WorldWideScience

Sample records for assessing wetland condition

  1. National Wetland Condition Assessment 2011: A Collaborative Survey of the Nation's Wetlands

    Science.gov (United States)

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the publi...

  2. Evaluating how variants of floristic quality assessment indicate wetland condition.

    Science.gov (United States)

    Kutcher, Thomas E; Forrester, Graham E

    2018-03-28

    Biological indicators are useful tools for the assessment of ecosystem condition. Multi-metric and multi-taxa indicators may respond to a broader range of disturbances than simpler indicators, but their complexity can make them difficult to interpret, which is critical to indicator utility for ecosystem management. Floristic Quality Assessment (FQA) is an example of a biological assessment approach that has been widely tested for indicating freshwater wetland condition, but less attention has been given to clarifying the factors controlling its response. FQA quantifies the aggregate of vascular plant species tolerance to habitat degradation (conservatism), and model variants have incorporated species richness, abundance, and indigenity (native or non-native). To assess bias, we tested FQA variants in open-canopy freshwater wetlands against three independent reference measures, using practical vegetation sampling methods. FQA variants incorporating species richness did not correlate with our reference measures and were influenced by wetland size and hydrogeomorphic class. In contrast, FQA variants lacking measures of species richness responded linearly to reference measures quantifying individual and aggregate stresses, suggesting a broad response to cumulative degradation. FQA variants incorporating non-native species, and a variant additionally incorporating relative species abundance, improved performance over using only native species. We relate our empirical findings to ecological theory to clarify the functional properties and implications of the FQA variants. Our analysis indicates that (1) aggregate conservatism reliably declines with increased disturbance; (2) species richness has varying relationships with disturbance and increases with site area, confounding FQA response; and (3) non-native species signal human disturbance. We propose that incorporating species abundance can improve FQA site-level relevance with little extra sampling effort. Using our

  3. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.

    Science.gov (United States)

    McLaughlin, Daniel L; Cohen, Matthew J

    2013-10-01

    Wetlands provide numerous ecosystem services, from habitat provision to pollutant removal, floodwater storage, and microclimate regulation. Delivery of particular services relies on specific ecological functions, and thus to varying degree on wetland ecological condition, commonly quantified as departure from minimally impacted reference sites. Condition assessments are widely adopted as regulatory indicators of ecosystem function, and for some services (e.g., habitat) links between condition and function are often direct. For others, however, links are more tenuous, and using condition alone to enumerate ecosystem value (e.g., for compensatory mitigation) may underestimate important services. Hydrologic function affects many services cited in support of wetland protection both directly (floodwater retention, microclimate regulation) and indirectly (biogeochemical cycling, pollutant removal). We investigated links between condition and hydrologic function to test the hypothesis, embedded in regulatory assessment of wetland value, that condition predicts function. Condition was assessed using rapid and intensive approaches, including Florida's official wetland assessment tool, in 11 isolated forested wetlands in north Florida (USA) spanning a land use intensity gradient. Hydrologic function was assessed using hydrologic regime (mean, variance, and rates of change of water depth), and measurements of groundwater exchange and evapotranspiration (ET). Despite a wide range in condition, no systematic variation in hydrologic regime was observed; indeed reference sites spanned the full range of variation. In contrast, ET was affected by land use, with higher rates in intensive (agriculture and urban) landscapes in response to higher leaf area. ET determines latent heat exchange, which regulates microclimate, a valuable service in urban heat islands. Higher ET also indicates higher productivity and thus carbon cycling. Groundwater exchange regularly reversed flow direction

  4. Characteristic community structure of Florida's subtropical wetlands: the Florida wetland condition index

    Science.gov (United States)

    Depending upon the classification scheme applied, there are between 10 and 45 different wetland types in Florida. Land use and land cover change has a marked effect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic ...

  5. Using Tradtional Ecological Knowledge to Protect Wetlands: the Swinomish Tribe's Wetland Cultural Assessment Project

    Science.gov (United States)

    Mitchell, T.

    2017-12-01

    "Traditional" wetland physical assessment modules do not adequately identify Tribal cultural values of wetlands and thus wetlands may not be adequately protected for cultural uses. This Swinomish Wetlands Cultural Assessment Project has developed a cultural resource scoring module that can be incorporated into wetland assessments to better inform wetland protections. Local native knowledge was gathered about the traditional uses of 99 native wetland plant species. A cultural scoring matrix was developed based on the presence of traditionally used plants in several use categories including: construction, ceremonial, subsistence, medicinal, common use, plant rarity, and place of value for each wetland. The combined score of the cultural and physcial modules provides an overall wetland score that relates to proscribed buffer protection widths. With this local native knowledge incorporated into wetland assessments, we are protecting and preserving Swinomish Reservation wetlands for both cultural uses and ecological functionality through the Tribe's wetland protection law.

  6. Determination of the health of Lunyangwa wetland using Wetland Classification and Risk Assessment Index

    Science.gov (United States)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.; Msilimba, Golden

    2016-04-01

    Wetlands are major sources of various ecological goods and services including storage and distribution of water in space and time which help in ensuring the availability of surface and groundwater throughout the year. However, there still remains a poor understanding of the range of values of water quality parameters that occur in wetlands either in its impacted state or under natural conditions. It was thus imperative to determine the health of Lunyangwa wetland in Mzuzu City in Malawi in order to classify and determine its state. This study used the Escom's Wetland Classification and Risk Assessment Index Field Guide to determine the overall characteristics of Lunyangwa wetland and to calculate its combined Wetland Index Score. Data on site information, field measurements (i.e. EC, pH, temperature and DO) and physical characteristics of Lunyangwa wetland were collected from March, 2013 to February, 2014. Results indicate that Lunyangwa wetland is a largely open water zone which is dominated by free-floating plants on the water surface, beneath surface and emergent in substrate. Furthermore, the wetland can be classified as of a C ecological category (score = 60-80%), which has been moderately modified with moderate risks of the losses and changes occurring in the natural habitat and biota in the wetland. It was observed that the moderate modification and risk were largely because of industrial, agricultural, urban/social catchment stressors on the wetland. This study recommends an integrated and sustainable management approach coupled with continuous monitoring and evaluation of the health of the wetland for all stakeholders in Mzuzu City. This would help to maintain the health of Lunyangwa wetland which is currently at risk of being further modified due to the identified catchment stressors.

  7. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.

    Science.gov (United States)

    Lee, S; Yeo, I-Y; Lang, M W; Sadeghi, A M; McCarty, G W; Moglen, G E; Evenson, G R

    2018-06-07

    Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological

  8. An approach for evaluating the repeatability of rapid wetland assessment methods: The effects of training and experience

    Science.gov (United States)

    We sampled 92 wetlands from four different basins in the United States to quantify observer repeatability in rapid wetland condition assessment using the Delaware Rapid Assessment Protocol (DERAP). In the Inland Bays basin of Delaware, 58 wetland sites were sampled by multiple ob...

  9. A diatom functional-based approach to assess changing environmental conditions in temporary depressional wetlands

    CSIR Research Space (South Africa)

    Riato, L

    2017-07-01

    Full Text Available is limited although important for the development of temporary wetland biological assessments. We assessed how diatom life-form and ecological guilds responded to a seasonal hydrological and hydrochemical gradient in three least human-disturbed, temporary...

  10. An assessment of the performance of municipal constructed wetlands in Ireland.

    Science.gov (United States)

    Hickey, Anthony; Arnscheidt, Joerg; Joyce, Eadaoin; O'Toole, James; Galvin, Gerry; O' Callaghan, Mark; Conroy, Ken; Killian, Darran; Shryane, Tommy; Hughes, Francis; Walsh, Katherine; Kavanagh, Emily

    2018-03-15

    While performance assessments of constructed wetlands sites around the world have appraised their capacity for effective removal of organics, a large variance remains in these sites' reported ability to retain nutrients, which appears to depend on differences in design, operation and climate factors. Nutrient retention is a very important objective for constructed wetlands, to avoid eutrophication of aquatic environments receiving their effluents. This study assessed the performance of constructed wetlands in terms of nutrient retention and associated parameters under the humid conditions of Ireland's temperate maritime climate. A review of the performance of 52 constructed wetland sites from 17 local authorities aimed to identify the best performing types of constructed wetlands and the treatment factors determining successful compliance with environmental standards. Data analysis compared effluent results from constructed wetlands with secondary free surface flow or tertiary horizontal subsurface flow, hybrid systems and integrated constructed wetlands with those from small-scale mechanical wastewater treatment plants of the same size class. Nutrient concentrations in effluents of constructed wetlands were negatively correlated (p treatment performance of constructed wetlands significantly (p wastewater treatment plants, secondary free surface water and tertiary horizontal subsurface flow wetlands showed a very large variance in effluent concentrations for organic and nutrient parameters. E. coli numbers in effluents were lowest for integrated constructed wetlands with an arithmetic mean of 89 MPN/100 ml. Despite Ireland's humid climate, some constructed wetland sites achieved long or frequent periods of zero effluent discharge and thus did not transfer any waterborne pollution to their receptors during these periods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    Wade, M.C.; Socolof, M.L.

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy's (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action

  12. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    Science.gov (United States)

    Osland, Michael J.; Enwright, Nicholas M.; Day, Richard H.; Gabler, Christopher A.; Stagg, Camille L.; Grace, James B.

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate-change related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.

  13. Floodplain and Wetland Assessment for the Mortandad Wetland Enhancement and the DP Dissipater Projects at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Laboratory

    2017-03-31

    This floodplain and wetland assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands” and a wetland is defined as “an area that is inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions, including swamps, marshes, bogs, and similar areas.” In this action, DOE is proposing two projects to improve wetland and floodplain function at Los Alamos National Laboratory (LANL). The proposed work will comply with corrective action requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement)1 Number HWB-14-20. The first project is located in Technical Areas (TA)-03 in upper Mortandad Canyon. The upper Mortandad wetlands have existing stormwater controls that need to be rehabilitated. Head-cut formation is occurring at the downstream portion of the wetland. This project will repair damages to the wetland and reduce the future erosion potential. The second project is located in TA-21 in Delta Prime (DP) Canyon. The intent of the DP Dissipater Project in DP Canyon is to install stormwater control structures in DP Canyon to retain low channel flows and reduce downstream sediment transport as well as peak flows during low and moderate storm events. Due to increased erosion, the stream bank in this area has unstable vertical walls within the stream channel. The DOE prepared this floodplain and wetland

  14. Assessing ecosystem carbon stocks of Indonesia's threatened wetland forests

    Science.gov (United States)

    Warren, M.; Kauffman, B.; Murdiyarso, D.; Kurnianto, S.

    2011-12-01

    Over millennia, atmospheric carbon dioxide has been sequestered and stored in Indonesia's tropical wetland forests. Waterlogged conditions impede decomposition, allowing the formation of deep organic soils. These globally significant C pools are highly vulnerable to deforestation, degradation and climate change which can potentially switch their function as C sinks to long term sources of greenhouse gas (GHG) emissions. Also at risk are critical ecosystem services which sustain millions of people and the conservation of unique biological communities. The multiple benefits derived from wetland forest conservation makes them attractive for international C offset programs such as the proposed Reduced Emissions from Deforestation and Degradation (REDD+) mechanism. Yet, ecosystem C pools and fluxes in wetland forests remain poorly quantified. Significant knowledge gaps exist regarding how land use changes impact C dynamics in tropical wetlands, and very few studies have simultaneously assessed above- and belowground ecosystem C pools in Indonesia's freshwater peat swamps and mangroves. In addition, most of what is known about Indonesia's tropical wetland forests is derived from few geographic locations where long-standing research has focused, despite their broad spatial distribution. Here we present results from an extensive survey of ecosystem C stocks across several Indonesian wetland forests. Ecosystem C stocks were measured in freshwater peat swamp forests in West Papua, Central Kalimantan, West Kalimantan, and Sumatra. Carbon storage was also measured for mangrove forests in W. Papua, W. Kalimantan, and Sumatra. One overarching goal of this research is to support the development of REDD+ for tropical wetlands by informing technical issues related to carbon measuring, monitoring, and verification (MRV) and providing baseline data about the variation of ecosystem C storage across and within several Indonesian wetland forests.

  15. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas M; Day, Richard H; Gabler, Christopher A; Stagg, Camille L; Grace, James B

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. Estimating the effects of wetland conservation practices in croplands: Approaches for modeling in CEAP–Cropland Assessment

    Science.gov (United States)

    De Steven, Diane; Mushet, David

    2018-01-01

    Quantifying the current and potential benefits of conservation practices can be a valuable tool for encouraging greater practice adoption on agricultural lands. A goal of the CEAP-Cropland Assessment is to estimate the environmental effects of conservation practices that reduce losses (exports) of soil, nutrients, and pesticides from farmlands to streams and rivers. The assessment approach combines empirical data on reported cropland practices with simulation modeling that compares field-level exports for scenarios “with practices” and “without practices.” Conserved, restored, and created wetlands collectively represent conservation practices that can influence sediment and nutrient exports from croplands. However, modeling the role of wetlands within croplands presents some challenges, including the potential for negative impacts of sediment and nutrient inputs on wetland functions. This Science Note outlines some preliminary solutions for incorporating wetlands and wetland practices into the CEAP-Cropland modeling framework. First, modeling the effects of wetland practices requires identifying wetland hydrogeomorphic type and accounting for the condition of both the wetland and an adjacent upland zone. Second, modeling is facilitated by classifying wetland-related practices into two functional categories (wetland and upland buffer). Third, simulating practice effects requires alternative field configurations to account for hydrological differences among wetland types. These ideas are illustrated for two contrasting wetland types (riparian and depressional).

  17. Hydrological Conditions Affect the Interspecific Interaction between Two Emergent Wetland Species

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2018-01-01

    Full Text Available Hydrological conditions determine the distribution of plant species in wetlands, where conditions such as water depth and hydrological fluctuations are expected to affect the interspecific interactions among emergent wetland species. To test such effects, we conducted a greenhouse experiment with three treatment categories, interspecific interaction (mixed culture or monoculture, water depth (10 or 30 cm depth, and hydrological fluctuation (static or fluctuating water level, and two common emergent wetland plant species, Scirpus planiculumis Fr. (Cyperaceae and Phragmites australis var. baiyangdiansis (Gramineae. An increase in the water depth significantly restrained the growth of both S. planiculumis and P. australis, while hydrological fluctuations did not obviously alter the growth of either species. In addition, both water depth and hydrological fluctuations significantly affected the interspecific interaction between these two wetland species. P. australis benefited from interspecific interaction under increasing water depth and hydrological fluctuations, and the RII values were clearly positive for plants grown at a water depth that fluctuated around 30 cm. The results may have some implications for understanding how S. planiculumis and P. australis, as well as wetland communities, respond to the natural variation or human modification of hydrological conditions.

  18. Multi-element accumulation near Rumex crispus roots under wetland and dryland conditions

    International Nuclear Information System (INIS)

    Kissoon, La Toya T.; Jacob, Donna L.; Otte, Marinus L.

    2010-01-01

    Rumex crispus was grown under wet and dry conditions in two-chamber columns such that the roots were confined to one chamber by a 21 μm nylon mesh, thus creating a soil-root interface ('rhizoplane'). Element concentrations at 3 mm intervals below the 'rhizoplane' were measured. The hypothesis was that metals accumulate near plant roots more under wetland than dryland conditions. Patterns in element distribution were different between the treatments. Under dryland conditions Al, Ba, Cu, Cr, Fe, K, La, Mg, Na, Sr, V, Y and Zn accumulated in soil closest to the roots, above the 'rhizoplane' only. Under wetland conditions Al, Fe, Cr, K, V and Zn accumulated above as well as 3 mm below the 'rhizoplane' whereas La, Sr and Y accumulated 3 mm below the 'rhizoplane' only. Plants on average produced 1.5 times more biomass and element uptake was 2.5 times greater under wetland compared to dryland conditions. - Patterns of element accumulation near the roots of plants differ between dryland and wetland conditions.

  19. Wetland Vegetation Integrity Assessment with Low Altitude Multispectral Uav Imagery

    Science.gov (United States)

    Boon, M. A.; Tesfamichael, S.

    2017-08-01

    The use of multispectral sensors on Unmanned Aerial Vehicles (UAVs) was until recently too heavy and bulky although this changed in recent times and they are now commercially available. The focus on the usage of these sensors is mostly directed towards the agricultural sector where the focus is on precision farming. Applications of these sensors for mapping of wetland ecosystems are rare. Here, we evaluate the performance of low altitude multispectral UAV imagery to determine the state of wetland vegetation in a localised spatial area. Specifically, NDVI derived from multispectral UAV imagery was used to inform the determination of the integrity of the wetland vegetation. Furthermore, we tested different software applications for the processing of the imagery. The advantages and disadvantages we experienced of these applications are also shortly presented in this paper. A JAG-M fixed-wing imaging system equipped with a MicaScene RedEdge multispectral camera were utilised for the survey. A single surveying campaign was undertaken in early autumn of a 17 ha study area at the Kameelzynkraal farm, Gauteng Province, South Africa. Structure-from-motion photogrammetry software was used to reconstruct the camera position's and terrain features to derive a high resolution orthoretified mosaic. MicaSense Atlas cloud-based data platform, Pix4D and PhotoScan were utilised for the processing. The WET-Health level one methodology was followed for the vegetation assessment, where wetland health is a measure of the deviation of a wetland's structure and function from its natural reference condition. An on-site evaluation of the vegetation integrity was first completed. Disturbance classes were then mapped using the high resolution multispectral orthoimages and NDVI. The WET-Health vegetation module completed with the aid of the multispectral UAV products indicated that the vegetation of the wetland is largely modified ("D" PES Category) and that the condition is expected to

  20. Diversity patterns of temporary wetland macroinvertebrate ...

    African Journals Online (AJOL)

    Although macroinvertebrates are potentially useful for assessing the condition of temporary wetlands, little is yet known about them. Macroinvertebrate assemblages were assessed in 138 temporary wetlands in the south-western Cape, recording 126 taxa. However, predicted richness estimates were all higher than the ...

  1. Value Assessment of Artificial Wetland Derived from Mining Subsided Lake: A Case Study of Jiuli Lake Wetland in Xuzhou

    Directory of Open Access Journals (Sweden)

    Laijian Wang

    2017-10-01

    Full Text Available Mining subsided lakes are major obstacles for ecological restoration and resource reuse in mining regions. Transforming mining subsided lakes into artificial wetlands is an ecological restoration approach that has been attempted in China in recent years, but a value assessment of the approach still needs systematic research. This paper considers Jiuli Lake wetland, an artificial wetland derived from restoration of a mining subsided lake in plain area, as a case study. A value assessment model for the artificial wetland was established based on cost–benefit analysis by means of field monitoring, social surveys, GIS geostatistics, raster calculation methods, etc. Empirical analysis and calculations were performed on the case study region. The following conclusions were drawn: (1 after ecological restoration, ecosystem services of Jiuli Lake wetland which has become a national level wetland park yield positive values; (2 the improved environment of the Jiuli Lake wetland has a spillover effect on the price of surrounding land, resulting in land price appreciation; (3 using GIS geostatistics and raster calculation methods, the impact range, strength, and value of the spillover effect can be explicitly measured; (4 through the establishment of a value assessment model of the artificial wetland, incomes of the ecological restoration was found to be sufficient to cover the implementation costs, which provides a research foundation for economic feasibility of ecological restoration of mining subsided lakes.

  2. Value Assessment of Artificial Wetland Derived from Mining Subsided Lake: A Case Study of Jiuli Lake Wetland in Xuzhou

    OpenAIRE

    Laijian Wang; Lachun Wang; Pengcheng Yin; Haiyang Cui; Longwu Liang; Zhenbo Wang

    2017-01-01

    Mining subsided lakes are major obstacles for ecological restoration and resource reuse in mining regions. Transforming mining subsided lakes into artificial wetlands is an ecological restoration approach that has been attempted in China in recent years, but a value assessment of the approach still needs systematic research. This paper considers Jiuli Lake wetland, an artificial wetland derived from restoration of a mining subsided lake in plain area, as a case study. A value assessment model...

  3. Design-a-wetland: a tool for generating and assessing constructed wetland designs for wastewater treatment

    International Nuclear Information System (INIS)

    Casaril, Carolina J.

    2007-01-01

    Full text: Full text: The hydrological cycle is a key cycle affected by current and predicted climate change. Wetlands are one of the key ecosystems within the hydrological cycle and could contribute significantly in facing the challenges of climate change, such as water shortage. The impact of wetlands on greenhouse gas emissions is much debated and, conversely, the impact of climate change on wetlands also raises many questions. There have been many attempts to harness and integrate the natural capacities of wetlands into constructed systems. These systems are especially designed for multiple purposes. They can be used for wastewater treatment and reuse, and have the potential to increase sustainability by changing land and water use practices. This project generates a 'Design-A-Wetland' prototype model, designed to facilitate decision-making in the creation of constructed wetlands. Constructed wetlands are specifically tailored to their end use; water treatment fish and fowl habitat, flood buffer zones, or sequestration of greenhouse gases. This project attempts to answer the following questions: Can a single integrated decision model be created for the design and assessment of artificial wetlands, provided either entry or exit standards are known and specified?; Can the elements of a system of interfacing the model with public consultation be specified?; The project identifies model schematics and lays the groundwork for modelling suited to the wide variety of inputs required for decision making

  4. WETLAND ASSESSMENT USING UNMANNED AERIAL VEHICLE (UAV PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    M. A. Boon

    2016-06-01

    Full Text Available The use of Unmanned Arial Vehicle (UAV photogrammetry is a valuable tool to enhance our understanding of wetlands. Accurate planning derived from this technological advancement allows for more effective management and conservation of wetland areas. This paper presents results of a study that aimed at investigating the use of UAV photogrammetry as a tool to enhance the assessment of wetland ecosystems. The UAV images were collected during a single flight within 2½ hours over a 100 ha area at the Kameelzynkraal farm, Gauteng Province, South Africa. An AKS Y-6 MKII multi-rotor UAV and a digital camera on a motion compensated gimbal mount were utilised for the survey. Twenty ground control points (GCPs were surveyed using a Trimble GPS to achieve geometrical precision and georeferencing accuracy. Structure-from-Motion (SfM computer vision techniques were used to derive ultra-high resolution point clouds, orthophotos and 3D models from the multi-view photos. The geometric accuracy of the data based on the 20 GCP’s were 0.018 m for the overall, 0.0025 m for the vertical root mean squared error (RMSE and an over all root mean square reprojection error of 0.18 pixel. The UAV products were then edited and subsequently analysed, interpreted and key attributes extracted using a selection of tools/ software applications to enhance the wetland assessment. The results exceeded our expectations and provided a valuable and accurate enhancement to the wetland delineation, classification and health assessment which even with detailed field studies would have been difficult to achieve.

  5. Assessing the value of wetlands to waterbirds: exploring a ...

    African Journals Online (AJOL)

    Traditionally, species richness, species diversity, total count, biomass, energy consumption and the Ramsar '1% threshold' have been used to assess the importance of wetlands for waterbirds. Designation of wetlands of international importance (Ramsar sites) based on waterbirds has focused on those species meeting the ...

  6. Assessment of nutrient retention by Natete wetland Kampala, Uganda

    Science.gov (United States)

    Kanyiginya, V.; Kansiime, F.; Kimwaga, R.; Mashauri, D. A.

    Natete wetland which is located in a suburb of Kampala city in Uganda is dominated by C yperus papyrus and covers an area of approximately 1 km 2. The wetland receives wastewater and runoff from Natete town which do not have a wastewater treatment facility. The main objective of this study was to assess nutrient retention of Natete wetland and specifically to: determine the wastewater flow patterns in the wetland; estimate the nutrient loads into and out of the wetland; determine the nutrient retention by soil, plants and water column in the wetland; and assess the above and belowground biomass density of the dominant vegetation. Soil, water and plant samples were taken at 50 m intervals along two transects cut through the wetland; soil and water samples were taken at 10 cm just below the surface. Physico-chemical parameters namely pH, electrical conductivity and temperature were measured in situ. Water samples were analyzed in the laboratory for ammonium-nitrogen, nitrate-nitrogen, total nitrogen, orthophosphate and total phosphorus. Electrical conductivity ranged between 113 μS/cm and 530 μS/cm and the wastewater flow was concentrated on the eastern side of the wetland. pH varied between 6 and 7, temperature ranged from 19 °C to 24 °C. NH 4-N, NO 3-N, and TN concentrations were retained by 21%, 98%, and 35% respectively. Phosphorus concentration was higher at the outlet of the wetland possibly due to release from sediments and leaching. Nutrient loads were higher at the inlet (12,614 ± 394 kgN/day and 778 ± 159 kgP/day) than the outlet (2368 ± 425 kgN/day and 216 ± 56 kgP/day) indicating retention by the wetland. Plants stored most nutrients compared to soil and water. The belowground biomass of papyrus vegetation in the wetland was higher (1288.4 ± 8.3 gDW/m 2) than the aboveground biomass (1019.7 ± 13.8 gDW/m 2). Plant uptake is one of the important routes of nutrient retention in Natete wetland. It is recommended that harvesting papyrus can be an

  7. Barrier-island and estuarine-wetland physical-change assessment after Hurricane Sandy

    Science.gov (United States)

    Plant, Nathaniel G.; Smith, Kathryn E.L.; Passeri, Davina L.; Smith, Christopher G.; Bernier, Julie C.

    2018-04-03

    IntroductionThe Nation’s eastern coast is fringed by beaches, dunes, barrier islands, wetlands, and bluffs. These natural coastal barriers provide critical benefits and services, and can mitigate the impact of storms, erosion, and sea-level rise on our coastal communities. Waves and storm surge resulting from Hurricane Sandy, which made landfall along the New Jersey coast on October 29, 2012, impacted the U.S. coastline from North Carolina to Massachusetts, including Assateague Island, Maryland and Virginia, and the Delmarva coastal system. The storm impacts included changes in topography, coastal morphology, geology, hydrology, environmental quality, and ecosystems.In the immediate aftermath of the storm, light detection and ranging (lidar) surveys from North Carolina to New York documented storm impacts to coastal barriers, providing a baseline to assess vulnerability of the reconfigured coast. The focus of much of the existing coastal change assessment is along the ocean-facing coastline; however, much of the coastline affected by Hurricane Sandy includes the estuarine-facing coastlines of barrier-island systems. Specifically, the wetland and back-barrier shorelines experienced substantial change as a result of wave action and storm surge that occurred during Hurricane Sandy (see also USGS photograph, http://coastal.er.usgs.gov/hurricanes/sandy/photo-comparisons/virginia.php). Assessing physical shoreline and wetland change (land loss as well as land gains) can help to determine the resiliency of wetland systems that protect adjacent habitat, shorelines, and communities.To address storm impacts to wetlands, a vulnerability assessment should describe both long-term (for example, several decades) and short-term (for example, Sandy’s landfall) extent and character of the interior wetlands and the back-barrier-shoreline changes. The objective of this report is to describe several new wetland vulnerability assessments based on the detailed physical changes

  8. Testing the basic assumption of the hydrogeomorphic approach to assessing wetland functions.

    Science.gov (United States)

    Hruby, T

    2001-05-01

    The hydrogeomorphic (HGM) approach for developing "rapid" wetland function assessment methods stipulates that the variables used are to be scaled based on data collected at sites judged to be the best at performing the wetland functions (reference standard sites). A critical step in the process is to choose the least altered wetlands in a hydrogeomorphic subclass to use as a reference standard against which other wetlands are compared. The basic assumption made in this approach is that wetlands judged to have had the least human impact have the highest level of sustainable performance for all functions. The levels at which functions are performed in these least altered wetlands are assumed to be "characteristic" for the subclass and "sustainable." Results from data collected in wetlands in the lowlands of western Washington suggest that the assumption may not be appropriate for this region. Teams developing methods for assessing wetland functions did not find that the least altered wetlands in a subclass had a range of performance levels that could be identified as "characteristic" or "sustainable." Forty-four wetlands in four hydrogeomorphic subclasses (two depressional subclasses and two riverine subclasses) were rated by teams of experts on the severity of their human alterations and on the level of performance of 15 wetland functions. An ordinal scale of 1-5 was used to quantify alterations in water regime, soils, vegetation, buffers, and contributing basin. Performance of functions was judged on an ordinal scale of 1-7. Relatively unaltered wetlands were judged to perform individual functions at levels that spanned all of the seven possible ratings in all four subclasses. The basic assumption of the HGM approach, that the least altered wetlands represent "characteristic" and "sustainable" levels of functioning that are different from those found in altered wetlands, was not confirmed. Although the intent of the HGM approach is to use level of functioning as a

  9. Indicators of wetland condition for the prairie pothole region of the United States.

    Science.gov (United States)

    Guntenspergen, G R; Peterson, S A; Leibowitz, S G; Cowardin, L M

    2002-09-01

    We describe a study designed to evaluate the performance of wetland condition indicators of the Prairie Pothole Region (PPR) of the north central United States. Basin and landscape scale indicators were tested in 1992 and 1993 to determine their ability to discriminate between the influences of grassland dominated and cropland dominated landscapes in the PPR. Paired plots were selected from each of the major regions of the PPR. Among the landscape scale indicators tested, those most capable of distinguishing between the two landscapes were: 1) frequency of drained wetland basins. 2) total length of drainage ditch per plot, 3) amount of exposed soil in the upland subject to erosion, 4) indices of change in area of wetland covered by water, and 5) number of breeding duck pairs. Basin scale indicators including soil phosphorus concentrations and invertebrate taxa richness showed some promise: however, plant species richness was the only statistically significant basin scale indicator distinguishing grassland dominated from cropland dominated landscapes. Although our study found a number of promising candidate indicators, one of our conclusions is that basin scale indicators present a number of implementation problems. including: skill level requirements, site access denials, and recession of site access by landowners. Alternatively, we suggest that the use of landscape indicators based on remote sensing can be an effective means of assessing wetland integrity.

  10. SYNOPTIC ASSESSMENT OF WETLAND FUNCTION: A PLANNING TOOL FOR PROTECTION OF WETLAND SPECIES DIVERSITY

    Science.gov (United States)

    We present a synoptic assessment intended to maximize the benefits to wetland species biodiversity gained through Clean Water Act regulatory efforts within 225 sub-basins in Missouri, Iowa, Nebraska and Kansas (U.S. Environmental Protection Agency, Region 7), USA. Our assessment...

  11. Risk Assessment as an Environmental Management Tool: Considerations for Freshwater Wetlands

    Science.gov (United States)

    A. Dennis Lemly

    1997-01-01

    This paper presents a foundation for improving the risk assessment process for freshwater wetlands. Integrating wetland science, i.e., use of an ecosystem-based approach, is the key concept. Each biotic and abiotic wetland component should be identified and its contribution to ecosystem functions and societal values determined when deciding whether a stressor poses an...

  12. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    Science.gov (United States)

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  13. SYNOPTIC ASSESSMENT OF WETLAND FUNCTION: A PLANNING TOOL FOR PROTECTION OF WETLAND SPECIES BIODIVERSITY

    Science.gov (United States)

    We present a synoptic assessment intended to maximize the benefits to wetland species biodiversity gained through Clean Water Act regulatory efforts within 225 sub-basins in Missouri, Iowa, Nebraska and Kansas (U.S. EPA, Region 7) USA. Our assessment provides a method for identif...

  14. Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets

    Science.gov (United States)

    Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Chen, Guangsheng; Pan, Shufen; Anderson, Christopher; Poulter, Benjamin

    2017-09-01

    A wide range of estimates on global wetland methane (CH4) fluxes has been reported during the recent two decades. This gives rise to urgent needs to clarify and identify the uncertainty sources, and conclude a reconciled estimate for global CH4 fluxes from wetlands. Most estimates by using bottom-up approach rely on wetland data sets, but these data sets show largely inconsistent in terms of both wetland extent and spatiotemporal distribution. A quantitative assessment of uncertainties associated with these discrepancies among wetland data sets has not been well investigated yet. By comparing the five widely used global wetland data sets (GISS, GLWD, Kaplan, GIEMS and SWAMPS-GLWD), it this study, we found large differences in the wetland extent, ranging from 5.3 to 10.2 million km2, as well as their spatial and temporal distributions among the five data sets. These discrepancies in wetland data sets resulted in large bias in model-estimated global wetland CH4 emissions as simulated by using the Dynamic Land Ecosystem Model (DLEM). The model simulations indicated that the mean global wetland CH4 emissions during 2000-2007 were 177.2 ± 49.7 Tg CH4 yr-1, based on the five different data sets. The tropical regions contributed the largest portion of estimated CH4 emissions from global wetlands, but also had the largest discrepancy. Among six continents, the largest uncertainty was found in South America. Thus, the improved estimates of wetland extent and CH4 emissions in the tropical regions and South America would be a critical step toward an accurate estimate of global CH4 emissions. This uncertainty analysis also reveals an important need for our scientific community to generate a global scale wetland data set with higher spatial resolution and shorter time interval, by integrating multiple sources of field and satellite data with modeling approaches, for cross-scale extrapolation.

  15. Using Internet search behavior to assess public awareness of protected wetlands.

    Science.gov (United States)

    Do, Yuno; Kim, Ji Yoon; Lineman, Maurice; Kim, Dong-Kyun; Joo, Gea-Jae

    2015-02-01

    Improving public awareness of protected wetlands facilitates sustainable wetland management, which depends on public participation. One way of gauging public interest is by tracking Internet search behavior (ISB). We assessed public awareness of issues related to protected wetland areas (PWAs) in South Korea by examining the frequencies of specific queries (PWAs, Ramsar, Upo wetland, Sunchon Bay, etc.) using relative search volumes (RSVs) obtained from an Internet search engine. RSV shows how many times a search term is used relative to a second search term during a specific period. Public awareness of PWAs changed from 2007 to 2013. Initially the majority of Internet searches were related to the most well-known tidal and inland wetlands Sunchon Bay and Upo wetlands, which are the largest existing wetlands in Korea with the greatest historical exposure. Public awareness, as reflected in RSVs, of wetlands increased significantly following PWA designation for the wetlands in 2008, which followed the Ramsar 10th Conference of Contracting Parties to the Convention on Wetlands (COP10) meeting. Public interest was strongly correlated to the number of news articles in the popular media, as evidenced by the increase in Internet searches for specific wetlands and words associated with specific wetlands. Correspondingly, the number of visitors to specific wetlands increased. To increase public interest in wetlands, wetland aspects that enhance wetland conservation should be promoted by the government and enhanced via public education. Our approach can be used to gauge public awareness and participation in a wide range of conservation efforts. © 2014 Society for Conservation Biology.

