WorldWideScience

Sample records for assessment numerical simulation

  1. [Numerical flow simulation : A new method for assessing nasal breathing].

    Science.gov (United States)

    Hildebrandt, T; Osman, J; Goubergrits, L

    2016-08-01

    The current options for objective assessment of nasal breathing are limited. The maximum they can determine is the total nasal resistance. Possibilities to analyze the endonasal airstream are lacking. In contrast, numerical flow simulation is able to provide detailed information of the flow field within the nasal cavity. Thus, it has the potential to analyze the nasal airstream of an individual patient in a comprehensive manner and only a computed tomography (CT) scan of the paranasal sinuses is required. The clinical application is still limited due to the necessary technical and personnel resources. In particular, a statistically based referential characterization of normal nasal breathing does not yet exist in order to be able to compare and classify the simulation results.

  2. Deorbit efficiency assessment through numerical simulation of electromagnetic tether devices

    Directory of Open Access Journals (Sweden)

    Alexandru IONEL

    2016-03-01

    Full Text Available This paper examines the deorbit efficiency of an electromagnetic tether deorbit device when used to deorbit an upper stage at end of mission from low Earth orbit. This is done via a numerical simulation in Matlab R2013a, using ode45, taking into account perturbations on the upper stage’s trajectory. The perturbations taken into account are the atmospheric drag, the 3rd body (Sun and Moon, and Earth’s gravitational potential expanded into spherical harmonics.

  3. Assessing numerical methods for molecular and particle simulation.

    Science.gov (United States)

    Shang, Xiaocheng; Kröger, Martin; Leimkuhler, Benedict

    2017-11-22

    We discuss the design of state-of-the-art numerical methods for molecular dynamics, focusing on the demands of soft matter simulation, where the purposes include sampling and dynamics calculations both in and out of equilibrium. We discuss the characteristics of different algorithms, including their essential conservation properties, the convergence of averages, and the accuracy of numerical discretizations. Formulations of the equations of motion which are suited to both equilibrium and nonequilibrium simulation include Langevin dynamics, dissipative particle dynamics (DPD), and the more recently proposed "pairwise adaptive Langevin" (PAdL) method, which, like DPD but unlike Langevin dynamics, conserves momentum and better matches the relaxation rate of orientational degrees of freedom. PAdL is easy to code and suitable for a variety of problems in nonequilibrium soft matter modeling; our simulations of polymer melts indicate that this method can also provide dramatic improvements in computational efficiency. Moreover we show that PAdL gives excellent control of the relaxation rate to equilibrium. In the nonequilibrium setting, we further demonstrate that while PAdL allows the recovery of accurate shear viscosities at higher shear rates than are possible using the DPD method at identical timestep, it also outperforms Langevin dynamics in terms of stability and accuracy at higher shear rates.

  4. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    Science.gov (United States)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  5. Confidence in Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  6. Assessment and intercomparison of numerical simulations in the Western Mediterranean Sea

    Science.gov (United States)

    Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin

    2014-05-01

    The Balearic Islands Coastal Observing and Forecasting System (SOCIB, www.socib.es) is developing high resolution numerical simulations (hindcasts and forecasts) in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) with a high spatial resolution of 1/50º (1.5-2km). Thus, theses simulations are able to reproduce mesoscale and in some cases sub-mesoscale features that are key in the Mediterranean Sea since they interact and modify the basin and sub-basin circulation. These simulations are initialized from and nested in either the Mediterranean Forecasting System (MFS, 1/16º) or Mercator-Océan simulations (MERCATOR, 1/12º). A repeated glider section in the Ibiza Channel, operated by SOCIB, has revealed significant differences between two WMOP simulations using either MFS or MERCATOR (hereafter WMOP-MFS and WMOP-MERC). In this study, MFS, MERCATOR, WMOP-MFS and WMOP-MERC are compared and evaluated using available multi-platform observations such as satellite products (Sea Level Anomaly, Sea Surface Temperature) and in situ measurements (temperature and salinity profiles from Argo floats, CTD, XBT, fixed moorings and gliders; velocity fields from HF radar and currentmeters). A quantitative comparison is necessary to evaluate the capacity of the simulations to reproduce observed ocean features, and to quantify the possible simulations biases. This will in turn allow to improve the simulations, so as to produce better ocean forecast systems, to study and better understand ocean processes and to address climate studies. Therefore, various statistical diagnostics have been developed to assess and intercompare the simulations at various spatial and temporal scales, in different sub-regions (Alboran Sea, Western and Eastern Algerian sub-basins, Balearic Sea, Gulf of Lion), in different dynamical zones (coastal areas, shelves and "open" sea), along key sections (Ibiza and

  7. Nitrogen diffusion and nitrogen depth profiles in expanded austenite: experimental assessment, numerical simulation and role of stress

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2008-01-01

    The present paper addresses the experimental assessment of the concentration dependent nitrogen diffusion coefficient in stress free expanded austenite foils from thermogravimetry, the numerical simulation of nitrogen concentration depth profiles on growth of expanded austenite into stainless ste...

  8. 2004 Initial Assessments of Closure for the S-SX Tank Farm: Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z F; Freedman, Vicky L; Waichler, Scott R; White, Mark D

    2004-04-01

    In support of CH2M HILL Hanford Group, Inc.'s (CHG) preparation of a Field Investigative Report (FIR) for the closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, a set of numerical simulations of flow and solute transport was executed to investigate different potential contaminant source scenarios that may pose long-term risks to groundwater from the closure of the S-SX Tank Farm. This report documents the simulation of 7 cases (plus two verification) involving two-dimensional cross sections through the S Tank Farm (Tanks S-101, S102, and S-103) and the simulation of one case involving three-dimensional domain of the S Tank Farm. Using a unit release scenario at Tank S-103, three different types of leaks were simulated. These simulations assessed the effect of leaks during retrieval as well as residual wastes and ancillary equipment after closure. Two transported solutes were considered: uranium-238 (U-238) and technetium-99 (Tc 99). To evaluate the effect of sorption on contaminant transport, six different sorption coefficients were simulated for U 238. Overall, simulations results for the S Tank Farm showed that only a small fraction (< 0.4%) of the U-238 with sorption coefficients 0.6 mL/g migrated from the vadose zone in all of the cases. For the conservative solute, Tc-99, results showed that the simulations investigating leaks during retrieval demonstrated the highest peak concentrations and the earliest arrival times due to the high infiltration rate before water was added and surface barriers installed. Residual leaks were investigated with different release rate models, including uniform release, advection-dominated, diffusion-dominated, and saltcake (solubility-controlled) release models. Of the four models, peak concentrations were lowest and arrival times later for the uniform release model due to the lower release rate of the residual tank waste solids; similar high peak concentrations occurred for the

  9. Numerical assessment for a broadband and tuned noise using hybrid mufflers and a simulated annealing method

    Science.gov (United States)

    Chiu, Min-Chie

    2013-06-01

    A broadband noise hybridized with pure tones often occurs in practical engineering work. However, assessments of a muffler's optimal shape design that would simultaneously overcome a broadband noise hybridized with multiple tones within a constrained space were rarely addressed. In order to promote the best acoustical performance in mufflers, five kinds of the hybrid mufflers composed of a reactive unit, a dissipative unit, and Helmholtz resonator (HR) units will be proposed. Moreover, to strengthen the noise elimination at the pure tone, mufflers having parallel multiple-sectioned HRs or having multiple HR connections in series (muffler D and muffler E) will be also presented in the noise abatement. On the basis of the plane wave theory, the four-pole system matrix used to evaluate the acoustic performance of a multi-tone hybrid Helmholtz muffler will be presented. A numerical case for eliminating broadband noise hybridized with a pure tone emitted from a machine room using five kinds of mufflers (muffler A-E) will also be introduced. To find the best acoustical performance of a space-constrained muffler, a numerical assessment using a simulated annealing (SA) method is adopted. To verify the availability of the SA optimization, a numerical optimization of muffler A at a pure tone (280 Hz) is exemplified. Before the SA operation can be carried out, the accuracy of the mathematical model will be checked using the experimental data. The influences of the sound transmission loss (STL) with respect to N1-array HR and the STL with respect to one-array HR sectioned in N2 divisions have also been assessed. Also, the influence of the STL with respect to the design parameters such as the ratio of d1/d2, the diameter of the perforated hole (dH), the porosity (p%) of the perforated plate, and the outer diameter (d2) of the dissipative unit has been analyzed. Consequently, a successful approach in eliminating a broadband noise hybridized with a pure tone using optimally

  10. Numerical Simulations to Assess ART and MART Performance for Ionospheric Tomography of Chapman Profiles.

    Science.gov (United States)

    Prol, Fabricio S; Camargo, Paulo O; Muella, Marcio T A H

    2017-01-01

    The incomplete geometrical coverage of the Global Navigation Satellite System (GNSS) makes the ionospheric tomographic system an ill-conditioned problem for ionospheric imaging. In order to detect the principal limitations of the ill-conditioned tomographic solutions, numerical simulations of the ionosphere are under constant investigation. In this paper, we show an investigation of the accuracy of Algebraic Reconstruction Technique (ART) and Multiplicative ART (MART) for performing tomographic reconstruction of Chapman profiles using a simulated optimum scenario of GNSS signals tracked by ground-based receivers. Chapman functions were used to represent the ionospheric morphology and a set of analyses was conducted to assess ART and MART performance for estimating the Total Electron Content (TEC) and parameters that describes the Chapman function. The results showed that MART performed better in the reconstruction of the electron density peak and ART gave a better representation for estimating TEC and the shape of the ionosphere. Since we used an optimum scenario of the GNSS signals, the analyses indicate the intrinsic problems that may occur with ART and MART to recover valuable information for many applications of Telecommunication, Spatial Geodesy and Space Weather.

  11. Numerical Propulsion System Simulation

    Science.gov (United States)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  12. NUMERICAL FLOW AND TRANSPORT SIMULATIONS SUPPORTING THE SALTSTONE FACILITY PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.

    2009-02-28

    The Saltstone Disposal Facility Performance Assessment (PA) is being revised to incorporate requirements of Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), and updated data and understanding of vault performance since the 1992 PA (Cook and Fowler 1992) and related Special Analyses. A hybrid approach was chosen for modeling contaminant transport from vaults and future disposal cells to exposure points. A higher resolution, largely deterministic, analysis is performed on a best-estimate Base Case scenario using the PORFLOW numerical analysis code. a few additional sensitivity cases are simulated to examine alternative scenarios and parameter settings. Stochastic analysis is performed on a simpler representation of the SDF system using the GoldSim code to estimate uncertainty and sensitivity about the Base Case. This report describes development of PORFLOW models supporting the SDF PA, and presents sample results to illustrate model behaviors and define impacts relative to key facility performance objectives. The SDF PA document, when issued, should be consulted for a comprehensive presentation of results.

  13. 2005 Closure Assessments for WMA-C Tank Farms: Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L; Zhang, Z F; Waichler, Scott R; Wurstner, Signe K

    2005-09-20

    In support of CH2M HILL Hanford Group, Inc.'s (CHG) closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, numerical simulations of flow and solute transport were executed to investigate different potential contaminant source scenarios that may pose long-term risks to groundwater from the closure of the C Tank Farm. These simulations were based on the initial assessment effort (Zhang et al., 2003), but implemented a revised approach that examined a range of key parameters and multiple base cases. Four different potential source types were identified to represent the four base cases, and included past leaks, diffusion releases from residual wastes, leaks during retrieval, and ancillary equipment sources. Using a two-dimensional cross section through the C Tank Farm (Tanks C-103–C-112) and a unit release from Tank C-112, two solutes (uranium-238 (U-238) and technetium-99 (Tc 99)) were transported through the problem domain. To evaluate the effect of sorption on contaminant transport, seven different sorption coefficients were simulated for U 238. Apart from differences in source releases, all four base cases utilized the same median parameter values to describe flow and contaminant transport at the WMA C. Forty-six additional cases were also run that examined individual transport responses to the upper and lower limits of the median parameter values implemented in the base case systems. For the conservative solute, Tc-99, results amongst the base cases showed that the simulations investigating past leaks demonstrated the highest peak concentrations and the earliest arrival times (48 years) due to the proximity of the plume to the water table and the high recharge rate before surface barriers were installed. Simulations investigating leaks during retrieval predicted peak concentrations ~60 times smaller than the past leak cases, and corresponding arrival times that occurred ~70 years later. The diffusion release base case

  14. Assessment results of fluid-structure interaction numerical simulation using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Marković Zoran J.

    2016-01-01

    Full Text Available A fuzzy approximation concept is applied in order to predict results of coupled computational structure mechanics and computational fluid dynamics while solving a problem of steady incompressible gas flow through thermally loaded rectangular thin-walled channel. Channel wall deforms into wave - type shapes depending on thermal load and fluid inlet velocity inducing the changes of fluid flow accordingly. A set of fluid - structure interaction (FSI numerical tests have been defined by varying the values of fluid inlet velocity, temperature of inner and outer surface of the channel wall and numerical grid density. The unsteady Navier-Stokes equations are numerically solved using an element-based finite volume method and second order backward Euler discretization scheme. The structural model is solved by finite element method including geometric and material nonlinearities. The implicit two-way iterative code coupling, partitioned solution approach, were used while solving these numerical tests. Results of numerical analysis indicate that gravity and pressure distribution inside the channel contributes to triggering the shape of deformation. In the inverse problem, the results of FSI numerical simulations formed a database of input variables for development fuzzy logic based models considering downstream pressure drop and maximum stresses as the objective functions. Developed fuzzy models predicted targeting results within a reasonable accuracy limit at lower computation cost compared to series of FSI numerical calculations. Smaller relative difference were obtained when calculating the values of pressure drop then maximal stresses indicating that transfer function influence on output values have to be additionally investigated. [Projekat Ministarstva nauke Republike Srbije, br. III42010, br.TR33050 i br. TR35035

  15. Assessment of the State-Of-The-Art of Numerical Simulation of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-11-01

    The reservoir features of importance in the operation of enhanced geothermal systems are described first (Section 2). The report then reviews existing reservoir simulators developed for application to HDR reservoirs (Section 3), hydrothermal systems (Section 4), and nuclear waste isolation (Section 5), highlighting capabilities relevant to the evaluation and assessment of EGS. The report focuses on simulators that include some representation of flow in fractures, only mentioning other simulators, such as general-purpose programs or groundwater models (Section 6). Following these detailed descriptions, the report summarizes and comments on the simulators (Section 7), and recommends a course of action for further development (Section 8). The references are included in Section 9. Appendix A contains contractual information, including a description of the original and revised scope of work for this study. Appendix B presents comments on the draft report from DOE reviewer(s) and the replies of the authors to those comments. [DJE-2005

  16. Combining Narrative and Numerical Simulation

    DEFF Research Database (Denmark)

    Hansen, Mette Sanne; Ladeby, Klaes Rohde; Rasmussen, Lauge Baungaard

    2011-01-01

    Strategic simulation is the combination of narrative and numerical simulation and can be used as a tool to support strategic decision making by providing different scenarios in combination with computer modelling. The core of the combined simulation approach (CSA) is to make it possible for decis......Strategic simulation is the combination of narrative and numerical simulation and can be used as a tool to support strategic decision making by providing different scenarios in combination with computer modelling. The core of the combined simulation approach (CSA) is to make it possible...... to the decision making in operations and production management by providing new insights into modelling and simulation based on the combined narrative and numerical simulation approach as a tool for strategy making. The research question asks, “How can the CSA be applied in a practical context to support strategy...

  17. Assessment of SPM in perfusion brain SPECT studies. A numerical simulation study using bootstrap resampling methods.

    Science.gov (United States)

    Pareto, Deborah; Aguiar, Pablo; Pavía, Javier; Gispert, Juan Domingo; Cot, Albert; Falcón, Carles; Benabarre, Antoni; Lomeña, Francisco; Vieta, Eduard; Ros, Domènec

    2008-07-01

    Statistical parametric mapping (SPM) has become the technique of choice to statistically evaluate positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and single photon emission computed tomography (SPECT) functional brain studies. Nevertheless, only a few methodological studies have been carried out to assess the performance of SPM in SPECT. The aim of this paper was to study the performance of SPM in detecting changes in regional cerebral blood flow (rCBF) in hypo- and hyperperfused areas in brain SPECT studies. The paper seeks to determine the relationship between the group size and the rCBF changes, and the influence of the correction for degradations. The assessment was carried out using simulated brain SPECT studies. Projections were obtained with Monte Carlo techniques, and a fan-beam collimator was considered in the simulation process. Reconstruction was performed by using the ordered subsets expectation maximization (OSEM) algorithm with and without compensation for attenuation, scattering, and spatial variant collimator response. Significance probability maps were obtained with SPM2 by using a one-tailed two-sample t-test. A bootstrap resampling approach was used to determine the sample size for SPM to detect the between-group differences. Our findings show that the correction for degradations results in a diminution of the sample size, which is more significant for small regions and low-activation factors. Differences in sample size were found between hypo- and hyperperfusion. These differences were larger for small regions and low-activation factors, and when no corrections were included in the reconstruction algorithm.

  18. Ash fallout scenarios at Vesuvius: Numerical simulations and implications for hazard assessment

    Science.gov (United States)

    Macedonio, G.; Costa, A.; Folch, A.

    2008-12-01

    Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection-diffusion-sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection-diffusion-sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.

  19. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  20. Assessment of modern methods in numerical simulations of high speed flows

    Science.gov (United States)

    Pindera, M. Z.; Yang, H. Q.; Przekwas, A. J.; Tucker, K.

    1992-01-01

    Results of extensive studies on CFD algorithms for 2D inviscid flows in Cartesian and body fitted coordinates geometries are reviewed. These studies represent part of an ongoing investigation of combustion instabilities involving the interactions of high-speed nonlinear acoustic waves. Four numerical methods for the treatment of high speed flows are compared, namely, Roe-Sweby TVD, Yee symmetric TVD; Osher-Chakravarthy TVD; and the Colella's multi-dimensional Godunov method.

  1. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  2. Quantitative Uncertainty Assessment and Numerical Simulation of Micro-Fluid Systems

    Science.gov (United States)

    2005-04-01

    benchmark problem for low Mach number solvers, presented at 12th Seminar “Computational Fluid Dynamics” CEA/Nuclear Reactor Division, Saclay, France...two sets of results thus enables us to directly assess the role of diffusion on the extrap - olated rates. As shown in (22), the present analysis

  3. 2003 Initial Assessments of Closure for the C Tank Farm Field Investigation Report (FIR):Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; White, Mark D.

    2003-07-15

    In support of CH2M HILL Hanford Group, Inc.'s (CHG) preparation of a Field Investigative Report (FIR) for the closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, a set of numerical simulations of flow and solute transport was executed to predict the performance of surface barriers for reducing long-term risks from potential groundwater contamination at the C Farm WMA. This report documents the simulation of 14 cases (and two verification cases) involving two-dimensional cross sections through the C Farm WMA tanks C-103 – C-112. Utilizing a unit release scenario at Tank C-112, four different types of leaks were simulated. These simulations assessed the impact of leakage during retrieval, past leaks, and tank residual wastes and tank ancillary equipment following closure activities. . Two transported solutes were considered: uranium-238 (U-238) and technetium-99 (Tc-99). To evaluate the impact of sorption to the subsurface materials, six different retardation coefficients were simulated for U-238. Overall, simulations results for the C Farm WMA showed that only a small fraction of the U-238 with retardation factors greater than 0.6 migrated from the vadose zone in all of the cases. For the conservative solute, Tc-99, results showed that the simulations investigating leakages during retrieval demonstrated the highest WMA peak concentrations and the earliest arrival times due to the high infiltration rate before the use of surface barriers and the addition of water into the system. Simulations investigating past leaks showed similar peaks and arrival times as the retrieval leak cases. Several different release rates were used to investigate contaminant transport from residual tank wastes. All showed similar peak concentrations and arrival times, except for the lowest initial release rate, which was 1,000 times slower than the highest release rate. Past leaks were also investigated with different release rate models

  4. Simulation of Numerical Distance Relays

    OpenAIRE

    Sherwali, Hamid; Abdlrahem, Abdlmnam

    2010-01-01

    As modern numerical relays are widely employed in protection systems nowadays and modeling of these types of relays is important to adjust and settle protection equipment in electrical facilities and to train protection personnel, the simulation of distance relays using MATLAB offers a good opportunity to perform these activities efficiently and with minimum cost. Another advantages is that, as MATLAB is a powerful tool rich with component models, any shape of relay characteristic (Impedance,...

  5. Numerical Propulsion System Simulation Architecture

    Science.gov (United States)

    Naiman, Cynthia G.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.

  6. Numerical simulations of Lake Vostok

    Science.gov (United States)

    Curchitser, E.; Tremblay, B.

    2003-04-01

    Numerical simulations of Lake Vostok We present a systematic approach towards a realistic hydrodynamic model of lake Vostok. The lake is characterized by the unusual combination of size (permitting significant geostrophic motion) and an overlying ice sheet several kilometers thick. A priori estimates of the circulation in the deep lake predict a mostly geostrophic circulation driven by horizontal temperature gradients produced by the pressure-dependent freezing point at the base of the (non-uniform) ice sheet. Further preliminary (remote) research has revealed the steep topography and the elliptical geometry of the lake. A three dimensional, primitive equation, free surface, model is used as a starting point for the Lake configuration. We show how the surface pressure gradient forces are modified to permit a simulation that includes the hydrostatic effects of the overlying ice sheet. A thermodynamic ice model is coupled with the circulation component to simulate the ice accretion/melting at the base of the ice sheet. A stretching of the terrain following vertical coordinate is used to resolve the boundary layer in the ice/water interface. Furthermore, the terrain-following coordinate evolves in time, and is used to track the evolution of the ice sheet due to ice accretion/melting. Both idealized and realistic ice sheet bottom topographies (from remote radar data) are used to drive the simulations. Steady state and time evolving simulations (i.e., constant and evolving ice sheet geometry) will be descirbed, as well as a comparison to an idealized box model (Tremblay, Clarke, and Hohman). The coastline and lake bathymetry used in the simulation are derived from radar data and are accurately represented in our model.

  7. Relativistic Positioning Systems: Numerical Simulations

    CERN Document Server

    Puchades, Neus

    2014-01-01

    The motion of satellite constellations similar to GPS and Galileo is numerically simulated and, then, the region where bifurcation (double positioning) occurs is appropriately represented. In the cases of double positioning, the true location may be found using additional information (angles or times). The zone where the Jacobian, J, of the transformation from inertial to emission coordinates vanishes is also represented and interpreted. It is shown that the uncertainties in the satellite world lines produce positioning errors, which depend on the value of |J|. The smaller this quantity the greater the expected positioning errors. Among all the available 4-tuples of satellites, the most appropriate one -for a given location- should minimize positioning errors (large enough |J| values) avoiding bifurcation. Our study is particularly important to locate objects which are far away from Earth, e.g., satellites.

  8. Comparison of 2D numerical models for river flood hazard assessment: simulation of the Secchia River flood in January, 2014

    Science.gov (United States)

    Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio

    2017-04-01

    Hydrodynamic modeling of inundation events still brings a large array of uncertainties. This effect is especially evident in the models run for geographically large areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution in order to avoid uncertainties and limitations coming from the incorrect interpretation of flood dynamics and an unrealistic reproduction of the terrain topography. This, however, affects the computational efficiency increasing the running time and hardware demands. Concerning this point, our study evaluates and compares numerical models of different complexity by testing them on a flood event that occurred in the basin of the Secchia River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach and consequent flooding of over 75 km2 of the plain behind the dike within 48 hours causing population displacement, one death and economic losses in excess of 400 million Euro. We test the well-established TELEMAC 2D, and LISFLOOD-FP codes, together with the recently launched HEC-RAS 5.0.3 (2D model), all models are implemented using different grid size (2-200 m) based on the 1 m digital elevation model resolution. TELEMAC is a fully 2D hydrodynamic model which is based on the finite-element or finite-volume approach. Whereas HEC-RAS 5.0.3 and LISFLOOD-FP are both coupled 1D-2D models. All models are calibrated against observed inundation extent and maximum water depths, which are retrieved from remotely sensed data and field survey reports. Our study quantitatively compares the three modeling strategies highlighting differences in terms of the ease of implementation, accuracy of representation of hydraulic processes within floodplains and computational efficiency. Additionally, we look into the different grid resolutions in terms of the results accuracy and computation time. Our study is a preliminary assessment that focuses on smaller areas in order to identify potential modeling schemes

  9. 3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment.

    Science.gov (United States)

    Ferrara, P; Ciofini, M; Esposito, L; Hostaša, J; Labate, L; Lapucci, A; Pirri, A; Toci, G; Vannini, M; Gizzi, L A

    2014-03-10

    We present a study of Yb:YAG active media slabs, based on a ceramic layered structure with different doping levels. We developed a procedure allowing 3D numerical analysis of the slab optical properties as a consequence of the thermal load induced by the pump process. The simulations are compared with a set of experimental results in order to validate the procedure. These structured ceramics appear promising in appropriate geometrical configurations, and thus are intended to be applied in the construction of High Energy Diode Pumped Solid State Laser (DPSSL) systems working in high repetition-rate pulsed regimes.

  10. An Observing System Simulation Experiment (OSSE to Assess the Impact of Doppler Wind Lidar (DWL Measurements on the Numerical Simulation of a Tropical Cyclone

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2010-01-01

    Full Text Available The importance of wind observations has been recognized for many years. However, wind observations—especially three-dimensional global wind measurements—are very limited. A satellite-based Doppler Wind Lidar (DWL is proposed to measure three-dimensional wind profiles using remote sensing techniques. Assimilating these observations into a mesoscale model is expected to improve the performance of the numerical weather prediction (NWP models. In order to examine the potential impact of the DWL three-dimensional wind profile observations on the numerical simulation and prediction of tropical cyclones, a set of observing simulation system experiments (OSSEs is performed using the advanced research version of the Weather Research and Forecasting (WRF model and its three-dimensional variational (3DVAR data assimilation system. Results indicate that assimilating the DWL wind observations into the mesoscale numerical model has significant potential for improving tropical cyclone track and intensity forecasts.

  11. Numerical Simulations of Granular Processes

    Science.gov (United States)

    Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko

    2014-11-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran

  12. 2004 Initial Assessments for the T and TX TY Tank Farm Field Investigation Report (FIR): Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Waichler, Scott R.

    2004-09-24

    In support of CH2M HILL Hanford Group, Inc.’s (CHG) preparation of a Field Investigative Report (FIR) for the Hanford Site Single-Shell Tank Waste Management Area (WMA) T and TX-TY, a suite of numerical simulations of flow and solute transport was executed using the STOMP code to predict the performance of surface barriers for reducing long-term risks from potential groundwater contamination at the T and TX-TY WMA. The scope and parametric data for these simulations were defined by a modeling data package provided by CHG. This report documents the simulation involving 2-D cross sections through the T Tank and the TX-TY Tank Farm. Eight cases were carried out for the cross sections to simulate the effects of interim barrier, water line leak, inventory distribution, and surface recharge on water flow and the transport of long-lived radionuclides (i.e., technecium-99 and uranium) and chemicals (i.e., nitrate and chromium For simulations with barriers, it is assumed that an interim barrier is in place by the year 2010. It was also assumed that, for all simulations, as part of tank farm closure, a closure barrier was in place by the year 2040. The modeling considers the estimated inventories of contaminants within the vadose zone and calculates the associated risk. It assumes that no tanks will leak in the future. Initial conditions for contaminant concentration are provided as part of inventory estimates for uranium, technetium-99, nitrate, and chromium. For moisture flow modeling, Neumann boundary conditions are prescribed at the surface with the flux equal to the recharge rate estimate. For transport modeling, a zero flux boundary is prescribed at the surface for uranium, technetium-99, nitrate, and chromium. The western and eastern boundaries are assigned no-flux boundaries for both flow and transport. The water table boundary is prescribed by water table elevations and the unconfined aquifer hydraulic gradient. No-flux boundaries are used for the lower boundary

  13. Numerical Simulation of GFRP Reinforced Concrete Beams

    National Research Council Canada - National Science Library

    Xia Zhao; Xiong-Jun He; Yong-Chao Yang

    2017-01-01

    .... The finite element numerical simulation of GFRP fiber reinforced concrete beam was carried out, and the load deflection nephogram of fiber reinforced concrete beam, strain nephogram, crack nephogram...

  14. Numerical simulation of muzzle blast

    NARCIS (Netherlands)

    Tyler-Street, M.

    2014-01-01

    Structural design methods for naval ships include environmental, operational and military load cases. One of the operational loads acting on a typical naval vessel is the muzzle blast from a gun. Simulating the muzzle blast load acting on a ship structure with CFD and ALE methods leads to large

  15. Numerical simulations of pulsejet engines

    Science.gov (United States)

    Geng, Tao

    The pulsejet has recently received more research interests due to its simple design, which can be developed into low-cost micro-scale propulsion devices for use in many of today's new applications such as UAVs. However, the relatively low thermal efficiency of pulsejets has always been the major obstacle in their development. The goal of this research is to investigate the possibility of using pulsejets in certain applications where the pulsejet can trade its low efficiency with low cost, simple design, and light weight. This work investigates pulsejet operation in a combined experimental and numerical approach, although the focus here is on the computational research. The fluid mechanics, acoustics, and chemical kinetics are studied numerically to understand the physics behind pulsejets and their operations. The research objectives include miniaturization of valveless pulsejets, acoustics model developments for both valved and valveless pulsejets, obtaining preliminary thrust performance data on micro-scale pulsejets, and finally, the formation of the starting vortex ring and its effect on pulsejet thrust.

  16. Numerical Implementation and Computer Simulation of Tracer ...

    African Journals Online (AJOL)

    , was most dependent on the source definition and the hydraulic conductivity K of the porous medium. The 12000mg/l chloride tracer source was almost completely dispersed within 34 hours. Keywords: Replication, Numerical simulation, ...

  17. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...

  18. Numerical simulation of Japan Sea effect snowfall

    OpenAIRE

    Estoque, M.A.; Ninomiya, K.

    2011-01-01

    Snowfall associated with the modification of cold air-mass outbreaks by the Sea of Japan is simulated with a simple numerical model. The model incorporates the effects of momentum, heat, and moisture fluxes across the air-sea interface as well as the effects of orography. The simulated distributions of snowfall, temperature, wind, and moisture are compared with observations and reasonable agreement is found. Numerical experiments were made in order to determine the dependence of the snowfall ...

  19. Numerical simulation of mechatronic sensors and actuators

    CERN Document Server

    Kaltenbacher, Manfred

    2007-01-01

    Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.

  20. Direct numerical simulation of supercritical annular electroconvection

    NARCIS (Netherlands)

    Tsai, Peichun Amy; Daya, Zahir A.; Deyirmenjian, Vatche B.; Morris, Stephen W.

    2007-01-01

    We use direct numerical simulation to study electrically driven convection in an annular thin film. The simulation models a laboratory experiment that consists of a weakly conducting, submicron thick liquid crystal film suspended between two concentric electrodes. The film is driven to convect by

  1. Numerical simulation of turbulent slurry flows

    Science.gov (United States)

    Haghgoo, Mohammad Reza; Spiteri, Reymond J.; Bergstrom, Donlad J.

    2016-11-01

    Slurry flows, i.e., the flow of an agglomeration of liquid and particles, are widely employed in many industrial applications, such as hydro-transport systems, pharmaceutical batch crystallizers, and wastewater disposal. Although there are numerous studies available in the literature on turbulent gas-particle flows, the hydrodynamics of turbulent liquid-particle flows has received much less attention. In particular, the fluid-phase turbulence modulation due to the particle fluctuating motion is not yet well understood and remains challenging to model. This study reports the results of a numerical simulation of a vertically oriented slurry pipe flow using a two-fluid model based on the kinetic theory of granular flows. The particle stress model also includes the effects of frictional contact. Different turbulence modulation models are considered, and their capability to capture the characteristic features of the turbulent flow is assessed. The model predictions are validated against published experimental data and demonstrate the significant effect of the particles on the fluid-phase turbulence.

  2. Boundary acquisition for setup of numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Diegert, C. [Sandia National Lab., Albuquerque, NM (United States)

    1997-12-31

    The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discovered in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.

  3. Study of Cardiac Defibrillation Through Numerical Simulations

    Science.gov (United States)

    Bragard, J.; Marin, S.; Cherry, E. M.; Fenton, F. H.

    Three-dimensional numerical simulations of the defibrillation problem are presented. In particular, in this study we use the rabbit ventricular geometry as a realistic model system for evaluating the efficacy of defibrillatory shocks. Statistical data obtained from the simulations were analyzed in term of a dose-response curve. Good quantitative agreement between our numerical results and clinically relevant values is obtained. An electric field strength of about 6.6 V/cm indicates a fifty percent probability of successful defibrillation for a 12-ms monophasic shock. Our validated model will be useful for optimizing defibrillation protocols.

  4. Numerical Simulation of SLD Ice Accretions

    NARCIS (Netherlands)

    Hospers, Jacco; Hoeijmakers, Hendrik Willem Marie

    2011-01-01

    In this study, computational methods are presented that compute ice accretion on multiple-element airfoils in specified icing conditions. The ¿Droplerian¿ numerical simulation method used is based on an Eulerian method for predicting droplet trajectories and the resulting droplet catching efficiency

  5. Numerical Simulations of a Vibrating Elasticum

    DEFF Research Database (Denmark)

    Sinclair, Robert

    1999-01-01

    Two robust numerical algorithms for simulating the dynamics of a clamped, massless, incompressibleelasticum with a unit point mass at the free end are presented, along with some first results concerning various modes of oscillation, and further data with some relevance to the question of whether...

  6. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, I.

    2001-07-01

    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  7. Numerical Simulation of Downstream Flooding due to a Flexible-Dam Collapse. The case of "La Esperanza" dam, Hidalgo-México: Implication on Hazard Assessment.

    Science.gov (United States)

    Areu Rangel, O. S., Sr.; Mendoza-Sanchez, I.; Bonasia, R.

    2015-12-01

    The risk of flooding of settlements located downstream of a dam is high due to the large number of people living on natural waterways. Risk assessment of flooding could help in projecting containment and protection in case of a dam-break. For projecting containment and protection works, the assessment should take into account velocities, densities and impact pressure of the water on the villages in risk. Therefore, it is appealing to conduct a series of numerical simulations of downstream flooding including velocity and pressure fields, and their temporal and spatial fluctuations. The present work focuses on the real case of "La Esperanza" dam, located in the state of Hidalgo (Mexico). The dam was built 70 years ago and currently two thirds of its capacity is covered with silt, which implies a very high horizontal thrust. The simulation of the flood due to failure of the dam was carried on using the DualSPHysics code, a new implementation of the mesh-free Lagrangian Smoothed Particle Hydrodynamic (SPH) method. For the boundary conditions, a Digital Elevation Model of the potentially affected area was built using satellite images, the actual bathymetry of the dam and cross sections of the channel. In order to evaluate the hazard posed to the villages located downstream of the dam, different collapse scenarios were simulated, with particular focus on the consequences of the temporal variation of rainfall. Preliminary results show acceleration and dynamic pressure values of water in especially selected areas that are subjected to high risk for the elevated number of inhabitant.

  8. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  9. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  10. Assessment of the portable radiophone users' exposure to electromagnetic fields, with use of numerical simulations and Directive 2013/35/EU requirements

    Directory of Open Access Journals (Sweden)

    Patryk Zradziński

    2013-12-01

    Full Text Available Background: The assessment of electromagnetic field distribution near radiophones and their use warranted an analysis of thermal exposure hazards and related health effects, based on i.e. numerical calculations of specific energy absorption rate (SAR. Materials and Methods: The investigation concerned radiophones of conventional and trunked communication systems. Electromagnetic hazards assessment involved numerical simulations of SAR inside users' models (male and female for 5 radiophones locations - near the ear, arm, chest, hip and face. Results: Maximum SAR (10 g values depend on radiophone type, output power and locations. Near the chest, hip and face they are 6-, 2- and 2-fold higher than for location near the ear. SAR (10 g may exceed Directive 2013/35/EU limits at maximum (4 W output power of conventional radiophones, and the distance between antenna and worker's body shorter than 5 cm. SAR (10 g values near trunked radiophones do not exceed 35% of the Directive limits. The Polish safety and health regulations in particular cases of radiophones use and local exposure may not guarantee the compliance with Directive 2013/35/EU requirements, i.e. SAR (10 g may locally exceed exposure limit values (ELVs during exposure to electromagnetic fields of hazardous, and even intermediate zones. Conclusions: It was demonstrated that exposure of trunked radiophones users does not exceed the limits laid down in the Polish safety and health regulations and Directive 2013/35/EU, however, in particular scenarios of the conventional radiophones use overexposure can be observed. The results showed that in exposure to electromagnetic field emitted by sources located near workers' body there is a need for more detailed analysis of the compliance of Polish safety and health regulations with Directive 2013/35/EU requirements. Med Pr 2013;64(6:817–827

  11. Numerical Simulation of Piston Ring Lubrication

    DEFF Research Database (Denmark)

    Felter, Christian Lotz

    2006-01-01

    is extended to include also the oil film outside the piston rings. The numerical model consists of a 2D free surface code that solves the time dependent compressible Navier-Stokes equations. The equations are cast in Lagrangian form and discretized by a meshfree moving least squares method using the primitive...... and the angle between the normals of the solid and the free surface. The numerical model is compared with the results from an analytical solution of Reynolds equation for a fixed incline slider bearing. Then results from a more compli- cated simulation of piston ring lubrication is given and discussed....

  12. Numerical Simulation of a Tornado Generating Supercell

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2012-01-01

    The development of tornadoes from a tornado generating supercell is investigated with a large eddy simulation weather model. Numerical simulations are initialized with a sounding representing the environment of a tornado producing supercell that affected North Carolina and Virginia during the Spring of 2011. The structure of the simulated storm was very similar to that of a classic supercell, and compared favorably to the storm that affected the vicinity of Raleigh, North Carolina. The presence of mid-level moisture was found to be important in determining whether a supercell would generate tornadoes. The simulations generated multiple tornadoes, including cyclonic-anticyclonic pairs. The structure and the evolution of these tornadoes are examined during their lifecycle.

  13. BET_VH probabilistic assessment of pyroclastic flows hazard at El Misti volcano, South Peru, based on geological record and numerical simulations with TITAN2D

    Science.gov (United States)

    Constantinescu, R.; Thouret, J. C.; Sandri, L.; Irimus, I. A.; Stefanescu, R.

    2012-04-01

    Pyroclastic density currents, which include pyroclastic surges and pyroclastic flows (PFs), are among the most dangerous volcanic phenomena. We present a probabilistic hazard assessment of the PFs generated from eruptive column collapse at El Misti volcano (5822 m) in South Peru. The high relief of the cone, the location of the city of Arequipa (~1,000,000 people) on two large volcanoclastic fans and the H (3.5 km)/L (17 km) ratio (0.2) between the summit and the city center, make PFs a direct threat. We consider three eruption scenario sizes: small Vulcanian/Phreatomagmatic (VEI 2), medium Sub-Plinian (VEI 3-4), and large Plinian (VEI 4+). We use the Event-Tree approach in a Bayesian scheme with BET_VH (Bayesian Event Tree for Volcanic Hazard) software. Quantitative data that stem from numerical simulations from TITAN2D (termed prior models) and from stratigraphic record (termed past data) are input to BET_VH, which enables us to compute the probabilities (in a 1-year time window) of (i) having an eruption (ii) in a selected location/vent (iii) of a specific size, (iv) and that this eruption will produce PFs (v) that will reach a location of interest around El Misti. TITAN2D simulation runs, expressed as color-coded thicknesses of PDC deposits, fit well the extent of past PFs deposits, including thick confined deposits (0.5-7 m) in the Rio Chili canyon and its tributary ravines (Quebradas San Lazaro, Huarangal and Agua Salada).The unconfined, thinner (≤10cm) deposits, as displayed by simulation runs on the interfluves, is attributed to ash-cloud surges. Such thin, fine ash deposits have not been emphasized in geological maps either because they have been removed away or remain yet unrecognized. The simulated Vulcanian flows, restricted to the upper part of the cone, become confined (0.1-1m thick) in the ravines which converge towards each of the three Quebradas. The simulated Subplinian PF deposits reach 0.1 to 1 m thick in the Quebradas and 1-4 m WNW of El

  14. Issues in Numerical Simulation of Fire Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tieszen, S.R.; Lopez, A.R.

    1999-04-12

    This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.

  15. Numerical Simulations of Hyperfine Transitions of Antihydrogen

    CERN Document Server

    Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.

    2015-02-04

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  16. Numerical Simulations Unravel the Cosmic Web

    OpenAIRE

    Faucher-Giguere, C. -A.; Lidz, A.; Hernquist, L.

    2008-01-01

    The universe is permeated by a network of filaments, sheets, and knots collectively forming a "cosmic web.'' The discovery of the cosmic web, especially through its signature of absorption of light from distant sources by neutral hydrogen in the intergalactic medium, exemplifies the interplay between theory and experiment that drives science, and is one of the great examples in which numerical simulations have played a key and decisive role. We recount the milestones in our understanding of c...

  17. Numerical simulation of orbiting black holes.

    Science.gov (United States)

    Brügmann, Bernd; Tichy, Wolfgang; Jansen, Nina

    2004-05-28

    We present numerical simulations of binary black hole systems which for the first time last for about one orbital period for close but still separate black holes as indicated by the absence of a common apparent horizon. An important part of the method is the construction of comoving coordinates, in which both the angular and the radial motion are minimized through a dynamically adjusted shift condition. We use fixed mesh refinement for computational efficiency.

