science.gov (United States)

    Throckmorton, Amy L; Untaroiu, Alexandrina; Lim, D Scott; Wood, Houston G; Allaire, Paul E

    2007-05-01

    The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump

  11. Grasp Assist Device with Automatic Mode Control Logic

    Science.gov (United States)

    Davis, Donald R. (Inventor); Ihrke, Chris A. (Inventor); Laske, Evan (Inventor)

    2018-01-01

    A system includes a glove, sensors, actuator assemblies, and controller. The sensors include load sensors which measure an actual grasping force and attitude sensors which determine a glove attitude. The actuator assembly provides a grasp assist force to the glove. Respective locations of work cells in the work environment and permitted work tasks for each work cell are programmed into the controller. The controller detects the glove location and attitude. A work task is selected by the controller for the location. The controller calculates a required grasp assist force using measured actual grasping forces from the load sensors. The required grasp assist force is applied via the glove using the actuator assembly to thereby assist the operator in performing the identified work task.

  12. US/UK Sensor-To-Shooter Multinational C4 Interoperability Study Force-On-Force Effectiveness Methodology

    National Research Council Canada - National Science Library

    Bailey, Timothy J

    2000-01-01

    .... This methodology has been successfully applied to Army, joint, and multinational studies. The latest of these studies, the US/UK Sensor-To-Shooter Multinational C4 Interoperability Study Force-On-Force Analysis, was an effort to measure the value...

  13. Split Personality: Assessing the Potential for Organizational Identity in Reinforcing U.S. Military Jointness

    Science.gov (United States)

    2015-07-17

    of Identity ...........................................................................................................36 Hybrid -Organizational...force through a theoretical lens, developing a working understanding of military identity. Analysis of the environment will illustrate the hybrid ... departmental civilians, and contractors in the DoD’s employ, and is consistent with CJCS usage. Joint Force. The Joint Force describes a notional

  14. Organizing for Information Operations Within The Joint Task Force

    National Research Council Canada - National Science Library

    McLaughlin, Lawrence

    2003-01-01

    .... Joint doctrine defines information operations as a broad range of capabilities and related activities that include operations security, psychological operations, electronic warfare, physical attack...

  15. Final Environmental Assessment: Replacement Joint Force Headquarters Building, Hanscom Air Force Base Massachusetts

    Science.gov (United States)

    2010-01-22

    Review Assistant, at (508) 389-6361. Sincerely, ~J.J Thomas W. French , Ph.D. Assistant Director Division ofFisheries and Wildlife www. masswildl{(e...doors or COA Cinema Friday. Dec.18. 1 been given the opportunity to windows. The COA would like p.m. Come and relax with a purchase tickets for the...Chang. clarinet. grade ll edo Chang. trombone. e10 1el Davidow. French hom. ell stey. French hom. grade es Gorry. flute. grade 12 Andrew Goulet

  16. Arthroscopically Assisted Reconstruction of Acute Acromioclavicular Joint Dislocations: Anatomic AC Ligament Reconstruction With Protective Internal Bracing—The “AC-RecoBridge” Technique

    Science.gov (United States)

    Izadpanah, Kaywan; Jaeger, Martin; Ogon, Peter; Südkamp, Norbert P.; Maier, Dirk

    2015-01-01

    An arthroscopically assisted technique for the treatment of acute acromioclavicular joint dislocations is presented. This pathology-based procedure aims to achieve anatomic healing of both the acromioclavicular ligament complex (ACLC) and the coracoclavicular ligaments. First, the acromioclavicular joint is reduced anatomically under macroscopic and radiologic control and temporarily transfixed with a K-wire. A single-channel technique using 2 suture tapes provides secure coracoclavicular stabilization. The key step of the procedure consists of the anatomic repair of the ACLC (“AC-Reco”). Basically, we have observed 4 patterns of injury: clavicular-sided, acromial-sided, oblique, and midportion tears. Direct and/or transosseous ACLC repair is performed accordingly. Then, an X-configured acromioclavicular suture tape cerclage (“AC-Bridge”) is applied under arthroscopic assistance to limit horizontal clavicular translation to a physiological extent. The AC-Bridge follows the principle of internal bracing and protects healing of the ACLC repair. The AC-Bridge is tightened on top of the repair, creating an additional suture-bridge effect and promoting anatomic ACLC healing. We refer to this combined technique of anatomic ACLC repair and protective internal bracing as the “AC-RecoBridge.” A detailed stepwise description of the surgical technique, including indications, technical pearls and pitfalls, and potential complications, is given. PMID:26052493

  17. Design and clinical outcome of a novel 3D-printed prosthetic joint replacement for the human temporomandibular joint.

    Science.gov (United States)

    Ackland, David; Robinson, Dale; Lee, Peter Vee Sin; Dimitroulis, George

    2018-05-11

    Stock prosthetic temporomandibular joint replacements come in limited sizes, and do not always encompass the joint anatomy that presents clinically. The aims of this study were twofold. Firstly, to design a personalized prosthetic total joint replacement for the treatment of a patient's end-stage temporomandibular joint osteoarthritis, to implant the prosthesis into the patient, and assess clinical outcome 12-months post-operatively; and secondly, to evaluate the influence of changes in prosthetic condyle geometry on implant load response during mastication. A 48-year-old female patient with Grade-5 osteoarthritis to the left temporomandibular joint was recruited, and a prosthesis developed to match the native temporomandibular joint anatomy. The prosthesis was 3D printed, sterilized and implanted into the patient, and pain and function measured 12-months post-operatively. The prosthesis load response during a chewing-bite and maximum-force bite was evaluated using a personalized multi-body musculoskeletal model. Simulations were performed after perturbing condyle thickness, neck length and head sphericity. Increases in prosthetic condyle neck length malaligned the mandible and perturbed temporomandibular joint force. Changes in condylar component thickness greatly influenced fixation screw stress response, while a more eccentric condylar head increased prosthetic joint-contact loading. Post-operatively, the prosthetic temporomandibular joint surgery reduced patient pain from 7/10 to 1/10 on a visual analog scale, and increased intercisal opening distance from 22 mm to 38 mm. This study demonstrates effectiveness of a personalized prosthesis that may ultimately be adapted to treat a wide-range of end-stage temporomandibular joint conditions, and highlights sensitivity of prosthesis load response to changes in condylar geometry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    Directory of Open Access Journals (Sweden)

    Sakuma Y

    2006-01-01

    Full Text Available AbstractAn atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs. Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  19. Posterolateral elbow joint instability

    DEFF Research Database (Denmark)

    Olsen, Bo Sanderhoff; Søjbjerg, Jens Ole; Nielsen, K K

    1998-01-01

    Thirty-five osteoligamentous elbows were included in a study on the kinematics of posterolateral elbow joint instability during the pivot shift test (PST) before and after separate ligament cuttings in the lateral collateral ligament complex (LCLC). Division of the annular ligament or the lateral...... ulnar collateral ligament caused no laxity during the PST. Division of the lateral collateral ligament caused maximal laxity of 4 degrees and 23 degrees during forced PST in valgus and external rotation (supination), respectively. Cutting of the LCLC at the ulnar or the humeral insertion was necessary...... for any PST stressed elbow joint laxity to occur. Total division of the LCLC induced a maximal laxity of 7.9 degrees and 37 degrees during forced PST in valgus and external rotation (supination), respectively. This study suggests the lateral collateral ligament to be the primary soft tissue constraint...

  20. The influence of cadence and shoes on patellofemoral joint kinetics in runners with patellofemoral pain.

    Science.gov (United States)

    Bonacci, Jason; Hall, Michelle; Fox, Aaron; Saunders, Natalie; Shipsides, Tristan; Vicenzino, Bill

    2018-06-01

    To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain. Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence. Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2-4). Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (ppatellofemoral joint stress by 15% and joint reaction force by 17% (ppatellofemoral joint stress and joint reaction force by 16% and 19% (ppatellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  2. Joint Force Quarterly. Number 31, Summer 2002

    Science.gov (United States)

    2002-09-01

    Reginal G. Clemmons , USA ■ National War College A. Denis Clift ■ Joint Military Intelligence College RADM David R. Ellison, USN ■ Naval Postgraduate...commandfigures in a book by thesame title that is too rarelyread today: a memoir of World War II by Maurice Hankey.1 A small, neat, bald man, Hankey...dialogue is conducted. JFQ N O T E S 1 Maurice Hankey, Supreme Command, 2 vols. (London: George Allen and Unwin, 1960). On the issue of supreme command

  3. Norwegian 1990 sediment data for the North Sea Task Force (NSTF) and the Joint Monitoring Group (JMG)

    Energy Technology Data Exchange (ETDEWEB)

    Green, N.W.; Klungsoeyr, J.

    1994-12-31

    This report presents the 1990 sediment data compiled as part of the Norwegian contribution to the North Sea Task Force Monitoring Master Plan and the Joint Monitoring Programme (JMP). The JMP is ordered under the Oslo and Paris Commissions, which were established to protect the marine environment against anthropogenic contamination. The stations monitored by Norway are spread over the Kattegat, Skagerrak, North Sea south to the Dogger Bank and the Faeroe Islands. The contaminants investigated are mainly selected metals, organochlorines, polycyclic aromatic hydrocarbons, and the samples were collected by gravity cores and grab/box samplers. The raw data and the mean and standard deviations of parallel samples (if relevant) are presented. 6 refs., 2 tabs.

  4. The Case for a Joint Evaluation

    Science.gov (United States)

    2017-01-01

    The Capstone Concept of Joint Operations stresses that “the strength of any Joint Force has always been the combining of unique Service...order. Status Quo of Service Evaluations Across the Services, officers’ careers generally begin with a focus on entry- level technical, managerial ...would retain full control of their current evalu- ation systems. However, the Services’ evaluation systems and information would be fed directly

  5. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.

    Science.gov (United States)

    Lin, Yi-Chung; Walter, Jonathan P; Pandy, Marcus G

    2018-04-18

    We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.

  6. Joint Force Quarterly. Number 9, Autumn 1995

    Science.gov (United States)

    1995-11-01

    Peters, Jr. Production Coordinator Calvin B. Kelley Senior Copy Editor Justin Burkhart Editorial Intern (Summer 1995) The Typography and Design ...J. Rokke ■ C O N T E N T S 2 JFQ / Autumn 1995 ■ O U T O F J O I N T 24 Jointness by Design , Not Accident by Michael C. Vitale ■ J F Q F O R U M...take power, or Iran and Iraq have a free hand, U.S. interests would suffer a serious setback. These factors have altered the region’s geo- graphic

  7. Computer-Assisted Linguistic Analysis of the Peshitta

    NARCIS (Netherlands)

    Roorda, D.; Talstra, Eep; Dyk, Janet; van Keulen, Percy; Sikkel, Constantijn; Bosman, H.J.; Jenner, K.D.; Bakker, Dirk; Volkmer, J.A.; Gutman, Ariel; van Peursen, Wido Th.

    2014-01-01

    CALAP (Computer-Assisted Linguistic Analysis of the Peshitta), a joint research project of the Peshitta Institute Leiden and the Werkgroep Informatica at the Vrije Universiteit Amsterdam (1999-2005) CALAP concerned the computer-assisted analysis of the Peshitta to Kings (Janet Dyk and Percy van

  8. Risk-Based Decision-Making and the Use of Operational Risk Management in Developing a Course of Action (COA) for the Joint Task Force (JTF)

    National Research Council Canada - National Science Library

    Faherty, Denis

    2003-01-01

    .... Operational Risk Management (ORM) is the process that assists the military commander in reducing or offsetting risk and helps him think through his options when faced with force employment and the requirement for risk control for mission success...

  9. Stress radiographs in the evaluation of degenerative femorotibial joint disease

    Energy Technology Data Exchange (ETDEWEB)

    Tallroth, K.; Lindholm, T.S.

    1987-11-01

    Thirty-eight osteoarthrotic knees were examined to assess the widths of the femorotibial joint spaces. Radiographs were exposed with the patient lying, in a standing position, and with an adduction and abduction force. Forced compression of the osteoarthrotic joint compartment caused, on average, 18% greater narrowing than when loading it in the standing position. Compared to the joint space at rest, the non-weight-bearing compartment widened by 16% in the standing position and narrowed by 20% when stress was applied. Furthermore, the results showed an increase in laxity proportional to the degree of arthrosis. Stress radiographs significantly display the real cartilage width of both joint compartments. Knowledge of the condition of the articular cartilage in the non-weight-bearing compartment is important when considering a transfer of loading stresses by means of osteotomy. (orig.)

  10. Stress radiographs in the evaluation of degenerative femorotibial joint disease

    International Nuclear Information System (INIS)

    Tallroth, K.; Lindholm, T.S.

    1987-01-01

    Thirty-eight osteoarthrotic knees were examined to assess the widths of the femorotibial joint spaces. Radiographs were exposed with the patient lying, in a standing position, and with an adduction and abduction force. Forced compression of the osteoarthrotic joint compartment caused, on average, 18% greater narrowing than when loading it in the standing position. Compared to the joint space at rest, the non-weight-bearing compartment widened by 16% in the standing position and narrowed by 20% when stress was applied. Furthermore, the results showed an increase in laxity proportional to the degree of arthrosis. Stress radiographs significantly display the real cartilage width of both joint compartments. Knowledge of the condition of the articular cartilage in the non-weight-bearing compartment is important when considering a transfer of loading stresses by means of osteotomy. (orig.)

  11. Changes in Chopart joint load following tibiotalar arthrodesis: in vitro analysis of 8 cadaver specimen in a dynamic model

    Directory of Open Access Journals (Sweden)

    Herberts T

    2007-08-01

    Full Text Available Abstract Background In the current discussion of surgical treatment of arthroses in the ankle joint, arthrodesis is in competition with artificial joint replacement. Up until now, no valid biomechanical findings have existed on the changes in intraarticular loads following arthrodesis. One argument against tibiotalar arthrodesis is the frequently associated, long-term degeneration of the talonavicular joint, which can be attributed to changes in biomechanical stresses. Methods We used a dynamic model to determine the changes in intraarticular forces and peak-pressure in the talonavicular joint and in the calcaneocuboid joint on 8 cadaver feet under stress in a simulated stance phase following tibiotalar arthrodesis. Results The change seen after arthrodesis was a tendency of relocation of average force and maximum pressure from the lateral onto the medial column of the foot. The average force increased from native 92 N to 100 N upon arthrodesis in the talonavicular joint and decreased in the calcaneocuboid joint from 54 N to 48 N. The peak pressure increased from native 3.9 MPa to 4.4 MPa in the talonavicular joint and in the calcaneocuboid joint from 3.3 MPa to 3.4 MPa. The increase of force and peak pressure on the talonavicular joint and decrease of force on the calcaneocuboid joint is statistically significant. Conclusion The increase in imparted force and peak pressure on the medial column of the foot following tibiotalar arthrodesis, as was demonstrated in a dynamic model, biomechanically explains the clinically observed phenomenon of cartilage degeneration on the medial dorsum of the foot in the long term. As a clinical conclusion from the measurements, it would be desirable to reduce the force imparted on the medial column with displacement onto the lateral forefoot, say by suitable shoe adjustment, in order to achieve a more favourable long-term clinical result.

  12. 7 CFR 760.113 - Refunds; joint and several liability.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Refunds; joint and several liability. 760.113 Section... Agricultural Disaster Assistance Programs § 760.113 Refunds; joint and several liability. (a) In the event that... provided that interest will in all cases run from the date of the original disbursement. (b) All persons...

  13. Joint Counterdrug Operations

    Science.gov (United States)

    1998-02-17

    Chapter II Joint Pub 3-07.4 cocaine HCL production. There are over 150 groups trafficking in cocaine, with cartels centered in Medellin and Cali. These...nontraditional mapping products and several digital mapping data bases for geological information and intelligence systems. • Defense Security Assistance Agency...variety of means. Dissemination means include personal contact, physical transfer or courier of hard copy textual and graphic materials, digital and

  14. Joint kinetic determinants of starting block performance in athletic sprinting.

    Science.gov (United States)

    Brazil, Adam; Exell, Timothy; Wilson, Cassie; Willwacher, Steffen; Bezodis, Ian N; Irwin, Gareth

    2018-07-01

    The aim of this study was to explore the relationships between lower limb joint kinetics, external force production and starting block performance (normalised average horizontal power, NAHP). Seventeen male sprinters (100 m PB, 10.67 ± 0.32 s) performed maximal block starts from instrumented starting blocks (1000 Hz) whilst 3D kinematics (250 Hz) were also recorded during the block phase. Ankle, knee and hip resultant joint moment and power were calculated at the rear and front leg using inverse dynamics. Average horizontal force applied to the front (r = 0.46) and rear (r = 0.44) block explained 86% of the variance in NAHP. At the joint level, many "very likely" to "almost certain" relationships (r = 0.57 to 0.83) were found between joint kinetic data and the magnitude of horizontal force applied to each block although stepwise multiple regression revealed that 55% of the variance in NAHP was accounted for by rear ankle moment, front hip moment and front knee power. The current study provides novel insight into starting block performance and the relationships between lower limb joint kinetic and external kinetic data that can help inform physical and technical training practices for this skill.

  15. Modelling of the Human Knee Joint Supported by Active Orthosis

    Science.gov (United States)

    Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.

    2018-02-01

    The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  16. Modelling of the Human Knee Joint Supported by Active Orthosis

    Directory of Open Access Journals (Sweden)

    Musalimov V.

    2018-02-01

    Full Text Available The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC. The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  17. Specific adaptations of neuromuscular control and knee joint stiffness following sensorimotor training.

    Science.gov (United States)

    Gruber, M; Bruhn, S; Gollhofer, A

    2006-08-01

    The aim of this study was to examine how fixations of the ankle joint during sensorimotor training (SMT) influence adaptations in mechanical stiffness and neuromuscular control of the knee joint. Sixty-three healthy subjects were randomly assigned to three training groups that differed in their degree of ankle joint fixation, which was either barefooted, with an ankle brace or with a ski boot. Mechanical knee joint stiffness and reflex control of m. vastus medialis, m. vastus lateralis, m. biceps femoris, and m. semitendinosus were tested during force controlled anterior tibial displacements. This force was applied as both a fast and a slow stimulus. After the training period the group that trained barefooted showed an increase in mechanical stiffness of the knee joint from 79 +/- 21 (Mean +/- SD) N/mm to 110 +/- 38 N/mm (p boots was able to improve knee joint stiffness from 67 +/- 26 N/mm to 96 +/- 47 N/mm (p knee joint injuries.

  18. Experimental investigation on the failure of T-joints at elevated temperature under unaxial loading

    Science.gov (United States)

    Bahri, N. F.; Afendi, M.; Razlan, Z. M.; Nor, A.; Baharuddin, S. A.

    2017-09-01

    In this study, the mechanical properties and maximum failure load of a bulk and T-joints subjected to tensile loading were investigated experimentally. A bulk and the T-joint specimens were fabricated and tested in order to investigate the effects of temperature conditions on the failure of the joints. The adherent and adhesive used for T-joint are 304 L stainless steel and Hysol E 214 HP with the adhesive thickness of 1.0 mm. The tensile test of the bulk specimen and adhesively T-joint were conducted by using a universal testing machine (UTM) at room temperature (RT), 55 °C, 75 °C, 100 °C and 120 °C, respectively. It was found that as the temperature increases, the failure force strength decreases for bulk and T-joint specimen. Data obtained from the tests at 120 °C showed the failure force of the bulk adhesive decreased by approximately 44 % compared to the specimen tested at RT. Next, the bulk of Hysol failure force result was compared with Araldite at RT and 100 °C. Araldite data was taken from the previous study [1]. It has also been found that the bulk for Hysol has higher failure force compared to Araldite at RT and 100 °C.

  19. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  20. Range of Motion of the Ankle According to Pushing Force, Gender and Knee Position.

    Science.gov (United States)

    Cho, Kang Hee; Jeon, Yumi; Lee, Hyunkeun

    2016-04-01

    To investigate the difference of range of motion (ROM) of ankle according to pushing force, gender and knee position. One hundred and twenty-eight healthy adults (55 men, 73 women) between the ages of 20 and 51, were included in the study. One examiner measured the passive range of motion (PROM) of ankle by Dualer IQ Inclinometers and Commander Muscle Testing. ROM of ankle dorsiflexion (DF) and plantarflexion (PF) according to change of pushing force and knee position were measured at prone position. There was significant correlation between ROM and pushing force, the more pushing force leads the more ROM at ankle DF and ankle PF. Knee flexion of 90° position showed low PF angle and high ankle DF angle, as compared to the at neutral position of knee joint. ROM of ankle DF for female was greater than for male, with no significant difference. ROM of ankle PF for female was greater than male regardless of the pushing force. To our knowledge, this is the first study to assess the relationship between pushing force and ROM of ankle joint. There was significant correlation between ROM of ankle and pushing force. ROM of ankle PF for female estimated greater than male regardless of the pushing force and the number of measurement. The ROM of the ankle is measured differently according to the knee joint position. Pushing force, gender and knee joint position are required to be considered when measuring the ROM of ankle joint.

  1. Management of chronic unstable acromioclavicular joint injuries.

    Science.gov (United States)

    Cisneros, Luis Natera; Reiriz, Juan Sarasquete

    2017-12-01

    The acromioclavicular joint represents the link between the clavicle and the scapula, which is responsible for the synchronized dynamic of the shoulder girdle. Chronic acromioclavicular joint instability involves changes in the orientation of the scapula, which provokes cinematic alterations that might result in chronic pain. Several surgical strategies for the management of patients with chronic and symptomatic acromioclavicular joint instability have been described. The range of possibilities includes anatomical and non-anatomical techniques, open and arthroscopy-assisted procedures, and biological and synthetic grafts. Surgical management of chronic acromioclavicular joint instability should involve the reconstruction of the torn ligaments because it is accepted that from three weeks after the injury, these structures may lack healing potential. Here, we provide a review of the literature regarding the management of chronic acromioclavicular joint instability. Expert opinion, Level V.

  2. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during ... Alumina ceramics are used in wide range of applications due to their .... temperature were recorded by DAQSOFT software in a sep- .... Tubes: Design and Development Capabilities (MTDDC)',.

  3. Joint Experimentation on Scalable Parallel Processors (JESPP)

    National Research Council Canada - National Science Library

    Davis, Dan M; Lucas, Robert F; Yao, Ka-Thia; Wagenbrath, Gene

    2006-01-01

    ...) required expansion of its joint semi-automated forces (JSAF) code capabilities; including number of entities, behavior complexity, terrain resolution, infrastructure features, environmental realism, and analytical potential...

  4. Joint Chiefs of Staff > Directorates > Directorates of Management

    Science.gov (United States)

    Personnel Series 2-0 Intelligence Series 3-0 Operations Series 4-0 Logistics Series 5-0 Planning Series 6-0 J1 | Manpower and Personnel J2 | Joint Staff Intelligence J3 | Operations J4 | Logistics Quadrilateral Logistics Forum J5 | Strategic Plans and Policy J6 | C4 & Cyber J7 | Joint Force Development

  5. Knee joint passive stiffness and moment in sagittal and frontal planes markedly increase with compression.

    Science.gov (United States)

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2015-01-01

    Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position-dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus-valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.

  6. Joint Force Quarterly. Number 22, Summer 1999

    Science.gov (United States)

    1999-08-01

    combine to present a pes- simistic view of human nature as prone to irra- tional hatred and violence , extrapolating present ethnic and religious...serve as an Internet-based, cooper- ative, interactive, multiplayer opposing force simulator for exercises, experimen- tation, and rehearsals in

  7. Integrating the Joint Force: Improving Coordination Among The Component Commanders

    National Research Council Canada - National Science Library

    Krogman, Kenneth

    2003-01-01

    .... By examining one aspect of joint fire support, the Fire Support Coordination Line (FSCL), the operational level implications of doctrine, and implications regarding horizontal integration and coordination become clear...

  8. Radiology of disorders of the sacroiliac joints

    International Nuclear Information System (INIS)

    Resnik, C.S.; Resnick, D.

    1985-01-01

    Many disorders can lead to radiological abnormalities of the sacroiliac joints. Some present a characteristic appearance, while others may be diagnosed by analyzing both the appearance and the distribution of findings. Computed tomography provides excellent visualization of the sacroiliac joints and can be helpful in the evaluation of articular disorders as well as pelvic trauma and neoplasms. Radionuclide scanning of bone can also be used to evaluate the sacroiliac joints, particularly if the two sides are compared with the assistance of computer-generated activity counts. This article describes the radiological features of these various disorders that often allow an exact diagnosis to be made

  9. Effects of Novel Guidance Tubing Gait on Electromyographic Neuromuscular Imbalance and Joint Angular Kinematics During Locomotion in Hemiparetic Stroke Patients.

    Science.gov (United States)

    Lee, Jeong J; You, Joshua Sung H

    2017-12-01

    To compare the immediate effects of conventional treadmill gait and guidance tubing gait (GTG) on electromyographic neuromuscular imbalance and knee joint kinematics in hemiparetic gait. Case-control study. University medical center. Participants (N=33; 19 men, 14 women) were patients with hemiparetic stroke (n=18 [experimental]; mean age ± SD, 39.2±16.8y) and healthy controls (n=15; mean age ± SD, 26.3±2.6y). The GTG was provided for approximately 30 minutes and involved application of an assistive guidance force using the tubing, specifically to improve knee joint stabilization during midstance and increase knee joint flexion during midswing phase. Clinical tests included the Korean Mini-Mental State Examination, Modified Ashworth Scale, Berg Balance Scale, manual muscle test, and knee joint range of motion and sensory tests. Knee joint muscle electromyographic and kinematic analyses were determined at pretest and posttest. After the intervention, the experimental group showed significantly greater improvements in balanced quadriceps and hamstring electromyographic coactivation and knee joint kinematics relative to the control group (P=.005). The GTG intervention decreased overactive hamstring activity (P=.018) and reciprocally increased quadriceps activity (Pjoint kinematic analysis showed significant changes in the hemiparetic stroke group (P=.004). This study demonstrates the effectiveness of the tubing gait condition to restore knee joint muscle imbalance and kinematics in individuals with hemiparetic stroke who present with an abnormal hyperextension knee gait. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. NATO Joint Medical Support - Reality and Vision

    National Research Council Canada - National Science Library

    Roedig, Erich

    2004-01-01

    .... Multinational solutions to medical support were not considered necessary or practical. The new NATO force structures and strategic concepts emphasise mobility, interoperability, sustainability, jointness and multinationality; i.e...