  16. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Depression Wetlands in the Upper Des Plaines River Basin

    Science.gov (United States)

    2006-05-01

    Wetlands and Coastal Ecology Branch; Dr. David J. Tazik, Chief, Eco- system Evaluation and Engineering Division; and Dr. Edwin A. Theriot, Direc- tor, EL...wetlands (Euliss and Mushet 1996, Azous and Horner 2001, Bhaduri et al. 1997) and nutrient loading into those wetlands. The overall LU score is...Euliss, N. H., and Mushet , D. M. (1996). “Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region

  17. Microbial fuel cells for clogging assessment in constructed wetlands

    International Nuclear Information System (INIS)

    Corbella, Clara; García, Joan; Puigagut, Jaume

    2016-01-01

    Clogging in HSSF CW may result in a reduction of system's life-span or treatment efficiency. Current available techniques to assess the degree of clogging in HSSF CW are time consuming and cannot be applied on a continuous basis. Main objective of this work was to assess the potential applicability of microbial fuel cells for continuous clogging assessment in HSSF CW. To this aim, two replicates of a membrane-less microbial fuel cell (MFC) were built up and operated under laboratory conditions for five weeks. The MFC anode was gravel-based to simulate the filter media of HSSF CW. MFC were weekly loaded with sludge that had been accumulating for several years in a pilot HSSF CW treating domestic wastewater. Sludge loading ranged from ca. 20 kg TS·m"− "3 CW·year"− "1 at the beginning of the study period up to ca. 250 kg TS·m"− "3 CW·year"− "1 at the end of the study period. Sludge loading applied resulted in sludge accumulated within the MFC equivalent to a clogging degree ranging from 0.2 years (ca. 0.5 kg TS·m"–"3CW) to ca. 5 years (ca. 10 kg TS·m"–"3CW). Results showed that the electric charge was negatively correlated to the amount of sludge accumulated (degree of clogging). Electron transference (expressed as electric charge) almost ceased when accumulated sludge within the MFC was equivalent to ca. 5 years of clogging (ca. 10 kg TS·m"–"3CW). This result suggests that, although longer study periods under more realistic conditions shall be further performed, HSSF CW operated as a MFC has great potential for clogging assessment. - Highlights: • Microbial fuel cells are used as tool for clogging assessment in constructed wetlands. • Microbial fuel cells were loaded with sludge from constructed wetlands. • Sludge retained within the systems simulated a clogging time ranging from 0.2 to ca. 5 years. • Electrons transferred decreased potentially as function of sludge loading. • Microbial fuel cells have potential for clogging assessment

  18. [Vulnerability assessment on the coastal wetlands in the Yangtze Estuary under sea-level rise].

    Science.gov (United States)

    Cui, Li-Fang; Wang, Ning; Ge, Zhen-Ming; Zhang, Li-Quan

    2014-02-01

    To study the response of coastal wetlands to climate change, assess the impacts of climate change on the coastal wetlands and formulate feasible and practical mitigation strategies are the important prerequisite for securing coastal ecosystems. In this paper, the possible impacts of sea level rise caused by climate change on the coastal wetlands in the Yangtze Estuary were analyzed by the Source-Pathway-Receptor-Consequence (SPRC) model and IPCC definition on the vulnerability. An indicator system for vulnerability assessment was established, in which sea-level rise rate, subsidence rate, habitat elevation, inundation threshold of habitat and sedimentation rate were selected as the key indicators. A quantitatively spatial assessment method based on the GIS platform was established by quantifying each indicator, calculating the vulnerability index and grading the vulnerability index for the assessment of coastal wetlands in the Yangtze Estuary under the scenarios of sea-level rise. The vulnerability assessments on the coastal wetlands in the Yangtze Estuary in 2030 and 2050 were performed under two sea-level rise scenarios (the present sea-level rise trend over recent 30 years and IPCC A1F1 scenario). The results showed that with the projection in 2030 under the present trend of sea-level rise (0.26 cm x a(-1)), 6.6% and 0.1% of the coastal wetlands were in the low and moderate vulnerabilities, respectively; and in 2050, 9.8% and 0.2% of the coastal wetlands were in low and moderate vulnerabilities, respectively. With the projection in 2030 under the A1F1 scenario (0.59 cm x a(-1)), 9.0% and 0.1% of the coastal wetlands were in the low and moderate vulnerabilities, respectively; and in 2050, 9.5%, 1.0% and 0.3% of the coastal wetlands were in the low, moderate and high vulnerabilities, respectively.

  19. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Low-Gradient, Blackwater Riverine Wetlands in Peninsular Florida

    National Research Council Canada - National Science Library

    Uranowski, Christina

    2003-01-01

    The Hydrogeomorphic (HGM) Approach is a collection of concepts and methods for developing functional indices and subsequently using them to assess the capacity of a wetland to perform functions relative to similar wetlands in a region...

  20. Late Quaternary dynamics of a South African floodplain wetland and the implications for assessing recent human impacts

    Science.gov (United States)

    Tooth, S.; Rodnight, H.; McCarthy, T. S.; Duller, G. A. T.; Grundling, A. T.

    2009-05-01

    Knowledge of the long-term geomorphological dynamics of wetlands is limited, so currently there is an inadequate scientific basis for assessing anthropogenically induced changes and for developing conservation, remediation, and/or sustainable management guidelines for these fragile ecosystems. Along the upper Klip River, eastern South Africa, geomorphological and sedimentological investigations, geochronology, and remote sensing have been used to establish the late Quaternary dynamics of some internationally important floodplain wetlands, thus providing a reference condition against which to assess the extent of recent human impacts. Optically stimulated luminescence dating reveals that the wetlands have developed over at least the last 30 ky as a result of slow meander migration (y - 1 ), irregular cutoff events, and infrequent avulsions (approximately one every 3-6 ky) that have occurred autogenically as a natural part of meander-belt development. Following European settlement in the Klip valley (late nineteenth century), however, modifications to local flora and fauna, as well as the initiation of local wetland drainage schemes, have had major impacts. In particular, proliferation of exotic willows and associated debris jams, and the artificial excavation of a 1.2-km-long channel section across the wetlands have initiated an ongoing avulsion that is characterised by failure (gradual abandonment) of the main channel and rapid incision of a headcutting channel. Compared to the pre-settlement condition, little change in lateral migration activity has occurred, but this avulsion provides a clear example of anthropogenically accelerated change, occurring only ~ 1 ky after the last natural avulsion and in a part of the wetlands where avulsions have not occurred previously. Subsequent human interventions have included installing weirs in an attempt to control the resulting erosion and promote reflooding, but ongoing maintenance has been required. In areas that were not

  1. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands.

    Science.gov (United States)

    Stapanian, Martin A; Schumacher, William; Gara, Brian; Monteith, Steven E

    2016-05-01

    Excessive soil nutrients, often from agricultural runoff, have been shown to negatively impact some aspects of wetland plant communities. We measured plant-available phosphorus (Mehlich-3: MeP) in soil samples, and assessed the vascular plant community and habitat degradation at 27 emergent and 13 forested wetlands in Ohio, USA. We tested two hypotheses: (1) that an index of vegetation biological integrity based on floristic quality was lower in wetlands with higher concentrations of MeP in the soil, and (2) that higher concentrations of MeP occurred in wetlands with more habitat degradation (i.e., lower quality), as estimated by a rapid assessment method. Hypothesis (1) was supported for emergent, but not for forested wetlands. Hypothesis (2) was marginally supported (P=0.09) for emergent, but not supported for forested wetlands. The results indicate that the effect of concentration of phosphorus in wetland soils and the quality of plant species assemblages in wetlands is more complex than shown in site-specific studies and may depend in part on degree of disturbance in the surrounding watershed and dominant wetland vegetation type. Woody plants in forested wetlands are typically longer lived than herbaceous species in the understory and emergent wetlands, and may persist despite high inputs of phosphorus. Further, the forested wetlands were typically surrounded by a wide band of forest vegetation, which may provide a barrier against sedimentation and the associated phosphorus inputs to the wetland interior. Our results indicate that inferences about soil nutrient conditions made from rapid assessment methods for assessing wetland habitat condition may not be reliable. Copyright © 2016. Published by Elsevier B.V.

  2. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Depression Wetlands in the Upper Des Plaines River Basin

    National Research Council Canada - National Science Library

    Lin, Jeff P

    2006-01-01

    .... The HGM approach is a collection of concepts and methods used to develop functional indices to assess the capacity of a particular wetland to perform functions relative to similar wetlands in a region...

  3. Microbial fuel cells for clogging assessment in constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Clara; García, Joan; Puigagut, Jaume, E-mail: jaume.puigagut@upc.edu

    2016-11-01

    Clogging in HSSF CW may result in a reduction of system's life-span or treatment efficiency. Current available techniques to assess the degree of clogging in HSSF CW are time consuming and cannot be applied on a continuous basis. Main objective of this work was to assess the potential applicability of microbial fuel cells for continuous clogging assessment in HSSF CW. To this aim, two replicates of a membrane-less microbial fuel cell (MFC) were built up and operated under laboratory conditions for five weeks. The MFC anode was gravel-based to simulate the filter media of HSSF CW. MFC were weekly loaded with sludge that had been accumulating for several years in a pilot HSSF CW treating domestic wastewater. Sludge loading ranged from ca. 20 kg TS·m{sup −} {sup 3} CW·year{sup −} {sup 1} at the beginning of the study period up to ca. 250 kg TS·m{sup −} {sup 3} CW·year{sup −} {sup 1} at the end of the study period. Sludge loading applied resulted in sludge accumulated within the MFC equivalent to a clogging degree ranging from 0.2 years (ca. 0.5 kg TS·m{sup –3}CW) to ca. 5 years (ca. 10 kg TS·m{sup –3}CW). Results showed that the electric charge was negatively correlated to the amount of sludge accumulated (degree of clogging). Electron transference (expressed as electric charge) almost ceased when accumulated sludge within the MFC was equivalent to ca. 5 years of clogging (ca. 10 kg TS·m{sup –3}CW). This result suggests that, although longer study periods under more realistic conditions shall be further performed, HSSF CW operated as a MFC has great potential for clogging assessment. - Highlights: • Microbial fuel cells are used as tool for clogging assessment in constructed wetlands. • Microbial fuel cells were loaded with sludge from constructed wetlands. • Sludge retained within the systems simulated a clogging time ranging from 0.2 to ca. 5 years. • Electrons transferred decreased potentially as function of sludge loading.

  4. Floristic quality assessment of one natural and three restored wetland complexes in North Dakota, USA

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.; Shaffer, Terry L.

    2002-01-01

    Floristic quality assessment is potentially an important tool for conservation efforts in the northern Great Plains of North America, but it has received little rigorous evaluation. Floristic quality assessments rely on coefficients assigned to each plant species of a region’s flora based on the conservatism of each species relative to others in the region. These “coefficients of conservatism” (C values) are assigned by a panel of experts familiar with a region’s flora. The floristic quality assessment method has faced some criticism due to the subjective nature of these assignments. To evaluate the effect of this subjectivity on floristic quality assessments, we performed separate evaluations of the native plant communities in a natural wetland complex and three restored wetland complexes. In our first assessment, we used C values assigned “subjectively” by the Northern Great Plains Floristic Quality Assessment Panel. We then performed an independent assessment using the observed distributions of species among a group of wetlands that ranged from highly disturbed to largely undisturbed (data-generated C values). Using the panel-assigned C values, mean C values (C¯">C¯C¯) of the restored wetlands rarely exceeded 3.4 and never exceeded 3.9, with the highest values occurring in the oldest restored complex; all but two wetlands in the natural wetland complex had a C¯">C¯C¯ greater than 3.9. Floristic quality indices (FQI) for the restored wetlands rarely exceeded 22 and usually reached maximums closer to 19, with higher values occurring again in the oldest restored complex; only two wetlands in the natural complex had an FQI less than 22. We observed that 95% confidence limits for species richness and percent natives overlapped greatly among wetland complexes, whereas confidence limits for both C¯">C¯C¯ and FQI overlapped little. C¯">C¯C¯ and FQI values were consistently greater when we used the datagenerated C values than when we used the

  5. Habitat quality assessment of two wetland treatment systems in Mississippi: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, L.S.

    1992-12-01

    The use of wetland treatment systems (WTS), or constructed wetlands, for treating municipal wastewater is increasing in the United States, but little is known about the ability of these systems to duplicate or sustain wetland functions. The pilot study was designed to examine methods and the usefulness of various wetland indicators for assessing the wildlife habitat quality in six WTS sites throughout the United States. The report focusses on two Mississippi sites, one located near Collins, and one near Ocean Springs.

  6. Futures Analysis of Urban Land Use and Wetland Change in Saskatoon, Canada: An Application in Strategic Environmental Assessment

    Directory of Open Access Journals (Sweden)

    Anton Sizo

    2015-01-01

    Full Text Available This paper presents a scenario-based approach to strategic environmental assessment (SEA for wetland trend analysis and land use and land cover (LUC modeling in an urban environment. The application is focused on the Saskatoon urban environment, a rapidly growing urban municipality in Canada’s prairie pothole region. Alternative future LUC was simulated using remote sensing data and city spatial planning documentation using a Markov Chain technique. Two alternatives were developed and compared for LUC change and threats to urban wetland sustainability: a zero alternative that simulated trends in urban development and wetland conservation under a business as usual scenario, in the absence of prescribed planning and zoning actions; and an alternative focused on implementation of current urban development plans, which simulated future LUC to account for prescribed wetland conservation strategies. Results show no improvement in future wetland conditions under the city’s planned growth and wetland conservation scenario versus the business as usual scenario. Results also indicate that a blanket wetland conservation strategy for the city may not be sufficient to overcome the historic trend of urban wetland loss; and that spatially distributed conservation rates, based on individual wetland water catchment LUC peculiarities, may be more effective in terms of wetland conservation. The paper also demonstrates the challenges to applied SEA in a rapidly changing urban planning context, where data are often sparse and inconsistent across the urban region, and provides potential solutions through LUC classification and prediction tools to help overcome data limitations to support land use planning decisions for wetland conservation.

  7. [Health assessment of Qi'ao Island mangrove wetland ecosystem in Pearl River Estuary].

    Science.gov (United States)

    Wang, Shu-Gong; Zheng, Yao-Hui; Peng, Yi-Sheng; Chen, Gui-Zhu

    2010-02-01

    Based on the theories of wetland ecosystem health and by using "Pressure-State-Response" model, a health assessment indicator system for Qi' ao Island mangrove wetland ecosystem in Pearl River Estuary was built, and the assessment indices, assessment criteria, indices weighted values, assessment grades, and assessment methods were established to assess the health state of this ecosystem. In 2008, the overall health index of this ecosystem was 0.6580, health level was of grade II (healthy), and the pressure, state, and response indices were 0.3469, 0.8718, and 0.7754, respectively, suggesting that this ecosystem was good in state and response, but still had definite pressure. As a provincial nature reserve, this ecosystem was to be further improved in its health level. However, the research on the health assessment of mangrove wetland ecosystem was still young. Further studies should be made on the selection of assessment indices, long-term oriented monitoring of these indices, and quantification of the relations between ecosystem health level and ecosystem services.

  8. Baseline ecological risk assessment and remediation alternatives for a hydrocarbon-contaminated estuarine wetland

    International Nuclear Information System (INIS)

    Vedagiri, U.

    1993-01-01

    Prior to a property transaction, the groundwater at an industrial refinery site in New Jersey was found to be contaminated with a variety of petroleum-based organic compounds. The highly built-up site included an on-site estuarine wetland and was located in a developed, industrialized area near ecologically important estuarine marshes. A preliminary ecological risk assessment was developed on the basis of available data on site contamination and ecological resources. The onsite wetland and its user fauna were identified as the sensitive receptors of concern and the primary contaminant pathways wee identified. The ecological significance of the contamination was assessed with regard to the onsite wetland and in the context of its position within the landscape and surrounding land uses. The wetland exhibited a combination of impact and vitality, i.e., there were clearly visible signs of contaminant impact as well as a relatively complex and abundant food web. Because of its position within the developed landscape, the onsite wetland appeared to function as a refugium for wildlife despite the level of disturbance. The feasibility of achieving regulatory compliance through natural remediation was also examined with respect to the findings of the risk assessment and the resultant conclusions are discussed

  9. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions.

    Science.gov (United States)

    Li, W C; Deng, H; Wong, M H

    2017-12-01

    This study aims to assess the role of Fe plaque in metal uptake and translocation by different wetland plants and examine the effects of organic acids on metal detoxification in wetland plants. It was found that although exposed to a similar level of metals in rhizosphere soil solution, metal uptake by shoots of Cypercus flabelliformis and Panicum paludosum was greatly reduced, consequently leading to a better growth under flooded than under drained conditions. This may be related to the enhanced Fe plaque in the former, but due to the decreased root permeability in the latter under anoxic conditions. The Fe plaque on root surface has potential to sequester metals and then reduce metal concentrations and translocation in shoot tissues. However, whether the Fe plaque acts as a barrier to metal uptake and translocation may also be dependent on the root anatomy. Although metal tolerance in wetland plants mainly depends upon their metal exclusion ability, the higher-than-toxic-level of metal concentrations in some species indicates that internal metal detoxification might also exist. It was suggested that malic or citric acid in shoots of P. paludosum and C. flabelliformis may account for their internal detoxification for Zn. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  11. Development of an Assessment Framework for Restored Forested Wetlands

    Science.gov (United States)

    Randall K. Kolka; Carl C. Trettin; E.A. Nelson

    1998-01-01

    Development of an assessment framework and associated indicators that can be used to evaluate the effectiveness of a wetland restoration is critical to demonstrating the sustainability of restored sites. An interdisciplinary approach was developed to assess how succession is proceeding on a restored bottomland site in South Carolina relative to an undisturbed...

  12. Strategic Environmental Assessment Framework for Landscape-Based, Temporal Analysis of Wetland Change in Urban Environments.

    Science.gov (United States)

    Sizo, Anton; Noble, Bram F; Bell, Scott

    2016-03-01

    This paper presents and demonstrates a spatial framework for the application of strategic environmental assessment (SEA) in the context of change analysis for urban wetland environments. The proposed framework is focused on two key stages of the SEA process: scoping and environmental baseline assessment. These stages are arguably the most information-intense phases of SEA and have a significant effect on the quality of the SEA results. The study aims to meet the needs for proactive frameworks to assess and protect wetland habitat and services more efficiently, toward the goal of advancing more intelligent urban planning and development design. The proposed framework, adopting geographic information system and remote sensing tools and applications, supports the temporal evaluation of wetland change and sustainability assessment based on landscape indicator analysis. The framework was applied to a rapidly developing urban environment in the City of Saskatoon, Saskatchewan, Canada, analyzing wetland change and land-use pressures from 1985 to 2011. The SEA spatial scale was rescaled from administrative urban planning units to an ecologically meaningful area. Landscape change assessed was based on a suite of indicators that were subsequently rolled up into a single, multi-dimensional, and easy to understand and communicate index to examine the implications of land-use change for wetland sustainability. The results show that despite the recent extremely wet period in the Canadian prairie region, land-use change contributed to increasing threats to wetland sustainability.

  13. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    International Nuclear Information System (INIS)

    1995-04-01

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location

  14. A Regional Guidebook for Applying The Approach to Assessing Wetland Functions of Depressed Wetlands in Peninsular, Florida

    National Research Council Canada - National Science Library

    Noble, Chris

    2004-01-01

    The Hydrogeomophic (HGM) Approach is a method for developing functional indices and the protocols used to apply these indices to the assessment of wetland functions at a site-specific scale The HGM Approach was initially...

  15. The development of a wetland classification and risk assessment index (WCRAI) for non-wetland specialists for the management of natural freshwater wetland ecosystems

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2014-02-01

    Full Text Available Botany 55, 247-260. Mitchell, P., 1990. The Enviromental Conditions of Victoria Streams, Department of Water Resources, Melbourne, Victoria. Mitsch, W.J., Gosselink, J.G., 2000. Wetlands 3 third edition, John Wiley& Sons Inc, New York. Morant, P.D., 1983...

  16. Event-Based Analysis of Rainfall-Runoff Response to Assess Wetland-Stream Interaction in the Prairie Pothole Region

    Science.gov (United States)

    Haque, M. A.; Ross, C.; Schmall, A.; Bansah, S.; Ali, G.

    2016-12-01

    Process-based understanding of wetland response to precipitation is needed to quantify the extent to which non-floodplain wetlands - such as Prairie potholes - generate flow and transmit that flow to nearby streams. While measuring wetland-stream (W-S) interaction is difficult, it is possible to infer it by examining hysteresis characteristics between wetland and stream stage during individual precipitation events. Hence, to evaluate W-S interaction, 10 intact and 10 altered/lost potholes were selected for study; they are located in Broughton's Creek Watershed (Manitoba, Canada) on both sides of a 5 km creek reach. Stilling wells (i.e., above ground wells) were deployed in the intact and altered wetlands to monitor surface water level fluctuations while water table wells were drilled below drainage ditches to a depth of 1 m to monitor shallow groundwater fluctuations. All stilling wells and water table wells were equipped with capacitance water level loggers to monitor fluctuations in surface water and shallow groundwater every 15 minutes. In 2013 (normal year) and 2014 (wet year), 15+ precipitation events were identified and scatter plots of wetland (x-axis) versus stream (y-axis) stage were built to identify W-S hysteretic dynamics. Initial data analysis reveals that in dry antecedent conditions, intact and altered wetlands show clockwise W-S relations, while drained wetlands show anticlockwise W-S hysteresis. However, in wetter antecedent conditions, all wetland types show anticlockwise hysteresis. Future analysis will target the identification of thresholds in antecedent moisture conditions that determine significant changes in event wetland response characteristics (e.g., the delay between the start of rainfall and stream stage, the maximum water level rise in each wetland during each event, the delay between the start of rainfall and peak wetland stage) as well as hysteresis properties (e.g., gradient and area of the hysteresis loop).

  17. Limnology of Jagatpur wetland, Bhagalpur (Bihar), India.

    Science.gov (United States)

    Kumar, Brajnandan

    2011-10-01

    The water quality in Jagatpur wetland was assessed in terms of physico - chemical characteristics for two years, between August 2003-July 2005. The variations in different physico-chemical parameters have been discussed in this paper in relation to fluctuating climatic condition. The wetland is experiencing racing eutrophication as evidenced by pH was acidic to alkaline, total hardness was considerably high, bicarbonate was in moderate amount, phosphate-phosphorus content was in a range of medium to high and higher values of COD. The present status of the quality of water of Jagatpur wetland is delineated in this paper.

  18. Assessment of biodiversities and spatial structure of Zarivar Wetland in Kurdistan Province, Iran

    Directory of Open Access Journals (Sweden)

    MAHDI REYAHI-KHORAM

    2012-07-01

    Full Text Available Reyahi-Khoram M, Hoshmand K. 2012. Assessment of biodiversities and spatial structure of Zarivar Wetland in Kurdistan Province, Iran. Biodiversitas 13: 130-134. Wetlands are valuable ecosystems that occupy about 6% of the world’s land surface. Iran has over 250 wetlands measuring about 2.5 million hectares. Zarivar wetland (ZW is the only natural aquatic ecosystem in Kurdistan province in Iran. The present research was carried out during 2009 through 2010 with the aim of recognizing the capabilities and limitations of ZW through documentary, extensive field visits and also direct field observations during the years of study. Geographic Information System (GIS has been used to evaluate the land as a main tool. The results of this research showed that ZW has a great talent regarding diversity of bird species and the ecological status of wetland has caused the said wetland welcome numerous species of birds. The results of this research showed that industrial pollutions are not considered as threats to the wetland but evacuation of agricultural runoff and development of Marivan city toward the wetland and the resulting pollution load could be introduced as an important part of the wetland threats. It is recommended to make necessary studies in the field of various physical and biological parameters of the wetland, and also the facing threats and opportunities.

  19. Development of a diatom-based multimetric index for acid mine drainage impacted depressional wetlands.

    Science.gov (United States)

    Riato, Luisa; Leira, Manel; Della Bella, Valentina; Oberholster, Paul J

    2018-01-15

    Acid mine drainage (AMD) from coal mining in the Mpumalanga Highveld region of South Africa has caused severe chemical and biological degradation of aquatic habitats, specifically depressional wetlands, as mines use these wetlands for storage of AMD. Diatom-based multimetric indices (MMIs) to assess wetland condition have mostly been developed to assess agricultural and urban land use impacts. No diatom MMI of wetland condition has been developed to assess AMD impacts related to mining activities. Previous approaches to diatom-based MMI development in wetlands have not accounted for natural variability. Natural variability among depressional wetlands may influence the accuracy of MMIs. Epiphytic diatom MMIs sensitive to AMD were developed for a range of depressional wetland types to account for natural variation in biological metrics. For this, we classified wetland types based on diatom typologies. A range of 4-15 final metrics were selected from a pool of ~140 candidate metrics to develop the MMIs based on their: (1) broad range, (2) high separation power and (3) low correlation among metrics. Final metrics were selected from three categories: similarity to reference sites, functional groups, and taxonomic composition, which represent different aspects of diatom assemblage structure and function. MMI performances were evaluated according to their precision in distinguishing reference sites, responsiveness to discriminate reference and disturbed sites, sensitivity to human disturbances and relevancy to AMD-related stressors. Each MMI showed excellent discriminatory power, whether or not it accounted for natural variation. However, accounting for variation by grouping sites based on diatom typologies improved overall performance of MMIs. Our study highlights the usefulness of diatom-based metrics and provides a model for the biological assessment of depressional wetland condition in South Africa and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-10-15

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health--changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and other conditions unfavorable to propagation of the most desirable moist soil plants. Hence, the implementation of a program to monitor annual changes in the most common moist soil plants might serve as an index of habitat health and sustainability. Our review of the current scientific and popular literature failed to identify a good, comprehensive field guide that could be used to calibrate and verify high resolution remote sensing imagery, that we had started to use to develop maps of wetland moist soil plants in the Grassland Water District. Since completing the guide it has been used to conduct ground truthing field surveys using the California Native Plant Society methodology in 2004. Results of this survey and a previous wetland plant survey in 2003 are published in a companion LBNL publication summarizing 4 years of fieldwork to advance the science of real-time wetland salinity management.

  1. Variation in immune function, body condition, and feather corticosterone in nestling Tree Swallows (Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands, Alberta, Canada

    International Nuclear Information System (INIS)

    Jane Harms, N.; Fairhurst, Graham D.; Bortolotti, Gary R.; Smits, Judit E.G.

    2010-01-01

    In the Athabasca oil sands region of northern Alberta, mining companies are evaluating reclamation using constructed wetlands for integration of tailings. From May to July 2008, reproductive performance of 40 breeding pairs of tree swallows (Tachycineta bicolor), plus growth and survival of nestlings, was measured on three reclaimed wetlands on two oil sands leases. A subset of nestlings was examined for i) feather corticosterone levels, ii) delayed-type hypersensitivity response, and iii) innate immune function. Nestlings on one of two wetlands created with oil sands process affected material (OSPM) were heavier and had greater wing-lengths, and mounted a stronger delayed-type hypersensitivity response compared those on the reference wetland. Corticosterone was significantly higher in male nestlings on one of two OSPM-containing wetland compared to the reference wetland. Body condition of 12-day-old female nestlings was inversely related to feather corticosterone. Under ideal weather conditions, reclaimed wetlands can support healthy populations of aerially-insectivorous birds. - Under ideal weather conditions, tree swallow nestlings on reclaimed OSPM-affected wetlands are in good body condition and mount strong cell-mediated immune responses.

  2. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.

    Directory of Open Access Journals (Sweden)

    Houston C Chandler

    Full Text Available The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi, a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014 of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis. Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions.

  3. Towards multi-level biomonitoring of nematodes to assess risk of nitrogen and phosphorus pollution in Jinchuan Wetland of Northeast China.

    Science.gov (United States)

    Wang, Yunbiao; Qiao, Jie; He, Chunguang; Wang, Zhongqiang; Luo, Wenbo; Sheng, Lianxi

    2015-12-01

    Cultivation for agricultural production often poses threats to nearby wetlands ecosystems in fertile landscapes. In this study, nematode ecological indexes were assessed through the main soil properties of the wetlands, farmlands, and edges of wetlands and farmlands in Jinchuan Wetland by the random sampling. Behavior and reproduction in Caenorhabditis elegans (C. elegans) exposed to the sampled waters were also examined. Stress proteins Hsp70 and Hsp90 were measured both in the living field samples of C. elegans and the lab-tested C. elegans. Our results suggested that disturbance to wetland ecosystems by nitrogen and phosphorus reduced nematode richness and proportions of bacterivore nematodes. Bacterivore nematode diversity and plant-parasitic ecological index were proven to be sensitive indicators of the ecological health of wetlands. Nematode Hsp70 were useful biosensors to monitor and assess the levels of nitrogen and phosphorus pollutions in wetlands. Furthermore, multi-level soil faunal assessments by canonical correspondence analysis showed that Jinchuan Wetland is threatened with non-point source pollution from nearby farmlands.

  4. Assessment on vulnerability of coastal wetlands to sea level rise in the Yangtze Estuary, China

    Science.gov (United States)

    Cui, L.; Ge, Z.; Zhang, L.

    2013-12-01

    The Yangtze Delta in China is vital economic hubs in terms of settlement, industry, agriculture, trade and tourism as well as of great environmental significance. In recent decades, the prospect of climate change, in particular sea level rise and its effects on low lying coastal areas have generated worldwide attention to coastal ecosystems. Coastal wetlands, as important parts of coastal ecosystem, are particularly sensitive to sea level rise. To study the responses of coastal wetlands to climate change, assess the impacts of climate change on coastal wetlands and formulate feasible and practical mitigation strategies are the important prerequisites for securing the coastal zone ecosystems. In this study, taking the coastal wetlands in the Yangtze Estuary as a case study, the potential impacts of sea-level rise to coastal wetlands habitat were analyzed by the Source-Pathway-Receptor-Consequence (SPRC) model. The key indicators, such as the sea-level rise rate, subsidence rate, elevation, daily inundation duration of habitat and sedimentation rate, were selected to build a vulnerability assessment system according to the IPCC definition of vulnerability, i.e. the aspects of exposure, sensitivity and adaptation. A quantitatively spatial assessment method on the GIS platform was established by quantifying each indicator, calculating the vulnerability index and grading the vulnerability. The vulnerability assessment on the coastal wetlands in the Yangtze Estuary under the sea level rise rate of the present trend and IPCC A1F1 scenario were performed for three sets of projections of short-term (2030s), mid-term (2050s) and long-term (2100s). The results showed that at the present trend of sea level rise rate of 0.26 cm/a, 92.3 % of the coastal wetlands in the Yangtze Estuary was in the EVI score of 0 in 2030s, i.e. the impact of sea level rise on habitats/species of coastal wetlands was negligible. While 7.4 % and 0.3 % of the coastal wetlands were in the EVI score of

  5. Characterization of Inundated Wetlands with Microwave Remote Sensing: Cross-Product Comparison for Uncertainty Assessment in Tropical Wetlands

    Science.gov (United States)

    McDonald, K. C.; Jensen, K.; Alvarez, J.; Azarderakhsh, M.; Schroeder, R.; Podest, E.; Chapman, B. D.; Zimmermann, R.

    2015-12-01

    We have been assembling a global-scale Earth System Data Record (ESDR) of natural Inundated Wetlands to facilitate investigations on their role in climate, biogeochemistry, hydrology, and biodiversity. The ESDR comprises (1) Fine-resolution (100 meter) maps, delineating wetland extent, vegetation type, and seasonal inundation dynamics for regional to continental-scale areas, and (2) global coarse-resolution (~25 km), multi-temporal mappings of inundated area fraction (Fw) across multiple years. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We collected UAVSAR datasets over regions of the Amazon basin during that time to support systematic analyses of error sources related to the Inundated Wetlands ESDR. UAVSAR datasets were collected over Pacaya Samiria, Peru, Madre de Dios, Peru, and the Napo River in Ecuador. We derive landcover classifications from the UAVSAR datasets emphasizing wetlands regions, identifying regions of open water and inundated vegetation. We compare the UAVSAR-based datasets with those comprising the ESDR to assess uncertainty associated with the high resolution and the coarse resolution ESDR components. Our goal is to create an enhanced ESDR of inundated wetlands with statistically robust uncertainty estimates. The ESDR documentation will include a detailed breakdown of error sources and associated uncertainties within the data record. This work was carried out in part within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility. Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration.

  6. Applicability Assessment of Uavsar Data in Wetland Monitoring: a Case Study of Louisiana Wetland

    Science.gov (United States)

    Zhao, J.; Niu, Y.; Lu, Z.; Yang, J.; Li, P.; Liu, W.

    2018-04-01

    Wetlands are highly productive and support a wide variety of ecosystem goods and services. Monitoring wetland is essential and potential. Because of the repeat-pass nature of satellite orbit and airborne, time-series of remote sensing data can be obtained to monitor wetland. UAVSAR is a NASA L-band synthetic aperture radar (SAR) sensor compact pod-mounted polarimetric instrument for interferometric repeat-track observations. Moreover, UAVSAR images can accurately map crustal deformations associated with natural hazards, such as volcanoes and earthquakes. And its polarization agility facilitates terrain and land-use classification and change detection. In this paper, the multi-temporal UAVSAR data are applied for monitoring the wetland change. Using the multi-temporal polarimetric SAR (PolSAR) data, the change detection maps are obtained by unsupervised and supervised method. And the coherence is extracted from the interfometric SAR (InSAR) data to verify the accuracy of change detection map. The experimental results show that the multi-temporal UAVSAR data is fit for wetland monitor.

  7. Remotely sensed MODIS wetland components for assessing the variability of methane emissions in Indian tropical/subtropical wetlands

    Science.gov (United States)

    Bansal, Sangeeta; Katyal, Deeksha; Saluja, Ridhi; Chakraborty, Monojit; Garg, J. K.

    2018-02-01

    Temperature and area fluctuations in wetlands greatly influence its various physico-chemical characteristics, nutrients dynamic, rates of biomass generation and decomposition, floral and faunal composition which in turn influence methane (CH4) emission rates. In view of this, the present study attempts to up-scale point CH4 flux from the wetlands of Uttar Pradesh (UP) by modifying two-factor empirical process based CH4 emission model for tropical wetlands by incorporating MODIS derived wetland components viz. wetland areal extent and corresponding temperature factors (Ft). This study further focuses on the utility of remotely sensed temperature response of CH4 emission in terms of Ft. Ft is generated using MODIS land surface temperature products and provides an important semi-empirical input for up-scaling CH4 emissions in wetlands. Results reveal that annual mean Ft values for UP wetlands vary from 0.69 (2010-2011) to 0.71(2011-2012). The total estimated area-wise CH4 emissions from the wetlands of UP varies from 66.47 Gg yr-1with wetland areal extent and Ft value of 2564.04 km2 and 0.69 respectively in 2010-2011 to 88.39 Gg yr-1with wetland areal extent and Ft value of 2720.16 km2 and 0.71 respectively in 2011-2012. Temporal analysis of estimated CH4 emissions showed that in monsoon season estimated CH4 emissions are more sensitive to wetland areal extent while in summer season sensitivity of estimated CH4 emissions is chiefly controlled by augmented methanogenic activities at high wetland surface temperatures.

  8. A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands

    Science.gov (United States)

    Winter, Thomas C.

    1988-01-01

    Wetlands occur in geologic and hydrologic settings that enhance the accumulation or retention of water. Regional slope, local relief, and permeability of the land surface are major controls on the formation of wetlands by surface-water sources. However, these landscape features also have significant control over groundwater flow systems, which commonly play a role in the formation of wetlands. Because the hydrologic system is a continuum, any modification of one component will have an effect on contiguous components. Disturbances commonly affecting the hydrologic system as it relates to wetlands include weather modification, alteration of plant communities, storage of surface water, road construction, drainage of surface water and soil water, alteration of groundwater recharge and discharge areas, and pumping of groundwater. Assessments of the cumulative effects of one or more of these disturbances on the hydrologic system as related to wetlands must take into account uncertainty in the measurements and in the assumptions that are made in hydrologic studies. For example, it may be appropriate to assume that regional groundwater flow systems are recharged in uplands and discharged in lowlands. However, a similar assumption commonly does not apply on a local scale, because of the spatial and temporal dynamics of groundwater recharge. Lack of appreciation of such hydrologic factors can lead to misunderstanding of the hydrologic function of wetlands within various parts of the landscape and mismanagement of wetland ecosystems.

  9. Edaphic Conditions Regulate Denitrification Directly and Indirectly by Altering Denitrifier Abundance in Wetlands along the Han River, China.