  18. 2001 Numerical Propulsion System Simulation Review

    Science.gov (United States)

    Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2002-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to

  19. 2000 Numerical Propulsion System Simulation Review

    Science.gov (United States)

    Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac

    2001-01-01

    The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to

  20. Numerical convergence improvements for porflow unsaturated flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.

  1. Numerical simulation of a natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Verissimo, Gabriel L.; Moreira, Maria de Lourdes; Faccini, Jose Luiz H., E-mail: gabrielverissimo@poli.ufrj.b, E-mail: malu@ien.gov.b, E-mail: faccini@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work presents a numerical simulation of a natural circulation loop using computational fluid dynamics. The simulated loop is an experimental model in a reduced scale of 1:10 of a passive heat removal system typical of advanced PWR reactors. The loop is composed of a heating vessel containing 52 electric heaters, a vertical shell-tube heat exchanger and a column of expansion. The working fluid is distilled water. Initially it was created a tridimensional geometric model of the loop components. After that, it was generated a tridimensional mesh of finite elements in order to calculate the variables of the problem. The boundaries of the numerical simulation were the power of the electric resistances and the cooling flow in the secondary side of the heat exchanger. The initial conditions were the temperature, the pressure and the fluid velocity at the time just before the power has been switched on. The results of this simulation were compared with the experimental data, in terms of the evolution of the temperatures in different locations of the loop, and of the average natural circulation flow as a function of time for a given power. (author)

  2. Mathematical models and numerical simulation in electromagnetism

    CERN Document Server

    Bermúdez, Alfredo; Salgado, Pilar

    2014-01-01

    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  3. Numerical simulations unravel the cosmic web.

    Science.gov (United States)

    Faucher-Giguère, Claude-André; Lidz, Adam; Hernquist, Lars

    2008-01-04

    The universe is permeated by a network of filaments, sheets, and knots collectively forming a "cosmic web." The discovery of the cosmic web, especially through its signature of absorption of light from distant sources by neutral hydrogen in the intervening intergalactic medium, exemplifies the interplay between theory and experiment that drives science and is one of the great examples in which numerical simulations have played a key and decisive role. We recount the milestones in our understanding of cosmic structure; summarize its impact on astronomy, cosmology, and physics; and look ahead by outlining the challenges faced as we prepare to probe the cosmic web at new wavelengths.

  4. Spectral Methods in Numerical Plasma Simulation

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...... in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed....

  5. Numerical Simulation of Cyclic Thermodynamic Processes

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård

    2006-01-01

    This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling approach and a method for finding periodic steady state solutions are described. Examples of applications are given in the form of four research papers. Stirling machines and pulse tube coolers are introduced......, compressible flow in one space dimension is presented. The implementation produces models where all the equations, which are on a form that should be understandable to someone with a background in engineering thermodynamics, can be accessed and modified individually. The implementation was designed to make...

  6. Numerical aspects of compressible turbulence simulations

    Science.gov (United States)

    Honein, Albert Edward

    Nonlinear instabilities present a long standing hurdle for compact, high order, non dissipative, finite difference computation of compressible turbulence. The spectral-like accuracy of these schemes, while attractive, results in significant aliasing errors that corrupt the solution. As a result, successful simulations have been limited to moderate Reynolds numbers ( Re) and low-order or upwind schemes with inherent numerical dissipation. However, resorting to dissipative schemes in discretizing the nonlinear terms was shown to have a detrimental effect on turbulence. A recent LES approach is to abandon the subgrid model altogether and rely on the scheme dissipation to mimic the effect of small scales. A dissipative monotone integrated LES (MILES) algorithm based on a multidimensional flux-corrected transport (FCT) algorithm has been developed and tested for decaying compressible isotropic turbulence. Agreement with the benchmark experiments of Comte-Bellot and Corrsin is very sensitive to the parameters involved in the FCT algorithm, while the evolution of thermodynamic fluctuations do not compare well with direct numerical simulations. An under-resolved simulation of inviscid, compressible, isotropic turbulence at low Mach number is chosen as a severe benchmark to investigate the nonlinear stability properties of nondissipative schemes. The behavior of this benchmark is predicted by performing a fully de-aliased spectral simulation on a 32 3 grid with turbulent Mach number of Mto = 0.07. The kinetic energy and thermodynamic fluctuations are found to decay for finite Re, and remain constant at infinite Re for a long time before the occurrence of numerical shocks. Extending the proof of Kraichnan (Journal of the Acoustical Society of America, 27(3), 1955), this inviscid statistical equilibrium is demonstrated to be a consequence of the discrete equivalent of the Liouville theorem of classical statistical mechanics. Several existing non-dissipative methods are

  7. Numerical Simulation of Duplex Steel Multipass Welding

    Directory of Open Access Journals (Sweden)

    Giętka T.

    2016-12-01

    Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.

  8. Numerical simulations of regolith sampling processes

    Science.gov (United States)

    Schäfer, Christoph M.; Scherrer, Samuel; Buchwald, Robert; Maindl, Thomas I.; Speith, Roland; Kley, Wilhelm

    2017-07-01

    We present recent improvements in the simulation of regolith sampling processes in microgravity using the numerical particle method smooth particle hydrodynamics (SPH). We use an elastic-plastic soil constitutive model for large deformation and failure flows for dynamical behaviour of regolith. In the context of projected small body (asteroid or small moons) sample return missions, we investigate the efficiency and feasibility of a particular material sampling method: Brushes sweep material from the asteroid's surface into a collecting tray. We analyze the influence of different material parameters of regolith such as cohesion and angle of internal friction on the sampling rate. Furthermore, we study the sampling process in two environments by varying the surface gravity (Earth's and Phobos') and we apply different rotation rates for the brushes. We find good agreement of our sampling simulations on Earth with experiments and provide estimations for the influence of the material properties on the collecting rate.

  9. Numerical simulation of flow through biofluid devices

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S.E.; Kwak, D. (NASA Ames Research Center, Moffett Field, CA (US)); Kiris, C.; Chang, I.D. (Stanford Univ., Stanford, CA (US))

    1990-01-01

    The results of a numerical simulation on a Cray-2 supercomputer of flow through an artificial heart and through an artificial tilting-disk heart valve are presented. The simulation involves solving the incompressible Navier-Stokes equations; the solution process is described. The details and difficulties of modeling these particular geometries are discussed. The artificial heart geometry uses a single moving grid, and the valve computation uses an overlaid-grid approach with one moving grid and one stationary grid. The equations must be solved iteratively for each discrete time step of the computations, requiring a significant amount of computing time. It is particularly difficult to analyze and present the fluid physics represented by these calculations because of the time-varying nature of the flow, and because the flows are internal. The use of three-dimensional graphics and scientific visualization techniques have become instrumental in solving these problems.

  10. Direct Numerical Simulations of Transient Dispersion

    Science.gov (United States)

    Porter, M.; Valdes-Parada, F.; Wood, B.

    2008-12-01

    Transient dispersion is important in many engineering applications, including transport in porous media. A common theoretical approach involves upscaling the micro-scale mass balance equations for convection- diffusion to macro-scale equations that contain effective medium quantities. However, there are a number of assumptions implicit in the various upscaling methods. For example, results obtained from volume averaging are often dependent on a given set of length and time scale constraints. Additionally, a number of the classical models for dispersion do not fully capture the early-time dispersive behavior of the solute for a general set of initial conditions. In this work, we present direct numerical simulations of micro-scale transient mass balance equations for convection-diffusion in both capillary tubes and porous media. Special attention is paid to analysis of the influence of a new time- decaying coefficient that filters the effects of the initial conditions. The direct numerical simulations were compared to results obtained from solving the closure problem associated with volume averaging. These comparisons provide a quantitative measure of the significance of (1) the assumptions implicit in the volume averaging method and (2) the importance of the early-time dispersive behavior of the solute due to various initial conditions.

  11. Direct numerical simulation of dynamo transition for nonhelical MHD

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Dinesh; Verma, Mahendra K [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Lessinnes, Thomas; Carati, Daniele [Physique Statistique et Plasmas, Universite Libre de Bruxellers, B-1050 Bruxelles (Belgium); Sarris, Ioannis [Department of Mechanical and Industrial Engineering, University of Thessaly, Volos (Greece)

    2010-02-01

    Pseudospectral Direct Numerical Simulation (DNS) has been performed to simulate dynamo transition for nonhelical magnetohydrodynamics turbulence. The numerical results are compared with a recent low-dimensional model [Verma et al. [13

  12. Direct numerical simulation of turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  13. Framatome-ANP experience in numerical simulation of welding

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, P. [FRAMATOME ANP SAS, NFPM, 92 - Paris-La-Defence (France); Pont, D. [FRAMATOME ANP SAS, NFVED, 69 - Lyon (France); Keim, E. [Framatome ANP GmbH -NGTM, Erlangen (Germany); Devaux, J. [ESI France, 69 - Lyon (France)

    2004-07-01

    For nuclear reactor manufacturers, ensuring a high quality of welded joints is one of the basic design rules. Qualification of welders, specific procedures, stress relief heat treatments serve efficiently this goal. Numerical simulation of welding adds the capability of assessing residual stresses, distortions, and in a near future quality of welds. Since almost 25 years, Framatome-ANP has been working on numerical simulation of welding to improve predictions and efficiency of computational tools, namely using the worldwide known SYSWELD. The largest part of Framatome-ANP experience in this field relies in the numerous studies performed by German and French teams on industrial components. This paper tries to account for all these efforts, following a presentation oriented on types of problem. (authors)

  14. Numerical simulation of pump-intake vortices

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2015-01-01

    Full Text Available Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  15. Numerical simulation of pump-intake vortices

    Science.gov (United States)

    Rudolf, Pavel; Klas, Roman

    2015-05-01

    Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  16. Direct numerical simulation of human phonation

    Science.gov (United States)

    Saurabh, Shakti; Bodony, Daniel

    2016-11-01

    A direct numerical simulation study of the generation and propagation of the human voice in a full-body domain is conducted. A fully compressible fluid flow model, anatomically representative vocal tract geometry, finite deformation model for vocal fold (VF) motion and a fully coupled fluid-structure interaction model are employed. The dynamics of the multi-layered VF tissue with varying stiffness are solved using a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A new inflow boundary condition, based upon a quasi-1D formulation with constant sub-glottal volume velocity, linked to the VF movement, has been adopted. Simulations for both child and adult phonation were performed. Acoustic characteristics obtained from these simulation are consistent with expected values. A sensitivity analysis based on VF stiffness variation is undertaken and sound pressure level/fundamental frequency trends are established. An evaluation of the data against the commonly-used quasi-1D equations suggest that the latter are not sufficient to model phonation. Phonation threshold pressures are measured for several VF stiffness variations and comparisons to clinical data are carried out. Supported by the National Science Foundation (CAREER Award Number 1150439).

  17. Numerical Propulsion System Simulation: An Overview

    Science.gov (United States)

    Lytle, John K.

    2000-01-01

    The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play

  18. Numerical simulations of coupled problems in engineering

    CERN Document Server

    2014-01-01

    This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.

  19. Automated continuous verification for numerical simulation

    Directory of Open Access Journals (Sweden)

    P. E. Farrell

    2011-05-01

    Full Text Available Verification is a process crucially important for the final users of a computational model: code is useless if its results cannot be relied upon. Typically, verification is seen as a discrete event, performed once and for all after development is complete. However, this does not reflect the reality that many geoscientific codes undergo continuous development of the mathematical model, discretisation and software implementation. Therefore, we advocate that in such cases verification must be continuous and happen in parallel with development: the desirability of their automation follows immediately. This paper discusses a framework for automated continuous verification of wide applicability to any kind of numerical simulation. It also documents a range of test cases to show the possibilities of the framework.

  20. Collisionless microinstabilities in stellarators II - numerical simulations

    CERN Document Server

    Proll, Josefine Henriette Elise; Helander, Per

    2013-01-01

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-$J$ geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment (NCSX) and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduce...

  1. Numerical simulation of the pulsed Pirani gauges

    Science.gov (United States)

    Gospodinov, P.; Dankov, D.; Roussinov, V.; Mironova, M.

    2017-10-01

    The transient heat transfer process is studied in rarefied gas confined between two stationary concentric cylinders. The inner cylinder (filament) is subjected to a periodically heating-cooling cycle. The energy transfer is modeled with a continuous model based on Navier-Stokes-Fourier (NSF) equations of motion and energy transfer and with a statistical Direct Simulation Monte Carlo Method (DSMC). Numerical results for the temperature, thermodynamic pressure and pressure difference between thermodynamic pressure and radial stress tensor component are obtained for different circular frequencies of heating cooling cycle of filament and for different filament radii. The pressure variation at the end of any local heating stage of heating-cooling cycle is close to the value of equilibrium thermodynamic pressure. The results are applicable in designing the pulsed Pirani gauges.

  2. Numerical simulations of dissipationless disk accretion

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2017-09-01

    Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/ r ≫ 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.

  3. Numerical simulation of installation of skirt foundations

    Energy Technology Data Exchange (ETDEWEB)

    Vangelsten, Bjoern Vidar

    1997-12-31

    Skirt foundation has been increasingly used for permanent offshore oil installations and anchors for drilling ships. Suction is commonly used in skirt foundation installing. If a large amount of suction is applied, the soil around the foundation may fail and the foundation become useless. This thesis studies failure due to high seepage gradients, aiming to provide a basis for reducing the risk of such failures. Skirt penetration model testing has shown that to solve the problem one must understand what is going on at the skirt tip during suction installation. A numerical model based on micro mechanics was developed as continuum hypothesis was seen to be unsuitable to describe the processes in the critical phases of the failure. The numerical model combines two-dimensional elliptical particles with the finite difference method for flow to model water flow in a granular material. The key idea is to formulate the permeability as a function of the porosity of the grain assembly and so obtain an interaction between the finite difference method on flow and the particle movement. A computer program, DYNELL, was developed and used to simulate: (1) weight penetration of a skirt wall, (2) combined suction and weight penetration of a skirt wall, and (3) critical gradient tests around a skirt wall to study failure mechanisms. The model calculations agree well with laboratory experiments. 16 refs., 124 figs., 21 tabs.

  4. Coupled numerical simulation of fire in tunnel

    Science.gov (United States)

    Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.

    2018-01-01

    In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is

  5. Direct numerical simulation of human phonation

    Science.gov (United States)

    Bodony, Daniel; Saurabh, Shakti

    2017-11-01

    The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).

  6. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  7. Numerical Simulations of the G Ring Arc

    Science.gov (United States)

    Tiscareno, Matthew S.; Hedman, M. M.; Burns, J. A.; Nicholson, P. D.

    2007-07-01

    We conducted numerical simulations of 3,830 massless test particles in the Saturn system near the 7:6 corotation eccentricity resonance (CER) with Mimas, in response to the recent observations of an arc in the faint and dusty G Ring (see Hedman et al, this conference). We simulated 80 years of evolution, taking into account the perturbations of Saturn's nine most massive moons, the Sun, Jupiter, and Saturn's J2 and J4 gravity harmonics. Perturber trajectories were obtained at every timestep from JPL ephemera DE414 and SAT252. We find that particles are efficiently trapped into librations about any of the six corotation sites, consistent with the observed arc which extends 30o in longitude. We find forced eccentricities that are consistent with the observed radial width of the arc, and a long libration period (1273 days) which indicates we may have yet to observe the turning point in the arc's libration. The potentially disruptive effects of inter-particle collisions were not taken into account, due to the G Ring's very low optical depth. Leakage out of the resonance is probably dominated instead by non-gravitational forces, which preferentially drive smaller (dust) grains outward, plausibly accounting for the observed radial profile of the G Ring.

  8. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  9. Numerical simulation of condensation on structured surfaces.

    Science.gov (United States)

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  10. Direct numerical simulations of aeolian sand ripples

    Science.gov (United States)

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-01-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  11. Proton decay: Numerical simulations confront grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Brower, R.C.; Maturana, G.; Giles, R.C.; Moriarty, K.J.M.; Samuel, S.

    The Grand Unified Theories of the electromagnetic, weak and strong interactions constitute a far reaching attempt to synthesize our knowledge of theoretical particle physics into a consistent and compelling whole. Unfortunately, many quantitative predictions of such unified theories are sensitive to the analytically intractible effects of the strong subnuclear theory (Quantum Chromodynamics or QCD). The consequence is that even ambitious experimental programs exploring weak and super-weak interaction effects often fail to give definitive theoretical tests. This paper describes large-scale calculations on a supercomputer which can help to overcome this gap between theoretical predictions and experimental results. Our focus here is on proton decay, though the methods described are useful for many weak processes. The basic algorithms for the numerical simulation of QCD are well known. We will discuss the advantages and challenges of applying these methods to weak transitions. The algorithms require a very large data base with regular data flow and are natural candidates for vectorization. Also, 32-bit floating point arithmetic is adequate. Thus they are most naturally approached using a supercomputer alone or in combination with a dedicated special purpose processor. (orig.).

  12. Direct Numerical Simulation of Cell Printing

    Science.gov (United States)

    Qiao, Rui; He, Ping

    2010-11-01

    Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.

  13. A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events

    OpenAIRE

    Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei; Terzija, Vladimir

    2017-01-01

    The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interact...

  14. A Numerical Simulation for a Deterministic Compartmental ...

    African Journals Online (AJOL)

    In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...

  15. Efficient numerical simulation of heat storage in subsurface georeservoirs

    Science.gov (United States)

    Boockmeyer, A.; Bauer, S.

    2015-12-01

    The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and

  16. Development of Pelton turbine using numerical simulation

    Science.gov (United States)

    Patel, K.; Patel, B.; Yadav, M.; Foggia, T.

    2010-08-01

    This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.

  17. Coherent Structures in Numerically Simulated Plasma Turbulence

    DEFF Research Database (Denmark)

    Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.

    1989-01-01

    Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...

  18. Numerical simulation of single bubble boiling behavior

    Directory of Open Access Journals (Sweden)

    Junjie Liu

    2017-06-01

    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  19. NUMERICAL SIMULATION OF TOXIC CHEMICAL DISPERSION AFTER ACCIDENT AT RAILWAY

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-04-01

    Full Text Available Purpose. This research focuses on the development of an applied numerical model to calculate the dynamics of atmospheric pollution in the emission of dangerous chemical substances in the event of transportation by railway. Methodology. For the numerical simulation of transport process of the dangerous chemical substance in the atmosphere the equation of convection-diffusion pollutant transport is used. This equation takes into account the effect of wind, atmospheric diffusion, the power of emission source, as well as the movement of the source of emission (depressurized tank on the process of pollutant dispersion. When carrying out computing experiment one also takes into account the profile of the speed of the wind flow. For the numerical integration of pollutant transport in the atmosphere implicit finite-difference splitting scheme is used. The numerical calculation is divided into four steps of splitting and at each step of splitting the unknown value of the concentration of hazardous substance is determined by the explicit running account scheme. On the basis of the numerical model it was created the code using the algorithmic language FORTRAN. One conducted the computational experiments to assess the level of air pollution near the railway station «Illarionovo» in the event of a possible accident during transportation of ammonia. Findings. The proposed model allows you to quickly calculate the air pollution after the emission of chemically hazardous substance, taking into account the motion of the emission source. The model makes it possible to determine the size of the land surface pollution zones and the amount of pollutants deposited on a specific area. Using the developed numerical model it was estimated the environmental damage near the railway station «Illarionovo». Originality. One can use the numerical model to calculate the size and intensity of the chemical contamination zones after accidents on transport. Practical value

  20. Modular numerical tool for gas turbine simulation

    OpenAIRE

    Sampedro Casis, Rodrigo

    2015-01-01

    In this work a free tool for the simulation of turboprops was implemented, capable of simulating the various components of a jet engine, separately or in conjunction, with different degrees of thermodynamic modelling or complexity, in order to simulate an entire jet engine. The main characteristics of this software includes its compatibility, open code and GNU license, non-existing in today's market. Furthermore, the tool was designed with a greater flexibility and a more adapted work environ...

  1. A simplified model for TIG-dressing numerical simulation

    Science.gov (United States)

    Ferro, P.; Berto, F.; James, M. N.

    2017-04-01

    Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.

  2. Wind Tunnel to Flight: Numerical Simulations of Hypersonic Propulsion Systems

    Science.gov (United States)

    Iaccarino, Gianluca

    2009-11-01

    Uncertainties in the flight conditions and limitations of ground based facilities create inherent difficulties in assessing the performance of hypersonic propulsion systems. We use numerical simulations to investigate the correlation of wind-tunnel measurements (Steelant et al., 2006) and flight data (Hass et al., 2005) for the HyShot vehicle; the objective is to identify potential engine unstart events occurring under different combustion regimes. As a first step we perform simulations corresponding to both reacting and non-reacting conditions in the ground-based facility to validate the numerical tools. Next, we focus on reproducing the flight conditions; a fundamental difficulty is the lack of precise information about the vehicle trajectory. A Bayesian inversion strategy is used to infer the altitude, angle of attack and Mach number from the noisy pressure measurements collected during the flight. The estimated conditions, together with the scatter due to the measurement uncertainty, are then used to study the flow and thermal fields in the combustor. The details of the methods used to characterize the uncertainty in the flow simulations and to perform the Bayesian inversion will also be discussed.

  3. Assessment of injected warm plumes along a free surface flow channel using fiber-optic distributed temperature sensing and numerical simulations

    Science.gov (United States)

    Le Lay, Hugo; Thomas, Zahra; Rouault, François; Pichelin, Pascal; Bour, Olivier; Moatar, Florentina

    2017-04-01

    Understanding and predicting stream thermal regimes is a key goal for aquatic ecosystems resiliency to climate change. Mapping thermal anomalies finely becomes feasible thanks to methods such as fiber-optic distributed temperature sensing (FO-DTS). Despite being the main thermal anomalies in stream, groundwater inflows are difficult to detect because of high water stages and turbulent stream flow. We hypothesized that thresholds in flow regime and hydraulic parameters may affect thermal regime characterization. Our main objective was to test and validate the use of FO-DTS for the quantification of inflows in order to determine the physical processes behind these thresholds. Experiments were carried out outdoor, using an open flow hydraulic channel. A warm water tank was used to simulate groundwater inflows with known discharge rates and temperatures. These discharge rates varied between 4 and 72% of the channel flow. Numerical experiments were also conducted to test the consistency of our experimental results and discriminate the effect of inflow rate and hydraulic parameters. The water temperature in the channel was monitored by Fiber-Optic Distributed Temperature Sensing with cables set on two lines, over three depths. The injected warm plume was tracked along the channel and across the water stage to estimate temperature increases it induced. A relationship was found between these thermal anomalies and flow dynamic, defining different types of flow configurations. For given channel flow rate and water stage, a threshold for the inflow rate was identified at which the injected plume is not detectable by our means. The effect of the channel flow velocity over the plume spreading appears clearly with a dominance of advection for high flow rate. In addition, outdoor experiments were affected by atmospheric conditions (air temperature, solar radiation, etc.) while simulations allowed refining results without external artefacts and showed a good fit with measurements

  4. Numerical Simulation of Tyre/Road Noise

    NARCIS (Netherlands)

    Schutte, J.H.

    2011-01-01

    In modern society, traffic noise has become an important issue for mental health. A significant contributor to this noise pollution is exterior tyre/road noise, which is caused by the interaction between tyre and road surface and. In order to reduce tyre/road noise at the source, accurate numerical

  5. Numerical simulation of the hepatic circulation

    NARCIS (Netherlands)

    Van Der Plaats, A; 'tHart, NA; Verkerke, GJ; Leuvenink, HGD; Verdonck, P; Ploeg, RJ; Rakhorst, G

    Availability of donor livers and the relatively short preservation time limit the success of liver transplantation. The use of hypothermic machine perfusion could pave the way for expansion of the donor pool. To better define optimal settings of such a device, the feasibility of using a numerical

  6. Numerical Flow Simulation for Complete Vehicle Configurations

    Science.gov (United States)

    1993-09-01

    Conference of Numerical Grid Generation in Computational Fluid Dynamics, Barcelona, Spain, June 1991, edited by A. S. Arcilla , J. Hauser, P. R... Arcilla , J. Hauser, P. R. Eiseman and J. F. Thompson, North Holland, p. 143, 1991. 61. Weathenll, N. P., "Mixed Structured-Unstructured Meshes for

  7. Numerical simulations of nanostructured gold films

    DEFF Research Database (Denmark)

    Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.

    2017-01-01

    We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which then was ca...... then was captured using scanning transmission electron microscopy (STEM) and the obtained dark field images are used to set up COMSOL simulations corresponding to actual structures....

  8. A numerical simulation of a contrail

    Energy Technology Data Exchange (ETDEWEB)

    Levkov, L.; Boin, M.; Meinert, D. [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)

    1997-12-31

    The formation of a contrail from an aircraft flying near the tropopause is simulated using a three-dimensional mesoscale atmospheric model including a very complex scheme of parameterized cloud microphysical processes. The model predicted ice concentrations are in very good agreement with data measured during the International Cirrus Experiment (ICE), 1989. Sensitivity simulations were run to determine humidity forcing on the life time of contrails. (author) 4 refs.

  9. Numerical Simulation of Oil Spill in Ocean

    Directory of Open Access Journals (Sweden)

    Yong-Sik Cho

    2012-01-01

    Full Text Available The spreading of oil in an open ocean may cause serious damage to a marine environmental system. Thus, an accurate prediction of oil spill is very important to minimize coastal damage due to unexpected oil spill accident. The movement of oil may be represented with a numerical model that solves an advection-diffusion-reaction equation with a proper numerical scheme. In this study, the spilled oil dispersion model has been established in consideration of tide and tidal currents simultaneously. The velocity components in the advection-diffusion-reaction equation are obtained from the shallow-water equations. The accuracy of the model is verified by applying it to a simple but significant problem. The results produced by the model agree with corresponding analytical solutions and field-observed data. The model is then applied to predict the spreading of an oil spill in a real coastal environment.

  10. Numerical simulation of magmatic hydrothermal systems

    Science.gov (United States)

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  11. Numerical simulation of controlled large space structures

    Science.gov (United States)

    Quan, Ralph

    1989-01-01

    Large Space Structures do not have much damping, which necessitates the installation of a controller onto the structure. If the controller is improperly designed, the structure may become unstable and be destroyed. Since Large Space Structures are extremely expensive pieces of hardware, new controllers must not be tested first on the structure. They must first be tested in computer simulations. Until now, the usual procedure for simulating controlled Large Space Structures is to compute a reduced order modal representation of the structure and then apply the controller. However, this procedure entails modal truncation error. A new software package which is free from this error is currently under development within the Center for Space Construction. The more accurate finite element representation of the structure is used in the simulation, instead of the less accurate reduced order modal representation. This software also features an efficient matrix storage scheme, which effectively deals with the asymmetric system matrices which occur when control is added to the structure. Also, an integration algorithm was chosen so that the simulation is a reliable indicator of system stability or instability. The software package is fairly general in nature. Linearity of the finite element model and of the controller is the only assumption made. Actuator dynamics, sensor dynamics, noise, and disturbances can be handled by the package. In addition, output feedback of displacement, velocity, and/or acceleration signals can be simulated. Kalman state estimation was also implemented. This software was tested on a finite element model of a real Large Space Structure: The Mini-Mast Truss. Mini-Mast is a testbed at NASA-Langley which is currently under development. A 714 degree of freedom finite element model was computed, and a 19 state controller was designed for it. Torque wheel dynamics were added to the model, and the entire closed loop system was simulated with the software

  12. Numerical simulation of instability and transition physics

    Science.gov (United States)

    Streett, C. L.

    1990-01-01

    The study deals with the algorithm technology used in instability and transition simulations. Discretization methods are outlined, and attention is focused on high-order finite-difference methods and high-order centered-difference formulas. One advantage of finite-difference methods over spectral methods is thought to be in implementation of nonrigorous boundary conditions. It is suggested that the next significant advances in the understanding of transition physics and the ability to predict transition will come with more physically-realistic simulations. Compressible-flow algorithms are discussed, and it is noted that with further development, exploration of bypass mechanism on simple bodies at high speed would be possible.

  13. Numerical Simulations of Low Mass Star Formation

    Science.gov (United States)

    Bhandare, Asmita; Kuiper, R.; Henning, T.; Fendt, C.; Koelligan, A.

    2017-06-01

    Stars are formed by gravitational collapse of dense cores in magnetized molecular clouds. Details of the earliest epochs of star formation process and protostellar evolution are only vaguely known and strongly depend on the accretion history. Thermodynamical modeling in terms of radiation transport and phase transitions is crucial to identify meaningful results. In this study, we use a gray treatment of radiative transfer coupled with hydrodynamics to simulate Larson's collapse. In spherically symmetric collapse simulations, we investigate properties of prestellar cores in the low mass regime.

  14. Numerical aspects of giant impact simulations

    Science.gov (United States)

    Reinhardt, Christian; Stadel, Joachim

    2017-06-01

    In this paper, we present solutions to three short comings of smoothed particles hydrodynamics (SPH) encountered in previous work when applying it to giant impacts. First we introduce a novel method to obtain accurate SPH representations of a planet's equilibrium initial conditions based on equal area tessellations of the sphere. This allows one to imprint an arbitrary density and internal energy profile with very low noise which substantially reduces computation because these models require no relaxation prior to use. As a consequence one can significantly increase the resolution and more flexibly change the initial bodies to explore larger parts of the impact parameter space in simulations. The second issue addressed is the proper treatment of the matter/vacuum boundary at a planet's surface with a modified SPH density estimator that properly calculates the density stabilizing the models and avoiding an artificially low-density atmosphere prior to impact. Further we present a novel SPH scheme that simultaneously conserves both energy and entropy for an arbitrary equation of state. This prevents loss of entropy during the simulation and further assures that the material does not evolve into unphysical states. Application of these modifications to impact simulations for different resolutions up to 6.4 × 106 particles show a general agreement with prior result. However, we observe resolution-dependent differences in the evolution and composition of post-collision ejecta. This strongly suggests that the use of more sophisticated equations of state also demands a large number of particles in such simulations.

  15. NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... Aerospace, our results were in good agreement with experimental data. By simulation studies predeterminations became very easy to prepare, this gain is the result of the development of computational methods and hardware remarkable revolution. So mastery of computers has become indispensable for ...

  16. Numerical simulation of roadway support clamping

    Energy Technology Data Exchange (ETDEWEB)

    Dobrocinski, S. (Akademia Marynarki Wojennej, Gdynia (Poland))

    1988-01-01

    Evaluates interaction of arched steel roadway supports and surrounding strata in stratified coal-bearing strata. A combination of the finite element method and boundary element method is used. A numerical model that describes interaction of supports and surrounding strata is discussed. Advantages of the calculation method developed by the authors compared to the finite element method are analyzed. The method is especially useful for description of support interaction at the junction of mine roadways or at junctions of mine roadways and mine shafts. 2 refs.

  17. Numerical Simulations of Acoustically Driven, Burning Droplets

    Science.gov (United States)

    Kim, Heon-Chang; Karagozian, Ann R.; Smith, Owen I.

    1999-11-01

    The burning characteristics of fuel droplets exposed to external acoustical excitation within a microgravity environment are investigated numerically. The issue of acoustic excitation of flames in microgravity is especially pertinent to understanding the behavior of accidental fires which could occur in spacecraft crew quarters and which could be affected by pressure perturbations as result from ventilation fans or engine vibrations. Combustion of methanol fuel droplets is considered here using a full chemical reaction mechanism.(Marchese, A.J., et al., 26th Symp. (Int.) on Comb., p. 1209, 1997) The droplet and surrounding diffusion flame are situated within a cylindrical acoustic waveguide where standing waves are generated with varying frequency and amplitude. Applied sound pressure levels are limited at present to magnitudes for which the droplet shape remains spherical. A third order accurate, essentially-non-oscillatory (ENO) numerical scheme is employed to accurately resolve the spatial and temporal evolution of the flame front. Acoustically excited vs. non-excited external conditions for the burning droplet in microgravity are compared, and the effects of acoustic frequency, sound pressure level, and relative position of the droplet with respect to pressure and velocity nodes are explored.

  18. Direct Numerical Simulation of Aeolian Tones

    Science.gov (United States)

    2005-04-15

    simulation results of aeolian tones generated by a two-dimensional obstacle (circular cylinder, square cylinder, NACA0012 airfoil) in a uniform flow are...Square cylinder. M = 0.2, Re = 150. Fig. 3. Fluctuation pressure superimposed on vorticity. NACA0012 . M...0.2, Re = 300. 864 Osamu Inoue A typical example of computational results for the case of an NACA0012 airfoil is presented in Fig. 3

  19. Numerical simulation of transient flows in a rocket propulsion nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lijo, Vincent [School of Mechanical Engineering, Andong National University, Andong 760-749 (Korea, Republic of); Kim, Heuy Dong, E-mail: kimhd@andong.ac.k [School of Mechanical Engineering, Andong National University, Andong 760-749 (Korea, Republic of); Setoguchi, Toshiaki; Matsuo, Shigeru [Department of Mechanical Engineering, Saga University, 1 Honjo, Saga (Japan)

    2010-06-15

    A numerical investigation of transient flows in an axisymmetric over-expanded thrust-optimized contour nozzle is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional axisymmetric numerical simulation has been carried for a thrust-optimized contour nozzle to validate present results and investigate oscillatory flow characteristics during the start-up processes. Reynolds-Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. The present work is concerned with comprehensive assessment of the flow features by using Reynolds stress turbulence model. Computed pressure at the nozzle wall closely matched with the experimental data. A hysteresis phenomenon has been observed between these two shock structures. The transition from FSS to RSS pattern during start-up process has shown maximum nozzle wall pressure. Nozzle wall pressure and shear stress values have shown fluctuations during the FSS to RSS transition. The oscillatory pressure has been observed on the nozzle wall for high pressure ratio. Present results have shown that magnitude of the nozzle wall pressure variation is high for the oscillatory phenomenon.

  20. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  1. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2017-01-01

    This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...

  2. Numerical simulation of the LAGEOS thermal behavior and thermal accelerations

    NARCIS (Netherlands)

    Andrés, J.I.; Noomen, R.; Vecellio None, S.

    2006-01-01

    The temperature distribution throughout the LAGEOS satellites is simulated numerically with the objective to determine the resulting thermal force. The different elements and materials comprising the spacecraft, with their energy transfer, have been modeled with unprecedented detail. The radiation

  3. Numerical Simulation of Wire-Coating

    DEFF Research Database (Denmark)

    Wapperom, Peter; Hassager, Ole

    1999-01-01

    A finite element program has been used to analyze the wire-coating process of an MDPE melt. The melt is modeled by a nonisothermal Carreau model. The emphasis is on predicting an accurate temperature field. Therefore, it is necessary to include the heat conduction in the metal parts. A comparison...... is made with the results of a simulation that models the heat conduction in the metal head by means of a Biot boundary condition. The influence of the wire velocity, inlet temperature and power-law index will be examined....

  4. NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.

    Energy Technology Data Exchange (ETDEWEB)

    LUCCIO, A.; D' IMPERIO, N.; MALITSKY, N.

    2005-09-12

    Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.

  5. Numerical simulation of exploding pusher targets

    Science.gov (United States)

    Atzeni, S.; Rosenberg, M. J.; Gatu Johnson, M.; Petrasso, R. D.

    2017-10-01

    Exploding pusher targets, i.e. gas-filled large aspect-ratio glass or plastic shells, driven by a strong laser-generated shock, are widely used as pulsed sources of neutrons and fast charged particles. Recent experiments on exploding pushers provided evidence for the transition from a purely fluid behavior to a kinetic one. Indeed, fluid models largely overpredict yield and temperature as the Knudsen number Kn (ratio of ion mean-free path to compressed gas radius) is comparable or larger than one. At Kn = 0.3 - 1, fluid codes reasonably estimate integral quantities as yield and neutron-averaged temperatures, but do not reproduce burn radii, burn profiles and DD/DHe3 yield ratio. This motivated a detailed simulation study of intermediate-Kn exploding pushers. We will show how simulation results depend on models for laser-interaction, electron conductivity (flux-limited local vs nonlocal), viscosity (physical vs artificial), and ion mixing. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), and Eurofusion Project AWP17-ENR-IFE-CEA-01.

  6. Numerical simulation of hole injection in high barrier metal ...

    African Journals Online (AJOL)

    Numerical simulation of hole injection in high barrier metal-semiconductor short diodes. ... Journal of the Nigerian Association of Mathematical Physics ... A numerical investigation is carried out on effects of minority carriers on the transport parameters of one-dimensional metal-semiconductor short diodes under highly ...

  7. Gravity Currents with Convective Mixing: High-resolution Numerical Simulations

    Science.gov (United States)

    Voskov, D.; Elenius, M. T.; Tchelepi, H.

    2014-12-01

    Due to challenges in performing direct numerical simulations for gravity currents with convective mixing, different attempts have been made to simplify the problem. In this work, the full problem is investigated with direct numerical simulations. Our simulations employ a recently developed capability in our General Purpose Research Simulator (AD-GPRS). The compositional approach is based on K-values and a linear density model. A shared-memory parallel implementation allows for high resolution simulations in a reasonable time frame. Our results indicate that it is important to consider the reduction in the dissolution rate after the fingers begin to interact with the bottom of the aquifer. Another important observation suggests considering a reduction in the dissolution rate where the plume thickness increases in time. In addition to the large-scale simulations, we performed convective-mixing simulations in relatively small domains to support the analysis of large-scale plume migration and CO2 trapping.

  8. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil

    Science.gov (United States)

    Liever, Peter; Tosh, Abhijit; Curtis, Jennifer

    2012-01-01

    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket

  9. A numerical relativity scheme for cosmological simulations

    Science.gov (United States)

    Daverio, David; Dirian, Yves; Mitsou, Ermis

    2017-12-01

    Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3  +  1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.

  10. Numerical simulations of NASA research instrumentation in hurricane environments

    Science.gov (United States)

    Albers, Cerese M.

    Tropical cyclone intensity prediction is an issue at the forefront of mesoscale numerical weather prediction efforts because it is an area where historically there have been only small improvements, and yet much more progress is needed to improve advance warnings for land- falling tropical cyclones (TCs). In recent years, research instrumentation has been developed for deployment aboard aircraft that remotely study tropical cyclones in order to answer critical intensity questions about TCs. One such instrument is the NASA Hurricane Imaging Radiometer (HIRAD) that has been developed to observe hurricane surface wind speeds and rain rates. This study explores the expected benefits of this instrument's data to numerical simulations of tropical cyclones using two different data assimilation methods within the experimental framework of Observing System Simulation Experiments (OSSE). The HIRAD instrument performed its inaugural hurricane flights during the summer 2010 NASA Genesis and Rapid Intensification Processes (GRIP) field program, when it first studied Hurricane Karl undergoing Rapid Intensification (RI) during its brief transit over the southern Gulf of Mexico. RI events such as this one are particularly difficult to forecast given the short duration and distance over water between landmasses. The aims of this study are four-fold: first, the creation of two Nature Run simulations of Hurricane Karl as a strong and a weak hurricane; second, the accurate simulation of the HIRAD instrument's rain rate and wind speed observations; third, the development and use of two data assimilation schemes for use with the Weather Research and Forecasting (WRF) model using simulated HIRAD data for both Nature Runs; and fourth, the improvement of Hurricane Karl's intensity forecast at the end of the data assimilation period due to the inclusion of HIRAD observations and potential use for aiding the forecast of landfalling intensity. The two data assimilation schemes in this study

  11. Holistic simulation of geotechnical installation processes numerical and physical modelling

    CERN Document Server

    2015-01-01

    The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installat...

  12. Batman-cracks. Observations and numerical simulations

    Science.gov (United States)

    Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.

    1991-05-01

    To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.

  13. A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events

    DEFF Research Database (Denmark)

    Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei

    2017-01-01

    The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid...... numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS....../E enabling hybrid simulation of icing event and power system disturbance is developed, based on which a hybrid simulation platform is established. Numerical studies show that the functionality of power system simulation is greatly extended by taking into account the icing weather events....

  14. Numerical simulation of flow past circular duct

    Directory of Open Access Journals (Sweden)

    Ze-gao Yin

    2010-06-01

    Full Text Available The Renormalization Group (RNG k—ɛ turbulence model and Volume of Fluid (VOF method were employed to simulate the flow past a circular duct in order to obtain and analyze hydraulic parameters. According to various upper and bottom gap ratios, the force on the duct was calculated. When the bottom gap ratio is 0, the drag force coefficient, lift force coefficient, and composite force reach their maximum values, and the azimuth reaches its minimum. With an increase of the bottom gap ratio from 0 to 1, the drag force coefficient and composite force decrease sharply, and the lift force coefficient does not decreases so much, but the azimuth increases dramatically. With a continuous increase of the bottom gap ratio from 1 upward, the drag force coefficient, lift force coefficient, composite force, and azimuth vary little. Thus, the bottom gap ratio is the key factor influencing the force on the circular duct. When the bottom gap ratio is less than 1, the upper gap ratio has a remarkable influence on the force of the circular duct. When the bottom gap ratio is greater than 1, the variation of the upper gap ratio has little influence on the force of the circular duct.

  15. Numerical simulations for terrestrial planets formation

    Directory of Open Access Journals (Sweden)

    Ji J.

    2011-07-01

    Full Text Available We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about 60%–80%. In each simulation, 3–4 terrestrial planets are formed inside “Jupiter” with masses of 0.15–3.6 M⊕. In the 0.5–4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion may also happen a few times between two giant planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108 yr.

  16. Numerical simulation of flow past circular duct

    Directory of Open Access Journals (Sweden)

    Ze-gao YIN

    2010-06-01

    Full Text Available On the basis of Fluent software, Renormalization Group (RNGk-ε turbulent model and Volume of Fluid (VOF method are employed to simulate the flow past circular duct to obtain and analyze the hydraulic parameters. According to various upper and bottom gap-ratios, the force on duct is calculated. Firstly, when bottom gap-ratio is 0, drag force coefficient, lift force coefficient and composite force reach the maximum respectively and azimuth reaches the minimum. Secondly, with the increase of bottom gap-ratio from 0 to 1, drag force coefficient and composite force decrease sharply, lift force coefficient decreases a little, but azimuth increases dramatically. Thirdly, with the continuous increase of bottom gap-ratio from 1, drag force coefficient, lift force coefficient, composite force and azimuth vary little. So, bottom gap-ratio is the key factor influencing the force on circular duct. When bottom gap-ratio is less than 1, upper gap-ratio has the remarkable influence on the circular duct force. When bottom gap-ratio is greater than 1, the varation of upper gap-ratio has a little influence on the circular duct force.