  11. Kinematics and Dynamics Analysis of a 3-DOF Upper-Limb Exoskeleton with an Internally Rotated Elbow Joint

    OpenAIRE

    Xin Wang; Qiuzhi Song; Xiaoguang Wang; Pengzhan Liu

    2018-01-01

    The contradiction between self-weight and load capacity of a power-assisted upper-limb exoskeleton for material hanging is unresolved. In this paper, a non-anthropomorphic 3-degree of freedom (DOF) upper-limb exoskeleton with an internally rotated elbow joint is proposed based on an anthropomorphic 5-DOF upper-limb exoskeleton for power-assisted activity. The proposed 3-DOF upper-limb exoskeleton contains a 2-DOF shoulder joint and a 1-DOF internally rotated elbow joint. The structural parame...

  12. The Association of Academic Health Sciences Libraries' legislative activities and the Joint Medical Library Association/Association of Academic Health Sciences Libraries Legislative Task Force

    OpenAIRE

    Zenan, Joan S.

    2003-01-01

    The Association of Academic Health Sciences Libraries' (AAHSL's) involvement in national legislative activities and other advocacy initiatives has evolved and matured over the last twenty-five years. Some activities conducted by the Medical Library Association's (MLA's) Legislative Committee from 1976 to 1984 are highlighted to show the evolution of MLA's and AAHSL's interests in collaborating on national legislative issues, which resulted in an agreement to form a joint legislative task forc...

  13. Upper extremity joint stresses during walkerassisted ambulation in post-surgical patients Estresse articular no membro superior durante marcha assistida por andador em pacientes pós-cirúrgicos

    Directory of Open Access Journals (Sweden)

    Kevin J. Mcquade

    2011-08-01

    Full Text Available BACKGROUND: A walker is a common device prescribed for ambulatory assistance for individuals with balance difficulties or to reduce lower extremity demands following injury or surgery. The long-term use of a walker imposes significant demands on the patient's upper extremities that may lead to increased risk for development of secondary conditions such as wrist, elbow or shoulder pain. OBJECTIVE: To describe the joint kinematics, forces and moments of the wrist, elbow and shoulder in a sample of twenty patients that were using a walker as a result of total joint surgery of the hips and knees. METHODS: Three-dimensional upper extremity kinematics were recorded using a motion capture system synchronized with forces and torques transmitted through a walker instrumented with force transducers in the handles. RESULTS: Compressive forces were found to be nearly 20% of the body weight at each of the upper extremity joints, both surgical and non-surgical sides, being the greatest force at the wrist and decreasing proximally. Compression forces were greater in the non-surgical side limb at the wrist and at the elbow. CONCLUSION: Our findings indicated that loads on upper extremity joints associated with the use of a walker for assisted ambulation are high and further studies are needed to address the cause-effect relationship between the actual joint loading and the development of secondary musculoskeletal upper extremity complaints in more frail patients.CONTEXTUALIZAÇÃO: Um andador é um dispositivo frequentemente prescrito para auxiliar a marcha de indivíduos com dificuldades de equilíbrio ou para reduzir demandas à extremidade inferior após cirurgia ou lesão. O uso prolongado de um andador impõe significante demanda para a extremidade superior do paciente, o que pode levar a um risco aumentado de desenvolver condições secundárias, como dor no punho, cotovelo e ombro. OBJETIVO: Descrever a cinemática articular, forças e momentos do punho

  14. Missile Defense Attack Operations (Joint Force Quartery, Winter 2000-2001)

    National Research Council Canada - National Science Library

    Watanabe, Nathan

    2001-01-01

    ...- 01.5, Doctrine for Joint Theater Missile Defense, often invokes the term integrate. Although the services are making progress in vertical integration on all levels, little has been done to harmonize efforts horizontally...

  15. Medial knee joint contact force in the intact limb during walking in recently ambulatory service members with unilateral limb loss: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Ross H. Miller

    2017-02-01

    Full Text Available Background Individuals with unilateral lower limb amputation have a high risk of developing knee osteoarthritis (OA in their intact limb as they age. This risk may be related to joint loading experienced earlier in life. We hypothesized that loading during walking would be greater in the intact limb of young US military service members with limb loss than in controls with no limb loss. Methods Cross-sectional instrumented gait analysis at self-selected walking speeds with a limb loss group (N = 10, age 27 ± 5 years, 170 ± 36 days since last surgery including five service members with transtibial limb loss and five with transfemoral limb loss, all walking independently with their first prosthesis for approximately two months. Controls (N = 10, age 30 ± 4 years were service members with no overt demographical risk factors for knee OA. 3D inverse dynamics modeling was performed to calculate joint moments and medial knee joint contact forces (JCF were calculated using a reduction-based musculoskeletal modeling method and expressed relative to body weight (BW. Results Peak JCF and maximum JCF loading rate were significantly greater in limb loss (184% BW, 2,469% BW/s vs. controls (157% BW, 1,985% BW/s, with large effect sizes. Results were robust to probabilistic perturbations to the knee model parameters. Discussion Assuming these data are reflective of joint loading experienced in daily life, they support a “mechanical overloading” hypothesis for the risk of developing knee OA in the intact limb of limb loss subjects. Examination of the evolution of gait mechanics, joint loading, and joint health over time, as well as interventions to reduce load or strengthen the ability of the joint to withstand loads, is warranted.

  16. Quantitative Analysis of Lateral Pinch Force in Quadriplegic Patients Using Functional Neuromuscular Stimulation with Computer Stimulation

    Directory of Open Access Journals (Sweden)

    Ali Esteki

    2004-10-01

    Full Text Available Objective: In some applications of functional neuromuscular stimulation (FNS, the distal joint of the thumb (IP in quadriplegic patients is sometimes surgically fused at zero degrees and the FPL is stimulated. This prevents hyperextension and extreme flexion of the IP joint during lateral pinch. However, IP joint fusion removes one degree of freedom from the thumb and may reduce the grip force. An alternative approach, preferably without surgical alterations, using sufficient electrical stimulation of selected muscles was investigated. A 3D model of prehensile lateral pinch was developed. Computer simulation of the model was used to find an approach providing the appropriate posture and adequate lateral grip force for quadriplegic patients using FNS. Materials & Methods: The model consists of a multi-rigid-body system connected by one or two degree(s of freedom joints acted upon by passive resistive moments, active muscle moments and moments of external contact forces. Passive resistive moments were measured at each joint, active muscle moments were computed using a simple muscle model, and moments of external force were computed based on a force-displacement relationship for finger pads. In addition to the current strategy, two possible alternatives were studied: increasing the fused joint angle and activation of multiple muscles without joint fusion. Normal component of the grip force and its angle with respect to the horizontal plane were computed and compared for the studied cases. Results: Results showed, by using the current FNS strategy, a convenient posture and a grip force of 10.1 (N are achieved which is comparable to what is measured experimentally and introduced in the literature. Increasing the joint fusion angle from 0 to 15 and 30 degrees in parallel with the activation of FPL increased the grip force from 10.1 to 10.7 and 11.2 (N, respectively, but resulted in inconvenient posture. Among all different combinations of the muscles

  17. Joint Fire Support

    Science.gov (United States)

    2010-06-30

    intelligence application package for theater battle management core system ( TBMCS ) functionality at wing and squadron levels. The automated four... TBMCS , Joint Surveillance and Target Attack Radar System (Ground Control Station), and Global Command and Control System, as well as with Allied FA...The TBMCS is a force level integrated air C2 system. TBMCS provides hardware, software, and communications interfaces to support the preparation

  18. The effect of constitutive representations and structural constituents of ligaments on knee joint mechanics.

    Science.gov (United States)

    Orozco, Gustavo A; Tanska, Petri; Mononen, Mika E; Halonen, Kimmo S; Korhonen, Rami K

    2018-02-02

    Ligaments provide stability to the human knee joint and play an essential role in restraining motion during daily activities. Compression-tension nonlinearity is a well-known characteristic of ligaments. Moreover, simpler material representations without this feature might give reasonable results because ligaments are primarily in tension during loading. However, the biomechanical role of different constitutive representations and their fibril-reinforced poroelastic properties is unknown. A numerical knee model which considers geometric and material nonlinearities of meniscus and cartilages was applied. Five different constitutive models for the ligaments (spring, elastic, hyperelastic, porohyperelastic, and fibril-reinforced porohyperelastic (FRPHE)) were implemented. Knee joint forces for the models with elastic, hyperelastic and porohyperelastic properties showed similar behavior throughout the stance, while the model with FRPHE properties exhibited lower joint forces during the last 50% of the stance phase. The model with ligaments as springs produced the lowest joint forces at this same stance phase. The results also showed that the fibril network contributed substantially to the knee joint forces, while the nonfibrillar matrix and fluid had small effects. Our results indicate that simpler material models of ligaments with similar properties in compression and tension can be used when the loading is directed primarily along the ligament axis in tension.

  19. Jointness: A Selected Bibliography

    Science.gov (United States)

    2007-08-01

    AD-A431-767) http://handle.dtic.mil/100.2/ADA431767 Lamb , William L. Moving beyond Goldwater-Nichols: The Case for Continued Reform of the DoD...in Support of the Joint Force’." Army Aviation 55 (May 2006): 22-24. Magnuson, Stew . "Turf Battles: Strategic Command’s Expanded Portfolio

  20. Testing program for burning plasma experiment vacuum vessel bolted joint

    International Nuclear Information System (INIS)

    Hsueh, P.K.; Khan, M.Z.; Swanson, J.; Feng, T.; Dinkevich, S.; Warren, J.

    1992-01-01

    As presently designed, the Burning Plasma Experiment vacuum vessel will be segmentally fabricated and assembled by bolted joints in the field. Due to geometry constraints, most of the bolted joints have significant eccentricity which causes the joint behavior to be sensitive to joint clamping forces. Experience indicates that as a result of this eccentricity, the joint will tend to open at the side closest to the applied load with the extent of the opening being dependent on the initial preload. In this paper analytical models coupled with a confirmatory testing program are developed to investigate and predict the non-linear behavior of the vacuum vessel bolted joint

  1. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    Science.gov (United States)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  2. Adaptive plasticity in mammalian masticatory joints

    Science.gov (United States)

    Ravosa, Matthew J.; Kunwar, Ravinder; Nicholson, Elisabeth K.; Klopp, Emily B.; Pinchoff, Jessie; Stock, Stuart R.; Stack, M. Sharon; Hamrick, Mark W.

    2006-08-01

    Genetically similar white rabbits raised on diets of different mechanical properties, as well as wild-type and myostatin-deficient mice raised on similar diets, were compared to assess the postweaning effects of elevated masticatory loads due to increased jaw-adductor muscle and bite forces on the proportions and properties of the mandibular symphysis and temporomandibular joint (TMJ). Microcomputed tomography (microCT) was used to quantify bone structure at a series of equidistant external and internal sites in coronal sections for a series of joint locations. Discriminant function analyses and non-parametric ANOVAs were used to characterize variation in biomineralization within and between loading cohorts. In both species, long-term excessive loading results in larger joint proportions, thicker articular and cortical bone, and increased biomineralization of hard tissues. Such adaptive plasticity appears designed to maintain the postnatal integrity of masticatory joint systems for a primary loading environment(s). This behavioral signal may be increasingly mitigated in older organisms by the interplay between adaptive and degradative joint tissue responses.

  3. Six axis force feedback input device

    Science.gov (United States)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  4. Quantitative Methods for Analysing Joint Questionnaire Data: Exploring the Role of Joint in Force Design

    Science.gov (United States)

    2015-08-01

    and organisational sciences; organisational psychology and behavioural psychology disciplines; and systems sciences and network centric warfare. From...Kernot and Tim McKay Joint and Operations Analysis Division Defence Science and Technology Organisation DST-Group-TN-1474 ABSTRACT In...dimensional space comprising: Coordination and Organisation ; Social Capital; and Optimisation of the Socio-technical Systems. Given the variability of the

  5. Arthroscopically assisted reduction of acute acromioclavicular joint dislocation using a single double-button device: Medium-term clinical and radiological outcomes.

    Science.gov (United States)

    Issa, S-P; Payan, C; Le Hanneur, M; Loriaut, P; Boyer, P

    2018-02-01

    Double-button devices for endoscopic management of acute acromioclavicular joint dislocation (ACJD) provide satisfactory short-term functional and radiological results. However, little exists in the literature regarding the long- and medium-term results of these implants, especially regarding the evolution of the acromioclavicular joint (ACJ). Satisfactory and steady long- and medium-term outcomes can be achieved in patients with acute ACJD undergoing endoscopically assisted ACJ repair using a single double-button device. A retrospective single-center study was conducted in patients with acute Rockwood III and IV ACJD treated endoscopically with a single double-button device from October 2008 to October 2010, allowing a minimum 5-year follow-up. Functional evaluation used Constant and Quick-DASH scores. Clinical evidence of dislocation recurrence was combined with bilateral Zanca views to assess coracoclavicular distance. Acromioclavicular osteoarthritis was evaluated on the Paxinos test and Zanca views. Nineteen of the 25 operated patients were seen at a mean 76.9±8.5 months' follow-up. Mean age was 34.4±8.3 years. Mean Constant and Quick-DASH scores were 96.2±5.1 and 0.9±1.6 points, respectively. Four patients had a recurrence of their initial dislocation, 3 of whom had positive Paxinos test, whereas the 15 patients without recurrence had a negative test (p=0.004). Five patients had radiological evidence of ACJ osteoarthritis: all 4 patients with recurrence and 1 without (p=0.001). Long- and medium-term radioclinical outcome of endoscopically assisted management of acute ACJD using a single double-button device seems to be satisfactory and steady over time. Recurrence of the initial dislocation appears to be related to onset of degenerative ACJ arthropathy. Therapeutic type IV-Retrospective case series. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Curriculum for neurogastroenterology and motility training: A report from the joint ANMS-ESNM task force.

    Science.gov (United States)

    Gyawali, C P; Savarino, E; Lazarescu, A; Bor, S; Patel, A; Dickman, R; Pressman, A; Drewes, A M; Rosen, J; Drug, V; Saps, M; Novais, L; Vazquez-Roque, M; Pohl, D; van Tilburg, M A L; Smout, A; Yoon, S; Pandolfino, J; Farrugia, G; Barbara, G; Roman, S

    2018-03-25

    Although neurogastroenterology and motility (NGM) disorders are some of the most frequent disorders encountered by practicing gastroenterologists, a structured competency-based training curriculum developed by NGM experts is lacking. The American Neurogastroenterology and Motility Society (ANMS) and the European Society of Neurogastroenterology and Motility (ESNM) jointly evaluated the components of NGM training in North America and Europe. Eleven training domains were identified within NGM, consisting of functional gastrointestinal disorders, visceral hypersensitivity and pain pathways, motor disorders within anatomic areas (esophagus, stomach, small bowel and colon, anorectum), mucosal disorders (gastro-esophageal reflux disease, other mucosal disorders), consequences of systemic disease, consequences of therapy (surgery, endoscopic intervention, medications, other therapy), and transition of pediatric patients into adult practice. A 3-tiered training curriculum covering these domains is proposed here and endorsed by all NGM societies. Tier 1 NGM knowledge and training is expected of all gastroenterology trainees and practicing gastroenterologists. Tier 2 knowledge and training is appropriate for trainees who anticipate NGM disorder management and NGM function test interpretation being an important part of their careers, which may require competency assessment and credentialing of test interpretation skills. Tier 3 knowledge and training is undertaken by trainees interested in a dedicated NGM career and may be restricted to specific domains within the broad NGM field. The joint ANMS and ESNM task force anticipates that the NGM curriculum will streamline NGM training in North America and Europe and will lead to better identification of centers of excellence where Tier 2 and Tier 3 training can be accomplished. © 2018 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons, Ltd.

  7. Prediction of applied forces in handrim wheelchair propulsion.

    Science.gov (United States)

    Lin, Chien-Ju; Lin, Po-Chou; Guo, Lan-Yuen; Su, Fong-Chin

    2011-02-03

    Researchers of wheelchair propulsion have usually suggested that a wheelchair can be properly designed using anthropometrics to reduce high mechanical load and thus reduce pain and damage to joints. A model based on physiological features and biomechanical principles can be used to determine anthropometric relationships for wheelchair fitting. To improve the understanding of man-machine interaction and the mechanism through which propulsion performance been enhanced, this study develops and validates an energy model for wheelchair propulsion. Kinematic data obtained from ten able-bodied and ten wheelchair-dependent users during level propulsion at an average velocity of 1m/s were used as the input of a planar model with the criteria of increasing efficiency and reducing joint load. Results demonstrate that for both experienced and inexperienced users, predicted handrim contact forces agree with experimental data through an extensive range of the push. Significant deviations that were mostly observed in the early stage of the push phase might result from the lack of consideration of muscle dynamics and wrist joint biomechanics. The proposed model effectively verified the handrim contact force patterns during dynamic propulsion. Users do not aim to generate mechanically most effective forces to avoid high loadings on the joints. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Heat Exchanger Tube to Tube Sheet Joints Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    M. Iancu

    2013-03-01

    Full Text Available Paper presents the studies made by the authors above the tube to tube sheet fittings of heat exchanger with fixed covers from hydrofining oil reforming unit. Tube fittings are critical zones for heat exchangers failures. On a device made from material tube and tube sheet at real joints dimensions were establish axial compression force and traction force at which tube is extracted from expanded joint. Were used two shapes joints with two types of fittings surfaces, one with smooth hole of tube sheet and other in which on boring surface we made a groove. From extracted expanded tube zones were made samples for corrosion tests in order to establish the corrosion rate, corrosion potential and corrosion current in working mediums such as hydrofining oil and industrial water at different temperatures. The corrosion rate values and the temperature influence are important to evaluate joints durability and also the results obtained shows that the boring tube sheet shape with a groove on hole tube shape presents a better corrosion behavior then the shape with smooth hole tube sheet.

  9. Air Force Officer Force Development, an Analysis and Future Issues

    National Research Council Canada - National Science Library

    Davidson, William T

    2004-01-01

    .... The intent is to identify any shortcomings in the construct, highlight processes requiring change, and assist the Air Force in building the road to a more robust, better educated, and visionary officer corps...

  10. Musculoskeletal Model Development of the Elbow Joint with an Experimental Evaluation

    Directory of Open Access Journals (Sweden)

    Munsur Rahman

    2018-04-01

    Full Text Available A dynamic musculoskeletal model of the elbow joint in which muscle, ligament, and articular surface contact forces are predicted concurrently would be an ideal tool for patient-specific preoperative planning, computer-aided surgery, and rehabilitation. Existing musculoskeletal elbow joint models have limited clinical applicability because of idealizing the elbow as a mechanical hinge joint or ignoring important soft tissue (e.g., cartilage contributions. The purpose of this study was to develop a subject-specific anatomically correct musculoskeletal elbow joint model and evaluate it based on experimental kinematics and muscle electromyography measurements. The model included three-dimensional bone geometries, a joint constrained by multiple ligament bundles, deformable contacts, and the natural oblique wrapping of ligaments. The musculoskeletal model predicted the bone kinematics reasonably accurately in three different velocity conditions. The model predicted timing and number of muscle excitations, and the normalized muscle forces were also in agreement with the experiment. The model was able to predict important in vivo parameters that are not possible to measure experimentally, such as muscle and ligament forces, and cartilage contact pressure. In addition, the developed musculoskeletal model was computationally efficient for body-level dynamic simulation. The maximum computation time was less than 30 min for our 35 s simulation. As a predictive clinical tool, the potential medical applications for this model and modeling approach are significant.

  11. Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance

    Science.gov (United States)

    Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath

    2017-12-01

    Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.

  12. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    Science.gov (United States)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  13. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  14. Multiphase fluid structure interaction in bends and T-joints

    NARCIS (Netherlands)

    Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations

  15. Joint pain and Doppler-detectable bubbles in altitude (Hypobaric) decompression

    Science.gov (United States)

    Powell, Michael R.

    1993-01-01

    The observation that altitude decompression sickness (DCS) is associated with pain in the lower extremities is not new, although it is not a consistent finding. DCS in divers is generally in the upper body, an effect often attributed to non-loading of the body while immersed. In caisson workers, DCS is reported more in the lower extremities. Surprisingly, many researchers do not mention the location of DCS joint pain, apparently considering it to be random. This is not the case for the tissue ratios encountered in studying decompression associated with simulated EVA. In NASA/JSC tests, altitude DCS generally presented first in either the ankle, knee, or hip (83 percent = 73/88). There was a definite statistical relation between the maximum Spencer precordial Doppler Grade and the incidence of DCS in the extremity, although this is not meant to imply a casual relation between circulating gas bubbles and joint pain. The risk of DCS with Grade 4 was considerably higher than that of Grades 0 to 3. The DCS risk was independent of the 'tissue ratio.' There was a predominance of lower extremity DCS even when exercise was performed with the upper body. The reason for these locations we hypothesize to be attributed to the formation of tissue gas micronuclei from kinetic and tensile forces (stress-assisted nucleation) and are the result of the individuals ambulating in a 1g environment. Additionally, since these showers of Doppler bubbles can persist for hours, it is difficult to imagine that they are emanating solely from tendons and ligaments, the supposed site of joint pain. This follows from Henry's law linking the volume of joint tissue (the solvent) and the solubility coefficient of inert gas; there is volumetrically insufficient connective tissue to produce the prolonged release of gas bubbles. If gas bubbles are spawned and released from connective tissue, their volume is increased by those from muscle tissue. Therefore, the nexus between Doppler-detectable gas

  16. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton.

    Science.gov (United States)

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement.

  17. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton

    Science.gov (United States)

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement. PMID:27445658

  18. Metallic joints for very high vacuum

    International Nuclear Information System (INIS)

    Paigne, J.

    1961-01-01

    After defining three main types of joint; three types of distribution of the tightening force in the clamps are demonstrated; the distribution of stresses, distortion and displacements in these clamps is then calculated by means of the theory of elasticity. This is followed by experimental results on a particular means of tightening (i.e. screw-clamps). From a brief discussion on the behaviour of the clamps it is possible finally to define other types of joint deriving from the main types originally foreseen. (author) [fr

  19. Workspace Safe Operation of a Force- or Impedance-Controlled Robot

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Yamokoski, John D. (Inventor); Strawser, Philip A. (Inventor)

    2013-01-01

    A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.

  20. Experimental knee pain impairs submaximal force steadiness in isometric, eccentric, and concentric muscle actions.

    Science.gov (United States)

    Rice, David A; McNair, Peter J; Lewis, Gwyn N; Mannion, Jamie

    2015-09-12

    Populations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions. The study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided. Hypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0-10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant. Experimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the

  1. A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine

    International Nuclear Information System (INIS)

    Kim, Yong Cheol; Ta, Duc manh; Koo, Seung Bum; Jung Moon Ki

    2016-01-01

    The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model's prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.

  2. A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Cheol; Ta, Duc manh; Koo, Seung Bum [Chung-Ang University, Seoul (Korea, Republic of); Jung Moon Ki [AnyBody Technology A/S, Aalborg (Denmark)

    2016-06-15

    The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model's prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.

  3. Mechanical testing and development of the helical field coil joint for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Bryan, W.E.; Goranson, P.L.; Warwick, J.E.

    1985-01-01

    The helical field (HF) coil set for the Advanced Toroidal Facility (ATF) is an M = 12, l = 2, constant-ratio torsatron winding consisting of 2 coils, each with 14 turns of heavy copper conductor. The coils are divided into 24 identical segments to facilitate fabrication and minimize the assembly schedule. The segments are connected across through-bolted lap joints that must carry up to 124,000 A per turn for 5 s or 62,500 A steady-state. In addition, the joints must carry the high magnetic and thermal loads induced in the conductor and still fit within the basic 140- by 30-mm copper envelope. Extensive testing and development were undertaken to verify and refine the basic joint design. Tests included assembly force and clamping force for various types of misalignment; joint resistance as a function of clamping force; clamp bolt relaxation due to thermal cycling; fatigue testing of full-size, multiturn joint prototypes; and low-cycle fatigue and tensile tests of annealed CDA102 copper. The required performance parameters and actual test results, as well as the final joint configuration, are presented. 2 refs., 9 figs., 4 tabs

  4. Unification of Forces: The Road to Jointness?

    Science.gov (United States)

    1991-05-15

    tend to resist large change--or innovation. Because organizations value "predictability, stability, and certainty," incremental change is the...preferred mode of behavior for organizations.29 Unification of the forces would be a large, rather than an incremental , change; thus, the services would...coordinating planning and bidgeting , providing unified direction, accounting and controlling weapons and equipment acquisition, eliminating duplication of

  5. Forces in the Shoulder Joint : On validation of musculoskeletal shoulder models

    NARCIS (Netherlands)

    Asadi Nikooyan, A.

    2011-01-01

    Detailed information about muscle forces in the human musculoskeletal system are highly demanded for several applications. Unfortunately, the measurement of muscle forces in-vivo is hardly possible. To date, musculoskeletal models are best alternative for the direct measurement of these forces. A

  6. Supporting Collective Training & Thinking in Joint Project Optic Windmill

    NARCIS (Netherlands)

    Jacobs, L.R.M.A.; Wiel, R.A.N. van de; Bosch, J.; Olthoff, R.