    Science.gov (United States)

    Xiong, Ziqian; Guo, Laodong; Zhang, Quanfa; Liu, Guihua; Liu, Wenzhi

    2017-05-16

    Riparian wetlands play a critical role in retaining nitrogen (N) from upland runoff and improving river water quality, mainly through biological processes such as soil denitrification. However, the relative contribution of abiotic and biotic factors to riparian denitrification capacity remains elusive. Here we report the spatiotemporal dynamics of potential and unamended soil denitrification rates in 20 wetlands along the Han River, an important water source in central China. We also quantified the abundance of soil denitrifying microorganisms using nirK and nirS genes. Results showed that soil denitrification rates were significantly different between riparian and reservoir shoreline wetlands, but not between mountain and lowland wetlands. In addition, soil denitrification rates showed strong seasonality, with higher values in August (summer) and April (spring) but lower values in January (winter). The potential and unamended denitrification rates were positively correlated with edaphic conditions (moisture and carbon concentration), denitrifier abundance, and plant species richness. Path analysis further revealed that edaphic conditions could regulate denitrification rates both directly and indirectly through their effects on denitrifier abundance. Our findings highlight that not only environmental factors, but also biotic factors including denitrifying microorganisms and standing vegetation, play an important role in regulating denitrification rate and N removal capacity in riparian wetlands.

  10. An Initial Assessment of the Economic Value of Coastal and Freshwater Wetlands in West Asia

    Directory of Open Access Journals (Sweden)

    Florian V. Eppink

    2014-06-01

    Full Text Available Many countries in West Asia, defined in this study as the Arabic-speaking countries of the Arabian Peninsula plus Turkey and Iran, have enacted environmental conservation laws but regional underlying drivers of environment change, such as rising incomes and fast-growing populations, continue to put pressure on remaining wetlands. This paper aims to inform conservation efforts by presenting the first regional assessment of the economic value of coastal and freshwater wetlands in West Asia. Using scenario analysis we find that, dependent on the discount rate used, the present value of the regional economic loss of not protecting wetlands by 2050 is between US dollar 2.3 billion and US dollar 7.2 billion (expressed in 2007 US dollars. The method used for this assessment, however, is not suitable for expressing national realities adequately. We therefore suggest that detailed localized studies are conducted to improve insight into the drivers and the social and economic effects of wetland loss in West Asia.

  11. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    Science.gov (United States)

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  12. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  13. Leaf Litter Decomposition and Nutrient Dynamics in Woodland and Wetland Conditions along a Forest to Wetland Hillslope

    OpenAIRE

    Qiu, Song; McComb, Arthur J.; Bell, Richard W.

    2012-01-01

    Leaf litters of jarrah (Eucalyptus marginata Donn ex Sm.) and banksia (Banksia menziesii R. Br.) were decomposed at woodland and wetland conditions for two years to test site influence on the rates of decomposition. Weight loss was rapid in early rains but slowed substantially in the following months, resulting in 2/3 to 1/2 weights remaining after two years of field exposure. Litter weight loss was well described by a two-substrate quality decay model (R2=0.97−0.99), and the half-lives were ...

  14. 398 ASSESSMENT OF WETLAND VALUATION PROCESSES FOR ...

    African Journals Online (AJOL)

    Osondu

    This study therefore examined the processes involved in the valuation of wetland resources for ... of the subsistence uses of wetland resources are also not ... hydrological cycle, playing a key role in the provision ..... Management Strategies at the River Basin Scale. A ... Using. GIS: A Thesis Submitted to the Graduate Faculty.

  15. Ceriodaphnia and Chironomus in situ toxicity tests assessing the wastewater treatment efficacy of constructed wetlands

    International Nuclear Information System (INIS)

    Barjaktarovic, L.; Nix, P.; Gulley, J.

    1995-01-01

    In situ toxicity tests were designed for Ceriodaphnia dubia and Chironomus tentans as part of a larger study designed to assess the effectiveness of constructed wetlands for the treatment of wastewater produced by oil production at Suncor OSG. The artificial wetlands were 50m long by 3m wide, with three replicates of the control and the treatment. Each wetland had four sample sites equidistant along its length, creating a gradient of treatment from site A being the most toxic to site D being the least toxic. Each test was conducted twice during the summer of 1994. Both the Ceriodaphnia and Chironomus test cages were a flow through design to allow for maximal exposure to the water within the wetlands. Mortality and reproduction were used as endpoints for Ceriodaphnia, whereas mortality and growth were used as endpoints for the Chironomus test. Test durations were fifteen and ten days respectively. Chironomus had very high mortality along the entire wetlands whereas Ceriodaphnia survival and fecundity increased along the length of the treatment wetlands. Both organisms had low mortality and high growth/fecundity in the control wetlands

  16. SLOSS or Not? Factoring Wetland Size Into Decisions for Wetland Conservation, Enhancement, Restoration, and Creation

    Science.gov (United States)

    Mitigation or replacement of several small impacted wetlands or sites with fewer large wetlands can occur deliberately through the application of functional assessment methods (e.g., Adamus 1997) or coincidentally as the result of market-based mechanisms for wetland mitigation ba...

  17. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  18. Assessment of oil sand process water toxicity in wetlands of northern Alberta using Chironomid mentum deformities

    Energy Technology Data Exchange (ETDEWEB)

    Whelly, M. P.; Ciborowski, J. J. H. [Windsor, Univ., Windsor, ON (Canada)

    1998-07-01

    The effects of oil sands process water (OSPW) on aquatic invertebrates in wetlands near Fort McMurray, Alberta, are assessed. Principal components analysis and cluster analysis of environmental characteristics of 15 wetlands were used to identify three pairs of environmentally similar wetlands that differed mainly in exposure to or absence of OSPW. Large larvae of Chironomidae were collected and examined for mentum deformities (missing or extra teeth) for use as a biomarker. Invertebrate taxa richness and abundance was only moderately lower at OSPW -affected sites than at corresponding reference sites. The incidence of teeth deformities in midges (Chironomidae spp.) from OSPW-affected and corresponding reference wetlands was found to be moderate, and homogeneous among sites and between paired reference and OSPW-affected wetlands. This finding led to the conclusion that the suspected trace metals and PAHs may not be bioavailable in these highly humic wetlands.

  19. Assessment of oil sand process water toxicity in wetlands of northern Alberta using Chironomid mentum deformities

    Energy Technology Data Exchange (ETDEWEB)

    Whelly, M. P.; Ciborowski, J. J. H. [Windsor, Univ., Windsor, ON (Canada)

    1998-12-31

    The effects of oil sands process water (OSPW) on aquatic invertebrates in wetlands near Fort McMurray, Alberta, are assessed. Principal components analysis and cluster analysis of environmental characteristics of 15 wetlands were used to identify three pairs of environmentally similar wetlands that differed mainly in exposure to or absence of OSPW. Large larvae of Chironomidae were collected and examined for mentum deformities (missing or extra teeth) for use as a biomarker. Invertebrate taxa richness and abundance was only moderately lower at OSPW -affected sites than at corresponding reference sites. The incidence of teeth deformities in midges (Chironomidae spp.) from OSPW-affected and corresponding reference wetlands was found to be moderate, and homogeneous among sites and between paired reference and OSPW-affected wetlands. This finding led to the conclusion that the suspected trace metals and PAHs may not be bioavailable in these highly humic wetlands.

  20. Assessment of oil sand process water toxicity in wetlands of northern Alberta using Chironomid mentum deformities

    International Nuclear Information System (INIS)

    Whelly, M. P.; Ciborowski, J. J. H.

    1998-01-01

    The effects of oil sands process water (OSPW) on aquatic invertebrates in wetlands near Fort McMurray, Alberta, are assessed. Principal components analysis and cluster analysis of environmental characteristics of 15 wetlands were used to identify three pairs of environmentally similar wetlands that differed mainly in exposure to or absence of OSPW. Large larvae of Chironomidae were collected and examined for mentum deformities (missing or extra teeth) for use as a biomarker. Invertebrate taxa richness and abundance was only moderately lower at OSPW -affected sites than at corresponding reference sites. The incidence of teeth deformities in midges (Chironomidae spp.) from OSPW-affected and corresponding reference wetlands was found to be moderate, and homogeneous among sites and between paired reference and OSPW-affected wetlands. This finding led to the conclusion that the suspected trace metals and PAHs may not be bioavailable in these highly humic wetlands

  1. Accumulation of {sup 137}Cs in wetlands and their importance in radioecological risk assessments

    Energy Technology Data Exchange (ETDEWEB)

    Stark, K; Nylen, T; Wallberg, P [Stockholm University, Dept. of Systems Ecology, SE (Sweden)

    2004-07-01

    Wetlands function as nurseries and feeding areas for both terrestrial and aquatic species and are habitats for many endangered species such as frogs, salamanders and snakes. Wetlands alter the hydrology of streams and rivers, enhance sediment deposition and work as a filter to coastal waters retaining nutrients as well as contaminants. Due to the lack of easily identifiable direct pathways to humans wetland ecosystems have generally been neglected within radioecological research. There is a large diversity of wetlands and some of them can accumulate and function as sinks for radionuclides. In Sweden wetlands are among the ecosystems where the highest activity concentrations have accumulated after the Chernobyl accident. This paper summarizes factors that are important to the accumulation of radionuclides in wetlands. As an example, one wetland ecosystem in Sweden contaminated by {sup 137}Cs due to the Chernobyl accident will be described in more detail. The average activity concentration in this wetland is 1.1 MBq/m{sup 2}, i.e. 10 times higher than in the surrounding areas. Soil and sediment samples were collected and the {sup 137}Cs activity concentrations were measured. A budget calculation of {sup 137}Cs in the wetland area was conducted, indicating that the accumulation of {sup 137}Cs is still ongoing seventeen years after the accident. High activity concentrations are likely to remain in this ecosystem for a long time, resulting in long-term exposure for organisms living there. The maximum external {sup 137}Cs dose rate to frogs was estimated to 96 mGy/year. Hence, identification and consideration of wetlands that accumulate radionuclides to a high extent are important in radioecological risk assessments for the protection of plants and animals from ionizing radiation. (author)

  2. Ecological outcomes and evaluation of success in passively restored southeastern depressional wetlands.

    Energy Technology Data Exchange (ETDEWEB)

    De Steven, Diane; Sharitz, Rebecca R.; Barton, Christopher, D.

    2010-11-01

    Abstract: Depressional wetlands may be restored passively by disrupting prior drainage to recover original hydrology and relying on natural revegetation. Restored hydrology selects for wetland vegetation; however, depression geomorphology constrains the achievable hydroperiod, and plant communities are influenced by hydroperiod and available species pools. Such constraints can complicate assessments of restoration success. Sixteen drained depressions in South Carolina, USA, were restored experimentally by forest clearing and ditch plugging for potential crediting to a mitigation bank. Depressions were assigned to alternate revegetation methods representing desired targets of herbaceous and wet-forest communities. After five years, restoration progress and revegetation methods were evaluated. Restored hydroperiods differed among wetlands, but all sites developed diverse vegetation of native wetland species. Vegetation traits were influenced by hydroperiod and the effects of early drought, rather than by revegetation method. For mitigation banking, individual wetlands were assessed for improvement from pre-restoration condition and similarity to assigned reference type. Most wetlands met goals to increase hydroperiod, herb-species dominance, and wetland-plant composition. Fewer wetlands achieved equivalence to reference types because some vegetation targets were incompatible with depression hydroperiods and improbable without intensive management. The results illustrated a paradox in judging success when vegetation goals may be unsuited to system constraints.

  3. DETERMINATION OF THE PRESENT VEGETATION STATE OF A WETLAND WITH UAV RGB IMAGERY

    Directory of Open Access Journals (Sweden)

    M. A. Boon

    2017-11-01

    Full Text Available The compositional and structural characteristics of wetland vegetation play a vital role in the services that a wetland supplies. Apart from being important habitats, wetland vegetation also provide services such as flood attenuation and nutrient retention. South Africa is known to be a water scarce country. The protection and continuous monitoring of wetland ecosystems is therefore important. Factors such as site transformation and disturbance may completely change the vegetation of a wetland and the use of Unmanned Aerial Vehicle (UAV imagery can play a valuable role in high-resolution monitoring and mapping. This study assessed if the use of UAV RGB imagery can enhance the determination of the present vegetation state of a wetland. The WET-Health level two (detailed on-site evaluation methodology was followed for the vegetation assessment, where wetland health is a measure of the deviation of a wetland’s structure and function from its natural reference condition. The mapping of the disturbances classes was then undertaken using ultra-high resolution orthophotos, point clouds and digital surface models (DSM. The WET-Health vegetation module completed with the aid of the UAV products still indicates that the vegetation of the wetland is largely modified (“D” PES Category and that the vegetation of the wetland will further deteriorate (change score. These results are the same as determined in the baseline study. However a higher impact (activities taking place within the wetland score were determined. The assessment of various WET-Health vegetation indicators were significantly enhanced using the UAV imagery and derived products. The UAV products provided an accurate vantage point over the wetland and surroundings, and assisted to easily refine the assessment of the disturbance classes and disturbance units.

  4. A multi-criteria, ecosystem-service value method used to assess catchment suitability for potential wetland reconstruction in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Turner, Katrine Grace; Bøcher, Peder Klith

    2017-01-01

    Wetlands provide a range of ecosystem services such as drought resistance, flood resistance, nutrient deposition, biodiversity, etc. This study presents a new multi-criteria, ecosystems service value-driven method to drive the optimal placement of restored wetlands in terms of maximizing selected...... for potential wetland reconstruction (i.e. restoration)? Five key ecosystem services indicators produced or affected by wetlands in Denmark were mapped (recreational potential, biodiversity, nitrogen mitigation potential, inverse land rent, and flash-flood risk). These services were compared to current...... ecosystem services which a wetland can provide or affect. We aim to answer two questions: 1) which of the ecosystem services indicators defines the placement of wetlands today? 2) Based on the ecosystem services indicator assessment, what are the recommendations for future selection of catchments...

  5. Water quality assessment and analysis for rehabilitate and management of wetlands: a case study in Nanhai wetland of Baotou, China

    Directory of Open Access Journals (Sweden)

    Gao Jing tian

    2016-01-01

    Full Text Available Wetland plays an irreplaceable role in many aspects and waters are important part of wetland, the water quality can easily reflect the situation of Wetland. In this study, water quality was assessed on the basis of 5 parameters (DO, NH4+-N, TN, TP and CODcr that were monitored monthly at 5 sites (N1,N2,N3,N4 and N5from April, 2014 to March, 2015 of the Nanhai Lake in Baotou, China by water pollution index method and comprehensive water quality identification index method. The twelve monitoring months were divided into wet season (Mar., Aug. and Sep., normal season (Jan., Feb., Apr., Nov. and Dec. and dry season (May., Jun. and Jul.. The assessment results determined using the water pollution index method showed that the water quality of all the five monitoring sites were inferior Ⅴ, the main contamination was COD. The comprehensive water quality identification index showed that the water quality of the Nanhai Lake were classesⅤ, except for the N2 in wet season and dry season, the N1 in dry season and the N5 in normal season, which were classes inferiorⅤ. All the five monitoring sites don’t achieving the desired water quality standard. According to the analysis, domestic discharge, industrial activities and developed recreation were major threats to water quality of Nanhai Lake.

  6. Diverse characteristics of wetlands restored under the Wetlands Reserve Program in the Southeastern United States

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2012-01-01

    The Wetlands Reserve Program (WRP) restores converted or degraded wetlands on private working lands; however, the nature and outcomes of such efforts are undocumented in the Southeastern U.S. Identification of wetland types is needed to assess the program's conservation benefits, because ecological functions differ with hydrogeomorphic (HGM) type. We reviewed...

  7. Effects of sediment removal on vegetation communities in Rainwater Basin playa wetlands.

    Science.gov (United States)

    Beas, Benjamin J; Smith, Loren M; LaGrange, Theodore G; Stutheit, Randy

    2013-10-15

    Sedimentation from cultivated agricultural land use has altered the natural hydrologic regimes of depressional wetlands in the Great Plains. These alterations can negatively affect native wetland plant communities. Our objective was to determine if restored wetlands are developing plant communities similar to reference wetland conditions following hydrologic restoration. For this study, hydrology was restored via sediment removal. Thirty-four playa wetlands in reference, restored, and agricultural condition within the Rainwater Basin Region of Nebraska were sampled in 2008 and 2009. In 2008, reference and restored wetlands had higher species richness and more native, annual, and perennial species than agricultural wetlands. Restored wetlands had similar exotic species richness compared to reference and agricultural wetlands; however, reference wetlands contained more than agricultural wetlands. Restored wetlands proportion of exotics was 3.5 and 2 times less than agricultural wetlands and reference wetlands respectively. In 2009, reference and restored wetlands had higher species richness, more perennial species, and more native species than agricultural wetlands. Restored wetlands contained a greater number and proportion of annuals than reference and agricultural wetlands. Canonical Correspondence Analysis showed that reference, restored, and agricultural wetlands are dominated by different plant species and guilds. Restored wetland plant communities do not appear to be acting as intermediates between reference and agricultural wetland conditions or on a trajectory to reach reference conditions. This may be attributed to differing seed bank communities between reference and restored wetlands, dispersal limitations of perennial plant guilds associated with reference wetland conditions, and/or management activities may be preventing restored wetlands from reaching reference status. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mine-associated wetlands as avian habitat

    International Nuclear Information System (INIS)

    Horstman, A.J.; Nawrot, J.R.; Woolf, A.

    1998-01-01

    Surveys for interior wetland birds at mine-associated emergent wetlands on coal surface mines in southern Illinois detected one state threatened and two state endangered species. Breeding by least bittern (Ixobrychus exilis) and common moorhen (Gallinula chloropus) was confirmed. Regional assessment of potential wetland bird habitat south of Illinois Interstate 64 identified a total of 8,109 ha of emergent stable water wetlands; 10% were associated with mining. Mine-associated wetlands with persistent hydrology and large expanses of emergent vegetation provide habitat that could potentially compensate for loss of natural wetlands in Illinois

  9. Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators.

    Science.gov (United States)

    Kahl, Stefanie; Nivala, Jaime; van Afferden, Manfred; Müller, Roland A; Reemtsma, Thorsten

    2017-11-15

    Six pilot-scale subsurface flow treatment wetlands loaded with primary treated municipal wastewater were monitored over one year for classical wastewater parameters and a set of emerging organic compounds (EOCs) serving as process indicators for biodegradation: caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine. The wetland technologies investigated included conventional horizontal flow, unsaturated vertical flow (single and two-stage), horizontal flow with aeration, vertical flow with aeration, and reciprocating. Treatment efficiency for classical wastewater parameters and EOCs generally increased with increasing design complexity and dissolved oxygen concentrations. The two aerated wetlands and the two-stage vertical flow system showed the highest EOC removal, and the best performance in warm season and most robust performance in the cold season. These three systems performed better than the adjacent conventional WWTP with respect to EOC removal. Acesulfame was observed to be removed (>90%) by intensified wetland systems and with use of a tertiary treatment sand filter during the warm season. Elevated temperature and high oxygen content (aerobic conditions) proved beneficial for EOC removal. For EOCs of moderate to low biodegradability, the co-occurrence of aerobic conditions and low content of readily available carbon appears essential for efficient removal. Such conditions occurred in the aerated systems and with use of a tertiary treatment sand filter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Using compound-specific isotope analysis to assess the degradation of chloroacetanilide herbicides in lab-scale wetlands.

    Science.gov (United States)

    Elsayed, O F; Maillard, E; Vuilleumier, S; Nijenhuis, I; Richnow, H H; Imfeld, G

    2014-03-01

    Compound-specific isotope analysis (CSIA) is a promising tool to study the environmental fate of a wide range of contaminants including pesticides. In this study, a novel CSIA method was developed to analyse the stable carbon isotope signatures of widely used chloroacetanilide herbicides. The developed method was applied in combination with herbicide concentration and hydrochemical analyses to investigate in situ biodegradation of metolachlor, acetochlor and alachlor during their transport in lab-scale wetlands. Two distinct redox zones were identified in the wetlands. Oxic conditions prevailed close to the inlet of the four wetlands (oxygen concentration of 212±24μM), and anoxic conditions (oxygen concentrations of 28±41μM) prevailed towards the outlet, where dissipation of herbicides mainly occurred. Removal of acetochlor and alachlor from inlet to outlet of wetlands was 56% and 51%, whereas metolachlor was more persistent (23% of load dissipation). CSIA of chloroacetanilides at the inlet and outlet of the wetlands revealed carbon isotope fractionation of alachlor (εbulk=-2.0±0.3‰) and acetochlor (εbulk=-3.4±0.5‰), indicating that biodegradation contributes to the dissipation of both herbicides. This study is a first step towards the application of CSIA to evaluate the transport and degradation of chloroacetanilide herbicides in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Hydrological modeling of the pipestone creek watershed using the Soil Water Assessment Tool (SWAT: Assessing impacts of wetland drainage on hydrology

    Directory of Open Access Journals (Sweden)

    Cesar Perez-Valdivia

    2017-12-01

    Full Text Available Study region: Prairie Pothole Region of North America. Study focus: The Prairie Pothole Region of North America has experienced extensive wetland drainage, potentially impacting peak flows and annual flow volumes. Some of this drainage has occurred in closed basins, possibly impacting lake water levels of these systems. In this study we investigated the potential impact of wetland drainage on peak flows and annual volumes in a 2242 km2 watershed located in southeastern Saskatchewan (Canada using the Soil Water Assessment Tool (SWAT model. New hydrological insights: The SWAT model, which had been calibrated and validated at daily and monthly time steps for the 1997–2009 period, was used to assess the impact of wetland drainage using three hypothetical scenarios that drained 15, 30, and 50% of the non-contributing drainage area. Results of these simulations suggested that drainage increased spring peak flows by about 50, 79 and 113%, respectively while annual flow volumes increased by about 43, 68, and 98% in each scenario. Years that were wetter than normal presented increased peak flows and annual flow volumes below the average of the simulated period. Alternatively, summer peak flows presented smaller increases in terms of percentages during the simulated period. Keywords: Soil Water Assessment Tool (SWAT, Wetland drainage, Peak flow, Annual volume, Prairie Pothole Region

  12. Carbon Storage in US Wetlands. | Science Inventory | US EPA

    Science.gov (United States)

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. We provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales and describe how soil carbon stocks vary by anthropogenic disturbance to the wetland. To estimate the quantity and distribution of carbon stocks in wetlands of the conterminous US, we used data gathered in the field as part of the 2011 National Wetland Condition Assessment (NWCA) conducted by USEPA. During the growing season, field crews collected soil samples by horizon from 120-cm deep soil pits at 967 randomly selected wetland sites. Soil samples were analyzed for bulk density and organic carbon. We applied site carbon stock averages by soil depth back to the national population of wetlands and to several subpopulations, including five geographic areas and anthropogenic disturbance level. Disturbance levels were categorized by the NWCA as least, intermediately, or most disturbed using a priori defined physical, chemical, and biological indicators that were observable at the time of the site visit.Results/Conclusions We find that wetlands in the conterminous US store a total of 11.52 PgC – roughly equivalent to four years of annual carbon emissions by the US, with the greatest soil ca

  13. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland

    International Nuclear Information System (INIS)

    Braeckevelt, Mareike; Rokadia, Hemal; Imfeld, Gwenael; Stelzer, Nicole; Paschke, Heidrun; Kuschk, Peter; Kaestner, Matthias; Richnow, Hans-H.; Weber, Stefanie

    2007-01-01

    The degradation of monochlorobenzene (MCB) was assessed in a constructed wetland treating MCB contaminated groundwater using a detailed geochemical characterisation, stable isotope composition analysis and in situ microcosm experiments. A correlation between ferrous iron mobilisation, decreasing MCB concentration and enrichment in carbon isotope composition was visible at increasing distance from the inflow point, indicating biodegradation of MCB in the wetland. Additionally, in situ microcosm systems loaded with 13 C-labelled MCB were deployed for the first time in sediments to investigate the biotransformation of MCB. Incorporation of 13 C-labelled carbon derived from the MCB into bacterial fatty acids substantiated in situ degradation of MCB. The detection of 13 C-labelled benzene indicated reductive dehalogenation of MCB. This integrated approach indicated the natural attenuation of the MCB in a wetland system. Further investigations are required to document and optimise the in situ biodegradation of MCB in constructed and natural wetland systems treating contaminated groundwater. - An integrated approach including isotope composition analysis and in situ microcosm experiments provided evidences for in situ biodegradation of MCB in a wetland system

  14. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Braeckevelt, Mareike [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Rokadia, Hemal [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Imfeld, Gwenael [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany)]. E-mail: gwenael.imfeld@ufz.de; Stelzer, Nicole [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Paschke, Heidrun [Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Kuschk, Peter [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Kaestner, Matthias [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Richnow, Hans-H. [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Weber, Stefanie [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany)

    2007-07-15

    The degradation of monochlorobenzene (MCB) was assessed in a constructed wetland treating MCB contaminated groundwater using a detailed geochemical characterisation, stable isotope composition analysis and in situ microcosm experiments. A correlation between ferrous iron mobilisation, decreasing MCB concentration and enrichment in carbon isotope composition was visible at increasing distance from the inflow point, indicating biodegradation of MCB in the wetland. Additionally, in situ microcosm systems loaded with {sup 13}C-labelled MCB were deployed for the first time in sediments to investigate the biotransformation of MCB. Incorporation of {sup 13}C-labelled carbon derived from the MCB into bacterial fatty acids substantiated in situ degradation of MCB. The detection of {sup 13}C-labelled benzene indicated reductive dehalogenation of MCB. This integrated approach indicated the natural attenuation of the MCB in a wetland system. Further investigations are required to document and optimise the in situ biodegradation of MCB in constructed and natural wetland systems treating contaminated groundwater. - An integrated approach including isotope composition analysis and in situ microcosm experiments provided evidences for in situ biodegradation of MCB in a wetland system.

  15. Assessment of Wetland Valuation Processes for Compensation in ...

    African Journals Online (AJOL)

    The issue of compensation has been debated in various fora; however compensation on wetland resources has not been given the primary place. Wetland valuation like any other type of valuation requires going through stages, which may be more complex than real estate valuation for compensation. This study therefore ...

  16. Eten's Coastal Wetland, its geomorphology, water quality and biodiversity

    Science.gov (United States)

    Rojas Carbajal, T. V.; Bartl, K.; Loayza Muro, R.; Abad, J. D.

    2017-12-01

    The Eten's wetland is located in the lower part of the Chancay-Lambayeque River basin at the Peruvian coast. This wetland contains salt and fresh marshes, swamps, lagoons and an estuary which is the result of Reque River's morphodynamics. It provides a great source of totora (Schoenoplectus californicus), a native plant that is used for knitting hats which are an ancient cultural expression in Lambayeque. UNESCO recognized this wetland as one of the ecosystems with the greatest biodiversity along the South Pacific Coast, providing a unique habitat for migratory birds, such as the Peruvian Tern (Sternula lorata). This bird has been classified as endangered in 2005, by the International Union for Conservation of Nature (IUCN). When the area of a wetland is reduced, the resting point function is affected leading to loss in biodiversity due to the habitat conditions are not the same. In 2005, Lambayeque's government established an area of 1377 Ha in order to preserve wetland's ecosystem and Eten's archeological value but wet areas were reduced to 200 Ha. This reduction was promoted by agriculture, urbanization and an inadequate urban waste disposal. The scope of the study is to assess the environmental impacts that affect Eten's wetland. Preliminary results of an assessment with remote sensing indicate that: 1) the Reque River's geomorphic activity was reduced by urbanization, thus, the connection between surface water bodies has been lost, leading the drying out of ponds, 2) the conversion of wet areas to agricultural land, and 3) the natural interaction between the Reque River and the Pacific Ocean was modified due to water control upstream, resulting in a dryer wetland during the last years. Furthermore, the aquatic biodiversity of the wetland was assessed through a biomonitoring method in order to study the impact of water contamination. Four benthic macroinvertebrate Families (Hydrophilidae, Baetidae, Planorbidae and Palaemonidae) were found. The quality of the

  17. Fish as bioindicators in aquatic environmental pollution assessment: A case study in Lake Victoria wetlands, Uganda

    Science.gov (United States)

    Naigaga, I.; Kaiser, H.; Muller, W. J.; Ojok, L.; Mbabazi, D.; Magezi, G.; Muhumuza, E.

    Growing human population and industrialization have led to the pollution of most aquatic ecosystems and consequent deterioration in environmental water quality. Indicator organisms are needed to improve assessment programmes on the ecological impacts of anthropogenic activities on the aquatic environment. Fish have been widely documented as useful indicators of environmental water quality because of their differential sensitivity to pollution. This study investigated the environmental water quality of selected wetland ecosystems using fish as biological indicators. Fish community structure in relation to water quality was assessed in five wetlands along the shoreline of Lake Victoria from August 2006 to June 2008. Four urban wetlands were variedly impacted by anthropogenic activities while one rural wetland was less impacted, and served as a reference site. Fish species diversity, abundance and richness were assessed, and canonical correspondence analysis (CCA) was used to evaluate the relationship between the fish communities and environmental variables. Results revealed that urban effluent impacted negatively on water quality and consequently the fish community structure. A total of 29 fish species were recorded throughout the study with the lowest number of 15 species recorded in the most impacted site. Shannon diversity and Margalef species richness indices were highest at the references site and lowest at the most impacted site. Wetland haplochromis species dominated the reference site, while oreochromis species dominated the most impacted site. The inshore locations registered higher species diversity and low species richness than the offshore locations. Low dissolved oxygen, pH, secchi depth and high electrical conductivity, total phosphorous, and total nitrogen were strongly associated with the effluent-impacted sites and greatly influenced the fish community structure. This study recommends the use of fish as valuable biological indicators in aquatic

  18. Reduction of neonicotinoid insecticide residues in Prairie wetlands by common wetland plants.

    Science.gov (United States)

    Main, Anson R; Fehr, Jessica; Liber, Karsten; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2017-02-01

    Neonicotinoid insecticides are frequently detected in wetlands during the early to mid-growing period of the Canadian Prairie cropping season. These detections also overlap with the growth of macrophytes that commonly surround agricultural wetlands which we hypothesized may reduce neonicotinoid transport and retention in wetlands. We sampled 20 agricultural wetlands and 11 macrophyte species in central Saskatchewan, Canada, over eight weeks to investigate whether macrophytes were capable of reducing movement of neonicotinoids from cultivated fields and/or reducing concentrations in surface water by accumulating insecticide residues into their tissues. Study wetlands were surrounded by clothianidin-treated canola and selected based on the presence (n=10) or absence (n=10) of a zonal plant community. Neonicotinoids were positively detected in 43% of wetland plants, and quantified in 8% of all plant tissues sampled. Three plant species showed high rates of detection: 78% Equisetum arvense (clothianidin, range: wetlands had higher detection frequency and water concentrations of clothianidin (β±S.E.: -0.77±0.26, P=0.003) and thiamethoxam (β±S.E.: -0.69±0.35, P=0.049) than vegetated wetlands. We assessed the importance of wetland characteristics (e.g. vegetative zone width, emergent plant height, water depth) on neonicotinoid concentrations in Prairie wetlands over time using linear mixed-effects models. Clothianidin concentrations were significantly lower in wetlands surrounded by taller plants (β±S.E.: -0.57±0.12, P≤0.001). The results of this study suggest that macrophytes can play an important role in mitigating water contamination by accumulating neonicotinoids and possibly slowing transport to wetlands during the growing season. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Spatial assessment of water use in an environmentally sensitive wetland.

    Science.gov (United States)

    Khan, Shahbaz; Hafeez, Mohsin; Abbas, Akhtar; Ahmad, Aftab

    2009-05-01

    system, there is a need to upgrade measuring and reporting infrastructure by strengthening the institutional and management arrangements to better gauge the efficiency of environmental and consumptive water use. The state-of-the-art technology of remote sensing-based SEBAL modeling proved to have potential for measuring actual water use with reliable accuracy and can be used for assessing the environmental and productive use of water from wetlands in other regions of Australia.

  20. Inclusion of Riparian Wetland Module (RWM) into the SWAT model for assessment of wetland hydrological benefit

    Science.gov (United States)

    Wetlands are an integral part of many agricultural watersheds. They provide multiple ecosystem functions, such as improving water quality, mitigating flooding, and serving as natural habitats. Those functions are highly depended on wetland hydrological characteristics and their connectivity to the d...

  1. Using Remote Sensing to Evaluate Wetland Recovery in the Northern Tampa Bay Area Following Reduction in Groundwater Withdrawals

    Science.gov (United States)

    Elder, Amor

    In the past, the Northern Tampa Bay Area (NTBA) wetlands saw severe declines in hydrologic conditions due to excessive groundwater withdrawal rates. Eventually these rates were reduced to allow the wetlands to recover. To monitor this recovery, the Southwest Florida Water Management district (SWFWMD) set up a fieldwork based scoring methodology, called the Wetlands Assessment Procedure (WAP). WAP has been used in many studies of the area since groundwater withdrawal reductions; with many of those studies finding the recovery to be mixed at best. However, these studies were very limited in the number of wetlands they could assess due to the limitations of fieldwork. Therefore, it was proposed that remotely sensed variables associated with water consumption and stress be used to assess the recovery of the NTBA wetlands, as remote sensing allows for efficient assessments of targets over large area. Utilizing ASTER imagery scenes from 2005 and 2014, 211 wetlands' remotely sensed responses of NDVI, Land Surface Temperature (LST), and Evapotranspiration (ET) were mapped and statistically examined for trends indicating improvement or decline. Furthermore, a subset of WAP scores for the two years were examined and compared to the remotely sensed values. The results were contradictory, with remotely sensed responses showing an improvement over the time period, WAP scores indicating a decline in hydrologic conditions, and the two methods showing little to no fit when modeled against each other. As such, it is believed at this time that the remotely sensed method is not suitable for measuring the indicators of wetland recovery used in the WAP methodology.

  2. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    Science.gov (United States)

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Wetland assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Portsmouth, Ohio, site

    International Nuclear Information System (INIS)

    Van Lonkhuyzen, R.

    2005-01-01

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF 6 ) Management Program evaluated alternatives for managing its inventory of DUF 6 and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF 6 PEIS) in April 1999 (DOE 1999). The DUF 6 inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF 6 PEIS, DOE stated its decision to promptly convert the DUF 6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF 6 conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF 6 cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the

  4. Biotic development comparisons of a wetland constructed to treat mine water drainage with a natural wetland system

    International Nuclear Information System (INIS)

    Webster, H.J.; Hummer, J.W.; Lacki, M.J.

    1994-01-01

    Using 5-yr of baseline data from a constructed wetland, the authors compared the biotic changes in this wetland to conditions in a natural wetland to determine if biotic development patterns were similar. The constructed wetland was built in 1985 to treat a coal mine discharge and was planted with broadleaf cattail (Typha latifolia) within the three-cell, 0.26 ha wetland. Species richness in permanent quadrants of the constructed wetland declined over the study period, while cattail coverage increased. Plant species composition diversified at the edges, with several species becoming established. The constructed wetland deepened and expanded slightly in area coverage during the study period. The constructed wetland supported herptofaunal communities that appeared more stable through time than those of the natural wetland and sustained a rudimentary food chain dependent upon autotrophic algal populations. Despite fundamental differences in substrate base, morphology, and water flow patterns, biotic trends for the constructed wetland coincided with succession-like patterns at the natural wetland. They suggest that further shifts in the biotic composition of the constructed wetland are likely, but the system should continue to persist if primary production meets or exceeds the microbial metabolic requirements necessary to treat mine drainage

  5. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    Science.gov (United States)

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Is wetland mitigation successful in Southern California?

    Science.gov (United States)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  7. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    Science.gov (United States)

    Miller, R.L.; Fujii, R.

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.

  8. Historical wetlands mapping and GIS processing for the Savannah River Site Database

    International Nuclear Information System (INIS)

    Christel, L.M.