  17. Scorching heat and numerical simulation; Canicule et simulation numerique

    Energy Technology Data Exchange (ETDEWEB)

    Deque, M

    2007-07-01

    A simulation of 140 years has been realized with ARPEGE-climat using the hypothesis of the increase of the greenhouse effect gases, of the scenario called A2 by the GIEC. The summer temperature observed at Pais and simulated between 1960 and 2003, as the average temperature in France are presented and discussed. (A.L.B.)

  18. Numerical Simulation and Optimization of Performances of a Solar ...

    African Journals Online (AJOL)

    Numerical Simulation and Optimization of Performances of a Solar Cell Based on CdTe. ... We will lay the stress, initially, on the essential design features of a photovoltaic module (the open-circuit tension, the short-circuit current, the fill factor, and the output of the cell), our results was simulated with the SCAPS computer ...

  19. Effects of chemical dispersants on oil spill drift paths in the German Bight—probabilistic assessment based on numerical ensemble simulations

    Science.gov (United States)

    Schwichtenberg, Fabian; Callies, Ulrich; Groll, Nikolaus; Maßmann, Silvia

    2017-04-01

    Oil dispersed in the water column remains sheltered from wind forcing, so that an altered drift path is a key consequence of using chemical dispersants. In this study, ensemble simulations were conducted based on 7 years of simulated atmospheric and marine conditions, evaluating 2,190 hypothetical spills from each of 636 cells of a regular grid covering the inner German Bight (SE North Sea). Each simulation compares two idealized setups assuming either undispersed or fully dispersed oil. Differences are summarized in a spatial map of probabilities that chemical dispersant applications would help prevent oil pollution from entering intertidal coastal areas of the Wadden Sea. High probabilities of success overlap strongly with coastal regions between 10 m and 20 m water depth, where the use of chemical dispersants for oil spill response is a particularly contentious topic. The present study prepares the ground for a more detailed net environmental benefit analysis (NEBA) accounting also for toxic effects.

  20. Transonic Flow of Wet Steam — Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Jan Halama

    2012-01-01

    Full Text Available The paper presents a numerical simulation of the transonic flow of steam with a non-equilibrium phase change. The flow of steam is approximated by a mixture model complemented by transport equations for moments. Proper formulation of the problem consists of domain definition, a complete set of equations, and appropriate choice of initial and boundary conditions. This problem is then solved numerically by a numerical code, that has been developed in-house. The code is based on a fractional step method and a finite volume formulation. Important issues related to numerical solution are discussed. Results for flow in a turbine are presented.

  1. Numerical simulation of transverse jet flow field under supersonic inflow

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-01-01

    Full Text Available Transverse jet flow field under supersonic inflow is simulated numerically for studying the characteristic of fuel transverse jet and fuel mixing in scramjet combustion chamber. Comparison is performed between simulated results and the results of references and experiments. Results indicate that the CFD code in this paper is applicable for simulation of transverse jut flow field under supersonic inflow, but in order to providing more effective numerical predictive method, CFD code should be modified through increasing mesh density and adding LES module.

  2. Numerical Simulation of Barotropic Tides around Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-Kai Hu

    2010-01-01

    Full Text Available A 1/12°, 2-D barotropic tide model was used to examine the characteristics of barotropic tides and to improve the accuracy of predicting tidal sea levels and currents in the seas around Taiwan. The form ratio suggests that tides are predominantly semidiurnal in the northern reaches of the Taiwan Strait and mixed of diurnal and semidiurnal elsewhere around Taiwan. When the dominant M2 wave enters the Strait from the north, its amplitude is magnified to ~2 m in the middle, and then decreases rapidly toward the south end of the Strait. The predominance of diurnal tides along the southwest to the south coast of Taiwan is attributed to the quasi-resonance of diurnal waves in the South China Sea. The tidal range is small and tidal currents are weak off the east coast of Taiwan. Barotropic tidal energy is mostly dissipated on the shallow banks of the southwestern Strait. Results summarized from sensitivity tests on the bottom drag coefficient (CD and horizontal eddy viscosity (AM indicate that CD = 0.0015 - 0.00175 and AM = 150 m2 s-1 lead to the best model-data fit when compared to the observed tidal sea levels at ten reference tide-gauge stations around Taiwan. The averaged root-mean-squared (RMS differences of the simulated tidal sea level for the six principal constituents of O1, P1, K1, N2, M2, and S2 are significantly reduced to 1.3, 0.7, 2.0, 1.6, 5.1, and 3.1 cm, respectively, compared to that calculated from a 0.5° resolution global tide harmonic constant database, NAO.99b (Matsumoto et al. 2000. The averaged RMS differences of barotropic tidal currents (U, V for O1, K1, M2, and S2 are (0.92, 1.64, (1.17, 0.61, (3.88, 2.37, and (1.52, 1.20 cm s-1. A database of tidal sea levels and current harmonic constants, TWTIDE08, for Q1, O1, P1, K1, J1, OO1, 2N2, μ2, N2, ν2, M2, L2, T2, S2, and K2 is established with this study.

  3. Numerical Simulation of Cold Dense Plasma Sputtering with VORPAL

    Science.gov (United States)

    Zhou, Chuandong; Stoltz, Peter; Veitzer, Seth

    2009-10-01

    Sputtering is an evaporation process that physically removes atoms from a solid target material. This process takes place under bombardment of the target surface by energetic ions. Sputtering is widely applied in material processing and coating, such as etching and thin film deposition. Numerical simulation of sputtering process requires both accurate models of nuclear stopping in materials, particle dynamics and consistent electromagnetic fields. The particle in cell code VORPAL can simulate cold dense plasma under many different electromagnetic configurations. The dynamics of both incident particles and sputtered neutral atoms are simulated in VORPAL, and the sputtering yield is calculated from a standalone numerical library for a variety of materials that are commonly used in industrial applications. Numerical simulation of the spatial distribution of sputtering resulting from a cold dense plasma under externally applied magnetic field and self-consistent electric field is presented.

  4. Numerical Simulation of Solidification Microstructure based on Adaptive Octree Grids

    Directory of Open Access Journals (Sweden)

    Yin Y.

    2016-06-01

    Full Text Available The main work of this paper focuses on the simulation of binary alloy solidification using the phase field model and adaptive octree grids. Ni-Cu binary alloy is used as an example in this paper to do research on the numerical simulation of isothermal solidification of binary alloy. Firstly, the WBM model, numerical issues and adaptive octree grids have been explained. Secondary, the numerical simulation results of three dimensional morphology of the equiaxed grain and concentration variations are given, taking the efficiency advantage of the adaptive octree grids. The microsegregation of binary alloy has been analysed emphatically. Then, numerical simulation results of the influence of thermophysical parameters on the growth of the equiaxed grain are also given. At last, a simulation experiment of large scale and long-time has been carried out. It is found that increases of initial temperature and initial concentration will make grain grow along certain directions and adaptive octree grids can effectively be used in simulations of microstructure.

  5. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation

    Science.gov (United States)

    Khatami, F.; van der Weide, E.; Hoeijmakers, H.

    2015-12-01

    For an elliptic Arndt's hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the thermodynamic state of the system, precomputed multiphase thermodynamic tables containing data for the appropriate equations of state for each of the phases are used and a fast, accurate, and efficient look-up approach is employed for interpolating the data. The numerical simulations are carried out using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations for compressible flow. The URANS equations of motion are discretized using an finite volume method for unstructured grids. The numerical simulations clearly show the formation of the tip vortex cavitation in the flow about the elliptic hydrofoil.

  6. FSW Numerical Simulation of Aluminium Plates by Sysweld - Part I

    Directory of Open Access Journals (Sweden)

    Jančo Roland

    2016-07-01

    Full Text Available Friction Stir Welding (FSW is one of the most effective solid state joining processes and it has numerous potential applications in many industries. The simulation process can provide the evolution of physical quantities such as temperature, metallurgical phase proportions, stress and strain which can be easily measured during welding. The numerical modelling requires the modelling of a complex interaction between thermal, metallurgical and mechanical phenomena. The aim of this paper is to describe the thermal-fluid simulation of FSW using the finite element method. In the theoretical part of the paper heating is provided by the material flow and contact condition between the tool and the welded material. The thermal-fluid results from the numerical simulation for aluminium alloy using SYSWELD are also presented in this paper.

  7. FSW Numerical Simulation of Aluminium Plates by SYSWELD - Part II

    Directory of Open Access Journals (Sweden)

    Jančo Roland

    2016-11-01

    Full Text Available Friction Stir Welding (FSW is one of the most effective solid state joining processes and has numerous potential applications in many industries. The simulation process can provide the evolution of physicals quantities such as temperature, metallurgical phase proportions, stress and strain which can be easily measured during welding. The numerical modelling requires the modelling of the complex interaction between thermal, metallurgical and mechanical phenomena. The aim of this paper is to describe the thermal-fluid simulation of FSW using the finite element method. In the theoretical part of paper heating is provided by the material flow and contact condition between the tool and the welded material. Thermal-mechanical results from the numerical simulation using SYSWELD are also presented for aluminium alloy.

  8. Numerical Simulation of Multicomponent Ion Beam from Ion Sources

    CERN Document Server

    Alexandrov, V S; Kazarinov, Yu M; Shevtsov, V P; Shirkov, G D

    1999-01-01

    A program library for numerical simulation of a multicomponent charged particle beam from ion sources is presented. The library is aimed for simulation of high current, low energy multicomponent ion beam from ion source through beamline and realized under the Windows user interface for the IBM PC. It is used for simulation and optimization of beam dynamics and based on successive and consistent application of two methods: the momentum method of distribution function (RMS technique) and particle in cell method. The library has been used to simulate and optimize the transportation of tantalum ion beam from the laser ion source (CERN) and calcium ion beam from the ECR ion source (JINR, Dubna).

  9. Numerical simulations of flux flow in stacked Josephson junctions

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig

    2005-01-01

    We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...... numerical simulations, we are able to clearly distinguish between triangular and square vortex lattices and to identify the parameters leading to an in-phase vortex configuration....

  10. Direct numerical simulation of noninvasive channel healing in electrical field

    KAUST Repository

    Wang, Yi

    2017-11-25

    Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.

  11. Numerical simulations for investigating EMC problems in industrial life

    Directory of Open Access Journals (Sweden)

    Bernd Jaekel W.

    2008-01-01

    Full Text Available The complexity of current EMC problems and the necessity to solve them in an accurate, reliable and efficient way require various analysis techniques. Numerical simulations can be considered as one of the most powerful tools for performing EMC analysis. Computational electromagnetics is used within basic research for example at universities as well as during nearly all phases of a product or system development process occurring in industrial life. Especially here, several challenges result from the application of numerical simulations. The most important ones are described and discussed in this paper. An exemplary interference problem is presented demonstrating the relevance and impact of those challenges.

  12. Numerical time-domain simulation of diffusive ultrasound in concrete.

    Science.gov (United States)

    Schubert, Frank; Koehler, Bernd

    2004-04-01

    Certain aspects of diffusive ultrasound fields in concrete are still unknown and thus, systematic parameter studies using numerical time-domain simulations of the ultrasonic propagation process could lead to further insights into theoretical and experimental questions. In the present paper, the elastodynamic finite integration technique (EFIT) is used to simulate a diffusive reverberation measurement at a concrete specimen taking aggregates, pores, and viscoelastic damping explicitly into account. The numerical results for dissipation and diffusivity are compared with theoretical models. Moreover, the influence of air-filled pores in the cement matrix is demonstrated.

  13. NUMERICAL SIMULATION OF SHOCK WAVE REFRACTION ON INCLINED CONTACT DISCONTINUITY

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2016-05-01

    Full Text Available We consider numerical simulation of shock wave refraction on plane contact discontinuity, separating two gases with different density. Discretization of Euler equations is based on finite volume method and WENO finite difference schemes, implemented on unstructured meshes. Integration over time is performed with the use of the third-order Runge–Kutta stepping procedure. The procedure of identification and classification of gas dynamic discontinuities based on conditions of dynamic consistency and image processing methods is applied to visualize and interpret the results of numerical calculations. The flow structure and its quantitative characteristics are defined. The results of numerical and experimental visualization (shadowgraphs, schlieren images, and interferograms are compared.

  14. Numerical simulations and mathematical models of flows in complex geometries

    DEFF Research Database (Denmark)

    Hernandez Garcia, Anier

    The research work of the present thesis was mainly aimed at exploiting one of the strengths of the Lattice Boltzmann methods, namely, the ability to handle complicated geometries to accurately simulate flows in complex geometries. In this thesis, we perform a very detailed theoretical analysis...... and through the Chapman-Enskog multi-scale expansion technique the dependence of the kinetic viscosity on each scheme is investigated. Seeking for optimal numerical schemes to eciently simulate a wide range of complex flows a variant of the finite element, off-lattice Boltzmann method [5], which uses...... the characteristic based integration is also implemented. Using the latter scheme, numerical simulations are conducted in flows of different complexities: flow in a (real) porous network and turbulent flows in ducts with wall irregularities. From the simulations of flows in porous media driven by pressure gradients...

  15. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  16. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation

    NARCIS (Netherlands)

    Khatami, F.; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    2015-01-01

    For an elliptic Arndt’s hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the

  17. A numerical technique to simulate display pixels based on electrowetting

    NARCIS (Netherlands)

    Roghair, I.; Musterd, M.; van den Ende, Henricus T.M.; Kleijn, C.; Kleijn, C.; Kreutzer, M.T.; Mugele, Friedrich Gunther

    2015-01-01

    We present a numerical simulation technique to calculate the deformation of interfaces between a conductive and non-conductive fluid as well as the motion of liquid–liquid–solid three-phase contact lines under the influence of externally applied electric fields in electrowetting configuration. The

  18. Numerical simulation of three phase asynchronous motor to ...

    African Journals Online (AJOL)

    Numerical simulation of three phase asynchronous motor to diagnose precisely the stator unbalanced voltage anomaly. ... First, the stator currents data pattern is used as a preliminary diagnosis. ... This similarity leads to uncertainty in the detection of the fault, which makes imperative the use of complementary technique.

  19. A review of numerical simulation of hydrothermal systems.

    Science.gov (United States)

    Mercer, J.W.; Faust, C.R.

    1979-01-01

    Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors

  20. Numerical simulation of linear friction welding of aeronautical alloys

    Science.gov (United States)

    Potet, Antoine; Mocellin, Katia; Fourment, Lionel

    2017-10-01

    Numerical simulation of linear friction welding (LFW) of Titanium alloys is considered with the Forge® software, using a JMatPro constitutive model with the aim of supporting process design for the welding of dissimilar materials, such as Titanium and Inconel. Relying on forces and temperature experimental measurements, friction and other unknown parameters of the model have to be calibrated.

  1. Numerical simulation of species dependent interaction in a polluted ...

    African Journals Online (AJOL)

    In this study, we have utilized a sound numerical simulation technique to derive the conditions under which a legally-binding control related policy is necessary in order to mitigate the endemic Niger Delta polluted environmental issue. The implication of this present analysis if implemented will have several benefits for the ...

  2. A Numerical Simulation of Temperature Distribution and Power Loss ...

    African Journals Online (AJOL)

    A Numerical Simulation of Temperature Distribution and Power Loss of Slider Bearings Lubricated With Fluids Having Constant Viscosity. ... The stream wise pressure gradient, shear stresses and flow rate obtained from post processing of the finite element solution of the Reynolds equation act as inputs when the energy ...

  3. Numerical simulation of an intense precipitation event over ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7. Numerical simulation of an intense precipitation event ... Incursion of moist air, in the lower levels, converges at the foothills of the mountains and rise along the orography to form the updraft zone of the storm. Such rapid unstable ascent leads to deep ...

  4. Response maxima in modulated turbulence: II: Numerical simulations

    NARCIS (Netherlands)

    von der Heydt, A.; Grossmann, Siegfried; Lohse, Detlef

    2003-01-01

    Numerical simulations of fully developed turbulence driven by a modulated energy input rate or driving force are performed within two dynamical cascade models, the Gkedzer-Ohkitani-Yamada shell model and a reduced wave vector set approximation of the Navier-Stokes equation. The frequency behavior of

  5. Numerical simulation of the fast dense gas Ludwieg tube experiment

    NARCIS (Netherlands)

    Zamfirescu, C.; Guerdone, A.; Collona, P.

    2006-01-01

    The preliminary design of a Ludwieg tube experiment for the verification of the existence of nonclassical rarefaction shock waves in dense vapors is here critically analyzed by means of real gas numerical simulations of the experimental setup. The Flexible Asymmetric Shock Tube (FAST) setup is a

  6. Numerical Simulations of Shock-Induced Mixing and Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J B; Day, M; Kuhl, A L

    2003-04-22

    In this paper we use numerical simulation to investigate shock-induced ignition and combustion of a hydrocarbon gas. The focus of this paper is on quantifying the effect of fidelity in the chemical kinetics on the overall solution. We model the system using the compressible Navier Stokes equations for a reacting mixture. These equations express conservation of species mass, momentum, total energy.

  7. Numerical simulation of two-phase flow in offshore environments

    NARCIS (Netherlands)

    Wemmenhove, Rik

    2008-01-01

    Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for

  8. Direct Numerical Simulation Sediment Transport in Horizontal Channel

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, M.

    2006-07-01

    We numerically simulate turbulent flow in a horizontal plane channel over a bed of mobile particles. All scales of fluid motion are resolved without modeling and the phase interface is accurately represented. Our results indicate a possible scenario for the onset of erosion through collective motion induced by buffer-layer streaks. (Author) 27 refs.

  9. A framework for multiscale and multiscience modeling and numerical simulations

    NARCIS (Netherlands)

    Chopard, B.; Falcone, J.-L.; Hoekstra, A.G.; Borgdorff, J.

    2011-01-01

    The Complex Automata (CxA) methodology offers a new framework to develop multiscale and multiscience numerical simulations. The CxA approach assumes that a multiscale model can be formulated in terms of several coupled single-scale submodels. With concepts such as the scale separation map, the

  10. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J [Nancy Universite-Institut Jean Lamour, Dpt CP2S UMR 7198 CNRS, Faculte des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy cedex (France); Lacroix, D [Nancy Universite-LEMTA, UMR 7563 CNRS, Faculte des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy cedex (France); Patisson, F, E-mail: david.lacroix@lemta.uhp-nancy.f [Nancy Universite-Institut Jean Lamour, Dpt SI2M UMR 7198 CNRS, Ecole des Mines de Nancy, Parc de Saurupt-CS 14234, 54042 Nancy cedex (France)

    2010-09-15

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  11. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)

    1996-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  12. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory......” of their past deformations. This generates some numerical difficulties which are addressed with the log-conformation transformation. The main novelty of this work lies on the use of the volume-of-fluid method to track the free surfaces of the viscoelastic flows. We present some preliminary results of test case...... simulations where the different features of the model are tested independently....

  13. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.

    Science.gov (United States)

    Mottyll, Stephan; Skoda, Romuald

    2016-07-01

    As a contribution to a better understanding of cavitation erosion mechanisms, a compressible inviscid finite volume flow solver with barotropic homogeneous liquid-vapor mixture cavitation model is applied to ultrasonic horn set-ups with and without stationary specimen, that exhibit attached cavitation at the horn tip. Void collapses and shock waves, which are closely related to cavitation erosion, are resolved. The computational results are compared to hydrophone, shadowgraphy and erosion test data. At the horn tip, vapor volume and topology, subharmonic oscillation frequency as well as the amplitude of propagating pressure waves are in good agreement with experimental data. For the evaluation of flow aggressiveness and the assessment of erosion sensitive wall zones, statistical analyses of wall loads and of the multiplicity of distinct collapses in wall-adjacent flow regions are applied to the horn tip and the stationary specimen. An a posteriori projection of load collectives, i.e. cumulative collapse rate vs. collapse pressure, onto a reference grid eliminates the grid dependency effectively for attached cavitation at the horn tip, whereas a significant grid dependency remains at the stationary specimen. The load collectives show an exponential decrease towards higher collapse pressures. Erosion sensitive wall zones are well predicted for both, horn tip and stationary specimen, and load profiles are in good qualitative agreement with measured topography profiles of eroded duplex stainless steel samples after long-term runs. For the considered amplitude and gap width according to ASTM G32-10 standard, the analysis of load collectives reveals that the distinctive erosive ring shape at the horn tip can be attributed to frequent breakdown and re-development of a small portion of the tip-attached cavity. This partial breakdown of the attached cavity repeats at each driving cycle and is associated with relatively moderate collapse peak pressures, whereas the

  14. Understanding casing flow in Pelton turbines by numerical simulation

    Science.gov (United States)

    Rentschler, M.; Neuhauser, M.; Marongiu, J. C.; Parkinson, E.

    2016-11-01

    For rehabilitation projects of Pelton turbines, the flow in the casing may have an important influence on the overall performance of the machine. Water sheets returning on the jets or on the runner significantly reduce efficiency, and run-away speed depends on the flow in the casing. CFD simulations can provide a detailed insight into this type of flow, but these simulations are computationally intensive. As in general the volume of water in a Pelton turbine is small compared to the complete volume of the turbine housing, a single phase simulation greatly reduces the complexity of the simulation. In the present work a numerical tool based on the SPH-ALE meshless method is used to simulate the casing flow in a Pelton turbine. Using improved order schemes reduces the numerical viscosity. This is necessary to resolve the flow in the jet and on the casing wall, where the velocity differs by two orders of magnitude. The results are compared to flow visualizations and measurement in a hydraulic laboratory. Several rehabilitation projects proved the added value of understanding the flow in the Pelton casing. The flow simulation helps designing casing insert, not only to see their influence on the flow, but also to calculate the stress in the inserts. In some projects, the casing simulation leads to the understanding of unexpected behavior of the flow. One such example is presented where the backsplash of a deflector hit the runner, creating a reversed rotation of the runner.

  15. Visualization of a Numerical Simulation of GW 150914

    Science.gov (United States)

    Rosato, Nicole; Healy, James; Lousto, Carlos

    2017-01-01

    We present an analysis of a simulation displaying apparent horizon curvature and radiation emitted from a binary black hole system modeling GW-150914 during merger. The simulation follows the system from seven orbits prior to merger to the resultant Kerr black hole. Horizon curvature was calculated using a mean curvature flow algorithm. Radiation data was visualized via the Ψ4 component of the Weyl scalars, which were determined using a numerical quasi-Kinnersley method. We also present a comparative study of the differences in quasi-Kinnersley and PsiKadelia tetrads to construct Ψ4. The analysis is displayed on a movie generated from these numerical results, and was done using VisIt software from Lawrence Livermore National Laboratory. This simulation and analysis gives more insight into the merger of the system GW 150914.

  16. Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios

    Science.gov (United States)

    Wang, Yi-Min; Lee, Shiann-Jong

    2015-04-01

    Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. Recent study indicated that there is about 40 km of the fault trace extended to the marine area offshore northern Taiwan. Combining the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers which implies that this fault has potential to produce a big earthquake. In this study, we analyze several Sanchiao fault earthquake scenarios based on the recipe for predicting strong ground motion. The characterized source parameters include fault length, rupture area, seismic moment, asperity, and slip pattern on the fault plane. According to the assumption of the characterized source model, Sanchiao fault has been inferred to have the potential to produce an earthquake with moment magnitude (Mw) larger than 7.0. Three-dimensional seismic simulation results based upon spectral-element method (SEM) indicate that peak ground acceleration (PGA) is significantly stronger along the fault trace. The basin effect also plays an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. Among all rupture scenarios, the rupture propagated from north to south is the most serious one. Owing to the rupture directivity as well as the basin effects, large PGA (>1g) was observed in the Taipei basin, especially in the northwest side. The results of these scenario earthquake simulations will provide important physically-based numerical data for earthquake mitigation and seismic hazard assessment.

  17. A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI.

    Science.gov (United States)

    Kabil, J; Belguerras, L; Trattnig, S; Pasquier, C; Felblinger, J; Missoffe, A

    2016-11-10

    To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges.

  18. Numerical simulation of tip clearance impact on a pumpjet propulsor

    Directory of Open Access Journals (Sweden)

    Lin Lu

    2016-05-01

    Full Text Available Numerical simulation based on the Reynolds Averaged Navier–Stokes (RANS Computational Fluid Dynamics (CFD method had been carried out with the commercial code ANSYS CFX. The structured grid and SST k–ω turbulence model had been adopted. The impact of non-condensable gas (NCG on cavitation performance had been introduced into the Schnerr and Sauer cavitation model. The numerical investigation of cavitating flow of marine propeller E779A was carried out with different advance ratios and cavitation numbers to verify the numerical simulation method. Tip clearance effects on the performance of pumpjet propulsor had been investigated. Results showed that the structure and characteristics of the tip leakage vortex and the efficiency of the propulsor dropped more sharply with the increase of the tip clearance size. Furthermore, the numerical simulation of tip clearance cavitation of pumpjet propulsor had been presented with different rotational speed and tip clearance size. The mechanism of tip clearance cavitation causing a further loss of the efficiency had been studied. The influence of rotational speed and tip clearance size on tip clearance cavitation had been investigated.

  19. NUMERICAL SIMULATION OF VISCOUS FLOW AROUND A TANKER MODEL

    Directory of Open Access Journals (Sweden)

    Andrea Farkas

    2017-01-01

    Full Text Available In this paper, numerical simulation of the viscous flow around a tanker model was carried out utilizing software package STAR-CCM+. A mathematical model based on Reynolds Averaged Navier-Stokes equations, k-ε turbulence model and Volume of Fluid method for describing the motion of two-phase media are given. Necessary boundary conditions for the mathematical model and the method of discretization are described as well. The influence of the grid density on the numerical results for the total resistance of tanker model was investigated using three different grid densities. Two different types of k-ε turbulence model are implemented and the deviations in numerical results are highlighted. Results for total resistance of tanker model, obtained by numerical simulations, were validated against experimental results. Experiments were performed in the towing tank of Brodarski Institut in Zagreb for wide range of Froude numbers. It has been shown that for all three grid densities and both types of k-ε turbulence model satisfactory agreement with experimental results can be achieved for whole range of Froude numbers. The scale effects are investigated by Computational Fluid Dynamics study for the same tanker model in three different scales. Numerically calculated scale effects on the wave resistance are reviewed.

  20. Numerical simulations of synthetic jets in aerodynamic applications

    Directory of Open Access Journals (Sweden)

    Alexandru Catalin MACOVEI

    2014-04-01

    Full Text Available This paper presents numerical simulations of synthetic jets in aerodynamic applications. We’ve analyzed the formation of isolated synthetic jets, the influence of nozzle geometry and the interaction of synthetic jets with a uniform flow on a flat plate. Also we’ve studied the influence of the active control in interaction with a stalled airfoil and the controllability of dynamic stall phenomenon. The results are obtained using a dedicated CFD solver. Appropriate comparisons are made with results from scientific literature; as well the numerical results are compared with a set of experimental images.

  1. Numerical simulation of electron beam welding and instrumental technique

    Energy Technology Data Exchange (ETDEWEB)

    Carin, M.; Rogeon, P.; Carron, D.; Le Masson, P.; Couedel, D. [Universite de Bretagne Sud, Centre de Recherche, Lab. d' Etudes Thermiques Energetique et Environnement, 56 - Lorient (France)

    2004-07-01

    In the present work, thermal cycles measured with thermocouples embedded in specimens are employed to validate a numerical thermo-metallurgical model of an Electron Beam welding process. The implemented instrumentation techniques aim at reducing the perturbations induced by the sensors in place. The numerical model is based on the definition of a heat source term linked to the keyhole geometry predicted by a model of pressure balance using the FEMLAB code. The heat source term is used by the thermo-metallurgical simulation carried out with the finite element code SYSWELD. Kinetics parameters are extracted from dilatometric experiments achieved in welding austenitization conditions at constant cooling rates. (authors)

  2. Modeling and numerical simulations of the influenced Sznajd model

    Science.gov (United States)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  3. NUMERICAL SIMULATION OF PHYSICAL SYSTEMS IN AGRI-FOOD ENGINEERING

    Directory of Open Access Journals (Sweden)

    Angelo Fabbri

    2012-06-01

    Full Text Available In agri-food engineering many complex problems arise in plant and process design. Specifically the designer has to deal with fluid dynamics, thermal or mechanical problems, often characterized by physics coupling, non-linearity, irregular geometry, anisotropy and in definitive rather high complexity. In recent years, the ever growing availability of computational power at low cost, made these problems more often approached with numerical simulation techniques. Mainly in terms of finite elements and finite volumes. In this paper the fundamentals of numerical methods are briefly recalled and a discussion about their possibility of application in the food and agricultural engineering is developed.

  4. Numerical simulation of the RISOe1-airfoil dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)

  5. Numerical simulation of water quality in Yangtze Estuary

    Directory of Open Access Journals (Sweden)

    Xi Li

    2009-12-01

    Full Text Available In order to monitor water quality in the Yangtze Estuary, water samples were collected and field observation of current and velocity stratification was carried out using a shipboard acoustic Doppler current profiler (ADCP. Results of two representative variables, the temporal and spatial variation of new point source sewage discharge as manifested by chemical oxygen demand (COD and the initial water quality distribution as manifested by dissolved oxygen (DO, were obtained by application of the Environmental Fluid Dynamics Code (EFDC with solutions for hydrodynamics during tides. The numerical results were compared with field data, and the field data provided verification of numerical application: this numerical model is an effective tool for water quality simulation. For point source discharge, COD concentration was simulated with an initial value in the river of zero. The simulated increments and distribution of COD in the water show acceptable agreement with field data. The concentration of DO is much higher in the North Branch than in the South Branch due to consumption of oxygen in the South Branch resulting from discharge of sewage from Shanghai. The DO concentration is greater in the surface layer than in the bottom layer. The DO concentration is low in areas with a depth of less than 20 m, and high in areas between the 20-m and 30-m isobaths. It is concluded that the numerical model is valuable in simulation of water quality in the case of specific point source pollutant discharge. The EFDC model is also of satisfactory accuracy in water quality simulation of the Yangtze Estuary.

  6. Numerical blood flow simulation in surgical corrections: what do we need for an accurate analysis?

    Science.gov (United States)

    Arbia, Gregory; Corsini, Chiara; Esmaily Moghadam, Mahdi; Marsden, Alison L; Migliavacca, Francesco; Pennati, Giancarlo; Hsia, Tain-Yen; Vignon-Clementel, Irene E

    2014-01-01

    Computational fluid dynamics has been increasingly used in congenital heart surgery to simulate pathophysiological blood flow, investigate surgical options, or design medical devices. Several commercial and research computational or numerical codes have been developed. They present different approaches to numerically solve the blood flow equations, raising the question whether these numerical codes are equally reliable to achieve accurate simulation results. Accordingly, we sought to examine the influence of numerical code selection in several complex congenital cardiac operations. The main steps of blood flow simulations are detailed (geometrical mesh, boundary conditions, and solver numerical methods) for congenital cardiac operations of increasing complexity. The first case tests different numerical solutions against an analytical, or exact, solution. In the second case, the three-dimensional domain is a patient-specific superior cavopulmonary anastomosis. As an analytical solution does not exist in such a complex geometry, different numerical solutions are compared. Finally, a realistic case of a systemic-to-pulmonary shunt is presented with both geometrically and physiologically challenging conditions. For all, solutions from a commercially available code and an open-source research code are compared. In the first case, as the mesh or solver numerical method is refined, the simulation results for both codes converged to the analytical solution. In the second example, velocity differences between the two codes are greater when the resolution of the mesh were lower and less refined. The third case with realistic anatomy reveals that the pulsatile complex flow is very similar for both codes. The precise setup of the numerical cases has more influence on the results than the choice of numerical codes. The need for detailed construction of the numerical model that requires high computational cost depends on the precision needed to answer the biomedical question at

  7. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision

    Science.gov (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.

    1998-01-01

    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  8. GPU based numerical simulation of core shooting process

    Directory of Open Access Journals (Sweden)

    Yi-zhong Zhang

    2017-11-01

    Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model (TFM and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit (GPU has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture (CUDA platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications.

  9. Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation; 2, Numerical Results

    CERN Document Server

    Ladd, A J C

    1993-01-01

    A new and very general technique for simulating solid-fluid suspensions has been described in a previous paper (Part I); the most important feature of the new method is that the computational cost scales with the number of particles. In this paper (Part II), extensive numerical tests of the method are described; for creeping flows, both with and without Brownian motion, and at finite Reynolds numbers. Hydrodynamic interactions, transport coefficients, and the short-time dynamics of random dispersions of up to 1024 colloidal particles have been simulated.

  10. Simulation of Wave Overtopping of Maritime Structures in a Numerical Wave Flume

    Directory of Open Access Journals (Sweden)

    Tiago C. A. Oliveira

    2012-01-01

    Full Text Available A numerical wave flume based on the particle finite element method (PFEM is applied to simulate wave overtopping for impermeable maritime structures. An assessment of the performance and robustness of the numerical wave flume is carried out for two different cases comparing numerical results with experimental data. In the first case, a well-defined benchmark test of a simple low-crested structure overtopped by regular nonbreaking waves is presented, tested in the lab, and simulated in the numerical wave flume. In the second case, state-of-the-art physical experiments of a trapezoidal structure placed on a sloping beach overtopped by regular breaking waves are simulated in the numerical wave flume. For both cases, main overtopping events are well detected by the numerical wave flume. However, nonlinear processes controlling the tests proposed, such as nonlinear wave generation, energy losses along the wave propagation track, wave reflection, and overtopping events, are reproduced with more accuracy in the first case. Results indicate that a numerical wave flume based on the PFEM can be applied as an efficient tool to supplement physical models, semiempirical formulations, and other numerical techniques to deal with overtopping of maritime structures.

  11. Direct numerical simulations of gas-liquid multiphase flows

    CERN Document Server

    Tryggvason, Grétar; Zaleski, Stéphane

    2011-01-01

    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  12. Numerical simulation of airfoil trailing edge serration noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...... field are obtained using Large Eddy Simulation. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FW-H approach. The extended length of the serration is about 16.7% of the airfoil chord and the geometric angle of the serration...

  13. Modified Numerical Simulation Model of Blood Flow in Bend.

    Science.gov (United States)

    Liu, X; Zhou, X; Hao, X; Sang, X

    2015-12-01

    The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect.

  14. Numerical simulation of draft tube flow of a bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J.G. [Federal University of Triangulo Mineiro, Institute of Technological and Exact Sciences, Avenida Doutor Randolfo Borges Junior, 1250 – Uberaba – MG (Brazil); Brasil, A.C.P. Jr. [University of Brasilia, Department of Mechanical Engineering, Campus Darcy Ribeiro, Brasilia – DF (Brazil)

    2013-07-01

    In this work a numerical study of draft tube of a bulb hydraulic turbine is presented, where a new geometry is proposed. This new proposal of draft tube has the unaffected ratio area, a great reduction in his length and approximately the same efficiency of the draft tube conventionally used. The numerical simulations were obtained in commercial software of calculation of flow (CFX-14), using the turbulence model SST, that allows a description of the field fluid dynamic near to the wall. The simulation strategy has an intention of identifying the stall of the boundary layer precisely limits near to the wall and recirculations in the central part, once those are the great causes of the decrease of efficiency of a draft tube. Finally, it is obtained qualitative and quantitative results about the flow in draft tubes.

  15. Direct Numerical Simulations of Reacting Fronts in Incompressible Flows

    Science.gov (United States)

    Vladimirova, N.; Cattaneo, F.; Malagoli, A.; Oberman, A.; Ruchayskiy, 0.; Rosner, R.

    2000-11-01

    We perform direct numerical simulations of an advected scalar field which diffuses and reacts according to a nonlinear reaction law. The goal of the simulations is to study flame stability with respect to initial conditions, and to determine how the bulk burning rate of the reaction front is affected by an imposed flow. We focus for simplicity on the cases of an imposed periodic shear or cellular flow. The interaction between the reaction front and the applied flow is determined by the following parameters: (a) the ratio between the laminar front thickness and the shear length scale, (b) the ratio between the laminar flame speed and the characteristic flow velocity, and (c) the ratio between heat conductivity and material diffusion (Lewis Number). We compare the numerical results with recent work of P. Constantin and collaborators, in particularly, their prediction for flame stability and analytical upper and lower bounds for the bulk burning rate.

  16. Three-dimensional numerical simulation during laser processing of CFRP

    Science.gov (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2017-09-01

    We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.

  17. 3D numerical simulation and analysis of railgun gouging mechanism

    Directory of Open Access Journals (Sweden)

    Jin-guo Wu

    2016-04-01

    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  18. Numerical Relativity Simulations for Black Hole Merger Astrophysics

    Science.gov (United States)

    Baker, John G.

    2010-01-01

    Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.

  19. Numerical Simulation of Polynomial-Speed Convergence Phenomenon

    Science.gov (United States)

    Li, Yao; Xu, Hui

    2017-10-01

    We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.

  20. Direct numerical simulation of the dynamics of sliding rough surfaces

    CERN Document Server

    Dang, Viet Hung; Scheibert, Julien; Bot, Alain Le

    2013-01-01

    The noise generated by the friction of two rough surfaces under weak contact pressure is usually called roughness noise. The underlying vibration which produces the noise stems from numerous instantaneous shocks (in the microsecond range) between surface micro-asperities. The numerical simulation of this problem using classical mechanics requires a fine discretization in both space and time. This is why the finite element method takes much CPU time. In this study, we propose an alternative numerical approach which is based on a truncated modal decomposition of the vibration, a central difference integration scheme and two algorithms for contact: The penalty algorithm and the Lagrange multiplier algorithm. Not only does it reproduce the empirical laws of vibration level versus roughness and sliding speed found experimentally but it also provides the statistical properties of local events which are not accessible by experiment. The CPU time reduction is typically a factor of 10.

  1. Numerical Simulation of Polynomial-Speed Convergence Phenomenon

    Science.gov (United States)

    Li, Yao; Xu, Hui

    2017-11-01

    We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.

  2. Direct Numerical Simulation of Multiphase flow over Realistic Superhydrophobic Surfaces

    Science.gov (United States)

    Alame, Karim; Mahesh, Krishnan

    2017-11-01

    Direct numerical simulations are performed using the volume of fluid methodology, for turbulent channel flow of water over a realistic superhydrophobic surface, which traps air. The surface is obtained from scanned data of the real sprayed surface. Multiphase laminar Couette flow and turbulent channel cases are examined. Drag reduction for different interface heights are shown, and the effect of turbulence on multiphase flow over rough surfaces is discussed. This work is supported by the Office of Naval Research.

  3. The Numerical Simulation Analysis of Hydro Forming of Hollow Crankshaft

    Directory of Open Access Journals (Sweden)

    Wang Shi Gang

    2016-01-01

    Full Text Available The hydro forming process of hollow crankshaft was numerically analyzed and simulated based on Dynaform. Then the influence to hydro forming process in different loading paths was studied and the match relations between optimum forming pressure and axial feeding were obtained. The forming result was ideal and the forming parts were qualified. Finally, to the same material, the change trend of pipe billet wall thickness under the same forming pressure and axial feeding was discussed.

  4. Mobile phone as a platform for numerical simulation

    Science.gov (United States)

    Sala, Filip A.

    2012-01-01

    In this work numerical simulations performed on mobile devices equipped with ARM microprocessors are shown. Calculations include: light propagation in linear and nonlinear media based on one-dimensional Schrödinger equation and molecules reorientation in nematic liquid crystals. The purpose of this publication is to show advantages and disadvantages of using mobile devices as a platform for education and research. Discussion about software development is provided.

  5. Numerical simulation of underexpanded air jet using OpenFOAM

    OpenAIRE

    Talukdar, Mohammad

    2015-01-01

    Master's thesis in Risk management It is of utmost importance for the awareness of safety issues involved in high pressure gas storage to perceive the adjacent field of high pressure gas jet release for the establishment of the decomposition laws in the far field. The numerical simulations of the first cell of an underexpanded gas jet can be performed executing finite volume solver which can be validated later by means of available literature source. The prominence of OpenFoam is irrefutab...

  6. Numerical simulation of flow in the wet scrubber for desulfurization

    Directory of Open Access Journals (Sweden)

    Novosád Jan

    2015-01-01

    Full Text Available This article deals with numerical simulation of flow and chemical reactions in absorber for desulfurization of flue-gas. The objective of the work is the investigation of effect of different nozzles types and their placement in spray layers. These nozzles distribute lime suspension into flue gas stream. The research includes two types of nozzles and four different arrangements of nozzles and spray layers. Conclusion describes the effect of nozzle types and their arrangements on the suspension concentration in absorber.

  7. Numerical Simulation Method for Combustion in a Oxyhydrogen Rocket Motor

    OpenAIRE

    Taki, Shiro; Fujiwara, Toshitaka; 滝, 史郎; 藤原, 俊隆

    1984-01-01

    Numerical simulations of unsteady phenomena in the combustion chamber of an oxyhydrogen rocket motor were made in an attempt to develop a computer code for use in investigating such phenomena as vibrating combustion. The combustion in this system is controlled by diffusion, the effect of which works much slower than sound or pressure waves, so that diffusions are usually solved using the implicit finite difference method for unlimited time step size caused by stability criterion. However, the...

  8. NUMERICAL SIMULATION OF DIGITAL VLSI TOTAL DOSE FUNCTIONAL FAILURES

    Directory of Open Access Journals (Sweden)

    O. A. Kalashnikov

    2016-10-01

    Full Text Available The technique for numerical simulation of digital VLSI total dose failures is presented, based on fuzzy logic sets theory. It assumes transfer from boolean logic model of a VLSI with values {0,1} to fuzzy model with continuous interval [0,1], and from boolean logic functions to continuous minimax functions. The technique is realized as a calculation system and allows effective estimating of digital VLSI radiation behavior without experimental investigation.

  9. Numerical Simulations of Settlement of Jet Grouting Columns

    Directory of Open Access Journals (Sweden)

    Juzwa Anna

    2016-03-01

    Full Text Available The paper presents the comparison of results of numerical analyses of interaction between group of jet grouting columns and subsoil. The analyses were conducted for single column and groups of three, seven and nine columns. The simulations are based on experimental research in real scale which were carried out by authors. The final goal for the research is an estimation of an influence of interaction between columns working in a group.