    2009-01-01

    In September 2008, the Missile Defence Group of the Royal Netherlands Air Force, together with the German Air Force and the US Missile Defence Agency, organised the 10th edition of Exercise Joint Project Optic Windmill (JPOW). Over the past decade JPOW has become a world leading Integrated Air and

  7. Overview of the IAEA Joint Convention and Implementation Status of the Obligation as the Contracting Party of the 5th Joint Convention

    International Nuclear Information System (INIS)

    Lee, Jeong Ken; Lee, Youn Keun; Ahn, Sang Myeon

    2016-01-01

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) was adopted on 5 September 1997 by a Diplomatic Conference convened by the International Atomic Energy Agency (IAEA). The Joint Convention was opened for signature at Vienna in September 1997 and will remain open for signature until its entry into force. Korean government signed the Joint Convention in 1997 and this Convention was effective in 2002 as the Convention No. 1612. This paper will show overview of the Joint Convention and implementation status of the obligation as a Contracting Party of the 5th Joint Convention. The Joint Convention is the inter-national convention organized by the IAEA. All contracting parties shall comply with rules of the Joint Convention and conduct the obligation of this convention. Korean government successfully conducted all obligation (attending Organization Meeting and Review Meeting, submitting paper including National Report, question paper and answer paper) of the 5th Joint Convention from May 2014 to May 2015, and will prepare the obligation of the 6th Joint Convention

  8. Techniques for assessing knee joint pain in arthritis

    Directory of Open Access Journals (Sweden)

    Fu Yu

    2007-03-01

    Full Text Available Abstract The assessment of pain is of critical importance for mechanistic studies as well as for the validation of drug targets. This review will focus on knee joint pain associated with arthritis. Different animal models have been developed for the study of knee joint arthritis. Behavioral tests in animal models of knee joint arthritis typically measure knee joint pain rather indirectly. In recent years, however, progress has been made in the development of tests that actually evaluate the sensitivity of the knee joint in arthritis models. They include measurements of the knee extension angle struggle threshold, hind limb withdrawal reflex threshold of knee compression force, and vocalizations in response to stimulation of the knee. A discussion of pain assessment in humans with arthritis pain conditions concludes this review.

  9. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  10. Computer-assisted 3D kinematic analysis of all leg joints in walking insects.

    Directory of Open Access Journals (Sweden)

    John A Bender

    Full Text Available High-speed video can provide fine-scaled analysis of animal behavior. However, extracting behavioral data from video sequences is a time-consuming, tedious, subjective task. These issues are exacerbated where accurate behavioral descriptions require analysis of multiple points in three dimensions. We describe a new computer program written to assist a user in simultaneously extracting three-dimensional kinematics of multiple points on each of an insect's six legs. Digital video of a walking cockroach was collected in grayscale at 500 fps from two synchronized, calibrated cameras. We improved the legs' visibility by painting white dots on the joints, similar to techniques used for digitizing human motion. Compared to manual digitization of 26 points on the legs over a single, 8-second bout of walking (or 106,496 individual 3D points, our software achieved approximately 90% of the accuracy with 10% of the labor. Our experimental design reduced the complexity of the tracking problem by tethering the insect and allowing it to walk in place on a lightly oiled glass surface, but in principle, the algorithms implemented are extensible to free walking. Our software is free and open-source, written in the free language Python and including a graphical user interface for configuration and control. We encourage collaborative enhancements to make this tool both better and widely utilized.

  11. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    Science.gov (United States)

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  12. Interracial Structure and Formation Mechanism of Ultrasonic-assisted Brazed Joint of SiC Ceramics with Al-12Si Filler Metals in Air

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Chen; Ruishan Xie; Zhiwei Lai; Lei Liu; Jiuchun Yan; Guisheng Zou

    2017-01-01

    Ultrasonic-assisted brazing of SiC ceramics was performed by filling with an Al--12Si alloy at a low temperature of 620 ℃ in air.The interfacial characteristics and formation mechanism were investigated.The joint shear strength reached 84-94 MPa using the ultrasonic time of 2-16 s.The fracture morphology showed that the fracture path initiated and propagated in the joint alloy.The thin film of amorphous SiO2 that formed on the SiC surface was non-uniformly decomposed and diffused into the liquid Al-12Si alloy under the cavitation erosion effect of ultrasound.Abnormal isolated blocks of Al2SiO5 compounds formed at the interface between Al--12Si and a thicker SiO2 layer formed during the thermal oxidation treatment of the SiC ceramic.The SiO2 layer on the SiC ceramic did not hinder or impair the wetting and bonding process,and a stronger bond could form between Al-12Si and SiO2 or SiC in ultrasonicassisted brazing.

  13. Analysis of the Contingency Contracting Support Plan within the Joint Planning Process Framework

    National Research Council Canada - National Science Library

    Anderson, Michael

    2003-01-01

    ...) flexibility and responsiveness. Current OPLANS at the Joint-level generally discuss how forces will be contractually supported in-theater, but are not specific enough within the framework of the Joint Planning Process (JPP...

  14. The National Guard: Recommendations to Develop the Joint Future Force

    Science.gov (United States)

    2010-03-01

    Health, Sexual Assault Prevention and Response, and Warrior Support programs.109 This joint support concept is distinctive to the NG, and provides an...National Defense Strategy (Washington, DC: Department of Defense, June 2008), TOC . Available online at http://www.defense.gov/news/2008%20 National

  15. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    Science.gov (United States)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  16. An Exoskeleton Robot for Human Forearm and Wrist Motion Assist

    Science.gov (United States)

    Ranathunga Arachchilage Ruwan Chandra Gopura; Kiguchi, Kazuo

    The exoskeleton robot is worn by the human operator as an orthotic device. Its joints and links correspond to those of the human body. The same system operated in different modes can be used for different fundamental applications; a human-amplifier, haptic interface, rehabilitation device and assistive device sharing a portion of the external load with the operator. We have been developing exoskeleton robots for assisting the motion of physically weak individuals such as elderly or slightly disabled in daily life. In this paper, we propose a three degree of freedom (3DOF) exoskeleton robot (W-EXOS) for the forearm pronation/ supination motion, wrist flexion/extension motion and ulnar/radial deviation. The paper describes the wrist anatomy toward the development of the exoskeleton robot, the hardware design of the exoskeleton robot and EMG-based control method. The skin surface electromyographic (EMG) signals of muscles in forearm of the exoskeletons' user and the hand force/forearm torque are used as input information for the controller. By applying the skin surface EMG signals as main input signals to the controller, automatic control of the robot can be realized without manipulating any other equipment. Fuzzy control method has been applied to realize the natural and flexible motion assist. Experiments have been performed to evaluate the proposed exoskeleton robot and its control method.

  17. Joint Force Quarterly. Issue 63, 4th Quarter 2011

    Science.gov (United States)

    2011-10-01

    give us a sense of where the Service’s contribution to nuclear forces stands today? General Schwartz: The Air Force has two of the three legs of...DOD portion of the President’s annual budget. In turn, Congress reviews and revises the President’s budget and sends approved leg - islation back to...news/ dti /2010/09/01/DT_09_01_2010_p42-248207.xml>. 23 Kevin Hall, “The 7 worst cyberattacks in history (that we know about),” September 22, 2010

  18. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  19. Increased joint loads during walking--a consequence of pain relief in knee osteoarthritis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Simonsen, Erik B; Alkjaer, T

    2006-01-01

    Joint pain is a primary symptom in knee osteoarthritis (OA), but the effect of pain and pain relief on the knee joint mechanics of walking is not clear. In this study, the effects of local knee joint analgesia on knee joint loads during walking were studied in a group of knee osteoarthritis....... Although the patients walked with less compressive knee joint forces compared to the reference group, the effects of pain relief may accelerate the degenerative changes....

  20. Compression-rate-dependent nonlinear mechanics of normal and impaired porcine knee joints.

    Science.gov (United States)

    Rodriguez, Marcel Leonardo; Li, LePing

    2017-11-14

    The knee joint performs mechanical functions with various loading and unloading processes. Past studies have focused on the kinematics and elastic response of the joint with less understanding of the rate-dependent load response associated with viscoelastic and poromechanical behaviors. Forty-five fresh porcine knee joints were used in the present study to determine the loading-rate-dependent force-compression relationship, creep and relaxation of normal, dehydrated and meniscectomized joints. The mechanical tests of all normal intact joints showed similar strong compression-rate-dependent behavior: for a given compression-magnitude up to 1.2 mm, the reaction force varied 6 times over compression rates. While the static response was essentially linear, the nonlinear behavior was boosted with the increased compression rate to approach the asymptote or limit at approximately 2 mm/s. On the other hand, the joint stiffness varied approximately 3 times over different joints, when accounting for the maturity and breed of the animals. Both a loss of joint hydration and a total meniscectomy greatly compromised the load support in the joint, resulting in a reduction of load support as much as 60% from the corresponding intact joint. However, the former only weakened the transient load support, but the latter also greatly weakened the equilibrium load support. A total meniscectomy did not diminish the compression-rate-dependence of the joint though. These findings are consistent with the fluid-pressurization loading mechanism, which may have a significant implication in the joint mechanical function and cartilage mechanobiology.

  1. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.

    Science.gov (United States)

    Pavlidou, Efthymia; Kloosterman, Marieke G M; Buurke, Jaap H; Rietman, Johan S; Janssen, Thomas W J

    2015-11-01

    Rolling resistance is one of the main forces resisting wheelchair propulsion and thus affecting stress exerted on the upper limbs. The present study investigates the differences in rolling resistance, propulsion efficiency and energy expenditure required by the user during power-assisted and manual propulsion. Different tire pressures (50%, 75%, 100%) and two different levels of motor assistance were tested. Drag force, energy expenditure and propulsion efficiency were measured in 10 able-bodied individuals under different experimental settings on a treadmill. Results showed that drag force levels were significantly higher in the 50%, compared to the 75% and 100% inflation conditions. In terms of wheelchair type, the manual wheelchair displayed significantly lower drag force values than the power-assisted one. The use of extra-power-assisted wheelchair appeared to be significantly superior to conventional power-assisted and manual wheelchairs concerning both propulsion efficiency and energy expenditure required by the user. Overall, the results of the study suggest that the use of power-assisted wheelchair was more efficient and required less energy input by the user, depending on the motor assistance provided. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations.

    Science.gov (United States)

    Alexander, Nathalie; Strutzenberger, Gerda; Ameshofer, Lisa Maria; Schwameder, Hermann

    2017-08-16

    Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0±4.7yrs, 1.80±0.05m, 74.5±8.2kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint's contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.

    Science.gov (United States)

    Iino, Yoichi

    2018-04-01

    The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.

  4. Joint Force Quarterly. Number 1, Summer 1993

    Science.gov (United States)

    1993-01-01

    very selective breeding program. We cannot be too beholden to any out- dated or obsolete system because technologi- cal change makes our day-to-day...still prevalent , but with the added dimensions and complexity of two or more national armed forces, all of which bring their separate orientations and...example, might be apparent to neurosurgeons where ophthalmologists would overlook it. The cure is to balance specific with general knowledge. In

  5. Whole-body vibration does not influence knee joint neuromuscular function or proprioception.

    Science.gov (United States)

    Hannah, R; Minshull, C; Folland, J P

    2013-02-01

    This study examined the acute effects of whole-body vibration (WBV) on knee joint position sense and indices of neuromuscular function, specifically strength, electromechanical delay and the rate of force development. Electromyography and electrically evoked contractions were used to investigate neural and contractile responses to WBV. Fourteen healthy males completed two treatment conditions on separate occasions: (1) 5 × 1 min of unilateral isometric squat exercise on a synchronous vibrating platform [30 Hz, 4 mm peak-to-peak amplitude] (WBV) and (2) a control condition (CON) of the same exercise without WBV. Knee joint position sense (joint angle replication task) and quadriceps neuromuscular function were assessed pre-, immediately-post and 1 h post-exercise. During maximum voluntary knee extensions, the peak force (PF(V)), electromechanical delay (EMD(V)), rate of force development (RFD(V)) and EMG of the quadriceps were measured. Twitch contractions of the knee extensors were electrically evoked to assess EMD(E) and RFD(E). The results showed no influence of WBV on knee joint position, EMD(V), PF(V) and RFD(V) during the initial 50, 100 or 150 ms of contraction. Similarly, electrically evoked neuromuscular function and neural activation remained unchanged following the vibration exercise. A single session of unilateral WBV did not influence any indices of thigh muscle neuromuscular performance or knee joint proprioception. © 2011 John Wiley & Sons A/S.

  6. United States Air Force Unmanned Aircraft Systems Flight Plan 2009-2047

    Science.gov (United States)

    2009-05-18

    future challenges facing the USAF and the Joint Force through 2047. Michael B. Donley Secretary of the Air Force - 3 - AJI ¥-Jcf2c .~~~ Norton A...is depicted along a DOTMLPF-P stratified timeline as a colored triangle. Red triangles represent actions that require senior leader involvement to...Flag, and Red Flag. Joint UAS training may lead to greater training efficiencies and standardization. Training standards may be applied based on the

  7. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    Science.gov (United States)

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  8. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Fortuna, S. V., E-mail: s-fortuna@ispms.ru; Ivanov, K. V., E-mail: ikv@ispms.ru; Eliseev, A. A., E-mail: alan@ispms.ru [Institute of Strength Physics and Materials ScienceTomsk, 634055 (Russian Federation); Tarasov, S. Yu., E-mail: tsy@ispms.ru; Ivanov, A. N., E-mail: ivan@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru; Kolubaev, E. A., E-mail: eak@ispms.ru [Institute of Strength Physics and Materials ScienceTomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  9. Impact of the Joint Task Force on Undergraduate Physics Programs for Innovation and Entrepreneurship Education in Physics

    Science.gov (United States)

    Arion, Douglas

    The Joint Task Force on Undergraduate Physics Programs has worked diligently to develop recommendations for what physics programs could and should be doing to prepare graduates for 21st century careers. While the `traditional' physics curriculum has served for many years, the demands of the new workforce, and the recognition that only a few percent of physics students actually become faculty - the vast majority entering the workforce and applying their skills to a very diverse range of problems, projects, and products - implies that a review of the education undergraduates receives is in order. The outcomes of this study point to the need to provide greater connection between the education process and the actual skills, knowledge, and abilities that the workplace demands. This presentation will summarize these considerations, and show how entrepreneurship and innovation programs and curricula are a particularly effective means of bringing these elements to physics students.

  10. EFFECT OF HEEL LIFTS ON PATELLOFEMORAL JOINT STRESS DURING RUNNING.

    Science.gov (United States)

    Mestelle, Zachary; Kernozek, Thomas; Adkins, Kelly S; Miller, Jessica; Gheidi, Naghmeh

    2017-10-01

    Patellofemoral pain is a debilitating injury for many recreational runners. Excessive patellofemoral joint stress may be the underlying source of pain and interventions often focus on ways to reduce patellofemoral joint stress. Heel lifts have been used as an intervention within Achilles tendon rehabilitation programs and to address leg length discrepancies. The purpose of this study was to examine the effect of running with heel lifts on patellofemoral joint stress, patellofemoral stress impulse, quadriceps force, step length, cadence, and other related kinematic and spatiotemporal variables. A repeated-measures research design. Sixteen healthy female runners completed five running trials in a controlled laboratory setting with and without 11mm heel lifts inserted in a standard running shoe. Kinetic and kinematic data were used in combination with a static optimization technique to estimate individual muscle forces. These data were inserted into a patellofemoral joint model which was used to estimate patellofemoral joint stress and other variables during running. When running with heel lifts, peak patellofemoral joint stress and patellofemoral stress impulse were reduced by a 4.2% (p=0.049) and 9.3% (p=0.002). Initial center of pressure was shifted anteriorly 9.1% when running with heel lifts (p0.05) were shown between conditions. Heel lift use resulted in decreased patellofemoral joint stress and impulse without associated changes in step length or frequency, or other variables shown to influence patellofemoral joint stress. The center of pressure at initial contact was also more anterior using heel lifts. The use of heel lifts may have therapeutic benefits for runners with patellofemoral pain if the primary goal is to reduce patellofemoral joint stress. 3b.

  11. Study of the joining of polycarbonate panels in butt joint configuration through friction stir welding

    Science.gov (United States)

    Astarita, Antonello; Boccarusso, Luca; Carrino, Luigi; Durante, Massimo; Minutolo, Fabrizio Memola Capece; Squillace, Antonino

    2018-05-01

    Polycarbonate sheets, 3 mm thick, were successfully friction stir welded in butt joint configuration. Aiming to study the feasibility of the process and the influence of the process parameters joints under different processing conditions, obtained by varying the tool rotational speed and the tool travel speed, were realized. Tensile tests were carried out to characterize the joints. Moreover the forces arising during the process were recorded and carefully studied. The experimental outcomes proved the feasibility of the process when the process parameters are properly set, joints retaining more than 70% of the UTS of the base material were produced. The trend of the forces was described and explained, the influence of the process parameters was also introduced.

  12. Elbow joint fatigue and bench-press training.

    Science.gov (United States)

    Huang, Yen-Po; Chou, You-Li; Chen, Feng-Chun; Wang, Rong-Tyai; Huang, Ming-Jer; Chou, Paul Pei-Hsi

    2014-01-01

    Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Controlled laboratory study. Motion research laboratory. A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Participants performed bench-press training until fatigued. Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions.

  13. Flexible joints in structural and multibody dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Bauchau

    2013-02-01

    Full Text Available Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness characteristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deformation measures suitable for elastic bodies of finite dimension. These families are generated by two parameters that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature that is not shared by the deformations measures presently used in the literature. The impact of the choice of the two parameters on the constitutive behavior of the flexible joint is also investigated.

  14. 10 CFR 1021.216 - Procurement, financial assistance, and joint ventures.

    Science.gov (United States)

    2010-01-01

    ... competitive solicitations, unless the action is categorically excluded from preparation of an EA or EIS under...-source joint ventures, unless the action is categorically excluded from preparation of an EA or EIS under... reasoned decision. (g) The environmental critique will focus on environmental issues that are pertinent to...

  15. Effect of Complete Syndesmotic Disruption and Deltoid Injuries and Different Reduction Methods on Ankle Joint Contact Mechanics.

    Science.gov (United States)

    LaMothe, Jeremy; Baxter, Josh R; Gilbert, Susannah; Murphy, Conor I; Karnovsky, Sydney C; Drakos, Mark C

    2017-06-01

    Syndesmotic injuries can be associated with poor patient outcomes and posttraumatic ankle arthritis, particularly in the case of malreduction. However, ankle joint contact mechanics following a syndesmotic injury and reduction remains poorly understood. The purpose of this study was to characterize the effects of a syndesmotic injury and reduction techniques on ankle joint contact mechanics in a biomechanical model. Ten cadaveric whole lower leg specimens with undisturbed proximal tibiofibular joints were prepared and tested in this study. Contact area, contact force, and peak contact pressure were measured in the ankle joint during simulated standing in the intact, injured, and 3 reduction conditions: screw fixation with a clamp, screw fixation without a clamp (thumb technique), and a suture-button construct. Differences in these ankle contact parameters were detected between conditions using repeated-measures analysis of variance. Syndesmotic disruption decreased tibial plafond contact area and force. Syndesmotic reduction did not restore ankle loading mechanics to values measured in the intact condition. Reduction with the thumb technique was able to restore significantly more joint contact area and force than the reduction clamp or suture-button construct. Syndesmotic disruption decreased joint contact area and force. Although the thumb technique performed significantly better than the reduction clamp and suture-button construct, syndesmotic reduction did not restore contact mechanics to intact levels. Decreased contact area and force with disruption imply that other structures are likely receiving more loads (eg, medial and lateral gutters), which may have clinical implications such as the development of posttraumatic arthritis.

  16. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source

    Directory of Open Access Journals (Sweden)

    K. Venkatesan

    2017-07-01

    Full Text Available Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60–150 m/min, feed rates of 0.05–0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  17. In-plane Shear Joint Capacity of Pracast Lightweight Aggregate Concrete Elements

    DEFF Research Database (Denmark)

    Larsen, Henning; Goltermann, Per; Scherfig, Søren

    1996-01-01

    The paper establishes and documents formulas for the in-plane shear capacity between precast elements of lightweight aggregate concrete with open structure. The joints investigated are rough or toothed and have all been precracked prior to the testing in order to obtain realistic test results....... The paper documents the shear force capacity for the joint strength between the most common joint types between precast LAC roof and floor elements used in Scandinavia....

  18. Experimental and numerical study of Bondura® 6.6 PIN joints

    Science.gov (United States)

    Berkani, I.; Karlsen, Ø.; Lemu, H. G.

    2017-12-01

    Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.

  19. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory.

    Science.gov (United States)

    Peel, Trisha N; Cole, Nicolynn C; Dylla, Brenda L; Patel, Robin

    2015-03-01

    Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients

  20. Joint dynamics and intra-subject variability during countermovement jumps in children and adults

    DEFF Research Database (Denmark)

    Raffalt, Peter C; Alkjær, Tine; Simonsen, Erik B

    2016-01-01

    The present study investigated lower limb joint work, lower limb joint energy transport and intra-subject variation of the joint dynamics during countermovement jumps in children and adults. Twelve healthy men and eleven healthy boys performed ten maximal countermovement jumps. Three dimensional...... kinematics and kinetics were recorded in synchrony. Hip, knee and ankle joint eccentric and concentric work, joint energy transfer, intra-subject variation of joint moment, joint power and joint moment components were calculated. The children had lower eccentric and concentric hip work and lower eccentric...... work, hip joint moment and hip and knee joint power. Higher intra-subject variation was observed in horizontal joint reaction force components for the children and higher intra-subject variation in the segment angular inertia components was observed for the adults. The joint dynamics of children during...

  1. 76 FR 18737 - Reserve Forces Policy Board (RFPB) Member Solicitation

    Science.gov (United States)

    2011-04-05

    ..., abolished the Civilian Components Policy Board in June, 1951 and created the Reserve Forces Policy Board... military education, joint qualification, and joint operations matters. The Federal Advisory Committee Act... and 102-3) provide the basis for and guidance concerning the management and operation of Federal...

  2. Friction Stir Welding-assisted Diffusion Bond of Al/Zn/Mg Lap Joint

    Directory of Open Access Journals (Sweden)

    JIN Yu-hua

    2018-03-01

    Full Text Available Dissimilar materials welding between 2mm-thick AZ31B Mg alloy and 6061 Al alloy plates in overlap form was performed using the friction stir-induced diffusion bond with zinc foil as the interlayer. The microstructure and mechanical properties of the Al/Zn/Mg lap joints were analyzed by means of SEM, EPMA, XRD, tensile experiment and Vickers hardness test. The results show that diffusion layer consists of Al enrichment zone, Al5Mg11Zn4 layer and Mg-Zn eutectic zone at proper rotation speed; however, when rotation speed is low, the residual zinc interlayer remains in the diffusion layer; when rotation speed is high, the Al-Mg intermetallic compounds are present again. Due to the existence of intermetallic compounds in diffusion layer, its microhardness is significantly higher than that of base metal. The addition of zinc foil can improve the mechanical properties of Al/Mg lap joints. According to analysis on the fracture, joint failure occurs in the diffusion layer near to Al side.

  3. Net joint kinetics in the limbs of pigs walking on concrete floor in dry and contaminated conditions

    DEFF Research Database (Denmark)

    Thorup, Vivi M.; Laursen, Bjarne; Jensen, Bente Rona

    2008-01-01

    In pigs (Sus scrofa), joint disorders are frequent leg problems, and inappropriate pigpen floors and slippery floor conditions may contribute to these problems. Therefore, this study first aimed to quantify the net joint kinetics (net joint moments and net joint reaction forces) in the forelimbs...... and hindlimbs of healthy pigs walking on solid concrete floors. Second, this study aimed to examine the effect of floor condition on the net joint kinetics. Kinematic (50-Hz video recordings) and kinetic (1-kHz force plate measurements) data were collected from 30 pigs and combined with body segment parameters...... from a cadaver study. Net joint kinetics was calculated by using a 2-dimensional inverse dynamic solution. Inverse dynamics have, to our knowledge, not been applied in pigs before. Dry, greasy, and wet floor conditions were tested with 10 pigs each. In the forelimbs, peak joint moment was less (P

  4. Force fluctuations assist nanopore unzipping of DNA

    International Nuclear Information System (INIS)

    Viasnoff, V; Chiaruttini, N; Muzard, J; Bockelmann, U

    2010-01-01

    We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over the millisecond range and have an amplitude of order k B T/bp. Significantly slower or faster fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins does not always increase with the global stability of the double helix and we theoretically study the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping force.

  5. Finite element analysis of elasto-plastic tee joints

    International Nuclear Information System (INIS)

    Powell, G.H.

    1974-09-01

    The theory and computational procedures used in the computer program B169TJ/EP for the analysis of elasto-plastic tee joints are described, and detailed user's guide is presented. The program is particularly applicable to joints conforming to the ANSI B16.9 Manufacturing Standard, but can also be applied to other joint geometries. The joint may be loaded by internal pressure and by arbitrary combinations of applied forces and moments at the ends of the branch and run pipes, and the loading sequence may be arbitrary. The joint material is assumed to yield according to the von Mises criterion, and to exhibit either linear kinematic hardening or nonlinear isotropic hardening after yield. The program makes use of the finite element and mesh generation procedures previously applied in the elastic stress analysis program B16.9TJ/ SA, with minor modifications. (U.S.)

  6. Large expansion joint movement test; Teste de movimentacao de juntas de expansao de grande porte

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Jorivaldo; Veiga, Jordana Luiza Barbosa da Costa [PETROBRAS, Rio de Janeiro, RJ (Brazil); Veiga, Jose Carlos [Teadit, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper show the results obtained in a movement test realized on metallic bellows expansion joints used in the turbo expander duct system. A test device was developed. For dada acquisition a dynamometer was used and the tests were performed on gimbal expansion joints type. The joints were pressurized with water during the test. Data acquisition was realized at the design, operation and room pressure. The expansion joints were tested rotating them to the design angular movement of 3 deg and 6 deg degrees. The reactions for each degree of movement were recorded during loading and unloading. The tests confirmed that the expansion joints presented no-interference from construction, which configure in an adequate acceptance proceeding. It was noted the influence of internal pressure on reaction forces during expansion joints movements, these forces are not taken into consideration on theoretical calculations of EJMA design equations. The influence of friction on expansion joints hinges are significant and shall be considered on piping design and mitigated using friction reduction devices. (author)

  7. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises.