    1994-08-01

    New policies regarding the open-quotes no net lossclose quotes of wetlands have presented resource managers and GIS analysts with a challenging ecological application. Historical aerial photography provides a temporal record of conditions over time, beneficial when appraising wetland gain and loss because man-made disturbances can have both short and long term effects on wetland communities. This is particularly true when assessing existing communities for restoration and reclamation of the ecologic structure and function of the community prior to a disturbance. Remediation efforts can be optimized when definitive documentation exists of the original communities. The Geographic Information System (GIS) is a powerful tool for integrating these data sets and performing spatial and temporal analyses in support of ecological applications. On the Savannah River Site (SRS) temporal analysis of multispectral scanner data has shown where wetlands were impacted by reactor operation, such as thermal discharge into creeks and swamps, and where wetlands were removed due to the construction of facilities. The GIS database was used to determine how the distribution and composition of wetland classes have changed over time. Historic black and white aerial photography of SRS as well as color infrared aerial photography as recent as 1989was used to develop a more current land cover database. Six wetland classes were photointerpreted. The historical data layer was then used in spatial analyses to aid in deriving potential viable and cost effective management technique alternatives for remediation of wetlands influenced by past reactor operations and has provided acreage estimates of wetlands lost. Acreage values can be used to estimate the potential costs of wetland remediation. This application of temporal analysis using a GIS demonstrates the utility of documenting prior conditions before remediation actually commences and how to maximize cost effective remediation efforts

  9. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year

  10. Atrazine remediation in wetland microcosms.

    Science.gov (United States)

    Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J

    2001-05-01

    Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.

  11. Wetlands and infectious diseases

    Directory of Open Access Journals (Sweden)

    Robert H. Zimmerman

    2001-01-01

    Full Text Available There is a historical association between wetlands and infectious disease that has led to the modification of wetlands to prevent disease. At the same time there has been the development of water resources projects that increase the risk of disease. The demand for more water development projects and the increased pressure to make natural wetlands economically beneficial creates the need for an ecological approach to wetland management and health assessment. The environmental and health interactions are many. There is a need to take into account the landscape, spatial boundaries, and cross-boundary interactions in water development projects as well as alternative methods to provide water for human needs. The research challenges that need to be addressed are discussed.

  12. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Emily Majcher,; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2015-01-01

    Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and

  13. Treatment Wetlands

    OpenAIRE

    Dotro, Gabriela; Langergraber, Günter; Molle, Pascal; Nivala, Jaime; Puigagut, Jaume; Stein, Otto; Von Sperling, Marcos

    2017-01-01

    Overview of Treatment Wetlands; Fundamentals of Treatment Wetlands; Horizontal Flow Wetlands; Vertical Flow Wetlands; French Vertical Flow Wetlands; Intensified and Modified Wetlands; Free Water Surface Wetlands; Other Applications; Additional Aspects.

  14. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Flats Wetlands in the Everglades

    National Research Council Canada - National Science Library

    Noble, Chris

    2002-01-01

    .... However, a variety of other potential uses have been identified, including the determination of minimal effects under the Food Security Act, design of wetland restoration projects, and management of wetlands...

  15. Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.

    1996-01-01

    We evaluated water-level fluctuation (maximum water depth - minimum water depth/catchment size) in 12 temporary, 12 seasonal, and 12 semipermanent wetlands equally distributed among landscapes dominated by tilled agricultural lands and landscapes dominated by grassland. Water levels fluctuated an average of 14.14 cm in wetlands within tilled agricultural landscapes, while water levels in wetlands within grassland landscapes fluctuated an average of only 4.27 cm. Tillage reduces the natural capacity of catch meets to mitigate surface flow into wetland basins during precipitation events, resulting in greater water-level fluctuations in wetlands with tilled catchments. In addition, water levels in temporary and seasonal wetlands fluctuated an average of 13.74 cm and 11.82 cm, respectively, while water levels in semipermanent wetlands fluctuated only 2.77 cm. Semipermanent wetlands receive a larger proportion of their water as input from ground water than do either temporary or seasonal wetlands. This input of water from the ground has a stabilizing effect on water-levels of semipermanent wetlands. Increases in water-level fluctuation due to tillage or due to alteration of ground-water hydrology may ultimately affect the composition of a wetland's flora and fauna. In this paper, we also describe an inexpensive device for determining absolute maximum and minimum water levels in wetlands.

  16. Biological Responses of the American Coot (Fulica americana), in wetlands with contrasting environmental conditions (Basin of México).

    Science.gov (United States)

    López-Islas, María Eugenia; Ibarra-Meza, Itzel; Ortiz-Ordóñez, Esperanza; Favari, Liliana; Elías Sedeño-Díaz, J; López-López, Eugenia

    2017-01-01

    Wetland ecosystems are subject to severe impacts (physical and chemical) and to the input of various xenobiotics that provoke toxicological consequences. Waterbirds are potential sentinel species of these environments. To analyze how habitat conditions affect the health of Fulica americana, early-warning biomarkers, histopathology, somatic indices, and water quality were examined in two wetlands of the Basin of Mexico: Xochimilco, an urban wetland highly eutrophic with a mixture of pollutants, and Tecocomulco (the reference site), a rural wetland with hunting migratory birds in winter, and with some agricultural contaminants. Coots were collected over 1 year, and the birds were aged, eviscerated, and weighed. Liver samples were analyzed biochemically and histologically. Biomarkers revealed that coots displayed higher lipid peroxidation and elevated activities of gamma-glutamyl transferase and alanine aminotransferase, suggesting hepatic damage during autumn and winter. In Tecocomulco, coots during winter has the highest thiobarbituric acid reactive substances (as a measure of oxidative stress), which may be associated with the presence of predators. In Tecocomulco, the higher gonadosomatic index was detected in spring and summer, while in Xochimilco it was elevated in summer, indicating a delayed egg laying and reproduction in coots from the latter study site. In both wetlands, leukocyte infiltration, alone or combined with vasocongestion, reflected alterations in the inflammatory processes in liver throughout the annual cycle and thus potentially altered hepatic function and organism survival. In both wetlands, coots were permanent residents and chronically exposed to different stressors, suggesting damage may be irreversible with potentially adversely reproductive consequences.

  17. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Science.gov (United States)

    Bird, Matthew S; Day, Jenny A

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  18. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Directory of Open Access Journals (Sweden)

    Matthew S Bird

    Full Text Available Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m; although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%, relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%. The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  19. Assessment of Wetland Hydrological Dynamics in a Modified Catchment Basin: Case of Lake Buninjon, Victoria, Australia.

    Science.gov (United States)

    Yihdego, Yohannes; Webb, John A

    2017-02-01

      The common method to estimate lake levels is the water balance equation, where water input and output result in lake storage and water level changes. However, all water balance components cannot always be quickly assessed, such as due to significant modification of the catchment area. A method that assesses general changes in lake level can be a useful tool in examining why lakes have different lake level variation patterns. Assessment of wetlands using the dynamics of the historical hydrological and hydrogeological data set can provide important insights into variations in wetland levels in different parts of the world. A case study from a saline landscape, Lake Buninjon, Australia, is presented. The aim of the present study was to determine how climate, river regime, and lake hydrological properties independently influence lake water levels and salinity, leaving the discrepancy, for the effect of the non-climatic/catchment modification in the past and the model shows that surface inflow is most sensitive variable. The method, together with the analysis and interpretation, might be of interest to wider community to assess its response to natural/anthropogenic stress and decision choices for its ecological, social, scientific value, and mitigation measures to safe guard the wetland biodiversity in a catchment basin.

  20. Development of soil properties and nitrogen cycling in created wetlands

    Science.gov (United States)

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Mitigation wetlands are expected to compensate for the loss of structure and function of natural wetlands within 5–10 years of creation; however, the age-based trajectory of development in wetlands is unclear. This study investigates the development of coupled structural (soil properties) and functional (nitrogen cycling) attributes of created non-tidal freshwater wetlands of varying ages and natural reference wetlands to determine if created wetlands attain the water quality ecosystem service of nitrogen (N) cycling over time. Soil condition component and its constituents, gravimetric soil moisture, total organic carbon, and total N, generally increased and bulk density decreased with age of the created wetland. Nitrogen flux rates demonstrated age-related patterns, with younger created wetlands having lower rates of ammonification, nitrification, nitrogen mineralization, and denitrification potential than older created wetlands and natural reference wetlands. Results show a clear age-related trajectory in coupled soil condition and N cycle development, which is essential for water quality improvement. These findings can be used to enhance N processing in created wetlands and inform the regulatory evaluation of mitigation wetlands by identifying structural indicators of N processing performance.

  1. Stochastic modeling of wetland-groundwater systems

    Science.gov (United States)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  2. Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management

    Science.gov (United States)

    Czuba, Jonathan A.; Hansen, Amy T.; Foufoula-Georgiou, Efi; Finlay, Jacques C.

    2018-02-01

    Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network-based model that quantifies nitrate-nitrogen and organic carbon concentrations through a wetland-river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data-rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013-2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed-scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.

  3. Assessment of the ecological potential of mine-water treatment wetlands using a baseline survey of macroinvertebrate communities

    International Nuclear Information System (INIS)

    Batty, L.C.; Atkin, L.; Manning, D.A.C.

    2005-01-01

    A baseline survey of macroinvertebrate populations in two mine-water treatment wetlands, one treating a net acidic spoil heap discharge and one a net alkaline ferruginous pumped mine water, was undertaken to assess the potential of these systems to provide habitats for faunal communities. Both wetlands were found to be impoverished in comparison to natural wetlands but did sustain a macroinvertebrate community that could support higher organisms. Wetland size and water quality in terms of pH, conductivity and metal concentrations were found to be important factors in determining the quality of the populations supported. Direct toxicity to organisms was unlikely to be the main cause of lower diversity, but the smothering of organisms via the precipitation of iron hydroxides particularly in the early parts of the treatment systems affected macroinvertebrate communities. The presence of areas of open water within the planted systems was found to be important for providing habitats for macroinvertebrates and this should be both a future design and maintenance consideration for environmental managers. - Mine-water treatment wetlands can be engineered to provide habitats for ecological communities

  4. Soil Oxidation-Reduction in Wetlands and Its Impact on Plant Functioning

    Science.gov (United States)

    Pezeshki, S. R.; DeLaune, R. D.

    2012-01-01

    Soil flooding in wetlands is accompanied by changes in soil physical and chemical characteristics. These changes include the lowering of soil redox potential (Eh) leading to increasing demand for oxygen within the soil profile as well as production of soil phytotoxins that are by-products of soil reduction and thus, imposing potentially severe stress on plant roots. Various methods are utilized for quantifying plant responses to reducing soil conditions that include measurement of radial oxygen transport, plant enzymatic responses, and assessment of anatomical/morphological changes. However, the chemical properties and reducing nature of soil environment in which plant roots are grown, including oxygen demand, and other associated processes that occur in wetland soils, pose a challenge to evaluation and comparison of plant responses that are reported in the literature. This review emphasizes soil-plant interactions in wetlands, drawing attention to the importance of quantifying the intensity and capacity of soil reduction for proper evaluation of wetland plant responses, particularly at the process and whole-plant levels. Furthermore, while root oxygen-deficiency may partially account for plant stress responses, the importance of soil phytotoxins, produced as by-products of low soil Eh conditions, is discussed and the need for development of methods to allow differentiation of plant responses to reduced or anaerobic soil conditions vs. soil phytotoxins is emphasized. PMID:24832223

  5. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  6. Utilizing GNSS Reflectometry to Assess Surface Inundation Dynamics in Tropical Wetlands

    Science.gov (United States)

    Jensen, K.; McDonald, K. C.; Podest, E.; Chew, C. C.

    2017-12-01

    Tropical wetlands play a significant role in global atmospheric methane and terrestrial water storage. Despite the growing number of remote sensing products from satellite sensors, both spatial distribution and temporal variability of wetlands remain highly uncertain. An emerging innovative approach to mapping wetlands is offered by GNSS reflectometry (GNSS-R), a bistatic radar concept that takes advantage of GNSS transmitting satellites to yield observations with global coverage and rapid revisit time. This technology offers the potential to capture dynamic inundation changes in wetlands at higher temporal fidelity and sensitivity under the canopy than presently possible. We present an integrative analysis of radiometric modeling, ground measurements, and several microwave remote sensing datasets traditionally used for wetland observations. From a theoretical standpoint, GNSS-R sensitivities for vegetation and wetlands are investigated with a bistatic radar model in order to understand the interactions of the signal with various land surface components. GNSS reflections from the TechDemoSat-1 (TDS-1), Soil Moisture Active Passive (SMAP), and Cyclone GNSS (CYGNSS) missions are tested experimentally with contemporaneous (1) field measurements collected from the Pacaya Samiria National Reserve in the Peruvian Amazon, (2) imaging radar from Sentinel-1 and PALSAR-2 observed over a variety of tropical wetland systems, and (3) pan-tropical coarse-resolution (25km) microwave datasets (Surface Water Microwave Product Series). We find that GNSS-R data provide the potential to extend capabilities of current remote sensing techniques to characterize surface inundation extent, and we explore how to maximize synergism between different satellite sensors to produce an enhanced wetland monitoring product.

  7. Natural wetland in China | Pan | African Journal of Environmental ...

    African Journals Online (AJOL)

    As it is known to all, wetland is one of the most crucial ecosystems in the world, with large varieties in China. How to protect wetland in China has become a more serious problem and five typical wetlands were selected in the article to illustrate the condition. Through the comparison between the past and present of wetland, ...

  8. The Mid-Atlantic Regional Wetland Conservation Effects Assessment Project

    Science.gov (United States)

    Megan Lang; Greg McCarty; Mark Walbridge; Patrick Hunt; Tom Ducey; Clinton Church; Jarrod Miller; Laurel Kluber; Ali Sadeghi; Martin Rabenhorst; Amir Sharifi; In-Young Yeo; Andrew Baldwin; Margaret Palmer; Tom Fisher; Dan Fenstermaher; Sanchul Lee; Owen McDonough; Metthea Yepsen; Liza McFarland; Anne Gustafson; Rebecca Fox; Chris Palardy; William Effland; Mari-Vaughn Johnson; Judy Denver; Scott Ator; Joseph Mitchell; Dennis Whigham

    2016-01-01

    Wetlands impart many important ecosystem services, including maintenance of water quality, regulation of the climate and hydrological flows, and enhancement of biodiversity through the provision of food and habitat. The conversion of natural lands to agriculture has led to broad scale historic wetland loss, but current US Department of Agriculture conservation programs...

  9. Mapping long-term wetland response to climate

    Science.gov (United States)

    Zhou, Q.; Gallant, A.; Rover, J.

    2016-12-01

    Wetlands provide unique feeding and breeding habitat for numerous waterfowl species. The distribution of wetlands has been considerably changed due to agricultural land conversion and hydrologic modification. Climate change may further impact wetlands through altered moisture regimes. This study characterized long-term variation in wetland conditions by using dense time series from all available Landsat data from 1985 to 2014. We extracted harmonic frequencies from 30 years to two years to delineate the long-term variation in all seven Landsat bands. A cluster analysis and unsupervised classification then enabled us to map different classes of wetland response. We demonstrated the method in the Prairie Pothole Region in North Dakota.

  10. Limnological state index (LSI) to evaluate ecological conditions of the Canal del Dique wetlands, Colombia

    International Nuclear Information System (INIS)

    Pinilla A, Gabriel A; Duarte Coy, Juliana; Vega Mora, Leonel

    2010-01-01

    Determining the ecological state or health of an ecosystem offers useful tools for its management and conservation. In Colombia, indexes of aquatic systems that combine in a single parameter the physical, chemical and biological variables have not been published, and the evaluation of water bodies' ecological state has been fragmentary or incomplete. In this work a limnological state index (LSI) for wetlands of the Canal del Dique, ecosystems under constant pressure by the human communities, is presented. For the construction of this multi-metric index, graphs of quality of the selected variables were constructed and values of importance were assigned to them. The theory of the multi-attributes was used to construct the LSI, which considers 12 variables. A principal components analysis was realized with these chosen parameters. A simplified version was designed (partial LSI - PLSI) in which four of the biological variables were excluded. Finally, an interpretation scale of the values obtained with these indices was built. The LSI and the PLSI were applied to wetlands of the Canal del Dique to establish their current ecological condition. Data show that the limnological state of most wetlands is acceptable, which suggests that these lentic ecosystems are within tolerable limits of function, although they are not exempt from deterioration processes.

  11. Book review: Southern Forested Wetlands: Ecology and Management

    Science.gov (United States)

    Carl C. Trettin

    2000-01-01

    The southern region has the largest proportion of wetlands in the conterminous US. The majority of that wetland resource is forested by diverse vegetation communities reflecting differences in soil, hydrology, geomorphology, climatic conditions and past management. Wetland resources in the southern US are very important to the economy providing both commodity and non-...

  12. Soil physicochemical conditions, denitrification rates, and nosZ abundance in North Carolina Coastal Plain restored wetlands

    Science.gov (United States)

    Ever since the United States adopted a national policy of wetland “No Net Loss”, a variety of measures have been aimed at restoring wetland biogeochemical function to former wetland areas. Nitrogen is a key element controlled by properly functioning wetlands, particularly when they are located adjac...

  13. Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan

    International Nuclear Information System (INIS)

    1995-10-01

    The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) of riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period

  14. An assessment of the impact of motorway runoff on a pond, wetland and stream

    Energy Technology Data Exchange (ETDEWEB)

    Sriyaraj, K.; Shutes, R.B.E. [Middlesex University, London (United Kingdom). Urban Pollution Research Centre

    2001-07-01

    The impact of soil filtered runoff from a section of the M25 outer London motorway (constructed in 1981) on a pond, wetland and stream in a nature reserve was investigated by monitoring water, sediment. The tissues of the emergent plants Typha latifolia and Glyceria maxima collected from the pond were analysed for the heavy metals, Cd, Pb, Cu and Zn. Macroinvertebrates were monitored in the stream and biotic indices applied to the data. The plant tissue concentrations for Typha and Glyceria show decreasing metal concentrations from root to rhizome to leaf. This trend has previously been reported for Typha exposed to runoff although the tissue concentrations are lower in this study with the exception of Cd in root tissue. The Biological Monitoring Working Party (BMWP) score and Average Score Per Taxon (ASPT) for the stream at sites above and below the pond outlet are lower than the scores recorded by the Environment Agency for England and Wales at an upstream site above the Pond/Wetland. The sites have an Overall Quality Index of 'moderate water quality', and there is no evidence of a deterioration of biologically assessed water quality between them. The results of the study show the long-term impact on sediment of filtered road runoff discharges to a natural wetland and pond located in a nature reserve. The use of natural wetlands for the discharge of road runoff is inadvisable. Constructed wetlands in combination with other structures including settlement trenches and ponds should be considered as an alternative treatment option. (Author)

  15. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    OpenAIRE

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-01-01

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health -- changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and othe...

  16. Lake Superior Coastal Wetland Fish Assemblages and ...

    Science.gov (United States)

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  17. Adaptation Tipping Points of a Wetland under a Drying Climate

    Directory of Open Access Journals (Sweden)

    Amar Nanda

    2018-02-01

    Full Text Available Wetlands experience considerable alteration to their hydrology, which typically contributes to a decline in their overall ecological integrity. Wetland management strategies aim to repair wetland hydrology and attenuate wetland loss that is associated with climate change. However, decision makers often lack the data needed to support complex social environmental systems models, making it difficult to assess the effectiveness of current or past practices. Adaptation Tipping Points (ATPs is a policy-oriented method that can be useful in these situations. Here, a modified ATP framework is presented to assess the suitability of ecosystem management when rigorous ecological data are lacking. We define the effectiveness of the wetland management strategy by its ability to maintain sustainable minimum water levels that are required to support ecological processes. These minimum water requirements are defined in water management and environmental policy of the wetland. Here, we trial the method on Forrestdale Lake, a wetland in a region experiencing a markedly drying climate. ATPs were defined by linking key ecological objectives identified by policy documents to threshold values for water depth. We then used long-term hydrologic data (1978–2012 to assess if and when thresholds were breached. We found that from the mid-1990s, declining wetland water depth breached ATPs for the majority of the wetland objectives. We conclude that the wetland management strategy has been ineffective from the mid-1990s, when the region’s climate dried markedly. The extent of legislation, policies, and management authorities across different scales and levels of governance need to be understood to adapt ecosystem management strategies. Empirical verification of the ATP assessment is required to validate the suitability of the method. However, in general we consider ATPs to be a useful desktop method to assess the suitability of management when rigorous ecological data

  18. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    Science.gov (United States)

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  19. Bacteriophage Technique for Assessing Viral Removal in Constructed Wetland and Detention Pond Systems

    Directory of Open Access Journals (Sweden)

    Z Yousefi, CM Davies, HJ Bavor

    2004-10-01

    Full Text Available Constructed wetland and detention pond as a treatment system was applied for stormwater management in two adjacent areas in western Sydney. F-specific RNA and somatic coliphages were used as a model for assessing two systems for removal of viral pollution, fate, behavior and survival of viruses in the sediment. Water samples were collected weekly in sterile containers and sediment samples were collected three times using a box dredge sampler via a boat at the inlet, middle and outlet areas of the systems. F-specific RNA coliphages were enumerated using the double layer plaque assay (ISO 1995 with Salmonella typhimurium WG49 as a host. Survival test continued 28 d for each sub-sample. Viral removal in constructed wetland was more effective than the detention pond system. Survival of somatic coliphages in the inlet and middle of the systems was similar. Slope of declining for outlet of two systems was very slow and completely stable in whole of test duration. Constructed wetland may offer an attractive alternative to stormwater management for reducing the load of disease-causing viruses to the receiving waters.

  20. 2011 Summary: Coastal wetland restoration research

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.; Carlson Mazur, Martha L.; Czayka, Alex; Dominguez, Andrea; Doty, Susan; Eggleston, Mike; Green, Sean; Sweetman, Amanda

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) projects currently taking place in Great Lakes coastal wetlands provide a unique opportunity to study ecosystem response to management actions as practitioners strive to improve wetland function and increase ecosystem services. Through a partnership between the U.S. Geological Survey – Great Lakes Science Center (GLSC), U.S. Fish and Wildlife Service (USFWS), and Ducks Unlimited, a GLRI-funded project has reestablished the hydrologic connection between an intensively managed impounded wetland (Pool 2B) and Crane Creek, a small Lake Erie tributary, by building a water-control structure that was opened in the spring of 2011. The study site is located within the USFWS Ottawa National Wildlife Refuge (ONWR) and lies within the boundaries of the U.S. Environmental Protection Agency (EPA)-designated Maumee River Area of Concern. The broad objective of the project is to evaluate how hydrologically reconnecting a previously diked wetland impacts fish, mollusks, and other biota and affects nutrient transport, nutrient cycling, water quality, flood storage, and many other abiotic conditions. The results from this project suggest large system-wide benefits from sustainable reestablishment of lake-driven hydrology in this and other similar systems. We comprehensively sampled water chemistry, fish, birds, plants, and invertebrates in Crane Creek coastal wetlands, Pool 2A (a reference diked wetland), and Pool 2B (the reconnected wetland) in 2010 and 2011 to: 1) Characterize spatial and seasonal patterns for these parameters. 2) Examine ecosystem response to the opening of a water-control structure that allows fish passage Our sampling efforts have yielded data that reveal striking changes in water quality, hydrology, and fish assemblages in our experimental unit (2B). Prior to the reconnection, the water chemistry in pools 2A and 2B were very similar. Afterwards, we found that the water chemistry in reconnected Pool 2B was more

  1. Algal Bio-Indication in Assessment of Hydrological Impact on Ecosystem in Wetlands of “Slavyansky Resort”

    Directory of Open Access Journals (Sweden)

    Klymiuk Valentina

    2015-06-01

    Full Text Available Algal bio-indication is commonly used in water quality assessment but can also help in assessing the impact of hydrology on freshwater wetland ecosystems.We identified 350 species and infraspecific taxa of algae from nine taxonomic divisions (Cyanoprokaryota, Chrysophyta, Euglenophyta,Dinophyta,Xanthophyta,Cryptophyta,Bacillariophyta,Chlorophyta,Charophyta in 121 phytoplankton samples collected between 2007-2013 from seven lakes in the wetlands of the Regional Landscape Park “Slavyansky Resort”, Ukraine. The algal species richness and phytoplankton biomass decreased as water salinity increased. In turn the water salinity was influenced by the inflow of groundwater, karst fracture and by the alluvial water tributaries of a paleoriver that affects the formation processes of lake-spring sulphide mud from the resort, which is often used for therapeutic purposes.

  2. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    Science.gov (United States)

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  3. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J; Alm, J; Saarnio, S [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1997-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  4. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  5. Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Newton, Wesley E.; Otto, Clint R.V.; Nelson, Richard D.; LaBaugh, James W.; Scherff, Eric J.; Rosenberry, Donald O.

    2014-01-01

    We evaluated the efficacy of using chemical characteristics to rank wetland relation to surface and groundwater along a hydrologic continuum ranging from groundwater recharge to groundwater discharge. We used 27 years (1974–2002) of water chemistry data from 15 prairie pothole wetlands and known hydrologic connections of these wetlands to groundwater to evaluate spatial and temporal patterns in chemical characteristics that correspond to the unique ecosystem functions each wetland performed. Due to the mineral content and the low permeability rate of glacial till and soils, salinity of wetland waters increased along a continuum of wetland relation to groundwater recharge, flow-through or discharge. Mean inter-annual specific conductance (a proxy for salinity) increased along this continuum from wetlands that recharge groundwater being fresh to wetlands that receive groundwater discharge being the most saline, and wetlands that both recharge and discharge to groundwater (i.e., groundwater flow-through wetlands) being of intermediate salinity. The primary axis from a principal component analysis revealed that specific conductance (and major ions affecting conductance) explained 71% of the variation in wetland chemistry over the 27 years of this investigation. We found that long-term averages from this axis were useful to identify a wetland’s long-term relation to surface and groundwater. Yearly or seasonal measurements of specific conductance can be less definitive because of highly dynamic inter- and intra-annual climate cycles that affect water volumes and the interaction of groundwater and geologic materials, and thereby influence the chemical composition of wetland waters. The influence of wetland relation to surface and groundwater on water chemistry has application in many scientific disciplines and is especially needed to improve ecological understanding in wetland investigations. We suggest ways that monitoring in situ wetland conditions could be linked

  6. Use of created cattail ( Typha) wetlands in mitigation strategies

    Science.gov (United States)

    Dobberteen, Ross A.; Nickerson, Norton H.

    1991-11-01

    In order to balance pressures for land-use development with protection of wetland resources, artificial wetlands have been constructed in an effort to replace lost ecosystems. Despite its regulatory appeal and prominent role in current mitigation strategies, it is unclear whether or not created systems actually compensate for lost wetland resources. Mitigation predictions that rely on artificial wetlands must be analyzed critically in terms of their efficacy. Destruction of wetlands due to burial by coal fly ash at a municipal landfill in Danvers, Massachusetts, USA, provided an opportunity to compare resulting growth of created cattail ( Typha) marshes with natural wetland areas. Once the appropriate cattail species was identified for growth under disturbed landfill conditions, two types of artificial wetlands were constructed. The two systems differed in their hydrologic attributes: while one had a surface water flow characteristic of most cattail wetlands, the second system mimicked soil and water conditions found in naturally occurring floating cattail marshes. Comparison of plant growth measurements for two years from the artificial systems with published values for natural cattail marshes revealed similar structure and growth patterns. Experiments are now in progress to investigate the ability of created cattail marshes to remove and accumulate heavy metals from polluted landfill leachate. Research of the type reported here must be pursued aggressively in order to document the performance of artificial wetlands in terms of plant structure and wetland functions. Such research should allow us to start to evaluate whether artificial systems actually compensate for lost wetlands by performing similar functions and providing the concomitant public benefits.

  7. The use of color infrared photography for wetlands mapping with special reference to shoreline and waterfowl habitat assessment

    Science.gov (United States)

    1973-01-01

    Evaluation of low altitude oblique photography obtained by hand-held cameras was useful in determining specifications of operational mission requirements for conventional smaller-scaled vertical photography. Remote sensing techniques were used to assess the rapid destruction of marsh areas at Pointe Mouillee. In an estuarian environment where shoreline features change yearly, there is a need for revision in existing area maps. A land cover inventory, mapped from aerial photography, provided essential data necessary for determining adjacent lands suitable for marshland development. To quantitatively assess the wetlands environment, a detailed inventory of vegetative communities (19 categories) was made using color infrared photography and intensive ground truth. A carefully selected and well laid-out transect was found to be a key asset to photointerpretation and to the analysis of vegetative conditions. Transect data provided the interpreter with locally representative areas of various vegetative types. This facilitated development of a photointerpretation key. Additional information on vegetative conditions in the area was also obtained by evaluating the transect data.

  8. Accommodating state shifts within the conceptual framework of the wetland continuum

    Science.gov (United States)

    Mushet, David M.; McKenna, Owen; LaBaugh, James W.; Euliss, Ned H.; Rosenberry, Donald O.

    2018-01-01

    The Wetland Continuum is a conceptual framework that facilitates the interpretation of biological studies of wetland ecosystems. Recently summarized evidence documenting how a multi-decadal wet period has influenced aspects of wetland, lake and stream systems in the southern prairie-pothole region of North America has revealed the potential for wetlands to shift among alternate states. We propose that incorporation of state shifts into the Wetland Continuum, as originally proposed or as modified by Hayashi et al., is a relatively simple matter if one allows for shifts of wetlands along the horizontal, groundwater axis of the framework under conditions of extreme and sustained wet or dry conditions. We suggest that the ease by which state shifts can be accommodated within both the original and modified frameworks of the Wetland Continuum is a testament to the robustness of the concept when it is related to the alternative-stable-state concept.

  9. Wetland characteristics linked to broad-scale patterns in Culiseta melanura abundance and eastern equine encephalitis virus infection.

    Science.gov (United States)

    Skaff, Nicholas K; Armstrong, Philip M; Andreadis, Theodore G; Cheruvelil, Kendra S

    2017-10-18

    Eastern equine encephalitis virus (EEEV) is an expanding mosquito-borne threat to humans and domestic animal populations in the northeastern United States. Outbreaks of EEEV are challenging to predict due to spatial and temporal uncertainty in the abundance and viral infection of Cs. melanura, the principal enzootic vector. EEEV activity may be closely linked to wetlands because they provide essential habitat for mosquito vectors and avian reservoir hosts. However, wetlands are not homogeneous and can vary by vegetation, connectivity, size, and inundation patterns. Wetlands may also have different effects on EEEV transmission depending on the assessed spatial scale. We investigated associations between wetland characteristics and Cs. melanura abundance and infection with EEEV at multiple spatial scales in Connecticut, USA. Our findings indicate that wetland vegetative characteristics have strong associations with Cs. melanura abundance. Deciduous and evergreen forested wetlands were associated with higher Cs. melanura abundance, likely because these wetlands provide suitable subterranean habitat for Cs. melanura development. In contrast, Cs. melanura abundance was negatively associated with emergent and scrub/shrub wetlands, and wetland connectivity to streams. These relationships were generally strongest at broad spatial scales. Additionally, the relationships between wetland characteristics and EEEV infection in Cs. melanura were generally weak. However, Cs. melanura abundance was strongly associated with EEEV infection, suggesting that wetland-associated changes in abundance may be indirectly linked to EEEV infection in Cs. melanura. Finally, we found that wet hydrological conditions during the transmission season and during the fall/winter preceding the transmission season were associated with higher Cs. melanura abundance and EEEV infection, indicating that wet conditions are favorable for EEEV transmission. These results expand the broad-scale understanding

  10. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing the Functions of Tidal Fringe Wetlands Along the Mississippi and Alabama Gulf Coast

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Roberts, Thomas H; Peterson, Mark S; Schmid, Keil

    2007-01-01

    The Hydrogeomorphic (HGM) Approach is a collection of concepts and methods for developing functional indices and subsequently using them to assess the capacity of a wetland to perform functions relative to similar wetlands in a region...

  11. Use of hydrochemistry and environmental isotopes for evaluation of the hydrological connection between groundwater and wetland swamp Colombia

    International Nuclear Information System (INIS)

    Santa A, Diana P; Martinez F, Diana C; Betancur V, Teresita

    2008-01-01

    The understanding of water flow paths around a wetland is based on the hydrologic information interpretation. Although the incorporation of non-conventional techniques like hydrochemistry and isotopic hydrology allows a major compression level of hydrologic systems: They allow identify origin and evolution of water, movement times, permanence in the hydrologic cycle components. Cienaga Colombia wetland and its catch area, represent a strategic ecosystem located in the Bajo Cauca antioqueno. The natural conditions and the consequences of the human intervention on the wetland impose the need to approach its study and understanding, seeking to be able lo design effective measures to guarantee its sustainability. We presents the firsts results of the project developed by Antioquia University and IAEA: Hydrochemical and Isotopic techniques for the assessment of hydrological processes in the wetlands of Bajo Cauca Antioqueno which is part of the program: Isotopic techniques for assessment of hydrological processes in wetlands by International Atomic Energy Agency, IAEA. The general objective of the study is evaluate the dynamic of water flow, in and out of the wetland in the Bajo Cauca Antioqueno, using geochemical and isotopic techniques.

  12. Carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CFRAW) : overview and progress

    International Nuclear Information System (INIS)

    Ciborowski, J.; Dixon, D.G.; Foote, L.; Liber, K.; Smits, J.E.

    2009-01-01

    Seven oil sand mining partners and 5 university labs have joined forces to study the effects of mine tailings and process waters on development, health and function of wetland communities formed in post-mining landscapes. The collaborative effort, know as the carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CRFAW), aims to identify the materials and strategies most effective and economical in producing a functioning reclamation landscape. This presentation reported on part of the study that tested predictions about how quickly wetlands amended with reclamation materials approach the conditions of reference wetland systems. It provided a conceptual model of carbon pathways and budgets to assess how the allocation of carbon among compartments changes as newly formed wetlands mature in the boreal system. It was assumed that stockpiling constructed wetlands with peat or topsoil would accelerate succession and community development. Although the bitumen and the naphthenic acids found in constructed wetlands are initially toxic, they may serve as an alternate source of carbon once they degrade. This study also assessed the sources, biological uptake, pathways, and movement through the food web of materials used by the biota in constructed wetlands. Additional studies are examining how the productivity of new wetlands is maintained. Net ecosystem productivity is being monitored along with rates of organic carbon accumulation from microbial, algal, and macrophyte production, and influx of outside materials. The rates of leaf litter breakdown and microbial respiration are being compared to determine how constituents speed or slow food web processes of young and older wetlands. Carbon and nitrogen isotope values in food web compartments indicate which sources are incorporated into the food web as wetlands age. The values are used to determine how this influences community development, food web structure and complexity, and the

  13. Macroinvertebrate variation in endorheic depression wetlands in ...

    African Journals Online (AJOL)

    Aquatic macroinvertebrates are rarely used in wetland assessments due to their variation. However, in terms of biodiversity, these invertebrates form an important component of wetland fauna. Spatial and temporal variation of macroinvertebrate assemblages in endorheic depressions (locally referred to as 'pans') in ...

  14. A Regional Guidebook for Conducting Functional Assessments of Forested Wetlands in the Arkansas Valley Region of Arkansas

    National Research Council Canada - National Science Library

    Klimas, Charles V; Murray, Elizabeth O; Langston, Henry; Pagan, Jody; Witsell, Theo; Foti, Thomas

    2008-01-01

    .... The Hydrogeomorphic Approach is a collection of concepts and methods for developing functional indices and subsequently using them to assess the capacity of a wetland to perform functions relative...