  10. Dark Matter Substructure in Numerical Simulations: A Tale of Discreteness Noise, Runaway Instabilities, and Artificial Disruption

    Science.gov (United States)

    van den Bosch, Frank C.; Ogiya, Go

    2018-01-01

    To gain understanding of the complicated, non-linear and numerical processes associated with the tidal evolution of dark matter subhaloes in numerical simulation, we perform a large suite of idealized simulations that follow individual N-body subhaloes in a fixed, analytical host halo potential. By varying both physical and numerical parameters, we investigate under what conditions the subhaloes undergo disruption. We confirm the conclusions from our more analytical assessment in van den Bosch et al. that most disruption is numerical in origin; as long as a subhalo is resolved with sufficient mass and force resolution, a bound remnant survives. This implies that state-of-the-art cosmological simulations still suffer from significant overmerging. We demonstrate that this is mainly due to inadequate force-softening, which causes excessive mass loss and artificial tidal disruption. In addition, we show that subhaloes in N-body simulations are susceptible to a runaway instability triggered by the amplification of discreteness noise in the presence of a tidal field. These two processes conspire to put serious limitations on the reliability of dark matter substructure in state-of-the-art cosmological simulations. We present two criteria that can be used to assess whether individual subhaloes in cosmological simulations are reliable or not, and advocate that subhaloes that satisfy either of these two criteria be discarded from further analysis. We discuss the potential implications of this work for several areas in astrophysics.

  11. Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation

    Science.gov (United States)

    Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla

    2014-07-01

    Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.

  12. Transient productivity index for numerical well test simulations

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, G.; Ding, D.Y.; Ene, A. [Institut Francais du Petrole, Pau (France)] [and others

    1997-08-01

    The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.

  13. Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation.

    Science.gov (United States)

    Le, Trung B; Troolin, Daniel R; Amatya, Devesh; Longmire, Ellen K; Sotiropoulos, Fotis

    2013-10-01

    We carry out high-resolution laboratory experiments and numerical simulations to investigate the dynamics of unsteady vortex formation across the neck of an anatomic in vitro model of an intracranial aneurysm. A transparent acrylic replica of the aneurysm is manufactured and attached to a pulse duplicator system in the laboratory. Time-resolved three-dimensional three-component velocity measurements are obtained inside the aneurysm sac under physiologic pulsatile conditions. High-resolution numerical simulations are also carried out under conditions replicating as closely as possible those of the laboratory experiment. Comparison of the measured and computed flow fields shows very good agreement in terms of instantaneous velocity fields and three-dimensional coherent structures. Both experiments and numerical simulations show that a well-defined vortical structure is formed near the proximal neck at early systole. This vortical structure is advected by the flow across the aneurysm neck and impinges on the distal wall. The results underscore the complexity of aneurysm hemodynamics and point to the need for integrating high-resolution, time-resolved three-dimensional experimental and computational techniques. The current work emphasizes the importance of vortex formation phenomena at aneurysmal necks and reinforces the findings of previous computational work and recent clinical studies pointing to links between flow pulsatility and aneurysm growth and rupture.

  14. The numerical simulation based on CFD of hydraulic turbine pump

    Science.gov (United States)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  15. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  16. On numerical integration for effective stress assessment at notches

    Directory of Open Access Journals (Sweden)

    Enrico Maggiolini

    2013-07-01

    Full Text Available This paper presents a numerical method for non-local stress assessment by means of a general FE tool and the local stress field. Unlike usual calculations by means of a numerical PDE solver, a more general numerical integration is used. Different solutions are compared theoretically and numerically by evaluating the results obtained by two different FEM commercial software. The application of the non-local tension field is applied to the strength assessment of notches, welded joints and cracks.

  17. Numerical Simulation of Liquid Sloshing Problem under Resonant Excitation

    Directory of Open Access Journals (Sweden)

    Fu-kun Gui

    2014-04-01

    Full Text Available Numerical simulations were conducted to investigate the fluid resonance in partially filled rectangular tank based on the OpenFOAM package of viscous fluid model. The numerical model was validated by the available theoretical, numerical, and experimental data. The study was mainly focused on the large amplitude sloshing motion and the corresponding impact force around the resonant condition. It was found that, for the 2D situation, the double pressure peaks happened near to the side walls around the still water level. And they were corresponding to the local free surface rising up and set-down, respectively. The impulsive loads on the tank corner with extreme magnitudes were observed as the free surface impacted the ceiling. The 3D numerical results showed that the free surface amplitudes along the side walls varied diversely, depending on the direction and frequency of the external excitation. The characteristics of the pressure around the still water level and tank ceiling were also presented. According to the computational results, it was found that the 2D numerical model can predict the impact loads near the still water level as accurately as 3D model. However, the impulsive pressure near the tank ceiling corner was remarkably underestimated.

  18. Towards an Automated Full-Turbofan Engine Numerical Simulation

    Science.gov (United States)

    Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.

    2003-01-01

    The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.

  19. Numerical Simulation of Delamination Growth in Composite Materials

    Science.gov (United States)

    Camanho, P. P.; Davila, C. G.; Ambur, D. R.

    2001-01-01

    The use of decohesion elements for the simulation of delamination in composite materials is reviewed. The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially. After a brief presentation of the virtual crack closure technique, the technique most widely used to simulate delamination growth, the formulation of interfacial decohesion elements is described. Problems related with decohesion element constitutive equations, mixed-mode crack growth, element numerical integration and solution procedures are discussed. Based on these investigations, it is concluded that the use of interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and pre-defined crack paths, and that these elements can be used to simulate both delamination onset and growth.

  20. Numerical simulation and optimization of casting process for complex pump

    Science.gov (United States)

    Liu, Xueqin; Dong, Anping; Wang, Donghong; Lu, Yanling; Zhu, Guoliang

    2017-09-01

    The complex shape of the casting pump body has large complicated structure and uniform wall thickness, which easy give rise to casting defects. The numerical simulation software ProCAST is used to simulate the initial top gating process, after analysis of the material and structure characteristics of the high-pressure pump. The filling process was overall smooth, not there the water shortage phenomenon. But the circular shrinkage defects appear at the bottom of casting during solidification process. Then, the casting parameters were optimized and adding cold iron in the bottom. The shrinkage weight was reduced from 0.00167g to 0.0005g. The porosity volume was reduced from 1.39cm3 to 0.41cm3. The optimization scheme is simulated and actual experimented. The defect has been significantly improved.

  1. Numerical simulation of hydrogen plasma in MPCVD reactor

    Science.gov (United States)

    Huang, Di

    A numerical study was conducted to build a model able to estimate the plasma properties under different working conditions for pure hydrogen plasma in a MPCVD reactor. A plasma model based on standing wave assumption and a linear estimation of ne and coupled the EM simulation, heat transfer simulation and UDF calculations of plasma properties was built in COMSOL Muitiphysics and tested with six different working conditions. The reliability of COMSOL EM solver was tested through comparing the simulation results with a benchmark EM solver, ANSYS HFSS. The validities of two assumptions made about the electrical field, standing wave assumption and sinusoidal oscillation field assumption, were tested by a PDE solver in COMSOL for utilizing the drift-diffusion model of ne.

  2. Numerical simulation of explosive welding using Smoothed Particle Hydrodynamics method

    Directory of Open Access Journals (Sweden)

    J Feng

    2017-09-01

    Full Text Available In order to investigate the mechanism of explosive welding and the influences of explosive welding parameters on the welding quality, this paper presents numerical simulation of the explosive welding of Al-Mg plates using Smoothed Particle Hydrodynamics method. The multi-physical phenomena of explosive welding, including acceleration of the flyer plate driven by explosive detonation, oblique collision of the flyer and base plates, jetting phenomenon and the formation of wavy interface can be reproduced in the simulation. The characteristics of explosive welding are analyzed based on the simulation results. The mechanism of wavy interface formation is mainly due to oscillation of the collision point on the bonding surfaces. In addition, the impact velocity and collision angle increase with the increase of the welding parameters, such as explosive thickness and standoff distance, resulting in enlargement of the interfacial waves.

  3. Hygrothermal Numerical Simulation Tools Applied to Building Physics

    CERN Document Server

    Delgado, João M P Q; Ramos, Nuno M M; Freitas, Vasco Peixoto

    2013-01-01

    This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measuremen...

  4. Numerical simulation and experimental study of explosive projectile devices

    Science.gov (United States)

    Selivanov, V. V.; Gryaznov, E. F.; Goldenko, N. A.; Sudomoev, A. D.; Feldstein, V. A.

    2017-06-01

    A study of explosive-throwing device (ETD) was undertaken to simulate the hypervelocity impact of space debris fragments (SDF) and meteoroids with spacecrafts. The principle of operation of an ETD is based on the cumulative effect in combination with the cut-off head of the cumulative jet, which enables one to simulate a compact particle, such as a meteoroid or a fragment of space debris. Different design schemes of ETD with different composition explosive charge initiation schemes with notably low speeds of the jet cut-off are explored, and a method to control the particle velocity is proposed. Numerical simulation of device modes and basic technical characteristics of experimental testing are investigated.

  5. High-Order Numerical Simulations of Wind Turbine Wakes

    Science.gov (United States)

    Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.

    2017-05-01

    Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.

  6. Numerical simulation of microstructure of the GeSi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, I.

    2006-09-08

    The goal of this work is to investigate pattern formation processes on the solid-liquid interface during the crystal growth of GeSi. GeSi crystals with cellular structure have great potential for applications in -ray and neutron optics. The interface patterns induce small quasi-periodic distortions of the microstructure called mosaicity. Existence and properties of this mosaicity are important for the application of the crystals. The properties depend on many factors; this dependence, is currently not known even not qualitatively. A better understanding of the physics near the crystal surface is therefore required, in order to optimise the growth process. There are three main physical processes in this system: phase-transition, diffusion and melt flow. Every process is described by its own set of equations. Finite difference methods and lattice kinetic methods are taken for solving these governing equations. We have developed a modification of the kinetic methods for the advectiondiffusion and extended this method for simulations of non-linear reaction diffusion equations. The phase-field method was chosen as a tool for describing the phase-transition. There are numerous works applied for different metallic alloys. An attempt to apply the method directly to simulation GeSi crystal growth showed that this method is unstable. This instability has not been observed in previous works due to the much smaller scale of simulations. We introduced a modified phase-field scheme, which enables to simulate pattern formation with the scale observed in experiment. A flow in the melt was taken in to account in the numerical model. The developed numerical model allows us to investigate pattern formation in GeSi crystals. Modelling shows that the flow near the crystal surface has impact on the patterns. The obtained patterns reproduce qualitatively and in some cases quantitatively the experimental results. (orig.)

  7. Stochastic algorithms for the analysis of numerical flame simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2001-12-14

    Recent progress in simulation methodologies and new, high-performance parallel architectures have made it is possible to perform detailed simulations of multidimensional combustion phenomena using comprehensive kinetics mechanisms. However, as simulation complexity increases, it becomes increasingly difficult to extract detailed quantitative information about the flame from the numerical solution, particularly regarding the details of chemical processes. In this paper we present a new diagnostic tool for analysis of numerical simulations of combustion phenomena. Our approach is based on recasting an Eulerian flow solution in a Lagrangian frame. Unlike a conventional Lagrangian viewpoint in which we follow the evolution of a volume of the fluid, we instead follow specific chemical elements, e.g., carbon, nitrogen, etc., as they move through the system. From this perspective an ''atom'' is part of some molecule that is transported through the domain by advection and diffusion. Reactions ca use the atom to shift from one species to another with the subsequent transport given by the movement of the new species. We represent these processes using a stochastic particle formulation that treats advection deterministically and models diffusion as a suitable random-walk process. Within this probabilistic framework, reactions can be viewed as a Markov process transforming molecule to molecule with given probabilities. In this paper, we discuss the numerical issues in more detail and demonstrate that an ensemble of stochastic trajectories can accurately capture key features of the continuum solution. We also illustrate how the method can be applied to studying the role of cyanochemistry on NOx production in a diffusion flame.

  8. Stochastic algorithms for the analysis of numerical flame simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2004-04-26

    Recent progress in simulation methodologies and high-performance parallel computers have made it is possible to perform detailed simulations of multidimensional reacting flow phenomena using comprehensive kinetics mechanisms. As simulations become larger and more complex, it becomes increasingly difficult to extract useful information from the numerical solution, particularly regarding the interactions of the chemical reaction and diffusion processes. In this paper we present a new diagnostic tool for analysis of numerical simulations of reacting flow. Our approach is based on recasting an Eulerian flow solution in a Lagrangian frame. Unlike a conventional Lagrangian view point that follows the evolution of a volume of the fluid, we instead follow specific chemical elements, e.g., carbon, nitrogen, etc., as they move through the system . From this perspective an ''atom'' is part of some molecule of a species that is transported through the domain by advection and diffusion. Reactions cause the atom to shift from one chemical host species to another and the subsequent transport of the atom is given by the movement of the new species. We represent these processes using a stochastic particle formulation that treats advection deterministically and models diffusion and chemistry as stochastic processes. In this paper, we discuss the numerical issues in detail and demonstrate that an ensemble of stochastic trajectories can accurately capture key features of the continuum solution. The capabilities of this diagnostic are then demonstrated by applications to study the modulation of carbon chemistry during a vortex-flame interaction, and the role of cyano chemistry in rm NO{sub x} production for a steady diffusion flame.

  9. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation

    Science.gov (United States)

    Doru, Zdrenghea

    2017-10-01

    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  10. Numerical Simulation of Thin Film Breakup on Nonwettable Surfaces

    Science.gov (United States)

    Suzzi, N.; Croce, G.

    2017-01-01

    When a continuous film flows on a nonwettable substrate surface, it may break up, with the consequent formation of a dry-patch. The actual shape of the resulting water layer is of great interest in several engineering applications, from in-flight icing simulation to finned dehumidifier behavior modeling. Here, a 2D numerical solver for the prediction of film flow behavior is presented. The effect of the contact line is introduced via the disjoining pressure terms, and both gravity and shear are included in the formulation. The code is validated with literature experimental data for the case of a stationary dry-patch on an inclined plane. Detailed numerical results are compared with literature simplified model prediction. Numerical simulation are then performed in order to predict the threshold value of the film thickness allowing for film breakup and to analyze the dependence of the dynamic contact angle on film velocity and position along the contact line. Those informations will be useful in order to efficiently predict more complex configuration involving multiple breakups on arbitrarily curved substrate surfaces (as those involved in in-flight icing phenomena on aircraft).

  11. Numerical simulation of the sucker-rod pumping system

    Directory of Open Access Journals (Sweden)

    Oldrich Joel Romero

    2014-11-01

    Full Text Available The sucker rod pump is an artificial lift method frequently applied in onshore petroleum wells. This system can be described using a numerical simulation based on the behavior of a rod string. In the past, the elastic behavior of the rod string made it difficult to model the system. However, since the 1960s and with the advent of digital computers, it has been modeled numerically. The rod string be-haves like a slender bar, and thus, the propagation of elastic waves along the bar can be represented by a one-dimensional equation. Gibbs (1963 presented a mathematical model based on the wave equation, which is described on the basis of the analysis of forces on the rod string and is incorporated into a boundary value problem involving partial differential equations. The use of the finite differ-ence method allows for a numerical solution by the discretization of the wave equation developed in the mathematical formulation with appropriate boundary and initial conditions. This work presents a methodology for implementing an academic computer code that allows simulation of the upstroke and downstroke motion of the rod string described by the wave equation under ideal operating conditions, assuming a harmonic motion of the rod at one end and downhole pump at the other end. The goal of this study is to generate the downhole dynamometer card, an important and consolidated tool that controls the pump system by diagnosing oper-ational conditions of the downhole pump.

  12. Numerical simulation of a meteorological regime of Pontic region

    Science.gov (United States)

    Toropov, P.; Silvestrova, K.

    2012-04-01

    initial data in WRF model are used FNL the analysis, pumped up each six hours. The data is in the open access (http://nomad3.ncep.noaa.gov/pub/) in a grib format. Spatial step FNL of the FNL analysis is 1 degree. In the experiment 1-3 February 2011, was made the assimilation of station data located within the territory or identified during our expeditions. It is shown that the model WRF successfully reproduces the meteorological regime the Black Sea coast. The average error of simulation n without learning station data is as follows: for a temperature of 1.5 s for wind speed - 2 m / sec. The maximum error for the temperature is 5 C, and for wind speed 10 m / sec. To experiment with the assimilation of station data the error is reduced by an average of 20%. The spatial structure of temperature and wind fields close to the actually observed. Thus, it can be argued that the model WRF can be successfully applied to numerical forecast a dangerous phenomenon, such as «Novorossiysk nord-ost». The work is done in Natural Risk Assessment Laboratory under contract G.34.31.0007.

  13. Online assessment of dimensional numerical answers using STACK in science

    Science.gov (United States)

    Sangwin, C. J.; Harjula, M.

    2017-05-01

    In this article we report research into the computer representation and automatic assessment of expressions which are dimensional numerical quantities. We consider how machines represent and manipulate dimensional numerical data. Through action research we examine how students enter dimensional numerical data into a machine for online assessment, and examine the properties of such answers which practical teachers seek to establish. We consider the extent to which these properties can be established automatically, and report the outcomes of our action research: extensions to the STACK online assessment system which implement both syntactic and semantic layers to represent dimensional numerical quantities in a form suitable for online assessment.

  14. Optimal Taylor-Couette flow: direct numerical simulations

    CERN Document Server

    Mónico, Rodolfo Ostilla; Grossman, Siegfried; Verzicco, Roberto; Lohse, Detlef

    2013-01-01

    We numerically simulate turbulent Taylor-Couette flow for independently rotating inner and outer cylinders, focusing on the analogy with turbulent Rayleigh-B\\'enard flow. Reynolds numbers of Re_i = 8\\times10^3 and Re_o =\\pm4\\times10^3 of the inner and outer cylinders, respectively, are reached, corresponding to Taylor numbers Ta up to 10^8 . Effective scaling laws for the torque and other system responses are found. Recent experiments with the Twente turbulent Taylor-Couette (T^3C) setup at very high Reynolds numbers have vealed an optimum transport at a certain non-zero rotation rate ratio a = -{\\omega}_o/{\\omega}_i that depends on Ta. For large enough Ta in the numerically accessible range we find such an optimum at non-zero counter-rotation also in the numerics. We furthermore numerically calculate the corresponding angular velocity profiles and visualize the different flow structures for the various regimes. By writing the equations in a frame co-rotating with the outer cylinder a link is found between th...

  15. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  16. An Object Model for a Rocket Engine Numerical Simulator

    Science.gov (United States)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  17. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  18. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  19. Direct numerical simulation of microcavitation processes in different bio environments

    Science.gov (United States)

    Ly, Kevin; Wen, Sy-Bor; Schmidt, Morgan S.; Thomas, Robert J.

    2017-02-01

    Laser-induced microcavitation refers to the rapid formation and expansion of a vapor bubble inside the bio-tissue when it is exposed to intense, pulsed laser energy. With the associated microscale dissection occurring within the tissue, laserinduced microcavitation is a common approach for high precision bio-surgeries. For example, laser-induced microcavitation is used for laser in-situ keratomileusis (LASIK) to precisely reshape the midstromal corneal tissue through excimer laser beam. Multiple efforts over the last several years have observed unique characteristics of microcavitions in biotissues. For example, it was found that the threshold energy for microcavitation can be significantly reduced when the size of the biostructure is increased. Also, it was found that the dynamics of microcavitation are significantly affected by the elastic modules of the bio-tissue. However, these efforts have not focused on the early events during microcavitation development. In this study, a direct numerical simulation of the microcavitation process based on equation of state of the biotissue was established. With the direct numerical simulation, we were able to reproduce the dynamics of microcavitation in water-rich bio tissues. Additionally, an experimental setup in deionized water and 10% PAA gel was made to verify the results of the simulation for early micro-cavitation formation for 10% Polyacrylamide (PAA) gel in deionized water.

  20. Numerical simulation of free water surface in pump intake

    Science.gov (United States)

    Zhao, L. J.; Nohmi, M.

    2012-11-01

    The purpose of this paper is to verify the volume of fluid (VOF) method for simulating the free water surface flow in pump intake. With the increasing computer power, VOF method has been becoming a more flexible and accurate choice to replace the conventional fixed water surface method, because it does not require assumptions on the nature of air-water interface. Two examples are presented in this paper. The first example is presented for simulating the growth of air-entrained vortices. LES (Large Eddy Simulation) model, instead of RANS (Reynolds averaged Navier-Stokes) turbulence model, is used to capture the peak of circular velocity around the vortex core. Numerical result shows good agreement with the benchmark experiment carried by the Turbomachinery Society of Japan. The second example predicts the flow rate distribution in the pump intake consisting of one opened and two closed channels. VOF result is compared with the conventional fixed water surface method assuming free-slip boundary condition on the fluid interface. The difference of flow pattern in the opened channel indicates that numerical flow field is affected remarkably by the setup of boundary condition at air-water interface.

  1. NUMERICAL SIMULATION OF A PREMIXED TURBULENT V-SHAPED FLAME

    Directory of Open Access Journals (Sweden)

    M I El Khazen

    2011-01-01

    Full Text Available In this paper we simulate a turbulent premixed V-shape flame stabilized on a hot wire. The device used is composed of a vertical combustion chamber where the methane-air mixture is convected upwards with a mean velocity of 4ms-1. The flow was simulated running Fluent 6.3, which numerically solved the stationary Favre-averaged mass balance; Navier-Stokes equations; combustion progress variable, and k-ε equations on a two-dimensional numerical mesh. We model gaseous mixture, ignoring Soret and Dufour effects and radiation heat transfer. The progress variable balance equation was closed using Eddy Break Up model. The results of our simulations allow us to analyze the influence of equivalence ratio and the turbulent intensity on the properties of the flame (velocity, fluctuation, progress variable and Thickness of flame.This work gives us an idea on the part which turbulence can play to decrease the risks of extinction and instabilities caused by the lean premixed combustion.

  2. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    Science.gov (United States)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  3. Numerical simulations of drop impact on superhydrophobic structured surfaces

    Science.gov (United States)

    Guzzetti, Davide; Larentis, Stefano; Pugno, Nicola

    2011-11-01

    During the last decade drop impact dynamics on superhydrophobic surfaces has been intensively investigated because of the incredible properties of water repellency exhibited by this kind of surfaces, mostly inspired by biological examples such as Lotus leave. Thanks to the recent progress in micro-fabrication technology is possible to tailor surfaces wettability defining specific pillar-like structured surfaces. In this work, the behavior of impinging drops on these pillar-like surfaces is simulated, characterizing temporal evolution of droplets contact radius and drop maximal deformation dependence on Weber number. Numerical simulations results are compared with theoretical and experimental results guaranteeing simulation reliability. Fingering patterns obtained from drop impact has been studied obtaining a correlation between number of fingers and Weber number. Drop fragmentation pattern obtained from simulations supports the proposed correlation. Different drop impact outcomes (e.g. rebound, fragmentation) on structured superhydrophobic surfaces are simulated, focusing on the influence of micro-structured surface geometrical pattern. This investigation is relevant in order to define design rules for possible reliable non wettable surfaces. Financial support by Alta Scuola Politecnica.

  4. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  5. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang

    2015-09-01

    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.

  6. Direct numerical simulation of coalescing droplets in turbulence

    Science.gov (United States)

    Li Sing How, Melanie; Collins, Lance

    2017-11-01

    There is a rich body of numerical, experimental and theoretical work looking at the role of turbulence in particle collisions, with a particular emphasis on how it might accelerate the evolution of clouds in the atmosphere. This study is a continuation of that lineage. We perform direct numerical simulations of isotropic turbulence with embedded droplets that, upon collision, coalesce to produce a daughter droplet that conserves the mass and momentum of the parent droplets. As a consequence of coalescence, the droplet size distribution evolves over time from its monodisperse initial condition. The work is an extension of Reade and Collins (J. Fluid Mech. 415:45-64, 2000), which considered the same problem at a much lower Reynolds number. We observe important effects of intermittency at Reynolds numbers that are several-fold higher. The collisions do not yet take into account the effect of the lubricating gas layer, which will be the topic of future work. NSF Award CBET-1605195.

  7. Unsteady numerical simulations of the stability and dynamics of flames

    Science.gov (United States)

    Kailasanath, K.; Patnaik, G.; Oran, E. S.

    1995-01-01

    In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years (from Feb. 1992) with emphasis on the work performed since the last microgravity combustion workshop. The primary objective of our research is to develop an understanding of the differences in the structure, stability, dynamics and extinction of flames in earth gravity and in microgravity environments. Numerical simulations, in which the various physical and chemical processes can be independently controlled, can significantly advance our understanding of these differences. Therefore, our approach is to use detailed time-dependent, multi-dimensional, multispecies numerical models to perform carefully designed computational experiments. The basic issues we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein. Some of the basic issues we have addressed recently are (1) the relative importance of wall losses and gravity on the extinguishment of downward-propagating flames; (2) the role of hydrodynamic instabilities in the formation of cellular flames; (3) effects of gravity on burner-stabilized flames, and (4) effects of radiative losses and chemical-kinetics on flames near flammability limits. We have also expanded our efforts to include hydrocarbon flames in addition to hydrogen flames and to perform simulations in support of other on-going efforts in the microgravity combustion sciences program. Modeling hydrocarbon flames typically involves a larger number of species and a much larger number of reactions when compared to hydrogen. In addition, more complex radiation models may also be needed. In order to efficiently compute such complex flames recent developments in parallel computing have been utilized to develop a state

  8. Computer-based numerical simulations of adsorption in nanostructures

    Science.gov (United States)

    Khashimova, Diana

    2014-08-01

    Zeolites are crystalline oxides with uniform, molecular-pore diameters of 3-14Å. Significant developments since 1950 made production of synthetic zeolites with high purity and controlled chemical composition possible. In powder-form, zeolites are major role-players in high-tech, industrial catalysis, adsorption, and ion exchange applications. Understanding properties of thin-film zeolites has been a focus of recent research. The ability to fine-tune desired macroscopic properties by controlled alteration at the molecular level is paramount. The relationships between macroscopic and molecular-level properties are established by experimental research. Because generating macroscopic, experimental data in a controlled laboratory can be prohibitively costly and time-consuming, reliable numerical simulations, which remove such difficulties, are an attractive alternative. Using a Configurational Biased Monte Carlo (CBMC) approach in grand canonical ensemble, numerical models for pure component and multicomponent adsorption processes were developed. Theoretical models such as ideal (IAST) and real adsorbed solution theory (RAST) to predict mixture adsorption in nanopores were used for comparison. Activity coefficients used in RAST calculations were determined from the Wilson, spreading pressure and COSMO-RS models. Investigative testing of the method on known materials, represented by all-silica zeolites such as MFI (channel type) and DDR (cage type), proved successful in replicating experimental data on adsorption of light hydrocarbons - alkanes, such as methane, ethane, propane and butane. Additionally, adsorption of binary and ternary mixtures was simulated. The given numerical approach developed can be a powerful, cost and time saving tool to predict process characteristics for different molecular-structure configurations. The approach used here for simulating adsorption properties of nanopore materials including process characteristics, may have great potential for

  9. Numerical simulation of singularly perturbed differential equation with small shift

    Science.gov (United States)

    Arora, Geeta; Kaur, Mandeep

    2017-07-01

    In the present paper, perturbed singular differential equations of second order with small shift are treated for their numerical simulation. These equations arise in the mathematical models for the study of neuronal behavior and their basic activities. Collocation method is used to solve these boundary value problems using modified B-spline basis functions. To partition the domain the piecewise uniform mesh-shiskhin mesh is generated that generate more partitions near the boundary region. The study targets on the impact of small parameters on the solution. To confirm the coherence of the method test problems are presented and conduct of solution of the problem with the time lag parameter is shown.

  10. NUMERICAL SIMULATIONS OF MAP IOP2B WITH AROME

    OpenAIRE

    Seity, Y.

    2005-01-01

    Abstract: The goal of this study is to use the large amount of measurements collected during the MAP IOP2B, to validate a new Numerical Weather Prediction system : AROME. We also evaluate AROME by comparison with ALADIN and Meso-NH simulations of this IOP. The AROME 2.5 km results are sensitive to the choice of the coupling model. AROME 2.5 km coupled with AROME 10 km is able in pseudo-operational conditions (long time step and coupled with forecasts) to reproduce the main features of the ...

  11. Numerical simulations of thermal convection at high Prandtl numbers

    OpenAIRE

    Silano, Gabriella

    2009-01-01

    2007/2008 In this thesis we present the results of an extensive campaign of direct numerical simulations of Rayleigh-B\\'enard convection at high Prandtl numbers ($10^{-1}\\leq Pr \\leq 10^4$) and moderate Rayleigh numbers ($10^{5}\\leq Pr \\leq 10^9$). The computational domain is a cylindrical cell of aspect-ratio (diameter over cell height) $\\Gamma=1/2$, with the no-slip condition imposed to the boundaries. By scaling the results, we find a $1/\\sqrt{Pr}$ correction to apply to the free-...

  12. Numerical simulation of convective boundary layer above polynyas and leads.

    Science.gov (United States)

    Debolskiy, Andrey; Stepanenko, Victor

    2013-04-01

    Arctic region is very important as one of drivers for global atmosphere circulation. Meanwhile, results of modern global atmospheric models, both climatic and weather forecasting differs significantly from each other and observations in this region. One of the reasons for these uncertainties can be inaccurate simulation of ice and snow cover distribution, which accuracy depends in turn on variety of factors. Among others, appropriate parameterizations of atmospheric boundary layer over inhomogeneous surface, not explicitly resolved at the atmospheric model grid, can decrease these inaccuracies. The main objective of these parameterizations is to calculate surface heat and water vapor fluxes, averaged over the whole model cell. However, due to great differences in structure of boundary layers formed over cold ice and relatively warm open water, which cause nonlinear dependencies,the parameterizations suggested to the moment can hardly be regarded as applicable for "complete" set of synoptic scenarios . The present paper attempts to improve standard mosaic method of flux aggregation, which is still common in climate models [1]. The main idea is to derive heat fluxes using data from numerical experiments, explicitly reproducing most of sub grid (for global models) turbulence motions spectra, and compare with fluxes calculated using mosaic method implying the part of model domain to be a global model cell. The study is based on idealized high resolution (~10 m) experiments with typically observed surface parameters (temperature and roughness), ice-open water distribution, initial temperature and wind profiles distribution included in Large Eddy Simulation model of Insitute of Numerical Mathematics RAS [2],[3]. Analysis of other boundary layer characteristics such as its height, eddy diffusivity profiles, kinetic energy is presented. The modeling results are compared with field experiments' data gathered at White Sea. References: 1. V.M. Stepanenko, P.M. Miranda, V

  13. Numerical Simulation of Transient Moisture Transfer into an Electronic Enclosure

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    inside the enclosures to be able to protect the electronic systems.In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce theCPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which...... the real3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order tocalibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreementwas found....

  14. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  15. Accurate numerical methods for micromagnetics simulations with general geometries

    CERN Document Server

    García-Cervera, C J

    2003-01-01

    In current FFT-based algorithms for micromagnetics simulations, the boundary is typically replaced by a staircase approximation along the grid lines, either eliminating the incomplete cells or replacing them by complete cells. Sometimes the magnetizations at the boundary cells are weighted by the volume of the sample in the corresponding cell. We show that this leads to large errors in the computed exchange and stray fields. One consequence of this is that the predicted switching mechanism depends sensitively on the orientation of the numerical grid. We present a boundary-corrected algorithm to efficiently and accurately handle the incomplete cells at the boundary. We show that this boundary-corrected algorithm greatly improves the accuracy in micromagnetics simulations. We demonstrate by using A. Arrott's example of a hexagonal element that the switching mechanism is predicted independently of the grid orientation.

  16. Numerical simulations of heat transfer in plane channel flow

    CERN Document Server

    Gharbi, Najla El; Benzaoui, Ahmed

    2010-01-01

    Reynolds-averaged Navier-Stokes (RANS) turbulence models (such as k-{\\epsilon} models) are still widely used for engineering applications because of their relatively simplicity and robustness. In fully developed plane channel flow (i.e. the flow between two infinitely large plates), even if available models and near-wall treatments provide adequate mean flow velocities, they fail to predict suitable turbulent kinetic energy "TKE" profiles near walls. TKE is involved in determination of eddy viscosity/diffusivity and could therefore provide inaccurate concentrations and temperatures. In order to improve TKE a User Define Function "UDF" based on an analytical profile for TKE was developed and implemented in Fluent. Mean streamwise velocity and turbulent kinetic energy "TKE" profiles were compared to DNS data for friction Reynolds number $Re_{\\tau}$ = 150. Simulation results for TKE show accurate profiles. Simulation results for horizontal heated channel flows obtained with Fluent are presented. Numerical result...

  17. Numerical simulation of low pressure die-casting aluminum wheel

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2009-02-01

    Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  18. Numerical simulation of oil spills in a generalized domain

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, I.; Grau, F.X.; Giralt, F. (Barcelona Univ., Tarragona (Spain). Dept. d' Enginyeria Quimica i Bioqumica)

    1990-01-01

    A numerical model has been developed to simulate the time-space evolution of oil spills in marine environments of arbitrary and complex geometry. The model is applicable to gravity-viscosity regimes, i.e. up to 1 week for large spills, and takes into account dispersion caused by wind, tides and currents, spreading and evaporation, as well as accumulation and dispersion along the shorelines. The computer model is tested against data reported from the Amoco Cadiz accident, with satisfactory agreement on the extent and location of the slick. The model is also used to simulate and estimate the consequences of a hypothetical accidental spill occurring in the vicinity of the Tarragona harbour during transportation or unloading operations of crude oil. This is of importance because the Mediterranean coast of Tarragona, and in particular the Costa Daurada region, is one of the leading European tourist resorts. (author).

  19. Numerical Simulation of Combustion Chamber for Button Turbojet Engine

    Directory of Open Access Journals (Sweden)

    Ma Hongpeng

    2016-01-01

    Full Text Available To provide reference data for ultra-micro combustor, a new type button turbojet engine was designed and simulated the combustion’s steady-state process. The boundary condition of inlet was calculated using isentropic numerical calculation, taken into turbulent chemical reaction, heat radiation, and so on, getting the combustion chamber’s steady-state of the velocity, temperature and component concentration distribution, analysis the fuel/air flow and backflow, combustion efficiency and total pressure recovery coefficient, and compared with the experimental data. The calculation results can accurately reflect the actual combustion. The results show that combustion chamber exit velocity is about 65m/s, outlet temperature is around 1000K, the simulation and experimental data are similar, combustion chamber structure design is reasonable, and this paper will provide a basis for the future improvement of the millimeter scale turbojet engine.

  20. Numerical simulation of flow fields and particle trajectories

    DEFF Research Database (Denmark)

    Mayer, Stefan

    2000-01-01

    in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical...... contact between particle and cilia. A local capture efficiency is defined and its value computed for various values of beat frequencies and other parameters. The results indicate that the simulated particle capture process is most effective when the flow field oscillates within timescales comparable......A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation...

  1. Numerical simulation of study and unsteady sheet cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Schnerr, G.H.; Spengler, C. (Karlsruhe Univ. (T.H.) (Germany). Abt. Stroemungsmaschinen)

    1998-01-01

    The aim of the work is to provide an efficient code to simulate developed sheet cavitation including the unsteady behavior at the end of the sheet. The vapor region is calculated directly by using a 'compressible system' of equations. To simulate the liquid phase an 'incompressible system' of equations is used. The numerical method is based on an extended method of artificial compressibility which allows the simultaneous calculation of compressible and incompressible flows. To verify the code a first cavitating result of the inviscid flow around a NACA0012 hydrofoil at a Mach number M=0.1, an angle of attack [alpha]=4 , and a cavitation number [sigma]=1.0 is presented. (orig.)

  2. Numerical simulation of study and unsteady sheet cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Schnerr, G.H.; Spengler, C. [Karlsruhe Univ. (T.H.) (Germany). Abt. Stroemungsmaschinen

    1998-12-31

    The aim of the work is to provide an efficient code to simulate developed sheet cavitation including the unsteady behavior at the end of the sheet. The vapor region is calculated directly by using a `compressible system` of equations. To simulate the liquid phase an `incompressible system` of equations is used. The numerical method is based on an extended method of artificial compressibility which allows the simultaneous calculation of compressible and incompressible flows. To verify the code a first cavitating result of the inviscid flow around a NACA0012 hydrofoil at a Mach number M=0.1, an angle of attack {alpha}=4 , and a cavitation number {sigma}=1.0 is presented. (orig.)

  3. Material flow data for numerical simulation of powder injection molding

    Science.gov (United States)

    Duretek, I.; Holzer, C.

    2017-01-01

    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  4. Security simulation for vulnerability assessment

    Science.gov (United States)

    Hennessey, Brian; Norman, Bradley; Wesson, Robert B.

    2006-05-01

    This paper discusses simulation technologies developed to "stimulate" an operational command and control security system. The paper discusses simulation techniques used to create a virtual model of a facility in which to conduct vulnerability assessment exercises, performance benchmarking, CONOPS development and operator training. The paper discusses the specific techniques used for creating a 3d virtual environment and simulating streaming IP surveillance cameras and motion detection sensors. In addition the paper discusses advanced scenario creation techniques and the modeling of scenario entities, including vehicles, aircraft and personnel. The paper draws parallels with lessons learned in using Air Traffic Control simulators for operator training, incident recreation, procedure development and pre acquisition planning and testing.

  5. Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging

    Science.gov (United States)

    Buljac, Ante; Shakoor, Modesar; Neggers, Jan; Bernacki, Marc; Bouchard, Pierre-Olivier; Helfen, Lukas; Morgeneyer, Thilo F.; Hild, François

    2017-03-01

    A combined computational-experimental framework is introduced herein to validate numerical simulations at the microscopic scale. It is exemplified for a flat specimen with central hole made of cast iron and imaged via in-situ synchrotron laminography at micrometer resolution during a tensile test. The region of interest in the reconstructed volume, which is close to the central hole, is analyzed by digital volume correlation (DVC) to measure kinematic fields. Finite element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements. Gray level residuals for DVC measurements and FE simulations are assessed for validation purposes.

  6. numerical assessment of conventional regulation effectiveness

    African Journals Online (AJOL)

    Benkoussas B, Djedjig R, and Vauquelin O

    2016-05-01

    May 1, 2016 ... The effectiveness of an underground smoke control system mainly depends on fire safety engineering that ... impact of blowing with a moderate flow rate, and the implementation in the vicinity of the stairways of ... regulation applied to Establishments Receiving Public (ERP), by simulating a fire scenario in.

  7. Numerical simulation of spark ignition engine using OpenFOAM®

    Directory of Open Access Journals (Sweden)

    B.T. Kannan

    2016-09-01

    Full Text Available The present work is the numerical investigation of Spark Ignition (SI engines using an open source Computational Fluid Dynamics (CFD tool. Investigations on the usage of OpenFOAM® CFD tool has been carried out for the simulation of SI engines using engineFoam solver. Four-valve pent roof type engine is chosen for the present simulations. The standard k–ɛ turbulence model is used along with the Reynolds Averaged Navier Stokes (RANS equations for simulating the flow field. Energy equation and transport equation for regress variable is solved along with the momentum equations. Xi model is used for the transport and Gulder's correlation is used for laminar flame speed. Unstrained model is used for calculating the laminar flame speed velocity. Two simulations are carried out one with cold flow and the other with combustion. For combustion analysis, Iso-octane fuel is used. Average cylinder pressure is tracked for different Crank Angles (CA from −180 to 60. The temperature contours are plotted on a vertical plane inside the cylinder to indicate the rise in temperature due to combustion. The results indicate that the open source CFD code can be an ideal choice for engine designers.

  8. Numerical Simulation of Solitary Waves Using Smoothed Particle Hydrodynamics Method

    Directory of Open Access Journals (Sweden)

    Swapnadip De Chowdhury

    2012-09-01

    Full Text Available Understanding shallow water wave propagation is of major concern in any coastal mitigation effort. Many times, a solitary wave replicates a shallow water wave in its extreme sense which includes a tsunami wave. It is mainly due to known physical characteristics of such waves. Therefore, the study of propagation of solitary waves in the near shore waters is of equal importance in the context of non linear water waves. Owing to the significant growth in computational technologies in the last few decades, a significant number of numerical methods have emerged and applied to simulate nonlinear solitary wave propagation. In this study, one such method, the Smoothed Particle Hydrodynamics (SPH method has been described to simulate the solitary waves. The split-up of a single solitary wave while it crosses a continental kind of shelf has been simulated by the present model. Then SPH model is coupled with the Boussinesq model to predict the time interval between two successive solitary waves on landfall. It has also been shown to be equally efficient in simulating the wave breaking while a solitary wave propagates over a mild slope.

  9. Numerical Simulations of the Flame of a Single Coaxial Injector

    Directory of Open Access Journals (Sweden)

    Victor P. Zhukov

    2017-01-01

    Full Text Available The processes of mixing and combustion in the jet of a shear-coaxial injector are investigated. Two test cases (nonreacting and reacting are simulated using the commercial computational fluid dynamics code ANSYS CFX. The first test case is an experiment on the mixing in a nonreacting coaxial jet carried out with the use of planar laser induced fluorescence (PLIF. The second test case is an experiment on the visualization of hydrogen-oxygen flame using PLIF of OH in a single injector combustion chamber at pressure of 53 bar. In the first test case, the two-dimensional axisymmetric simulations are performed using the shear-stress turbulence (SST model. Due to the dominant flow unsteadiness in the second test case, the turbulence is modeled using transient SAS (Scale-Adaptive Simulation model. The combustion is modeled using the burning velocity model (BVM while both two- and three-dimensional simulations are carried out. The numerical model agrees with the experimental data very well in the first test case and adequately in the second test case.