    Science.gov (United States)

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-10-01

    Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Descriptive laboratory study. Laboratory. A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P reverse lunge (P reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat.

  8. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    Science.gov (United States)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  9. Joint Force Quarterly. Number 33, Winter 2002-03

    Science.gov (United States)

    2003-04-01

    Follow-on ( UFO ) System, Mobile User Objective System (MUOS) Position, Velocity, Time, Semi-synchronous Orbit Global Positioning System (GPS), GPS II/IIA...in 1945, Austria had been integral to the Nazi war machine. Occu- pation policy in the early postwar years reflected this ambiguity. U.S. forces alien

  10. Geodatabase of environmental information for Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, 1990-2004

    Science.gov (United States)

    Shah, Sachin D.; Quigley, Sean M.

    2005-01-01

    Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base (NAS-JRB) at Fort Worth, Tex., constitute a government-owned, contractor-operated (GOCO) facility that has been in operation since 1942. Contaminants from the facility, primarily volatile organic compounds (VOCs) and metals, have entered the groundwater-flow system through leakage from waste-disposal sites (landfills and pits) and from manufacturing processes (U.S. Air Force, Aeronautical Systems Center, 1995). The U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force (USAF), Aeronautical Systems Center, Environmental Management Directorate (ASC/ENVR), developed a comprehensive database (or geodatabase) of temporal and spatial environmental information associated with the geology, hydrology, and water quality at AFP4 and NAS-JRB. The database of this report provides information about the AFP4 and NAS-JRB study area including sample location names, identification numbers, locations, historical dates, and various measured hydrologic data. This database does not include every sample location at the site, but is limited to an aggregation of selected digital and hardcopy data of the USAF, USGS, and various consultants who have previously or are currently working at the site.

  11. Multi-joint postural behavior in patients with knee osteoarthritis.

    Science.gov (United States)

    Turcot, Katia; Sagawa, Yoshimasa; Hoffmeyer, Pierre; Suvà, Domizio; Armand, Stéphane

    2015-12-01

    Previous studies have demonstrated balance impairment in patients with knee osteoarthritis (OA). Although it is currently accepted that postural control depends on multi-joint coordination, no study has previously considered this postural strategy in patients suffering from knee OA. The objectives of this study were to investigate the multi-joint postural behavior in patients with knee OA and to evaluate the association with clinical outcomes. Eighty-seven patients with knee OA and twenty-five healthy elderly were recruited to the study. A motion analysis system and two force plates were used to investigate the joint kinematics (trunk and lower body segments), the lower body joint moments, the vertical ground reaction force ratio and the center of pressure (COP) during a quiet standing task. Pain, functional capacity and quality of life status were also recorded. Patients with symptomatic and severe knee OA adopt a more flexed posture at all joint levels in comparison with the control group. A significant difference in the mean ratio was found between groups, showing an asymmetric weight distribution in patients with knee OA. A significant decrease in the COP range in the anterior-posterior direction was also observed in the group of patients. Only small associations were observed between postural impairments and clinical outcomes. This study brings new insights regarding the postural behavior of patients with severe knee OA during a quiet standing task. The results confirm the multi-joint asymmetric posture adopted by this population. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Real-time visualization of joint cavitation.

    Directory of Open Access Journals (Sweden)

    Gregory N Kawchuk

    Full Text Available Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  13. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill.

    Science.gov (United States)

    Caekenberghe, Ine Van; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-07-06

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior-posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of

  14. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    Science.gov (United States)

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  15. A comparison of force sensing techniques for planetary manipulation

    Science.gov (United States)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  16. Environmental Degradation of Dissimilar Austenitic 316L and Duplex 2205 Stainless Steels Welded Joints

    Directory of Open Access Journals (Sweden)

    Topolska S.

    2017-12-01

    Full Text Available The paper describes structure and properties of dissimilar stainless steels welded joints between duplex 2205 and austenitic 316L steels. Investigations were focused on environmentally assisted cracking of welded joints. The susceptibility to stress corrosion cracking (SCC and hydrogen embrittlement was determined in slow strain rate tests (SSRT with the strain rate of 2.2 × 10−6 s−1. Chloride-inducted SCC was determined in the 35% boiling water solution of MgCl2 environment at 125°C. Hydrogen assisted SCC tests were performed in synthetic sea water under cathodic polarization condition. It was shown that place of the lowest resistance to chloride stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of HAZ comprising of large fractions of ferrite grains with acicular austenite phase. Hydrogen assisted SCC tests showed significant reduction in ductility of duplex 2205 steel while austenitic 316L steel remains almost immune to degradation processes. SSR tests of dissimilar welded joints revealed a fracture in the area of austenitic steel.

  17. Use of expansion joints in power stations

    International Nuclear Information System (INIS)

    Birker; Rommerswinkel.

    1976-01-01

    The paper discusses the mode of action of different systems of expansion joints. Special regard is given to the problems of expansion of pipelines of high rated diameter as employed in today's large power plant turbines. Due to the limited space available, the important role of the spring rate of the bellows for the reaction forces and moments acting on the connection points is pointed out. Apart from this details are given on the fabrication and materials selection of expansion joint bellows, and problems are discussed which arise in connection with the mechanical or hydraulic deformation of bellows with one or more walls. The non-destructive methods now in use for the testing of expansion pipe joints are mentioned along with experiments to test their behaviour under changing loads. The paper concludes on some remarks concerning proper transport, storage and installation of expansion pipe joints. (orig./AK) [de

  18. Joint Solutions to Substance Abuse: Public Sector Employee Assistance Programs.

    Science.gov (United States)

    State and Local Government Labor-Management Committee, Washington, DC.

    This short booklet is a joint expression by public sector labor and management that recognizes that neither side has all the answers to the problems of employee substance abuse and that both share a common concern for a successful outcome. The booklet summarizes the dimension of substance abuse in today's workplace; and it tries to encourage…

  19. Fatigue crack growth in welded joints in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.B.

    1988-01-01

    A pipe-to-plate specimen has been developed to study the influence of seawater on the fatigue behaviour of welded tubular joints. DC potential drop techniques have been used to detect fatigue crack initiation, and to monitor the subsequent growth of fatigue cracks. Results for three specimens, tested in air are compared with similar data for tubular and T-plate joints. These comparisons indicate that the pipe/plate is a reasonable model of a tubular joint. Testing was performed on a further six specimens in artificial seawater; two each with free corrosion, optimum cathodic protection, and cathodic overprotection. Fatigue life reduction factors compared with corresponding tests in air were 1.8 and 2.8 for free corrosion, 1.7 and 1.1 with cathodic protection, and 4.2 and 3.3 with cathodic over-protection. These fatigue life reduction factors were comparable to results on T-plate specimens, and were strongly dependent on crack shape development. Linear elastic fracture mechanics techniques appear suitable for the calculation of fatigue crack propagation life. Three approximate solution techniques for crack tip stress intensity factors show reasonable agreement with experimentally derived values. It is recommended that forcing functions be used to model crack aspect ratio development in welded joints. Such forcing functions are influenced by the initial stress distribution and the environment. 207 refs., 192 figs., 22 tabs.

  20. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces

    NARCIS (Netherlands)

    Wesseling, M.; Derikx, L.C.; de Groote, F.; Bartels, W.; Meyer, C.; Verdonschot, Nicolaas Jacobus Joseph; Jonkers, I.

    2015-01-01

    In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization

  1. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation.

    Science.gov (United States)

    Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George

    2017-05-01

    Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage

  2. Ligamentous and capsular injuries to the metacarpophalangeal joints of the hand.

    Science.gov (United States)

    Shah, Smiresh Suresh; Techy, Fernando; Mejia, Alfonso; Gonzalez, Mark H

    2012-01-01

    The mechanism of dorsal dislocation of the metacarpophalangeal (MCP) joint is with forced hyperextension of the joint and the main structure injured is the volar plate. A simple dislocation can be reduced by closed means whereas a complex dislocation cannot. Care must be taken not to put traction across the joint, which may cause the volar plate to slip into the joint, converting a simple dislocation into a complex dislocation. Volar dislocations are rare and mainly treated nonoperatively. Sagittal band injuries can be treated with extension splinting or surgical management with direct repair or reconstruction. A locked MCP joint can usually be treated with closed manipulation. This article discusses these injuries and management options.

  3. Dynamics and Optimal Feet Force Distributions of a Realistic Four-legged Robot

    Directory of Open Access Journals (Sweden)

    Saurav Agarwal

    2012-08-01

    Full Text Available This paper presents a detailed dynamic modeling of realistic four-legged robot. The direct and inverse kinematic analysis for each leg has been considered in order to develop an overall kinematic model of the robot, when it follows a straight path. This study also aims to estimate optimal feet force distributions of the said robot, which is necessary for its real-time control. Three different approaches namely, minimization of norm of feet forces (approach 1, minimization of norm of joint torques (approach 2 and minimization of norm of joint power (approach 3 have been developed. Simulation result shows that approach 3 is more energy efficient foot force formulation than other two approaches. Lagrange-Euler formulation has been utilized to determine the joint torques. The developed dynamic models have been examined through computer simulation of continuous gait of the four-legged robot.

  4. The relation between geometry and function of the ankle joint complex: a biomechanical review.

    Science.gov (United States)

    Kleipool, Roeland P; Blankevoort, Leendert

    2010-05-01

    This review deals with the relation between the anatomy and function of the ankle joint complex. The questions addressed are how high do the forces in the ankle joint get, where can the joints go (range of motion) and where do they go during walking and running. Finally the role of the ligaments and the articular surfaces is discussed, i.e. how does it happen. The magnitude of the loads on the ankle joint complex are primarily determined by muscle activity and can be as high as four times the body weight during walking. For the maximal range of motion, plantar and dorsiflexion occurs in the talocrural joint and marginally at the subtalar joint. In-eversion takes place at both levels. The functional range of motion is well within the limits of the maximal range of motion. The ligaments do not contribute to the forces for the functional range of motion but determine the maximal range of motion together with the articular surfaces. The geometry of the articular surfaces primarily determines the kinematics. Clinical studies must include these anatomical aspects to better understand the mechanism of injury, recovery, and interventions. Models can elucidate the mechanism by which the anatomy relates to the function. The relation between the anatomy and mechanical properties of the joint structures and joint function should be considered for diagnosis and treatment of ankle joint pathology.

  5. Knee joint loading in knee osteoarthritis: influence of abdominal and thigh fat.

    Science.gov (United States)

    Messier, Stephen P; Beavers, Daniel P; Loeser, Richard F; Carr, J Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J; Hunter, David J; Devita, Paul

    2014-09-01

    Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee joint loads in older overweight and obese adults with knee osteoarthritis (OA). Fat depots were quantified using computed tomography, and total lean and fat mass were determined with dual energy x-ray absorptiometry in 176 adults (age, 66.3 yr; body mass index, 33.5 kg·m) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Higher total body mass was significantly associated (P ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (P knee extensor moments (P = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (P = 0.0001), shear (P knee extension moment (P = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (P = 0.002). A regression model that included total thigh and total abdominal fat found that both were significantly associated with knee compressive and shear forces (P ≤ 0.04). Thigh fat was associated with knee abduction (P = 0.03) and knee extension moment (P = 0.02). Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA.

  6. Countering North Korean Special Purpose Forces

    National Research Council Canada - National Science Library

    Krause, Troy

    1999-01-01

    As United States and Republic of Korea forces stand to defend against a DPRK attack, one of the most formidable tasks is how to counter a second front in the Joint Rear Security Area of the Republic of Korea...

  7. Automatic locking knee brace joint

    Science.gov (United States)

    Weddendorf, Bruce (Inventor)

    1995-01-01

    This invention is an apparatus for controlling the pivotal movement of a knee brace comprising a tang-and-clevis joint that has been uniquely modified. Both the tang and the clevis have a set of teeth that, when engaged, can lock the tang and the clevis together. In addition, the tang is biased away from the clevis. Consequently, when there is no axial force (i.e., body weight) on the tang, the tang is free to pivot within the clevis. However, when an axial force is exerted on the tang, the tang is pushed into the clevis, both sets of teeth engage, and the tang and the clevis lock together.

  8. EKSISTENSI BANTUAN HUKUM TERHADAP PRAJURIT TNI SEBAGAI PELAKU TINDAK PIDANA DAN PRAKTIKNYA / The Existence And Practice Of Legal Assistance To Indonesian National Armed Forces Personnel As Criminal Offender

    Directory of Open Access Journals (Sweden)

    Tumbur Palti D Hutapea

    2016-11-01

    Full Text Available Bantuan Hukum merupakan bantuan yang diberikan oleh seorang ahli di bidang hukum atau penasihat hukum kepada seorang yang terkena masalah hukum di setiap tahapan pemeriksaan baik di luar maupun di dalam pengadilan. Peranan bantuan hukum bagi Prajurit TNI sangat diperlukan dalam menghadapi permasalahan hukum yang dihadapinya. Peraturan perundang-undangan yang mengatur bantuan hukum di lingkungan TNI sepanjang sejarah berdirinya TNI telah mengutamakan bantuan hukum yang berasal dari internal TNI berdasarkan perintah di mana personilnya belum memiliki akreditasi/sertifikasi, sehingga kalangan eksternal sulit memasuki lingkungan hukum militer sebab harus memperoleh izin Perwira Penyerah Perkara (Papera. Perlunya prioritas percepatan RUU tentang Peradilan Militer yang salah satunya merevisi aturan pemberian bantuan hukum kepada Prajurit TNI. Selanjutnya diperlukan kebebasan memilih dan menetapkan layanan bantuan hukum dari advokat profesional atau dengan menggunakan sarana posbakum, khususnya perkara yang diancam pidana mati dan pidana tambahan berupa pemecatan dari dinas militer.   Legal assistance is an assistance given by an expertise in law area or legal advisors to those who have legal problems at every stage of investigation both outside and inside the court. The role of legal assistance for Indonesian National Armed Forces personnel is important. The Legislation covering legal assistance in the Indonesian National Armed Forces community throughout the history has prioritized internal legal assistance where the personnel itself does not have certification/ accreditation for it. The external is hard to get involve and have to obtain special permission from the Officers hand the case (Papera. Accelerating the Bill on Military Justice to revise the rules on providing legal assistance to Army personnel is priority. Furthermore, the necessary freedom to choose and establish legal assistance services of a professional advocate or by means POSBAKUM

  9. Muddling Through: An Analysis of Security Force Assistance in Iraq

    Science.gov (United States)

    2017-05-25

    OSC-I mostly fell back into their comfort zone of managing 60 foreign military sales programs as the nominal advisement programs quickly fell apart...implications of these observations are critical to future SFA efforts, as the US government seeks to continue a long-term strategy of advising and...Iraqi Army, Mosul, ISIS, Advise and Assist, Security Assistance, Security Cooperation, MNSTC-I, OIF 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  10. Power-assistive finger exoskeleton with a palmar opening at the fingerpad.

    Science.gov (United States)

    Heo, Pilwon; Kim, Jung

    2014-11-01

    This paper presents a powered finger exoskeleton with an open fingerpad, named the Open Fingerpad eXoskeleton (OFX). The palmar opening at the fingerpad allows for direct contact between the user's fingerpad and objects in order to make use of the wearer's own tactile sensation for dexterous manipulation. Lateral side walls at the end of the OFX's index finger module are equipped with custom load cells for estimating the wearer's pinch grip force. A pneumatic cylinder generates assistance force, which is determined according to the estimated pinch grip force. The OFX transmits the assistance force directly to the objects without exerting pressure on the wearer's finger. The advantage of the OFX over an exoskeleton with a closed fingerpad was validated experimentally. During static and dynamic manipulation of a test object, the OFX exhibited a lower safety margin than the closed exoskeleton, indicating a higher ability to adjust the grip force within an appropriate range. Furthermore, the benefit of force assistance in reducing the muscular burden was observed in terms of muscle fatigue during a static pinch grip. The median frequency (MDF) of the surface electromyography (sEMG) signal from the first dorsal interosseous (FDI) muscle displayed a lower reduction rate for the assisted condition, indicating a lower accumulation rate of muscle fatigue.

  11. Glenohumeral contact force during flat and topspin tennis forehand drives.

    Science.gov (United States)

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  12. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  13. A Perspective on Robotic Assistance for Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Nathan A. Netravali

    2013-01-01

    Full Text Available Knee arthroplasty is used to treat patients with degenerative joint disease of the knee to reduce pain and restore the function of the joint. Although patient outcomes are generally quite good, there are still a number of patients that are dissatisfied with their procedures. Aside from implant design which has largely become standard, surgical technique is one of the main factors that determine clinical results. Therefore, a lot of effort has gone into improving surgical technique including the use of computer-aided surgery. The latest generation of orthopedic surgical tools involves the use of robotics to enhance the surgeons’ abilities to install implants more precisely and consistently. This review presents an evolution of robot-assisted surgical systems for knee replacement with an emphasis on the clinical results available in the literature. Ever since various robotic-assistance systems were developed and used clinically worldwide, studies have demonstrated that these systems are as safe as and more accurate than conventional methods of manual implantation. Robotic surgical assistance will likely result in improved surgical technique and improved clinical results.

  14. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian

    2013-01-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force...... of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle...... joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases....

  15. [Upper extremity kinetics and energy expenditure during walker-assisted gait in children with cerebral palsy].

    Science.gov (United States)

    Konop, Katherine A; Strifling, Kelly M B; Wang, Mei; Cao, Kevin; Eastwood, Daniel; Jackson, Scott; Ackman, Jeffrey; Altiok, Haluk; Schwab, Jeffrey; Harris, Gerald F

    2009-01-01

    We evaluated the relationships between upper extremity (UE) kinetics and the energy expenditure index during anterior and posterior walker-assisted gait in children with spastic diplegic cerebral palsy (CP). Ten children (3 boys, 7 girls; mean age 12.1 years; range 8 to 18 years) with spastic diplegic CP, who ambulated with a walker underwent gait analyses that included UE kinematics and kinetics. Upper extremity kinetics were obtained using instrumented walker handles. Energy expenditure index was obtained using the heart rate method (EEIHR) by subtracting resting heart rate from walking heart rate, and dividing by the walking speed. Correlations were sought between the kinetic variables and the EEIHR and temporal and stride parameters. In general, anterior walker use was associated with a higher EEIHR. Several kinetic variables correlated well with temporal and stride parameters, as well as the EEIHR. All of the significant correlations (r>0.80; pwalker use and involved joint reaction forces (JRF) rather than moments. Some variables showed multiple strong correlations during anterior walker use, including the medial JRF in the wrist, the posterior JRF in the elbow, and the inferior and superior JRFs in the shoulder. The observed correlations may indicate a relationship between the force used to advance the body forward within the walker frame and an increased EEIHR. More work is needed to refine the correlations, and to explore relationships with other variables, including the joint kinematics.

  16. Finite element modelling of the articular disc behaviour of the temporo-mandibular joint under dynamic loads.

    Science.gov (United States)

    Jaisson, Maxime; Lestriez, Philippe; Taiar, Redha; Debray, Karl

    2011-01-01

    The proposed biodynamic model of the articular disc joint has the ability to affect directly the complete chewing mechanism process and its related muscles defining its kinematics. When subjected to stresses from the mastication muscles, the disc absorbs one part and redistributes the other to become completely distorted. To develop a realistic model of this intricate joint a CT scan and MRI images from a patient were obtained to create sections (layers) and MRI images to create an anatomical joint CAD model, and its corresponding mesh element using a finite element method. The boundary conditions are described by the external forces applied to the joint model through a decomposition of the maximum muscular force developed by the same individual. In this study, the maximum force was operating at frequencies close to the actual chewing frequency measured through a cyclic loading condition. The reaction force at the glenoid fossa was found to be around 1035 N and is directly related to the frequency of indentation. It is also shown that over the years the areas of maximum stresses are located at the lateral portion of the disc and on its posterior rim. These forces can reach 13.2 MPa after a period of 32 seconds (s) at a frequency of 0.5 Hz. An important part of this study is to highlight resilience and the areas where stresses are at their maximum. This study provides a novel approach to improve the understanding of this complex joint, as well as to assess the different pathologies associated with the disc disease that would be difficult to study otherwise.

  17. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    Science.gov (United States)

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lower limb joint moment during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.

  19. Complex Light and Optical Forces X

    DEFF Research Database (Denmark)

    This year marked the 10th Anniversary Edition of the conference on Complex Light and Optical Forces that is part of Photonics West. We again had a record number of submissions, indicative of the rising visibility and stature of this conference. Indeed, Complex Light and Optical Forces is still...... the only yearly venue worldwide for presenting research on complex light. This year we did not find a need to organize joint sessions with other conferences at Photonics West....

  20. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    Science.gov (United States)

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that

  1. Does Computer-Assisted Femur First THR Improve Musculoskeletal Loading Conditions?

    Directory of Open Access Journals (Sweden)

    Tim A. Weber

    2015-01-01

    Full Text Available We have developed a novel, computer-assisted operation method for minimal-invasive total hip replacement (THR following the concept of “femur first/combined anteversion,” which incorporates various aspects of performing a functional optimization of the prosthetic stem and cup position (CAS FF. The purpose of this study is to assess whether the hip joint reaction forces and patient’s gait parameters are being improved by CAS FF in relation to conventional THR (CON. We enrolled 60 patients (28 CAS FF/32 CON and invited them for gait analysis at three time points (preoperatively, postop six months, and postop 12 months. Data retrieved from gait analysis was processed using patient-specific musculoskeletal models. The target parameters were hip reaction force magnitude (hrf, symmetries, and orientation with respect to the cup. Hrf in the CAS FF group were closer to a young healthy normal. Phase-shift symmetry showed an increase in the CAS FF group. Hrf orientation in the CAS FF group was closer to optimum, though no edge or rim-loading occurred in the CON group as well. The CAS FF group showed an improved hrf orientation in an early stage and a trend to an improved long-term outcome.

  2. Upper limb joint kinetic analysis during tennis serve: Assessment of competitive level on efficiency and injury risks.

    Science.gov (United States)

    Martin, C; Bideau, B; Ropars, M; Delamarche, P; Kulpa, R

    2014-08-01

    The aim of this work was to compare the joint kinetics and stroke production efficiency for the shoulder, elbow, and wrist during the serve between professionals and advanced tennis players and to discuss their potential relationship with given overuse injuries. Eleven professional and seven advanced tennis players were studied with an optoelectronic motion analysis system while performing serves. Normalized peak kinetic values of the shoulder, elbow, and wrist joints were calculated using inverse dynamics. To measure serve efficiency, all normalized peak kinetic values were divided by ball velocity. t-tests were used to determine significant differences between the resultant joint kinetics and efficiency values in both groups (advanced vs professional). Shoulder inferior force, shoulder anterior force, shoulder horizontal abduction torque, and elbow medial force were significantly higher in advanced players. Professional players were more efficient than advanced players, as they maximize ball velocity with lower joint kinetics. Since advanced players are subjected to higher joint kinetics, the results suggest that they appeared more susceptible to high risk of shoulder and elbow injuries than professionals, especially during the cocking and deceleration phases of the serve. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Effect of timing of hip extension assistance during loaded walking with a soft exosuit.

    Science.gov (United States)

    Ding, Ye; Panizzolo, Fausto A; Siviy, Christopher; Malcolm, Philippe; Galiana, Ignacio; Holt, Kenneth G; Walsh, Conor J

    2016-10-03

    Recent advances in wearable robotic devices have demonstrated the ability to reduce the metabolic cost of walking by assisting the ankle joint. To achieve greater gains in the future it will be important to determine optimal actuation parameters and explore the effect of assisting other joints. The aim of the present work is to investigate how the timing of hip extension assistance affects the positive mechanical power delivered by an exosuit and its effect on biological joint power and metabolic cost during loaded walking. In this study, we evaluated 4 different hip assistive profiles with different actuation timings: early-start-early-peak (ESEP), early-start-late-peak (ESLP), late-start-early-peak (LSEP), late-start-late-peak (LSLP). Eight healthy participants walked on a treadmill at a constant speed of 1.5 m · s -1 while carrying a 23 kg backpack load. We tested five different conditions: four with the assistive profiles described above and one unpowered condition where no assistance was provided. We evaluated participants' lower limb kinetics, kinematics, metabolic cost and muscle activation. The variation of timing in the hip extension assistance resulted in a different amount of mechanical power delivered to the wearer across conditions; with the ESLP condition providing a significantly higher amount of positive mechanical power (0.219 ± 0.006 W · kg -1 ) with respect to the other powered conditions. Biological joint power was significantly reduced at the hip (ESEP and ESLP) and at the knee (ESEP, ESLP and LSEP) with respect to the unpowered condition. Further, all assistive profiles significantly reduced the metabolic cost of walking compared to the unpowered condition by 5.7 ± 1.5 %, 8.5 ± 0.9 %, 6.3 ± 1.4 % and 7.1 ± 1.9 % (mean ± SE for ESEP, ESLP, LSEP, LSLP, respectively). The highest positive mechanical power delivered by the soft exosuit was reported in the ESLP condition, which showed also a

  4. Divergent dislocation of the ring and little finger carpometacarpal joints--a rare injury pattern.

    LENUS (Irish Health Repository)

    Dillon, John

    2012-02-03

    Hand injuries due to longitudinal forces in the line of the metacarpals demonstrate unusual dislocation patterns. We describe a case of volar intra-articular fracture dislocation of the ring finger carpometacarpal joint in association with a pure dorsal dislocation of the little finger carpometacarpal joint. Open reduction supplemented with Kirschner wire fixation restored normal carpometacarpal joint anatomical relations and achieved an excellent clinical result.