  15. Geographically isolated wetlands: Rethinking a misnomer

    Science.gov (United States)

    Mushet, David M.; Calhoun, Aram J.K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  16. Wetlands and Sustainability

    Directory of Open Access Journals (Sweden)

    Richard Smardon

    2014-11-01

    Full Text Available This editorial provides an overview of the special issue “Wetlands and Sustainability”. In particular, the special issue contains a review of Paul Keddy’s book “Wetland Ecology” with specific reference to wetland sustainability. It also includes papers addressing wetland data acquisition via radar and remote sensing to better understand wetland system dynamics, hydrologic processes linked to wetland stress and restoration, coastal wetlands land use conflict/management, and wetland utilization for water quality treatment.

  17. Sand quarry wetlands provide high-quality habitat for native amphibians

    Directory of Open Access Journals (Sweden)

    M. Sievers

    2017-05-01

    Full Text Available Anthropogenic disturbances to habitats influence the fitness of individual animals, the abundance of their populations, and the composition of their communities. Wetlands in particular are frequently degraded and destroyed, impacting the animals that inhabit these important ecosystems. The creation of wetlands during and following sand extraction processes is inevitable, and thus, sand quarries have the potential to support aquatic animals. To determine how amphibians utilise these wetlands, I conducted nocturnal call surveys at wetlands within the Kables Sands quarry, New South Wales, Australia, and within surrounding reference wetlands, and quantified levels of developmental instability (DI as a proxy for fitness. Whilst quarry and reference wetlands were largely similar in terms of environmental characteristics, quarry wetlands consistently harboured more amphibian species and individuals. Using unsigned asymmetry as a measure of DI, frogs from the quarry sites exhibited significantly lower levels of DI compared to reference wetlands, indicating that quarry wetlands may be comparatively higher quality. Levels of DI within quarry wetlands also compared favourably to data from healthy frog populations extracted from the literature. Further enhancing the suitability of quarry wetlands would require minimal effort, with potentially significant increases in local and regional biodiversity. Documenting species presence and quantifying individual fitness by measuring limb lengths is an economically and logistically feasible method to assess the health of quarry wetlands. Overall, the methods outlined here provide a powerful, yet simple, tool to assess the overall health and suitability of quarry wetlands that could be easily adopted at quarries throughout the world.

  18. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  19. Ohio Uses Wetlands Program Development Grants to Protect Wetlands

    Science.gov (United States)

    The wetland water quality standards require the use of ORAM score to determine wetland quality. OEPA has also used these tools to evaluate wetland mitigation projects, develop performance standards for wetland mitigation banks and In Lieu Fee programs an.

  20. Assessment of nutrient removal in vegetated and unvegetated gravel bed mesocosm treatment wetlands

    International Nuclear Information System (INIS)

    Dougherty, J.M.; Werker, A.G.

    2002-01-01

    Constructed wetlands are being considered more frequently as an option for wastewater treatment around the world. However, widespread application of this technology requires further understanding of the system performance. Such knowledge is necessary to develop improved models, better characterize the essential treatment processes and improve the reliability in performance. The goal of achieving predictable levels of wastewater amelioration with minimal performance variability is an essential part of securing regulatory approval for treatment wetland systems. Laboratory mesocosms or unit-wetlands are being utilized and novel in-situ calibration methods are being applied to reference and compare kinetics of wastewater contaminant transformations. Tracer studies are being applied to reference plant and biofilm development within and between mesocosms with respect to carbon and nitrogen. Through detailed characterization of these unit wetlands, aspects of nutrient removal are being systematically examined. This paper will highlight the unit-wetland approach and experimental results juxtaposed the relevant literature surrounding wetland treatment of wastewater. (author)

  1. Application of the artificial intelligence to estimate the constructed wetland response to heavy metal removal

    International Nuclear Information System (INIS)

    Elektorowicz, M.; Balanzinski, M.; Qasaimeh, A.

    2002-01-01

    Current design approaches lack essential parameters necessary to evaluate the removal of metals contained in wastewater which is discharged to constructed wetlands. As a result, there is no guideline for an accurate design of constructed wetlands. An artificial intelligence approach was used to assess constructed wetland design. For this purpose concentrations of bioavailable mercury were evaluated in conditions where initial concentrations of inorganic mercury, chloride concentrations and pH values changed. Fuzzy knowledge base was built based on results obtained from previous investigations performed in a greenhouse for floating plants, and from computations for mercury speciation. The Fuzzy Decision Support System (FDSS) used the knowledge base to find parameters that permit to generate the highest amount of mercury available for plants. The findings of this research can be applied to wetlands and all natural processes where correlations between them are uncertain. (author)

  2. Application of the artificial intelligence to estimate the constructed wetland response to heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Elektorowicz, M. [Concordia Univ., Building, Civil and Environmental Engineering, Montreal, Quebec (Canada)]. E-mail: mariae@civil.concordia.ca; Balanzinski, M. [Ecole Polytechnique de Montreal, Mechnical Engineering, Montreal, Quebec (Canada); Qasaimeh, A. [Concordia Univ., Building, Civil and Environmental Engineering, Montreal, Quebec (Canada)

    2002-06-15

    Current design approaches lack essential parameters necessary to evaluate the removal of metals contained in wastewater which is discharged to constructed wetlands. As a result, there is no guideline for an accurate design of constructed wetlands. An artificial intelligence approach was used to assess constructed wetland design. For this purpose concentrations of bioavailable mercury were evaluated in conditions where initial concentrations of inorganic mercury, chloride concentrations and pH values changed. Fuzzy knowledge base was built based on results obtained from previous investigations performed in a greenhouse for floating plants, and from computations for mercury speciation. The Fuzzy Decision Support System (FDSS) used the knowledge base to find parameters that permit to generate the highest amount of mercury available for plants. The findings of this research can be applied to wetlands and all natural processes where correlations between them are uncertain. (author)

  3. Digging Deep: how the convergence of national-scale and field-based soil core data shines a light on sustainability of wetland carbon sequestration

    Science.gov (United States)

    Windham-Myers, L.; Holmquist, J. R.; Sundquist, E. T.; Drexler, J. Z.; Bliss, N.

    2016-12-01

    Wetland soils have long been recognized as conditional archives of past environments, including vegetation structure, nutrient status, sediment supply and the variability in those factors. Both sedimentary processes and organic accretion processes form the soil matrix that identifies wetland soils as "hydric" while also providing archival insights. As repositories of information on net biogeochemical processes, their down-core and across-site structure can show both consistency and distinction. Through several related studies, we have been exploring the use of component-level U.S. Natural Resources Conservation Service (NRCS) Soil Survey data (SSURGO) to map carbon density to 1m depth across wetlands of the US, with an emphasis on coastal wetlands. To assess the accuracy of mapped carbon data from SSURGO, several field-generated datasets (public or compiled for the NASA-funded Blue Carbon Monitoring Project) have been extracted for key metrics such as dry bulk density (g/cc), organic carbon content (%C by combustion) and the combination, soil carbon density (g C /cc) with depth. These profiles indicate ecogeomorphic feedbacks of elevation, vegetation structure and biogeochemical processes through millennia, illustrating both resilience and shifts in behavior that constrain wetland extent as well as wetland function. National datasets such as SSURGO and validation datasets such as the EPA's National Wetland Condition Assessment (NWCA) and Louisiana's Coastwide Reference Monitoring System (CRMS) are publically available and have been underutilized for predicting and/or validating changes in wetland carbon dynamics. We have explored their use for interpretating and understanding changing carbon accretion rates, changing wetland extents through elevation gain or loss, and changing methane emissions. This talk will focus on insights for wetland carbon sequestration functions as determined by soil core structure, both for coastal settings and potentially for inland

  4. Surficial and vertical distribution of heavy metals in different estuary wetlands in the Pearl river, South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honggang; Cui, Baoshan [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing (China); Zhang, Kejiang [Xinjiang Research Center of Water and Wastewater Treatment, Xinjiang Deland Co., LTD., Urumqi (China)

    2012-10-15

    A total of 87 soil profiles sampled from five types of wetlands in the Pearl River estuary were analyzed to investigate the surficial and vertical distributions of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn). The results show that wetlands directly connected with rivers (e.g., riparian wetlands, estuarine wetlands, and mangrove wetlands) has much higher metal concentrations than those indirectly connected with rivers (e.g., pond wetlands and reclaimed wetlands). The river water is the major pollution source for all investigated heavy metals. The vertical distribution of heavy metals can be classified into three patterns: (i) linear distribution pattern. The concentration of heavy metals gradually decreases with an increase in soil depth (for riparian and estuarine wetlands); (ii) irregular and stable pattern (for pond and reclaimed wetlands); and (iii) middle enrichment pattern (for mangrove wetlands). In addition to river-borne inputs, a variety of vegetation composition, hydraulic conditions, and human activities also contribute to the variation in distribution of heavy metals in different wetlands. Soil properties (e.g., particle size, pH, salinity, and SOM) also affect the distribution of trace metals in each soil layer. The major pollution source of heavy metals is industrial wastewater. Other sources include agriculture and domestic premises, and atmospheric deposition. This study provides a sound basis for the risk assessment of heavy metals in the studied wetlands and for wetland conservation in general. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    Science.gov (United States)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  6. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK

    International Nuclear Information System (INIS)

    Mayes, W.M.; Large, A.R.G.; Younger, P.L.

    2005-01-01

    Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels. - High pH, sediment-rich runoff from a quarry constrains floristic diversity in an adjacent wetland

  7. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, W.M. [Institute for Research on Environment and Sustainability, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: w.m.mayes@ncl.ac.uk; Large, A.R.G. [School of Geography, Politics and Sociology, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom); Younger, P.L. [Institute for Research on Environment and Sustainability, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-12-15

    Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels. - High pH, sediment-rich runoff from a quarry constrains floristic diversity in an adjacent wetland.

  8. Structural and functional loss in restored wetland ecosystems.

    Directory of Open Access Journals (Sweden)

    David Moreno-Mateos

    2012-01-01

    Full Text Available Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages, and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils, remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha and wetlands restored in warm (temperate and tropical climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.

  9. Uranium Immobilization in an Iron-Rich Rhizosphere of a Native Wetland Plant from the Savannah River Site under Reducing Conditions

    Science.gov (United States)

    The hypothesis of this study was that iron plaque formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted usin...

  10. Groundwater connectivity of upland-embedded wetlands in the Prairie Pothole Region

    Science.gov (United States)

    Neff, Brian; Rosenberry, Donald O.

    2018-01-01

    Groundwater connections from upland-embedded wetlands to downstream waterbodies remain poorly understood. In principle, water from upland-embedded wetlands situated high in a landscape should flow via groundwater to waterbodies situated lower in the landscape. However, the degree of groundwater connectivity varies across systems due to factors such as geologic setting, hydrologic conditions, and topography. We use numerical models to evaluate the conditions suitable for groundwater connectivity between upland-embedded wetlands and downstream waterbodies in the prairie pothole region of North Dakota (USA). Results show groundwater connectivity between upland-embedded wetlands and other waterbodies is restricted when these wetlands are surrounded by a mounding water table. However, connectivity exists among adjacent upland-embedded wetlands where water–table mounds do not form. In addition, the presence of sand layers greatly facilitates groundwater connectivity of upland-embedded wetlands. Anisotropy can facilitate connectivity via groundwater flow, but only if it becomes unrealistically large. These findings help consolidate previously divergent views on the significance of local and regional groundwater flow in the prairie pothole region.

  11. Assessing Wetland Hydroperiod and Soil Moisture With Remote Sensing: A Demonstration for the NASA Plum Brook Station Year 2

    Science.gov (United States)

    Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert

    2015-01-01

    Primary Goal: Assist with the evaluation and measuring of wetlands hydroperiod at the PlumBrook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: 1) Show the relative length of hydroperiod using available remote sensing datasets 2) Date linked table of wetlands extent over time for all feasible non-forested wetlands 3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables 4) A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment 5) A MTRI style report summarizing year 2 results. This report serves as a descriptive summary of our completion of these our deliverables. Additionally, two formal meetings were held with Larry Liou and Amanda Sprinzl to provide project updates and receive direction on outputs. These were held on 2/26/15 and 9/17/15 at the Plum Brook Station. Principal Component Analysis (PCA) is a multivariate statistical technique used to identify dominant spatial and temporal backscatter signatures. PCA reduces the information contained in the temporal dataset to the first few new Principal Component (PC) images. Some advantages of PCA

  12. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    Science.gov (United States)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  13. Modeling natural wetlands: A new global framework built on wetland observations

    Science.gov (United States)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed

  14. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  15. Characterization of bioactivity in treatment wetlands utilising an enzymatic assay

    International Nuclear Information System (INIS)

    McHenry, J.L.; Werker, A.G.

    2002-01-01

    Microbial activity is a critical aspect of biological wastewater treatment which is not being routinely monitored as part of treatment wetland research and development. The level of microbial activity is a reference from which observed and variable treatment performance needs to be evaluated with respect to design and operating conditions. The purpose of the present study was to assess enzyme hydrolysis kinetics of the model substrate fluorescein diacetate (FDA) using activated sludge and to begin to relate these findings to wetland mesocosm in-situ enzyme activity measurements. In activated sludge samples, the FDA hydrolysis rate was found to correlate with microbial abundance measured as mixed liquor volatile suspended solids (MLVSS). The ratio of biomass to substrate concentration was also found to influence the extent of FDA consumption and a critical saturation loading for activated sludge on FDA was estimated. Of the numerous empirical enzyme reaction models available in the literature, the Tessier model was determined to most closely fit the experimental data. FDA hydrolysis experiments conducted on activated sludge samples and laboratory wetland mesocosms at the same initial substrate concentration indicate that the enzyme assay is sensitive enough to exhibit characteristic reaction kinetics that can be used to quantify biomass concentrations present within laboratory treatment wetland mesocosms. In continued investigation, changes in mesocosm biomass levels as the wetland vegetation matures will be related to an equivalent MLVSS concentration and the biological treatment system performance. (author)

  16. Assessment and Prioritization of Environmental Risks in Gaz and Hara Rivers Estuary International Wetland

    Directory of Open Access Journals (Sweden)

    Samira Jafariazar

    2017-12-01

    Full Text Available Wetland ecosystems have many economic and ecological functions and values, but today their security and existence have been heavily influenced by various natural and human factors. Therefore, the present study was conducted to identify, rank and assess environmental risks threatening Khur-e- Azini International wetland located in Hormozgan province. In order to identify risk factors, the Delphi method and the multi-criteria decision-making methods, AHP and TOPSIS were used for prioritizing risks. According to the results of the technique AHP, fuel smuggling, marine transportation and oil pollution were respectively ranked first to third. The results of TOPSIS technique based on the relative proximity (Cj + indicate that the oil pollution (1 and the fuel smuggling (0.9154 are ranked first to second. In general, based on the ranking of risks, 8.6 percent of risks were placed in the unbearable category, 8.6 percent of risks were placed in the significant category, 26.08 percent of risks were placed in the average category, and 30.43 percent of risks were placed in the category of tolerable risks. According to the results, management priorities and planning should be considered seriously to minimize the risks and consequences that have irreversible effects on the environment and wetlands function.

  17. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  18. The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands.

    Science.gov (United States)

    Mackintosh, Teresa J; Davis, Jenny A; Thompson, Ross M

    2015-12-01

    The construction of wetlands in urban environments is primarily carried out to assist in the removal of contaminants from wastewaters; however, these wetlands have the added benefit of providing habitat for aquatic invertebrates, fish and waterbirds. Stormwater quantity and quality is directly related to impervious area (roads, sealed areas, roofs) in the catchment. As a consequence, it would be expected that impervious area would be related to contaminant load and biodiversity in receiving waters such as urban wetlands. This study aimed to establish whether the degree of urbanisation and its associated changes to stormwater runoff affected macroinvertebrate richness and abundance within constructed wetlands. Urban wetlands in Melbourne's west and south east were sampled along a gradient of urbanisation. There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates detected for sites in the west, but not in the south east. However macroinvertebrate communities were relatively homogenous both within and between all study wetlands. Chironomidae (non-biting midges) was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. Their prevalence suggests that water quality is impaired in these systems, regardless of degree of urbanisation, although the causal mechanism is unclear. These results show some dependency between receiving wetland condition and the degree of urbanisation of the catchment, but suggest that other factors may be as important in determining the value of urban wetlands as habitat for wildlife. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Gas Research Institute wetland research program

    International Nuclear Information System (INIS)

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables

  20. Monitoring coastal wetlands in a highly dynamic tropical environment

    International Nuclear Information System (INIS)

    Saynor, M.J.; Finlayson, C.M.; Spiers, A.; Eliot, I.

    2001-01-01

    The Alligator Rivers Region in the wet-dry tropics of northern Australia has been selected by government and collaborating agencies as a key study area for the monitoring of natural and human-induced coastal change. The Region contains the floodplain wetlands of Kakadu National Park which have been recognised internationally for their natural and cultural heritage value. A coastal monitoring program for assessing and monitoring environmental change in the Alligator Rivers Region has been established at the Environmental Research Institute of the Supervising Scientist. This program has developed a regional capacity to measure and assess change on the wetlands, floodplains and coastline within the region. Field assessment and monitoring procedures have been developed for the program. The assessment procedures require use of georeferencing and data handling techniques to facilitate comparison and relational overlay of a wide variety of information. Monitoring includes regular survey of biophysical and cultural processes on the floodplains; such as the extension of tidal creeks and mangroves, shoreline movement, dieback in Melaleuca wetlands, and weed invasion of freshwater wetlands. A differential Global Positioning System is used to accurately georeference spatial data and a Geographic Information System is then used to store and assess information. The assessment and monitoring procedures can be applied to the wet-dry tropics in general. These studies are all particularly pertinent with the possibility of greenhouse gases causing global warming and potential sea-level rise, a major possible threat to the valued wetlands of Kakadu National Park, and across the wet-dry tropics in general

  1. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Science.gov (United States)

    2012-10-16

    ..., consistent with sound principles of fish and wildlife management, conservation, legal mandates, and our... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland Management District, SD; Final Comprehensive Conservation Plan and Finding of No Significant Impact for...

  2. Land Use in Korean Tidal Wetlands: Impacts and Management Strategies

    Science.gov (United States)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R.; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  3. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021)

  4. Assessing the impacts of climate change and dams on floodplain inundation and wetland connectivity in the wet-dry tropics of northern Australia

    Science.gov (United States)

    Karim, Fazlul; Dutta, Dushmanta; Marvanek, Steve; Petheram, Cuan; Ticehurst, Catherine; Lerat, Julien; Kim, Shaun; Yang, Ang

    2015-03-01

    Floodplain wetlands and their hydrological connectivity with main river channels in the Australian wet-dry tropics are under increasing pressure from global climate change and water resource development, and there is a need for modelling tools to estimate the time dynamics of connectivity. This paper describes an integrated modelling framework combining conceptual rainfall-runoff modelling, river system modelling and hydrodynamic (HD) modelling to estimate hydrological connectivity between wetlands and rivers in the Flinders and Gilbert river catchments in northern Australia. Three historical flood events ranging from a mean annual flood to a 35-year return period flood were investigated using a two dimensional HD model (MIKE 21). Inflows from upstream catchments were estimated using a river network model. Local runoff within the HD modelling domain was simulated using the Sacramento rainfall-runoff model. The Shuttle Radar Topography Mission (SRTM) derived 30 m DEM was used to reproduce floodplain topography, stream networks and wetlands in the HD model. The HD model was calibrated using stream gauge data and inundation maps derived from satellite (MODIS: MODerate resolution Imaging Spectroradiometer) imagery. An algorithm was developed to combine the simulated water heights with the DEM to quantify inundation and flow connection between wetlands and rivers. The connectivity of 18 ecologically important wetlands on the Flinders floodplain and 7 on the Gilbert floodplain were quantified. The impacts of climate change and water resource development on connectivity to individual wetlands were assessed under a projected dry climate (2nd driest of 15 GCMs), wet climate (2nd wettest of 15 GCMs) and dam conditions. The results indicate that changes in rainfall under a wetter and drier future climate could have large impacts on area, duration and frequency of inundation and connectivity. Topographic relief, river bank elevation and flood magnitude were found to be the key

  5. Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hester, Mark W.; Shaffer, Gary P.; Willis Jonathan M.; DesRoches, Dennis J.

    2001-02-21

    This study builds upon earlier research conducted by Southeastern Louisiana University concerning the efficacy of utilizing processed drill cuttings as an alternative substrate source for wetland rehabilitation (wetland creation and restoration). Previous research has indicated that processed drill cuttings exhibit a low degree of contaminant migration from the process drill cuttings to interstitial water and low toxicity, as tested by seven-day mysid shrimp chronic toxicity trials.

  6. Rising tides, rising gates: The complex ecogeomorphic response of coastal wetlands to sea-level rise and human interventions

    Science.gov (United States)

    Sandi, Steven G.; Rodríguez, José F.; Saintilan, Neil; Riccardi, Gerardo; Saco, Patricia M.

    2018-04-01

    Coastal wetlands are vulnerable to submergence due to sea-level rise, as shown by predictions of up to 80% of global wetland loss by the end of the century. Coastal wetlands with mixed mangrove-saltmarsh vegetation are particularly vulnerable because sea-level rise can promote mangrove encroachment on saltmarsh, reducing overall wetland biodiversity. Here we use an ecogeomorphic framework that incorporates hydrodynamic effects, mangrove-saltmarsh dynamics, and soil accretion processes to assess the effects of control structures on wetland evolution. Migration and accretion patterns of mangrove and saltmarsh are heavily dependent on topography and control structures. We find that current management practices that incorporate a fixed gate for the control of mangrove encroachment are useful initially, but soon become ineffective due to sea-level rise. Raising the gate, to counteract the effects of sea level rise and promote suitable hydrodynamic conditions, excludes mangrove and maintains saltmarsh over the entire simulation period of 100 years

  7. Millennium Ecosystem Assessment: Ecosystems and human well-being: wetlands and water synthesis

    NARCIS (Netherlands)

    Finlayson, M.; Cruz, R.D.; Davidson, N.; Alder, J.; Cork, S.; Groot, de R.S.; Lévêque, C.; Milton, G.R.; Peterson, G.; Pritchard, D.; Ratner, B.D.; Reid, W.V.; Revenga, C.; Rivera, M.; Schutyser, F.; Siebentritt, M.; Stuip, M.; Tharme, R.; Butchard, S.; Dieme-Amting, E.; Gitay, H.; Raaymakers, S.; Taylor, D.

    2005-01-01

    The Wetlands and Water synthesis was designed for the Ramsar Convention to meet the need for information about the consequences of ecosystem change for human well-being and sought to strengthen the link between scientific knowledge and decision-making for the conservation and wise use of wetlands.

  8. Pathogen and nutrient pulsing and attenuation in "accidental" urban wetland networks along the Salt River in Phoenix, AZ

    Science.gov (United States)

    Palta, M. M.; Grimm, N. B.

    2013-12-01

    Increases in available nutrients and bacteria in urban streams are at the forefront of research concerns within the ecological and medical communities, and both pollutants are expected to become more problematic under projected changes in climate. Season, discharge, instream conditions (oxygen, water velocity), and weather conditions (antecedent moisture) all may influence loading rates to and the retention capabilities of wetlands fed by urban runoff and storm flow. The aim of this research was to examine the effect of these variables on nutrient (nitrogen, phosphorus) and Escherichia coli (E. coli) loading and attenuation along flow paths in urban wetland networks along the Salt River in Phoenix, AZ. Samples were collected for one year along flowpaths through wetlands that formed below six perennially flowing outfalls. Collection took place monthly during baseflow (dry season) conditions, and before and immediately following storm events, in the summer monsoon and winter rainy seasons. Water quality was assessed at the following points: immediately downstream of the outfall, mid-wetland, and downstream of the wetland. For determination of E. coli counts, samples were plated on coliform-selective media (Chromocult) and incubated for 24 hours. Plates were then used to enumerate E. coli. For determination of nutrient concentrations, samples were filtered and frozen until they could be analyzed by ion chromatography and automated wet chemistry. During both summer and winter, total discharge into the wetlands increased during storm events. Concentrations of PO43+, NH4+, and E. coli were significantly higher following storm events than during baseflow conditions, and post-storm peaks in concentration ('pulses') were higher during the summer monsoon than in winter storms. Pulses of pollutants during storms were highest when preceded by hot, dry conditions. NO3- was high in both base and stormflow. E. coli counts and nutrient concentrations dropped along flowpaths

  9. A Constructed Freshwater Wetland Shows Signs of Declining Net Ecosystem Exchange

    Science.gov (United States)

    Anderson, F. E.; Bergamaschi, B. A.; Windham-Myers, L.; Byrd, K. B.; Drexler, J. Z.; Fujii, R.

    2014-12-01

    The USGS constructed a freshwater-wetland complex on Twitchell Island in the Sacramento-San Joaquin Delta (Delta), California, USA, in 1997 and maintained it until 2012 to investigate strategies for biomass accretion and reduction of oxidative soil loss. We studied an area of the wetland complex covered mainly by dense patches of hardstem bulrush (Schoenoplectus acutus) and cattails (Typha spp.), with smaller areas of floating and submerged vegetation, that was maintained at an average depth of 55 cm. Using eddy covariance measurements of carbon and energy fluxes, we found that the combination of water management and the region's Mediterranean climate created conditions where peak growing season daily means of net ecosystem exchange (NEE) reached -45 gCO2 m-2 d-1 and averaged around -30 gCO2 m-2 d-1 between 2002 through 2004. However, when measurements resumed in 2010, NEE rates were a fraction of the rates previously measured, approximately -6 gCO2 m-2 d-1. Interestingly, NEE rates in 2011 doubled compared to 2010 (-13 gCO2 m-2 d-1). Methane fluxes, collected in 2010 to assess a complete atmospheric carbon budget, were positive throughout the year, with daily mean flux values ranging from 50 to 300 mg CH4 m-2 d-1. As a result, methane flux reduced NEE values by approximately one-third, and when the global warming potential was considered, the wetland became a net global warming potential source. We found that carbon cycling in a constructed wetland is complex and can change over annual and decadal timescales. We investigated possible reasons for differences between flux measurements from 2002 to 2004 and those from 2010 and 2011: (1) changes in methodology, (2) differences in weather conditions, (3) differences in gross primary productivity relative to respiration rates, and (4) the amount of living plant tissue relative to brown accumulations of senesced plant litter. We hypothesize that large mats of senesced material within the flux footprint could have

  10. East African wetland-catchment data base for sustainable wetland management

    Science.gov (United States)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  11. East African wetland-catchment data base for sustainable wetland management

    Directory of Open Access Journals (Sweden)

    C. Leemhuis

    2016-10-01

    Full Text Available Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  12. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  13. Internal aeration development and the zonation of plants in wetlands

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith

    differing in flooding tolerance. Maintaining species diversity in managed wetlands therefore involves hydrological conditions suitable for a variety of plants that differ in their flooding tolerance. The shallowest areas of wetlands, in which soils are waterlogged but there is little standing water, can...... of pressurized gas flows in their aerenchyma. These close linkages between flooding tolerance and species distributions are key considerations for maintaining species diversity in wetlands....

  14. Framework tool for a rapid cumulative effects assessment: case of a prominent wetland in Myanmar.

    Science.gov (United States)

    Pradhan, N; Habib, H; Venkatappa, M; Ebbers, T; Duboz, R; Shipin, O

    2015-06-01

    The wetland of focus, Inle Lake, located in central Myanmar, is well known for its unique biodiversity and culture, as well as for ingenious floating garden agriculture. During the last decades, the lake area has seen extensive degradation in terms of water quality, erosion, deforestation, and biodiversity concomitant with a major shift to unsustainable land use. The study was conducted, with an emphasis on water quality, to analyze environmental impacts (effects) changing the ecosystem and to comprehensively evaluate the environmental state of the ecosystem through an innovative Rapid Cumulative Effects Assessment framework tool. The assessment started with a framework-forming Participatory Rural Appraisal (PRA), which quantified and prioritized impacts over space and time. Critically important impacts were assessed for "intra-inter interactions" using the loop analysis simulation. Water samples were analyzed while geographic information system (GIS) and remote sensing were used to identify water pollution hotspots. It was concluded that out of a plethora of impacts, pollution from municipal sources, sedimentation, and effects exerted by floating gardens had the most detrimental impacts, which cumulatively affected the entire ecosystem. The framework tool was designed in a broad sense with a reference to highly needed assessments of poorly studied wetlands where degradation is evident, but scarcely quantified, and where long-term field studies are fraught with security issues and resource unavailability (post-conflict, poor and remote regions, e.g., Afghanistan, Laos, Sudan, etc.).

  15. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river-reservoir system.

    Science.gov (United States)

    Jiang, Xiaoliang; Xiong, Ziqian; Liu, Hui; Liu, Guihua; Liu, Wenzhi

    2017-01-01

    The majority of rivers in the world have been dammed, and over 45,000 large reservoirs have been constructed for multiple purposes. Riparian and reservoir shorelines are the two most important wetland types in a dammed river. To date, few studies have concerned the heavy metal pollution in wetland soils of these river-reservoir systems. In this study, we measured the concentrations of ten heavy metals (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) in surface soils collected from riparian and reservoir shorelines along the Han River in different seasons. Our results found that the Co, Cu, and Ni concentrations in riparian wetlands were significantly lower than those in reservoir shorelines. In riparian wetlands, only soil Sr concentration significantly increased after summer and autumn submergence. Multivariate statistical analyses demonstrated that Ba and Cd might originate from industrial and mining sources, whereas Sr and Mn predominantly originated from natural rock weathering. The ecological risk assessment analysis indicated that both riparian and reservoir shorelines along the Han River in China exhibited a moderate ecological risk in soil heavy metals. The upper Han River basin is the water resource area of China's Middle Route of the South-to-North Water Transfer Project. Therefore, to control the contamination of heavy metals in wetland soils, more efforts should be focused on reducing the discharge of mining and industrial pollutants into the riparian and reservoir shorelines.

  16. Wetland Plants of Great Salt Lake, A Guide to Identification, Communities, & Bird Habitat

    OpenAIRE

    Downard, Rebekah; Frank, Maureen; Perkins, Jennifer; Kettenring, Karin; Larese-Casanova, Mark

    2017-01-01

    Wetland Plants of Great Salt Lake: a guide to identification, communities, & bird habitat is a wetland plant identification guide, resulting from collaborative research efforts about Great Salt Lake (GSL) wetland conditions and bird habitat. Dr. Rebekah Downard collected dissertation field data from GSL wetlands during 2012–2015, the majority of which informed this work. Dr. Maureen Frank contributed her guide to GSL wetland vegetation and how to manage native plants as high-quality habitat f...

  17. Climatic Alterations of Wetlands: Conservation and Adaptation Practices in Bangladesh

    Science.gov (United States)

    Siddiquee, S. A.

    2016-02-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  18. Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States

    Science.gov (United States)

    Denver, J.M.; Ator, S.W.; Lang, M.W.; Fisher, T.R.; Gustafson, A.B.; Fox, R.; Clune, J.W.; McCarty, G.W.

    2014-01-01

    Understanding local groundwater hydrology and geochemistry is critical for evaluating the effectiveness of wetlands at mitigating agricultural impacts on surface waters. The effectiveness of depressional wetlands at mitigating nitrate (NO3) transport from fertilized row crops, through groundwater, to local streams was examined in the watershed of the upper Choptank River, a tributary of Chesapeake Bay on the Atlantic Coastal Plain. Hydrologic, geochemical, and water quality data were collected from January of 2008 through December of 2009 from surface waters and networks of piezometers installed in and around current or former depressional wetlands of three major types along a gradient of anthropogenic alteration: (1) natural wetlands with native vegetation (i.e., forested); (2) prior-converted croplands, which are former wetlands located in cultivated fields; and (3) hydrologically restored wetlands, including one wetland restoration and one shallow water management area. These data were collected to estimate the orientation of groundwater flow paths and likely interactions of groundwater containing NO3 from agricultural sources with reducing conditions associated with wetlands of different types. Natural wetlands were found to have longer periods of soil saturation and reducing conditions conducive to denitrification compared to the other wetland types studied. Because natural wetlands are typically located in groundwater recharge areas along watershed divides, nitrogen (N) from nearby agriculture was not intercepted. However, these wetlands likely improve water quality in adjacent streams via dilution. Soil and geochemical conditions conducive to denitrification were also present in restored wetlands and prior-converted croplands, and substantial losses of agricultural NO3 were observed in groundwater flowing through these wetland sediments. However, delivery of NO3 from agricultural areas through groundwater to these wetlands resulting in opportunities for

  19. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent

    International Nuclear Information System (INIS)

    Türker, Onur Can; Böcük, Harun; Yakar, Anıl

    2013-01-01

    Highlights: ► We assessed the phytoremediation ability of a polyculture constructed wetland (PCW) to treat boron (B) from mine effluent. ► B in mine effluent decreased from 187 mg l −1 to 123 mg l −1 (32% removal rate) through the PCW. ► Estimated methane production, energy yields and electrical energy yields of the PCW increased with biomass production. ► Cattails accumulated more than 250 mg kg −1 B and common reed accumulated 38 mg kg −1 B at the end of the experiment. -- Abstract: This study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions. To this end, an experimental wetland was vegetated with common reed (Phragmites australis) and cattails (Typha latifolia), and mine effluent was moved through the wetland. The results of the present study show that B concentrations of the mine effluent decreased from 187 to 123 mg l −1 (32% removal rate) on average. The T. latifolia individuals absorbed a total of 250 mg kg −1 whereas P. australis in the PCW absorbed a total of 38 mg kg −1 B during the research period

  20. Moss and vascular plant indices in Ohio wetlands have similar environmental predictors

    Science.gov (United States)

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Adams, Jean V.; Viau, Nick

    2016-01-01

    Mosses and vascular plants have been shown to be reliable indicators of wetland habitat delineation and environmental quality. Knowledge of the best ecological predictors of the quality of wetland moss and vascular plant communities may determine if similar management practices would simultaneously enhance both populations. We used Akaike's Information Criterion to identify models predicting a moss quality assessment index (MQAI) and a vascular plant index of biological integrity based on floristic quality (VIBI-FQ) from 27 emergent and 13 forested wetlands in Ohio, USA. The set of predictors included the six metrics from a wetlands disturbance index (ORAM) and two landscape development intensity indices (LDIs). The best single predictor of MQAI and one of the predictors of VIBI-FQ was an ORAM metric that assesses habitat alteration and disturbance within the wetland, such as mowing, grazing, and agricultural practices. However, the best single predictor of VIBI-FQ was an ORAM metric that assessed wetland vascular plant communities, interspersion, and microtopography. LDIs better predicted MQAI than VIBI-FQ, suggesting that mosses may either respond more rapidly to, or recover more slowly from, anthropogenic disturbance in the surrounding landscape than vascular plants. These results supported previous predictive studies on amphibian indices and metrics and a separate vegetation index, indicating that similar wetland management practices may result in qualitatively the same ecological response for three vastly different wetland biological communities (amphibians, vascular plants, and mosses).

  1. Monitoring iron and manganese diagenesis in constructed wetlands with continuous gradient gels

    International Nuclear Information System (INIS)

    Edenborn, H.M.; Brickett, L.A.; Dvorak, D.H.; Edenborn, S.L.