  10. Numerical simulations of GAE stabilization in NSTX-U

    Science.gov (United States)

    Belova, Elena; Fredrickson, Eric; Crocker, Neal; NSTX-U Team

    2017-10-01

    Beam-driven Global Alfven Eigenmodes (GAEs) were frequently observed on NSTX and NSTX-U and have been linked with a flattening of the electron temperature profile in the plasma core. New experimental results from NSTX-U have demonstrated that neutral beam injection from the new beam sources with large tangency radii deposit beam ions with large pitch, which can very effectively stabilize all unstable GAEs. Numerical simulations using the HYM code have been performed to study the excitation and stabilization of GAEs in the NSTX-U right before and shortly after the additional off-axis beam injection. HYM simulations reproduce experimental finding, namely it is shown that off-axis neutral beam injection reliably and strongly suppresses all unstable GAEs. Before additional beam injection, the simulations show unstable counter-rotating GAEs with toroidal mode numbers n =7-12, and frequencies that match the experimentally observed unstable GAEs. Additional of-axis beam injection has been modeled by adding beam ions with large pitch, and about 1/3 of the total beam ion inventory. The simulations in this case show a complete stabilization of all unstable GAEs (n =7-12), even for the cases when the HYM calculated GAE growth rates were relatively large. Work supported by U.S. DOE Contract DE'AC02'09CH11466.

  11. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  12. Proudman and Chrystal resonances simulated with three numerical models

    Science.gov (United States)

    Bubalo, Maja; Janeković, Ivica; Orlić, Mirko

    2017-04-01

    The aim of this work was to validate and compare how Proudman and Chrystal resonances are reproduced with different, nowadays widely used, numerical models. The test case was based on simple air pressure disturbances of two commonly used shapes (a boxcar and a sinusoidal), having various wave lengths, and propagating at different speeds. Our test domain was a rectangular basin, 300 km long with a uniform depth of 50 m. For each simulation, we saved water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. The 341 simulations were performed using three different numerical models: ADCIRC, ROMS and SCHISM. A comparison of the results shows that the models represent the resonant phenomena in different ways. For the Proudman resonance, the most consistent results, closest to the analytical solution, were obtained with ROMS model, which reproduced the mean resonant speed equal to 21.99 m/s - i.e., close to the theoretical value of 22.14 m/s. ADCIRC model showed small deviations from that value, with the mean speed being slightly lower - 21.79 m/s. SCHISM differed the most from the analytical solution, with the mean speed equalling 21.04 m/s. For the Chrystal resonance, all the models showed similar behaviour, with ADCIRC model providing slightly lower values of the mean resonant period than the other two models.

  13. Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens

    Directory of Open Access Journals (Sweden)

    Smitha Gopinath

    2014-09-01

    Full Text Available Fiber-reinforced polymer (FRP composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity

  14. Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens

    Science.gov (United States)

    Smitha, Gopinath; Ramachandramurthy, Avadhanam; Nagesh, Ranganatha Iyer; Shahulhameed, Eduvammal Kunhimoideen

    2014-09-01

    Fiber-reinforced polymer (FRP) composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP) composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA) to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity

  15. Numerical Simulation of the Coagulation Dynamics of Blood

    Directory of Open Access Journals (Sweden)

    T. Bodnár

    2008-01-01

    Full Text Available The process of platelet activation and blood coagulation is quite complex and not yet completely understood. Recently, a phenomenological meaningful model of blood coagulation and clot formation in flowing blood that extends existing models to integrate biochemical, physiological and rheological factors, has been developed. The aim of this paper is to present results from a computational study of a simplified version of this coupled fluid-biochemistry model. A generalized Newtonian model with shear-thinning viscosity has been adopted to describe the flow of blood. To simulate the biochemical changes and transport of various enzymes, proteins and platelets involved in the coagulation process, a set of coupled advection–diffusion–reaction equations is used. Three-dimensional numerical simulations are carried out for the whole model in a straight vessel with circular cross-section, using a finite volume semi-discretization in space, on structured grids, and a multistage scheme for time integration. Clot formation and growth are investigated in the vicinity of an injured region of the vessel wall. These are preliminary results aimed at showing the validation of the model and of the numerical code.

  16. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    Energy Technology Data Exchange (ETDEWEB)

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  17. Numerical simulation of a DFB - fiber laser sensor (part 1

    Directory of Open Access Journals (Sweden)

    Dan SAVASTRU

    2010-06-01

    Full Text Available This paper presents the preliminary results obtained in developing a numerical simulationanalysis of fiber optic bending sensitivity aiming to improve the design of fiber lasers. The developednumerical simulation method relies on an analysis of both the fundamental mode propagation alongan optical fiber and of how bending of this fiber influence the optical radiation losses. The cases ofsimple, undoped and of doped with Er3+ ions optical fibers are considered. The presented results arebased on numerical simulation of eigen-modes of a laser intensity distribution by the use of finiteelement method (FEM developed in the frame of COMSOL software package. The numericalsimulations are performed by considering the cases of both normal, non-deformed optic fiber and ofsymmetrically deformed optic fiber resembling micro-bending of it. Both types of fiber optic bendinglosses are analyzed, namely: the transition loss, associated with the abrupt or rapid change incurvature at the beginning and the end of a bend, and pure bend loss is associated with the loss fromthe bend of constant curvature in between.

  18. Numerical Simulation of Spray Atomization in Supersonic Flows

    Science.gov (United States)

    Wang, Jiangfeng; Liu, Chen; Wu, Yizhao

    With the rapid development of the air-breathing hypersonic vehicle design, an accurate description of the combustion properties becomes more and more important, where one of the key techniques is the procedure of the liquid fuel mixing, atomizing and burning coupled with the supersonic crossflow in the combustion chamber. The movement and distribution of the liquid fuel droplets in the combustion chamber will influence greatly the combustion properties, as well as the propulsion performance of the ramjet/scramjet engine. In this paper, numerical simulation methods on unstructured hybrid meshes were carried out for liquid spray atomization in supersonic crossflows. The Kelvin-Helmholtz/Rayleigh-Taylor hybrid model was used to simulate the breakup process of the liquid spray in a supersonic crossflow with Mach number 1.94. Various spray properties, including spray penetration height, droplet size distribution, were quantitatively compared with experimental results. In addition, numerical results of the complex shock wave structure induced by the presence of liquid spray were illustrated and discussed.

  19. Numerical simulation of wave interacting with a free rolling body

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2013-09-01

    Full Text Available The present study numerically models the interaction between a regular wave and the roll motion of a rectangular floating structure. In order to simulate two-dimensional incompressible viscous two-phase flow in a numerical wave tank with the rectangular floating structure, the present study used the volume of fluid method based on the finite volume method. The sliding mesh technique is adopted to handle the motion of the rectangular floating structure induced by fluid-structure interaction. The effect of the wave period on the flow, roll motion and forces acting on the structure is examined by considering three different wave periods. The time variations of the wave height and the roll motion of the rectangular structure are in good agreement with experimental results for all wave periods. The present response amplitude operator is in good agreement with experimental results with the linear potential theory. The present numerical results effectively represent the entire process of vortex generation and evolution described by the experimental results. The longer wave period showed a different mechanism of the vortex evolution near each bottom corner of the structure compared to cases of shorter wave periods. In addition, the x-directional and z-directional forces acting on the structure are analyzed.

  20. Direct numerical simulation of heat transfer over riblets

    Energy Technology Data Exchange (ETDEWEB)

    Stalio, E.; Nobile, E

    2003-06-01

    Riblets are well-known as a passive mean for drag reduction in turbulent flow conditions, but their effectiveness for heat transfer is quite controversial. In this paper we present the numerical results for fully developed laminar and turbulent flow and heat transfer in a channel with triangular riblets. The turbulent study is performed by means of direct numerical simulation at a Reynolds number Re{sub {tau}}=180 based on the wall-shear velocity, for a fluid with a Prandtl number Pr=0.71. Four different ribbed channels are considered, under a constant heat flux boundary condition, and correspond to ridge angle {alpha}=45 deg. and 60 deg., and riblet spacing s{sup +}=20 and s{sup +}=40. The results obtained, for the flow and turbulent quantities, are in good agreement with past experimental and numerical studies, and correctly reproduce drag reduction over the smaller s{sup +}=20 riblets and drag increase over the larger s{sup +}=40 riblets. The predicted heat transfer efficiency of riblets do not agree with some experimental results, and is below that of a flat plate for all the configurations. The conditions for heat transfer enhancement are discussed.

  1. Direct numerical simulation of free falling sphere in creeping flow

    Science.gov (United States)

    Reddy, Rupesh K.; Jin, Shi; Nandakumar, K.; Minev, Peter D.; Joshi, Jyeshtharaj B.

    2010-03-01

    In the present study, direct numerical simulations (DNS) are performed on single and a swarm of particles settling under the action of gravity. The simulations have been carried out in the creeping flow range of Reynolds number from 0.01 to 1 for understanding the hindrance effect, of the other particles, on the settling velocity and drag coefficient. The DNS code is a non-Lagrange multiplier-based fictitious-domain method, which has been developed and validated by Jin et al. (2008; A parallel algorithm for the direct numerical simulation of 3D inertial particle sedimentation. In: Conference proceedings of the 16th annual conference of the CFD Society of Canada). It has been observed that the time averaged settling velocity of the particle in the presence of other particles, decreases with an increase in the number of particles surrounding it (from 9 particles to 245 particles). The effect of the particle volume fraction on the drag coefficient has also been studied and it has been observed that the computed values of drag coefficients are in good agreement with the correlations proposed by Richardson and Zaki (1954; Sedimentation and fluidization: part I. Transactions of the Institution of Chemical Engineers, 32, 35-53) and Pandit and Joshi (1998; Pressure drop in packed, expanded and fluidised beds, packed columns and static mixers - a unified approach. Reviews in Chemical Engineering, 14, 321-371). The suspension viscosity-based model of Frankel and Acrivos (1967; On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847-853) shows good agreement with the DNS results.

  2. Color Gradients Within Globular Clusters: Restricted Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Young-Jong Sohn

    1997-06-01

    Full Text Available The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salpeter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpeter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.

  3. Numerical Simulation of Density Current Evolution in a Diverging Channel

    Directory of Open Access Journals (Sweden)

    Mitra Javan

    2012-01-01

    Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.

  4. Numerical simulation of backward erosion piping in heterogeneous fields

    Science.gov (United States)

    Liang, Yue; Yeh, Tian-Chyi Jim; Wang, Yu-Li; Liu, Mingwei; Wang, Junjie; Hao, Yonghong

    2017-04-01

    Backward erosion piping (BEP) is one of the major causes of seepage failures in levees. Seepage fields dictate the BEP behaviors and are influenced by the heterogeneity of soil properties. To investigate the effects of the heterogeneity on the seepage failures, we develop a numerical algorithm and conduct simulations to study BEP progressions in geologic media with spatially stochastic parameters. Specifically, the void ratio e, the hydraulic conductivity k, and the ratio of the particle contents r of the media are represented as the stochastic variables. They are characterized by means and variances, the spatial correlation structures, and the cross correlation between variables. Results of the simulations reveal that the heterogeneity accelerates the development of preferential flow paths, which profoundly increase the likelihood of seepage failures. To account for unknown heterogeneity, we define the probability of the seepage instability (PI) to evaluate the failure potential of a given site. Using Monte-Carlo simulation (MCS), we demonstrate that the PI value is significantly influenced by the mean and the variance of ln k and its spatial correlation scales. But the other parameters, such as means and variances of e and r, and their cross correlation, have minor impacts. Based on PI analyses, we introduce a risk rating system to classify the field into different regions according to risk levels. This rating system is useful for seepage failures prevention and assists decision making when BEP occurs.

  5. Scaling of turbulence and turbulent mixing using Terascale numerical simulations

    Science.gov (United States)

    Donzis, Diego A.

    Fundamental aspects of turbulence and turbulent mixing are investigated using direct numerical simulations (DNS) of stationary isotropic turbulence, with Taylor-scale Reynolds numbers (Rlambda) ranging from 8 to 650 and Schmidt numbers (Sc) from 1/8 to 1024. The primary emphasis is on important scaling issues that arise in the study of intermittency, mixing and turbulence under solid-body rotation. Simulations up to 20483 in size have been performed using large resource allocations on Terascale computers at leading supercomputing centers. Substantial efforts in algorithmic development have also been undertaken and resulted in a new code based on a two-dimensional domain decomposition which allows the use of very large number of processors. Benchmark tests indicate very good parallel performance for resolutions up to 40963 on up to 32768 processors, which is highly promising for future simulations at higher resolutions and processor counts eventually to approach Petascale levels. Investigation of intermittency through the statistics of dissipation and enstrophy in a series of simulations at the same Reynolds number but different resolution indicate that accurate results in high-order moments require a higher degree of fine-scale resolution than commonly practiced. However, statistics up to fourth order are satisfactory if the grid spacing is not larger than Komogorov scale, without the requirement of a clear analytic range for corresponding structure functions as suggested by recent theories. Results from highly resolved simulations provide support for a modified resolution criterion derived in this work for structure functions of different orders and as a function of Rlambda. At the highest Reynolds number in our simulations (400 and 650) dissipation and enstrophy exhibit extreme fluctuations of O(1000) the mean which have not been studied in the literature before. The far tails of the probability density functions of dissipation and enstrophy appear to coincide

  6. Numerical Simulations of Turbulence Mixing in the Northern Arabian Gulf

    Science.gov (United States)

    Li, D.; Anis, A.

    2016-12-01

    The Arabian Gulf (24° to 30° N, 48° to 57° E) is a large semi-enclosed and relatively shallow body of water and connects to the Indian Ocean through the Strait of Hormuz. The maximum and average water depths are 90 and 50 meters, respectively. Strong northwesterly winds, named ''Shamals'' are common in this region and are expected to lead to significant turbulence mixing processes in this relatively shallow water body. Measurements and a numerical model were used to study these processes. Observations were conducted in the vicinity of Qarooh Island, off Kuwait, from January to April, 2013. Observational data included time series of surface meteorological parameters (wind speed and direction, air temperature and humidity, short- and long-wave radiation, and barometric pressure) and hydrodynamical parameters (water-temperature and water-currents). These were used to force and verify the numerical simulations conducted with a 1-D numerical model, the General Ocean Turbulence Model (GOTM), to further study the physical mechanisms. Here we used second-moment two-equation k-ɛ turbulence models with a 300-s time step, a 0.1-m vertical grid size, and a 12-hour spin-up time for numerical experiments. The model was driven by surface momentum and heat flux. Temperature advection was computed from two nearby stations, station Sea Island (48.30° E, 29.10° N) and station Beacon (48.06° E ,29.52° N). The simulations were relaxed to the observed temperature and current speeds at 8 meters below the surface. GOTM generated bottom current velocities and temperature agreed well with observed values at our observation site. During shamal events when maximum wind speeds reach up to 13 m/s, energy input from the winds is estimated to be 0.12W/m2. GOTM generated turbulent kinetic energy (TKE) in the water-column was found to increase from 8.80 J/m2 to 12.51 J/m2 with 12-hour delay. TKE induced by the wind was estimated to be 30% of the total TKE of the water column while the rest

  7. Homogenization-Based Numerical Mathods, Homogenization, Asymptotic Analysis, Asymptotic Expansion, Numerical Simulation

    OpenAIRE

    Frenod, Emmanuel

    2013-01-01

    In this note, a classification of Homogenization-Based Numerical Methods and (in particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.

  8. Advances in Integrated Vehicle Thermal Management and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-10-01

    Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.

  9. Single Stage To Orbit Minimum Requirements Through Numerical Simulation

    Science.gov (United States)

    Teixeira, E.

    It is widely known that producing a single stage to orbit spacecraft is no easy task. It is also understood that it will be the first steady step towards spacecraft that operate in much the same way as today's airliners. This, in turn is believed to decrease the economical cost of reaching space through more efficient use of a single vehicle and higher launch rates. Space is then open to the common man, either through tourism or as a transportation medium. This paper is yet another study on the physical requirements of a SSTO spacecraft. It will begin with simple assumptions and gradually build up accuracy until reaching the use of a numerical simulation tool, so as to provide the necessary insight into it. The curvature of the Earth, its gravitational field, the exhaust pressure loss and atmospheric drag are a few of the considerations that the simulation takes into account. No attention was give to the actual details of the spacecraft such as propulsion type(s), winged or lifting body (aerodynamics), active or passive cooling (thermodynamics), stability and control. All these subsystems are considered to be included into the construction mass. The drag model is a simple textbook approximation and the propulsion force is given by a hypothetical propellant and engine so as to produce the assumed range of specific impulse. Even the construction mass is supposed to be futuristic so as to reach the lowest specified values. Not only vertical take-off will be simulated but also horizontal launching from altitude (from a towing aircraft, for example). The result of the paper shows the relationship between the construction mass and the specific impulse of a given spacecraft if it is to reach low earth orbit. This paper thus aims at bringing some light to the controversial discussion of how to make these vehicles a reality. The simulation program (Matlab) is available to students.

  10. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    Science.gov (United States)

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    A three-dimensional numerical model of groundwater flow was constructed for the Columbia Plateau Regional Aquifer System (CPRAS), Idaho, Oregon, and Washington, to evaluate and test the conceptual model of the system and to evaluate groundwater availability. The model described in this report can be used as a tool by water-resource managers and other stakeholders to quantitatively evaluate proposed alternative management strategies and assess the long‑term availability of groundwater. The numerical simulation of groundwater flow in the CPRAS was completed with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater.

  11. Numerical simulation of the passive gas mixture flow

    Directory of Open Access Journals (Sweden)

    Kyncl Martin

    2016-01-01

    Full Text Available The aim of this paper is the numerical solution of the equations describing the non-stationary compressible turbulent multicomponent flow in gravitational field. The mixture of perfect inert gases is assumed. We work with the RANS equations equipped with the k-omega and the EARSM turbulence models. For the simulation of the wall roughness we use the modification of the specific turbulent dissipation. The finite volume method is used, with thermodynamic constants being functions in time and space. In order to compute the fluxes through the boundary faces we use the modification of the Riemann solver, which is the original result. We present the computational results, computed with the own-developed code (C, FORTRAN, multiprocessor, unstructured meshes in general.

  12. Direct Numerical Simulations for Combustion Science: Past, Present, and Future

    KAUST Repository

    Im, Hong G.

    2017-12-12

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.

  13. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  14. Parallelization of a numerical simulation code for isotropic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shigeru; Yokokawa, Mitsuo; Watanabe, Tadashi; Kaburaki, Hideo

    1996-03-01

    A parallel pseudospectral code which solves the three-dimensional Navier-Stokes equation by direct numerical simulation is developed and execution time, parallelization efficiency, load balance and scalability are evaluated. A vector parallel supercomputer, Fujitsu VPP500 with up to 16 processors is used for this calculation for Fourier modes up to 256x256x256 using 16 processors. Good scalability for number of processors is achieved when number of Fourier mode is fixed. For small Fourier modes, calculation time of the program is proportional to NlogN which is ideal complexity of calculation for 3D-FFT on vector parallel processors. It is found that the calculation performance decreases as the increase of the Fourier modes. (author).

  15. Direct numerical simulation of three-dimensional liquid jet breakup

    Science.gov (United States)

    Constante, Ricardo; Kahouadji, Lyes; Nicolle, Andre; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Matar, Omar K.

    2017-11-01

    We carry out direct numerical simulations of liquid jet dynamics and breakup using a high-performance code, Blue, which uses a hybrid technique based on the front-tracking and the level-set method; it defines the interface position through a marker function and a local triangular Lagrangian mesh. Liquid jet breakup is an example of interfacial complexity associated with multiphase flows because of the formation of ligaments and their pinch off to give rise to droplet formation. We consider the atomisation of a liquid jet released into a stagnant gas phase where the velocity is stimulated sinusoidally to promote the growth of Kelvin-Helmholtz instabilities, thus forming a flow system characterized by complex interfaces. The spread of cylindrical liquid jet into a coflowing external stream is also considered (essentially, a replication of the Marmottant and Villermaux experimental work). Funding from BP gratefully acknowledged.

  16. Numerical simulation of dimples in airfoil using MATLAB

    Science.gov (United States)

    Booma Devi, P.; Shah, Dilip A.

    2017-05-01

    The Aircraft wing is a point of important research which poses greater challenge in terms of aerodynamic efficiency. The flow separation control method is addressed in classical aerodynamics methods. This study focuses on influence of dimples on controlling the flow and also increasing the aerodynamic efficiency. The periodic process of placing the cavities on the wing starting from root to tip controls the flow separation. The linear variation of characteristic curve provides the information about the flow separation and control of flow on upper surface of the airfoil.These different shapes are utilized viz., Square, Rectangle and Triangle. The numerical simulation is carried out in using MATLAB package. Preliminary analysis on the flow separation is carried out focuses on laminar flow separation, which has the influence on the overall lift generation and drag generation.

  17. Solid-state electro-cumulation effect numerical simulation

    CERN Document Server

    Grishin, V G

    2001-01-01

    It is an attempt to simulate as really as possible a crystal's interatomic interaction under conditions of "Solid-state electro-cumulation (super-polarization) effect". Some theoretical and experimental reasons to believe that within solid substances an interparticles interaction could concentrate from the surface to a centre were given formerly. Now, numerical results show the conditions that could make the cumulation more effective. Another keywords: ion, current, solid, symmetry, cumulation, polarization, depolarization, ionic conductor,superionic conductor, ice, crystal, strain, V-center, V-centre, doped crystal, interstitial impurity, intrinsic color center, high pressure technology, Bridgman, anvil, experiment, crowdion, dielectric, proton, layer, defect, lattice, dynamics, electromigration, mobility, muon catalysis, concentration, doping, dopant, conductivity, pycnonuclear reaction, permittivity, dielectric constant, point defects, interstitials, polarizability, imperfection, defect centers, glass, epi...

  18. Numerical Simulation of Cylindrical Solitary Waves in Periodic Media

    KAUST Repository

    Quezada de Luna, Manuel

    2013-07-14

    We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.

  19. Direct Numerical Simulation and Visualization of Biswirling Jets

    Directory of Open Access Journals (Sweden)

    Jie Yan

    2014-07-01

    Full Text Available Two parallel swirling/rotating jets with a distance between them are termed biswirling jets here, which have important and complicated vortex structures different from the single swirling jet due to the negligible vortex-vortex interactions. The visualization of vortex-vortex interaction between the biswirling jets is accomplished by using direct numerical simulation. The evolution of vortex structures of the biswirling jets is found rather complicated. The turbulent kinetic energy and turbulence dissipation in the central convergence region are augmented locally and rather strongly. The modulation of turbulent kinetic energy by jet-jet interaction upon different scales of vortices is dominated by the swirling levels and the distance between the jets. The turbulent kinetic energy upon intermediate and small scale vortices in bijets with not very high swirling level and at a very close distance is smaller than that in single swirling jets, whereas the opposite is true under a far distance, and so forth.

  20. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  1. Direct numerical simulation of pattern formation in subaqueous sediment

    CERN Document Server

    Kidanemariam, Aman G

    2014-01-01

    We present results of direct numerical simulation of incompressible fluid flow over a thick bed of mobile, spherically-shaped particles. The algorithm is based upon the immersed boundary technique for fluid-solid coupling and uses a soft-sphere model for the solid-solid contact. Two parameter points in the laminar flow regime are chosen, leading to the emergence of sediment patterns classified as `small dunes', while one case under turbulent flow conditions leads to `vortex dunes' with significant flow separation on the lee side. Wavelength, amplitude and propagation speed of the patterns extracted from the spanwise-averaged fluid-bed interface are found to be consistent with available experimental data. The particle transport rates are well represented by available empirical models for flow over a plane sediment bed in both the laminar and the turbulent regimes.

  2. The steady state of epidermis: mathematical modeling and numerical simulations.

    Science.gov (United States)

    Gandolfi, Alberto; Iannelli, Mimmo; Marinoschi, Gabriela

    2016-12-01

    We consider a model with age and space structure for the epidermis evolution. The model, previously presented and analyzed with respect to the suprabasal epidermis, includes different types of cells (proliferating cells, differentiated cells, corneous cells, and apoptotic cells) moving with the same velocity, under the constraint that the local volume fraction occupied by the cells is constant in space and time. Here, we complete the model proposing a mechanism regulating the cell production in the basal layer and we focus on the stationary case of the problem, i.e. on the case corresponding to the normal status of the skin. A numerical scheme to compute the solution of the model is proposed and its convergence is studied. Simulations are provided for realistic values of the parameters, showing the possibility of reproducing the structure of both "thin" and "thick" epidermis.

  3. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    Science.gov (United States)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  4. Numerical simulation of turbulent flow in corrugated pipes

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Henrique S. de; Morales, Rigoberto E.M.; Franco, Admilson T.; Junqueira, Silvio L.M.; Erthal, Raul H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dept. Academico de Mecanica (DAMEC)]. E-mails: rique.stel@gmail.com; rmorales@utfpr.edu.br; admilson@utfpr.edu.br; silvio@utfpr.edu.br; rherthal@utfpr.edu.br; Goncalves, Marcelo de Albuquerque Lima [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)]. E-mail: marcelog@petrobras.com.br

    2008-07-01

    Corrugated pipes are used in various engineering applications such heat exchangers and oil transport. In most cases these pipes consist of periodically distributed grooves at the duct inner wall. Numerical and experimental works reported the influence of grooves height and length in the turbulent flow by inspection of several turbulent properties such as velocity fluctuations and Reynolds stress. The present article aims to investigate the influence of grooves height and length in the global friction factor of turbulent flow through periodically corrugated pipes. Mass and momentum conservation equations are revised and specific boundary conditions are set to characterize a periodic fully developed regime in a single axisymmetric bidimensional module which represents the periodically corrugated duct geometry. The set of algebraic equations is discretized through the Finite Volume Method, with the Hybrid interpolation scheme applied to the convective terms, and solved using the commercial software PHOENICS CFD. The simulation of turbulent, incompressible, isothermal and single-phase flow is considered. The algebraic turbulence model LVEL is used. Four geometric configurations are assumed, including grooves height and length variations, in order to compare their influence on the friction factor. The obtained numerical friction factors show good agreement with previous experimental results, specially for Reynolds numbers over 20000. Numerical results for corrugated pipes compared to the Blasius smooth pipe correlation shows that the friction factor increases compared to smooth pipes, and such increase is more significant for higher Reynolds numbers and for larger grooves as well. These trends appear to be related to an enhancement of the momentum transport over the corrugated wall due to the recirculating pattern inside the grooves, in accordance with previous experimental works (author)

  5. Numerical Simulation of Real Debris-Flow Events

    Science.gov (United States)

    Fraccarollo, L.; Papa, M.

    2000-09-01

    A one-dimensional model is presented to predict debris-flow runouts. The model is based on shallow water type assumptions. The fluid is assumed to be homogeneous and the original bed of the flow domain to be unerodible. The fluid is characterized by a rheology of Bingham type. A numerical tool able to cope with the nature of debris flows has been worked out. It represents an extension of a second order accurate and conservative method of Godunov type. Special care has been devoted to the influence of the source terms and of the geometrical representation of the natural cross sections, which play a fundamental role. The application concerns a monitored event in the Dolomites in Italy, where field analyses allowed a characterization of the behavior of solid-liquid mixture as a yield stress material. The comparison between numerical simulations and field observations highlights the impossibility of representing all phases of the flow with constant values of the rheological parameters. Nevertheless the results show that it is possible to separately represent the phase of the flow in the upstream reach and the phase of the deposition in the alluvial fan, with a good agreement with field observations.

  6. Numerical simulation of electro-fishing in seawater

    Directory of Open Access Journals (Sweden)

    Edo D'Agaro

    2010-01-01

    Full Text Available We evaluated the feasibility of an electro-fishing system using numerical simulations for laboratory tanks and the open sea. A non-homogeneous bi-dimensional electric-field model for water and fish based on discrete formulation of electro-magnetic field equations was developed using GAME (geometric approach for Maxwell equations software. Current densities (μA/cm2 and voltage differences (V/m were calculated for a fixed shape and spatial geometry of electrodes (one circular anode central to two symmetric linear cathodes 10 m distant from each other. Voltage gradients inside the fish and close to the body (head–tail potential difference and mean, maximum and minimum field modules were determined. Tank and open sea environments were numerically described for single fish 10 cm or 30 cm long and for groups of 30 fish 10 cm long. In the open sea, a tension of 90 V at the electrodes and a water conductibility of 5 S/m resulted in an area of fish attraction (voltage gradient >10 V/m of about 30 m2. Fish in the open sea and in groups had greater internal voltage differences than did fish in tanks and single fish.

  7. Numerical simulation of the dynamics evolution of alluvial mining quarries

    Science.gov (United States)

    Lyubimova, T. P.; Lepikhin, A. P.; Parshakova, Ya N.

    2017-07-01

    Alluvial mining quarry (or placer mining) is one of the main techniques for extracting important building materials such as sand and gravels. Prediction of quarries detrimental effects on the hydraulic regimes of rivers, in particular on flow regimes, has been carried on in full details in 0, 1 and 2D problem formulations (in the latter case, a depth-averaging is applied). However, the prediction of the quarry behavior itself is unfeasible, though such information would be of paramount importance for estimating the adverse effect on the river bed. This work studies the dynamics evolution of alluvial mining quarries in the framework of two-dimensional formulation based on width-averaging. The Euler multiphase model, which allows simulating separately the behavior of several interacting phases, is implemented. The conducted numerical experiments show that the upstream part of the quarry is eroded more intensively than the downstream one, displacing the quarry up-stream. This effect was observed during numerous field case-studies.

  8. Numerical Simulations on Origin of Galilean Moons' Magnetic Anomalies

    Science.gov (United States)

    Jiao, LiQuo; Kuang, WeiJia; Ma, ShiZhuang

    2011-01-01

    Galileo mission detected the magnetic anomalies originated from Galilean moons. These anomalies are likely generated in the moons interiors, under the influence of a strong ambient Jovian field. Among various possible generation mechanisms of the anomalies, we focus on magneto-convection and dynamos in the interiors via numerical simulation. To mimic the electromagnetic environment of the moons, we introduce in our numerical model an external uniform magnetic field B(sub 0) with a fixed orientation but varying field strength. Our results show that a finite B(sub 0) can substantially alter the dynamo processes inside the core. When the ambient field strength B(sub 0) increases to approximately 40% of the field generated by the pure dynamo action, the convective state in the core changes significantly: the convective flow decreases by 80% in magnitude, but the differential rotation becomes stronger in much of the fluid layer, leading to a stronger field generated in the core. The field morphologies inside the core tend to align with the ambient field, while the flow patterns show the symmetry-breaking effect under the influence of B(sub 0). Furthermore, the generated field tends to be temporally more stable.

  9. Quantifying paleosecular variation: Insights from numerical dynamo simulations

    Science.gov (United States)

    Lhuillier, F.; Gilder, S. A.

    2013-12-01

    Numerical dynamo simulations can be used to investigate paleosecular variation of Earth-like magnetic fields over several million-year timescales. Using a set of five numerical models integrated over the equivalent of 40-50 Myr, we generated synthetic data analogous to paleomagnetic data. We show that paleosecular variation among the five models is best discriminated by the relative variability in paleointensity (ɛ_F) and the precision parameter (k) of directions or poles. Whether the geodynamo operated in different regimes in its past can be best tested with these parameters in combination. Roughly one million years of time with 200 time-independent samples is required to achieve convergence of ɛ_F and k. The quantities ɛ_F and k correlate well with the average chron duration (μ_chr), which suggests that excursions and reversals are an integral part of palaeosecular variation. If applicable to the geodynamo, the linear dependence of k on μ_chr could help to predict μ_chr for the Earth during geologic times with no available reversal frequency data; it also predicts much higher average k for directions during superchrons (k ≈ 2500 for the Cretaceous normal superchron) than during actively reversing times (k ≈ 35 for the last 80 Myr). As such high k values are not observed, either this family of dynamo models is not applicable to the geodynamo, or the geodynamo regime acting during superchrons lies statistically within the same energy state as at present.

  10. Numerical Simulations of Thermal Convection in Rapidly Rotating Spherical Shell

    Energy Technology Data Exchange (ETDEWEB)

    Nenkov, Constantine; Peltier, Richard, E-mail: nenkov@atmosp.physics.utoronto.ca, E-mail: peltier@atmosp.physics.utoronto.ca [Department of Physics, University of Toronto Toronto, Ontario, M5S 1A7 (Canada)

    2010-11-01

    We present a novel numerical model used to simulate convection in the atmospheres of the Gas Giant planets Jupiter and Saturn. Nonlinear, three-dimensional, time-dependant solutions of the anelastic hydrodynamic equations are presented for a stratified, rotating spherical fluid shell heated from below. This new model is specified in terms of a grid-point based methodology which employs a hierarchy of tessellations of the regular icosahedron onto the sphere through the process of recurrent dyadic refinements of the spherical surface. We describe discretizations of the governing equations in which all calculations are performed in Cartesian coordinates in the local neighborhoods of the almost uniform icosahedral grid, a methodology which avoids the potential mathematical and numerical difficulties associated with the pole problem in spherical geometry. Using this methodology we have built our model in primitive equations formulation, whereas the three-dimensional vector velocity field and temperature are directly advanced in time. We show results of thermal convection in rapidly rotating spherical shell which leads to the formation of well pronounced prograde zonal jets at the equator, results which previous experiments with two-dimensional models in the limit of freely evolving turbulence were not able to achieve.

  11. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.

    2016-07-15

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

  12. Numerical Simulation of rivulet build up via lubrication equations

    Science.gov (United States)

    Suzzi, N.; Croce, G.

    2017-11-01

    A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.

  13. 3D Numerical Simulation on the Rockslide Generated Tsunamis

    Science.gov (United States)

    Chuang, M.; Wu, T.; Wang, C.; Chu, C.

    2013-12-01

    The rockslide generated tsunami is one of the most devastating nature hazards. However, the involvement of the moving obstacle and dynamic free-surface movement makes the numerical simulation a difficult task. To describe both the fluid motion and solid movement at the same time, we newly developed a two-way fully-coupled moving solid algorithm with 3D LES turbulent model. The free-surface movement is tracked by volume of fluid (VOF) method. The two-step projection method is adopted to solve the Navier-Stokes type government equations. In the new moving solid algorithm, a fictitious body force is implicitly prescribed in MAC correction step to make the cell-center velocity satisfied with the obstacle velocity. We called this method the implicit velocity method (IVM). Because no extra terms are added to the pressure Poission correction, the pressure field of the fluid part is stable, which is the key of the two-way fluid-solid coupling. Because no real solid material is presented in the IVM, the time marching step is not restricted to the smallest effective grid size. Also, because the fictitious force is implicitly added to the correction step, the resulting velocity is accurate and fully coupled with the resulting pressure field. We validated the IVM by simulating a floating box moving up and down on the free-surface. We presented the time-history obstacle trajectory and compared it with the experimental data. Very accurate result can be seen in terms of the oscillating amplitude and the period (Fig. 1). We also presented the free-surface comparison with the high-speed snapshots. At the end, the IVM was used to study the rock-slide generated tsunamis (Liu et al., 2005). Good validations on the slide trajectory and the free-surface movement will be presented in the full paper. From the simulation results (Fig. 2), we observed that the rockslide generated waves are manly caused by the rebounding waves from two sides of the sliding rock after the water is dragging

  14. Piloted simulator assessments of agility

    Science.gov (United States)

    Schneider, Edward T.

    1990-01-01

    NASA has utilized piloted simulators for nearly two decades to study high-angle-of-attack flying qualities, agility, and air-to-air combat. These studies have included assessments of an F-16XL aircraft equipped with thrust vectoring, an assessment of the F-18 HARV maneuvering requirements to assist in thrust vectoring control system design, and an agility assessment of the F-18. The F-18 agility assessment was compared with in-flight testing. Open-loop maneuvers such as 180-deg rolls to measure roll rate showed favorable simulator/in-flight comparison. Closed-loop maneuvers such as rolls to 90 deg with precision stops or certain maximum longitudinal pitching maneuvers showed poorer performance due to reduced aggressiveness of pilot inputs in flight to remain within flight envelope limits.

  15. Finite-difference numerical simulations of underground explosion cavity decoupling

    Science.gov (United States)

    Aldridge, D. F.; Preston, L. A.; Jensen, R. P.

    2012-12-01

    Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion

  16. Direct Numerical Simulation of Turbulent Condensation in Clouds

    Science.gov (United States)

    Shariff, K.; Paoli, R.

    2004-01-01

    In this brief, we investigate the turbulent condensation of a population of droplets by means of a direct numerical simulation. To that end, a coupled Navier-Stokes/Lagrangian solver is used where each particle is tracked and its growth by water vapor condensation is monitored exactly. The main goals of the study are to find out whether turbulence broadens the droplet size distribution, as observed in in situ measurements. The second issue is to understand if and for how long a correlation between the droplet radius and the local supersaturation exists for the purpose of modeling sub-grid scale microphysics in cloud-resolving codes. This brief is organized as follows. In Section 2 the governing equations are presented, including the droplet condensation model. The implementation of the forcing procedure is described in Section 3. The simulation results are presented in Section 4 together with a sketch of a simple stochastic model for turbulent condensation. Conclusions and the main outcomes of the study are given in Section 5.

  17. Numerical simulation of NQR/NMR: Applications in quantum computing.

    Science.gov (United States)

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. COMPARATIVE NUMERICAL SIMULATION OF THE TOHOKU 2011 TSUNAMI

    Directory of Open Access Journals (Sweden)

    Baranova N.A.

    2015-10-01

    Full Text Available The comparative numerical simulation of generation and propagation of tsunami waves generated by the source of the catastrophic 2011 Tohoku earthquake in Japan was performed based on the Okada model and the dynamic keyboard block model. The initial model is connected with the choice of orientation of longitudinal and transverse ruptures within the source region and the values of displacements along the main fault. A subsequent model is based on the premise that the initial stress distribution along the fault zone affects essentially the character of movements around the earthquake source and takes into account the stress-strain state of keyboard blocks. In the first case of the present study, the earthquake source was designated and constructed based on the parameters of the ten largest aftershocks within a finite time interval, while in the second case the source used included all aftershocks on the first day following the main event. Based on such comparative source simulations and far-field tsunami wave measurements, the results with both models were determined to have close similarities. However, in the near-field zone, the agreement with observable data was not as good. That can be attributed to inaccuracies in the placement of virtual tide gauges relative to real ones, as well as to features of bottom relief near the coast.

  19. Numerical Simulation of Barite Sag in Pipe and Annular Flow

    Directory of Open Access Journals (Sweden)

    Patrick Kabanda

    2017-01-01

    Full Text Available With the ever increasing global energy demand and diminishing petroleum reserves, current advances in drilling technology have resulted in numerous directional wells being drilled as operators strive to offset the ever-rising operating costs. In as much as deviated-well drilling allows drillers to exploit reservoir potential by penetrating the pay zone in a horizontal, rather than vertical, fashion, it also presents conditions under which the weighting agents can settle out of suspension. The present work is categorized into two parts. In the first part, governing equations were built inside a two-dimensional horizontal pipe geometry and the finite element method utilized to solve the equation-sets. In the second part, governing equations were built inside a three-dimensional horizontal annular geometry and the finite volume method utilized to solve the equation-sets. The results of the first part of the simulation are the solid concentration, mixture viscosity, and a prediction of the barite bed characteristics. For the second part, simulation results show that the highest occurrence of barite sag is at low annular velocities, nonrotating drill pipe, and eccentric drill pipe. The CFD approach in this study can be utilized as a research study tool in understanding and managing the barite sag problem.

  20. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields

    Science.gov (United States)

    Javed, Afroz; Chakraborty, Debasis

    2017-10-01

    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  1. Numerical simulations of groundwater flow at New Jersey Shallow Shelf

    Science.gov (United States)

    Fehr, Annick; Patterson, Fabian; Lofi, Johanna; Reiche, Sönke

    2016-04-01

    During IODP Expedition 313, three boreholes were drilled in the so-called New Jersey transect. Hydrochemical studies revealed the groundwater situation as more complex than expected, characterized by several sharp boundaries between fresh and saline groundwater. Two conflicting hypotheses regarding the nature of these freshwater reservoirs are currently debated. One hypothesis is that these reservoirs are connected with onshore aquifers and continuously recharged by seaward-flowing groundwater. The second hypothesis is that fresh groundwater was emplaced during the last glacial period. In addition to the petrophysical properties measured during IODP 313 expedition, Nuclear Magnetic Resonance (NMR) measurements were performed on samples from boreholes M0027, M0028 and M0029 in order to deduce porosities and permeabilities. These results are compared with data from alternative laboratory measurements and with petrophysical properties inferred from downhole logging data. We incorporate these results into a 2D numerical model that reflects the shelf architecture as known from drillings and seismic data to perform submarine groundwater flow simulations. In order to account for uncertainties related to the spatial distribution of physical properties, such as porosity and permeability, systematic variation of input parameters was performed during simulation runs. The target is to test the two conflicting hypotheses of fresh groundwater emplacements offshore New Jersey and to improve the understanding of fluid flow processes at marine passive margins.

  2. Numerical Simulations for Large Deformation of Geomaterials Using Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Ziyang Zhao

    2018-01-01

    Full Text Available From the microperspective, this paper presents a model based on a new type of noncontinuous theoretical mechanical method, molecular dynamics (MD, to simulate the typical soil granular flow. The Hertzian friction formula and viscous damping force are introduced in the MD governing equations to model the granular flow. To show the validity of the proposed approach, a benchmark problem of 2D viscous material flow is simulated. The calculated final flow runout distance of the viscous material agrees well with the result of constrained interpolated profile (CIP method as reported in the literature. Numerical modeling of the propagation of the collapse of three-dimensional axisymmetric sand columns is performed by the application of MD models. Comparison of the MD computational runout distance and the obtained distance by experiment shows a high degree of similarity. This indicates that the proposed MD model can accurately represent the evolution of the granular flow. The model developed may thus find applications in various problems involving dense granular flow and large deformations, such as landslides and debris flow. It provides a means for predicting fluidization characteristics of soil large deformation flow disasters and for identification and design of appropriate protective measures.

  3. Numerical simulation of unsteady propeller/rudder interaction

    Directory of Open Access Journals (Sweden)

    Lei He

    2017-11-01

    Full Text Available A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

  4. Numerical simulation of circular cylinders in free-fall

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gomez, Pedro; Richmond, Marshall C.