  5. Nordic Walking does not reduce the loading of the knee joint

    DEFF Research Database (Denmark)

    Hansen, L; Henriksen, Michael; Larsen, P

    2008-01-01

    and the knee joint compressive forces were calculated. No differences in compression or shear forces between NW and NP were found. The peak knee flexion angles were larger during NW (-32.5+/-6.0 degrees) compared with NP (-28.2+/-4.2 degrees). The hip range of motion (ROM) was significantly increased during NW...

  6. Joint Force Quarterly. Issue 67, 4th Quarter, October 2012

    Science.gov (United States)

    2012-10-01

    Future of Cyber War ,” Survival 53, no. 1 [January 2011], 24.). 43 According to reports, representatives from the International Atomic Energy Agency who...Braden Hisey, and Jessica Todd 63 Space and the Joint Fight By Robert L. Butterworth 71 The Regional Special Operations Headquarters: Franchising the...and Resource Strategy RADM John N. Christenson, USN Naval War College Brig Gen Stephen T. Denker, USAF Air Command and Staff College LtGen George

  7. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking.

    Science.gov (United States)

    Panizzolo, Fausto A; Galiana, Ignacio; Asbeck, Alan T; Siviy, Christopher; Schmidt, Kai; Holt, Kenneth G; Walsh, Conor J

    2016-05-12

    Carrying load alters normal walking, imposes additional stress to the musculoskeletal system, and results in an increase in energy consumption and a consequent earlier onset of fatigue. This phenomenon is largely due to increased work requirements in lower extremity joints, in turn requiring higher muscle activation. The aim of this work was to assess the biomechanical and physiological effects of a multi-joint soft exosuit that applies assistive torques to the biological hip and ankle joints during loaded walking. The exosuit was evaluated under three conditions: powered (EXO_ON), unpowered (EXO_OFF) and unpowered removing the equivalent mass of the device (EXO_OFF_EMR). Seven participants walked on an instrumented split-belt treadmill and carried a load equivalent to 30 % their body mass. We assessed their metabolic cost of walking, kinetics, kinematics, and lower limb muscle activation using a portable gas analysis system, motion capture system, and surface electromyography. Our results showed that the exosuit could deliver controlled forces to a wearer. Net metabolic power in the EXO_ON condition (7.5 ± 0.6 W kg(-1)) was 7.3 ± 5.0 % and 14.2 ± 6.1 % lower than in the EXO_OFF_EMR condition (7.9 ± 0.8 W kg(-1); p = 0.027) and in the EXO_OFF condition (8.5 ± 0.9 W kg(-1); p = 0.005), respectively. The exosuit also reduced the total joint positive biological work (sum of hip, knee and ankle) when comparing the EXO_ON condition (1.06 ± 0.16 J kg(-1)) with respect to the EXO_OFF condition (1.28 ± 0.26 J kg(-1); p = 0.020) and to the EXO_OFF_EMR condition (1.22 ± 0.21 J kg(-1); p = 0.007). The results of the present work demonstrate for the first time that a soft wearable robot can improve walking economy. These findings pave the way for future assistive devices that may enhance or restore gait in other applications.

  8. 77 FR 69599 - Reserve Forces Policy Board (RFPB); Notice of Advisory Committee Meeting

    Science.gov (United States)

    2012-11-20

    ... force mix; the Vice Chairman of the Joint Chiefs of Staff will discuss Operational Reserve Requirements... DEPARTMENT OF DEFENSE Office of the Secretary Reserve Forces Policy Board (RFPB); Notice of Advisory Committee Meeting AGENCY: Reserve Forces Policy Board, Office of the Secretary of Defense...

  9. Effects of joint alignment and type on mechanical properties of thermoplastic articulated ankle-foot orthosis.

    Science.gov (United States)

    Gao, Fan; Carlton, William; Kapp, Susan

    2011-06-01

    Articulated or hinged ankle-foot orthosis (AFO) allow more range of motion. However, quantitative investigation on articulated AFO is still sparse. The objective of the study was to quantitatively investigate effects of alignment and joint types on mechanical properties of the thermoplastic articulated AFO. Tamarack dorsiflexion assist flexure joints with three durometers (75, 85 and 95) and free motion joint were tested. The AFO joint was aligned with the center of the motor shaft (surrogate ankle joint), 10 mm superior, inferior, anterior and posterior with respect to the motor shaft center. The AFO was passively moved from 20° plantar flexion to 15° dorsiflexion at a speed of 10°/s using a motorized device. Mechanical properties including index of hysteresis, passive resistance torque and quasi-static stiffness (at neutral, 5°, 10° and 15° in plantar flexion) were quantified. Significant effects of joint types and joint alignment on the mechanical properties of an articulated thermoplastic AFO were revealed. Specifically, center alignment showed minimum resistance and stiffness while anterior and posterior alignment showed significantly higher resistance and stiffness. The dorsiflexion assist torques at neutral position ranged from 0.69 ± 0.09 to 1.88 ± 0.10 Nm. Anterior and posterior alignment should be avoided as much as possible. The current study suggested that anterior and posterior alignment be avoided as much as possible in clinical practice due to potential skin irritation and increase in stress around the ankle joint.

  10. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    Science.gov (United States)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  11. KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT

    Science.gov (United States)

    Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul

    2014-01-01

    Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996

  12. Operational Stress and Correlates of Mental Health Among Joint Task Force Guantanamo Bay Military Personnel.

    Science.gov (United States)

    Webb-Murphy, Jennifer A; De La Rosa, Gabriel M; Schmitz, Kimberly J; Vishnyak, Elizabeth J; Raducha, Stephanie C; Roesch, Scott C; Johnston, Scott L

    2015-12-01

    Military personnel deployed to Joint Task Force Guantanamo Bay (JTF-GTMO) faced numerous occupational stressors. As part of a program evaluation, personnel working at JTF-GTMO completed several validated self-report measures. Personnel were at the beginning, middle, or end of their deployment phase. This study presents data regarding symptoms of posttraumatic stress disorder, alcohol abuse, depression, and resilience among 498 U.S. military personnel deployed to JTF-GTMO in 2009. We also investigated individual and organizational correlates of mental health among these personnel. Findings indicated that tenure at JTF-GTMO was positively related to adverse mental health outcomes. Regression models including these variables had R2 values ranging from .02 to .11. Occupation at JTF-GTMO also related to mental health such that guards reported poorer mental health than medical staff. Reluctance to seek out mental health care was also related to mental health outcomes. Those who reported being most reluctant to seek out care tended to report poorer mental health than those who were more willing to seek out care. Results suggested that the JTF-GTMO deployment was associated with significant psychological stress, and that both job-related and attitude-related variables were important to understanding mental health symptoms in this sample. Copyright © 2015 International Society for Traumatic Stress Studies.

  13. ESHRE Task Force on Ethics and Law 23: medically assisted reproduction in singles, lesbian and gay couples, and transsexual people†.

    Science.gov (United States)

    De Wert, G; Dondorp, W; Shenfield, F; Barri, P; Devroey, P; Diedrich, K; Tarlatzis, B; Provoost, V; Pennings, G

    2014-09-01

    This Task Force document discusses ethical issues arising with requests for medically assisted reproduction from people in what may be called 'non-standard' situations and relationships. The document stresses that categorically denying access to any of these groups cannot be reconciled with a human rights perspective. If there are concerns about the implications of assisted reproduction on the wellbeing of any of the persons involved, including the future child, a surrogate mother or the applicants themselves, these concerns have to be considered in the light of the available scientific evidence. When doing so it is important to avoid the use of double standards. More research is needed into the psychosocial implications of raising children in non-standard situations, especially with regard to single women, male homosexual couples and transsexual people. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Coordinating Operational Fires in a High-Risk Battle Space: A New Concept for the Joint Commander

    National Research Council Canada - National Science Library

    Roberts, Lawrence

    2001-01-01

    ... fires and ground maneuver, while simultaneously minimizing collateral damage. The Joint Force Commander has a requirement for a permanent joint staff fires element to plan, coordinate and execute fires to support the JFC's overall objectives...

  15. Space and Air Force: Rhetoric or Reality

    National Research Council Canada - National Science Library

    Cashin, James

    1999-01-01

    ... to meet requirements set forth in the National Security Strategy (NSS). Joint Vision 2010, the Air Force's Global Engagement, and several long-range plans all establish requirements that can only be fulfilled through the application of spacepower...

  16. Design Oriented Model for the Assessment of T-Shaped Beam-Column Joints in Reinforced Concrete Frames

    Directory of Open Access Journals (Sweden)

    Antonio Bossio

    2017-12-01

    Full Text Available Beam-column joints represent very important elements of reinforced concrete (RC structures. In fact, beams and columns, at the boundary, generate internal forces acting on concrete core and on reinforcement bars with a very high gradient. To fully understand the seismic performances and the failure modes of T-shaped beam-column joints (external corner-positioned in RC structures, a simplified analytical model of joint behaviour is proposed and theoretical simulations have been performed. The model is based on the solution of a system of equilibrium equations of cracked joint portions designed to evaluate internal stresses at different values of column shear forces. The main aim of the proposed model is to identify the strength hierarchy. Limit values of different internal stresses allow us to detect the occurrence of different failure modes (namely the failure of the cracked joint, the bond failure of passing through bars, and the flexural/shear failures of columns or beams associated with column shear forces; the smaller one represents the capacity of the joint. The present work, focusing on T-shaped joints, could represent a useful tool for designers to quantify the performance of new structures or of existing ones. In fact, such a tool allows us to push an initial undesired failure mode to a more appropriate one to be evaluated. Finally, some experimental results of tests available in literature are reported, analysed, and compared to the predictions of the proposed model (by means of a worked example and of some international codes. The outcomes confirm that failure modes and corresponding joint capacities require an analytical model, like the proposed one, to be accurately predicted.

  17. Peripheral degenerative joint diseases

    Directory of Open Access Journals (Sweden)

    Nilzio Antonio da Silva

    2008-03-01

    Full Text Available Osteoarthritis, a degenerative joint disease, is the most commonrheumatic disorder mainly in a geriatric population. Manifestationsare pain, stiffness and functional loss in the affected joint.According to etiology it is classifi ed as primary (or idiopathicand secondary. Some risk factors for disease development aregenetics, race, age, sex, obesity, occupational activities andarticular biomechanics. Pathogenesis is the same for any cause orlocalization, being catabolic alterations, with synthesis, inhibitionand reparing intent of the cartilage matrix. Metalloproteinases andcytokines (IL-1,IL-6,TNF-α actions promote infl ammatory reactionand cartilage degradation. Pain, the most important symptom,does not correlate with radiologic fi ndings. Peripheral osteoarthritisoccurs predominantly in the knee, hip and hand. Diagnosis is basedon clinical features, laboratorial tests and radiological changes.Rheumatological associations’ guidelines for treatment includenon-pharmacologic (education, physiotherapy, assistive devices,and pharmacologic (analgesics, anti-infl ammatory drugs therapyand surgery. Arthroplasty seems to work better than medicines, butshould be used if other treatments have failed.

  18. 78 FR 37798 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-06-24

    ... Chiefs of Staff Risk Assessment, Comprehensive Joint Assessment, and Joint Requirements Oversight Council...; (e) maintains a peacetime rotation force to support operational tempo goals of 1:2 for regular...

  19. Dynamic analysis of cross shaft type universal joint with clearance

    International Nuclear Information System (INIS)

    Lu, Jian Wei; Wang, Gong Cheng; Chen, Hao; Vakakis, Alexander F.; Bergman, Lawrence A.

    2013-01-01

    Cross shaft type universal joint is widely used in ground vehicles to transfer torque between two intersecting axes, and its transmission feature can make a great contribution to NVH performance of the vehicle. We looked at the assembling clearance at cross shaft neck, and presented a dynamic model of cross shaft type universal joint with clearance at cross shaft neck. Two-state model is applied to describe the contact force between the cross shaft and driving joint fork based on Hertz theorem, and lumped mass method is applied to build up the dynamic model of the universal joint. Based on this model, numerical analysis is carried out to discuss the transmission feature of the universal joint with clearance at cross shaft neck, and the influence of clearance on the dynamic behavior of the system is evaluated with numerical results based on time history, power spectrum, and phase portrait. The method and conclusions presented are helpful to improvement of the transmission feature of cross shaft type universal joint.

  20. Polarity analysis of GaN nanorods by photo-assisted Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiandong; Neumann, Richard; Wang, Xue; Li, Shunfeng; Fuendling, Soenke; Merzsch, Stephan; Al-Suleiman, Mohamed A.M.; Soekmen, Uensal; Wehmann, Hergo-H.; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany)

    2011-07-15

    Polarity dependence (N-polar (000-1) and Ga-polar (0001)) of surface photovoltage of epitaxially grown, vertically aligned GaN nanorods has been investigated by photo-assisted Kelvin probe force microscopy (KPFM). Commercial GaN substrates with known polarities are taken as reference samples. The polarity of GaN substrates can be well distinguished by the change in surface photovoltage upon UV illumination in air ambient. These different behaviors of Ga- and N-polar surfaces are attributed to the polarity-related surface-bound charges and photochemical reactivity. GaN nanorods were grown on patterned SiO{sub 2}/sapphire templates by metal-organic vapor phase epitaxy (MOVPE). In order to analyze the bottom surface of the grown GaN nanorods, a technique known from high power electronics and joining techniques is applied to remove the substrate. The top and bottom surfaces of the GaN nanorods are identified to be N-polar and Ga-polar according to the KPFM results, respectively. Our experiments demonstrate that KPFM is a simple and suitable method capable to identify the polarity of GaN nanorods. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. The Formation Of A Dutch Joint Military Selection Centre

    National Research Council Canada - National Science Library

    Visser, Wim

    1999-01-01

    ... of the 30.000 annual applicants will get the same procedure. In this lecture, attention shall be given to the present way of testing and interviewing of the Dutch Forces, and to the proposed method of joint selection...

  2. Contribution of Leg-Muscle Forces to Paddle Force and Kayak Speed During Maximal-Effort Flat-Water Paddling.

    Science.gov (United States)

    Nilsson, Johnny E; Rosdahl, Hans G

    2016-01-01

    The purpose was to investigate the contribution of leg-muscle-generated forces to paddle force and kayak speed during maximal-effort flat-water paddling. Five elite male kayakers at national and international level participated. The participants warmed up at progressively increasing speeds and then performed a maximal-effort, nonrestricted paddling sequence. This was followed after 5 min rest by a maximal-effort paddling sequence with the leg action restricted--the knee joints "locked." Left- and right-side foot-bar and paddle forces were recorded with specially designed force devices. In addition, knee angular displacement of the right and left knees was recorded with electrogoniometric technique, and the kayak speed was calculated from GPS signals sampled at 5 Hz. The results showed that reduction in both push and pull foot-bar forces resulted in a reduction of 21% and 16% in mean paddle-stroke force and mean kayak speed, respectively. Thus, the contribution of foot-bar force from lower-limb action significantly contributes to kayakers' paddling performance.

  3. A computed torque method based attitude control with optimal force distribution for articulated body mobile robots

    International Nuclear Information System (INIS)

    Fukushima, Edwardo F.; Hirose, Shigeo

    2000-01-01

    This paper introduces an attitude control scheme based in optimal force distribution using quadratic programming which minimizes joint energy consumption. This method shares similarities with force distribution for multifingered hands, multiple coordinated manipulators and legged walking robots. In particular, an attitude control scheme was introduced inside the force distribution problem, and successfully implemented for control of the articulated body mobile robot KR-II. This is an actual mobile robot composed of cylindrical segments linked in series by prismatic joints and has a long snake-like appearance. These prismatic joints are force controlled so that each segment's vertical motion can automatically follow the terrain irregularities. An attitude control is necessary because this system acts like a system of wheeled inverted pendulum carts connected in series, being unstable by nature. The validity and effectiveness of the proposed method is verified by computer simulation and experiments with the robot KR-II. (author)

  4. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    OpenAIRE

    Haque, Rezwanul; Wong, Yat C.; Paradowska, Anna; Blacket, Stuart; Durandet, Yvonne

    2017-01-01

    Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR) joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring...

  5. Isolated Facet Joint Fracture as a Cause of Chronic Low Back Pain and Sciatica

    Directory of Open Access Journals (Sweden)

    Robert W Teasell

    1996-01-01

    Full Text Available A case of facet joint fracture following a rear-end motor vehicle accident who presented with chronic low back pain and sciatica is outlined. Diagnosis was made with 99Tc nuclear bone scan and was confirmed on computed tomographic scan after diagnosis with regular radiographs had failed. Facetectomy relieved pain but led to symptoms related to asymmetric load on the opposite facet joint. Symptoms were substantially relieved with a facet joint deinnervation procedure. Facet joint fracture was felt to occur as a consequence of compression forces on the facet joint at the time of impact.

  6. Study for a stress joint at the top of a SCR (Steel Catenary Risers); Estudo de 'stress joints' para o topo de um SCR (Steel Catenary Risers)

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Elizabeth Frauches Netto; Andrade, Edmundo Queiroz de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Steel Catenary Risers, SCRs, need a top connection that bears the force transmitted to the platform. Essentially, two types of connections exist on the market: flex joint and stress joint (SJ). PETROBRAS has a SCR with top connection of flex joint type installed on one of its platforms; however, the company has been studying SJ as an option out of SCR top connection. A stress joint is a monolithic structure and can be inspected during manufacture and service, without so many difficult. They are metal structures composed of a uniform bore inserted in a tapered wall that increases gradually to support the force coming from the riser. The objective of this paper is to present a SJ sensitivity study for a production SCR supposedly hardwired to a unit of production of the semi-submersible type. The data used is based on real SCR data. For this study, global and local analyses were conducted for some models of stress joints, varying some parameters such as material and dimensions, allowing for the verification of some of the critical points of this type of connection. The results obtained will be shown in graphs and tensions maps to illustrate comparatively the critical points of the models analyzed. (author)

  7. The transverse force experienced by the radial head during axial loading of the forearm: A cadaveric study.

    Science.gov (United States)

    Orbay, Jorge L; Mijares, Michael R; Berriz, Cecilia G

    2016-01-01

    When designing a radial head replacement, the magnitude and direction of forces applied across the proximal radio-ulnar joint (PRUJ) and the radiocapitellar joint must be included. These designs often focus on axial loads transmitted to the radial head by the capitellum; however, the radial head also bears a significant transverse force at the PRUJ. Load transmission by the central band of the interosseous ligament induces a force component in a lateral direction perpendicular to the axis of the limb, which is borne by the articular surfaces of the proximal and distal radio-ulnar joints. The objective of this study is to establish the relationship between distally applied axial forces and proximal transverse reaction forces. Five cadaveric, human forearms with intact interosseous membranes were used to measure the magnitude of transversely-directed forces experienced by the radial head during axial loading of the forearm at the lunate fossa. A Mark-10 test stand applied a gradual and continuous axial load on the articular surface of the distal radius. A Mark-10 force gauge measured the resultant transverse force experienced by the radial head in the proximal radioulnar joint. Classical mechanics and static force analysis were applied in order to predict lateral force values that would occur when the interosseous ligament is treated as the major load transmitter between the radius and ulna. Acquired data show that the radial head bears a force in the transverse direction that averages 18% (SD 3.89%) in magnitude of the axial force applied at the wrist. This figure is in close accordance with the predicted value of 22% that was calculated by way of free-body plotting. Physiologic forearm loading results in a clinically significant transverse force component transmitted through the interosseous ligament complex. The existence of transverse forces in the human forearm may explain clinical problems seen after radial head resection and suggest that radial head implants

  8. A guide for statewide impaired-driving task forces.

    Science.gov (United States)

    2009-09-01

    The purpose of the guide is to assist State officials and other stakeholders who are interested in establishing an : Impaired-Driving Statewide Task Force or who are exploring ways to improve their current Task Force. The guide : addresses issues suc...

  9. Management of acromioclavicular joint injuries.

    Science.gov (United States)

    Li, Xinning; Ma, Richard; Bedi, Asheesh; Dines, David M; Altchek, David W; Dines, Joshua S

    2014-01-01

    Acromioclavicular joint injuries are among the most common shoulder girdle injuries in athletes and most commonly result from a direct force to the acromion with the arm in an adducted position. Acromioclavicular joint injuries often present with associated injuries to the glenohumeral joint, including an increased incidence of superior labrum anterior posterior (SLAP) tears that may warrant further evaluation and treatment. Anteroposterior stability of the acromioclavicular joint is conferred by the capsule and acromioclavicular ligaments, of which the posterior and superior ligaments are the strongest. Superior-inferior stability is maintained by the coracoclavicular (conoid and trapezoid) ligaments. Type-I or type-II acromioclavicular joint injuries have been treated with sling immobilization, early shoulder motion, and physical therapy, with favorable outcomes. Return to activity can occur when normal shoulder motion and strength are obtained and the shoulder is asymptomatic as compared with the contralateral normal extremity. The management of type-III injuries remains controversial and is individualized. While a return to the previous level of functional activity with nonsurgical treatment has been documented in a number of case series, surgical reduction and coracoclavicular ligament reconstruction has been associated with a favorable outcome and can be considered in patients who place high functional demands on their shoulders or in athletes who participate in overhead sports. Surgical management is indicated for high-grade (≥type IV) acromioclavicular joint injuries to achieve anatomic reduction of the acromioclavicular joint, reconstruction of the coracoclavicular ligaments, and repair of the deltotrapezial fascia. Outcomes after surgical reconstruction of the coracoclavicular ligaments have been satisfactory with regard to achieving pain relief and return to functional activities, but further improvements in the biomechanical strength of these

  10. A comparison of two surgical approaches to the scapulohumeral joint in dogs.

    Science.gov (United States)

    McLaughlin, R; Roush, J K

    1995-01-01

    Two scapulohumeral arthrotomy techniques were evaluated and compared in 10 normal, young adult greyhounds. A caudolateral approach with craniodorsal retraction of the teres minor muscle (no-tenotomy) and a craniolateral approach with tenotomy of the infraspinatus tendon were each performed unilaterally in 5 dogs. The dogs were evaluated using force plate gait analysis, lameness evaluation, radiography, and goniometry for 5 weeks and then euthanatized. Tenotomy sites and sections of the humeral articular cartilage were collected from shoulder joints that had been operated on and examined microscopically. The same surgical approach has then performed on the contralateral shoulder in the cadavers and exposure of the humeral articular cartilage was measured using planimetry. Peak vertical force applied to the operated limbs in the tenotomy group was significantly less than preoperative leads on day 3 and significantly less than the no-tenotomy group on days 21 and 28. The peak vertical force applied to the operated limbs in the no-tenotomy group was not significantly different from preoperative levels during the study. Scapulohumeral arthrotomy by tenotomy of the infraspinatus resulted in decreased range-of-motion and joint extension compared with joints operated on without tenotomies, but provided significantly greater exposure to the articular surface. Scapulohumeral arthrotomy with craniodorsal retraction of the teres minor muscle did not significantly alter goniometric measurements compared with unoperated joints. Both techniques resulted in similar subjective lameness scores and caused no gross microscopic or radiographic evidence of articular cartilage damage.

  11. Durability of shrink joints; Bestaendighet hos krympskarvar

    Energy Technology Data Exchange (ETDEWEB)

    Forsaeus Nilsson, Stefan; Saellberg, Sven-Erik

    2007-07-01

    About one third of all joint failures are caused by shrink seals losing adhesion, according to statistics from the Swedish District Heating Association. The present project was initiated upon request from the Authorisation Board of the Swedish District Heating Association in order to investigate the potential to enhance the quality of shrink joints. The purpose has been to provide a screening of the key properties of the joint systems currently available on the market. The aim has been to facilitate the choice of right materials and constructions to achieve the best functionality and cost effectiveness. The project has comprised a compilation of the views from industry representatives from manufacturers of shrink and sealing materials, pipe producers, joint contractors and district heating companies, and an experimental study where a number of joints were evaluated with respect to tightness and strength. The following joint systems took part in the investigation: Logstor SX; Canusa SuperCase; Raychem RayJoint; Powerpipe DTK with external seal Nitto NeoCover 1150 in one end and Raychem TPSM in the other; Logstor B2S med external seal Canusa KLD in one end and Raychem TPSM in the other. The joints were installed on pipes of diameters 160 mm and 450 mm. The installation was done under cold and dirty conditions, to simulate a field like worst-case scenario. After the installation, the joints were tested with respect to tightness. Peel strength and shear strength were evaluated before and after thermal ageing in +50 deg C for 70 days. Mechanical tests and ageing followed standardised procedure in EN 12068. A study of the shrink force relaxation in crosslinked and non-crosslinked polyethylene shrink sleeves was undertaken, by shrinking them onto aluminium cylinders and storing them in room temperature for about 2000 hours. The results show that it is clearly possible to install excellent shrink joints also under difficult conditions. In addition, thermal ageing does not

  12. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  13. Experimental investigation on full scale RC beam-column joint of NPP structures

    International Nuclear Information System (INIS)

    Thandavamoorthy, T.S.; Lakshmanan, N.; Reddy, G.R.; Kushwaha, H.S.

    2003-01-01

    The Nuclear Power Plant (NPP) structures in India are constructed using reinforced concrete. The beam-column joint in these structures are critical sub-assemblages because they ensure continuity of a structure and transfer forces from one element to another. Under seismic excitation, the beam-column joint region is subjected to horizontal and vertical shear forces whose magnitudes are typically many times higher than those within the adjacent beams and columns. In view of the increased incidence of seismicity in the country, the safety of these structures against earthquake loading assumes greater significance. There is a growing need to look into the seismic safety aspect of existing RC frame type structures in NPPs, which have been designed as per codes prevalent at the time of their construction. Seismic performance of such joints has not been studied extensively in India. Therefore experimental testing of full scale joint identical to those available in the existing NPP structures, was carried out to study its behaviour and evaluate its capacity. The size of the beam of the joint was 2000 mm x 610 mm x 915 mm and column 2915 mm x 610 mm x 915 mm. The percentage reinforcement of the beam was 4.95 and column 1.5. Such full scale and heavily reinforced concrete joint was cast successfully in the laboratory and tested under monotonic loading. The paper presents a complete description of the experimental testing, observations made during testing as for cracking, deflection and rotation of joint, discussion of results obtained, etc. Conclusions drawn from the investigation are also presented. (author)

  14. Experimental study of friction in aluminium bolted joints

    Science.gov (United States)

    Croccolo, D.; de Agostinis, M.; Vincenzi, N.