    1993-01-01

    Average removal rates for Fe and Mn in wetlands constructed for the treatment of coal mine drainage have been developed based on field observations, but few details are known about the spatial and temporal variation in metal diagenesis within these wetlands. The heterogeneous distribution of biological activity in constructed wetland sediments makes it difficult to assess the importance of specific diagenetic processes without taking large numbers of samples at great expense. In this study, continuous gradient gels were used to evaluate Pennsylvania. Continuous gradient gels provided rapid and detailed information on the regions of stability of Fe and Mn compounds within the wetland sediments. The resulting data were mapped and used to demonstrate how this technique can be used to assess the overall efficiency of constructed wetlands in the removal of Fe and Mn

  2. Impacts of human-induced environmental change in wetlands on aquatic animals.

    Science.gov (United States)

    Sievers, Michael; Hale, Robin; Parris, Kirsten M; Swearer, Stephen E

    2018-02-01

    Many wetlands harbour highly diverse biological communities and provide extensive ecosystem services; however, these important ecological features are being altered, degraded and destroyed around the world. Despite a wealth of research on how animals respond to anthropogenic changes to natural wetlands and how they use created wetlands, we lack a broad synthesis of these data. While some altered wetlands may provide vital habitat, others could pose a considerable risk to wildlife. This risk will be heightened if such wetlands are ecological traps - preferred habitats that confer lower fitness than another available habitat. Wetlands functioning as ecological traps could decrease both local and regional population persistence, and ultimately lead to extinctions. Most studies have examined how animals respond to changes in environmental conditions by measuring responses at the community and population levels, but studying ecological traps requires information on fitness and habitat preferences. Our current lack of knowledge of individual-level responses may therefore limit our capacity to manage wetland ecosystems effectively since ecological traps require different management practices to mitigate potential consequences. We conducted a global meta-analysis to characterise how animals respond to four key drivers of wetland alteration: agriculture, mining, restoration and urbanisation. Our overarching goal was to evaluate the ecological impacts of human alterations to wetland ecosystems, as well as identify current knowledge gaps that limit both the current understanding of these responses and effective wetland management. We extracted 1799 taxon-specific response ratios from 271 studies across 29 countries. Community- (e.g. richness) and population-level (e.g. density) measures within altered wetlands were largely comparable to those within reference wetlands. By contrast, individual fitness measures (e.g. survival) were often lower, highlighting the potential

  3. Surrounding land cover types as predictors of palustrine wetland vegetation quality in conterminous USA

    Science.gov (United States)

    Stapanian, Martin A.; Gara, Brian; Schumacher, William

    2018-01-01

    The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2 km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity.

  4. Remote sensing of wetlands at the Savannah River Plant

    International Nuclear Information System (INIS)

    Christensen, E.J.; Jensen, J.R.; Sharitz, R.R.

    1985-01-01

    The Savannah River Plant (SRP) occupies about 300 sq mi along a 10-mile stretch of the Savannah River. Large areas of wetlands cover the site, especially along tributary stream floodplains and the Savannah River. Some of these areas have been altered by cooling water discharges from nuclear production reactors onsite. To assess the effects of current and future plant operations on SRP and regional wetlands, an accurate quantitative survey was needed. Several studies were initiated to provide wetland acreage and distribution information: regional wetland inventories were provided from an analysis of LANDSAT multispectral scanner (MSS) satellite data. Wetlands were mapped throughout the entire Savannah River watershed and in the Savannah River floodplain. SRP wetlands were identified using a combination of LANDSAT MSS and Thematic Mapper satellite data and aerial photography. Wetlands in the SRP Savannah River swamp and thermally affected areas were mapped using high resolution MSS data collected from a low-flying aircraft. Vegetation communities in areas receiving cooling water discharges were then compared to surface temperatures measured from the airborne scanner at the same time to evaluate plant temperature tolerance. Historic changes to SRP wetlands from cooling water discharges were tabulated using aerial photography

  5. Vertical flow constructed wetlands for domestic wastewater treatment on tropical conditions: effect of several design parameters

    DEFF Research Database (Denmark)

    Bohorquez, Eliana; Paredes, Diego; Arias, Carlos Alberto

    Vertical flow constructed wetlands (VFWC) design and operation takes into account several variables which affect performance its performance. These aspects had been evaluated and documented among others in countries like USA, Denmark, Austria. In contrast, VFCW had not been studied in tropical...... countries and, specifically in Colombia, design and operation parameters are not defined yet. The objective of this study was evaluate the effects of filter medium, the feeding frequency and Heliconia psittacorum presence, a typical local plant, on the domestic wastewater treatment in tropical conditions....

  6. The geomorphology of wetlands in drylands: Resilience, nonresilience, or …?

    Science.gov (United States)

    Tooth, Stephen

    2018-03-01

    Over the last decade, much attention has focused on wetland resilience to disturbances such as extreme weather events, longer climate change, and human activities. In geomorphology and cognate disciplines, resilience is defined in various ways and has physical and socioeconomic dimensions but commonly is taken to mean the ability of a system to (A) withstand disturbance, (B) recover from disturbance, or (C) adapt and evolve in response to disturbance to a more desirable (e.g., stable) configuration. Most studies of wetland resilience have tended to focus on the more-or-less permanently saturated humid region wetlands, but whether the findings can be readily transferred to wetlands in drylands remains unclear. Given the natural climatic variability and overall strong moisture deficit characteristic of drylands, are such wetlands likely to be more resilient or less resilient? Focusing on wetlands in the South African drylands, this paper uses existing geomorphological, sedimentological, and geochronological data sets to provide the spatial (up to 50 km2) and temporal (late Quaternary) framework for an assessment of geomorphological resilience. Some wetlands have been highly resilient to environmental (especially climate) change, but others have been nonresilient with marked transformations in channel-floodplain structure and process connectivity having been driven by natural factors (e.g., local base-level fall, drought) or human activities (e.g., channel excavation, floodplain drainage). Key issues related to the assessment of wetland resilience include channel-floodplain dynamics in relation to geomorphological thresholds, wetland geomorphological 'life cycles', and the relative roles of natural and human activities. These issues raise challenges for the involvement of geomorphologists in the practical application of the resilience concept in wetland management. A key consideration is how geomorphological resilience interfaces with other dimensions of resilience

  7. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Selected Regional Wetland Subclasses, Yazoo Basin, Lower Mississippi River Alluvial Valley

    National Research Council Canada - National Science Library

    SMith, R

    2002-01-01

    .... However, a variety of other potential uses have been identified, including the determination of minimal effects under the Food Security Act, design of wetland restoration projects, and management of wetlands...

  8. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St. Lawrence River basin

    Science.gov (United States)

    Hudon, Christiane; Wilcox, Douglas; Ingram, Joel

    2006-01-01

    The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.

  9. Application of the soil perturbation index to evaluate created and restored wetlands

    Science.gov (United States)

    Rebecca Smith Maul; Marjorie M. Holland

    2000-01-01

    Biogeochemical properties of wetlands have recently been investigated to assess recovery of wetland ecosys-tems following human alteration. Analyses of soil samples have shown that the natural regeneration of timber-harvested wetlands exhibits predictable trends for soil organic matter, total organic carbon, total Kjeldahl nitrogen, and total phosphorus. Incorporating...

  10. Environmental monitoring and assessment of the water bodies of a pre-construction urban wetland.

    Science.gov (United States)

    Zuo, Shengpeng; Wan, Kun; Zhou, Shoubiao; Ye, Liangtao; Ma, Sumin

    2014-11-01

    It is planned that the Dayanghan Wetland in China will be transformed into a national park but little is known about its current water quality and pollution status. Thus, we monitored the physical and chemical characteristics of the Dayanghan Wetland, which showed that the water quality was generally good. However, the chemical oxygen demand was more than double the reference value, which may be attributable to previous tillage for vegetable crops and other farmlands. In addition, nickel and chromium caused low-level pollution in the water bodies of the Dayanghan Wetland. The mean trophic level index and nutrient quality index were 39.1 and 2.69, respectively. Both indices suggest that the water bodies of the Dayanghan Wetland are in a mesotrophic state and that no eutrophication has occurred. The study would provide a precise report on the status of environmental quality of the water bodies of a typical pre-construction wetland for the administration and decision of the local government and the planning agent.

  11. DIATOMS AS INDICATORS OF ISOLATED HERBACEOUS WETLAND CONDITION IN FLORIDA, USA

    Science.gov (United States)

    Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical-chemical parameters, were sampled from 70 small (~1 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to: 1) compare assemblage str...

  12. A Regional Guidebook for Conducting Functional Assessments of Forested Wetlands and Riparian Areas in the Ozark Mountains Region of Arkansas

    National Research Council Canada - National Science Library

    Klimas, Charles V; Murray, Elizabeth O; Langston, Henry; Pagan, Jody; Witsell, Theo; Foti, Thomas

    2008-01-01

    .... The Hydrogeomorphic Approach is a collection of concepts and methods for developing functional indices and subsequently using them to assess the capacity of a wetland to perform functions relative...

  13. Hydraulic loading, stability and water quality of Nakivubo wetland ...

    African Journals Online (AJOL)

    Nakivubo wetland, which has performed tertiary water treatment for Kampala city for the past 40 years, is ecologically stressed by agricultural and infrastructural developments. Field studies were carried out to assess the hydraulic loading, pollution profile, stability and water quality of this wetland. The upper and lower ...

  14. Determining wetland spatial extent and seasonal variations of the ...

    African Journals Online (AJOL)

    This study, done in the Witbank Dam Catchment in Mpumalanga Province of South Africa, explores a remote-sensing technique to delineate wetland extent and assesses the seasonal variations of the inundated area. The objective was to monitor the spatio-temporal changes of wetlands over time through remote sensing ...

  15. Assessing Wetland Health Using a Newly Developed Land Cover ...

    African Journals Online (AJOL)

    Citizen science combines environmental research with environmental education .... health of the wetland using land cover type impacts. Once the impact is ... to interpret the findings of the quantitative method using the qualitative findings.

  16. Coastal wetlands, sea level, and the dimensions of geomorphic resilience

    Science.gov (United States)

    Phillips, Jonathan D.

    2018-03-01

    Geomorphic system resilience is often perceived as an intrinsic property of system structure and interactions but is also related to idiosyncratic place and history factors. The importance of geographical and historical circumstances makes it difficult to generate categorical statements about geomorphic resilience. However, network-based analyses of system structure can be used to determine the dynamical stability (= resilience) based on generally applicable relationships and to determine scenarios of stability or instability. These provide guidelines for assessing place and history factors to assess resilience. A model of coastal wetlands is analyzed, based on interactions among relative sea level, wetland surface elevation, hydroperiod, vegetation, and sedimentation. The system is generally (but not always) dynamically unstable and non-resilient. Because of gradients of environmental factors and patchy distributions of microtopography and vegetation, a coastal wetland landscape may have extensive local variations in stability/resilience and in the key relationships that trigger instabilities. This is illustrated by a case study where dynamically unstable fragmentation is found in two nearby coastal wetlands in North Carolina's Neuse River estuary-Otter Creek Mouth and Anderson Creek. Neither is keeping pace with relative sea level rise, and both show unstable state transitions within the wetland system; but locally stable relationships exist within the wetland systems.

  17. Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods

    Science.gov (United States)

    Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.

    2016-01-01

    The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.

  18. The wetlands of Magdalena medio Antioqueno from a physical and socio-cultural perspective

    International Nuclear Information System (INIS)

    Caballero Acosta, Humberto; Durango Lopez, Consuelo; Giraldo Castro, Carlos Augusto

    2001-01-01

    Wetlands are ecosystems with environmental and ecological importance that require of a new methodological and legal focus that allows developing conservation policies in agreement with the natural and socio-cultural conditions. In the Magdalena Medio Antioqueno, CORANTIOQUIA region, were recognized 362 wetlands, divided in two main groups; in Puerto Nare and Puerto Berrio to the south prevails herbaceous wetlands without permanent surface water, locally known as Bajos. In Yondo the wetlands have permanent surface water. The environmental dynamic depends from the geomorphologic and hydrological conditions and are affected in a differential way by the human action. The region is the result of a long occupation process that begins in prehistoric times and had changed depending on the different historical moments. This complex social configuration has given origin to diverse perceptions and types of appropriation of the wetlands what explains the identified environmental circumstances

  19. Restored drill cuttings for wetlands creation: Results of a two year mesocosm approach to emulate field conditions under varying hydrologic regimes

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, G.P.; Hester, M.W.; Miller, S.; DesRoches, D.J.; Souther, R.F.; Childers, G.W.; Campo, F.M.

    1998-11-01

    It is well documented that Louisiana has the highest rate of wetland loss in the United States. Deep-water channel dredging and leveeing of the Mississippi River since the 1930s have interrupted the natural delta cycle that builds new marshes through sediment deposition. Many of the areas that are subsiding and deteriorating are isolated from riverine sediment sources; therefore alternative methods to deposit sediment and build marshes must be implemented. This project demonstrates that the earthen materials produced when drilling oil and gas wells can be used as a suitable substrate for growing wetland plants. Drilling fluids (muds) are used to lubricate drill bits and stabilize the earth around drill holes and become commingled with the earthen cuttings. Two processes have been reported to restore drill cuttings to acceptable levels by removal of any toxic components found in drilling muds. The main objective of this project was to assess the potential of drill cuttings processed by these two methods in terms of their ability to support wetland vegetation and potential toxicity.

  20. The role of emergent wetlands as potential rearing habitats for juvenile salmonids

    Science.gov (United States)

    Henning, Julie A.; Gresswell, Robert E.; Flemming, Ian A.

    2006-01-01

    A recent trend of enhancing freshwater emergent wetlands for waterfowl and other wildlife has raised concern about the effects of such measures on juvenile salmonids. We undertook this study to quantify the degree and extent of juvenile Pacific salmon Oncorhynchus spp. utilization of enhanced and unenhanced emergent wetlands within the floodplain of the lower Chehalis River, Washington, and to determine the fate of the salmon using them. Enhanced emergent wetlands contained water control structures that provided an outlet for fish emigration and a longer hydroperiod for rearing than unenhanced wetlands. Age-0 and age-1 coho salmon O. kisutch were the most common salmonid at all sites, enhanced wetlands having significantly higher age-1 abundance than unenhanced wetlands that were a similar distance from the main-stem river. Yearling coho salmon benefited from rearing in two enhanced wetland habitats, where their specific growth rate and minimum estimates of survival (1.43%/d by weight and 30%; 1.37%/d and 57%) were comparable to those in other side-channel rearing studies. Dissolved oxygen concentrations decreased in emergent wetlands throughout the season and approached the limits lethal to juvenile salmon by May or June each year. Emigration patterns suggested that age-0 and age-1 coho salmon emigrated as habitat conditions declined. This observation was further supported by the results of an experimental release of coho salmon. Survival of fish utilizing emergent wetlands was dependent on movement to the river before water quality decreased or stranding occurred from wetland desiccation. Thus, our results suggest that enhancing freshwater wetlands via water control structures can benefit juvenile salmonids, at least in the short term, by providing conditions for greater growth, survival, and emigration.

  1. Factors Influencing Farmers’ Willingness to Participate in Wetland Restoration: Evidence from China

    Directory of Open Access Journals (Sweden)

    Honggen Zhu

    2016-12-01

    Full Text Available The Poyang Lake wetland has been at the center of discussion in China’s wetland restoration initiative because of the extent of its ecosystem degradation. The purpose of this paper is to model farmers’ willingness to participate in wetland restoration and analyze factors that will affect farmers’ participation decisions. A household survey was conducted among 300 randomly selected farm-households in the Poyang Lake area, Jiangxi Province. A binary probit regression model is applied to investigate the impacts of farmer demographics, farm characteristics, and farmers’ perceptions of wetland and wetland restoration policies on willingness to participate in wetland restoration. Results show that farmers’ education level, household migrant members, number of dependents, household net income, farm type, and distance to urban areas have significant effects on farmers’ participation in wetland restoration. Farmers’ perceptions about the ecological values and benefits of wetlands and their knowledge about wetland restoration policies do not appear to significantly influence farmers’ willingness to participate. A gap is identified between awareness of the importance of wetland restoration and willingness to take actions to restore wetlands. Farm-households tend to weigh personal needs and economic conditions when making participation decisions.

  2. Testing a participatory integrated assessment(PIA) approach to select climate change adaptation actions to enhance wetland sustainability: The case of Poyang Lake region in China

    Institute of Scientific and Technical Information of China (English)

    HUANG; Li; YIN; Yongyuan; DU; De-Bin

    2015-01-01

    The necessity of mainstreaming climate adaptation strategies or policies into natural resource management plans has been recognized by the UNFCCC.The IPCC AR5 report suggests a growing demand for research to provide information for a deeper and more useful understanding of climate adaptation options,and indicates a lack of effective methods to meet this increasing demand of policymakers.In this respect,a participatory integrated assessment(PIA) approach is presented in this paper to provide an effective means to mainstream wetland climate change adaptation in rural sustainable development strategies,and thus to reduce climate vulnerability and to enhance rural community livelihood.The PIA approach includes a series of research activities required to assess climate impacts on wetland ecosystems,and to prioritize adaptation responses.A range of adaptation options that address key aspects of the wetland ecosystem resilience and concerns are evaluated against community based on sustainable development indicators.The PIA approach is able to identify desirable adaptation options which can then be implemented to improve wetland ecosystem health and to enhance regional sustainable development in a changing climate.For illustration purpose,the PIA was applied in a case study in Poyang Lake(PYL) region,a critical wetland and water ecosystem in central China with important international biodiversity linkages,and a locale for key policy experiments with ecosystem rehabilitation.The PIA was used to facilitate the integration of wetland climate change adaptation in rural sustainable development actions with multi-stakeholders participation.In particular,the case shows how the PIA can be designed and implemented to select effective and practical climate change adaptation options to enhance ecosystem services management and to reduce resource use conflicts and rural poverty.Worked in partnership with multi-stakeholders and assisted with a multi-criteria decision making tool

  3. Modeling the effects of tile drain placement on the hydrologic function of farmed prairie wetlands

    Science.gov (United States)

    Werner, Brett; Tracy, John; Johnson, W. Carter; Voldseth, Richard A.; Guntenspergen, Glenn R.; Millett, Bruce

    2016-01-01

    The early 2000s saw large increases in agricultural tile drainage in the eastern Dakotas of North America. Agricultural practices that drain wetlands directly are sometimes limited by wetland protection programs. Little is known about the impacts of tile drainage beyond the delineated boundaries of wetlands in upland catchments that may be in agricultural production. A series of experiments were conducted using the well-published model WETLANDSCAPE that revealed the potential for wetlands to have significantly shortened surface water inundation periods and lower mean depths when tile is placed in certain locations beyond the wetland boundary. Under the soil conditions found in agricultural areas of South Dakota in North America, wetland hydroperiod was found to be more sensitive to the depth that drain tile is installed relative to the bottom of the wetland basin than to distance-based setbacks. Because tile drainage can change the hydrologic conditions of wetlands, even when deployed in upland catchments, tile drainage plans should be evaluated more closely for the potential impacts they might have on the ecological services that these wetlands currently provide. Future research should investigate further how drainage impacts are affected by climate variability and change.

  4. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent

    Energy Technology Data Exchange (ETDEWEB)

    Türker, Onur Can [Faculty of Science and Letters, Department of Biology, Aksaray University, Aksaray (Turkey); Böcük, Harun, E-mail: hbocuk@anadolu.edu.tr [Faculty of Science, Department of Biology, Anadolu University, Eskişehir (Turkey); Yakar, Anıl [Faculty of Science, Department of Biology, Anadolu University, Eskişehir (Turkey)

    2013-05-15

    Highlights: ► We assessed the phytoremediation ability of a polyculture constructed wetland (PCW) to treat boron (B) from mine effluent. ► B in mine effluent decreased from 187 mg l{sup −1} to 123 mg l{sup −1} (32% removal rate) through the PCW. ► Estimated methane production, energy yields and electrical energy yields of the PCW increased with biomass production. ► Cattails accumulated more than 250 mg kg{sup −1} B and common reed accumulated 38 mg kg{sup −1} B at the end of the experiment. -- Abstract: This study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions. To this end, an experimental wetland was vegetated with common reed (Phragmites australis) and cattails (Typha latifolia), and mine effluent was moved through the wetland. The results of the present study show that B concentrations of the mine effluent decreased from 187 to 123 mg l{sup −1} (32% removal rate) on average. The T. latifolia individuals absorbed a total of 250 mg kg{sup −1} whereas P. australis in the PCW absorbed a total of 38 mg kg{sup −1} B during the research period.

  5. THE USE OF UAS FOR ASSESSING AGRICULTURAL SYSTEMS IN AN WETLAND IN TANZANIA IN THE DRY- AND WET-SEASON FOR SUSTAINABLE AGRICULTURE AND PROVIDING GROUND TRUTH FOR TERRA-SAR X DATA

    Directory of Open Access Journals (Sweden)

    H.-P. Thamm

    2013-08-01

    Full Text Available The paper describes the assessment of the vegetation and the land use systems of the Malinda Wetland in the Usambara Mountains in Tanzania with the parachute UAS (unmanned aerial system SUSI 62. The area of investigation was around 8 km2. In two campaigns, one in the wet season and one in the dry season, approximately 2600 aerial photos of the wetland were taken using the parachute UAS SUSI 62; of these images, ortho-photos with a spatial resolution of 20 cm x 20 cm, were computed with an advanced block bundle approach. The block bundles were geo-referenced using control points taken with differential GPS. As well a digital surface model (DSM of the wetland was created out of the UAS photos. Using the ortho-photos it is possible to assess the different land use systems; the differences in the phenology of the vegetation between wet and dry season can be investigated. In addition, the regionalisation of bio mass samples on smaller test plots was possible. The ortho-photos and the DSM derived from the UAS proved to be a valuable ground truth for the interpretation of Terra-SAR X images. The campaigns demonstrated that SUSI 62 was a suitable, robust tool to obtain the valuable information under harsh conditions.

  6. Sustainable wetland management and support of ecosystem services

    Science.gov (United States)

    Smith, Loren M.; Euliss, Ned H.; Wilcox, Douglas A.; Brinson, Mark M.

    2009-01-01

    This article is a follow-up on a previous piece in the National Wetlands Newsletter in which we outlined problems associated with a static, local approach to wetland management versus an alternative that proposes a temporal and geomorphic approach (Euliss et al. 2009). We extend that concept by drawing on companion papers recently published in the journal Wetlands (Euliss et al. 2008, Smith et al. 2008). Here we highlight reasons for the failure of many managed wetlands to provide a suite of ecosystem services (e.g., carbon storage, diodiversity, ground-water recharge, contaminant filtering, floodwater storage). Our principal theme is that wetland management is best approached by giving consideration to the hydrogeomorphic processes that maintain productive ecosystems and by removing physical and social impediments to those processes. Traditional management actions are often oriented toward maintaining static conditions in wetlands without considering the temporal cycles that wetlands need to undergo or achieve productivity for specific groups of wildlife, such as waterfowl. Possibly more often, a manager's ability to influence hydrogeomorphic processes is restricted by activities in surrounding watersheds. These could be dams, for example, which do not allow management of flood-pulse processes essential to productivity of riparian systems. In most cases, sediments and nutrients associated with land use in contributing watersheds complicate management of wetlands for a suite of services, including wildlife. Economic or policy forces far-removed from a wetland often interact to prevent occurrence of basic ecosystem processes. Our message is consistent with recommendation of supply-side sustainability of Allen et al. (2002) in which ecosystems are managed "for the system that produces outputs rather than the outputs themselves."

  7. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  8. "Wetlands: Water Living Filters?",

    OpenAIRE

    Dordio, Ana; Palace, A. J.; Pinto, Ana Paula

    2008-01-01

    Human societies have indirectly used natural wetlands as wastewater discharge sites for many centuries. Observations of the wastewater depuration capacity of natural wetlands have led to a greater understanding of the potential of these ecosystems for pollutant assimilation and have stimulated the development of artificial wetlands systems for treatment of wastewaters from a variety of sources. Constructed wetlands, in contrast to natural wetlands, are human-made systems that are designed, bu...

  9. Restoring coastal wetlands that were ditched for mosquito control: a preliminary assessment of hydro-leveling as a restoration technique

    Science.gov (United States)

    Smith, Thomas J.; Tiling, Ginger; Leasure, Pamela S.

    2007-01-01

    The wetlands surrounding Tampa Bay, Florida were extensively ditched for mosquito control in the 1950s. Spoil from ditch construction was placed adjacent to the wetlands ditches creating mound-like features (spoil-mounds). These mounds represent a loss of 14% of the wetland area in Tampa Bay. Spoil mounds interfere with tidal flow and are locations for non-native plants to colonize (e.g., Schinus terebinthifolius). Removal of the spoil mounds to eliminate exotic plants, restore native vegetation, and re-establish natural hydrology is a restoration priority for environmental managers. Hydro-leveling, a new technique, was tested in a mangrove forest restoration project in 2004. Hydro-leveling uses a high pressure stream of water to wash sediment from the spoil mound into the adjacent wetland and ditch. To assess the effectiveness of this technique, we conducted vegetation surveys in areas that were hydro-leveled and in non-hydro-leveled areas 3 years post-project. Adult Schinus were reduced but not eliminated from hydro-leveled mounds. Schinus seedlings however were absent from hydro-leveled sites. Colonization by native species was sparse. Mangrove seedlings were essentially absent (≈2 m−2) from the centers of hydro-leveled mounds and were in low density on their edges (17 m−2) in comparison to surrounding mangrove forests (105 m−2). Hydro-leveling resulted in mortality of mangroves adjacent to the mounds being leveled. This was probably caused by burial of pneumatophores during the hydro-leveling process. For hydro-leveling to be a useful and successful restoration technique several requirements must be met. Spoil mounds must be lowered to the level of the surrounding wetlands. Spoil must be distributed further into the adjacent wetland to prevent burial of nearby native vegetation. Finally, native species may need to be planted on hydro-leveled areas to speed up the re-vegetation process.

  10. An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat

    Science.gov (United States)

    Tavernia, Brian G.; Lyons, James E.; Loges, Brian W.; Wilson, Andrew; Collazo, Jaime A.; Runge, Michael C.

    2016-01-01

    Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.

  11. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason

    2016-01-01

    Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.

  12. Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring.

    Science.gov (United States)

    Demattê, José Alexandre Melo; Horák-Terra, Ingrid; Beirigo, Raphael Moreira; Terra, Fabrício da Silva; Marques, Karina Patrícia Prazeres; Fongaro, Caio Troula; Silva, Alexandre Christófaro; Vidal-Torrado, Pablo

    2017-07-15

    Wetlands are important ecosystems characterized by redoximorphic environments producing typical soil forming processes and organic carbon accumulation. Assessments and management of these areas are dependent on knowledge about soil characteristics and variability. By reflectance spectroscopy, information about soils can be obtained since their spectral behaviors are directly related to their chemical, physical, and mineralogical properties reflecting the pedogenetic processes and environment conditions. Our aims were: (a) to characterize the main soil classes of wetlands regarding their spectral behaviors in VIS-NIR-SWIR (350-2500 nm) and relate them to pedogenesis and environmental conditions, (b) to determine spectral ranges (bands) with greater expression of the main soil properties, (c) to identify spectral variations and similarities between hydromorphic soils from wetlands and other soils under different moisture conditions, and (d) to propose spectral models to quantify some chemical and physical soil properties used as environmental quality indicators. Nine soil profiles from the Pantanal region (Mato Grosso State, Brazil) and one from the Serra do Espinhaço Meridional (Minas Gerais State, Brazil) were investigated. Spectral morphology interpretation allowed identifying horizon differences regarding shape, absorption features and reflectance intensity. Some pedogenetic processes of wetland soils related to organic carbon accumulation and oxide iron variation were identified by spectra. Principal Component Analysis allowed discriminating soils from wetland and outside this area (oxidic environment). Quantification of organic carbon was possible with R 2 of 0.90 and low error. Quantification of clay content was masked by soils with organic carbon content over 2% where it was not possible to quantify with high R 2 and low error both properties when dataset has soil samples with high organic carbon content. By reflectance spectroscopy, important

  13. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    Science.gov (United States)

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  14. A Physically-based Model for Predicting Soil Moisture Dynamics in Wetlands

    Science.gov (United States)

    Kalin, L.; Rezaeianzadeh, M.; Hantush, M. M.

    2017-12-01

    Wetlands are promoted as green infrastructures because of their characteristics in retaining and filtering water. In wetlands going through wetting/drying cycles, simulation of nutrient processes and biogeochemical reactions in both ponded and unsaturated wetland zones are needed for an improved understanding of wetland functioning for water quality improvement. The physically-based WetQual model can simulate the hydrology and nutrient and sediment cycles in natural and constructed wetlands. WetQual can be used in continuously flooded environments or in wetlands going through wetting/drying cycles. Currently, WetQual relies on 1-D Richards' Equation (RE) to simulate soil moisture dynamics in unponded parts of the wetlands. This is unnecessarily complex because as a lumped model, WetQual only requires average moisture contents. In this paper, we present a depth-averaged solution to the 1-D RE, called DARE, to simulate the average moisture content of the root zone and the layer below it in unsaturated parts of wetlands. DARE converts the PDE of the RE into ODEs; thus it is computationally more efficient. This method takes into account the plant uptake and groundwater table fluctuations, which are commonly overlooked in hydrologic models dealing with wetlands undergoing wetting and drying cycles. For verification purposes, DARE solutions were compared to Hydrus-1D model, which uses full RE, under gravity drainage only assumption and full-term equations. Model verifications were carried out under various top boundary conditions: no ponding at all, ponding at some point, and no rain. Through hypothetical scenarios and actual atmospheric data, the utility of DARE was demonstrated. Gravity drainage version of DARE worked well in comparison to Hydrus-1D, under all the assigned atmospheric boundary conditions of varying fluxes for all examined soil types (sandy loam, loam, sandy clay loam, and sand). The full-term version of DARE offers reasonable accuracy compared to the

  15. Applications of remote sensing and GIS technologies to wetland assessment and monitoring at a DOE facility

    International Nuclear Information System (INIS)

    Mackey, H.E.

    1993-01-01

    The Savannah River Site (SRS), a 777-km 2 site, located in the Upper Coastal Plain of South Carolina, was established in the early 1950s for the production of nuclear materials to support the defense needs of the United States. The SRS was closed to the public and shortly after its formation, much of the uplands and previous farmlands were planted to managed pine plantations for the US Department of Energy by the US Forest Service. More than 7500 hectares of wetlands, ranging from a large, 3000-hectare swamp, to extensive bottomland hardwood forests, to isolated upland Carolina bays, were present on the SRS at the time of its formation. During the subsequent 40-yr operation of the site, five stream systems and portions of the Savannah River swamp on the SRS were influenced by discharges of once-through cooling water from site operations. In addition, two large cooling lakes were constructed, Par Pond in 1958 and L Lake in 1985, to support reactor operations. Thus, the wetlands of the SRS have had a variety of influences, ranging from the protection afforded by the exclusion of the public from the site, past construction of major facilities, and discharges from site operations. Evaluation, assessment, and monitoring long-term changes to the extensive and varied wetlands of the SRS are formidable tasks. Archived remote sensing data of a variety of types, along with the advances in computer technologies that allow the integration of land-use/land-cover geographic information system (GIS) data layer and related GIS data bases, are providing the necessary tools and information to integrate wetlands protection and management into an effective operational environment

  16. Distribution of mountain wetlands and their response to Holocene climate change in the Hachimantai Volcanic Groups, northeastern Japan

    Science.gov (United States)

    Sasaki, N.; Sugai, T.

    2017-12-01

    Mountain wetlands, natural peatlands or lakes, with narrow catchment areas need abundant water supply and topography retaining water because of unstable water condition. This study examines wetland distribution with a focus on topography and snow accumulation, and discuss wetland evolution responding to Holocene climate change in the Hachimantai Volcanic Group, northeastern Japan, where the East Asian winter monsoon brings heavier snow and where has many wetlands of varied origin: crater lakes and wetlands in nivation hollows on original volcanic surfaces, and wetlands in depressions formed by landslides. We identified and classified wetlands using aerial photographs and 5-m and 10-m digital elevation models. Wetlands on the original volcanic surfaces tend to be concentrated under the small scarps with much snow or on saddles of the mountain ridge where snowmelt from surrounding slopes maintains a moist environment. More lake type wetlands are formed in the saddle than in the snowdrifts. That may represent that the saddles can correct more recharge water and may be a more suitable topographic condition for wetland formation and endurance. On the contrary, wetlands on landslides lie at the foot of the scarps where spring water can be abundantly supplied, regardless of snow accumulation. We used lithological analysis, 14C dating, tephra age data, and carbon contents of wetland cores to compare the evolution of wetlands, one (the Oyachi wetland) within a huge landslide and three (the Appi Highland wetlands) outside of a landslide area. We suggest that the evolution of the wetland in the landslide is primarily influenced by landslide movements and stream dissection rather than climate change. In the Appi Highland wetlands, peatlands appeared much later and at the almost same time in the Medieval Warm Period. We suggest that the development of mountain wetlands outside of landslide areas is primarily related to climate changes. Responsiveness of mountain wetlands to

  17. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    Science.gov (United States)

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  18. Performance assessment and microbial diversity of two pilot scale multi-stage sub-surface flow constructed wetland systems.

    Science.gov (United States)

    Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G

    2016-08-01

    This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.

  19. Management practices and controls on methane emissions from sub-tropical wetlands

    Science.gov (United States)

    DeLucia, Nicholas; Casa-Nova Gomez, Nuri; Bernacchi, Carl

    2015-04-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on any combination of climate conditions, natural and anthropogenic disturbances, or ecosystem perturbations. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are the main source for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. CH4 is one of the most damaging green house gases with current emission estimates ranging from 55 to 231 Tg CH4 yr-1. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04"N, 81o21'8.56"W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified

  20. Detecting changes in wetland morphology using a geographic information system: Historical database application at the Savannah River Site

    International Nuclear Information System (INIS)

    Christel-Rose, L.M.

    1993-01-01

    New policies regarding the ''no net loss'' of wetlands has presented resource managers and GIS analysts with a challenging ecological application. Historical aerial photography provides a temporal record of conditions over time. Access to temporal data sources is beneficial when appraising wetland gain and loss because man-made disturbances can have both short and long term effects on wetland communities. This is particularly true when trying to assess the existing communities for the specific purpose of restoration and reclamation of the ecologic structure and function of the community prior to a disturbance. Remediation efforts can be optimized when definitive documentation exists of the original communities. The Geographic Information System (GIS) is a powerful tool for integrating these data sets and performing spatial and temporal analyses in support of ecological applications

  1. Metro Multnomah Wetlands - Multnomah Channel Wetland Restoration Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multnomah Channel Wetland Restoration Monitoring Project characterizes wetlands use by juvenile salmonids and other fishes in the Multnomah Channel Marsh Natural...

  2. Wetlands: The changing regulatory landscape

    International Nuclear Information System (INIS)

    Glick, R.M.

    1993-01-01

    Protection of wetlands became a national issue in 1988 when President George Bush pledged no net loss of wetlands in the US under his open-quotes environmental presidency.close quotes As wetlands became a national issue, the job of protecting them became an obligation for many groups, including hydro-power developers. Now, when a site selected for development includes an area that may be classified as a wetland, the developer quickly discovers the importance of recognizing and protecting these natural habitats. Federal legislation severely limits development of wetland, and most states increase the restrictions with their own wetlands regulations. The difficulty of defining wetlands complicates federal and state enforcement. Land that appears to be dry may in fact be classified as a wetland. So, even if a site appears dry, potential hydro developers must confirm whether or not any jurisdictional wetlands are present. Regulated lands include much more than marshes and swamps. Further complicating the definition of wetlands, a recent court decision found that even artificially created wetlands, such as man-made ponds, may be subject to regulation. Hydro developers must be aware of current regulatory requirements before they consider development of any site that may contain wetlands. To be certain that a site is open-quotes buildableclose quotes from the standpoint of wetlands regulation, a developer must verify (with the help of state agencies) that the property does not contain any jurisdictional wetlands. If it does, the regulatory process before development becomes much more complicated. For the short term, uncertainty abounds and extreme caution is in order. Because the regulatory process has become so complex and an agreeable definition of wetlands so elusive, the trend among the Corps and collaborating agencies is to constrict nationwide permits in favor of narrowing the jurisdictional definition of wetlands

  3. Characterizing the Surface Connectivity of Depressional Wetlands: Linking Remote Sensing and Hydrologic Modeling Approaches

    Science.gov (United States)

    Christensen, J.; Evenson, G. R.; Vanderhoof, M.; Wu, Q.; Golden, H. E.; Lane, C.