    2016-02-01

    In this work, we combined the use of (i) overset meshes, (ii) a 6 degree-of-freedom (6- DOF) motion solver, and (iii) an eddy-resolving flow simulation approach to resolve the drag and secondary movement of large-sized cylinders settling in a quiescent fluid at moderate terminal Reynolds numbers (1,500 < Re < 28,000). These three strategies were implemented in a series of computational fluid dynamics (CFD) solutions to describe the fluid-structure interactions and the resulting effects on the cylinder motion. Using the drag coefficient, oscillation period, and maximum angular displacement as baselines, the findings show good agreement between the present CFD results and corresponding data of published laboratory experiments. We discussed the computational expense incurred in using the present modeling approach. We also conducted a preceding simulation of flow past a fixed cylinder at Re = 3,900, which tested the influence of the turbulence approach (time-averaging vs eddy-resolving) and the meshing strategy (continuous vs. overset) on the numerical results. The outputs indicated a strong effect of the former and an insignificant influence of the latter. The long-term motivation for the present study is the need to understand the motion of an autonomous sensor of cylindrical shape used to measure the hydraulic conditions occurring in operating hydropower turbines.

  5. Parametric Optimization Through Numerical Simulation of VCR Diesel Engine

    Science.gov (United States)

    Ganji, Prabhakara Rao; Mahmood, Al-Qarttani Abdulrahman Shakir; Kandula, Aasrith; Raju, Vysyaraju Rajesh Khana; Rao, Surapaneni Srinivasa

    2017-08-01

    In the present study, the Variable Compression Ratio (VCR) engine was analyzed numerically using CONVERGE™ Computational Fluid Dynamics code in order to optimize the design/operating parameters such as Compression Ratio (CR), Start of Injection (SOI) and Exhaust Gas Recirculation (EGR). VCR engine was run for 100 % load to test its performance and it was validated for standard configuration. Simulations were performed by varying the design/operating parameters such as CR (18-14), SOI (17°-26° bTDC) and EGR (0-15 %) at constant fuel injection pressure of 230 bar and speed of 1500 rpm. The effect of each of these parameters on pressure, oxides of nitrogen (NOx) and soot are presented. Finally, regression equations were developed for pressure, NOx and soot by using the simulation results. The regression equations were solved for multi objective criteria in order to reduce the NOx and soot while maintaining the baseline performance. The optimized configuration was tested for validation and found satisfactory.

  6. Direct numerical simulation of turbulent, chemically reacting flows

    Science.gov (United States)

    Doom, Jeffrey Joseph

    This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto-ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co--located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non--reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily applicable to complex chemical mechanisms. Good results are obtained for validation simulations. The algorithm is used to study auto-ignition in laminar vortex rings. A nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [37] is used. Diluted H 2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratio, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto--ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, zeta MR (Mastorakos et al. [32]). Subsequent evolution of the flame is not predicted by zetaMR; a most reactive temperature TMR is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke

  7. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow

  8. A Numerical Simulation of Hodgkin-Huxley Model : An Approach to an Understanding of a Brain

    OpenAIRE

    平田, 隆幸; 黒岩, 丈介; 浅井, 竜哉

    2004-01-01

    A numerical simulation of Hodgkin-Huxley model was carried out by using a Runge-Kutta method. In the numerical simulation, the functions of Numerical Recipes in C were used for solving the Hodgkin-Huxley equation. The accuracy of numerical solutions was discussed for both simple Runge-Kutta method and adaptive stepsize control Runge-Kutta method. The difference between simulation performed by using float type variables and one by using double type variables was also discussed. A large neural ...

  9. Numerical simulation of a passive scalar transport from thermal power plants

    Science.gov (United States)

    Issakhov, Alibek; Baitureyeva, Aiymzhan

    2017-06-01

    The active development of the industry leads to an increase in the number of factories, plants, thermal power plants, nuclear power plants, thereby increasing the amount of emissions into the atmosphere. Harmful chemicals are deposited on the soil surface, remain in the atmosphere, which leads to a variety of environmental problems which are harmful for human health and the environment, flora and fauna. Considering the above problems, it is very important to control the emissions to keep them at an acceptable level for the environment. In order to do that it is necessary to investigate the spread of harmful emissions. The best way to assess it is the creating numerical simulation of gaseous substances' motion. In the present work the numerical simulation of the spreading of emissions from the thermal power plant chimney is considered. The model takes into account the physical properties of the emitted substances and allows to calculate the distribution of the mass fractions, depending on the wind velocity and composition of emissions. The numerical results were performed using the ANSYS Fluent software package. As a result, the results of numerical simulations and the graphs are given.

  10. Experimentation and numerical simulation of steel fibre reinforced concrete pipes

    Directory of Open Access Journals (Sweden)

    de la Fuente, Albert

    2011-06-01

    Full Text Available The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m3 were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology.

    En este artículo se presentan los resultados principales de un estudio experimental y numérico del comportamiento de tubos hormigón reforzado con fibras de acero (THFA. Se fabricaron y ensayaron 18 tubos de 600 mm de diámetro con cuantías de 10, 20 y 40 kg/m3 de fibras, concluyéndose varios aspectos tecnológicos relacionados con la fabricación y el ensayo así como del comportamiento resistente. Por otra parte, se ha desarrollado el modelo numérico MAP que permite la simulación del comportamiento resistente de THFA sometidos al ensayo de aplastamiento. Los resultados han sido satisfactorios para cualquier régimen de carga, permitiendo concluir que el modelo es una herramienta útil para el diseño óptimo de este tipo de tubos. Se concluye que el uso del modelo conduce a una reducción del coste del armado y da un impulso al uso de fibras como elemento de refuerzo en esta tipología estructural.

  11. Assessment of Available Numerical Tools for Dynamic Mooring Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Eskilsson, Claes; Ferri, Francesco

    cover their capabilities. The result of the assessments should make it possible to choose relevant software that will be used throughout the project and also in general use for mooring design of WECs. The report is a part of Work Package 1 : "Task 1.2: Assessment of Available Numerical Tools for Dynamic......This report covers a preliminary assessment of available numerical tools to be used in upcoming full dynamic analysis of the mooring systems assessed in the project _Mooring Solutions for Large Wave Energy Converters_. The assessments tends to cover potential candidate software and subsequently...... Mooring Analysis" and "Milestone 1: Acquisition of Selected Numerical Tools" of the project and was produced by Aalborg University in cooperation with Chalmers University of Technology....

  12. 3D CFD Transient Numerical Simulation of Superfluid Helium

    Science.gov (United States)

    Bruce, R.; Reynaud, J.; Pascali, S.; Baudouy, B.

    2017-12-01

    Numerical simulations of superfluid helium are necessary to design the next generation of superconducting accelerator magnets at CERN. Previous studies have presented the thermodynamic equations implemented in the Fluent CFD software to model the thermal behavior of superfluid helium. Momentum and energy equations have been modified in the solver to model a simplified two-fluid model. In this model, the thermo-mechanical effect term and the Gorter-Mellink mutual friction term are the dominant terms in the momentum equation for the superfluid component. This assumption is valid for most of superfluid applications. Transient thermal and dynamic behavior of superfluid helium has been studied in this paper. The equivalent thermal conductivity in the energy equation is represented by the Gorter-Mellink term and both the theoretical and the Sato formulation of this term have been compared to unsteady helium superfluid experiments. The main difference between these two formulations is the coefficient to the power of the temperature gradient between the hot and the cold part in the equivalent thermal conductivity. The results of these unsteady simulations have been compared with two experiments. The first one is a Van Sciver experiment on a 10 m long, and 9 mm diameter tube at saturation conditions and the other, realized in our laboratory, is a 150×50×10 mm rectangular channel filled with pressurized superfluid helium. Both studies have been performed with a heating source that starts delivering power at the beginning of the experiment and many temperature sensors measure the transient thermal behavior of the superfluid helium along the length of the channel.

  13. Numerical Simulation of Explosive Forming Using Detonating Fuse

    Directory of Open Access Journals (Sweden)

    H Iyama

    2017-09-01

    Full Text Available The explosive forming is a characteristic method. An underwater shock wave is generated by underwater explosion of an explosive. A metal plate is affected high strain rate by the shock loading and is formed along a metal die. Although this method has the advantage of mirroring the shape of the die, a free forming was used in this paper. An expensive metal die is not necessary for this free forming. It is possible that a metal plate is formed with simple supporting parts. However, the forming shape is depend on the shock pressure distribution act on the metal plate. This pressure distribution is able to change by the shape of explosive, a mass of explosive and a shape of pressure vessel. On the other hand, we need the pressure vessel for food processing by the underwater shock wave. Therefore, we propose making the pressure vessel by this explosive forming. One design suggestion of pressure vessel made of stainless steel was considered. However, we cannot decide suitable conditions, the mass of the explosive and the distance between the explosive and the metal plate to make the pressure vessel. In order to decide these conditions, we have tried the numerical simulation on this explosive forming. The basic simulation method was ALE (Arbitrary Laglangian Eulerian method including with Mie-Grümeisen EOS (equation of state, JWL EOS, Johnson-Cook constitutive equation for a material model. In this paper, the underwater pressure contours to clear the propagations of the underwater shock wave, forming processes and deformation velocity of the metal plate is shown and it will be discussed about those results.

  14. Direct numerical simulation of a laminar vortex ring

    Science.gov (United States)

    James, S.; Madnia, C. K.

    1996-09-01

    Results are presented of direct numerical simulations (DNS) of a viscous, laminar ring. The effects of different generator configurations and velocity programs on the formation and post-formation characteristics of the ring are studied. It is shown that during the formation phase of the ring, total circulation and impulse in the flowfield are approximately the same for the ``nozzle'' and ``orifice'' generators. It is also found that throughout this period the slug flow model under-predicts the total circulation in the flow. During the formation phase, the simulation results for the time evolution of total circulation and location of the vortex spiral center are in agreement with the experimental findings of Didden [J. Appl. Mech. Phys. (ZAMP) 30, 101 (1979)]. The results of the flow visualization studies show that during the post-formation phase a vortex bubble is formed. As the bubble propels itself forward a wake is formed in the rear of the bubble. The impulse and vorticity from the bubble are continuously shed into this wake. It is found that the total value of the circulation in the flow varies as (t1*)-0.33 which is consistent with Maxworthy's [J. Fluid Mech. 81, 465 (1977)] prediction of the decay of circulation for a vortex ring. The transport of a passive Shvab-Zeldovich scalar variable is used to study the mixing and to obtain the maximum product formation in a chemical reaction of the type A+B→Products in a vortex ring. It is found that as the bubble containing the fuel propels itself forward, the outside oxidizer flow is entrained into it and reacts to form a product. Some of this product then is de-entrained into the wake of the bubble.

  15. Numerical simulations of concrete flow: A benchmark comparison

    DEFF Research Database (Denmark)

    Roussel, Nicolas; Gram, Annika; Cremonesi, Massimiliano

    2016-01-01

    First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we...... compare numerical predictions of the concrete sample final shape for these two benchmark flows obtained by various research teams around the world using various numerical techniques. Our results show that all numerical techniques compared here give very similar results suggesting that numerical...

  16. Analysis of stresses on buried pipeline subjected to landslide based on numerical simulation and regression analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing; Jing, Hongyuan; Liu, Jianping; Wu, Zhangzhong [PetroChina Pipeline RandD Center, Langfang, Hebei (China); Hao, Jianbin [School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan (China)

    2010-07-01

    Landslides have a serious impact on the integrity of oil and gas pipelines in the tough terrain of Western China. This paper introduces a solving method of axial stress, which uses numerical simulation and regression analysis for the pipelines subjected to landslides. Numerical simulation is performed to analyze the change regularity of pipe stresses for the five vulnerability assessment indexes, which are: the distance between pipeline and landslide tail; the thickness of landslide; the inclination angle of landslide; the pipeline length passing through landslide; and the buried depth of pipeline. A pipeline passing through a certain landslide in southwest China was selected as an example to verify the feasibility and effectiveness of this method. This method has practical applicability, but it would need large numbers of examples to better verify its reliability and should be modified accordingly. Also, it only considers the case where the direction of the pipeline is perpendicular to the primary slip direction of the landslide.

  17. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  18. Planning Irreversible Electroporation in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Thomas, E-mail: thomas.wimmer@medunigraz.at; Srimathveeravalli, Govindarajan; Gutta, Narendra [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Ezell, Paula C. [The Rockefeller University, Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College (United States); Monette, Sebastien [The Rockefeller University, Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College (United States); Maybody, Majid; Erinjery, Joseph P.; Durack, Jeremy C. [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Coleman, Jonathan A. [Memorial Sloan-Kettering Cancer Center, Urology Service, Department of Surgery (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States)

    2015-02-15

    PurposeNumerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model.MethodsThe ablation size and shape for six different IRE parameter sets (70–90 pulses, 2,000–2,700 V, 70–100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathology was analyzed from postablation day 1.ResultsAblation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery.ConclusionBoth numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.

  19. ANUGA SOFTWARE FOR NUMERICAL SIMULATIONS OF SHALLOW WATER FLOWS

    Directory of Open Access Journals (Sweden)

    Sudi Mungkasi

    2012-07-01

    Full Text Available Shallow water flows are governed by the shallow water wave equations, also known as the Saint-Venant system. This paper presents a finite volume method used to solve the two-dimensional shallow water wave equations and how the finite volume method is implemented in ANUGA software. This finite volume method is the numerical method underlying the software. ANUGA is open source software developed by Australian National University (ANU and Geoscience Australia (GA. This software uses the finite volume method with triangular domain discretisation for the computation. Four test cases are considered in order to evaluate the performance of the software. Overall, ANUGA is a robust software to simulate two-dimensional shallow water flows. Arus air dangkal diatur dalam persamaan gelombang air dangkal, dikenal sebagai sistem Saint-Venant. Penelitian ini menyajikan metode finite volumeyang digunakan untuk menyelesaikan persamaan gelombang air dangkal dua dimensi dan bagaimana metode finite volumediimplementasikan dalam perangkat lunak ANUGA. Metode finite volumeadalah metode numerik yang mendasari perangkat lunakANUGA. ANUGA sendiri adalah perangkat lunak open source yang dikembangkan oleh Australian National University(ANU dan Geoscience Australia (GA. Perangkat lunak ini menggunakan metode finite volumedengan diskritisasi domain segitiga dalam proseskomputasi. Empat uji kasus digunakan untuk mengevaluasi kinerja perangkat lunak. Secara keseluruhan, ANUGA adalah perangkat lunak yang robust untuk mensimulasikan dua dimensi aliran arus air dangkal.

  20. Numerical simulation of bionic foils in tandem arrangement

    Directory of Open Access Journals (Sweden)

    Kai Zhou

    2016-05-01

    Full Text Available Based on the backgrounds of underwater propulsors with high hydrodynamic performance, the article focuses on the flapping foils in tandem arrangement and tries to formulate the physical mode and mathematical model of flapping propulsion. Using the commercial software Fluent, the governing equations are discretized by the finite volume method, and dynamic mesh method is adopted to solve the moving boundaries. In order to verify validity and feasibility of the method, hydrodynamic performance of single flapping foil is analyzed. The present results of single flapping foil compare well with those in experimental researches. After that, numerical simulations of flapping foils in tandem arrangement are conducted to reveal the energy absorption mechanisms. By extracting performance parameters and characteristics of the flow field, the interaction between upstream foil and downstream foil is analyzed. The results indicate that the vortices shedding from upstream foil have a significant effect on the hydrodynamic performance of downstream foil, and the downstream foil can use energy from the flow field to improve the hydrodynamic performance. Therefore, the hydrodynamic performance of the system can be improved by adjusting the locations of foils and motion parameters.

  1. Mathematical approaches to bone reformation phenomena and numerical simulations

    Science.gov (United States)

    Matsuura, Yoshinori; Oharu, Shinnosuke; Takata, Takashi; Tamura, Akio

    2003-09-01

    Bone remodeling is metabolism of the bone through repetition of the resorption by osteoclasts and formation by osteoblasts. Osteoblasts produce inorganic calcium phosphate, which is converted to hydroxyapatite, and organic matrix consisting mainly of type I collagen, and then they deposit new bone to the part of the bone resorbed by osteoclasts. Osteoclasts dissociate calcium by secreting acid and degrade organic components by releasing lysosomal enzymes. Moreover, osteocytes in the bone play an important role in sensing various physical loads and conveying signals to activate osteoblasts. These three kinds of cells are linked to each other and perform the bone remodeling. Appropriate parameters representing the states of the bone and marrow are introduced and a mathematical model describing the bone remodeling phenomena is presented. The model involves an interface equation which determines the surface of the bone. The associated discrete model is formulated and its stable solvability is verified. Results of numerical simulations on a computer aided design system are visualized and then compared to clinical bone data. This work may be applied to medical science and in particular to dentistry.

  2. Oil strategies benefits over different driving cycles using numerical simulation

    Science.gov (United States)

    Sara, Hanna; Chalet, David; Cormerais, Mickaël; Hetet, Jean-François

    2017-08-01

    95 g/km is the allowed quantity of CO2 emission normalized to NEDC to be set in 2020. In addition, NEDC will be replaced by more severe driving cycles and will be united worldwide. To respond to those criteria, automotive industries are working on every possible field. Thermal management has been proved to be effective in reducing fuel consumption. Cold start is a primordial reason of overconsumption, as the engine highest efficiency is at its optimal temperature. At cold start, the engine's oil is at its lowest temperature and thus its higher viscosity level. A high viscosity oil generates more friction, which is one of the most important heat losses in the engine. In this paper, hot oil storage is studied. Numerical simulations on GT-suite model were done. The model consists of a 4-cylinder turbocharged Diesel engine using a storage volume of 1 liter of hot oil. Ambient temperature variation were taken into consideration as well as different driving cycles. Furthermore, different configurations of the thermal strategy (multifunction oil sump) were proposed and evaluated. Lubricant temperature and viscosity profiles are presented in the article as well as fuel consumption savings for different configurations, driving cycles and ambient temperatures.

  3. Numerical Simulations of Instabilities in Single-Hole Office Elements

    Science.gov (United States)

    Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.

    2013-01-01

    An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.

  4. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller

    2013-09-01

    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  5. Fulfilling Magnetostatic Conditions in Numerical Simulations of Expanding Flux Tubes

    Science.gov (United States)

    Utz, D.; Van Doorsselaere, T.; Kühner, O.; Magyar, N.; Calvo Santamaria, I.; Campos Rozo, J. I.

    A long-lasting problem of solar physics is the topic of the heating of the outer atmospheric layers of the Sun. Among the possible heating scenarios are wave driven heating processes. In this scenario disturbances and turbulence in the photosphere of the Sun causes the creation of waves which propagate upwards into the higher atmosphere where these waves are at least partially damped and absorbed, causing heating of the atmosphere. Nowadays it is thought that especially MHD waves play an important role in such heating scenarios. The created MHD waves are guided especially well along strong vertical magnetic field configurations, so-called flux-tubes, into the higher atmosphere. To obtain deeper insights into this fascinating topic, numerical simulations are a useful tool at hand. However, up to now it is still quite common to assume simple non stratified flux tubes which feature in addition weak magnetic field strengths. While this makes the modeling of the solar atmosphere and the magnetic field configuration much easier, the results might be changed drastically by these simplifications. In the current contribution we wish to outline a method of how to construct self-consistent, magneto-static flux tube atmospheres.

  6. Numerical simulation of nonlinear dynamics of 1D pulsating detonations

    Science.gov (United States)

    Borisov, S. P.; Kudryavtsev, A. N.

    2017-10-01

    The development of 1D instability of a detonation wave is numerically simulated for a two-stage chemical model. The shock-fitting approach is employed to track the leading detonation front. In order to determine its motion, the equation for the acceleration of the shock wave derived from the Rankine-Hugoniot conditions and the characteristic relations is integrated along with the reactive Euler equations. The fifth-order WENO scheme is used, time stepping is performed with the four-stage Runge-Kutta-Gill method. It is shown that in a certain range of parameters of the problem (the degree of overdrive f, the dissociation energy Ed and the activation energy Ea ), the Zeldovich-Neumann-Döring stationary solution is unstable with respect to 1D disturbances. The evolution of disturbances at later nonlinear stages is studied. Nonlinear saturation of the growth of disturbances leads to the formation of a stable limit cycle. When changing the parameters of the problem, the period doubling bifurcation can occur leading to the appearance of pulsations with two different maxima of the amplitude.

  7. Direct numerical simulation of incompressible multiphase flow with phase change

    Science.gov (United States)

    Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

    2017-09-01

    Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

  8. Numerical Simulation of Tower Rotor Interaction for Downwind Wind Turbine

    Directory of Open Access Journals (Sweden)

    Isam Janajreh

    2010-01-01

    Full Text Available Downwind wind turbines have lower upwind rotor misalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction between the tower and the blade during the intrinsic passage of the rotor in the wake of the tower. The moving rotor has been accounted for via ALE formulation of the incompressible, unsteady, turbulent Navier-Stokes equations. The localized CP, CL, and CD are computed and compared to undisturbed flow evaluated by Panel method. The time history of the CP, aerodynamic forces (CL and CD, as well as moments were evaluated for three cross-sectional tower; asymmetrical airfoil (NACA0012 having four times the rotor's chord length, and two circular cross-sections having four and two chords lengths of the rotor's chord. 5%, 17%, and 57% reductions of the aerodynamic lift forces during the blade passage in the wake of the symmetrical airfoil tower, small circular cross-section tower and large circular cross-section tower were observed, respectively. The pronounced reduction, however, is confined to a short time/distance of three rotor chords. A net forward impulsive force is also observed on the tower due to the high speed rotor motion.

  9. Temperature considerations in numerical simulations of collapsing bubbles

    Science.gov (United States)

    Johnsen, Eric; Alahyari Beig, Shahaboddin

    2014-11-01

    In naval and biomedical engineering applications, the inertial collapse of cavitation bubbles is known to damage its surroundings. While significant attention has been dedicated to investigating the pressures produced by this process, less is known about heating of the surrounding medium, which may be important when collapse occurs near objects whose properties strongly depend on temperature (e.g., polymers). Euler simulations are capable of predicting the high pressures thereby generated. However, numerical errors can occur when solving the Navier-Stokes equations for compressible interface problems. Using a newly developed computational approach that prevents such errors, we investigate the dynamics of shock-induced and Rayleigh collapse of individual and collections of gas bubbles, in a free field and near rigid surfaces. We characterize the temperature rises based on the relevant non-dimensional parameters entering the problem. In particular, we show that the temperature of a neighboring object rises due to two mechanisms: the shock produced at collapse and heat diffusion from the hot bubble as it moves toward the object. This work was supported by ONR Grant N00014-12-1-0751.

  10. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  11. Numerical Simulation and Scaling Analysis of Cell Printing

    Science.gov (United States)

    Qiao, Rui; He, Ping

    2011-11-01

    Cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use inkjet printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation. Although the feasibility of cell printing has been demonstrated recently, the printing resolution and cell viability remain to be improved. Here we investigate a unit operation in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids. The droplet and cell dynamics are quantified using both direct numerical simulation and scaling analysis. These studies indicate that although cell experienced significant stress during droplet impact, the duration of such stress is very short, which helps explain why many cells can survive the cell printing process. These studies also revealed that cell membrane can be temporarily ruptured during cell printing, which is supported by indirect experimental evidence.

  12. Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence

    Science.gov (United States)

    Zrake, Jonathan; MacFadyen, Andrew

    2011-08-01

    Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of ɛB>~0.01 are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with relative Lorentz factors of several. These conditions are relevant in models for internal shocks, for the late afterglow phase, for cocoon material along the edge of a relativistic jet as it propagates through a star, as well neutron stars merging with each other and with black hole companions. We find that relativistic turbulence decays extremely quickly, on a sound crossing time of an eddy. Models invoking sustained relativistic turbulence to explain variability in GRB prompt emission are thus strongly disfavored unless a persistant driving of the turbulence is maintained for the duration of the prompt emission.

  13. Numerical simulation of binary black hole and neutron star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Kastaun, W.; Rezzolla, L. [Albert Einstein Institut, Potsdam-Golm (Germany)

    2016-11-01

    One of the last predictions of general relativity that still awaits direct observational confirmation is the existence of gravitational waves. Those fluctuations of the geometry of space and time are expected to travel with the speed of light and are emitted by any accelerating mass. Only the most violent events in the universe, such as mergers of two black holes or neutron stars, produce gravitational waves strong enough to be measured. Even those waves are extremely weak when arriving at Earth, and their detection is a formidable technological challenge. In recent years sufficiently sensitive detectors became operational, such as GEO600, Virgo, and LIGO. They are expected to observe around 40 events per year. To interpret the observational data, theoretical modeling of the sources is a necessity, and requires numerical simulations of the equations of general relativity and relativistic hydrodynamics. Such computations can only be carried out on large scale supercomputers, given that many scenarios need to be simulated, each of which typically occupies hundreds of CPU cores for a week. Our main goal is to predict the gravitational wave signal from the merger of two compact objects. Comparison with future observations will provide important insights into the fundamental forces of nature in regimes that are impossible to recreate in laboratory experiments. The waveforms from binary black hole mergers would allow one to test the correctness of general relativity in previously inaccessible regimes. The signal from binary neutron star mergers will provide input for nuclear physics, because the signal depends strongly on the unknown properties of matter at the ultra high densities inside neutron stars, which cannot be observed in any other astrophysical scenario. Besides mergers, we also want to improve the theoretical models of close encounters between black holes. A gravitational wave detector with even higher sensitivity, the Einstein Telescope, is already in the

  14. Analysis of the cavitating flow induced by an ultrasonic horn – Numerical 3D simulation for the analysis of vapour structures and the assessment of erosion-sensitive areas

    Directory of Open Access Journals (Sweden)

    Mottyll Stephan

    2014-03-01

    Full Text Available This paper reports the outcome of a numerical study of ultrasonic cavitation using a CFD flow algorithm based on a compressible density-based finite volume method with a low-Machnumber consistent flux function and an explicit time integration [15; 18] in combination with an erosion-detecting flow analysis procedure. The model is validated against erosion data of an ultrasonic horn for different gap widths between the horn tip and a counter sample which has been intensively investigated in previous material studies at the Ruhr University Bochum [23] as well as on first optical in-house flow measurement data which is presented in a companion paper [13]. Flow features such as subharmonic cavitation oscillation frequencies as well as constricted vapour cloud structures can also be observed by the vapour regions predicted in our simulation as well as by the detected collapse event field (collapse detector [12]. With a statistical analysis of transient wall loads we can determine the erosion sensitive areas qualitatively. Our simulation method can reproduce the influence of the gap width on vapour structure and on location of cavitation erosion.

  15. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    Science.gov (United States)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  16. Numerical simulation of radiation fog in complex terrain

    Science.gov (United States)

    Zhang, X.; Musson-Genon, L.; Carissimo, B.; Dupont, E.

    2009-09-01

    The interest for micro-scale modeling of the atmosphere is growing for environmental applications related, for example, to energy production, transport and urban development. The turbulence in the stable layers where pollutant dispersion is low and can lead to strong pollution events. This could be further complicated by the presence of clouds or fog and is specifically difficult in urban or industrial area due to the presence of buildings. In this context, radiation fog formation and dissipation over complex terrain were therefore investigated with a state-of-the-art model. This study is divided into two phases. The first phase is a pilot stage, which consist of employing a database from the ParisFog campaign which took place in the south of Paris during winter 2006-07 to assess the ability of the cloud model to reproduce the detailed structure of radiation fog. The second phase use the validated model for the study of influence of complex terrain on fog evolution. Special attention is given to the detailed and complete simulations and validation technique used is to compare the simulated results using the 3D cloud model of computational fluid dynamical software Code_Saturne with one of the best collected in situ data during the ParisFog campaign. Several dynamical, microphysical parameterizations and simulation conditions have been described. The resulting 3D cloud model runs at a horizontal resolution of 30 m and a vertical resolution comparable to the 1D model. First results look very promising and are able to reproduce the spatial distribution of fog. The analysis of the behavior of the different parameterized physical processes suggests that the subtle balance between the various processes is achieved.

  17. Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows

    Science.gov (United States)

    Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.

    The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the

  18. Numerical Simulation of Ion Rings and Ion Beam Propagation.

    Science.gov (United States)

    Mankofsky, Alan

    This thesis presents the development of numerical simulation techniques for studying the physics of ion beams and rings in a background plasma as applicable to certain problems in magnetic and inertial confinement fusion. Two codes have been developed for these purposes: RINGA and CIDER. The 2 and 1/2-dimensional (r,z,v(,r),v(,(theta)),v(,z); (PAR-DIFF)/(PAR-DIFF)(theta) = 0) particle code RINGA follows the trajectories of ions in their self-consistent magnetic field. The code assumes strict charge neutrality and admits currents only in the azimuthal direction, i.e., (PHI) = J(,r) = J(,z) = 0. The injection and resistive trapping of ion rings has been studied with RINGA. The number of particles trapped as a fraction of the total number injected N is found to be strongly dependent upon (1) N (in the range 2.85 x 10('16) - 3.99 x 10('17)) and (2) mirror ratios in the system (1.05 -1.14), and more weakly dependent upon (3) wall resistance per unit length (0.72 (OMEGA)/cm - 1.80 (OMEGA)/cm) and (4) beam divergence (0(DEGREES)-6(DEGREES)). Fractions of trapped particles in excess of 0.9 have been observed. Modifications to RINGA to include finite pressure of confined plasma and beam ion-electron slowing down collisions are discussed. Finite plasma pressure leads to a diamagnetic current which increases the field reversal factor in ion ring equilibria, while causing the closed flux surfaces to expand outward. The ideal magnetohydrodynamic stability of the plasma is analyzed in the high toroidal mode number limit, where the beam ions are noninteracting. The existence of stable high-(beta) equilibria is demonstrated. One such equilibrium, stable to both ideal interchange and ballooning modes, has (TBOND) 8(pi) / (DBLTURN) 55%. In the CIDER hybrid code, ions are represented by particles and electrons by an inertialess thermal fluid which obeys a generalized Ohm's law. Fields are solved in the quasineutral Darwin approximation. Several collisional and atomic processes are

  19. Numerical Simulations of Granular Physics in the Solar System

    Science.gov (United States)

    Ballouz, Ronald

    2017-08-01

    Granular physics is a sub-discipline of physics that attempts to combine principles that have been developed for both solid-state physics and engineering (such as soil mechanics) with fluid dynamics in order to formulate a coherent theory for the description of granular materials, which are found in both terrestrial (e.g., earthquakes, landslides, and pharmaceuticals) and extra-terrestrial settings (e.g., asteroids surfaces, asteroid interiors, and planetary ring systems). In the case of our solar system, the growth of this sub-discipline has been key in helping to interpret the formation, structure, and evolution of both asteroids and planetary rings. It is difficult to develop a deterministic theory for granular materials due to the fact that granular systems are composed of a large number of elements that interact through a non-linear combination of various forces (mechanical, gravitational, and electrostatic, for example) leading to a high degree of stochasticity. Hence, we study these environments using an N-body code, pkdgrav, that is able to simulate the gravitational, collisional, and cohesive interactions of grains. Using pkdgrav, I have studied the size segregation on asteroid surfaces due to seismic shaking (the Brazil-nut effect), the interaction of the OSIRIS-REx asteroid sample-return mission sampling head, TAGSAM, with the surface of the asteroid Bennu, the collisional disruptions of rubble-pile asteroids, and the formation of structure in Saturn's rings. In all of these scenarios, I have found that the evolution of a granular system depends sensitively on the intrinsic properties of the individual grains (size, shape, sand surface roughness). For example, through our simulations, we have been able to determine relationships between regolith properties and the amount of surface penetration a spacecraft achieves upon landing. Furthermore, we have demonstrated that this relationship also depends on the strength of the local gravity. By comparing our

  20. Development of a Prototype Simulation Executive with Zooming in the Numerical Propulsion System Simulation

    Science.gov (United States)

    Reed, John A.; Afjeh, Abdollah A.

    1995-01-01

    A major difficulty in designing aeropropulsion systems is that of identifying and understanding the interactions between the separate engine components and disciplines (e.g., fluid mechanics, structural mechanics, heat transfer, material properties, etc.). The traditional analysis approach is to decompose the system into separate components with the interaction between components being evaluated by the application of each of the single disciplines in a sequential manner. Here, one discipline uses information from the calculation of another discipline to determine the effects of component coupling. This approach, however, may not properly identify the consequences of these effects during the design phase, leaving the interactions to be discovered and evaluated during engine testing. This contributes to the time and cost of developing new propulsion systems as, typically, several design-build-test cycles are needed to fully identify multidisciplinary effects and reach the desired system performance. The alternative to sequential isolated component analysis is to use multidisciplinary coupling at a more fundamental level. This approach has been made more plausible due to recent advancements in computation simulation along with application of concurrent engineering concepts. Computer simulation systems designed to provide an environment which is capable of integrating the various disciplines into a single simulation system have been proposed and are currently being developed. One such system is being developed by the Numerical Propulsion System Simulation (NPSS) project. The NPSS project, being developed at the Interdisciplinary Technology Office at the NASA Lewis Research Center is a 'numerical test cell' designed to provide for comprehensive computational design and analysis of aerospace propulsion systems. It will provide multi-disciplinary analyses on a variety of computational platforms, and a user-interface consisting of expert systems, data base management and

  1. A Numerical Simulator for a Crop-Producing Greenhouse

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær; Krink, Thiemo; Filipic, Bogdan

    2002-01-01

    This report describes a greenhouse simulator. The described simulator is translated from a German description (Pohlheim and Heißner, 1996), and some minor modifications are introduced. The simulator is reimplemented in Java and is based on the original MatLab version. The purpose of the simulator...

  2. Numerical simulation of multiphase flow in ventilation mill and channel with louvers and centrifugal separator

    OpenAIRE

    Kozic Mirko S.; Ristic Slavica S.; Puharic Mirjana A.; Katavic Boris T.

    2011-01-01

    This paper presents the results of numerical flow simulation in ventilation mill of Kostolac B power plant, where louvers and centrifugal separator with adjustable blade angle are used. Numerical simulations of multiphase flow were performed using the Euler-Euler and Euler-Lagrange approach of ANSYS FLUENT software package. The results of numerical simulations are compared with measurements in the mill for both types of separators. Due to very complex geometry and large number of the gr...

  3. High performance Python for direct numerical simulations of turbulent flows

    Science.gov (United States)

    Mortensen, Mikael; Langtangen, Hans Petter

    2016-06-01

    Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of C++ for thousands of processors and billions of unknowns. We also describe a version optimized through Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able to show very good scaling up to several thousand cores. A very important part of the implementation is the mesh decomposition (we implement both slab and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh decomposition 7 lines of code is required to execute a transform.

  4. Numerical simulation of wave interactions during sudden stratospheric warming

    Science.gov (United States)

    Gavrilov, N. M.; Koval, A. V.; Pogoreltsev, A. I.; Savenkova, E. N.

    2017-11-01

    Parameterizations of normal atmospheric modes (NAMs) and orographic gravity waves (OGWs) are implemented into the mechanistic general circulation model of the middle and upper atmosphere (MUA). Numerical experiments of sudden stratospheric warming (SSW) events are performed for climatological conditions typical for January and February using meteorological reanalysis data from the UK MET Office in the MUA model averaged over the years 1992-2011 with the easterly phase of quasi-biennial oscillation (QBO). The simulation shows that an increase in the OGW amplitudes occurs at altitudes higher than 30 km in the Northern Hemisphere after SSW. The OGW amplitudes have maximums at altitudes of about 50 km over the North American and European mountain systems before and during SSW, as well as over the Himalayas after SSW. At high latitudes of the Northern Hemisphere, significant (up to 50-70%) variations in the amplitudes of stationary planetary waves (SPWs) are observed during and after the SSW. Westward travelling NAMs have local amplitude maximums not only in the Northern Hemisphere, but also in the Southern Hemisphere, where there are waveguides for the propagation of these modes. Calculated variations of SPW and NAM amplitudes correspond to changes in the mean temperature and wind fields, as well as the Eliassen-Palm flux and atmospheric refractive index for the planetary waves, during SSW. Including OGW thermal and dynamical effects leads to an increase in amplitude (by 30-70%) of almost all SPWs before and during SSW and to a decrease (up to 20-100%) after the SSW at middle and high latitudes of the Northern Hemisphere.

  5. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations

    Science.gov (United States)

    Obliger, Amaël; Duvail, Magali; Jardat, Marie; Coelho, Daniel; Békri, Samir; Rotenberg, Benjamin

    2013-07-01

    We report the calculation of all the transfer coefficients which couple the solvent and ionic fluxes through a charged pore under the effect of pressure, electrostatic potential, and concentration gradients. We use a combination of analytical calculations at the Poisson-Nernst-Planck and Navier-Stokes levels of description and mesoscopic lattice simulations based on kinetic theory. In the absence of added salt, i.e., when the only ions present in the fluid are the counterions compensating the charge of the surface, exact analytical expressions for the fluxes in cylindrical pores allow us to validate a new lattice-Boltzmann electrokinetics (LBE) scheme which accounts for the osmotic contribution to the transport of all species. The influence of simulation parameters on the numerical accuracy is thoroughly investigated. In the presence of an added salt, we assess the range of validity of approximate expressions of the fluxes computed from the linearized Poisson-Boltzmann equation by a systematic comparison with LBE simulations.

  6. Analytical approximation and numerical simulations for periodic travelling water waves

    Science.gov (United States)

    Kalimeris, Konstantinos

    2017-12-01

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.

  7. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    Science.gov (United States)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  8. Direct Numerical Simulation of Methane Oxidation in a Nonpremixed Plane Jet Flame

    Science.gov (United States)

    James, S.; Givi, P.

    1996-11-01

    Direct numerical simulations are conducted of methane oxidation in a nonpremixed plane jet flame. The objective of the study is to assess the extent of applicability of realistic chemistry schemes in large scale simulations of turbulent diffusion flames. Reduced kinetic schemes with two-, three-, and four-steps mechanisms are employed. The fuel jet is diluted with 80% N_2, so the flame surface and vortical regions overlap causing severe straining of the flame surface. The results are comparatively assessed with those via a 25-step skeletal C1 scheme. The correlation of the tangential strain rates on the flame surface with temperature, and that of curvature with temperature are presented. The compositional flame structure is compared with that in a steady laminar jet flame configuration.

  9. Recent Research and Applications of Numerical Simulation for Dynamic Response of Long-Span Bridges Subjected to Multiple Loads

    Directory of Open Access Journals (Sweden)

    Zhiwei Chen

    2014-01-01

    Full Text Available Many long-span bridges have been built throughout the world in recent years but they are often subject to multiple types of dynamic loads, especially those located in wind-prone regions and carrying both trains and road vehicles. To ensure the safety and functionality of these bridges, dynamic responses of long-span bridges are often required for bridge assessment. Given that there are several limitations for the assessment based on field measurement of dynamic responses, a promising approach is based on numerical simulation technologies. This paper provides a detailed review of key issues involved in dynamic response analysis of long-span multiload bridges based on numerical simulation technologies, including dynamic interactions between running trains and bridge, between running road vehicles and bridge, and between wind and bridge, and in the wind-vehicle-bridge coupled system. Then a comprehensive review is conducted for engineering applications of newly developed numerical simulation technologies to safety assessment of long-span bridges, such as assessment of fatigue damage and assessment under extreme events. Finally, the existing problems and promising research efforts for the numerical simulation technologies and their applications to assessment of long-span multiload bridges are explored.

  10. Numerical simulations on self-leveling behaviors with cylindrical debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liancheng, E-mail: Liancheng.guo@kit.edu [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Morita, Koji, E-mail: morita@nucl.kyushu-u.ac.jp [Faculty of Engineering, Kyushu University, 2-3-7, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tobita, Yoshiharu, E-mail: tobita.yoshiharu@jaea.go.jp [Fast Reactor Safety Technology Development Department, Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan)

    2017-04-15

    Highlights: • A 3D coupled method was developed by combining DEM with the multi-fluid model of SIMMER-IV code. • The method was validated by performing numerical simulations on a series of experiments with cylindrical particle bed. • Reasonable agreement can demonstrate the applicability of the method in reproducing the self-leveling behavior. • Sensitivity analysis on some model parameters was performed to assess their impacts. - Abstract: The postulated core disruptive accidents (CDAs) are regarded as particular difficulties in the safety analysis of liquid-metal fast reactors (LMFRs). In the CDAs, core debris may settle on the core-support structure and form conic bed mounds. Then debris bed can be levelled by the heat convection and vaporization of surrounding coolant sodium, which is named “self-leveling behavior”. The self-leveling behavior is a crucial issue in the safety analysis, due to its significant effect on the relocation of molten core and heat-removal capability of the debris bed. Considering its complicate multiphase mechanism, a comprehensive computational tool is needed to reasonably simulate transient particle behavior as well as thermal-hydraulic phenomenon of surrounding fluid phases. The SIMMER program is a successful computer code initially developed as an advanced tool for CDA analysis of LMFRs. It is a multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics code coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model. Until now, the code has been successfully applied in numerical simulations for reproducing key thermal-hydraulic phenomena involved in CDAs as well as performing reactor safety assessment. However, strong interactions between massive solid particles as well as particle characteristics in multiphase flows were not taken into consideration in its fluid-dynamics models. To solve this problem, a new method is developed by combining the discrete element method (DEM

  11. The numerical simulation of convection delayed dominated diffusion equation

    Directory of Open Access Journals (Sweden)

    Mohan Kumar P. Murali

    2016-01-01

    Full Text Available In this paper, we propose a fitted numerical method for solving convection delayed dominated diffusion equation. A fitting factor is introduced and the model equation is discretized by cubic spline method. The error analysis is analyzed for the consider problem. The numerical examples are solved using the present method and compared the result with the exact solution.