    2010-06-01

    This study aims at developing an experimental tool useful to define accurately the friction coefficients in bolted joints and, therefore, at relating precisely the tightening torque to the bolt preloading force in some special components used in front motorbike suspensions. The components under investigation are some clamped joints made of aluminium alloy. The preloading force is achieved by applying a torque wrench to the bolt head. Some specific specimens have been appropriately designed and realized in order to study the tribological aspects of the tightening phase. Experimental tests have been performed by applying the Design of Experiment (DOE) method in order to obtain a mathematical model for the friction coefficients. Three replicas of a full factorial DOE at two levels for each variable have been carried out. The levels include cast versus forged aluminium alloy, anodized versus spray-painted surface, lubricated versus unlubricated screw, and first tightening (fresh unspoiled surfaces) versus sixth tightening (spoiled surfaces). The study considers M8x1.25 8.8 galvanized screws.

  15. A parameters optimization method for planar joint clearance model and its application for dynamics simulation of reciprocating compressor

    Science.gov (United States)

    Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li

    2015-05-01

    In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.

  16. Practical issues in selecting a joint venture partner

    International Nuclear Information System (INIS)

    Hillary, R.B.

    1999-01-01

    Some general issues regarding joint ventures and how they come about were discussed. The first section of the presentation identified potential joint venture candidates as being gas suppliers, project developers, steam hosts, financiers, facility owners, fuel managers and non-regulated utility affiliates. An explanation of the joint venture process and the motives driving it was then presented. There are many sources of potential conflicts of interest in a cogeneration venture. These include changes in either deregulation, prices markets, competitive environment or financial position of participants. Another section of this paper discussed some of the lessons learned from forced cogeneration restructuring and buyouts. Three examples of cogeneration projects which did not survive the challenges of partnership were presented. These included the New York cogeneration project at a manufacturing plant, the Pacific Northwest cogeneration project at a refinery, and the Quebec City cogeneration project at a pulp and paper mill. The last section of this paper discussed the pros and cons of joint venture and other types of deals

  17. Management of acute unstable acromioclavicular joint injuries.

    Science.gov (United States)

    Cisneros, Luis Natera; Reiriz, Juan Sarasquete

    2016-12-01

    Surgical management of acute unstable acromioclavicular joint injuries should be focused on realigning the torn ends of the ligaments to allow for healing potential. The most widely utilized treatment methods incorporate the use of metal hardware, which can alter the biomechanics of the acromioclavicular joint. This leads to a second surgical procedure for hardware removal once the ligaments have healed. Patients with unstable acromioclavicular joint injuries managed with arthroscopy-assisted procedures have shown good and excellent clinical outcomes, without the need for a second operation. These procedures incorporate a coracoclavicular suspension device aimed to function as an internal brace, narrowing the coracoclavicular space thus allowing for healing of the torn coracoclavicular ligaments. The lesser morbidity of a minimally invasive approach and the possibility to diagnose and treat concomitant intraarticular injuries; no obligatory implant removal, and the possibility of having a straight visualization of the inferior aspect of the base of the coracoid (convenient when placing coracoclavicular fixation systems) are the main advantages of the arthroscopic approach over classic open procedures. This article consists on a narrative review of the literature in regard to the management of acute acromioclavicular joint instability.

  18. Adaptive enhanced sampling by force-biasing using neural networks

    Science.gov (United States)

    Guo, Ashley Z.; Sevgen, Emre; Sidky, Hythem; Whitmer, Jonathan K.; Hubbell, Jeffrey A.; de Pablo, Juan J.

    2018-04-01

    A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.

  19. [Therapeutic effect observation of chronic knee joint pain assisted with the central-square needling technique of the thumb-tack needles].

    Science.gov (United States)

    Yang, Yang; Qi, Si; Liu, Mengyue; Zhao, Yu; Li, Ning

    2017-10-12

    To compare the differences in the clinical therapeutic effects on chronic knee joint pain between the combination of the central-square needling technique of thumb-tack needles with the routine therapy of acupuncture, moxibustion and tuina and the routine therapy of acupuncture, moxibustion and tuina . One hundred and twenty patients of chronic knee joint pain were randomized into an observation group and a control group, 60 cases in each one. In the control group, the routine therapy of acupuncture, moxibustion and tuina was adopted. In the observation group, at the end of treatment with the routine therapy of acupuncture, moxibustion and tuina , the subcutaneous embedding therapy was followed with four thumb-tack needles at the sites 1 to 1.5 cm above, below and bilateral to the main point ( ashi point) separately, and the needles were retained for 24 h to 48 h. The treatment was given once every two days, three times a week, totally 6 times in two weeks; and the follow-up visit was done for 3 months in patients of the two groups. The visual analogue scale (VAS) score before and after each treatment, Lequesne index score before treatment and at the end of follow-up and the case numbers of proactive use of painkillers or receiving acupuncture treatment in the follow-up stage were compared and observed in the patients of the two groups. The VAS score was reduced gradually after treatment in the patients of the two groups. The differences were significant statistically after the second treatment as compared with those before the treatment in the two groups (all P 0.05). In the follow-up stage, there were 0 case in the observation group and 9 cases in the control group in terms of proactive use of painkillers ( P 0.05). The acupuncture scheme in assistance with the central-square needling technique of thumb-tack needles obviously relieves chronic knee joint pain, much better sustains the analgesic effects of acupuncture and improves patient compliance.

  20. Joint Force Quarterly. Number 6, Autumn/Winter 1994-95

    Science.gov (United States)

    1994-11-01

    enhances the per- formance of the other. Indeed, the strategic challenge often is to find ways to transmute success in one environment into good enough...President Clinton “with contemptuous ease” on issues such as revising military policy toward homo- sexuals and using force in ex-Yugoslavia. Kohn accuses

  1. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  2. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Directory of Open Access Journals (Sweden)

    Jared Markowitz

    2016-05-01

    Full Text Available Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG, and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  3. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    Science.gov (United States)

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  4. Computational stability of human knee joint at early stance in Gait: Effects of muscle coactivity and anterior cruciate ligament deficiency.

    Science.gov (United States)

    Sharifi, M; Shirazi-Adl, A; Marouane, H

    2017-10-03

    As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0-10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Joint Force Quarterly. Number 3, Winter 1993-94

    Science.gov (United States)

    1994-01-01

    Winter 1993–94 This article is based on the winning entry in the 1992 LtCol Richard Higgins, USMC, memorial essay contest sponsored by the National War...TRANSCOM pledges to develop a new system that lives up to Winston Churchill’s dictum: “Victory is the beautiful bright coloured flower. Transport is...fighter wings 7 Reserve fighter wings 7 Reserve fighter wings 10 Reserve fighter wings Force Enchancements 1803 Ltrs & JW Rev 3/27/04 7:31 AM Page 107

  6. Normal dynamic deformation characteristics of non-consecutive jointed rock masses under impact loads

    Science.gov (United States)

    Zeng, Sheng; Jiang, Bowei; Sun, Bing

    2017-08-01

    In order to study deformation characteristics of non-consecutive single jointed rock masses under impact loads, we used the cement mortar materials to make simulative jointed rock mass samples, and tested the samples under impact loads by the drop hammer. Through analyzing the time-history signal of the force and the displacement, first we find that the dynamic compression displacement of the jointed rock mass is significantly larger than that of the intact jointless rock mass, the compression displacement is positively correlated with the joint length and the impact height. Secondly, the vertical compressive displacement of the jointed rock mass is mainly due to the closure of opening joints under small impact loads. Finally, the peak intensity of the intact rock mass is larger than that of the non-consecutive jointed rock mass and negatively correlated with the joint length under the same impact energy.

  7. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    Science.gov (United States)

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  8. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

    Science.gov (United States)

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  9. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    Directory of Open Access Journals (Sweden)

    Luka Peternel

    Full Text Available In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  10. Comparison of Joint Loading in Badminton Lunging between Professional and Amateur Badminton Players

    Directory of Open Access Journals (Sweden)

    Lin Fu

    2017-01-01

    Full Text Available The knee and ankle are the two most injured joints associated with the sport of badminton. This study evaluates biomechanical factors between professional and amateur badminton players using an injury mechanism model. The aim of this study was to investigate the kinematic motion and kinetic loading differences of the right knee and ankle while performing a maximal right lunge. Amateur players exhibited greater ankle range of motion (p<0.05, r=0.89 and inversion joint moment (p<0.05, r=0.54 in the frontal plane as well as greater internal joint rotation moment (p<0.05, r=0.28 in the horizontal plane. In contrast, professional badminton players presented a greater knee joint moment in the sagittal (p<0.05, r=0.59 and frontal (p<0.05, r=0.37 planes, which may be associated with increased knee ligamentous injury risk. To avoid injury, the players need to forcefully extend the knee with internal rotation, strengthen the muscles around the ankle ligament, and maximise joint coordination during training. The injuries recorded and the forces responsible for the injuries seem to have developed during training activity. Training programmes and injury prevention strategies for badminton players should account for these findings to reduce potential injury to the ankle and knee.

  11. The joint implementation mechanisms (MOC)

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the joint implementation mechanisms (MOC) is aims to favor the fight against the climatic change, by the implementing of activities, technologies and appropriate techniques emitting less greenhouse gases in south countries and by the possibility of reducing the greenhouse gases emissions for a more economical cost. This guide brings a practical assistance to the projects set-up: the possible concerned projects, the formalization of the project, the methodology, the involvement of the carbon credits in the project financing. (A.L.B.)

  12. Organizational Culture and the Imperatives for Implementing Joint Vision 2010

    National Research Council Canada - National Science Library

    Casmus, David

    1997-01-01

    .... Second, it identifies the notion of culture as it applies to the Armed Forces. Third, it identifies the cultural imperatives of Joint Vision 2010 and applies some tools from Edgar Schein's models for influencing organizational culture changes...

  13. In vitro method for assessing the biomechanics of the patellofemoral joint following total knee arthroplasty.

    Science.gov (United States)

    Coles, L G; Gheduzzi, S; Miles, A W

    2014-12-01

    The patellofemoral joint is a common site of pain and failure following total knee arthroplasty. A contributory factor may be adverse patellofemoral biomechanics. Cadaveric investigations are commonly used to assess the biomechanics of the joint, but are associated with high inter-specimen variability and often cannot be carried out at physiological levels of loading. This study aimed to evaluate the suitability of a novel knee simulator for investigating patellofemoral joint biomechanics. This simulator specifically facilitated the extended assessment of patellofemoral joint biomechanics under physiological levels of loading. The simulator allowed the knee to move in 6 degrees of freedom under quadriceps actuation and included a simulation of the action of the hamstrings. Prostheses were implanted on synthetic bones and key soft tissues were modelled with a synthetic analogue. In order to evaluate the physiological relevance and repeatability of the simulator, measurements were made of the quadriceps force and the force, contact area and pressure within the patellofemoral joint using load cells, pressure-sensitive film, and a flexible pressure sensor. The results were in agreement with those previously reported in the literature, confirming that the simulator is able to provide a realistic physiological loading situation. Under physiological loading, average standard deviations of force and area measurements were substantially lower and comparable to those reported in previous cadaveric studies, respectively. The simulator replicates the physiological environment and has been demonstrated to allow the initial investigation of factors affecting patellofemoral biomechanics following total knee arthroplasty. © IMechE 2014.

  14. Development of technology and properties investigation of steel/bronze joints proposed for ITER HHF components manufacturing

    International Nuclear Information System (INIS)

    Kalinin, G.; Krestnikov, N.S.; Strebkov, Y.S.; Abramov, V.Y.; Gervash, A.; Mazul, I.; Zolotarev, V.B.; Fabritsiev, S.A.

    2007-01-01

    Full text of publication follows: During the development of ITER HHF components manufacturing it is necessary to provide reliable joints between heat sink material made of CuCrZr bronze and the supporting construction made of austenitic steel. Four different methods have been tried out: - Hot Isostatic Pressing (HIP), - HIP assisted brazing, - furnace assisted brazing, - Casting. The investigation of structure and properties of joints show that HIP and casting provide the better results than the other technologies. However, HIP is relatively expensive technology, and big size HIP furnace is required for the full scale components manufacturing that are not available n RF now. Therefore, casting was selected as a reference manufacturing technology for the primary wall of ITER modules n RF. The paper summarizes the results of bronze/steel joints manufacturing and investigation of their properties. (authors)

  15. The neuromuscular differential diagnosis of joint hypermobility.

    Science.gov (United States)

    Donkervoort, S; Bonnemann, C G; Loeys, B; Jungbluth, H; Voermans, N C

    2015-03-01

    Joint hypermobility is the defining feature of various inherited connective tissue disorders such as Marfan syndrome and various types of Ehlers-Danlos syndrome and these will generally be the first conditions to be considered by geneticists and pediatricians in the differential diagnosis of a patient presenting with such findings. However, several congenital and adult-onset inherited myopathies also present with joint hypermobility in the context of often only mild-to-moderate muscle weakness and should, therefore, be included in the differential diagnosis of joint hypermobility. In fact, on the molecular level disorders within both groups represent different ends of the same spectrum of inherited extracellular matrix (ECM) disorders. In this review we will summarize the measures of joint hypermobility, illustrate molecular mechanisms these groups of disorders have in common, and subsequently discuss the clinical features of: 1) the most common connective tissue disorders with myopathic or other neuromuscular features: Ehlers-Danlos syndrome, Marfan syndrome and Loeys-Dietz syndrome; 2) myopathy and connective tissue overlap disorders (muscle extracellular matrix (ECM) disorders), including collagen VI related dystrophies and FKBP14 related kyphoscoliotic type of Ehlers-Danlos syndrome; and 3) various (congenital) myopathies with prominent joint hypermobility including RYR1- and SEPN1-related myopathy. The aim of this review is to assist clinical geneticists and other clinicians with recognition of these disorders. © 2015 Wiley Periodicals, Inc.

  16. Decreased Knee Joint Loading Associated With Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury.

    Science.gov (United States)

    Wellsandt, Elizabeth; Gardinier, Emily S; Manal, Kurt; Axe, Michael J; Buchanan, Thomas S; Snyder-Mackler, Lynn

    2016-01-01

    Anterior cruciate ligament (ACL) injury predisposes individuals to early-onset knee joint osteoarthritis (OA). Abnormal joint loading is apparent after ACL injury and reconstruction. The relationship between altered joint biomechanics and the development of knee OA is unknown. Altered knee joint kinetics and medial compartment contact forces initially after injury and reconstruction are associated with radiographic knee OA 5 years after reconstruction. Case-control study; Level of evidence, 3. Individuals with acute, unilateral ACL injury completed gait analysis before (baseline) and after (posttraining) preoperative rehabilitation and at 6 months, 1 year, and 2 years after reconstruction. Surface electromyographic and knee biomechanical data served as inputs to an electromyographically driven musculoskeletal model to estimate knee joint contact forces. Patients completed radiographic testing 5 years after reconstruction. Differences in knee joint kinetics and contact forces were compared between patients with and those without radiographic knee OA. Patients with OA walked with greater frontal plane interlimb differences than those without OA (nonOA) at baseline (peak knee adduction moment difference: 0.00 ± 0.08 N·m/kg·m [nonOA] vs -0.15 ± 0.09 N·m/kg·m [OA], P = .014; peak knee adduction moment impulse difference: -0.001 ± 0.032 N·m·s/kg·m [nonOA] vs -0.048 ± 0.031 N·m·s/kg·m [OA], P = .042). The involved limb knee adduction moment impulse of the group with osteoarthritis was also lower than that of the group without osteoarthritis at baseline (0.087 ± 0.023 N·m·s/kg·m [nonOA] vs 0.049 ± 0.018 N·m·s/kg·m [OA], P = .023). Significant group differences were absent at posttraining but reemerged 6 months after reconstruction (peak knee adduction moment difference: 0.02 ± 0.04 N·m/kg·m [nonOA] vs -0.06 ± 0.11 N·m/kg·m [OA], P = .043). In addition, the OA group walked with lower peak medial compartment contact forces of the involved limb

  17. Flexible Structural Design for Side-Sliding Force Reduction for a Caterpillar Climbing Robot

    Directory of Open Access Journals (Sweden)

    Weina Cui

    2012-11-01

    Full Text Available Due to sliding force arising from the closed chain mechanism among the adhering points of a climbing caterpillar robot (CCR, a sliding phenomenon will happen at the adhering points, e.g., the vacuum pads or claws holding the surface. This sliding force makes the attachment of the climbing robot unsteady and reducesthe motion efficiency. According to the new bionic research on the soft-body structure of caterpillars, some flexible structures made of natural rubber bars are applied in CCRs correspondingly as an improvement to the old rigid mechanical design of the robotic structure. This paper firstly establishes the static model of the sliding forces, the distortion of flexible bars and the driving torques of joints. Then, a method to reduce the sliding force by exerting a compensating angle to an active joint of the CCR is presented. The analyses and experimental results indicate that the flexible structure and the compensating angle method can reduce the sliding forces remarkably.

  18. On the Assessment of Susceptor-Assisted Induction Curing of Adhesively Bonded Joints

    NARCIS (Netherlands)

    Severijns, C.P.A.; Teixeira De Freitas, S.; Poulis, J.A.

    2016-01-01

    The autoclave/oven curing process is known to be the current manufacturing technique that provides the best quality of composite laminates and bonded joints. However, this process implies high acquisition cost and a large ecological footprint. Furthermore, with the current complete aeroplane

  19. 78 FR 32272 - Renewal of Agency Information Collection for Indian Self-Determination and Education Assistance...

    Science.gov (United States)

    2013-05-29

    ...] Renewal of Agency Information Collection for Indian Self- Determination and Education Assistance Contracts... of information titled, ``Indian Self-Determination and Education Assistance Contracts, 25 CFR part... conducted under their joint regulations, 25 CFR part 900, implementing the Indian Self-Determination and...

  20. Technique Tip: The Use of McGlamry Elevator to Assist Suture Passing in the Dorsal Technique of Plantar Plate Repair With Weil Osteotomy for Lesser Metatarsophalangeal Joint Instability.

    Science.gov (United States)

    Sullivan, Martin; Panti, Juan Paulo

    2015-06-01

    The combination of a dorsal approach to the plantar plate with a Weil's metatarsal osteotomy has been shown to provide an adequate exposure for plantar plate repair. However, soft tissues in a restricted area of the metatarsophalangeal joint could present as a technical difficulty during suture retrieval during repair of the plantar plate. The purpose of this article is to describe the use of the McGlamry elevator for assistance in the retrieval of sutures through the proximal phalanx. Level V: Expert opinion. © 2015 The Author(s).

  1. Towards Robot-Assisted Retinal Vein Cannulation: A Motorized Force-Sensing Microneedle Integrated with a Handheld Micromanipulator †.

    Science.gov (United States)

    Gonenc, Berk; Chae, Jeremy; Gehlbach, Peter; Taylor, Russell H; Iordachita, Iulian

    2017-09-23

    Retinal vein cannulation is a technically demanding surgical procedure where therapeutic agents are injected into the retinal veins to treat occlusions. The clinical feasibility of this approach has been largely limited by the technical challenges associated with performing the procedure. Among the challenges to successful vein cannulation are identifying the moment of venous puncture, achieving cannulation of the micro-vessel, and maintaining cannulation throughout drug delivery. Recent advances in medical robotics and sensing of tool-tissue interaction forces have the potential to address each of these challenges as well as to prevent tissue trauma, minimize complications, diminish surgeon effort, and ultimately promote successful retinal vein cannulation. In this paper, we develop an assistive system combining a handheld micromanipulator, called "Micron", with a force-sensing microneedle. Using this system, we examine two distinct methods of precisely detecting the instant of venous puncture. This is based on measured tool-tissue interaction forces and also the tracked position of the needle tip. In addition to the existing tremor canceling function of Micron, a new control method is implemented to actively compensate unintended movements of the operator, and to keep the cannulation device securely inside the vein following cannulation. To demonstrate the capabilities and performance of our uniquely upgraded system, we present a multi-user artificial phantom study with subjects from three different surgical skill levels. Results show that our puncture detection algorithm, when combined with the active positive holding feature enables sustained cannulation which is most evident in smaller veins. Notable is that the active holding function significantly attenuates tool motion in the vein, thereby reduces the trauma during cannulation.

  2. Towards Robot-Assisted Retinal Vein Cannulation: A Motorized Force-Sensing Microneedle Integrated with a Handheld Micromanipulator †

    Science.gov (United States)

    Gonenc, Berk; Chae, Jeremy; Gehlbach, Peter; Taylor, Russell H.; Iordachita, Iulian

    2017-01-01

    Retinal vein cannulation is a technically demanding surgical procedure where therapeutic agents are injected into the retinal veins to treat occlusions. The clinical feasibility of this approach has been largely limited by the technical challenges associated with performing the procedure. Among the challenges to successful vein cannulation are identifying the moment of venous puncture, achieving cannulation of the micro-vessel, and maintaining cannulation throughout drug delivery. Recent advances in medical robotics and sensing of tool-tissue interaction forces have the potential to address each of these challenges as well as to prevent tissue trauma, minimize complications, diminish surgeon effort, and ultimately promote successful retinal vein cannulation. In this paper, we develop an assistive system combining a handheld micromanipulator, called “Micron”, with a force-sensing microneedle. Using this system, we examine two distinct methods of precisely detecting the instant of venous puncture. This is based on measured tool-tissue interaction forces and also the tracked position of the needle tip. In addition to the existing tremor canceling function of Micron, a new control method is implemented to actively compensate unintended movements of the operator, and to keep the cannulation device securely inside the vein following cannulation. To demonstrate the capabilities and performance of our uniquely upgraded system, we present a multi-user artificial phantom study with subjects from three different surgical skill levels. Results show that our puncture detection algorithm, when combined with the active positive holding feature enables sustained cannulation which is most evident in smaller veins. Notable is that the active holding function significantly attenuates tool motion in the vein, thereby reduces the trauma during cannulation. PMID:28946634

  3. Concept of Operations for the Establishment of the Joint Pathology Center

    Science.gov (United States)

    2008-12-19

    the Joint Task Force National Capital Region Medical (JTF CapMed ) in collaboration with the Uniformed Services University of Health Sciences (USUHS...Medical Examiner (OAFME). The Board deems the identification of appropriate support for the OAFME as critical , since with the disestablishment of...the DoD. The establishment of the JPC within JTF CapMed is a logical choice to the extent that JTF Cap Med is a joint medical organization and can

  4. Task force report on health effects assessment

    International Nuclear Information System (INIS)

    Anderson, C.; Hushon, J.

    1978-08-01

    From April to August, 1978 MITRE supported the Health Effects Assessment Task Force sponsored by the Office of the Assistant Secretary for the Environment at DOE. The findings of that Task Force are incorporated in this report and include a detailed definition of health effects assessment, a survey of the mandates for health effects assessments within DOE/EV, a review of current DOE-EV health effects assessment activities, an analysis of the constraints affecting the health effects assessment process and a discussion of the Task Force recommendations. Included as appendices are summaries of two workshops conducted by the Task Force to determine the state-of-the-art of health effects assessment and modeling and a review of risk assessment activities in other federal agencies. The primary recommendation of the panel was that an office be designated or created under the Office of the Assistant Secretary for the Environment to coordinate the Health Effects Risk Assessment effort covering up to 40 program and policy areas; a similar need was expressed for the environmental effects assessment area. 1 tab

  5. Transarticular invasion of bone tumours across the sacroiliac joint

    International Nuclear Information System (INIS)

    Chhaya, S.; White, L.M.; Kandel, R.; Wunder, J.S.; Ferguson, P.; Agur, A.

    2005-01-01

    The purpose of this study was to evaluate the pattern of tumour spread across the SI articulation, correlating with cadaveric anatomic observations, in order to better understand the local spread of tumour and to assist in the assessment of local staging. Twenty-four consecutive patients (14 male, 10 female; age range 22-89 years, mean 52 years) with primary bone tumours of the iliac bone or sacrum abutting the SI joint, in whom surgical resection of the SI joint was performed, were studied following institutional ethics approval. In all patients, preoperative magnetic resonance (MR) imaging studies of the pelvis and SI joint were reviewed for imaging evidence of transarticular extension across the SI joint. Gross pathologic and histologic assessment of possible transarticular SI joint tumour extension was performed in all patients. Nine cadaveric pelvic specimens without pelvic neoplastic disease (4 male, 5 female; age range 20-84 years, mean 59 years, median 58 years) were anatomically dissected and the articular anatomy of the SI joint examined macroscopically. Twelve of the twenty-four patients demonstrated imaging and histological evidence of transarticular SI joint invasion. Eight tumours infiltrated only the interosseous ligamentous aspect of the SI joint. In the remaining four cases, extensive tumour infiltrated both the cartilaginous and ligamentous aspects of the joint. No case showed tumour involvement isolated to the cartilaginous aspect of the joint. Among the cadaveric specimens studied, degenerative changes were found involving the majority of cases (6/9), with cartilage thinning and fibrillation and antero-superior marginal osteophytes seen involving the cartilaginous portion of the SI joint articulation. Four of the nine specimens demonstrated central ossification bridging the iliac and sacral aspects of the ligamentous (interosseous) SI joint. (orig.)