    2017-12-01

    Surface connectivity of wetlands in the 700,000 km2 Prairie Pothole Region of North America (PPR) can occur through fill-spill and fill-merge mechanisms, with some wetlands eventually spilling into stream/river systems. These wetland-to-wetland and wetland-to-stream connections vary both spatially and temporally in PPR watersheds and are important to understanding hydrologic and biogeochemical processes in the landscape. To explore how to best characterize spatial and temporal variability in aquatic connectivity, we compared three approaches, 1) hydrological modeling alone, 2) remotely-sensed data alone, and 3) integrating remotely-sensed data into a hydrological model. These approaches were tested in the Pipestem Creek Watershed, North Dakota across a drought to deluge cycle (1990-2011). A Soil and Water Assessment Tool (SWAT) model was modified to include the water storage capacity of individual non-floodplain wetlands identified in the National Wetland Inventory (NWI) dataset. The SWAT-NWI model simulated the water balance and storage of each wetland and the temporal variability of their hydrologic connections between wetlands during the 21-year study period. However, SWAT-NWI only accounted for fill-spill, and did not allow for the expansion and merging of wetlands situated within larger depressions. Alternatively, we assessed the occurrence of fill-merge mechanisms using inundation maps derived from Landsat images on 19 cloud-free days during the 21 years. We found fill-merge mechanisms to be prevalent across the Pipestem watershed during times of deluge. The SWAT-NWI model was then modified to use LiDAR-derived depressions that account for the potential maximum depression extent, including the merging of smaller wetlands. The inundation maps were used to evaluate the ability of the SWAT-depression model to simulate fill-merge dynamics in addition to fill-spill dynamics throughout the study watershed. Ultimately, using remote sensing to inform and validate

  4. Carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CFRAW)

    International Nuclear Information System (INIS)

    Ciborowski, J.J.; Dixon, G.; Foote, L.; Liber, K.; Smits, J.E.

    2007-01-01

    The remediation and ecology of oilsands constructed wetlands was discussed with reference to a project known as the Carbon dynamics, Food web structure and Reclamation strategies in Athabasca oil sands Wetlands (CFRAW). This joint project between 7 mining partners and 5 universities documents how tailings in constructed wetlands modify maturation leading to natural conditions in a reclaimed landscape. Since wetlands are expected to make up 20-50 per cent of the final reclamation landscape of areas surface mined for oil sands in northeastern Alberta, the project focuses on how quickly wetlands amended with reclamation materials approach the conditions seen in reference wetland systems. This study provided a conceptual model of carbon pathways and budgets to evaluate how the allocation of carbon among compartments changes as newly formed wetlands mature in the boreal system. It is likely that succession and community development will accelerate if constructed wetlands are supplemented with stockpiled peat or topsoil. The bitumens and naphthenic acids found in wetlands constructed with mine tailings materials are initially toxic, but may ultimately serve as an alternate source of carbon once they degrade or are metabolized by bacteria. This study evaluated the sources, biological uptake, pathways, and movement through the food web of materials used by the biota in constructed wetlands, with particular reference to how productivity of new wetlands is maintained. Net ecosystem productivity is being monitored along with rates of organic carbon accumulation from microbial, algal, and macrophyte production, and influx of outside materials. The rates of leaf litter breakdown and microbial respiration are also being monitored to determine how constituents speed or slow food web processes of young and older wetlands. Carbon and nitrogen stable isotope measurements indicate which sources are incorporated into the food web as wetlands age, and how this influences community

  5. Recent land cover history and nutrient retention in riparian wetlands

    Science.gov (United States)

    Hogan, D.M.; Walbridge, M.R.

    2009-01-01

    Wetland ecosystems are profoundly affected by altered nutrient and sediment loads received from anthropogenic activity in their surrounding watersheds. Our objective was to compare a gradient of agricultural and urban land cover history during the period from 1949 to 1997, with plant and soil nutrient concentrations in, and sediment deposition to, riparian wetlands in a rapidly urbanizing landscape. We observed that recent agricultural land cover was associated with increases in Nitrogen (N) and Phosphorus (P) concentrations in a native wetland plant species. Conversely, recent urban land cover appeared to alter receiving wetland environmental conditions by increasing the relative availability of P versus N, as reflected in an invasive, but not a native, plant species. In addition, increases in surface soil Fe content suggests recent inputs of terrestrial sediments associated specifically with increasing urban land cover. The observed correlation between urban land cover and riparian wetland plant tissue and surface soil nutrient concentrations and sediment deposition, suggest that urbanization specifically enhances the suitability of riparian wetland habitats for the invasive species Japanese stiltgrass [Microstegium vimenium (Trinius) A. Camus]. ?? 2009 Springer Science+Business Media, LLC.

  6. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  7. Methodology to assess the value of Florida wetlands to fish and wildlife: an annotated bibliography

    OpenAIRE

    Leadon, Monica A.

    1981-01-01

    The following bibliography was compiled for use by the Cooperative Fish and Wildlife Unit and their cooperators as an aid in determining research priorities in Florida wetlands. Emphasis was placed on studies done on the economic value of wetlands, values to fish and wildlife, methods of sampling in a wetland area, and restoration practices. Material was generally gathered from studies done in the southeast, however, some relevant national papers were also included. (35 page...

  8. Modelling transport of water and solutes in future wetlands in Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vikstroem, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Vaexjoe (Sweden)

    2006-03-15

    The Forsmark area consists of a number of natural wetlands. As a part of the evaluation of wetlands in the safety assessment for the area, possible future wetlands are being studied with respect to hydrology and transport mechanisms. A sensitivity analyses is performed to point out the governing parameters for the wetland hydraulics. The analysis of future wetlands is carried out using the hydrological model system Mike SHE. Mike SHE has been used to describe the near-surface hydrology for a regional model area in Forsmark. Three types of areas have been chosen. Today's lake Bolundfjaerden is because of its shallow depth likely to develop into a mire in the future. As it is situated in the downstream part of the regional model area, the runoff to the lake from upstream surface water system is significant. Lake Eckarfjaerden is situated in the upstream part of the catchment at a higher altitude and with a smaller inflow. Lake Puttan is situated above a planned layout of the repository and has a potential to receive discharges from a repository. It also lies in the downstream part of a large discharge area. The topography of the future mires is assumed to be flat, up to today's mean water level in each lake. To transport the surface runoff through the wetland, streams or water courses are assumed to form within the peat. The analyses of future wetlands in the Forsmark area show that the hydraulic conditions that exists today will somewhat alter as the peat is formed. For Bolundsfjaerden, where there during present conditions are weak discharge areas, a recharge area has formed during the summer. This can be explained by the amount of surface water that forms on the surface which increases the head elevation in the upper soil layers. The same holds for Eckarfjaerden, while Puttan after the peat has developed still is a discharge area due to its naturally strong discharge position close to the sea. Different vegetation and development stages for the peat have

  9. Modelling transport of water and solutes in future wetlands in Forsmark

    International Nuclear Information System (INIS)

    Vikstroem, Maria; Gustafsson, Lars-Goeran

    2006-03-01

    The Forsmark area consists of a number of natural wetlands. As a part of the evaluation of wetlands in the safety assessment for the area, possible future wetlands are being studied with respect to hydrology and transport mechanisms. A sensitivity analyses is performed to point out the governing parameters for the wetland hydraulics. The analysis of future wetlands is carried out using the hydrological model system Mike SHE. Mike SHE has been used to describe the near-surface hydrology for a regional model area in Forsmark. Three types of areas have been chosen. Today's lake Bolundfjaerden is because of its shallow depth likely to develop into a mire in the future. As it is situated in the downstream part of the regional model area, the runoff to the lake from upstream surface water system is significant. Lake Eckarfjaerden is situated in the upstream part of the catchment at a higher altitude and with a smaller inflow. Lake Puttan is situated above a planned layout of the repository and has a potential to receive discharges from a repository. It also lies in the downstream part of a large discharge area. The topography of the future mires is assumed to be flat, up to today's mean water level in each lake. To transport the surface runoff through the wetland, streams or water courses are assumed to form within the peat. The analyses of future wetlands in the Forsmark area show that the hydraulic conditions that exists today will somewhat alter as the peat is formed. For Bolundsfjaerden, where there during present conditions are weak discharge areas, a recharge area has formed during the summer. This can be explained by the amount of surface water that forms on the surface which increases the head elevation in the upper soil layers. The same holds for Eckarfjaerden, while Puttan after the peat has developed still is a discharge area due to its naturally strong discharge position close to the sea. Different vegetation and development stages for the peat have been

  10. National Wetlands Inventory Lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear wetland features (including selected streams, ditches, and narrow wetland bodies) mapped as part of the National Wetlands Inventory (NWI). The National...

  11. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  12. Freshwater Wetlands: A Citizen's Primer.

    Science.gov (United States)

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  13. Hydraulic and hydrological aspects of an evapotranspiration-constructed wetland combined system for household greywater treatment.

    Science.gov (United States)

    Filho, Fernando Jorge C Magalhães; Sobrinho, Teodorico Alves; Steffen, Jorge L; Arias, Carlos A; Paulo, Paula L

    2018-05-12

    Constructed wetlands systems demand preliminary and primary treatment to remove solids present in greywater (GW) to avoid or reduce clogging processes. The current paper aims to assess hydraulic and hydrological behavior in an improved constructed wetland system, which has a built-in anaerobic digestion chamber (AnC), GW is distributed to the evapotranspiration and treatment tank (CEvaT), combined with a subsurface horizontal flow constructed wetland (SSHF-CW). The results show that both the plants present in the units and the AnC improve hydraulic and volumetric efficiency, decrease short-circuiting and improve mixing conditions in the system. Moreover, the hydraulic conductivity measured on-site indicates that the presence of plants in the system and the flow distribution pattern provided by the AnC might reduce clogging in the SSHF-CW. It is observed that rainfall enables salt elimination, thus increasing evapotranspiration (ET), which promotes effluent reduction and enables the system to have zero discharge when reuse is unfeasible.

  14. Wise use of wetlands: current state of protection and utilization of Chinese wetlands and recommendations for improvement.

    Science.gov (United States)

    Wang, Yanxia; Yao, Yong; Ju, Meiting

    2008-06-01

    Wetland protection and utilization sometimes appear to be in conflict, but promoting the wise use of wetlands can solve this problem. All countries face the challenge of sustainable development of wetlands to a greater or lesser extent, but the problem is especially urgent in developing countries, such as China, that want to accelerate their economic development without excessive environmental cost. Chinese wetlands contribute greatly to economic development, but improper use of these natural resources has endangered their existence. It is thus necessary to provide scientific guidance to managers and users of wetlands. In this paper, we analyze the present status of Chinese wetland protection and utilization, and discuss problems in six categories: a lack of public awareness of the need for wetland protection; insufficient funding for wetland protection and management; an imperfect legal system to protect wetlands; insufficient wetland research; lack of coordination among agencies and unclear responsibilities; and undeveloped technologies related to wetland use and protection. The wise use of Chinese wetlands will require improvements in four main areas: increased wetland utilization research, scientific management of wetland utilization, improved laws and regulations to protect wetlands, and wider dissemination of wetland knowledge. Based on these categories, we propose a framework for the optimization of wetland use by industry to provide guidance for China and other countries that cannot sacrifice economic benefits to protect their wetlands.

  15. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Prairie Potholes

    National Research Council Canada - National Science Library

    Gilbert, Michael C; Whited, P. M; Clairain, Jr., Ellis J; Smith, R. D

    2006-01-01

    .... However, a variety of other potential uses have been identified, including the determination of minimal effects under the Food Security Act, design of wetland restoration projects, and management of wetlands...

  16. Pipeline corridors through wetlands

    International Nuclear Information System (INIS)

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity

  17. Iron removal from acid mine drainage by wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Sexstone, A.J.; Skousen, J.G.; Calabrese, J.; Bhumbla, D.K.; Cliff, J.; Sencindiver, J.C.; Bissonnette, G.K.

    1999-07-01

    Neutralization of acid mine drainage (AMD) in man-made cattail (Typha) wetlands was investigated over a four-year period utilizing experimental models constructed in a greenhouse. A naturally occurring AMD (430 mg/L Fe, 5 mg/L Mn, 2,900 mg/L sulfate, pH 2.75) was collected in the field and added to the greenhouse wetlands at 60.5 L/day. Monthly water samples from four depths (10, 20, 30, and 40 cm) were obtained from the influent, midpoint, and effluent locations of the wetland. During the first year of AMD treatment, near neutral pH (6.5) and anoxic conditions ({minus}300 mV) were observed in subsurface sediments of wetlands. The wetlands retained an estimated 65% of the total applied iron in the first year, primarily in the exchangeable, organically bound, and oxide form. During later years, 20 to 30% of the influent iron was retained predominantly as precipitated oxides. Iron sulfides resulting form sulfate reduction accounted for less than 5% of the iron retained, and were recovered primarily as monosulfides during the first year and as disulfides in the fourth year. Improvement in effluent pH was primarily attributed to limestone dissolution in the anaerobic subsurface sediments, which decreased with time. Constructed wetlands exhibit finite lives for effective AMD treatment and provisions should be made for their periodic rejuvenation or replacement.

  18. Analysis and Mapping of the Spectral Characteristics of Fractional Green Cover in Saline Wetlands (NE Spain Using Field and Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Manuela Domínguez-Beisiegel

    2016-07-01

    Full Text Available Inland saline wetlands are complex systems undergoing continuous changes in moisture and salinity and are especially vulnerable to human pressures. Remote sensing is helpful to identify vegetation change in semi-arid wetlands and to assess wetland degradation. Remote sensing-based monitoring requires identification of the spectral characteristics of soils and vegetation and their correspondence with the vegetation cover and soil conditions. We studied the spectral characteristics of soils and vegetation of saline wetlands in Monegros, NE Spain, through field and satellite images. Radiometric and complementary field measurements in two field surveys in 2007 and 2008 were collected in selected sites deemed as representative of different soil moisture, soil color, type of vegetation, and density. Despite the high local variability, we identified good relationships between field spectral data and Quickbird images. A methodology was established for mapping the fraction of vegetation cover in Monegros and other semi-arid areas. Estimating vegetation cover in arid wetlands is conditioned by the soil background and by the occurrence of dry and senescent vegetation accompanying the green component of perennial salt-tolerant plants. Normalized Difference Vegetation Index (NDVI was appropriate to map the distribution of the vegetation cover if the green and yellow-green parts of the plants are considered.

  19. Hydrologic response in karstic-ridge wetlands to rainfall and evapotranspiration, central Florida, 2001-2003

    Science.gov (United States)

    Knowles, Leel; Phelps, G.G.; Kinnaman, Sandra L.; German, Edward R.

    2005-01-01

    Two internally drained karstic wetlands in central Florida-Boggy Marsh at the Hilochee Wildlife Management Area and a large unnamed wetland at the Lyonia Preserve-were studied during 2001-03 to gain a better understanding of the net-recharge function that these wetlands provide, the significance of exchanges with ground water with regard to wetland water budgets, and the variability in wetland hydrologic response to a range of climate conditions. These natural, relatively remote and unaltered wetlands were selected to provide a baseline of natural wetland hydrologic variability to which anthropogenic influences on wetland hydrology could be compared. Large departures from normal rainfall during the study were fortuitous, and allowed monitoring of hydrologic processes over a wide range of climate conditions. Wetland responses varied greatly as a result of climate conditions that ranged from moderate drought to extremely moist. Anthropogenic activities influenced water levels at both study sites; however, because these activities were brief relative to the duration of the study, sufficient data were collected during unimpacted periods to allow for the following conclusions to be made. Water budgets developed for Boggy Marsh and the Lyonia large wetland showed strong similarity between the flux terms of rainfall, evaporation, net change in storage, and the net ground-water exchange residual. Runoff was assumed to be negligible. Of the total annual flux at Boggy Marsh, rainfall accounted for 45 percent; evaporation accounted for 25 percent; net change in storage accounted for 25 percent; and the net residual accounted for 5 percent. At the Lyonia large wetland, rainfall accounted for 44 percent; evaporation accounted for 29 percent; net change in storage accounted for 21 percent; and the net residual accounted for 6 percent of the total annual flux. Wetland storage and ground-water exchange were important when compared to the total water budget at both wetlands. Even

  20. Recovery of black-necked swans, macrophytes and water quality in a Ramsar wetland of southern Chile: Assessing resilience following sudden anthropogenic disturbances.

    Science.gov (United States)

    Jaramillo, Eduardo; Lagos, Nelson A; Labra, Fabio A; Paredes, Enrique; Acuña, Emilio; Melnick, Daniel; Manzano, Mario; Velásquez, Carlos; Duarte, Cristian

    2018-07-01

    In 2004 migration and mortality for unknown reasons of the herbivorous Black necked swan (Cygnus melancorhyphus (Molina, 1782)) occurred within the Río Cruces wetland (southern Chile), a Ramsar Site and nature sanctuary. Before 2004, this wetland hosted the largest breeding population of this water bird in the Neotropic Realm. The concurrent decrease in the spatial occurrence of the aquatic plant Egeria densa Planch. 1849 - the main food source of swans - was proposed as a cause for swan migration and mortality. Additionally, post-mortem analyses carried out on swans during 2004 showed diminished body weight, high iron loads and histopathological abnormalities in their livers, suggesting iron storage disease. Various hypotheses were postulated to describe those changes; the most plausible related to variations in water quality after a pulp mill located upstream the wetland started to operate in February 2004. Those changes cascaded throughout the stands of E. densa whose remnants had high iron contents in their tissues. Here we present results of a long-term monitoring program of the wetland components, which show that swan population abundance, body weights and histological liver conditions recovered to pre-disturbance levels in 2012. The recovery of E. densa and iron content in plants throughout the wetland, also returned to pre-disturbance levels in the same 8-year time period. These results show the temporal scale over which resilience and natural restoring processes occur in wetland ecosystems of temperate regions such as southern Chile. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Aquatic Coleoptera assemblages in protected wetlands of North-western Spain

    Directory of Open Access Journals (Sweden)

    Amaia Pérez-Bilbao

    2014-02-01

    Full Text Available Wetlands are diverse and productive ecosystems endangered by human pressure, which degradation implies a biodiversity loss worldwide. Among the biological assemblages of these habitats, aquatic Coleoptera is one of the most diverse and useful groups when assessing the ecological conditions of the ecosystems they inhabit. The aims of the present study were to analyze the diversity and composition of aquatic Coleoptera assemblages in 24 wetlands protected by the Natura 2000 network of North-western Spain and the influence of environmental variables on the distribution of species, in order to detect differences between the different types of standing water habitats. A total of 11,136 individuals of 105 species belonging to 12 families of aquatic Coleoptera (Gyrinidae, Haliplidae, Noteridae, Paelobiidae, Dytiscidae, Helophoridae, Hydrochidae, Hydrophilidae, Hydraenidae, Scirtidae, Elmidae and Dryopidae were collected. In general, wetlands presented high richness and diversity values, Dytiscidae and Hydrophilidae having the highest species richness. Most of recorded species have a wide biogeographical distribution and only 12 endemic ones were captured. Cluster and Non-Metric Multi-Dimensional Scaling (NMDS analyses showed the clustering of the studied ponds and lagoons in four groups based on biological data. In general, the wetlands of each group seem to have distinct aquatic Coleoptera faunas, as showed by the most representative species. A combination of altitude, SST and hydroperiod was the best explaining factor of the distribution of the species throughout the study area. This study shows the high biodiversity of standing water habitats in North-western Spain and the usefulness of water beetles in establishing habitat typologies.

  2. Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing the Functions of Flat and Seasonally Inundated Depression Wetlands on the Highland Rim

    Science.gov (United States)

    2013-06-01

    soil (dirt roads, construction areas, etc.) 82 Cropland (poor condition) 80 High- density residential (1/8-acre lots) 75 Cropland (fair condition) 75...Cropland (good condition) 70 Low- density residential (1-acre lots) 68 Forest (grazed) 66 Green space (lawns, parks, golf courses, etc.) 61...VCATCH.  Increased surface runoff from residential development. Stormwater from commercial development directed to the wetland, thus increasing

  3. Renovation of food-processing wastewater by a Riparian wetland

    Science.gov (United States)

    Baillie, Priscilla W.

    1995-01-01

    Treated wastewater from a food-processing plant, together with intermittent outflow from a hypereutrophic pond, were discharged over a 20-year period to a cattail-dominated wetland and hence to a small stream. Organics and nutriet levels in the effluent were comparable to levels in domestic wastewater. Fifteen variables were monitored upstream and downstream from the plant over 18 months. Means for most variables were slightly higher downstream, but differences between stations were not statistically significant. Wetland processing of nitrogen was markedly affected by a change from drought to flood conditions. After accounting for dilution, the overall effect of the wetland on the effluent was to reduce biological oxygen demand 43.7%, ammonia N 46.3%, nitrate/nitrite N 17.4%, and conductivity 15.6%. However, total suspended solids were increased 41.4%, total organic nitrogen 28.8%, and total phosphorus 24.7%. It was concluded that the wetland effectively renovated the effluent but the removal efficiency would be improved if the effluent were pretreated to reduce phosphorus and dispersed to increase residence time in the wetland.

  4. National Wetlands Inventory Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland area features mapped as part of the National Wetlands Inventory (NWI). The National Wetlands Inventory is a national program sponsored by the US Fish and...

  5. On factors influencing air-water gas exchange in emergent wetlands

    Science.gov (United States)

    Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.

    2018-01-01

    Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

  6. Mine-drainage treatment wetland as habitat for herptofaunal wildlife

    Science.gov (United States)

    Lacki, Michael J.; Hummer, Joseph W.; Webster, Harold J.

    1992-07-01

    Land reclamation techniques that incorporate habitat features for herptofaunal wildlife have received little attention. We assessed the suitability of a wetland, constructed for the treatment of mine-water drainage, for supporting herptofaunal wildlife from 1988 through 1990 using diurnal and nocturnal surveys. Natural wetlands within the surrounding watershed were also monitored for comparison. The treatment wetland supported the greatest abundance and species richness of herptofauna among the sites surveyed. Abundance was a function of the frog density, particularly green frogs ( Rana clamitans) and pickerel frogs ( R. palustris), while species richness was due to the number of snake species found. The rich mix of snake species present at the treatment wetland was believed due to a combination of an abundant frog prey base and an amply supply of den sites in rock debris left behind from earlier surface-mining activities. Nocturnal surveys of breeding male frogs demonstrated highest breeding activity at the treatment wetland, particularly for spring peepers ( Hyla crucifer). Whole-body assays of green frog and bullfrog ( R. catesbeiana) tissues showed no differences among sites in uptake of iron, aluminum, and zinc; managanese levels in samples from the treatment wetland were significantly lower than those from natural wetlands. These results suggest that wetlands established for water quality improvement can provide habitat for reptiles and amphibians, with the species composition dependent on the construction design, the proximity to source populations, and the degree of acidity and heavy-metal concentrations in drainage waters.

  7. Estimating coastal wetland gain and losses in Galveston County and Cameron County, Texas, USA.

    Science.gov (United States)

    Entwistle, Clare; Mora, Miguel A; Knight, Robert

    2018-01-01

    Coastal wetlands serve many important ecological services. One of these important ecological services is their use as storm buffers. Coastal wetlands provide habitat for migratory birds and aquatic species and can improve water quality. In the late 1990s, the US Fish and Wildlife Service (USFWS) published a study outlining the trends of coastal wetlands from the 1950s to early 1990s. In the present study, wetland gains and losses were calculated for Galveston County and Cameron County, Texas, USA, between 2001 and 2011. Maps from the National Land Cover Database were used to determine wetland areas for the years 2001, 2006, and 2011. ArcGIS was used to compare land cover between the study periods to determine overall wetland losses and gains. A statistical analysis was performed between wetland loss and population data to determine whether increased population density led to a higher loss of wetlands. Our analysis indicates that wetland loss is still occurring, however at a lower rate of loss (0.14%-0.18% annually) than the USFWS study predicted earlier (2.7%). In addition, the majority of wetland losses were due to conversion to upland areas. We found a positive correlation between increased population density and decreased wetland area; however, the trend was not significant. The present study shows how the majority of wetland loss in Galveston and Cameron counties is occurring as a result of increased upland areas. In addition, the present study shows that the use of online mapping systems can be used as a low-cost alternative to assess land changes when field tests are not feasible. Integr Environ Assess Manag 2018;14:120-129. © 2017 SETAC. © 2017 SETAC.

  8. Desert wetlands in the geologic record

    Science.gov (United States)

    Pigati, Jeff S.; Rech, Jason A.; Quade, Jay; Bright, Jordon; Edwards, L.; Springer, A.

    2014-01-01

    Desert wetlands support flora and fauna in a variety of hydrologic settings, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Over time, eolian, alluvial, and fluvial sediments become trapped in these settings by a combination of wet ground conditions and dense plant cover. The result is a unique combination of clastic sediments, chemical precipitates, and organic matter that is preserved in the geologic record as ground-water discharge (GWD) deposits. GWD deposits contain information on the timing and magnitude of past changes in water-table levels and, therefore, are a potential source of paleohydrologic and paleoclimatic information. In addition, they can be important archeological and paleontological archives because desert wetlands provide reliable sources of fresh water, and thus act as focal points for human and faunal activities, in some of the world's harshest and driest lands. Here, we review some of the physical, sedimentological, and geochemical characteristics common to GWD deposits, and provide a contextual framework that researchers can use to identify and interpret geologic deposits associated with desert wetlands. We discuss several lines of evidence used to differentiate GWD deposits from lake deposits (they are commonly confused), and examine how various types of microbiota and depositional facies aid in reconstructing past environmental and hydrologic conditions. We also review how late Quaternary GWD deposits are dated, as well as methods used to investigate desert wetlands deeper in geologic time. We end by evaluating the strengths and limitations of hydrologic and climatic records derived from GWD deposits, and suggest several avenues of potential future research to further develop and utilize these unique and complex systems.

  9. A Regional Guidebook for Conducting Functional Assessments of Wetland and Riparian Forests in the Ouachita Mountains and Crowley's Ridge Regions of Arkansas

    National Research Council Canada - National Science Library

    Klimas, Charles V; Murray, Elizabeth O; Langston, Henry; Witsell, Theo; Foti, Thomas; Holbrook, Rob

    2006-01-01

    .... The Hydrogeomorphic Approach is a collection of concepts and methods for developing functional indices and subsequently using them to assess the capacity of a wetland to perform functions relative...

  10. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  11. Constructed wetlands : the Canadian context

    Energy Technology Data Exchange (ETDEWEB)

    Speer, S.; Champagne, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering

    2006-07-01

    Large volumes of wastewater from livestock and production facilities must be treated to minimize the contamination of waterways in agricultural areas. This paper investigated the use of constructed wetlands as a lower-cost and efficient method of treating agricultural wastewaters. The study found that while constructed wetlands required limited maintenance, temperature dependency of the constructed wetlands systems is a limiting factor in their widespread implementation. Lower operating temperatures are only overcome by constructing larger wetlands systems, which require a substantial amount of land. The Canadian climate poses significant challenges to the implementation of constructed wetlands, which become inoperative during winter months. Plants and bacteria normally become dormant or die during winter months, which can create a lag in wetland treatment during the initial months of operation in the Spring. Snowmelt and added rainfall in the Spring can also create a high flow within the wetland cells, as many constructed wetlands rely on runoff as a feed source. Washout of bacteria can occur. Wastewater storage systems or further engineering of the wetlands may be required. It was concluded that insulating wetland cells will maintain a warmer operating temperature, while the addition of an aeration system will increase the treatment efficiency of the wetland during winter months. 17 refs., 5 tabs., 2 figs.

  12. National Wetlands Inventory Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  13. Do geographically isolated wetlands influence landscape functions?

    Science.gov (United States)

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie C.; Basu, Nandita; Calhoun, Aram J.K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward S.; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2015-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  14. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Rainwater Basin Depressional Wetlands in Nebraska

    National Research Council Canada - National Science Library

    Stutheit, Randy

    2004-01-01

    .... However, a variety of other potential uses have been identified, including the determination of minimal effects under the Food Security Act, design of wetland restoration projects, and management...

  15. Phenological Indicators of Vegetation Recovery in Wetland Ecosystems

    Science.gov (United States)

    Taddeo, S.; Dronova, I.

    2017-12-01

    Landscape phenology is increasingly used to measure the impacts of climatic and environmental disturbances on plant communities. As plants show rapid phenological responses to environmental changes, variation in site phenology can help characterize vegetation recovery following restoration treatments and qualify their resistance to environmental fluctuations. By leveraging free remote sensing datasets, a phenology-based analysis of vegetation dynamics could offer a cost-effective assessment of restoration progress in wetland ecosystems. To fulfill this objective, we analyze 20 years of free remote sensing data from NASA's Landsat archive to offer a landscape-scale synthesis of wetland restoration efforts in the Sacramento-San Joaquin Delta of California, USA. Through an analysis of spatio-temporal changes in plant phenology and greenness, we assess how 25 restored wetlands across the Delta have responded to restoration treatments, time, and landscape context. We use a spline smoothing approach to generate both site-wide and pixel-specific phenological curves and identify key phenological events. Preliminary results reveal a greater variability in greenness and growing season length during the initial post-restoration years and a significant impact of landscape context in the time needed to reach phenological stability. Well-connected sites seem to benefit from an increased availability of propagules enabling them to reach peak greenness and maximum growing season length more rapidly. These results demonstrate the potential of phenological analyses to measure restoration progress and detect factors promoting wetland recovery. A thorough understanding of wetland phenology is key to the quantification of ecosystem processes including carbon sequestration and habitat provisioning.

  16. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    Science.gov (United States)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  17. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics

    Science.gov (United States)

    James C. Lynch,; Phillippe Hensel,; Cahoon, Donald R.

    2015-01-01

    The National Park Service, in response to the growing evidence and awareness of the effects of climate change on federal lands, determined that monitoring wetland elevation change is a top priority in North Atlantic Coastal parks (Stevens et al, 2010). As a result, the NPS Northeast Coastal and Barrier Network (NCBN) in collaboration with colleagues from the U.S. Geological Survey (USGS) and The National Oceanic and Atmospheric Administration (NOAA) have developed a protocol for monitoring wetland elevation change and other processes important for determining the viability of wetland communities. Although focused on North Atlantic Coastal parks, this document is applicable to all coastal and inland wetland regions. Wetlands exist within a narrow range of elevation which is influenced by local hydrologic conditions. For coastal wetlands in particular, local hydrologic conditions may be changing as sea levels continue to rise. As sea level rises, coastal wetland systems may respond by building elevation to maintain favorable hydrologic conditions for their survival. This protocol provides the reader with instructions and guidelines on designing a monitoring plan or study to: A) Quantify elevation change in wetlands with the Surface Elevation Table (SET). B) Understand the processes that influence elevation change, including vertical accretion (SET and Marker Horizon methods). C) Survey the wetland surface and SET mark to a common reference datum to allow for comparing sample stations to each other and to local tidal datums. D) Survey the SET mark to monitor its relative stability. This document is divided into two parts; the main body that presents an overview of all aspects of monitoring wetland elevation dynamics, and a collection of Standard Operating Procedures (SOP) that describes in detail how to perform or execute each step of the methodology. Detailed instruction on the installation, data collection, data management and analysis are provided in this report

  18. A review of the ecohydrology of the Sakumo wetland in Ghana.

    Science.gov (United States)

    Nonterah, Cynthia; Xu, Yongxin; Osae, Shiloh; Akiti, Thomas T; Dampare, Samuel B

    2015-11-01

    The Sakumo wetland is an internationally recognized Ramsar site located in a largely urban area and provides essential ecological and social services to wetland community dwellers. Despite its importance, the wetland has over the years been subjected to human interference resulting in considerable risks of deteriorating water quality, biodiversity loss, and drying up of most parts of the wetland. The conversion of land for residential and agricultural uses has significantly altered the hydrological characteristics of the land surface and modified pathways and flow of water into the wetland. Other drivers identified included drainage (mainly as runoff from agricultural farms), anthropogenic pressure (waste discharge) due to infrastructure development associated with urbanization, chemical contamination as a result of industrial and household pollution, and unsustainable fishing practices (overfishing). The purpose of the study was to review some of the physical and chemical properties of the Sakumo wetland on the changing wetland resources with emphasis on water quality. Rapid urbanization, industrialization, and overexploitation of wetland resources were identified as key causative factors affecting the wetland functions. Their effects on the wetland among others include increased nutrient and toxic chemical load which has resulted in reduced wetland surface water quality and decrease in species diversity. pH of the wetland waters was generally alkaline which is characteristic of water bodies influenced by seawater under oxygenated conditions. The increasing trends of electrical conductivity, phosphates, ammonia, nitrate, and nitrite, though small, point to deteriorating water quality in the wetland. The lagoon water was observed to be heavily polluted with nutrients particularly phosphate. The sequence of nutrient in the wetland was found to be in the order of PO4-P>NH3-N>NO3-N>NO2-N. These, if not checked, will result in further deterioration of the wetland

  19. Rates of BTEX Biodegradation under Nitrate Reducing Conditions in Wetland Sediments Impacted by Contaminated Groundwater

    Science.gov (United States)

    Olson, L. K.; McGuire, J. T.; Cozzarelli, I.; Smith, E. W.; Kneeshaw, T.

    2010-12-01

    Biodegradation rates are often controlled by dynamic interactions that occur at mixing interfaces between water masses of differing redox state. This study seeks to understand the controls on rates of BTEX (benzene, toluene, ethylbenzene and m,p,o-xylenes) degradation at a mixing interface by using in-situ experiments to simulate contaminated aquifer water containing nitrate discharging to a methanogenic wetland. BTEX biodegradation was evaluated during “dry” conditions (2009) and “wet” conditions (2010) in a shallow wetland near Bemidji, MN using innovative in-situ microcosms (ISMs) to measure rates of change over 8 weeks (2009) and 9 weeks (2010). ISM samplers contained an inner chamber filled with wetland sediments that were allowed to incubate for 2 weeks. This chamber was then closed to the surrounding environment and amended with test solution composed of contaminated groundwater augmented with tracer (bromide), nitrate and BTEX spike. Analysis of ISM sediments suggests that nitrate reduction and biodegradation rates are a function of both mineralogical and microbiological controls. Loss of nitrate, interpreted as nitrate reduction, was observed in both the dry and wet years with reduction slightly faster in the dry year (2.21mg/L/day versus 1.59 mg/L/day). Nitrate reduction was likely coupled to oxidation of various electron donors present in the system, including not only BTEX but also naturally occurring labile organic matter (ex. acetate) and inorganic electron donors (ex. Fe2+). BTEX degradation rates were considerably higher during the “wet” year than the “dry” year, with the fastest rates occurring immediately following test solution additions. For example, in the first 2 days of the “wet” ISM experiments degradation rates were 57.97ug/L/day for Benzene, 73.24ug/L/day for Toluene, 12.37ug/L/day for Ethyl Benzene and 85.61ug/L/day for Xylene compared to an ISM from the dry year which had slower degradation rates of 2.83ug/L/day for

  20. Quantifying geographic variation in the climatic drivers of midcontinent wetlands with a spatially varying coefficient model.