  12. Numerical Simulation of Transition in Hypersonic Boundary Layers

    Science.gov (United States)

    2011-02-01

    85721 Contributors: Andreas Gross Clayton Koevary Andreas Laible Christian Mayer Jayahar Sivasubramanian Submitted to Dr. John D. Schmisseur, Program...order accurate numerical method for complex flows. AIAA J. 46, 204–214. Guarini, S. E., Moser , R. D., Shariff, K. & Wray, A. 2000 Direct numerical

  13. Numerical simulations of multicomponent ecological models with adaptive methods.

    Science.gov (United States)

    Owolabi, Kolade M; Patidar, Kailash C

    2016-01-08

    The study of dynamic relationship between a multi-species models has gained a huge amount of scientific interest over the years and will continue to maintain its dominance in both ecology and mathematical ecology in the years to come due to its practical relevance and universal existence. Some of its emergence phenomena include spatiotemporal patterns, oscillating solutions, multiple steady states and spatial pattern formation. Many time-dependent partial differential equations are found combining low-order nonlinear with higher-order linear terms. In attempt to obtain a reliable results of such problems, it is desirable to use higher-order methods in both space and time. Most computations heretofore are restricted to second order in time due to some difficulties introduced by the combination of stiffness and nonlinearity. Hence, the dynamics of a reaction-diffusion models considered in this paper permit the use of two classic mathematical ideas. As a result, we introduce higher order finite difference approximation for the spatial discretization, and advance the resulting system of ODE with a family of exponential time differencing schemes. We present the stability properties of these methods along with the extensive numerical simulations for a number of multi-species models. When the diffusivity is small many of the models considered in this paper are found to exhibit a form of localized spatiotemporal patterns. Such patterns are correctly captured in the local analysis of the model equations. An extended 2D results that are in agreement with Turing typical patterns such as stripes and spots, as well as irregular snakelike structures are presented. We finally show that the designed schemes are dynamically consistent. The dynamic complexities of some ecological models are studied by considering their linear stability analysis. Based on the choices of parameters in transforming the system into a dimensionless form, we were able to obtain a well-balanced system that

  14. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is

  15. Numerical simulation of fractional Cable equation of spiny neuronal dendrites.

    Science.gov (United States)

    Sweilam, N H; Khader, M M; Adel, M

    2014-03-01

    In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion valid for different discretization schemes of the fractional derivative and arbitrary weight factor is introduced and checked numerically. Numerical results, figures, and comparisons have been presented to confirm the theoretical results and efficiency of the proposed method.

  16. Numerical simulation of fractional Cable equation of spiny neuronal dendrites

    Directory of Open Access Journals (Sweden)

    N.H. Sweilam

    2014-03-01

    Full Text Available In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion valid for different discretization schemes of the fractional derivative and arbitrary weight factor is introduced and checked numerically. Numerical results, figures, and comparisons have been presented to confirm the theoretical results and efficiency of the proposed method.

  17. Analytical approximation and numerical simulations for periodic travelling water waves.

    Science.gov (United States)

    Kalimeris, Konstantinos

    2018-01-28

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  18. Numerical simulation for cracks detection using the finite elements method

    Directory of Open Access Journals (Sweden)

    S Bennoud

    2016-09-01

    Full Text Available The means of detection must ensure controls either during initial construction, or at the time of exploitation of all parts. The Non destructive testing (NDT gathers the most widespread methods for detecting defects of a part or review the integrity of a structure. In the areas of advanced industry (aeronautics, aerospace, nuclear …, assessing the damage of materials is a key point to control durability and reliability of parts and materials in service. In this context, it is necessary to quantify the damage and identify the different mechanisms responsible for the progress of this damage. It is therefore essential to characterize materials and identify the most sensitive indicators attached to damage to prevent their destruction and use them optimally. In this work, simulation by finite elements method is realized with aim to calculate the electromagnetic energy of interaction: probe and piece (with/without defect. From calculated energy, we deduce the real and imaginary components of the impedance which enables to determine the characteristic parameters of a crack in various metallic parts.

  19. A new clinical tool for assessing numerical abilities in neurological diseases: Numerical Activities of Daily Living

    Directory of Open Access Journals (Sweden)

    Carlo eSemenza

    2014-06-01

    Full Text Available The aim of this study was to build an instrument, the Numerical Activities of Daily Living (NADL, designed to identify the specific impairments in numerical functions that may cause problems in everyday life. These impairments go beyond what can be inferred from the available scales evaluating activities of daily living in general, and are not adequately captured by measures of the general deterioration of cognitive functions as assessed by standard clinical instruments like the MMSE and MoCA. We assessed a control group (n = 148 and a patient group affected by a wide variety of neurological conditions (n = 175, with NADL along with IADL, MMSE, and MoCA. The NADL battery was found to have satisfactory construct validity and reliability, across a wide age range. This enabled us to calculate appropriate criteria for impairment that took into account age and education. It was found that neurological patients tended to overestimate their abilities as compared to the judgment made by their caregivers, assessed with objective tests of numerical abilities.

  20. A new clinical tool for assessing numerical abilities in neurological diseases: numerical activities of daily living

    Science.gov (United States)

    Semenza, Carlo; Meneghello, Francesca; Arcara, Giorgio; Burgio, Francesca; Gnoato, Francesca; Facchini, Silvia; Benavides-Varela, Silvia; Clementi, Maurizio; Butterworth, Brian

    2014-01-01

    The aim of this study was to build an instrument, the numerical activities of daily living (NADL), designed to identify the specific impairments in numerical functions that may cause problems in everyday life. These impairments go beyond what can be inferred from the available scales evaluating activities of daily living in general, and are not adequately captured by measures of the general deterioration of cognitive functions as assessed by standard clinical instruments like the MMSE and MoCA. We assessed a control group (n = 148) and a patient group affected by a wide variety of neurological conditions (n = 175), with NADL along with IADL, MMSE, and MoCA. The NADL battery was found to have satisfactory construct validity and reliability, across a wide age range. This enabled us to calculate appropriate criteria for impairment that took into account age and education. It was found that neurological patients tended to overestimate their abilities as compared to the judgment made by their caregivers, assessed with objective tests of numerical abilities. PMID:25126077

  1. Mathematical modelling and numerical simulation of casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1998-01-01

    The control volume method applied to numerical modelling of castning. Analytical solutions based on the error function.Riemann-temperature. Modelling of release of latent heat with the enthalpy method....

  2. Assessment of SFR Wire Wrap Simulation Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Delchini, Marc-Olivier G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Popov, Emilian L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Swiler, Laura P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results

  3. Numerical Simulation of Regional Circulation in the Monterey Bay Region

    Science.gov (United States)

    2003-12-01

    Air-Sea Technology ( DieCAST ) ocean model, which provides high com- putational accuracy and low numerical dissipation and dispersion. The numerical...system DieCAST model and uses the immersed boundary method to represent the coastal geometry and bathymetry (Tseng & Ferziger 2003) in the local model. The...we explore the impact of the hydrostatic approximation by comparing results from hydrostatic and non-hydrostatic versions of the DieCAST model applied

  4. Numerical Simulation of the Perturbed KdVB Equation

    Directory of Open Access Journals (Sweden)

    Bogdanov Alexander

    2016-01-01

    Full Text Available The solution of nonintegrable nonlinear equations is very diffcult even numerically and practically impossible by standard analytical techniques. New view, offered by heterogeneous computational systems, gives new possibilities, but also need novel approaches for numerical realization of pertinent algorithms. We give some examples of such analysis on the base of nonlinear wave’s evolution study in multiphase media with chemical reaction.

  5. Numerical simulation of fluid dynamics in a moving axisymmetric container

    Science.gov (United States)

    Chakhlov, S. V.

    1984-04-01

    A numerical method is developed for calculating fluid motion in a moving axisymmetric container; numerical results are presented for spherical, cylindrical, and conical containers. It is shown that in a cylindrical container, the central part of the fluid volume moves for a period of time as a rigid body. The fluid flows onto the container wall in the form of a concave tongue; the thinner the fluid layer on the bottom of the container, the more slowly it is thinned.

  6. Numerical simulation of GEW equation using RBF collocation method

    Directory of Open Access Journals (Sweden)

    Hamid Panahipour

    2012-08-01

    Full Text Available The generalized equal width (GEW equation is solved numerically by a meshless method based on a global collocation with standard types of radial basis functions (RBFs. Test problems including propagation of single solitons, interaction of two and three solitons, development of the Maxwellian initial condition pulses, wave undulation and wave generation are used to indicate the efficiency and accuracy of the method. Comparisons are made between the results of the proposed method and some other published numerical methods.

  7. "BLAST": A compilation of codes for the numerical simulation of the gas dynamics of explosions

    NARCIS (Netherlands)

    Berg, A.C. van den

    2009-01-01

    The availability of powerful computers these days increasingly enables the use of CFD for the numerical simulation of explosion phenomena. The BLAST software consists of a compilation of codes for the numerical simulation of the gas dynamics of explosions. Each individual code has been tailored to a

  8. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  9. Numerical simulation of meteorological conditions for peak pollution in Paris

    Energy Technology Data Exchange (ETDEWEB)

    Carissimo, B. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-06-01

    Results obtained on the simulation of meteorological conditions during two episodes of peak pollution in Paris are presented, one in the winter, the other in the summer. The A3UR air quality modelling system is first described followed by the MERCURE mesoscale meteorological model. The conditions of simulation are described. The results obtained on these two causes show satisfactory agreement, for example on the magnitude of the urban heat island which is correctly reproduced. In this study, several areas of progress have been identified: improvement of the altitude measurement network around cities, the simulation of light wind conditions and the simulation of formation and dissipation of fog. (author) 24 refs.

  10. An experimental and numerical simulation study of an active solar wall enhanced with phase change materials

    Directory of Open Access Journals (Sweden)

    Dionysios I. Kolaitis

    2015-06-01

    Full Text Available Solar walls can be used to increase the overall energy efficiency of a building. Phase Change Materials (PCM are capable of increasing the effective thermal mass of building elements, thus decreasing the overall energy consumption. Recently, the incorporation of PCM in a solar wall has been proposed, aiming to increase the total energy efficiency of the system. The main scope of this work is to investigate the thermal behaviour of a PCM-enhanced solar wall (PCMESW, using experimental and numerical simulation techniques. A prototype PCMESW is installed in a large-scale test facility and is exposed to dynamically changing climate conditions. A broad range of sensors, used to monitor the time-evolution of several important physical parameters, is employed to assess the dynamic response of the PCMESW. In addition, a Computational Fluid Dynamics tool is used to numerically investigate the thermal behaviour of the PCMESW prototype. Predictions of the developing flow- and thermal-field in the PCMESW’s air cavity are validated by means of comparison with the obtained measurements; in general, good levels of agreement are observed. Results of the numerical simulations may support the design optimization process of innovative PCMESW systems.  

  11. Simulation of human atherosclerotic femoral plaque tissue: the influence of plaque material model on numerical results

    Science.gov (United States)

    2015-01-01

    Background Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue. Methods Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue. Results Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen. Conclusions Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large

  12. Numerical simulations of the NREL S826 airfoil

    Science.gov (United States)

    Sagmo, KF; Bartl, J.; Sætran, L.

    2016-09-01

    2D and 3D steady state simulations were done using the commercial CFD package Star-CCM+ with three different RANS turbulence models. Lift and drag coefficients were simulated at different angles of attack for the NREL S826 airfoil at a Reynolds number of 100 000, and compared to experimental data obtained at NTNU and at DTU. The Spalart-Allmaras and the Realizable k-epsilon turbulence models reproduced experimental results for lift well in the 2D simulations. The 3D simulations with the Realizable two-layer k-epsilon model predicted essentially the same lift coefficients as the 2D Spalart-Allmaras simulations. A comparison between 2D and 3D simulations with the Realizable k-epsilon model showed a significantly lower prediction in drag by the 2D simulations. From the conducted 3D simulations surface pressure predictions along the wing span were presented, along with volumetric renderings of vorticity. Both showed a high degree of span wise flow variation when going into the stall region, and predicted a flow field resembling that of stall cells for angles of attack above peak lift.

  13. Numerical simulation of sea breeze characteristics observed at ...

    Indian Academy of Sciences (India)

    The height of the Thermal Internal Boundary Layer (TIBL) is also simulated from the vertical profiles of potential temperature. Simulated wind speed and wind directions are compared with the 50m tower data and potential temperature profiles are compared with the kytoon data. Results are in good agreement with the ...

  14. Numerical simulation of thermal fracture in functionally graded ...

    Indian Academy of Sciences (India)

    Sahil Garg

    Abstract. In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in ... has been used in order to extract the stress intensity factors for the simulated problems. The present analysis ... different requirements at different locations within the same component.

  15. Numerical simulation of ship motion in offshore and harbour areas

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Jensen, Bjarne; Mortensen, Simon Brandi

    2008-01-01

    A method for simulating the motions and mooring forces of a moored ship subject to wave forcing has been further developed and validated for both the open water case and inside harbour areas. The method was originally developed and reported in Bingham (2000). The simulation tool is named WAMSIM...

  16. Simulation Enabled Safeguards Assessment Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.

  17. International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN) : Verification Phase Based on Canonical Cases

    NARCIS (Netherlands)

    Régnier, Julie; Bonilla, Luis-Fabian; Bard, Pierre-Yves; Bertrand, Etienne; Hollender, Fabrice; Kawase, Hiroshi; Sicilia, Deborah; Arduino, Pedro; Amorosi, Angelo; Asimaki, Dominiki; Pisano, F.

    2016-01-01

    PREdiction of NOn‐LINear soil behavior (PRENOLIN) is an international benchmark aiming to test multiple numerical simulation codes that are capable of predicting nonlinear seismic site response with various constitutive models. One of the objectives of this project is the assessment of the

  18. Practical design of magnetostatic structure using numerical simulation

    CERN Document Server

    Wang, Qiuliang

    2013-01-01

    Covers the practical numerical method for the analysis and design of magnets Extensively covers the magnet design and computation aspects from theories to practical applications, emphasizing design methods of practical structures such as superconducting, electromagnetic and permanent magnet for use in various scientific instruments, industrial processing, biomedicine and special electrical equipments. The computations cover a wide range of numerical techniques and analytical derivation to efficiently provide solutions to complicated problems that are often encountered in practice, where simple analytical calculations are no longer adequate. Chapters include: Introduction of Magnet Technology, Magnetostatic Equation for the Magnet Structure, Finite Element Analysis for Magnetostatic Field, Integral Method for Magnetostatic Field, Numerical Method of Solenoid Coils Design, Series Analysis of Axially Symmetric Magnetic Field, Magnets with High Magnetic Field and High Homogeneity, Permanent Magnet and its App...

  19. Numerical simulation of pore pressure changes in levee under flood conditions

    Science.gov (United States)

    Stanisz, Jacek; Borecka, Aleksandra; Pilecki, Zenon; Kaczmarczyk, Robert

    2017-11-01

    The article discusses the potential for using numerical simulation to assess the development of deformation and pore pressure changes in a levee as a result of the increase and decrease of the flood wave. The simulation made in FLAC 2D did not take into account the filter-erosion deformation associated with seepage in the levee. The simulations were carried out for a field experimental storage consisting of two combined levees, which was constructed with the help of homogeneous cohesive materials with different filtration coefficients. Calculated and measured pore pressure changes were analysed at 4 monitoring points. The water level was increased to 4 m in 96 hours and decreased in 120 hours. The characteristics of the calculated and measured pore pressure changes over time were similar. The maximum values of the calculated and measured pore pressure were almost identical. The only differences were the greater delay of the experimental levee response to changes in water level increase compared to the response of the numerical model. These differences were probably related to filtering-erosion effects during seepage in the levee.

  20. Numerical simulation of transport processes in vertical cylinder epitaxy reactors

    Energy Technology Data Exchange (ETDEWEB)

    Manke, C.W.; Donaghey, L.F.

    1977-08-01

    A numerical method employing a marching integration, finite difference method is used to determine the momentum, temperature, and component molar concentration profiles in the tapered annulus of a vertical cylinder epitaxy reactor for silicon deposition from SiCl/sub 4/ in H/sub 2/. Results of the study contribute to the understanding of momentum, heat, and mass transfer in the vertical cylinder reactor. The numerical results indicate that boundary layers control the deposition profile in the entrance length of the reactor, while downstream rates are governed by the inlet flow rate and susceptor tilt angle. 7 figures, 2 tables.

  1. Numerical simulation of asphalt mixtures fracture using continuum models

    Science.gov (United States)

    Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz

    2018-01-01

    The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.

  2. Simulation of Intra-Aneurysmal Blood Flow by Different Numerical Methods

    Directory of Open Access Journals (Sweden)

    Frank Weichert

    2013-01-01

    Full Text Available The occlusional performance of sole endoluminal stenting of intracranial aneurysms is controversially discussed in the literature. Simulation of blood flow has been studied to shed light on possible causal attributions. The outcome, however, largely depends on the numerical method and various free parameters. The present study is therefore conducted to find ways to define parameters and efficiently explore the huge parameter space with finite element methods (FEMs and lattice Boltzmann methods (LBMs. The goal is to identify both the impact of different parameters on the results of computational fluid dynamics (CFD and their advantages and disadvantages. CFD is applied to assess flow and aneurysmal vorticity in 2D and 3D models. To assess and compare initial simulation results, simplified 2D and 3D models based on key features of real geometries and medical expert knowledge were used. A result obtained from this analysis indicates that a combined use of the different numerical methods, LBM for fast exploration and FEM for a more in-depth look, may result in a better understanding of blood flow and may also lead to more accurate information about factors that influence conditions for stenting of intracranial aneurysms.

  3. Numerical fatigue life assessment of cardiovascular stents: A two-scale plasticity-damage model

    Science.gov (United States)

    Santos, H. A. F. A.; Auricchio, F.; Conti, M.

    2013-07-01

    Cardiovascular disease has become a major global health care problem in the last decades. To tackle this problem, the use of cardiovascular stents has been considered a promising and effective approach. Numerical simulations to evaluate the in vivo behavior of stents are becoming more and more important to assess potential failures. As the material failure of a stent device has been often associated with fatigue issues, numerical approaches for fatigue life assessment of stents have gained special interest in the engineering community. Numerical fatigue life predictions can be used to modify the design and prevent failure without making and testing numerous physical devices, thus preventing from undesired fatigue failures. We present a numerical fatigue life model for the analysis of cardiovascular balloon-expandable stainless steel stents that can hopefully provide useful information either to be used for product improvement or for clinicians to make life-saving decisions. This model incorporates a two-scale continuum damage mechanics model and the so-called Soderberg fatigue failure criterion. We provide numerical results for both Palmaz-Schatz and Cypher stent designs and demonstrate that a good agreement is found between the numerical and the available experimental results.

  4. Numerical simulation of breakup and detachment of an axially ...

    Indian Academy of Sciences (India)

    The extensional, breakup and detachment dynamics of an axially stretching Newtonian liquid bridge are investigated numerically with a dynamic domain multiphase incompressible flow solver. The multiphase flow solver employs a Cahn–Hilliard phase field model to describe the evolution of the diffuse interfaceseparating ...

  5. Numerical simulations on a twin-plate wake

    DEFF Research Database (Denmark)

    Fernández-Gámiz, U.; Velte, Clara Marika; Egusquiza, E.

    2013-01-01

    In this work, a detailed numerical analysis of two dimensional mean velocity profiles downstream of two parallel flat plates was carried out at a Reynolds number of 3.2x104 (based on the plate length and free stream velocity) using Reynolds Averaged Navier-Stokes (RANS) and have been compared wit...

  6. Numerical Simulation of tsunami-scale wave boundary layers

    NARCIS (Netherlands)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scale waves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations,

  7. Numerical simulation and observations of very severe cyclone ...

    Indian Academy of Sciences (India)

    INCOIS is issuing high wave alerts during extreme weather events, as forecasted by numerical models. The alerts give information about signifi- cant wave height, swell wave height, wave period, ..... Cyclone Warning Division, India Meteorological Depart- ment, New Delhi. IMD report 2014 Very Severe Cyclonic Storm, ...

  8. Numerical simulation and observations of very severe cyclone ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 8. Numerical ... The present work evaluates the performance of a wave forecasting system under very severe cyclonic conditions for the Indian Ocean. ... Indian National Centre for Ocean Information Services, Pragathi Nagar, Hyderabad 500 090, India.

  9. High-Order Numerical Simulations of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Kleusberg, E.; Mikkelsen, Robert Flemming; Schlatter, Philipp

    2017-01-01

    aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades...

  10. Estimation of spinal loading in vertical vibrations by numerical simulation

    NARCIS (Netherlands)

    Verver, M.M.; Hoof, J.F.A.M. van; Oomens, C.W.J.; Wouw, N. van de; Wismans, J.S.H.M.

    2003-01-01

    Objective. This paper describes the prediction of spinal forces in car occupants during vertical vibrations using a numerical multi-body occupant model. Background. An increasing part of the population is exposed to whole body vibrations in vehicles. In literature, vertical vibrations and low back

  11. Numerical simulation of premixed flames interacting with obstacles

    NARCIS (Netherlands)

    Paravento, F.

    2009-01-01

    In this work the modeling of the interaction of a premixed flame with one ore more obstacles of different shape is considered. The challenge of this work was to design a fast numerical tool suitable for a standard personal computer. A tool able to use a simplified chemical model that removes the

  12. Experimental validation of numerical sensitivities in a deep drawing simulation

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Carleer, B.D.; Atzema, E.H.; ter Wijlen, E.V.

    2008-01-01

    Deep drawing of a benchmark B-pillar is numerically modelled and experimentally performed with varying blankholder force and several blank shape parameters. The most influential parameters are selected for optimisation. Direct application of Autoform sigma software was used to determine

  13. NUMERICAL SIMULATION OF POLLUTION DISPERSION IN URBAN STREET

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-08-01

    Full Text Available Purpose. The scientific paper solves the question of 2D numerical model development, which allows quick computation of air pollution in streets from vehicles. The aim of the work is numerical model development that would enable to predict the level of air pollution by using protective barriers along the road. Methodology. The developed model is based on the equation of inviscid flow and equation of pollutant transfer. Potential equation is used to compute velocity field of air flow near road in the case of protection barriers application. To solve equation for potential flow implicit difference scheme of «conditional approximation« is used. The implicit change – triangle difference scheme is used to solve equation of convective – diffusive dispersion. Numerical integration is carried out using the rectangular difference grid. Method of porosity technique («markers method» is used to create the form of comprehensive computational region. Emission of toxic gases from vehicle is modeled using Delta function for point source.Findings. Authors developed 2D numerical model. It takes into account the main physical factors affecting the process of dispersion of pollutants in the atmosphere when emissions of vehicle including protection barriers near the road. On the basis of the developed numerical models a computational experiment was performed to estimate the level of air pollution in the street. Originality. A numerical model has been created. It makes it possible to calculate 2D aerodynamics of the wind flow in the presence of noises and the process of mass transfer of toxic gas emissions from the motorway. The model allows taking into account the presence of the car on the road, the form of a protective barrier, the presence of a curb. Calculations have been performed to determine the contamination zone formed at the protective barrier that is located at the motorway. Practical value. An effective numerical model that can be applied in the

  14. Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks.

    Science.gov (United States)

    Henker, Stephan; Partzsch, Johannes; Schüffny, René

    2012-04-01

    With the various simulators for spiking neural networks developed in recent years, a variety of numerical solution methods for the underlying differential equations are available. In this article, we introduce an approach to systematically assess the accuracy of these methods. In contrast to previous investigations, our approach focuses on a completely deterministic comparison and uses an analytically solved model as a reference. This enables the identification of typical sources of numerical inaccuracies in state-of-the-art simulation methods. In particular, with our approach we can separate the error of the numerical integration from the timing error of spike detection and propagation, the latter being prominent in simulations with fixed timestep. To verify the correctness of the testing procedure, we relate the numerical deviations to theoretical predictions for the employed numerical methods. Finally, we give an example of the influence of simulation artefacts on network behaviour and spike-timing-dependent plasticity (STDP), underlining the importance of spike-time accuracy for the simulation of STDP.

  15. Numerical Simulation of Particle Deposition in the Human Lungs

    OpenAIRE

    Gengenbach, Thomas

    2012-01-01

    We model, simulate and calculate breathing and particle depositions in the human lungs. We review the theory and discretization of fluid mechanics, the anatomy, physiology and measuring methods of lungs. A new model is introduced and investigated with a sensitivity analysis using the singular value decomposition. Particle depositions are simulated in patient-specific and schematized human lungs and compared to the particle deposition in a multiplicative model of subsequent bifurcations.

  16. Numerical Simulation of Roughness Induced Boundary Layer Transition

    Science.gov (United States)

    2016-03-30

    901-918. 18. ZHENG Yun, LI Hongyang, LIU Daxiang. “Application and Analysis of γ-Reθ Transition Model in Hypersonic Flow”, Journal of Propulsion ...making the simulated result more accurate. Xiao [25] used a three-equation k-ω- γ transition model to study hypersonic flow around single roughness...point RANS Approach”, Journal of Turbomachinery, 2004, 126(1):193-202. 14. FU Song, WANG Liang. “Simulation of Hypersonic Boundary-Layer Transition

  17. Detailed Numerical Simulation of the Graniteville Train Collision

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. L.

    2005-10-24

    An unfortunate accident occurred in Graniteville, South Carolina on 6 January, 2005 when a train carrying a variety of hazardous chemicals collided with a stationary train parked on a siding rail (spur). The Savannah River National Laboratory (SRNL) runs prognostic atmospheric simulations of the Central Savannah River Area (CSRA) on an operational basis in the event of such airborne releases. Although forecast information was provided at 2-km horizontal grid spacing during the accident response, a higher-resolution simulation was later performed to examine influences of local topography on plume migration. The Regional Atmospheric Modeling System (RAMS, version 4.3.0) was used to simulate meteorology using multiple grids with an innermost grid spacing of 125 meters. This report discusses comparisons of simulated meteorology with local observations and applications using two separate transport models. Results from the simulations are shown to generally agree with meteorological observations at the time. Use of a dense gas model to simulate localized effects indicates agreement with fatalities in the immediate area and visible damage to vegetation.

  18. Numerical integration of detector response functions via Monte Carlo simulations

    Science.gov (United States)

    Kelly, K. J.; O'Donnell, J. M.; Gomez, J. A.; Taddeucci, T. N.; Devlin, M.; Haight, R. C.; White, M. C.; Mosby, S. M.; Neudecker, D.; Buckner, M. Q.; Wu, C. Y.; Lee, H. Y.

    2017-09-01

    Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated in this way can be used to create Monte Carlo simulation output spectra a factor of ∼ 1000 × faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. This method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.

  19. XVI 'Jacques-Louis Lions' Spanish-French School on Numerical Simulation in Physics and Engineering

    CERN Document Server

    Roldán, Teo; Torrens, Juan

    2016-01-01

    This book presents lecture notes from the XVI ‘Jacques-Louis Lions’ Spanish-French School on Numerical Simulation in Physics and Engineering, held in Pamplona (Navarra, Spain) in September 2014. The subjects covered include: numerical analysis of isogeometric methods, convolution quadrature for wave simulations, mathematical methods in image processing and computer vision, modeling and optimization techniques in food processes, bio-processes and bio-systems, and GPU computing for numerical simulation. The book is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques in the fields addressed here. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.

  20. Numerical simulations of the 2-dimensional Robin-Hood model

    Science.gov (United States)

    Cwilich, Gabriel; Fox, Perry; Zypman, Fredy; Buldyrev, Sergey

    2007-03-01

    The Robin Hood, or Zaitsev model [1] has been successfully used to model depinning of interfaces, friction, dislocation motion and flux creep, because it is one of the simplest extremal models for self-organized criticallity Until now, its properties have been well understood theoretically in one dimension and its scaling laws numerically verified. It is important to extend the range of validity of these laws into higher dimensions, to find precise values for the scaling exponents, and to investigate how they depend on the details of the model (like anisotropy). The case of two dimensions is of particular importance when studying surface friction [2]. Here, we numerically evaluate high precision scaling exponents for the avalanche size distribution, the avalanche fractal dimension, and the Levy flight-like distribution of the jumps between extremal active sites. [1] S.I. Zaitsev , Physica A 189, 411 (1992). [2] S. Buldyrev, J. Ferrante and F. Zypman Phys. Rev E (accepted)

  1. Helioseismic Effects of Magnetic Flux Tube: 3D Numerical Simulations

    Science.gov (United States)

    Daiffallah, K.; Abdelatif, T.

    2008-09-01

    Observations suggest clearly that there is a significant interaction between solar surface waves and magnetic flux tubes with specific helioseismic signature. Magnetic flux tubes permit the propagation of two types of magnetohydrodynamic waves: The longitudinal tube wave (sausage modes) and the transversal tube wave (kink modes). The response of different magnetic flux tubes embedded in polytropic atmosphere to the propagation of surface gravity wave (f-mode) is studied numerically with the SLiM code (see Cameron et al. 2007). We find that the back scattering wave from different sizes of tubes reveals interesting information about which modes are excited in the tubes. The numerical calculations of the scattering effects (for different frequencies of the incident wave, different tube radius and values of plasma-beta) are compared with theoretical results obtained by Hanasoge et al. 2008.

  2. Numerical simulations of sessile droplet evaporating on heated substrate

    Science.gov (United States)

    Chen, Xue; Chen, Paul G.; Ouazzani, Jalil; Liu, Qiusheng

    2017-04-01

    Motivated by the space project EFILE, a 2D axisymmetric numerical model in the framework of ALE method is developed to investigate the coupled physical mechanism during the evaporation of a pinned drop that partially wets on a heated substrate. The model accounts for mass transport in surrounding air, Marangoni convection inside the drop and heat conduction in the substrate as well as moving interface. Numerical results predict simple scaling laws for the evaporation rate which scales linearly with drop radius but follows a power-law with substrate temperature. It is highlighted that thermal effect of the substrate has a great impact on the temperature profile at the drop surface, which leads to a multicellular thermocapillary flow pattern. In particular, the structure of the multicellular flow behavior induced within a heated drop is mainly controlled by a geometric parameter (aspect ratio). A relationship between the number of thermal cells and the aspect ratio is proposed.

  3. Mathematical modelling and numerical simulation of oil pollution problems

    CERN Document Server

    2015-01-01

    Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics,  together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems.   The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...

  4. Numerical simulations of altocumulus with a cloud resolving model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Krueger, S.K. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  5. Numerical Simulation of Tethered Underwater Kites for Power Generation

    Science.gov (United States)

    Ghasemi, Amirmahdi; Olinger, David; Tryggvason, Gretar

    2015-11-01

    An emerging renewable energy technology, tethered undersea kites (TUSK), which is used to extract hydrokinetic energy from ocean and tidal currents, is studied. TUSK systems consist of a rigid-winged ``kite,'' or glider, moving in an ocean current which is connected by tethers to a floating buoy on the ocean surface. The TUSK kite is a current speed enhancement device since the kite can move in high-speed, cross-current motion at 4-6 times the current velocity, thus producing more power than conventional marine turbines. A computational simulation is developed to simulate the dynamic motion of an underwater kite and extendable tether. A two-step projection method within a finite volume formulation, along with an Open MP acceleration method, is employed to solve the Navier-Stokes equations. An immersed boundary method is incorporated to model the fluid-structure interaction of the rigid kite (with NACA 0012 airfoil shape in 2D and NACA 0021 airfoil shape in 3D simulations) and the fluid flow. PID control methods are used to adjust the kite angle of attack during power (tether reel-out) and retraction (reel-in) phases. Two baseline simulations (for kite motions in two and three dimensions) are studied, and system power output, flow field vorticity, tether tension, and hydrodynamic coefficients (lift and drag) for the kite are determined. The simulated power output shows good agreement with established theoretical results for a kite moving in two-dimensions.

  6. Anuga Software for Numerical Simulations of Shallow Water Flows

    OpenAIRE

    Mungkasi, Sudi; Roberts, Stephen Gwyn

    2012-01-01

    Shallow water flows are governed by the shallow water wave equations, also known as the Saint-Venant system. This paper presents a finite volume method used to solve the two-dimensional shallow water wave equations and how the finite volume method is implemented in ANUGA software. This finite volume method is the numerical method underlying the software. ANUGA is open source software developed by Australian National University (ANU) and Geoscience Australia (GA). This software uses the finite...

  7. ANUGA SOFTWARE FOR NUMERICAL SIMULATIONS OF SHALLOW WATER FLOWS

    OpenAIRE

    Sudi Mungkasi; Stephen Gwyn Roberts

    2012-01-01

    Shallow water flows are governed by the shallow water wave equations, also known as the Saint-Venant system. This paper presents a finite volume method used to solve the two-dimensional shallow water wave equations and how the finite volume method is implemented in ANUGA software. This finite volume method is the numerical method underlying the software. ANUGA is open source software developed by Australian National University (ANU) and Geoscience Australia (GA). This software uses the finite...

  8. Numerical simulation of unsteady flow around rectangular cylinders at incidence

    OpenAIRE

    García Buitrago, Arturo

    2012-01-01

    Flows around varied barriers are involved in many practical areas such as bridges, flow meters, towers, cables... The prediction of both the efforts exerted on the structure and main frequencies is of great importance in terms of engineering, especially in aeroacoustics. Development and validation of flexible numerical tools allowing an easy evaluation of different geometries can be very useful. La interacción entre una corriente de aire y un obstáculo está presente en muchos a...

  9. Numerical Simulation of Groundwater Withdrawal at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Rosemary [Nevada Site Office, Las Vegas, NV (United States).; Giroux, Brian [Nevada Site Office, Las Vegas, NV (United States).; Pohll, Greg [Nevada Site Office, Las Vegas, NV (United States).; Hershey, Ronald [Nevada Site Office, Las Vegas, NV (United States).; Russell, Charles [Nevada Site Office, Las Vegas, NV (United States).; Howcroft, William [Nevada Site Office, Las Vegas, NV (United States).

    2004-01-28

    Alternative uses of the Nevada Test Site (NTS) may require large amounts of water to construct and/or operate. The only abundant source of water at the NTS is groundwater. This report describes preliminary modeling to quantify the amount of groundwater available for development from three hydrographic areas at the NTS. Modeling was conducted with a three-dimensional transient numerical groundwater flow model.

  10. Numerical simulation of solar heating of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coffe, G.; Jannot, M.; Pellerin, J.F.

    1980-01-01

    This study is divided into two parts: First, the thermal modelling of a solar + electric heated building is presented; mathematical equations are established; numerical calculations are analyzed; and a calculation code in FORTRAN V is set down. Second, this calculation code was used to study the thermal performances of the solar + electric heated building in three European climates: Copenhagen (56/sup 0/ north latitude - Denmark), Trappes (48/sup 0/ north latitude - France), and Carpentras (44/sup 0/ north latitude - France).

  11. Numerical simulation of porous burners and hole plate surface burners

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan

    2004-01-01

    Full Text Available In comparison to the free flame burners the porous medium burners, especially those with flame stabilization within the porous material, are characterized by a reduction of the combustion zone temperatures and high combustion efficiency, so that emissions of pollutants are minimized. In the paper the finite-volume numerical tool for calculations of the non-isothermal laminar steady-state flow, with chemical reactions in laminar gas flow as well as within porous media is presented. For the porous regions the momentum and energy equations have appropriate corrections. In the momentum equations for the porous region an additional pressure drop has to be considered, which depends on the properties of the porous medium. For the heat transfer within the porous matrix description a heterogeneous model is considered. It treats the solid and gas phase separately, but the phases are coupled via a convective heat exchange term. For the modeling of the reaction of the methane laminar combustion the chemical reaction scheme with 164 reactions and 20 chemical species was used. The proposed numerical tool is applied for the analyses of the combustion and heat transfer processes which take place in porous and surface burners. The numerical experiments are accomplished for different powers of the porous and surface burners, as well as for different heat conductivity character is tics of the porous regions.

  12. NUMERICAL SIMULATION OF MASS TRANSFER IN CENTRIFUGAL EVAPORATOR

    Directory of Open Access Journals (Sweden)

    E. N. Kalinin

    2017-01-01

    Full Text Available Subject of Research. The paper deals with the problem of an adequate mathematical model of mass transfer process occurring during evaporation and concentration of spent process solution in a centrifugal evaporator with variable geometric parameters. The model provides a science-based forecast of the process parameters. Methods. Definition of the film flow parameters on a rotating conical surface of the centrifugal evaporator rotor is carried out on the basis of the solution of Navier-Stokes equations. Solution of the system of differential equations describing the mass transfer process in the studied dynamic system is performed by numerical methods. With this aim in view, we realized semi-implicit finite difference scheme for the SIMPLE pressure. Main Results. We have developed an algorithm and performed numerical solution of differential equations describing the mass transfer process occurring during concentration of the working solution in the centrifugal type evaporator. On the basis of the obtained numerical solution we have created a computer model of the given process. With the aid of the model we have defined basic hydrodynamic and operating parameters of the evaporator, as well as dependencies between them. Practical Relevance. Developed computer model of the mass transfer process enables to define the parameters of the solution moving along the conical surface of the centrifugal evaporator rotor: speed, pressure and the thickness of the flowing-down film. The results can be applied in real industrial process management and during personnel training.

  13. Tritium release experiments with CATS and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Munakata, Kenzo, E-mail: kenzo@gipc.akita-u.ac.jp [Faculty of Engineering and Resource Sciences, Akita University, Tegata-gakuen-cho 1-1, Akita 010-8502 (Japan); Wajima, Takaaki; Hara, Keisuke; Wada, Kohei [Faculty of Engineering and Resource Sciences, Akita University, Tegata-gakuen-cho 1-1, Akita 010-8502 (Japan); Takeishi, Toshiharu; Shinozaki, Yohei; Mochizuki, Kazuhiro; Katekari, Kenichi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Kobayashi, Kazuhiro; Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko [Tritium Technology Group, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2010-12-15

    In D-T fusion power plants, large amounts of tritium would be handled. Tritium is the radioisotope of protium, and is easily taken into the human body, and thus the behavior of tritium accidentally released in fusion power plants should be studied for the safety design and radioprotection of workers. Therefore, it is necessary to investigate the behavior of tritium released into large rooms with objectives, since complex flow fields should exist in such rooms and they could influence the ventilation of the air containing released tritium. Thus, tritium release experiments were conducted using Caisson Assembly for Tritium Safety Study (CATS) in TPL/JAEA. Some data were taken for tritium behavior in the ventilated area and response of tritium monitors. In the experiments, approximately 17 GBq of tritium was released into Caisson with the total volume of 12 m{sup 3}, and the room was ventilated at the rate of 12 m{sup 3}/h after release of tritium. It was found that placement of an objective in the vessel substantially affects decontamination efficiency. With regard to an experimental result, numerical calculation was performed and the experimental result and the result of numerical calculation were compared, which indicates that experimental results are qualitatively reproduced by numerical calculation. However, further R and D needs to be carried out for quantitative reproduction of the experimental results.

  14. Numerical Simulation of the Aircraft Wake Vortex Flowfield

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad

    2013-01-01

    The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.

  15. Numerical simulation of primary cluster formation in silane plasmas

    CERN Document Server

    Gupta, N; Kroesen, G

    2003-01-01

    The usage of low-cost silicon-based solar cells is limited by their tendency to degrade on prolonged exposure to sunlight. Current research has indicated that the inclusion of nano-particles in the plasma-deposited film enhances its efficiency considerably. It is therefore essential to identify the plasma operating conditions such that nano-particles are formed and deposited in the film. The early stages of cluster formation, nucleation and coagulation are still open to experimental and theoretical investigation. In this paper, a simulation of the first stage of particle formation in capacitively coupled radio-frequency discharges in SiH sub 4 is attempted. A molecular dynamics based model has been set up to simulate one of the principal reaction pathways in cluster formation. This simulation model appears to produce valid and meaningful trends. Further studies are planned to explore the effect of other parameters and alternate pathways.

  16. Numerical Simulation of Nonperiodic Rail Operation Diagram Characteristics

    Directory of Open Access Journals (Sweden)

    Yongsheng Qian

    2014-01-01

    Full Text Available This paper succeeded in utilizing cellular automata (CA model to simulate the process of the train operation under the four-aspect color light system and getting the nonperiodic diagram of the mixed passenger and freight tracks. Generally speaking, the concerned models could simulate well the situation of wagon in preventing trains from colliding when parking and restarting and of the real-time changes the situation of train speeds and displacement and get hold of the current train states in their departures and arrivals. Finally the model gets the train diagram that simulates the train operation in different ratios of the van and analyzes some parameter characters in the process of train running, such as time, speed, through capacity, interval departing time, and departing numbers.

  17. Numerical Simulation and Performance Analysis of Twin Screw Air Compressors

    Directory of Open Access Journals (Sweden)

    W. S. Lee

    2001-01-01

    Full Text Available A theoretical model is proposed in this paper in order to study the performance of oil-less and oil-injected twin screw air compressors. Based on this model, a computer simulation program is developed and the effects of different design parameters including rotor profile, geometric clearance, oil-injected angle, oil temperature, oil flow rate, built-in volume ratio and other operation conditions on the performance of twin screw air compressors are investigated. The simulation program gives us output variables such as specific power, compression ratio, compression efficiency, volumetric efficiency, and discharge temperature. Some of the above results are then compared with experimentally measured data and good agreement is found between the simulation results and the measured data.

  18. 3D numerical simulation of flow field around twin piles

    Science.gov (United States)

    Amini, Ata; Parto, Akram Asadi

    2017-12-01

    In this study to identify the flow pattern and local scour mechanism around pile groups, the flow field was simulated using FLOW-3D software. A pair of pile on a flat-bed channel with side by side and tandem arrangements was investigated. To establish Navier-Stokes equations, the RNG k- ɛ turbulence model was used and the results were verified using experimental data. In case of FLOW-3D capability, it was found that the software was able to properly simulate the expected interaction between the pile groups. The results of flow field simulation showed that Reynolds number and the pile spacing are the most influential variables in forming vortices. The flow around tandem pile and the downward flow around wake vortices were more intense and complicate in comparison with side by side arrangements and single pile.