  6. Transarticular invasion of bone tumours across the sacroiliac joint

    Energy Technology Data Exchange (ETDEWEB)

    Chhaya, S. [University of Toronto, Department of Medical Imaging, Mount Sinai Hospital and the University Health Network, Toronto (Canada); University of Texas Health Science Centre, Department of Radiology, San Antonio, TX (United States); White, L.M. [University of Toronto, Department of Medical Imaging, Mount Sinai Hospital and the University Health Network, Toronto (Canada); Kandel, R. [University of Toronto, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto (Canada); Wunder, J.S.; Ferguson, P. [Univeristy of Toronto, University Musculoskeletal Oncology Unit, Department of Orthopedic Surgery, Mount Sinai Hospital, Toronto (Canada); Agur, A. [University of Toronto, Division of Anatomy, Department of Surgery, Toronto (Canada)

    2005-12-01

    The purpose of this study was to evaluate the pattern of tumour spread across the SI articulation, correlating with cadaveric anatomic observations, in order to better understand the local spread of tumour and to assist in the assessment of local staging. Twenty-four consecutive patients (14 male, 10 female; age range 22-89 years, mean 52 years) with primary bone tumours of the iliac bone or sacrum abutting the SI joint, in whom surgical resection of the SI joint was performed, were studied following institutional ethics approval. In all patients, preoperative magnetic resonance (MR) imaging studies of the pelvis and SI joint were reviewed for imaging evidence of transarticular extension across the SI joint. Gross pathologic and histologic assessment of possible transarticular SI joint tumour extension was performed in all patients. Nine cadaveric pelvic specimens without pelvic neoplastic disease (4 male, 5 female; age range 20-84 years, mean 59 years, median 58 years) were anatomically dissected and the articular anatomy of the SI joint examined macroscopically. Twelve of the twenty-four patients demonstrated imaging and histological evidence of transarticular SI joint invasion. Eight tumours infiltrated only the interosseous ligamentous aspect of the SI joint. In the remaining four cases, extensive tumour infiltrated both the cartilaginous and ligamentous aspects of the joint. No case showed tumour involvement isolated to the cartilaginous aspect of the joint. Among the cadaveric specimens studied, degenerative changes were found involving the majority of cases (6/9), with cartilage thinning and fibrillation and antero-superior marginal osteophytes seen involving the cartilaginous portion of the SI joint articulation. Four of the nine specimens demonstrated central ossification bridging the iliac and sacral aspects of the ligamentous (interosseous) SI joint. (orig.)

  7. Maritime-Based UAVs: A Key to Success for the Joint Force Commander

    Science.gov (United States)

    2015-05-18

    Arabian Peninsula AOR Area of Responsibility BOO Base of Operations BAMS Broad Area Maritime Surveillance CJCS Chairman of the Joint Chiefs of Staff...Afghanistan and Pakistan.”xx But using these UAVs requires months of diplomatic planning and preparation to negotiate a base of operations ( BOO

  8. Handling of impact forces in inverse dynamics

    NARCIS (Netherlands)

    Bisseling, Rob W.; Hof, At L.

    2006-01-01

    In the standard inverse dynamic method, joint moments are assessed from ground reaction force data and position data, where segmental accelerations are calculated by numerical differentiation of position data after low-pass filtering. This method falls short in analyzing the impact phase, e.g.

  9. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths.

    Science.gov (United States)

    Boyer, Elizabeth R; Derrick, Timothy R

    2018-03-01

    Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2-14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: -9.9 ± 0.9, hFF-FFS: -9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one's SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.

  10. Tactile Robotic Topographical Mapping Without Force or Contact Sensors

    Science.gov (United States)

    Burke, Kevin; Melko, Joseph; Krajewski, Joel; Cady, Ian

    2008-01-01

    A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available. The method uses control software modified to utilize the inherent capability of the robotic control system to measure the joint positions, the rates of change of the joint positions, and the electrical current demanded by the robotic arm joint actuators. The system utilizes these coordinate data and the known robot-arm kinematics to compute the position and velocity of the end effector, move the end effector along a specified trajectory, place the end effector at a specified location, and measure the electrical currents in the joint actuators. Since the joint actuator current is approximately proportional to the actuator forces and torques, a sudden rise in joint current, combined with a slowing of the joint, is a possible indication of actuator stall and surface contact. Hence, even though the robotic arm is not equipped with contact sensors, it is possible to sense contact (albeit with reduced sensitivity) as the end effector becomes stalled against a surface that one seeks to measure.

  11. Estimation of in-situ joint properties, Naesliden Mine

    Energy Technology Data Exchange (ETDEWEB)

    Barton, N.

    1980-05-15

    Finite element modelling of jointed rock masses requires detailed input data concerning the mechanical behaviour of the relevant joint sets. In the case of the Naesliden project, the properties of the footwall and hanging wall contacts were of particular concern because of their planarity. Methods of estimating the full-scale shear strength and shear stiffness are summarized. The estimates are based on assessment of full-scale values of the joint roughness coefficient (JRC), the joint wall compressive strength (JCS) and the residual friction angle. Sensitivity analyses indicate which of these parameters need to be determined with greatest accuracy at the levels of normal stress of interest. The full-scale estimates are compared with laboratory scale data and with data obtained from small scale tilt tests and tests on model tension fractures. A scale effect makes direct application of laboratory data of doubtful value. A simple dimensionless shear force-displacement formulation is suggested that describes the mobilization and subsequent reduction of joint roughness, as peak strength is exceeded during a given shearing event. The effect of changing normal stress during shearing is accounted for using this method.

  12. Estudo da confiabilidade da força aplicada durante a mobilização articular ântero-posterior do tornozelo Reliability study on the force applied during anteroposterior mobilization of the ankle joint

    Directory of Open Access Journals (Sweden)

    MA Resende

    2006-01-01

    Full Text Available INTRODUÇÃO: Os fatores que contribuem para a eficiência da manobra de mobilização articular são a intensidade e a reprodutibilidade da força aplicada durante a mobilização, por um ou por diferentes examinadores. OBJETIVO: Avaliar a confiabilidade intra e interexaminador da força de mobilização ântero-posterior da articulação do tornozelo, grau III e IV de Maitland. MÉTODO: Os dois tornozelos de 35 voluntários assintomáticos foram mobilizados por dois examinadores experientes com o procedimento. Uma miniplataforma de força foi posicionada sob a perna do voluntário a fim de captar as forças obtidas durante as manobras de mobilização e seu sinal foi convertido e armazenado em um software DasyLab4.0, o que permitiu o registro dos picos mínimo e máximo das curvas da força aplicada. A análise da confiabilidade foi realizada através do coeficiente de correlação intraclasse (CCI. Para avaliar o erro sistemático das medidas foi utilizado o teste t pareado e o teste t independente, para as condições intra e interexaminadores, respectivamente. O método de Bland e Altman avaliou os limites de concordância das medidas entre os examinadores. RESULTADOS: Os dados demonstraram alta confiabilidade intra-examinador. A confiabilidade inter-examinador foi baixa e moderada para a força máxima e mínima respectivamente, durante a mobilização ântero-posterior da articulação do tornozelo. CONCLUSÃO: Esses dados sugerem que a força aplicada durante a mobilização articular grau III e IV de Maitland no tornozelo, apresenta alta confiabilidade intra-examinador e baixa para interexaminador.BACKGROUND: Factors that contribute towards the efficiency of joint mobilization maneuvers is the intensity and reproducibility of the force applied during mobilization, by one or more examiners. OBJECTIVE: To evaluate the intra and inter-examiner reliability of Maitland grade III and IV anteroposterior mobilization force on the ankle joint

  13. Creating Joint Leaders Today for a Successful Air Force Tomorrow (1REV)

    Science.gov (United States)

    2016-04-01

    military goals must be comprised of personnel who are trained, educated, experienced, and acculturated in jointness.P 32F15P In order to achieve...less stress on the organization with regard to constant turnover at the senior leader level. URecommendation 5:U Adopt a modified Navy model of

  14. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    Science.gov (United States)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings

  15. Technical concept and evaluation of a novel shoulder simulator with adaptive muscle force generation and free motion

    Directory of Open Access Journals (Sweden)

    Verjans Mark

    2016-09-01

    Full Text Available The human shoulder is one of the most complex joints of the human body, and due to the high range of motion and the complex soft tissue apparatus prone to injuries. Surgical therapies and joint replacements often lead to unsatisfactory results. To improve the understanding of the complex biomechanics of the shoulder, experimental investigations have to be conducted. For this purpose a new shoulder simulator with an innovative muscle force generation was developed. On the basis of a modular concept six artificial pneumatic muscles were integrated to represent the functionally most important muscles of the shoulder joint, whereby a free and controlled movement of the humerus can be conducted. For each muscle individual setpoints for muscle length control based on a user defined shoulder movement for any artificial or cadaver specimen are created by manual motion “Teach-In”. Additional to muscle forces and lengths, optical tracking and a joint force measurement is used to enable different biomechanical studies of the shoulder joint. This paper describes the technical setup as well as the control strategy and first results of its experimental functional validation.

  16. Expansion joint for guideway for magnetic levitation transportation system

    Science.gov (United States)

    Rossing, T.D.

    1993-02-09

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.

  17. Multivariate stability of force-reflecting teleoperation: Structures of finite and infinite zeros

    International Nuclear Information System (INIS)

    Daniel, R.W.; McAree, P.R.

    2000-01-01

    This paper presents a stability analysis of force-position teleoperation under general end-effector contact. The analysis is based on the finite and infinite zero structure of the multivariable root-locus resulting from modulation of the environment stiffness. The starting point is an analysis of the stability of robot force control, motivated by the observation that the human-operator in a force reflection loop acts as a force servo, generating position commands in response to reflected force. Asymptotic root loci properties are used to establish passivity conditions on force feedback to give root locus interpretations of the well-known results that (1) feedback via the inverse joint Jacobian can lead to (kinematic) instability and that (2) passivity is preserved by kinematically proper force feedback through the transpose of the joint angle Jacobian. It is demonstrated that a fully constrained force-position teleoperation loop has an identical infinite zero structure to that of a slave manipulation under kinematically proper force control and that the dominant vibration modes of a force-position loop are fully described by a multivariable analogue of the single-input single-output pseudo-system investigated in a study by Daniel and McAree. Extension of the analysis to cover partial end-effector constraint provides a design tool for teleoperation control and serves to aid selection of teleoperation slate-arms. The paper concludes by giving a passivity condition for multiple-input multiple-output force-position teleoperation for stable contact against all environments

  18. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    Science.gov (United States)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  19. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    Science.gov (United States)

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  20. Mutual emergency assistance for radiation accidents

    International Nuclear Information System (INIS)

    1983-03-01

    A revised document on ''Mutual Emergency Assistance for Radiation Accidents'' jointly prepared by the Agency with the participation of the World Health Organization (WHO), the Food and Agricultural Organization of the United Nations (FAO), the International Labour Organisation (ILO) and the Office of the United Nations Disaster Relief Co-ordinator (UNDRO) was issued in 1980 as TECDOC-237. The present document lists the additional information received after publication of the 1980 edition and is issued as a Supplement to TECDOC-237 (1980 Edition). Some useful information contained in TECDOC-237 such as the IAEA arrangement and the WHO Collaborating Centres for Radiation Emergency Assistance are reprinted for ready reference

  1. Arthroscopic-Assisted Triangular Fibrocartilage Complex Reconstruction.

    Science.gov (United States)

    Chu-Kay Mak, Michael; Ho, Pak-Cheong

    2017-11-01

    Injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain. Volar and dorsal radioulnar ligaments and their foveal insertion are the most important stabilizing components of the TFCC. In irreparable tears, anatomic reconstruction of the TFCC aims to restore normal biomechanics and stability of the distal radioulnar joint. We proposed a novel arthroscopic-assisted technique using a palmaris longus tendon graft. Arthroscopic-assisted TFCC reconstruction is a safe and effective approach with outcomes comparable to conventional open reconstruction and may result in a better range of motion from minimizing soft tissue dissection and subsequent scarring. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Advance Force Operations: The Middleweight Force’s Essential Role in the Joint Operations

    Science.gov (United States)

    2013-04-18

    program in the 1990s as a measure of success and the model the Marine Corps should utilize to reform its expeditionary capabilities. Their...must revisit the corps-level reconnaissance capability.”41 From 1952 to 1956, the Marine Corps tested and revaluated its requirement for force...companies as an organic element of the Division Recon Battalions citing the associated cost saving. 75 His actions prompted another study titled

  3. CARS 2008: Computer Assisted Radiology and Surgery. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The proceedings contain contributions to the following topics: digital imaging, computed tomography, magnetic resonance, cardiac and vascular imaging, computer assisted radiation therapy, image processing and display, minimal invasive spinal surgery, computer assisted treatment of the prostate, the interventional radiology suite of the future, interventional oncology, computer assisted neurosurgery, computer assisted head and neck and ENT surgery, cardiovascular surgery, computer assisted orthopedic surgery, image processing and visualization, surgical robotics, instrumentation and navigation, surgical modelling, simulation and education, endoscopy and related techniques, workflow and new concepts in surgery, research training group 1126: intelligent surgery, digital operating room, image distribution and integration strategies, regional PACS and telemedicine, PACS - beyond radiology and E-learning, workflow and standardization, breast CAD, thoracic CAD, abdominal CAD, brain CAD, orthodontics, dentofacial orthopedics and airways, imaging and treating temporomandibular joint conditions, maxillofacial cone beam CT, craniomaxillofacial image fusion and CBCT incidental findings, image guided craniomaxillofacial procedures, imaging as a biomarker for therapy response, computer aided diagnosis. The Poster sessions cover the topics computer aided surgery, Euro PACS meeting, computer assisted radiology, computer aided diagnosis and computer assisted radiology and surgery.

  4. CARS 2008: Computer Assisted Radiology and Surgery. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    The proceedings contain contributions to the following topics: digital imaging, computed tomography, magnetic resonance, cardiac and vascular imaging, computer assisted radiation therapy, image processing and display, minimal invasive spinal surgery, computer assisted treatment of the prostate, the interventional radiology suite of the future, interventional oncology, computer assisted neurosurgery, computer assisted head and neck and ENT surgery, cardiovascular surgery, computer assisted orthopedic surgery, image processing and visualization, surgical robotics, instrumentation and navigation, surgical modelling, simulation and education, endoscopy and related techniques, workflow and new concepts in surgery, research training group 1126: intelligent surgery, digital operating room, image distribution and integration strategies, regional PACS and telemedicine, PACS - beyond radiology and E-learning, workflow and standardization, breast CAD, thoracic CAD, abdominal CAD, brain CAD, orthodontics, dentofacial orthopedics and airways, imaging and treating temporomandibular joint conditions, maxillofacial cone beam CT, craniomaxillofacial image fusion and CBCT incidental findings, image guided craniomaxillofacial procedures, imaging as a biomarker for therapy response, computer aided diagnosis. The Poster sessions cover the topics computer aided surgery, Euro PACS meeting, computer assisted radiology, computer aided diagnosis and computer assisted radiology and surgery

  5. The Joint Capabilities Integration and Development System: Its Impact on Air Force Acquisition Thirteen Years Later

    Science.gov (United States)

    2016-08-01

    PAROCHIALISM : OPERATIONAL REQUIREMENTS AND THE REQUIREMENTS GENERATION SYSTEM (RGS) ........................................................ 15 2003...SERVICE STOVEPIPES AND PAROCHIALISM : OPERATIONAL REQUIREMENTS AND THE REQUIREMENTS GENERATION SYSTEM (RGS) According to a 1974 General Accounting...The time had come to put aside service parochialism and self-interest and begin the march to joint capability development, joint concepts and

  6. Joint Inflammation and Early Degeneration Induced by High-Force Reaching Are Attenuated by Ibuprofen in an Animal Model of Work-Related Musculoskeletal Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Driban

    2011-01-01

    Full Text Available We used our voluntary rat model of reaching and grasping to study the effect of performing a high-repetition and high-force (HRHF task for 12 weeks on wrist joints. We also studied the effectiveness of ibuprofen, administered in the last 8 weeks, in attenuating HRHF-induced changes in these joints. With HRHF task performance, ED1+ and COX2+ cells were present in subchondral radius, carpal bones and synovium; IL-1alpha and TNF-alpha increased in distal radius/ulna/carpal bones; chondrocytes stained with Terminal deoxynucleotidyl Transferase- (TDT- mediated dUTP-biotin nick end-labeling (TUNEL increased in wrist articular cartilages; superficial structural changes (e.g., pannus and reduced proteoglycan staining were observed in wrist articular cartilages. These changes were not present in normal controls or ibuprofen treated rats, although IL-1alpha was increased in reach limbs of trained controls. HRHF-induced increases in serum C1,2C (a biomarker of collagen I and II degradation, and the ratio of collagen degradation to synthesis (C1,2C/CPII; the latter a biomarker of collage type II synthesis were also attenuated by ibuprofen. Thus, ibuprofen treatment was effective in attenuating HRHF-induced inflammation and early articular cartilage degeneration.

  7. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    Science.gov (United States)

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  8. Pneumatic Multi-Pocket Elastomer Actuators for Metacarpophalangeal Joint Flexion and Abduction-Adduction

    Directory of Open Access Journals (Sweden)

    Tapio Veli Juhani Tarvainen

    2017-09-01

    Full Text Available During recent years, interest has been rising towards developing fluidic fiber-reinforced elastomer actuators for wearable soft robotics used in hand rehabilitation and power-assist. However, they do not enable finger abduction-adduction, which plays an important role in activities of daily living, when grasping larger objects. Furthermore, the developed gloves often do not have separate control of joints, which is important for doing various common rehabilitation motions. The main obstacle for the development of a fully-assisting glove is moving a joint with multiple degrees of freedom. If the functions are built into the same structure, they are naturally coupled and affect each other, which makes them more difficult to design and complex to control than a simple flexion-extension actuator. In this study, we explored the key design elements and fabrication of pneumatic multi-pocket elastomer actuators for a soft rehabilitation glove. The goal was to gain more control over the metacarpophalangeal joint’s response by increasing the degree of actuation. Three main functional designs were tested for achieving both flexion and abduction-adduction. Five prototypes, with four different actuator geometries and four different reinforcement types, were designed and fabricated. They were evaluated by recording their free motion with motion capture and measuring their torque output using a dummy finger. Results showed the strengths and weaknesses of each design in separating the control of the two functions. We discuss the different improvements that are needed in order to make each design plausible for developing an actuator that meets the requirements for full assist of the hand’s motions. In conclusion, we show that it is possible to produce multi-pocket actuators for assisting MCP joint motion in both flexion and abduction-adduction, although coupling between the separate functions is still problematic and should be considered further.

  9. Transformation of Taiwan’s Reserve Force

    Science.gov (United States)

    2017-01-01

    benefited tremen- dously from their deep knowledge across the range of issues associated with reserve force reforms generally, and reserve force...Penghu Wude Joint Counter Amphibious Exercise [澎湖五德聯信聯合反登陸操演],” 2013. 18 For details on Taiwan’s short-range air defense capabilities, see Kuo Wen ...opinion/national-service-for-the-21st-century Kuo Wen -liang, National Defense Education: Defense Science and Technology [全民國防教育國防科技], Taipei: NWCD

  10. Passive Muscle-Tendon Unit Gearing is Joint Dependent in Human Medial Gastrocnemius

    Directory of Open Access Journals (Sweden)

    Emma F Hodson-Tole

    2016-03-01

    Full Text Available Skeletal muscles change length and develop force both passively and actively. Gearing allows muscle fibre length changes to be uncoupled from those of the whole muscle-tendon unit. During active contractions this process allows muscles to operate at mechanically favorable conditions for power or economical force production. Here we ask whether gearing is constant in passive muscle; determining the relationship between fascicle and muscle-tendon unit length change in the bi-articular medial gastrocnemius and investigating the influence of whether motion occurs at the knee or ankle joint. Specifically, the same muscle-tendon unit length changes were elicited by rotating either the ankle or knee joint whilst simultaneously measuring fascicle lengths in proximal and distal muscle regions using B-mode ultrasound. In both the proximal and distal muscle region, passive gearing values differed depending on whether ankle or knee motion occurred. Fascicle length changes were greater with ankle motion, likely reflecting anatomical differences in proximal and distal passive tendinous tissues, as well as shape changes of the adjacent mono-articular soleus. This suggests that there is joint-dependent dissociation between the mechanical behaviour of muscle fibres and the muscle-tendon unit during passive joint motions that may be important to consider when developing accurate models of bi-articular muscles.

  11. 76 FR 63287 - Privacy Act of 1974; System of Records

    Science.gov (United States)

    2011-10-12

    ... one command to facilitate collaborative planning and to assist all echelons in achieving situational awareness, and for assisting the Combatant Command and Joint Task Force Surgeon in assessing risks..., Attention: Freedom of Information Act Requester Service Center, 16401 East Centretech Parkway, Aurora, CO...

  12. Effects of slip-induced changes in ankle movement on muscle activity and ground reaction forces during running acceleration

    DEFF Research Database (Denmark)

    Ketabi, Shahin; Kersting, Uwe G.

    2013-01-01

    Ground contact in running is always linked to a minimum amount of slipping, e.g., during the early contact phase when horizontal forces are high compared to vertical forces. Studies have shown altered muscular activation when expecting slips [2-4]. It is not known what the mechanical effect of su...... of such slip episodes are on joint loading or performance. The aim of the present study was to examine the effect of changes in ankle movement on ankle joint loading, muscle activity, and ground reaction forces during linear acceleration....

  13. An evaluation of charity care for tax-exempt hospitals engaging in joint ventures.

    Science.gov (United States)

    Smith, Pamela C

    2006-01-01

    The study examines whether the level of charity care and financial stability contribute to a nonprofit hospital's motivation for partnering with a for-profit hospital through a joint venture. The Internal Revenue Service (IRS) has heightened its scrutiny of joint ventures within the health care sector. Considering recent calls to investigate the merit of the tax-exempt status of hospitals engaged in joint ventures, this research will assist policy makers in the evaluation of nonprofit hospitals. Constituents will continue to question whether joint ventures contribute to a reduced focus on charitable activities. Results indicate that the propensity to engage in a joint venture significantly increases with increased levels of charity care. Furthermore, nonprofit hospitals with lower profitability are more likely to engage in joint ventures. These results are useful to policy makers when evaluating the level of charity care provided by hospitals seeking alternative strategic alliances. Considering many critics allege hospitals are reducing the provision of charity care to the community, it is imperative for management to be conscious of the impact of joint ventures on the provision of charity care.

  14. Lower limb joint kinetics in walking: the role of industry recommended footwear.

    Science.gov (United States)

    Keenan, Geoffrey S; Franz, Jason R; Dicharry, Jay; Della Croce, Ugo; Kerrigan, D Casey

    2011-03-01

    The effects of current athletic footwear on lower extremity biomechanics are unknown. The aim of this study was to examine the changes, if any, that occur in peak lower extremity net joint moments while walking in industry recommended athletic footwear. Sixty-eight healthy young adults underwent kinetic evaluation of lower extremity extrinsic joint moments while walking barefoot and while walking in current standard athletic footwear matched to the foot mechanics of each subject while controlling for speed. A secondary analysis was performed comparing peak knee joint extrinsic moments during barefoot walking to those while walking in three different standard footwear types: stability, motion control, and cushion. 3-D motion capture data were collected in synchrony with ground reaction force data collected from an instrumented treadmill. The shod condition was associated with a 9.7% increase in the first peak knee varus moment, and increases in the hip flexion and extension moments. These increases may be largely related to a 6.5% increase in stride length with shoes associated with increases in the ground reaction forces in all three axes. The changes from barefoot walking observed in the peak knee joint moments were similar when subjects walked in all three footwear types. It is unclear to what extent these increased joint moments may be clinically relevant, or potentially adverse. Nonetheless, these differences should be considered in the recommendation as well as the design of footwear in the future. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator.

    Science.gov (United States)

    Liu, Aiqin; Jennings, Louise M; Ingham, Eileen; Fisher, John

    2015-09-18

    The successful development of early-stage cartilage and meniscus repair interventions in the knee requires biomechanical and biotribological understanding of the design of the therapeutic interventions and their tribological function in the natural joint. The aim of this study was to develop and validate a porcine knee model using a whole joint knee simulator for investigation of the tribological function and biomechanical properties of the natural knee, which could then be used to pre-clinically assess the tribological performance of cartilage and meniscal repair interventions prior to in vivo studies. The tribological performance of standard artificial bearings in terms of anterior-posterior (A/P) shear force was determined in a newly developed six degrees of freedom tribological joint simulator. The porcine knee model was then developed and the tribological properties in terms of shear force measurements were determined for the first time for three levels of biomechanical constraints including A/P constrained, spring force semi-constrained and A/P unconstrained conditions. The shear force measurements showed higher values under the A/P constrained condition (predominantly sliding motion) compared to the A/P unconstrained condition (predominantly rolling motion). This indicated that the shear force simulation model was able to differentiate between tribological behaviours when the femoral and tibial bearing was constrained to slide or/and roll. Therefore, this porcine knee model showed the potential capability to investigate the effect of knee structural, biomechanical and kinematic changes, as well as different cartilage substitution therapies on the tribological function of natural knee joints. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Exemplification of Tomographic Method to Evaluate the Quality of Welded Joints Made from EN 5754-H22 Alloy

    Directory of Open Access Journals (Sweden)

    Błachnio Józef

    2016-12-01

    Full Text Available The quality of welded joints depends on many factors. The relevant standards stipulate technical conditions of welds quality assessment, which provides the basis for stating whether the given joint is compatible with the requirements or whether it is defective. In practice, making welded joints that are totally devoid of defects is extremely difficult. To conduct the control of inner structure of the given joint a non-destructive method with the application of industrial CT scanner might be applied. This modern diagnosing method combines the x-ray examination with advanced computer technology. The basic advantage of computer-assisted tomography consists in examining objects in three dimensions and the possibility to carry out three-dimensional reconstructions. The aim of this article is to discuss the use of this method to evaluate the quality of welded joints made of aluminium alloys. Capabilities of computer-assisted tomography were depicted by the case of weld probes constructed with TIG (ang. Tungsten Inert Gas welding by different process variables. One has made the analysis of the quality of probes showing the smallest and the biggest internal and external welding defects.

  17. Optimization Case Study: ISR Allocation in the Global Force Management Process

    Science.gov (United States)

    2016-09-01

    assets available to meet the GCC requirements. The Joint Staff, in concert with USSTRATCOM, use many factors to prioritize allocation of assets to...include determining which GCC gets the assets and for how long. The decision influencers recommend a resource allocation solution based on experience...The allocation process illustrated in Figure 1 is the OV-1 diagram from the Joint Staff Global Force Management Enterprise Integration

  18. Friction in total hip joint prosthesis measured in vivo during walking.

    Science.gov (United States)

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  19. Friction in total hip joint prosthesis measured in vivo during walking.

    Directory of Open Access Journals (Sweden)

    Philipp Damm

    Full Text Available Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06 at contralateral toe off to 0.06 (0.04 to 0.08 at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23 at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W. Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  20. Pre-impact lower extremity posture and brake pedal force predict foot and ankle forces during an automobile collision.

    Science.gov (United States)

    Hardin, E C; Su, A; van den Bogert, A J

    2004-12-01

    The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.

  1. Spiral waves in excitable media due to noise and periodic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Guoyong, E-mail: g-y-yuan@sohu.com [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China); Xu Lin [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Xu Aiguo; Wang Guangrui [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Yang Shiping [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Hebei Advanced Thin Films Laboratory, Shijiazhuang 050016 (China)

    2011-09-15

    Highlights: > Excitable media jointly driven by periodic forcing and Gaussian white noise. > The joint driving leads to many unique tip motions. > New type of spiral wave breakup occurs between entrainment bands with 1:1 and 2:1. > Arnold tongues for different noise intensities exhibit stochastic resonance. > Fourier spectrum analysis can interpret tip motions and formation of entrainments. - Abstract: We investigate the jointly driven effects of external periodic forcing and Gaussian white noise on meandering spiral waves in excitable media with FitzHugh-Nagumo local dynamics. Interesting phenomena resulted from various forcing periods are found, for example, piece-wise line drift, intermittent straight-line drift and so on. We also observe new type of breakup of spiral wave between entrainment bands with 1:1 and 2:1. It is believed that the occurrence of the new type is relevant to the appearance of local bidirectional propagation window. There exist optimized noise intensities which can induce the broadest entrainments and Arnold tongues. Such a phenomenon is referred to as stochastic resonance. It is also observed that the noise makes significant effects on the spiral wave with straight-line drift. Via the tip Fourier spectrum, the varying of tip motion with external periods on the resonance band is interpreted.

  2. On the modeling of the intervertebral joint in multibody models for the spine

    International Nuclear Information System (INIS)

    Christophy, Miguel; Curtin, Maurice; Faruk Senan, Nur Adila; Lotz, Jeffrey C.; O’Reilly, Oliver M.

    2013-01-01

    The need to develop feasible computational musculoskeletal models of the spine has led to the development of several multibody models. Central features in these works are models for the ligaments, muscles, and intervertebral joint. The purpose of the present paper is to show how experimental measurements of joint stiffnesses can be properly incorporated using a bushing element. The required refinements to existing bushing force functions in musculoskeletal software platforms are discussed and further implemented using a SpineBushing element specific to the intervertebral joint. Four simple lumbar spine models are then used to illustrate the accompanying improvements. Electronic supplemental material for this article includes a complementary review of formulations of stiffness matrices for the intervertebral joint

  3. Joint NetWork Reconfiguration and Capacitor Placement by Bactrial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Mohammadnia

    2011-01-01

    Full Text Available Power system engineers are forced to place more emphasis on reducing losses at the distribution level. From an economic perspective, Joint network reconfiguration and capacitor placement is one of the best ways to save energy. Application of heuristic technique is unavoidable, because of expansion of distribution networks and becoming more complex connections in these grids. In view of this, for the first this paper investigates the ability of Bacterial Foraging Algorithm (BFA for Joint network reconfiguration and capacitor placement.

  4. Joint Force Quarterly. Issue 44, 1st Quarter 2007

    Science.gov (United States)

    2007-01-01

    excellent lineup of articles addressing both areas, JFQ has interviewed key leaders to provide broader coverage of the issues, pursu- ant to our...each of the combatant commanders who had combatant command authority over forces. The recommendations were obtained in a redundant and sequential ...management recommendations were obtained in a redundant and sequential process that proved too slow and segmented for the war on terror soldie rs per form

  5. Personnel Security during Joint Operations with Foreign Military Forces

    Science.gov (United States)

    2013-08-01

    century society into the twenty-first century encounters a number of obstacles. Illiteracy and innumeracy rates are high, and repressive social values are...force of more than 4,500 British soldiers dispatched by the governor of India . Shortly thereafter, British imperialism prompted two more Anglo-Afghan...socialist change on a traditional society, in part by redistributing land and bringing more women into government. The at- tempt at rapid modernization

  6. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    Science.gov (United States)

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Joint Force Quarterly. Issue 51, 4th Quarter, October 2008

    Science.gov (United States)

    2008-10-01

    and Japanese forces to conduct operations in the event of a WMD attack, to include consequence management operations. Recent activities have...strategic challenges. As a supple- ment, we hosted regular professional devel- opment activities, such as Friday afternoon cinema presentations where a

  8. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.

    Science.gov (United States)

    Jackson, Rachel W; Dembia, Christopher L; Delp, Scott L; Collins, Steven H

    2017-06-01

    The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally observed whole-body metabolic rate ( R 2 =0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices. © 2017. Published by The Company of Biologists Ltd.

  9. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.

    Science.gov (United States)

    Olivier, Jeremy; Bouri, Mohamed; Ortlieb, Amalric; Bleuler, Hannes; Clavel, Reymond

    2013-06-01

    With the increase of life expectancy, a higher number of elderly need assistance to maintain their mobility and their independance. The hip joint is crucial for walking and is problematic for a large number of aged people. In this paper we present a novel design of a motorized hip orthosis to assist elderly people while walking, stair climbing and during the sit-to-stand transistions. The kinematics was developed based on biomechanics considerations. To be able to achieve a large assistance rate, velocity and torques of the hip joint were studied from the literature. In order to fit with these requirements, an amplification mechanism inspired by excavators was developed and implemented. Comfort considerations were also taken into account and a custom interface was designed with the collaboration of a professional orthopaedic technician. First tests with the prototype showed that the workspace is sufficient for walking, for stair climbing as well as for sit-to-stand transitions. The assistance rate can go up to 30% for a 70 kg subject during walking at a cadence of 100 steps/min. The comfort is guaranteed despite the important weight (4.3 kg) of this first prototype.

  10. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.

    Science.gov (United States)

    Liacouras, Peter C; Wayne, Jennifer S

    2007-12-01

    Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular

  11. Theory of high-force DNA stretching and overstretching

    NARCIS (Netherlands)

    Storm, C.; Nelson, P.

    2003-01-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not

  12. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    Science.gov (United States)

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  14. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  15. Joint Manipulation: Toward a General Theory of High-Velocity, Low-Amplitude Thrust Techniques.

    Science.gov (United States)

    Harwich, Andrew S

    2017-12-01

    The objective of this study was to describe the initial stage of a generalized theory of high-velocity, low-amplitude thrust (HVLAT) techniques for joint manipulation. This study examined the movements described by authors from the fields of osteopathy, chiropractic, and physical therapy to produce joint cavitation in both the metacarpophalangeal (MCP) joint and the cervical spine apophysial joint. This study qualitatively compared the kinetics, the similarities, and the differences between MCP cavitation and cervical facet joint cavitation. A qualitative vector analysis of forces and movements was undertaken by constructing computer-generated, simplified graphical models of the MCP joint and a typical cervical apophysial joint and imposing the motions dictated by the clinical technique. Comparing the path to cavitation of 2 modes of HVLAT for the MCP joint, namely, distraction and hyperflexion, it was found that the hyperflexion method requires an axis of rotation, the hinge axis, which is also required for cervical HVLAT. These results show that there is an analogue of cervical HVLAT in one of the MCP joint HVLATs. The study demonstrated that in a theoretical model, the path to joint cavitation is the same for asymmetric separation of the joint surfaces in the cervical spine and the MCP joints.

  16. Manual physical balance assistance of therapists during gait training of stroke survivors: characteristics and predicting the timing.

    Science.gov (United States)

    Haarman, Juliet A M; Maartens, Erik; van der Kooij, Herman; Buurke, Jaap H; Reenalda, Jasper; Rietman, Johan S

    2017-12-02

    During gait training, physical therapists continuously supervise stroke survivors and provide physical support to their pelvis when they judge that the patient is unable to keep his balance. This paper is the first in providing quantitative data about the corrective forces that therapists use during gait training. It is assumed that changes in the acceleration of a patient's COM are a good predictor for therapeutic balance assistance during the training sessions Therefore, this paper provides a method that predicts the timing of therapeutic balance assistance, based on acceleration data of the sacrum. Eight sub-acute stroke survivors and seven therapists were included in this study. Patients were asked to perform straight line walking as well as slalom walking in a conventional training setting. Acceleration of the sacrum was captured by an Inertial Magnetic Measurement Unit. Balance-assisting corrective forces applied by the therapist were collected from two force sensors positioned on both sides of the patient's hips. Measures to characterize the therapeutic balance assistance were the amount of force, duration, impulse and the anatomical plane in which the assistance took place. Based on the acceleration data of the sacrum, an algorithm was developed to predict therapeutic balance assistance. To validate the developed algorithm, the predicted events of balance assistance by the algorithm were compared with the actual provided therapeutic assistance. The algorithm was able to predict the actual therapeutic assistance with a Positive Predictive Value of 87% and a True Positive Rate of 81%. Assistance mainly took place over the medio-lateral axis and corrective forces of about 2% of the patient's body weight (15.9 N (11), median (IQR)) were provided by therapists in this plane. Median duration of balance assistance was 1.1 s (0.6) (median (IQR)) and median impulse was 9.4Ns (8.2) (median (IQR)). Although therapists were specifically instructed to aim for the

  17. Joint Force Quarterly. Issue 66, 3rd Quarter 2012

    Science.gov (United States)

    2012-07-01

    ndu.edu Executive Summary A colleague of mine who teaches at the National War College recently returned from his annual visit to Afghanistan. This trip...planner uses intel- ligence to link the target to the effect, deter- mine access, pick the appropriate capability, and maintain the target in the...Headquarters, Tel Aviv, March 27, 2008. 15 Barbara Opall -Rome, “Interview with Major General Eliezer Shkedy, Commander, Israel Air and Space Force

  18. Soldier Flexible Personal Digital Assistant Program

    National Research Council Canada - National Science Library

    Price, Mark; Woytowich, Jason; Carlson, Marc

    2008-01-01

    The main goal of the Soldier Flexible Personal Digital Assistant Program was to develop prototypes of a novel flexible display technology device for demonstration in a laboratory setting and use in Future Force Warrior (FFW) demonstrations...

  19. Variable-stiffness joints with embedded force sensor for high-performance wearable gait exoskeletons

    OpenAIRE

    Cestari Soto, Manuel

    2017-01-01

    The growing field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. The current use of commercial devices is in-hospital rehabilitation of spinal cord injured, nevertheless the purpose of this technology is challenging: to provide gait assistance in daily life activities to the broadest segment of neurological disorders affecting walking and balance. A number of difficulties make this goal a challenge, but to name...

  20. Varying negative work assistance at the ankle with a soft exosuit during loaded walking.

    Science.gov (United States)

    Malcolm, Philippe; Lee, Sangjun; Crea, Simona; Siviy, Christopher; Saucedo, Fabricio; Galiana, Ignacio; Panizzolo, Fausto A; Holt, Kenneth G; Walsh, Conor J

    2017-06-26

    Only very recently, studies have shown that it is possible to reduce the metabolic rate of unloaded and loaded walking using robotic ankle exoskeletons. Some studies obtained this result by means of high positive work assistance while others combined negative and positive work assistance. There is no consensus about the isolated contribution of negative work assistance. Therefore, the aim of the present study is to examine the effect of varying negative work assistance at the ankle joint while maintaining a fixed level of positive work assistance with a multi-articular soft exosuit. We tested eight participants during walking at 1.5 ms -1 with a 23-kg backpack. Participants wore a version of the exosuit that assisted plantarflexion via Bowden cables tethered to an off-board actuation platform. In four active conditions we provided different rates of exosuit bilateral ankle negative work assistance ranging from 0.015 to 0.037 W kg -1 and a fixed rate of positive work assistance of 0.19 W kg -1 . All active conditions significantly reduced metabolic rate by 11 to 15% compared to a reference condition, where the participants wore the exosuit but no assistance was provided. We found no significant effect of negative work assistance. However, there was a trend (p = .08) toward greater reduction in metabolic rate with increasing negative work assistance, which could be explained by observed reductions in biological ankle and hip joint power and moment. The non-significant trend of increasing negative work assistance with increasing reductions in metabolic rate motivates the value in further studies on the relative effects of negative and positive work assistance. There may be benefit in varying negative work over a greater range or in isolation from positive work assistance.

  1. Joint imaging in childhood and adolescence

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Viana, Sergio [Hospital da Crianca de Brasilia - Jose Alencar Clinica Vila Rica (Brazil); Machado, Ribeiro, Maria Custodia [Hospital da Crianca de Brasilia - Jose Alencar Hospital de Base do Distrito Federal (Brazil); Beber Machado, Bruno [Clinica Radiologica Med Imagem, Unimed Sul Caprixaba, Santa Casa de Misericordia de Cachoeiro de Itapemirim (Brazil)

    2013-11-01

    First book to be devoted to the imaging of skeletally immature joints since the advent of cross-sectional methods. Covers a wide range of pathologic conditions. Identifies the advantages and weak points of each imaging method. Highlights anatomic and developmental peculiarities of the growing skeleton. Richly illustrated, with up-to-date references and summaries of key points. Since the advent of cross-sectional imaging methods, few works have been devoted to pediatric musculoskeletal imaging, and information is especially limited on the skeletally immature joint. Furthermore, reduced emphasis on pediatric training means that general radiologists are increasingly unfamiliar with normal and abnormal imaging findings in children and adolescents. Knowledge of the imaging appearances of the immature joint is, however, crucial for correct image interpretation. This book covers key selected topics in the imaging evaluation of the skeletally immature joint. The opening chapters consider the current role, advantages, and limitations of each modality in pediatric assessment and present the imaging appearances of anatomic and developmental peculiarities of the growing skeleton. Findings in a wide range of important conditions are then described in a series of richly illustrated chapters that document appearances on diverse imaging studies, from conventional radiography through to modern high-tech modalities. By presenting the essential information on imaging of the immature joint, the authors hope to provide radiologists (musculoskeletal specialists and generalists alike) with a new tool that will assist greatly in overcoming the daily challenges posed by interpretation of pediatric examinations in the twenty-first century. The book will also be of interest to all other specialists involved in the diagnosis and treatment of children and adolescents with articular complaints.

  2. iCub Whole-body Control through Force Regulation on Rigid Noncoplanar Contacts

    Directory of Open Access Journals (Sweden)

    Francesco eNori

    2015-03-01

    Full Text Available This paper details the implementation on the humanoid robot iCub of state-of-the-art algorithms for whole-body control. We regulate the forces between the robot and its surrounding environment to stabilize a desired robot posture. We assume that the forces and torques are exerted on rigid contacts. The validity of this assumption is guaranteed by constraining the contact forces and torques, e.g. the contact forces must belong to the associated friction cones. The implementation of this control strategy requires to estimate the external forces acting on the robot, and the internal joint torques. We then detail algorithms to obtain these estimations when using a robot with an iCub-like sensor set, i.e. distributed six-axis force-torque sensors and whole-body tactile sensors. A general theory for identifying the robot inertial parameters is also presented. From an actuation standpoint, we show how to implement a joint torque control in the case of DC brushless motors. In addition, the coupling mechanism of the iCub torso is investigated. The soundness of the entire control architecture is validated in a real scenario involving the robot iCub balancing and making contacts at both arms.

  3. Glenohumeral Joint Injections

    Science.gov (United States)

    Gross, Christopher; Dhawan, Aman; Harwood, Daniel; Gochanour, Eric; Romeo, Anthony

    2013-01-01

    Context: Intra-articular injections into the glenohumeral joint are commonly performed by musculoskeletal providers, including orthopaedic surgeons, family medicine physicians, rheumatologists, and physician assistants. Despite their frequent use, there is little guidance for injectable treatments to the glenohumeral joint for conditions such as osteoarthritis, adhesive capsulitis, and rheumatoid arthritis. Evidence Acquisition: We performed a comprehensive review of the available literature on glenohumeral injections to help clarify the current evidence-based practice and identify deficits in our understanding. We searched MEDLINE (1948 to December 2011 [week 1]) and EMBASE (1980 to 2011 [week 49]) using various permutations of intra-articular injections AND (corticosteroid OR hyaluronic acid) and (adhesive capsulitis OR arthritis). Results: We identified 1 and 7 studies that investigated intra-articular corticosteroid injections for the treatment of osteoarthritis and adhesive capsulitis, respectively. Two and 3 studies investigated the use of hyaluronic acid in osteoarthritis and adhesive capsulitis, respectively. One study compared corticosteroids and hyaluronic acid injections in the treatment of osteoarthritis, and another discussed adhesive capsulitis. Conclusion: Based on existing studies and their level of evidence, there is only expert opinion to guide corticosteroid injection for osteoarthritis as well as hyaluronic acid injection for osteoarthritis and adhesive capsulitis. PMID:24427384

  4. Special Operations Forces Reference Manual. Fourth Edition

    Science.gov (United States)

    2015-06-01

    activities that support an adversary’s ability to negatively affect U.S. interests. CTF support can assist SOF in the execution of core activities in...the split team concept making up two six-man teams. Assistant Detachment Operations Sergeant Methods of Infiltration Special Forces soldiers possess...Twelve ODAs per SFG can infil- trate and exfiltrate by surface swim techniques. Unless specifically identified, the only teams with designated specialty

  5. The effects of gastrocnemius-soleus muscle forces on ankle biomechanics during triple arthrodesis

    DEFF Research Database (Denmark)

    Hejazi, Shima; Rouhi, Gholamreza; Rasmussen, John

    2017-01-01

    This paper presents a finite element model of the ankle, taking into account the effects of muscle forces, determined by a musculoskeletal analysis, to investigate the contact stress distribution in the tibio-talar joint in patients with triple arthrodesis and in normal subjects. Forces of major a...

  6. Gen. Paul J. Selva > Joint Chiefs of Staff > Article View

    Science.gov (United States)

    Quadrilateral Logistics Forum J5 | Strategic Plans and Policy J6 | C4 & Cyber J7 | Joint Force Development Strategic Studies Group, Rosslyn, Va. ASSIGNMENTS 1. June 1980 - July 1981, student, undergraduate pilot - July 1991, company grade adviser to Commander, Strategic Air Command, later, manager of offensive

  7. Analysis of a short beam with application to solder joints: could larger stand-off heights relieve stress?

    Science.gov (United States)

    Suhir, Ephraim

    2015-08-01

    Physically meaningful and easy-to-use analytical (mathematical) stress model is developed for a short beam with clamped and known-in-advance offset ends. The analysis is limited to elastic deformations. While the classical Timoshenko short-beam theory seeks the beam's deflection caused by the combined bending and shear deformations for the given loading, an inverse problem is considered here: the lateral force is sought for the given ends offset. In short beams this force is larger than in long beams, since, in order to achieve the given displacement (offset), the applied force has to overcome both bending and shear resistance of the beam. It is envisioned that short beams could adequately mimic the state of stress in solder joint interconnections, including ball-grid-array (BGA) systems, with large, compared to conventional joints, stand-off heights. When the package/printed-circuit-board (PCB) assembly is subjected to the change in temperature, the thermal expansion (contraction) mismatch of the package and the PCB results in an easily predictable relative displacement (offset) of the ends of the solder joint. This offset can be determined from the known external thermal mismatch strain (determined as the product of the difference in the coefficients of thermal expansion and the change in temperature) and the position of the joint with respect to the mid-cross-section of the assembly. The maximum normal and shearing stresses could be viewed as suitable criteria of the beam's (joint's) material long-term reliability. It is shown that these stresses can be brought down by employing beam-like joints, i.e., joints with an increased stand-off height compared to conventional joints. It is imperative, of course, that, if such joints are employed, there is still enough interfacial real estate, so that the BGA bonding strength is not compromised. On the other hand, owing to the lower stress level, reliability assurance might be much less of a challenge than in the case of

  8. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.

    Science.gov (United States)

    Rong, Wei; Li, Waiming; Pang, Mankit; Hu, Junyan; Wei, Xijun; Yang, Bibo; Wai, Honwah; Zheng, Xiaoxiang; Hu, Xiaoling

    2017-04-26

    It is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs. In this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training. In the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT). The EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers. ClinicalTrials.gov. NCT02117089 ; date of registration: April 10, 2014.

  9. Exoskeleton for assisting human movement

    OpenAIRE

    García Armada, Elena; Cestari, Manuel; Sanz Merodio, Daniel; Carrillo, Xavier Alberto

    2015-01-01

    [EN] The invention relates to an exoskeleton for assisting human movement, which can be fitted to the user in terms of dimensions, tension and ranges of joint motion, either manually or automatically. Said exoskeleton can be fitted to the user in the anteroposterior direction in the sagittal plane, with the user in a horizontal or sitting position, without requiring a functional transfer. The exoskeleton has a modular design which is compatible with human biomechanics and reproduces a natural...

  10. Walking velocity and step length adjustments affect knee joint contact forces in healthy weight and obese adults.

    Science.gov (United States)

    Milner, Clare E; Meardon, Stacey A; Hawkins, Jillian L; Willson, John D

    2018-04-28

    Knee osteoarthritis is a major public health problem and adults with obesity are particularly at risk. One approach to alleviating this problem is to reduce the mechanical load at the joint during daily activity. Adjusting temporospatial parameters of walking could mitigate cumulative knee joint mechanical loads. The purpose of this study was to determine how adjustments to velocity and step length affects knee joint loading in healthy weight adults and adults with obesity. We collected three-dimensional gait analysis data on 10 adults with a normal body mass index and 10 adults with obesity during over ground walking in nine different conditions. In addition to preferred velocity and step length, we also conducted combinations of 15% increased and decreased velocity and step length. Peak tibiofemoral joint impulse and knee adduction angular impulse were reduced in the decreased step length conditions in both healthy weight adults (main effect) and those with obesity (interaction effect). Peak knee joint adduction moment was also reduced with decreased step length, and with decreased velocity in both groups. We conclude from these results that adopting shorter step lengths during daily activity and when walking for exercise can reduce mechanical stimuli associated with articular cartilage degenerative processes in adults with and without obesity. Thus, walking with reduced step length may benefit adults at risk for disability due to knee osteoarthritis. Adopting a shorter step length during daily walking activity may reduce knee joint loading and thus benefit those at risk for knee cartilage degeneration. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:XX-XX, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Mannes of Forging and Perspectives of Knuckle Joint Presses Modernization

    Directory of Open Access Journals (Sweden)

    A. A. Antsifirov

    2014-01-01

    Full Text Available The article raises an issue to enhance technological forging capabilities on the known knuckle joint presses. It provides an illustrated overview of main design types of presses with crank-knuckle, toggle-knuckle, and knuckle joint mechanisms. The article also shows the advantages of the modernization way and improvement just of the active press equipment in terms of quality-to-price ratio, for example, as compared to the similar new foreign press equipment.It gives an overview of features, which provide forging processes owing to kinetic energy accumulated with the moving parts of the known designs of the knuckle joint presses depending on the drive actuating mechanism. Focused attention is drawn to forging on the knuckle joint presses for a time of contact with a work piece to be comparable with the duration of the work piece deformation process on hydraulic forging hammers. This allows us to forge thin-wall products with process automation compared to the forging hammers.Analysis of accumulating processes of kinetic energy by the moving parts of the knuckle joint presses has shown that presses driven by hydraulic cylinders or two screw hydraulic cylinder are the most optimal for technological operations as evidenced by references to domestic and foreign invention certificates and patents. The article presents disadvantages of forging on presses with hydraulic or pneumatic drive. It is a dependence of the deformation force, caused, mainly, by a force of the drive cylinder. The article gives linear movement rate quantities of press moving members depending on the drives of the actuating mechanism. Based on the above analysis of the features to manufacture work pieces on the knuckle joint presses, the article gives the rationale for the relevance of forging in a short period of time, provided that the moving parts of the press accumulate the required kinetic energy. This can be achieved only through modernization and improvement of forging

  12. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  13. International joint research of medical and walfare appliances; Iryo fukushi kiki kokusai kyodo kenkyu jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    To further elevate the medical level and to actively enhance Japan`s contribution to the world in its effort to properly meet the task of advancing longevity of men common to all the advanced countries, investigations were made to study how international joint research should be conducted in the field of medical and welfare appliances. Candidate projects in international joint research and investigations up to fiscal 1993 were arranged, and explanation was made about the strategic and long-term research and development projects (started in fiscal 1995) about medical and welfare appliances undertaken by the Ministry of Trade and Industry of Japan. The two are quite similar to each other, the Ministry of Trade and Industry program comprising six projects that are micropores collection of blood/microdose analysis, high precision three dimensional image assisted diagnosis, less invasive surgery, artificial organs, care assisting intelligent equipment, and welfare equipment for care at home, centering about which international joint research should be propelled. Visits were made to the scenes of research and development of advanced medical and welfare appliances in the U.S. and Canada and their actual state was studied in search for possible joint researches. Further, research and development institutions in Europe were visited and information was exchanged. 25 figs., 15 tabs.

  14. Command and Control for Joint Air Operations

    Science.gov (United States)

    2010-01-12

    systems, to include collaborative air planning tools such as the theater battle management core system ( TBMCS ). Operational level air planning occurs in...sight communications and data exchange equipment in order to respond to joint force requirements. For example, the TBMCS is often used. The use of ATO...generation and dissemination software portions of TBMCS has been standardized. This ATO feature allows the JA