  19. Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging

    Science.gov (United States)

    Bondiau, Pierre-Yves; Clatz, Olivier; Sermesant, Maxime; Marcy, Pierre-Yves; Delingette, Herve; Frenay, Marc; Ayache, Nicholas

    2008-02-01

    Glioblastoma multiforma (GBM) is one of the most aggressive tumors of the central nervous system. It can be represented by two components: a proliferative component with a mass effect on brain structures and an invasive component. GBM has a distinct pattern of spread showing a preferential growth in the white fiber direction for the invasive component. By using the architecture of white matter fibers, we propose a new model to simulate the growth of GBM. This architecture is estimated by diffusion tensor imaging in order to determine the preferred direction for the diffusion component. It is then coupled with a mechanical component. To set up our growth model, we make a brain atlas including brain structures with a distinct response to tumor aggressiveness, white fiber diffusion tensor information and elasticity. In this atlas, we introduce a virtual GBM with a mechanical component coupled with a diffusion component. These two components are complementary, and can be tuned independently. Then, we tune the parameter set of our model with an MRI patient. We have compared simulated growth (initialized with the MRI patient) with observed growth six months later. The average and the odd ratio of image difference between observed and simulated images are computed. Displacements of reference points are compared to those simulated by the model. The results of our simulation have shown a good correlation with tumor growth, as observed on an MRI patient. Different tumor aggressiveness can also be simulated by tuning additional parameters. This work has demonstrated that modeling the complex behavior of brain tumors is feasible and will account for further validation of this new conceptual approach.

  20. The influence of data shape acquisition process and geometric accuracy of the mandible for numerical simulation.

    Science.gov (United States)

    Relvas, C; Ramos, A; Completo, A; Simões, J A

    2011-08-01

    Computer-aided technologies have allowed new 3D modelling capabilities and engineering analyses based on experimental and numerical simulation. It has enormous potential for product development, such as biomedical instrumentation and implants. However, due to the complex shapes of anatomical structures, the accuracy of these technologies plays an important key role for adequate and accurate finite element analysis (FEA). The objective of this study was to determine the influence of the geometry variability between two digital models of a human model of the mandible. Two different shape acquisition techniques, CT scan and 3D laser scan, were assessed. A total of 130 points were controlled and the deviations between the measured points of the physical and 3D virtual models were assessed. The results of the FEA study showed a relative difference of 20% for the maximum displacement and 10% for the maximum strain between the two geometries.

  1. Numerical Simulation of Multiphase Flow in Solid Rocket Motors

    Science.gov (United States)

    Attili, A.; Favini, B.; Di Giacinto, M.; Serraglia, F.

    2009-01-01

    In the paper a general mathematical description of the flow in the internal chamber of solid rocket motors is presented. The formulation adopted take into account the multi-species and multiphase, reactive, multidimensional characteristics of the flow. The grain combustion is described by a pressure dependent law; aluminum droplet are modelled by a Lagrangian approach, coupled with the Eulerian formulation adopted for the gas phase. The mathematical model has been implemented in a simulation code and several simulations have been performed; in particular in the paper the re- sults for two geometries are described: a simple cylindrical port-area rocket and the Zefiro 9 SRM.

  2. Numerical simulation of tangential inlet configuration for plenum chambers

    Science.gov (United States)

    Mohammed, A. N.; Sheriff, J. M.; Mohideen Batcha, M. F.; Sapit, A.; Razali, M. A.

    2017-09-01

    Swirling fluid motion in enclosed chambers was studied using Computational Fluid Dynamics. Using the tangential inlet configuration as the basic design, 3 swirl generator models was created using Computer Aided Design software. The aim was to see whether a modified design from the original configuration could provide a reduction in the backflow effect that is constantly present in swirling flows. Simulations show that swirl generator inlets at different angles from the original tangential position results in a change in velocity profiles across the flow cross section. From the simulations performed, it was found that the swirl generator model with inlets set to 45 degrees produced the least backflow compared to other models.

  3. Bifurcation in tidal streams of Sagittarius Dwarf Galaxy: Numerical Simulations

    Science.gov (United States)

    Camargo Camargo, Y.; Casas-Miranda, R.

    2018-01-01

    We performed N-body simulations between Sagittarius dwarf galaxy and the Milky Way. The Sagittarius galaxy is modeled with two components: dark matter halo and stellar disc. The Milky Way is modeled with three components: dark matter halo, stellar disc and bulge. The goal of this work is to reproduce the bifurcations in the tidal tails and the physical properties of the Sagittarius dwarf galaxy. For it, we simulated the interaction of the progenitor of this galaxy with the Milky Way. Although bifurcations could be reproduced, the position and physical properties of Sagittarius remnant could not be obtained simultaneously.

  4. Comparison of biochemical simulations using integrators derived from "Adomian" decomposition with traditional numerical methods.

    Science.gov (United States)

    Bulliman, B T; Kuchel, P W

    1990-01-01

    Comparisons are made between some traditional numerical integrators and integration using "Adomian" power series solutions to the ordinary differential equations. These are initial investigations to determine the viability of their application to the simulation of large complex metabolic pathways. A small set of test equations was employed to represent the types of problems encountered in biochemical applications. It was found that the "Adomian" method is as accurate as the numerical methods and, for 'nonstiff' equations or for small simulation times, the "Adomian" method is often more efficient. The results suggest that it may be worthwhile refining this method for biochemical simulations for situations where the traditional numerical methods fail.

  5. Modelling strategies for numerical simulation of aircraft ditching

    NARCIS (Netherlands)

    Bisagni, C.; Pigazzini, M. S.

    2017-01-01

    Ditching, which is a controlled landing of an airplane on water, is an emergency condition to be investigated in order to improve the aircraft global crashworthiness. The complex hydrodynamic phenomena involved in ditching events are difficult to simulate and the accuracy of the results depends

  6. Numerical simulation of side heating for controlling angular ...

    Indian Academy of Sciences (India)

    Side heating; finite element analysis; element birth and death method; manual metal arc welding; angular distortions. ... Element birth and death technique is used to simulate the filler material deposition. ... Institute of Engineering Education and Research, Nashik (Affiliated to University of Pune), Nashik, 422 003, India ...

  7. Multi-physics Simulation of Thermoelectric Generators through Numerically Modeling

    DEFF Research Database (Denmark)

    Chen, Min; Rosendahl, Lasse; Bach, Inger Palsgaard

    2007-01-01

    The governing equations taken from the assumption of local equilibrium and the heat transfer rate form of Onsager flux have been compared with those based on classical heat transfer formulation by a simplified one dimensional (1-D) thermoelectric generator (TEG) model. In this paper, the simulation...

  8. Numerical simulation of thermal fracture in functionally graded ...

    Indian Academy of Sciences (India)

    In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the heat transfer ...

  9. Numerical simulations of topological and correlated quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Assaad, Fakher F. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik

    2016-11-01

    The complexity of the solid state does not allow us to carry out simulations of correlated materials without adopting approximation schemes. In this project we are tackling this daunting task with complementary techniques. On one hand one can start with density functional theory in the local density approximation and then add dynamical local interactions using the so called dynamical mean-field approximation. This approach has the merit of being material dependent in the sense that it is possible to include the specific chemical constituents of the material under investigation. Progress in this domain is described below. Another venue is to concentrate on phenomena occurring in a class of materials. Here, the strategy is to define models which one can simulate in polynomial time on supercomputing architectures, and which reproduce the phenomena under investigation. This route has been remarkably successful, and we are now in a position to provide controlled model calculations which can cope with antiferromagnetic fluctuations in metals, or nematic instabilities of fermi liquids. Both phenomena are crucial for our understanding of high temperature superconductivity in the cuprates and the pnictides. Access to the LRZ supercomputing center was imperative during the current grant period to do the relevant simulations on a wide range of topics on correlated electrons. In all cases access to supercomputing facilities allows to carry out simulations on larger and larger system sizes so as to be able to extrapolate to the thermodynamic limit relevant for the understanding of experiments and collective phenomena.

  10. Numerical simulation of baseflow modification due to effects of ...

    African Journals Online (AJOL)

    drinie

    2001-04-02

    Apr 2, 2001 ... lateral flow obtained as a constant calibration parameter (e.g.. Chang, 1982). When streamflow and sediment routing is performed for rocky basins with river beds that have very low permeability, or when stream-aquifer interaction is simulated for stable channels with negligible sediment yield, then errors ...

  11. Numerical Simulation of Wave Interaction with Moving Net Structures

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard

    2015-01-01

    was described as a sheet of porous media with prescribed rigid body motion and mesh motion was incorporated to conform the motion of the net. Free surface wave generation and absorption framework was also introduced to simulate wave interaction with moving net structures. The results showed that mesh motion...

  12. Numerical Simulation of Methane Slip in Dual Fuel Marine Engines

    DEFF Research Database (Denmark)

    Han, Jaehyun; Jensen, Michael Vincent; Pang, Kar Mun

    2017-01-01

    and the valve timings on the methane slip was investigated. MAN L28/32DF engine was modeled to simulate the gas exchange process of the four stroke NG-diesel dual fuel engines. The mesh size of the model was decided based on the sensitivity study on the peak pressure of the cylinder and the fuel mass...

  13. Numerical Simulation of Gleeble Torsion Testing of HSLA-65 Steel

    Science.gov (United States)

    2008-04-01

    3800 Torsion machine on AISI 304L and HSLA-65 steels to simulate the friction stir welding of these materials. A photograph of the experimental setup...strain rate levels = 420 flow stress values provided in the dataset for DEFORM 3D. Because of lack of data as well as some inconsistencies between

  14. Numerical simulation of three phase asynchronous motor to ...

    African Journals Online (AJOL)

    Simulation numérique du moteur asynchrone triphasé pour diagnostiquer précisément le défaut du déséquilibre de ..... carrying more energy [9]. This severity index assumes values ..... its spectrum in normal circumstance. It was theoretically predicted that in this condition, the EPVA signature would be free from any spectral.

  15. Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation

    Science.gov (United States)

    Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu

    2015-01-01

    In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...

  16. Numerical Integration with Graphical Processing Unit for QKD Simulation

    Science.gov (United States)

    2014-03-27

    6 2.1 Cryptography and Quantum Key Distribution Protocol . . . . . . . . . . . 6 2.1.1 Cryptography ...scientific research. 2.1 Cryptography and Quantum Key Distribution Protocol In order to have a better understanding of the QKD simulation a basic...information: From classical error correction to quantum cryptography . New York: Cambridge University Press, 1 ed., 2006. [7] C. H. Bennett and G. Brassard

  17. Highly turbulent Taylor-Couette flow: direct numerical simulations

    NARCIS (Netherlands)

    Ostilla Monico, Rodolfo

    2015-01-01

    Turbulence is all around us. Even if we are familiar with every day instances of turbulence, like the smoke coming out of a chimney, it remains a not-well-understood phenomenum. As it is impossible to fully simulate turbulence to precisely take into account its effect, models must be used. These

  18. Experiments and Numerical Simulation of Mixing under Supercritical Conditions (PREPRINT)

    Science.gov (United States)

    2011-02-08

    equation of state. Ind. Eng. Chem. Fundam., 15:59–64, 1976. [46] T. Poinsot and S. Lele . Boundary conditions for direct simulations of compressible...and liquids. McGraw-Hill, fifth edition, 2001. [48] L. Pons , N. Darabiha, S. Candel, T. Schmitt, and B. Cuenot. The structure of multidimensional

  19. Numerical simulation of the Weddell Sea pack ice

    Science.gov (United States)

    Hibler, W. D., III; Ackley, S. F.

    1983-01-01

    In order to determine the degree to which a coupled dynamic thermodynamic model can reproduce the seasonal cycle of the Antarctic Sea ice in the Weddell Sea, a series of two-year simulations of the Weddell Sea ice pack were carried out. The simulations employed Hibler's (1979) model and used a one-day time step on an 18 x 15 grid with a resolution of 222 km. Daily atmospheric data from 1979 were used to drive the simulations. The simulations yielded a seasonal cycle of ice with maximum and minimum extents close to that observed. Except for portions of the western Weddell, the advance of the ice is found to be primarily thermodynamic in nature, while the rapid decay depends critically on the presence of both leads and lateral ice advection. In early summer the ice motion causes a residual tongue of ice to extend eastward from the Antarctic Peninsula in agreement with observations. Mean ice thicknesses are consistent with observations, as are the mean drift rates of about 5 km/day.

  20. Mitigating Induced Seismicity Through Active Pressure Management in Numerical Simulations

    Science.gov (United States)

    Kroll, K.; Richards-Dinger, K. B.; White, J. A.

    2016-12-01

    The recent upturn of seismicity rates in the Central and Eastern United States and Canada has been attributed to industrial operations such as waste-water disposal, hydraulic fracturing, and subsurface carbon storage. We couple the 3D, physics-based earthquake simulator, RSQSim, to a reservoir model to investigate the space-time characteristics of earthquakes induced by pore-fluid pressure increases and/or poroelastic stresses during injection. RSQSim employs rate-state friction, which gives rise to spatiotemporal earthquake clustering. The simulator generates long catalogs of seismicity based on stress changes due to fault interaction and external stress perturbations with great computational efficiency, allowing for multiple simulations to systematically explore the parameters that control induced seismicity. These simulations provide physics-based statistical data that may contribute to the formalization of optimal injection operations designed to minimize risk of seismicity at a given industrial site. Industrial operators may modify injection rates as an active seismicity mitigation tool to either reduce the total number of earthquakes or attempt to reduce the likelihood of future large events. To explore the efficacy of this approach, we use RSQSim to explore how sequences of induced earthquakes respond to changes in injection schedule. We simulate induced seismicity on a single optimally oriented fault with fractally distributed initial shear stresses and compare results from models with/without along-strike fault permeability and poroelastic stress changes. We investigate the seismic response to several injection schedules that lie between two end-member scenarios, 1) constant injection at low rates, and 2) periodic injection at high rates. We evaluate the cumulative number of events, total seismic moment release, and the spatio-temporal characteristics of seismicity including the time/location of the next large event after adjusting injection rates

  1. Direct numerical simulation of supersonic combustion with finite-rate chemistry

    Science.gov (United States)

    Saghafian, Amirreza; Pitsch, Heinz

    2011-11-01

    Three-dimensional direct numerical simulations (DNS) of reacting and inert compressible turbulent mixing layers have been performed. The simulations cover convective Mach numbers from subsonic to supersonic. A detailed chemistry mechanism with 9 species and 29 reactions for hydrogen is used in the reacting simulations. Effects of different initial conditions on the structure of the mixing layer, and time required to reach self-similarity are studied. Flame/turbulence interaction is analyzed by studying turbulent kinetic energy, Reynolds stresses, and their budgets in the reacting and inert simulations. The effects of different reactions on the heat release and mixture composition especially in the regions where shocklets impinge the flame are studied. These DNS databases will provide a better understanding for the compressibility effects on the combustion, and will be used to assess the accuracy of Flamelet/Progress variable approach in supersonic regime. This material is based upon work supported by the Department of Energy under the Predictive Science Academic Alliance Program (PSAAP) at Stanford University, Award Number(s)DE-FC52-08NA28614.

  2. Numerical Simulations of Asymptotically AdS Spacetimes

    Science.gov (United States)

    Bantilan, Hans

    In this dissertation, we introduce a numerical scheme to construct asymptotically anti-de Sitter spacetimes with Lorentzian signature, focusing on cases that preserve five-dimensional axisymmetry. We study the field theories that are dual to these spacetimes by appealing to the AdS/CFT correspondence in the regime where the gravity dual is completely described by Einstein gravity. The numerical scheme is based on generalized harmonic evolution, and we begin by obtaining initial data defined on some Cauchy hypersurface. For the study described in this dissertation, we use a scalar field to source deviations from pure AdS5, and obtain data that correspond to highly deformed black holes. We evolve this initial data forward in time, and follow the subsequent ringdown. What is novel about this study is that the initial horizon geometry cannot be considered a small perturbation of the final static horizon, and hence we are probing an initial non-linear phase of the evolution of the bulk spacetime. On the boundary, we find that the dual CFT stress tensor behaves like that of a thermalized N = 4 SYM fluid. We find that the equation of state of this fluid is consistent with conformal invariance, and that its transport coefficients match those previously calculated for an N = 4 SYM fluid via holographic methods. Modulo a brief transient that is numerical in nature, this matching appears to hold from the initial time onwards. We transform these solutions computed in global AdS onto a Minkowski piece of the boundary, and examine the temperature of the corresponding fluid flows. Under this transformation, the spatial profile of temperature at the initial time resembles a Lorentz-flattened pancake centered at the origin of Minkowski space. By interpreting the direction along which the data is flattened as the beam-line direction, our initial data can be thought of as approximating a head-on heavy ion collision at its moment of impact.

  3. Numerical simulation of fast photo detectors based on microchannel plates

    Science.gov (United States)

    Ivanov, V.; Barnyakov, A.; Barnyakov, M.; Bobrovnikov, V.; Ovtin, I.

    2017-09-01

    Description of mathematical models for fast photo detectors based on microchannel plates (MCP) in three-dimensional formulation is given. The models include calculations of photoelectron collection efficiency in the gap photo cathode—MCP, gain factor of secondary electron cascades in the channels, the particle scattering in the gaps between the plates, taking into account the fringe fields and strong external magnetic fields. Comparisons of numerical and experimental data are given. The dependencies of major device parameters vs. of applied voltage, pore size, and magnetic field magnitude have been studied.

  4. Numerical simulation of film-cooled ablative rocket nozzles

    Science.gov (United States)

    Landrum, D. B.; Beard, R. M.

    1996-01-01

    The objective of this research effort was to evaluate the impact of incorporating an additional cooling port downstream between the injector and nozzle throat in the NASA Fast Track chamber. A numerical model of the chamber was developed for the analysis. The analysis did not model ablation but instead correlated the initial ablation rate with the initial nozzle wall temperature distribution. The results of this study provide guidance in the development of a potentially lighter, second generation ablative rocket nozzle which maintains desired performance levels.

  5. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

    KAUST Repository

    Carrillo, José A.

    2016-09-22

    In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.

  6. Numerical simulation of water evaporation inside vertical circular tubes

    Science.gov (United States)

    Ocłoń, Paweł; Nowak, Marzena; Majewski, Karol

    2013-10-01

    In this paper the results of simplified numerical analysis of water evaporation in vertical circular tubes are presented. The heat transfer in fluid domain (water or wet steam) and solid domain (tube wall) is analyzed. For the fluid domain the temperature field is calculated solving energy equation using the Control Volume Method and for the solid domain using the Finite Element Method. The heat transfer between fluid and solid domains is conjugated using the value of heat transfer coefficient from evaporating liquid to the tube wall. It is determined using the analytical Steiner-Taborek correlation. The pressure changes in fluid are computed using Friedel model.

  7. Implementation of numerical simulation techniques in analysis of the accidents in complex technological systems

    Energy Technology Data Exchange (ETDEWEB)

    Klishin, G.S.; Seleznev, V.E.; Aleoshin, V.V. [RFNC-VNIIEF (Russian Federation)

    1997-12-31

    Gas industry enterprises such as main pipelines, compressor gas transfer stations, gas extracting complexes belong to the energy intensive industry. Accidents there can result into the catastrophes and great social, environmental and economic losses. Annually, according to the official data several dozens of large accidents take place at the pipes in the USA and Russia. That is why prevention of the accidents, analysis of the mechanisms of their development and prediction of their possible consequences are acute and important tasks nowadays. The accidents reasons are usually of a complicated character and can be presented as a complex combination of natural, technical and human factors. Mathematical and computer simulations are safe, rather effective and comparatively inexpensive methods of the accident analysis. It makes it possible to analyze different mechanisms of a failure occurrence and development, to assess its consequences and give recommendations to prevent it. Besides investigation of the failure cases, numerical simulation techniques play an important role in the treatment of the diagnostics results of the objects and in further construction of mathematical prognostic simulations of the object behavior in the period of time between two inspections. While solving diagnostics tasks and in the analysis of the failure cases, the techniques of theoretical mechanics, of qualitative theory of different equations, of mechanics of a continuous medium, of chemical macro-kinetics and optimizing techniques are implemented in the Conversion Design Bureau {number_sign}5 (DB{number_sign}5). Both universal and special numerical techniques and software (SW) are being developed in DB{number_sign}5 for solution of such tasks. Almost all of them are calibrated on the calculations of the simulated and full-scale experiments performed at the VNIIEF and MINATOM testing sites. It is worth noting that in the long years of work there has been established a fruitful and effective

  8. Numerical simulation of artificial microswimmers driven by Marangoni flow

    Science.gov (United States)

    Stricker, L.

    2017-10-01

    In the present paper the behavior of a single artificial microswimmer is addressed, namely an active droplet moving by Marangoni flow. We provide a numerical treatment for the main factors playing a role in real systems, such as advection, diffusion and the presence of chemical species with different behaviors. The flow field inside and outside the droplet is modeled to account for the two-way coupling between the surrounding fluid and the motion of the swimmer. Mass diffusion is also taken into account. In particular, we consider two concentration fields: the surfactant concentration in the bulk, i.e. in the liquid surrounding the droplet, and the surfactant concentration on the surface. The latter is related to the local surface tension, through an equation of state (Langmuir equation). We examine different interaction mechanisms between the bulk and the surface concentration fields, namely the case of insoluble surfactants attached to the surface (no exchange between the bulk and the surface) and soluble surfactants with adsorption/desorption at the surface. We also consider the case where the bulk concentration field is in equilibrium with the content of the droplet. The numerical results are validated through comparison with analytical calculations. We show that our model can reproduce the typical pusher/puller behavior presented by squirmers. It is also able to capture the self-propulsion mechanism of droplets driven by Belousov-Zhabotinsky (BZ) reactions, as well as a typical chemotactic behavior.

  9. Numerical Simulation of Moving Load on Concrete Pavements

    Directory of Open Access Journals (Sweden)

    Lajčáková Gabriela

    2015-06-01

    Full Text Available The knowledge of the development with time of the strain and stress states in pavement structures is needed in the solution of various engineering tasks as the design fatigue lifetime reliability maintenance and structure development. The space computing model of the truck TATRA 815 is introduced. The pavement computing model is created in the sense of Kirchhof theory of the thin slab on elastic foundation. The goal of the calculation is to obtain the vertical deflection in the middle of the slab and the time courses of vertical tire forces. The equations of motion are derived in the form of differential equations. The assumption about the shape of the slab deflection area is adopted. The equations of the motion are solved numerically in the environment of program system MATLAB. The dependences following the influence of various parameters (speed of vehicle motion, stiffness of subgrade, slab thickness, road profile on the pavement vertical deflections and the vertical tire forces are introduced. The results obtained from the plate computing model are compared with the results obtained by the FEM analysis. The outputs of the numerical solution in the time domain can be transformed into a frequency domain and subsequently used to solve various engineering tasks.

  10. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico

    2011-12-01

    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  11. Numerical simulation of X90 UOE pipe forming process

    Science.gov (United States)

    Zou, Tianxia; Ren, Qiang; Peng, Yinghong; Li, Dayong; Tang, Ding; Han, Jianzeng; Li, Xinwen; Wang, Xiaoxiu

    2013-12-01

    The UOE process is an important technique to manufacture large-diameter welding pipes which are increasingly applied in oil pipelines and offshore platforms. The forming process of UOE mainly consists of five successive operations: crimping, U-forming, O-forming, welding and mechanical expansion, through which a blank is formed into a pipe in a UOE pipe mill. The blank with an appropriate edge bevel is bent into a cylindrical shape by crimping (C-forming), U-forming and O-forming successively. After the O-forming, there is an open-seam between two ends of the plate. Then, the blank is welded by automatic four-electrode submerged arc welding technique. Subsequently, the welded pipe is expanded with a mechanical expander to get a high precision circular shape. The multiple operations in the UOE mill make it difficult to control the quality of the formed pipe. Therefore, process design mainly relies on experience in practical production. In this study, the UOE forming of an API X90 pipe is studied by using finite element simulation. The mechanical properties tests are performed on the API X90 pipeline steel blank. A two-dimensional finite element model under the hypothesis of plane strain condition is developed to simulate the UOE process according to data coming from the workshop. A kinematic hardening model is used in the simulation to take the Bauschinger effect into account. The deformation characteristics of the blank during the forming processes are analyzed. The simulation results show a significant coherence in the geometric configurations comparing with the practical manufacturing.

  12. Numerical Simulation of Temperature Field in Selective Laser Sintering

    OpenAIRE

    Zhang, Jian; Li, Deying; Li, Jianyun; Zhao, Longzhi

    2010-01-01

    International audience; The laser sintering process of multi-component powder W/Cu is simulated by ANSYS software based on the factors of radiation, convection and thermal physical parameters on temperature. The laser power and scanning velocity which are the key process parameters to affect directly in sintering molding are studied in paper. The results show that when the scanning velocity is constant, the sintering depth is rising with the increase of laser power; In addition, when the lase...

  13. Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2012-01-01

    Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.

  14. Numerical Simulation of Three-Dimensional Dendritic Growth

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A.; Rappel, W. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115 (United States)

    1996-11-01

    Dendritic crystal growth in a pure undercooled melt is simulated quantitatively in three dimensions using a phase-field approach. The classic parameter {sigma}{sup *} that characterizes the dynamically selected operating state of the dendrite tip as well as the full nonaxisymmetric tip morphology are determined as a function of anisotropy for a crystal with a cubic symmetry. Results are compared to experiment and used to critically test solvability theory. {copyright} {ital 1996 The American Physical Society.}

  15. Numerical Simulation Of Flow Through An Artificial Heart

    Science.gov (United States)

    Rogers, Stuart; Kutler, Paul; Kwak, Dochan; Kiris, Centin

    1991-01-01

    Research in both artificial hearts and fluid dynamics benefits from computational studies. Algorithm that implements Navier-Stokes equations of flow extended to simulate flow of viscous, incompressible blood through articifial heart. Ability to compute details of such flow important for two reasons: internal flows with moving boundaries of academic interest in their own right, and many of deficiencies of artificial hearts attributable to dynamics of flow.

  16. Numerical Simulation of the Upward Continuous Casting of Magnesium Alloys

    OpenAIRE

    Landaberea, Aitor; Pedrós, Pablo; Anglada, Eva; Garmendia, Iñaki

    2005-01-01

    The continuous casting of magnesium alloys in vertical upward direction is a novel technology which can be employed for the production of semi-finished materials circumventing the main disadvantages of using conventional casting processes since the risks of burning and explosion are practically eliminated. The present investigation deals with the simulation of the upward continuous casting of round billets of magnesium alloys. The equations for the flow field with heat transfer are numericall...

  17. Numerical method for IR background and clutter simulation

    Science.gov (United States)

    Quaranta, Carlo; Daniele, Gina; Balzarotti, Giorgio

    1997-06-01

    The paper describes a fast and accurate algorithm of IR background noise and clutter generation for application in scene simulations. The process is based on the hypothesis that background might be modeled as a statistical process where amplitude of signal obeys to the Gaussian distribution rule and zones of the same scene meet a correlation function with exponential form. The algorithm allows to provide an accurate mathematical approximation of the model and also an excellent fidelity with reality, that appears from a comparison with images from IR sensors. The proposed method shows advantages with respect to methods based on the filtering of white noise in time or frequency domain as it requires a limited number of computation and, furthermore, it is more accurate than the quasi random processes. The background generation starts from a reticule of few points and by means of growing rules the process is extended to the whole scene of required dimension and resolution. The statistical property of the model are properly maintained in the simulation process. The paper gives specific attention to the mathematical aspects of the algorithm and provides a number of simulations and comparisons with real scenes.

  18. Numerical simulation of damage detection using laser-generated ultrasound.

    Science.gov (United States)

    Liu, Peipei; Nazirah, Ab Wahab; Sohn, Hoon

    2016-07-01

    Laser ultrasonic techniques have been widely investigated due to its high spatial resolution and capacity for remote and noncontact measurement. In this study, the laser induced ultrasonic wave on an aluminum plate is simulated, and a nonlinear feature is used to detect a micro crack introduced in the plate model. A multi-physics simulation is conducted and optimized considering the effect of thermal diffusion. A nonlinear feature, called Bhattacharyya Distance (BD), is calculated to show the crack-induced geometric difference among the state space attractors obtained from closely spaced measurement points near the crack. First, a 3D model is built, and its simulation result is compared with an experiment performed using a noncontact laser ultrasonic measurement system. Then, by creating a micro crack in the model, BD is extracted and the crack is successfully detected and visualized. Finally, the effects of BD parameters, such as embedding dimension and frequency band, on damage visualization are investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.

    Science.gov (United States)

    Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.

  20. Breast cancer detection using interferometric MUSIC: experimental and numerical assessment.

    Science.gov (United States)

    Ruvio, Giuseppe; Solimene, Raffaele; Cuccaro, Antonio; Gaetano, Domenico; Browne, Jacinta E; Ammann, Max J

    2014-10-01

    In microwave breast cancer detection, it is often beneficial to arrange sensors in close proximity to the breast. The resultant coupling generally changes the antenna response. As an a priori characterization of the radio frequency system becomes difficult, this can lead to severe degradation of the detection efficacy. The purpose of this paper is to demonstrate the advantages of adopting an interferometric multiple signal classification (I-MUSIC) approach due to its limited dependence from a priori information on the antenna. The performance of I-MUSIC detection was measured in terms of signal-to-clutter ratio (SCR), signal-to-mean ratio (SMR), and spatial displacement (SD) and compared to other common linear noncoherent imaging methods, such as migration and the standard wideband MUSIC (WB-MUSIC) which also works when the antenna is not accounted for. The data were acquired by scanning a synthetic oil-in-gelatin phantom that mimics the dielectric properties of breast tissues across the spectrum 1-3 GHz using a proprietary breast microwave multi-monostatic radar system. The phantom is a multilayer structure that includes skin, adipose, fibroconnective, fibroglandular, and tumor tissue with an adipose component accounting for 60% of the whole structure. The detected tumor has a diameter of 5 mm and is inserted inside a fibroglandular region with a permittivity contrast εr-tumor/εr-fibroglandular MUSIC method from antenna characterizations. The datasets were processed by using I-MUSIC, noncoherent migration, and wideband MUSIC under equivalent conditions (i.e., operative bandwidth, frequency samples, and scanning positions). SCR, SMR, and SD figures were measured from all reconstructed images. In order to benchmark experimental results, numerical simulations of equivalent scenarios were carried out by using CST Microwave Studio. The three numerical datasets were then processed following the same procedure that was designed for the experimental case. Detection

  1. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah

    2015-11-09

    is constructed automatically within the solver. We ran a numerical model with different scenarios of anisotropy orientations and compared the results with the isotropic model in order to show the differences between them. We investigated the effect of anisotropy in both the matrix and fracture systems. The numerical results show anisotropy plays a crucial role in dictating the pressure fields as well as the gas flow streamlines. Furthermore, the numerical results clearly show the effects of anisotropy on the production rate and cumulative production. Incorporating anisotropy together with gas flow mechanisms in shale formations into the reservoir model is essential particularly for predicting maximum gas production from shale reservoirs.

  2. IRIS-2012 OECD/NEA/CSNI benchmark: Numerical simulations of structural impact

    Energy Technology Data Exchange (ETDEWEB)

    Orbovic, Nebojsa, E-mail: nebojsa.orbovic@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); Tarallo, Francois [IRSN, Fontenay aux Roses (France); Rambach, Jean-Mathieu [Géodynamique et Structures, Bagneux (France); Sagals, Genadijs; Blahoianu, Andrei [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-12-15

    A benchmark of numerical simulations related to the missile impact on reinforced concrete (RC) slabs has been launched in the frame of OECD/NEA/CSNI research program “Improving Robustness Assessment Methodologies for Structures Impacted by Missiles”, under the acronym IRIS. The goal of the research program is to simulate RC structural, flexural and punching, behavior under deformable and rigid missile impact. The first phase called IRIS-2010 was a blind prediction of the tests performed at VTT facility in Espoo, Finland. The two simulations were performed related to two series of tests: (1) two tests on the impact of a deformable missile exhibiting damage mainly by flexural (so-called “flexural tests”) or global response and (2) three tests on the impact of a rigid missile exhibiting damage mainly by punching response (so-called “punching tests”) or local response. The simulation results showed significant scatter (coefficient of variation up to 132%) for both flexural and punching cases. The IRIS-2012 is the second, post-test, phase of the benchmark with the goal to improve simulations and reduce the scatter of the results. Based on the IRIS-2010 recommendations and to better calibrate concrete constitutive models, a series of tri-axial tests as well as Brazilian tests were performed as a part of the IRIS-2012 benchmark. 25 teams from 11 countries took part in this exercise. Majority of participants were part of the IRIS-2010 benchmark. Participants showed significant improvement in reducing epistemic uncertainties in impact simulations. Several teams presented both finite element (FE) and simplified analysis as per recommendations of the IRIS-2010. The improvements were at the level of simulation results but also at the level of understanding of impact phenomena and its modeling. Due to the complexity of the physical phenomena and its simulation (high geometric and material non-linear behavior) and inherent epistemic and aleatory uncertainties, the

  3. Bumblebees meet fully developed turbulence: high resolution numerical simulations

    Science.gov (United States)

    Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Sesterhenn, Joern; Lehmann, Fritz-Olaf

    2015-11-01

    Numerical experiments of a tethered bumblebee in a wind tunnel with turbulent inflow of different intensity are performed at realistic Reynolds numbers on massively parallel computers. Ensemble averaging of different flow realizations shows that the mean forces (lift and drag, or horizontal and vertical), the moments (roll, pitch and yaw), and power, are robust and are not modified significantly by the turbulent inflow. Phase averaging of the vorticity field illustrates that in all cases the leading edge vortex is indeed persistent (in the average sense) as it is the case for laminar inflow, which explains the above findings. However, as expected, the corresponding standard deviations do increase with the turbulence intensity. In particular the roll moment shows the strongest increase of standard deviation. Considering that the moment of inertia of the bumblebee is the smallest around this axis yields a possible explanation for the experimentally observed flight instability around the roll axis under turbulent flow conditions.

  4. Simple numerical simulation for liquid dominated geothermal reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wintolo, Djoko; Sutrisno; Sudjatmiko; Sudarman, S.

    1996-01-24

    A numerical model for geothermal reservoir has been developed. The model used is based on an idealized, two-dimensional case, where the porous medium is isotropic, nonhomogeneous, filled with saturated liquid. The fluids are assumed to have constant and temperature dependent viscosity. A Boussinesq approximation and Darcy’s law are used. The model will utilize a simple hypothetical geothermal system, i.e. graben within horsts structure, with three layers of different permeabilities. Vorticity plays an importance roles in the natural convection process, and its generation and development do not depend only on the buoyancy, but also on the magnitude and direction relation between the flow velocity and the local gradient of permeability to viscosity ratio. This model is currently used together with a physical, scaled-down reservoir model to help conceptual modeling.

  5. Simple numerical simulation for liquid dominated geothermal reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wintolo, D.; Sutrisno; Sudjamiko [Gadjah Mada Univ., Yogyakarta (Indonesia)] [and others

    1996-12-31

    A numerical model for geothermal reservoir has been developed. The model used is based on an idealized, two-dimensional case, where the porous medium is isotropic, nonhomogeneous, filled with saturated liquid. The fluids are assumed to have constant and temperature dependent viscosity. A Boussinesq approximation and Darcy`s law are used. The model will utilize a simple hypothetical geothermal system, i.e. graben within horsts structure, with three layers of different permeabilities. Vorticity plays an importance roles in the natural convection process, and its generation and development do not depend only on the buoyancy, but also on the magnitude and direction relation between the flow velocity and the local gradient of permeability to viscosity ratio. This model is currently used together with a physical, scaled-down reservoir model to help conceptual modeling.

  6. The Numerical Simulation of Flow around Ejection System

    Science.gov (United States)

    Zhang, Dalin; Wei, Tao

    Aerodynamic characteristics of an Ejection Seat System at different angles of attack are studied by the numerical method and the flow mechanisms for such flows are carefully analyzed. The governing equations are Reynolds-averaged Navier-Stokes equations which are solved by the unstructured finite volume method. Upwind Osher scheme is used for spatial discretization and five-stage Runge-Kutta scheme is applied for temporal discretization. The DES model based on S-A one equation turbulence model is adopted. Parallel computation is based on the domain decomposition method and multi-block is achieved by using METIS system. The experimental data is used to validate this method. This research is helpful to understand the aerodynamic characteristics and flow mechanisms of Ejection Seat System at different angles of attack and Mach numbers, and can provide reasonable reference for Ejection Seat System design.

  7. Numerical Simulation of Effective Properties of 3D Piezoelectric Composites

    Directory of Open Access Journals (Sweden)

    Ri-Song Qin

    2014-01-01

    Full Text Available The prediction of the overall effective properties of fibre-reinforced piezocomposites has drawn much interest from investigators recently. In this work, an algorithm used in two-dimensional (2D analysis for calculating transversely isotropic material properties is developed. Since the finite element (FE meshing patterns on the opposite areas are the same, constraint equations can be applied directly to generate appropriate load. The numerical results derived using this model have found a good agreement with those in the literature. The 2D algorithm is then modified and improved in such a way that it is valid for three-dimensional (3D analysis in the case of random distributed shorts and inclusions. Linear interpolation of displacement field is employed to establish constraint equations of nodal displacements between two adjacent elements.

  8. A numerical simulation of longitudinal vortex in turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Lee, K.B. [Pusan National University, Pusan (Korea)

    2000-06-01

    This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data. (author). 12 refs., 12 figs.

  9. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...... duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow...

  10. Numerical simulation of crystalline ion beams in storage ring

    CERN Document Server

    Meshkov, I N; Katayama, T; Sidorin, A; Smirnov, A Yu; Syresin, E M; Trubnikov, G; Tsutsui, H

    2004-01-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (Munchen). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numeric...

  11. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow......, is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...

  12. Numerical Simulations of Asperity Crushing—Application to cold rolling

    Science.gov (United States)

    Carretta, Y.; Legrand, N.; Laugier, M.; Ponthot, J.-P.

    2011-05-01

    Asperity flattening has a huge influence on friction and wear in metal forming processes. Nevertheless, phenomena that occur at the microscopic scale are still not well understood. Since no experiments can be easily performed in real forming conditions, numerical models are essential to achieve a better knowledge of what happens in these contact regions. In this paper, two finite elements models are presented. The first one represents the flattening of a serrated asperity field in plane strain conditions. The results are compared to the experiments conducted by Sutcliffe [1]. The second one is a tri-dimensional asperity model flattened by a rigid plane. The boundary conditions applied to this model correspond to the ones encountered in a real cold rolling case. The results are compared to the relative contact area computed by a strip rolling model using the analytical laws proposed by Wilson & Sheu [2] and Marsault [3].

  13. Numerical simulation of a hydrocarbon fuelled valveless pulsejet

    Directory of Open Access Journals (Sweden)

    Joseph Kalyan Raj Isac

    2014-06-01

    In the current work, a numerical analysis encompassing feasibility and validation of a valveless pulsejet engine was attempted using CD-adapco׳s STAR-CCM+ CFD package. Due to lack of comprehensive established mathematical laws to govern the working of a pulsejet, most experimental work being performed is done by trial and error. This necessitates in-depth computational studies in order to shed more light on the understanding of valveless pulsejets. The results have been encouraging and in agreement with observed experimental conclusions such as, i changes in dimensions affect the working of a pulsejet, ii presence of a flare enhances the working of a pulsejet, and the close agreement in the frequency of operation. Through continuous study, an optimum initial condition was achieved which enabled the pulsejet to begin operation even before 0.05 s, thereby greatly reducing computational costs if a higher time-scale were to be used.

  14. Numerical simulation of laminar reacting flows with complex chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Day, Marcus S.; Bell, John B.

    1999-12-01

    We present an adaptive algorithm for low Mach number reacting flows with complex chemistry. Our approach uses a form of the low Mach number equations that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm uses an operator-split treatment of stiff reaction terms and includes effects of differential diffusion. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the performance of the method on both premixed and non-premixed flames.

  15. Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation

    Science.gov (United States)

    Fiori, Simone

    2017-06-01

    Nonlinear oscillators are ubiquitous in sciences, being able to model the behavior of complex nonlinear phenomena, as well as in engineering, being able to generate repeating (i.e., periodic) or non-repeating (i.e., chaotic) reference signals. The state of the classical oscillators known from the literature evolves in the space Rn , typically with n = 1 (e.g., the famous van der Pol vacuum-tube model), n = 2 (e.g., the FitzHugh-Nagumo model of spiking neurons) or n = 3 (e.g., the Lorenz simplified model of turbulence). The aim of the current paper is to present a general scheme for the numerical differential-geometry-based integration of a general second-order, nonlinear oscillator model on Riemannian manifolds and to present several instances of such model on manifolds of interest in sciences and engineering, such as the Stiefel manifold and the space of symmetric, positive-definite matrices.

  16. Numerical simulation studies for optical properties of biomaterials

    Science.gov (United States)

    Krasnikov, I.; Seteikin, A.

    2016-11-01

    Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein-protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemical constituents can also be visualized with light and, thus, the corresponding physiological dynamics in living cells, tissues, and organisms in real time. Computer-based Monte Carlo (MC) models of light transport in turbid media take a different approach. In this paper, the optical and structural properties of biomaterials discussed. We explain the numerical simulationmethod used for studying the optical properties of biomaterials. Applications of the Monte-Carlo method in photodynamic therapy, skin tissue optics, and bioimaging described.

  17. RESEARCH ON NUMERICAL SIMULATION APLICABLE TO THE PRESSURE RELIEF VALVE ON THE BORE GAS EVACUATION DEVICE

    National Research Council Canada - National Science Library

    Gheorghe Negru

    2016-01-01

      The paper presents the research approach on the numerical simulation applicable to pressure relief valve on the bore gas evacuation device embedded on the high pressure barrels with special destinations...

  18. NUMERICAL SIMULATIONS FOR THE CASE OF RIGID ROTATING KINEMATIC COUPLING WITH BIG CLEARANCE

    Directory of Open Access Journals (Sweden)

    Jan-Cristian GRIGORE

    2010-10-01

    Full Text Available In this paper an algorithm based on [1] [2] are numerical simulations, achieving generalized coordinates of motion, positions, speeds of a rigid rotating kinematic coupling with big clearance in joint, case without friction

  19. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields.

    Science.gov (United States)

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards.

  20. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.

    Science.gov (United States)

    Ling, Hong; Luo, Ercang; Dai, Wei

    2006-12-22

    Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.