    Science.gov (United States)

    Roy, Christian

    2015-01-01

    The wetlands in the Prairie Pothole Region and in the Great Plains are notorious for their sensitivity to weather variability. These wetlands have been the focus of considerable attention because of their ecological importance and because of the expected impact of climate change. Few models in the literature, however, take into account spatial variation in the importance of wetland drivers. This is surprising given the importance spatial heterogeneity in geomorphology and climatic conditions have in the region. In this paper, I use spatially-varying coefficients to assess the variation in ecological drivers in a number of ponds observed over a 50-year period (1961-2012). I included the number of ponds observed the year before on a log scale, the log of total precipitation, and mean maximum temperature during the four previous seasons as explanatory variables. I also included a temporal component to capture change in the number of ponds due to anthropogenic disturbance. Overall, fall and spring precipitation were most important in pond abundance in the west, whereas winter and summer precipitation were the most important drivers in the east. The ponds in the east of the survey area were also more dependent on pond abundance during the previous year than those in the west. Spring temperature during the previous season influenced pond abundance; while the temperature during the other seasons had a limited effect. The ponds in the southwestern part of the survey area have been increasing independently of climatic conditions, whereas the ponds in the northeast have been steadily declining. My results underline the importance of accounting the spatial heterogeneity in environmental drivers, when working at large spatial scales. In light of my results, I also argue that assessing the impacts of climate change on wetland abundance in the spring, without more accurate climatic forecasting, will be difficult.

  1. Quantifying geographic variation in the climatic drivers of midcontinent wetlands with a spatially varying coefficient model.

    Directory of Open Access Journals (Sweden)

    Christian Roy

    Full Text Available The wetlands in the Prairie Pothole Region and in the Great Plains are notorious for their sensitivity to weather variability. These wetlands have been the focus of considerable attention because of their ecological importance and because of the expected impact of climate change. Few models in the literature, however, take into account spatial variation in the importance of wetland drivers. This is surprising given the importance spatial heterogeneity in geomorphology and climatic conditions have in the region. In this paper, I use spatially-varying coefficients to assess the variation in ecological drivers in a number of ponds observed over a 50-year period (1961-2012. I included the number of ponds observed the year before on a log scale, the log of total precipitation, and mean maximum temperature during the four previous seasons as explanatory variables. I also included a temporal component to capture change in the number of ponds due to anthropogenic disturbance. Overall, fall and spring precipitation were most important in pond abundance in the west, whereas winter and summer precipitation were the most important drivers in the east. The ponds in the east of the survey area were also more dependent on pond abundance during the previous year than those in the west. Spring temperature during the previous season influenced pond abundance; while the temperature during the other seasons had a limited effect. The ponds in the southwestern part of the survey area have been increasing independently of climatic conditions, whereas the ponds in the northeast have been steadily declining. My results underline the importance of accounting the spatial heterogeneity in environmental drivers, when working at large spatial scales. In light of my results, I also argue that assessing the impacts of climate change on wetland abundance in the spring, without more accurate climatic forecasting, will be difficult.

  2. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    Science.gov (United States)

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  3. Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands

    Science.gov (United States)

    Zhao, Yanyun; Lu, Zhaohua; Liu, Jingtao; Hu, Shugang

    2017-12-01

    A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determining the composition and characteristics of the plant communities involved. This study determined and characterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhouwan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (each⩾6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon-Wiener index, was observed to be between the Qinhuangdao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.

  4. Fringe wetlands

    International Nuclear Information System (INIS)

    Lugo, A.E.

    1990-01-01

    Fringe wetlands are characterized by the dominance of few species, a clear species zonation, synchrony of ecological processes with episodic events, and simplicity in the structure of vegetation. The structure and ecosystem dynamics of fringe forested wetlands are presented with emphasis on saltwater wetlands because they have been studied more than freshwater ones. The study areas were Caribbean and Florida mangroves. Fringe wetlands are found on the water edge of oceans, inland estuaries, and lakes. Water motion in the fringe is bi-directional and perpendicular to the forest and due mostly to tidal energy in oceanic and estuarine fringes. in lakes, water moves in and out of the fringe under the influence of wind, waves, or seiches. some fringe forests are occasionally flushed by terrestrial runoff or aquifer discharge. In contrast, fringe forests located on small offshore islands or steep coastal shroes are isolated from terrestrial runoff or aquifer discharge, and their hydroperiod is controlled by tides and waves only. Literature reviews suggest that ecosystem parameters such as vegetation structure, tree growth, primary productivity, and organic matter in sediments respond proportionally to hydrologic energy. Human activity that impacts on fringe forested wetlands include harvesting of trees, oil pollution and eutrophication. 72 refs., 12 figs., 9 tabs

  5. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    Science.gov (United States)

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  6. Constructed Wetlands for Treatment of Combined Sewer Overflow in the US: A Review of Design Challenges and Application Status

    Directory of Open Access Journals (Sweden)

    Wendong Tao

    2014-11-01

    Full Text Available As combined sewer systems and centralized wastewater treatment facilities age, many communities in the world are challenged by management of combined sewer overflow (CSO. Constructed wetlands are considered to be one of the green infrastructure solutions to CSOs in the US. Despite the wide application of constructed wetlands to different types of wastewaters, the stochastic and intermittent nature of CSO presents challenges for design and performance assessment of constructed wetlands. This paper reviews the application status of CSO constructed wetlands in the US, assesses the benefits of CSO constructed wetlands, identifies challenges to designing CSO constructed wetlands, and proposes design considerations. This review finds that constructed wetlands are effective in CSO treatment and relatively less expensive to build than comparable grey infrastructure. Constructed wetlands not only remove pollutants, but also mitigate the event-associated flow regime. The design challenges include incorporating considerations of green infrastructure into permit requirements, determining design capacity for highly variable flows, requiring pretreatment, and needing adaptive design and intensive monitoring. Simultaneous monitoring of flow rate and water quality at both the inflow and outflow of CSO constructed wetlands is required for performance assessment and needed to support design, but is rarely available.

  7. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    Science.gov (United States)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  8. A comparison of the vegetation and soils of natural, restored, and created coastal lowland wetlands in Hawai‘i

    Science.gov (United States)

    Meris Bantilan-Smith; Gregory L. Bruland; Richard A. MacKenzie; Adonia R. Henry; Christina R. Ryder

    2009-01-01

    The loss of coastal wetlands throughout the Hawaiian Islands has increased the numbers of created (CW) and restored (RW) wetlands. An assessment of these wetlands has yet to occur, and it has not been determined whether CWs and RWs provide the same functions as natural wetlands (NWs). To address these concerns, vegetation and soil characteristics of 35 wetlands were...

  9. Exposure and Figure Out of Climate Induced Alterations in the Wetlands of Banglades

    Science.gov (United States)

    Siddiquee, S. A.; Rahman, M. Z.

    2015-12-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  10. Mapping wetlands in Nova Scotia with multi-beam RADARSAT-2 Polarimetric SAR, optical satellite imagery, and Lidar data

    Science.gov (United States)

    Jahncke, Raymond; Leblon, Brigitte; Bush, Peter; LaRocque, Armand

    2018-06-01

    Wetland maps currently in use by the Province of Nova Scotia, namely the Department of Natural Resources (DNR) wetland inventory map and the swamp wetland classes of the DNR forest map, need to be updated. In this study, wetlands were mapped in an area southwest of Halifax, Nova Scotia by classifying a combination of multi-date and multi-beam RADARSAT-2 C-band polarimetric SAR (polSAR) images with spring Lidar, and fall QuickBird optical data using the Random Forests (RF) classifier. The resulting map has five wetland classes (open-water/marsh complex, open bog, open fen, shrub/treed fen/bog, swamp), plus lakes and various upland classes. Its accuracy was assessed using data from 156 GPS wetland sites collected in 2012 and compared to the one obtained with the current wetland map of Nova Scotia. The best overall classification was obtained using a combination of Lidar, RADARSAT-2 HH, HV, VH, VV intensity with polarimetric variables, and QuickBird multispectral (89.2%). The classified image was compared to GPS validation sites to assess the mapping accuracy of the wetlands. It was first done considering a group consisting of all wetland classes including lakes. This showed that only 69.9% of the wetland sites were correctly identified when only the QuickBird classified image was used in the classification. With the addition of variables derived from lidar, the number of correctly identified wetlands increased to 88.5%. The accuracy remained the same with the addition of RADARSAT-2 (88.5%). When we tested the accuracy for identifying wetland classes (e.g. marsh complex vs. open bog) instead of grouped wetlands, the resulting wetland map performed best with either QuickBird and Lidar, or QuickBird, Lidar, and RADARSAT-2 (66%). The Province of Nova Scotia's current wetland inventory and its associated wetland classes (aerial-photo interpreted) were also assessed against the GPS wetland sites. This provincial inventory correctly identified 62.2% of the grouped wetlands

  11. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network.

    Science.gov (United States)

    Osland, Michael J; Griffith, Kereen T; Larriviere, Jack C; Feher, Laura C; Cahoon, Donald R; Enwright, Nicholas M; Oster, David A; Tirpak, John M; Woodrey, Mark S; Collini, Renee C; Baustian, Joseph J; Breithaupt, Joshua L; Cherry, Julia A; Conrad, Jeremy R; Cormier, Nicole; Coronado-Molina, Carlos A; Donoghue, Joseph F; Graham, Sean A; Harper, Jennifer W; Hester, Mark W; Howard, Rebecca J; Krauss, Ken W; Kroes, Daniel E; Lane, Robert R; McKee, Karen L; Mendelssohn, Irving A; Middleton, Beth A; Moon, Jena A; Piazza, Sarai C; Rankin, Nicole M; Sklar, Fred H; Steyer, Greg D; Swanson, Kathleen M; Swarzenski, Christopher M; Vervaeke, William C; Willis, Jonathan M; Wilson, K Van

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used

  12. Wetlands & Deepwater Habitats - MO 2012 East West Gateway Wetlands (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Cowardin’s Classification of Wetlands and Deep Water Habitats of the United States (http://www.npwrc.usgs.gov/resource/wetlands/classwet/index.htm), together with...

  13. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    Science.gov (United States)

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    how wetlands are affected by human activities. Freshwater wetlands are unique and complex ecosystems defined by characteristic properties. Wetlands usually have standing water during at least part of the year, although water depths can vary from a few inches to as much as several feet from one wetland to another. The hydrologic behavior of wetlands is influenced by drainage basin characteristics, as well as by natural variations in climate. Wetlands in central Florida (especially forested wetlands) often have acidic waters that are darkly stained from organic substances released by decomposing leaves and other plant material. Wetlands are characterized by biogeochemical cycles in which vital elements such as carbon, nitrogen, phosphorus, and others are transformed as they move between wetland soils and sediments, the open water, and the atmosphere. Wetlands are populated with plants that can thrive under conditions of saturated soils and low dissolved-oxygen concentrations. The bottoms of many wetlands, especially marshes, are covered with decayed plant material that can accumulate over time to form brown peat or black muck soils. Wetlands are inhabited by animals that need standing water to complete some or all of their life cycles, and they also provide periodic food, water, and shelter for many other animals that spend most of their lives on dry land. The complex and interrelated components of wetlands directly affect one another and there are numerous feedback mechanisms.

  14. Wetlands Research Program. Wetland Evaluation Technique (WET). Volume 2. Methodology.

    Science.gov (United States)

    1987-10-01

    to waves taller than I ft? • " Guidelines: 1 "Sufficient" is defined as the height of vegetation or relief multiplied * by length of vegetation or...Sci., Interim Rep. No. 3, Gloucester Point, VA. 52 pp. 203 VI. 4 WET 2.0 Simmons, E. G. 1957. An ecological survey of the Upper Laguna Madre of Texas...A wetland class characterized by vegetation that is 6 m or taller . Fringe Wetland - Fringe wetlands along a channel (i.e.. river, stream, etc.)are

  15. Does water-level fluctuation affect mercury methylation in wetland soils?

    Energy Technology Data Exchange (ETDEWEB)

    Branfireun, B.A.; Mitchell, C.P.J.; Iraci, J.M. [Toronto Univ., ON (Canada). Dept. of Geography; Krabbenhoft, D.P. [United States Geological Survey, Middleton, WI (United States); Fowle, D.A. [Kansas Univ., Lawrence, KS (United States). Dept. of Geology; Neudahl, L. [Minnesota Power, Duluth, MN (United States)

    2006-07-01

    Mercury (Hg) concentrations in fish vary considerably in freshwater lakes and reservoirs. However, the variations are not generally consistent with physical factors such as basin characteristics, wetland cover or lake chemistry. Pronounced differences in Hg concentrations in fish have been noted in the reservoirs of the St. Louis River system near Duluth Minnesota. The differences were observed between headwater reservoir systems with seasonal flooding and drawdown, and a peaking reservoir with approximately daily water level fluctuations during seasonal lower flow periods. It was suggested that these differences could be attributed to water level fluctuations in the reservoir which influenced the actual production of methylmercury (MeHg) in the surrounding wetland soils. In response to this hypothesis, the authors investigated the role of water level fluctuation in the production and mobilization of MeHg in sediments from wetlands that lie adjacent to a headwater reservoir, a peaking reservoir, and a nearby natural flowage lake used as a control. Preliminary field surveys of the wetland soils revealed that although the average MeHg concentrations in the headwater and peaking reservoir wetlands were not considerably different, both were much higher than the natural lake. Each site demonstrated high variability, but maximum MeHg concentrations ranged from 29.2 ng/g for the peaking reservoir to 4.44 ng/g at the natural lake. A laboratory experiment was therefore performed in which sediments from each wetland were subjected to different water level regimes. The purpose was to assess Hg methylation potential. Stable Hg isotopes were used at the beginning and end of the experiment. In order to determine if water level fluctuation can significantly change the methylation potential of wetland soils on its own, the microbial consortia will also be assessed during the laboratory experiment.

  16. Use of Isotopic Techniques for the Assessment of Hydrological Processes in Wetlands (Cienaga Colombia)

    Energy Technology Data Exchange (ETDEWEB)

    Betancur, T.; Santa, D.; Palacio, P.; Palacio, C.; Wills, B.; Hoyos, D. A. [Universidad de Antioquia, Medellin (Colombia)

    2013-07-15

    The Cienaga Colombia wetland is located in the Bajo Cauca Antioqueno region where the 'Man' river flows into the Cauca River. Hydrological processes on the Cienaga Colombia wetland are complex because of the interactive effects of both local and regional elements, associated with a typical tropical wet climatic regime. In this groundwater dependent wetland hydrological studies have been conducted, including hydrochemical analyses and isotope tracers, to describe and understand the interactions between groundwater and surface water, not only for the wetland itself but also for the entire catchment area. Rain samples (five year record) were used to obtain the LML: {delta}{sup 2}H = 8.03 {delta}{sup 18}O +9.9. The evaporation line is: {delta}{sup 2}H = 5.9 {delta}{sup 18}O - 7.3. According to the analyses, both groundwater and surface waters have the same isotopic signatures. Unsustainable land use practices along with current and predicted global environmental changes may cause negative impacts on the hydrological functioning of the region, affecting primarily, but not exclusively, evapotranspiration-recharge processes and the sustainability of the entire system. (author)

  17. Diatom-based models for inferring water chemistry and hydrology in temporary depressional wetlands

    CSIR Research Space (South Africa)

    Riato, L

    2017-08-01

    Full Text Available Information on the response of temporary depressional wetland diatoms to human-induced disturbances is a limited and important component for the development of temporary wetland biological assessments in human-modified landscapes. Establishing a...

  18. Water Quality Assessment of Streams and Wetlands in a Fast Growing East African City

    Directory of Open Access Journals (Sweden)

    Niels De Troyer

    2016-03-01

    Full Text Available The combination of rapid urbanization, industrialization, population growth, and low environmental awareness poses a major threat to worldwide valuable freshwater resources, which provide important ecosystem services to humans. There is an urgent need to monitor and assess these resources, as this information is indispensable for sustainable decision-making and management. In this context, we analyzed the chemical and ecological water quality of the riverine environment of a fast growing city in Southwest Ethiopia for which we proposed possible remediation options that were evaluated with an empirical model. The chemical and ecological water quality was assessed at 53 sampling locations using the oxygen Prati index and the ETHbios, which is a biotic index based on macroinvertebrates. In addition, a microbiological analysis was performed to estimate the degree of fecal contamination. Finally, we analyzed the relationship between the oxygen content and the organic pollution to simulate the effect of organics removal from waste streams on the chemical water quality. Our results showed that the average values for dissolved oxygen (4.2 mg DO·L−1 and nutrients (0.9 mg oPO43−·L−1 and 12.8 mg TAN·L−1 exceeded international standards. Moreover, high turbidity levels revealed that land erosion is a severe problem in the region. Along the rivers, a significant increase in oxygen consumption and in nutrient concentrations was observed, indicating organic pollution originating from different diffuse and point sources of pollution. The lack of proper sanitation also led to exceedingly high abundances of fecal coliforms in the surface water (>320 MPN·mL−1. However, fecal contamination was strongly reduced (>92% after the polluted river water passed Boye wetland, indicating the purification potential of natural wetlands and the importance of conserving and protecting those ecosystems. The simulation results of the model showed that water quality

  19. Kansas Playa Wetlands

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital dataset provides information about the distribution, areal extent, and morphometry of playa wetlands throughout western Kansas. Playa wetlands were...

  20. [Research progress on wetland ecotourism].

    Science.gov (United States)

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  1. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    International Nuclear Information System (INIS)

    Nelson, E; John Gladden, J

    2007-01-01

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments

  2. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  3. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  4. Evaluation of surface water dynamics for water-food security in seasonal wetlands, north-central Namibia

    Directory of Open Access Journals (Sweden)

    T. Hiyama

    2014-09-01

    Full Text Available Agricultural use of wetlands is important for food security in various regions. However, land-use changes in wetland areas could alter the water cycle and the ecosystem. To conserve the water environments of wetlands, care is needed when introducing new cropping systems. This study is the first attempt to evaluate the water dynamics in the case of the introduction of rice-millet mixed-cropping systems to the Cuvelai system seasonal wetlands (CSSWs in north-central Namibia. We first investigated seasonal changes in surface water coverage by using satellite remote sensing data. We also assessed the effect of the introduction of rice-millet mixed-cropping systems on evapotranspiration in the CSSWs region. For the former investigation, we used MODIS and AMSR-E satellite remote sensing data. These data showed that at the beginning of the wet season, surface water appears from the southern (lower part and then expands to the northern (higher part of the CSSWs. For the latter investigation, we used data obtained by the classical Bowen ratio-energy balance (BREB method at an experimental field site established in September 2012 on the Ogongo campus, University of Namibia. This analysis showed the importance of water and vegetation conditions when introducing mixed-cropping to the region.

  5. Assessing the Utility of Uav-Borne Hyperspectral Image and Photogrammetry Derived 3d Data for Wetland Species Distribution Quick Mapping

    Science.gov (United States)

    Li, Q. S.; Wong, F. K. K.; Fung, T.

    2017-08-01

    Lightweight unmanned aerial vehicle (UAV) loaded with novel sensors offers a low cost and minimum risk solution for data acquisition in complex environment. This study assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area of Hong Kong. Multiple feature reduction methods and different classifiers were compared. The best result was obtained when transformed components from minimum noise fraction (MNF) and DSM were combined in support vector machine (SVM) classifier. Wavelength regions at chlorophyll absorption green peak, red, red edge and Oxygen absorption at near infrared were identified for better species discrimination. In addition, input of DSM data reduces overestimation of low plant species and misclassification due to the shadow effect and inter-species morphological variation. This study establishes a framework for quick survey and update on wetland environment using UAV system. The findings indicate that the utility of UAV-borne hyperspectral and derived tree height information provides a solid foundation for further researches such as biological invasion monitoring and bio-parameters modelling in wetland.

  6. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea

    International Nuclear Information System (INIS)

    Vandecasteele, Bart; Quataert, Paul; Tack, Filip M.G.

    2005-01-01

    The hydrological conditions on a site constitute one of the many factors that may affect the availability of potentially toxic trace metals for uptake by plants. Bioavailability of Cd, Mn and Zn in a contaminated dredged sediment-derived soil under different hydrological regimes was determined by measuring metal uptake by the wetland plant species Salix cinerea, both in field circumstances and in a greenhouse experiment. Longer submersion periods in the field caused lower Cd concentrations in leaves and bark. The wetland hydrological regime in the greenhouse experiment resulted in normal Cd and Zn concentrations in the leaves, while the upland hydrological regime resulted in elevated Cd and Zn concentrations in the leaves. Field observations and the greenhouse experiment suggest that a hydrological regime that creates or sustains a wetland is a potential management option that reduces metal bioavailability to willows. This would constitute a safe management option of metal-polluted, willow-dominated wetlands provided that wetland conditions can be maintained throughout the full growing season. - A hydrological regime aiming at wetland creation is a potential management option that favors reducing Cd plant availability in polluted freshwater wetlands

  7. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  8. Detecting wetland changes in Shanghai, China using FORMOSAT and Landsat TM imagery

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Bo; Zhou, Yun-xuan; Thom, Ronald M.; Diefenderfer, Heida L.; Yuan, Qing

    2015-07-14

    Understanding the state of wetland ecosystems and their changes at the national and local levels is critical for wetland conservation, management, decision-making, and policy development practices. This study analyzed the wetlands in Shanghai, a province-level city, using remote sensing, image processing, and geographic information systems (GIS) techniques based on the Chinese national wetland inventory procedure and standards. FORMOSAT imagery acquired in 2012 and Navy nautical charts of the Yangtze estuarine area were used in conjunction with object-oriented segmentation, expert interpretation, and field validation to determine wetland status. Landsat imagery from 1985, 1995, 2000, 2003 and 2013 as well as social-economic data collected from 1985 to 2013 were used to further assess wetland changes. In 2013, Shanghai contained 376,970.6 ha of wetlands, and 78.8% of all wetlands were in marine or estuarine systems. Estuarine waters comprised the single largest wetland category. Between the first national wetland inventory in 2003 and the second national wetland inventory in 2013, Shanghai lost 50,519.13 ha of wetlands, amounting to a mean annual loss rate of 1.2% or an 11.8% loss over the decade. Declines were proportionately higher in marine and estuarine wetlands, with an annual loss of 1.8%, while there was a sharp increase of 1882.6% in constructed water storage areas for human uses. Diking, filling, impoundment and reclamation, which are all attributable to the economic development and urbanization associated with population increases, were the major factors that explained the gain and loss of wetlands. Additional factors affecting wetland losses and gains include sediment trapping by the hydropower system, which reduces supply to the estuary and erodes wetlands, and sediment trapping by the jetties, spur dikes, and diversion bulwark associated with a navigation channel deepening project, which has the converse effect, increasing saltmarsh wetland area at

  9. The landscape pattern characteristics of coastal wetlands in Jiaozhou Bay under the impact of human activities.

    Science.gov (United States)

    Gu, Dongqi; Zhang, Yuanzhi; Fu, Jun; Zhang, Xuliang

    2007-01-01

    In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.

  10. Guidelines for Developing Wetlands in Agricultural Catchments

    International Nuclear Information System (INIS)

    2017-03-01

    This publication presents the results of an international research project on optimizing the capture and storage of water by assessing nutrient using water conservation zones in agricultural landscapes. Eight countries from Asia-Pacific, Africa and Europe participated in the project. Field studies were established in all participating countries using isotopic and nuclear techniques to assess three types of water conservation zones that are used to harvest water for irrigation, crop production and improve downstream water quality. In addition, isotopic and nuclear techniques were used to collect data to identify the ideal locations in the landscapes for developing wetlands. The publication provides information to researchers working in the area of soil and water management, natural resource managers, policy makers and farmers. For those working to develop wetlands, information is provided to support planning, monitoring and evaluation.

  11. Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images

    Science.gov (United States)

    Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.

    2014-12-01

    Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.

  12. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  13. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region.

    Science.gov (United States)

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-09-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  14. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    Science.gov (United States)

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  15. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie K.; Lane, Charles R.; McManus, Michael G.; Alexander, Laurie C.; Christensen, Jay R.

    2018-03-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage

  16. Wetlands inform how climate extremes influence surface water expansion and contraction

    Science.gov (United States)

    Vanderhoof, Melanie; Lane, Charles R.; McManus, Michael L.; Alexander, Laurie C.; Christensen, Jay R.

    2018-01-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic

  17. Wetlands inform how climate extremes influence surface water expansion and contraction

    Directory of Open Access Journals (Sweden)

    M. K. Vanderhoof

    2018-03-01

    Full Text Available Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1 quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR and adjacent Northern Prairie (NP in the United States, and (2 explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985–2015. The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density. To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less

  18. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland.

    Science.gov (United States)

    Warnken, Jan; Ohlsson, Rohana; Welsh, David T; Teasdale, Peter R; Chelsky, Ariella; Bennett, William W

    2017-08-01

    Antimony is a priority environmental contaminant that is relatively poorly studied compared to other trace metal(loid)s. In particular, the behaviour of antimony in wetland sediments, where anaerobic conditions often dominate, has received considerably less attention compared to well-drained terrestrial soil environments. Here we report the results of a spatial assessment of antimony in the sediments and vegetation of a freshwater wetland exposed to stibnite tailings for the past forty years. The concentration of antimony in the sediment decreased rapidly with distance from the tailings deposit, from a maximum of ∼22,000 mg kg -1 to ∼1000 mg kg -1 at a distance of ∼150 m. In contrast, arsenic was distributed more evenly across the wetland, indicating that it was more mobile under the prevailing hypoxic/anoxic conditions. Less clear trends were observed in the tissues of wetland plants, with the concentrations of antimony in waterlilies (2.5-195 mg kg -1 ) showing no clear trends with distance from the tailings deposit, and no correlation with sediment concentrations. Sedges and Melaleuca sp. trees had lower antimony concentrations (<25 mg kg -1 and 5 mg kg -1 , respectively) compared to waterlilies, but showed a non-significant trend of higher concentrations closer to the tailings. For all vegetation types sampled, antimony concentrations were consistently lower than arsenic concentrations (Sb:As = 0.27-0.31), despite higher concentrations of antimony in the sediment. Overall, the results of this study highlight clear differences in the behaviour of antimony and arsenic in freshwater wetlands, which should be considered during the management and remediation of such sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Contribution of wetlands to nitrate removal at the watershed scale

    Science.gov (United States)

    Hansen, Amy T.; Dolph, Christine L.; Foufoula-Georgiou, Efi; Finlay, Jacques C.

    2018-02-01

    Intensively managed row crop agriculture has fundamentally changed Earth surface processes within the Mississippi River basin through large-scale alterations of land cover, hydrology and reactive nitrogen availability. These changes have created leaky landscapes where excess agriculturally derived nitrate degrades riverine water quality at local, regional and continental scales. Individually, wetlands are known to remove nitrate but the conditions under which multiple wetlands meaningfully reduce riverine nitrate concentration have not been established. Only one region of the Mississippi River basin—the 44,000 km2 Minnesota River basin—still contains enough wetland cover within its intensively agriculturally managed watersheds to empirically address this question. Here we combine high-resolution land cover data for the Minnesota River basin with spatially extensive repeat water sampling data. By clearly isolating the effect of wetlands from crop cover, we show that, under moderate-high streamflow, wetlands are five times more efficient per unit area at reducing riverine nitrate concentration than the most effective land-based nitrogen mitigation strategies, which include cover crops and land retirement. Our results suggest that wetland restorations that account for the effects of spatial position in stream networks could provide a much greater benefit to water quality then previously assumed.

  20. Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference

    Science.gov (United States)

    Hardy, T.; Wu, W.

    2017-12-01

    The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland

  1. Counteracting wetland overgrowth increases breeding and staging bird abundances

    Science.gov (United States)

    Lehikoinen, Petteri; Lehikoinen, Aleksi; Mikkola-Roos, Markku; Jaatinen, Kim

    2017-01-01

    Human actions have led to loss and degradation of wetlands, impairing their suitability as habitat especially for waterbirds. Such negative effects may be mitigated through habitat management. To date scientific evidence regarding the impacts of these actions remains scarce. We studied guild specific abundances of breeding and staging birds in response to habitat management on 15 Finnish wetlands. In this study management actions comprised several means of vegetation removal to thwart overgrowth. Management cost efficiency was assessed by examining the association between site-specific costs and bird abundances. Several bird guilds exhibited positive connections with both habitat management as well as with invested funds. Most importantly, however, red-listed species and species with special conservation concern as outlined by the EU showed positive correlations with management actions, underlining the conservation value of wetland management. The results suggest that grazing was especially efficient in restoring overgrown wetlands. As a whole this study makes it clear that wetland habitat management constitutes a feasible conservation tool. The marked association between invested funds and bird abundance may prove to be a valuable tool for decision makers when balancing costs and impact of conservation measures against one another.

  2. Assessing the potential for using wetlands as intermediary storages to conjunctively maintain ecological values and support agricultural demands.

    Science.gov (United States)

    Ning, Nathan S P; Watkins, Susanne C; Gawne, Ben; Nielsen, Daryl L

    2012-09-30

    Water sharing to meet both agricultural and environmental demands is a critical issue affecting the health of many floodplain river systems around the world. This study explored the potential for using wetlands as temporary off-river storages to conjunctively maintain ecological values and support agricultural demands by assessing the effects of artificial drawdown on wetland aquatic plant communities. An initial experiment was undertaken in outdoor mesocosms in which four different treatments were compared over a 131 day duration: (1) natural drawdown where the water was left to drawdown naturally via evaporation; (2) partial drawdown where approximately half of the volume of water was pumped out after 42 days; (3) stepped drawdown where approximately half of the volume of water pumped out after 42 days, and then the remaining volume of water was pumped out after 117 days; and (4) total drawdown where all of the of water was pumped out after 117 days. A complementary field study was subsequently undertaken where two wetlands were left to drawdown naturally and two were partially drawn down artificially (i.e. had approximately half of their volume removed by pumping). Results from both of these studies indicated that neither aquatic plant abundance nor taxon richness were adversely affected by partial drawdown. Rather, both studies showed that aquatic plant communities subjected to a partial drawdown treatment became more species rich and diverse than communities subjected to a natural drawdown treatment. This suggests that it may be possible to use wetlands as intermediary storages for the dual purposes of maintaining ecological values and supporting agricultural demands. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  4. The use of constructed wetlands for the treatment of industrial wastewater

    Directory of Open Access Journals (Sweden)

    Skrzypiecbcef Katarzyna

    2017-09-01

    Full Text Available Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.

  5. Carbon dynamics in wetland restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, K.; Ciborowski, J.; Gardner-Costa, J.; Slama, C. [Windsor Univ., ON (Canada); Daly, C.; Hornung, J. [Suncor Energy, Calgary, AB (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Frederick, K.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Liber, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Smits, J. [Calgary Univ., AB (Canada); Wytrykush, C. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This study focused on the reclamation of wetland ecosystems impacted by oil sands development in the boreal wetlands. Although these wetlands play an important role in global carbon balance, their ecosystem function is compromised by direct and regional anthropogenic disturbance and climate change. Large oil sand mining areas that require reclamation generate substantial quantities of extraction process-affected materials. In order to determine if the reclaimed wetlands were restored to equivalent ecosystem function, this study evaluated carbon flows and food web structure in oil sands-affected wetlands. The purpose was to determine whether a prescribed reclamation strategy or topsoil amendment accelerates reclaimed wetland development to produce self-sustaining peatlands. In addition to determining carbon fluxes, this study measured compartment standing stocks for residual hydrocarbons, organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, detritus, zoobenthos and aquatic-terrestrial exports. Most biotic 28 compartments differed between oil-sands-affected and reference wetlands, but the difference lessened with age. Macroinvertebrate trophic diversity was lower in oil sands-affected wetlands. Peat amendment seemed to speed convergence for some compartments but not others. These results were discussed in the context of restoration of ecosystem function and optimization of reclamation strategies.

  6. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  7. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Flats Wetlands in the Everglades

    Science.gov (United States)

    2002-07-01

    cylindrica Cogon grass lnamoea aouatica Water spinach Jasminum dichotomum Gold Coast jasmine Jasminum fluminense, Brazilian jasmine Jasminum sambac...dominated by Cladiumjamaicense (saw grass ) ............................................... 51 Figure 23. Relationship between percent concurrence of strata...Reference standard Marl Flats Everglades wetland dominated by Cladiumjamaicense (saw grass ), Spartina alterniflora (smooth cordgrass), Rhynchospora

  8. WETLAND CHANGE DETECTION IN PROTECTED AND UNPROTECTED INDUS COASTAL AND INLAND DELTA

    Directory of Open Access Journals (Sweden)

    M. H. Ali Baig

    2017-09-01

    Full Text Available Worth of wetland sites lies in their ecological importance. They enhance ecosystem via provision of ecological services like improving water quality, groundwater infiltration, flood risk reduction and biodiversity regulation. Like other parts of the world Pakistan is also facing wetlands degradation. Ecological and economic significance of wetlands was recognized officially in 1971 as Pakistan became signatory of Ramsar wetland convention. Wetlands provide habitat to species of ecological and economic importance. Despite being recognized for international importance, Ramsar figures state that almost half of Pakistan’s wetlands are at moderate or prominent level threat. Wetlands ecosystems are deteriorating at a rapid rate, if uncontrolled this trend may lead to substantial losses. Therefore, management of these resources demands regular monitoring. Present study is dedicated to assessing levels of change overtime in three distinct types of wetlands in Pakistan i.e. Indus delta a coastal wetland, Uchhali complex an inland wetland which are both protected sites while another site Nurri Lagoon which is not sheltered under any category of protected areas. Remotely sensed data has remarkable applications in change detection. Multitemporal Landsat images were used to map changes occurring from 2006 to 2016. Results reveal that wetland area has considerably decreased for all types. Both protected sites have experienced degradation though impact is comparatively lesser than unprotected Nurri lagoon. Significance of protection strategies cannot be denied, it is recommended that mere declaration of a site protected area is not sufficient. It is equally important to control non-point pollutants and ensuring the compliance of conservation strategy.

  9. Wetland Change Detection in Protected and Unprotected Indus Coastal and Inland Delta

    Science.gov (United States)

    Baig, M. H. Ali; Sultan, M.; Riaz Khan, M.; Zhang, L.; Kozlova, M.; Malik, N. Abbas; Wang, S.

    2017-09-01

    Worth of wetland sites lies in their ecological importance. They enhance ecosystem via provision of ecological services like improving water quality, groundwater infiltration, flood risk reduction and biodiversity regulation. Like other parts of the world Pakistan is also facing wetlands degradation. Ecological and economic significance of wetlands was recognized officially in 1971 as Pakistan became signatory of Ramsar wetland convention. Wetlands provide habitat to species of ecological and economic importance. Despite being recognized for international importance, Ramsar figures state that almost half of Pakistan's wetlands are at moderate or prominent level threat. Wetlands ecosystems are deteriorating at a rapid rate, if uncontrolled this trend may lead to substantial losses. Therefore, management of these resources demands regular monitoring. Present study is dedicated to assessing levels of change overtime in three distinct types of wetlands in Pakistan i.e. Indus delta a coastal wetland, Uchhali complex an inland wetland which are both protected sites while another site Nurri Lagoon which is not sheltered under any category of protected areas. Remotely sensed data has remarkable applications in change detection. Multitemporal Landsat images were used to map changes occurring from 2006 to 2016. Results reveal that wetland area has considerably decreased for all types. Both protected sites have experienced degradation though impact is comparatively lesser than unprotected Nurri lagoon. Significance of protection strategies cannot be denied, it is recommended that mere declaration of a site protected area is not sufficient. It is equally important to control non-point pollutants and ensuring the compliance of conservation strategy.

  10. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    Science.gov (United States)

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  11. 40 CFR 258.12 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... degraded wetlands or creation of man-made wetlands); and (5) Sufficient information is available to make a... expansions shall not be located in wetlands, unless the owner or operator can make the following...

  12. IMPACTS OF WETLAND DEGRADATION IN NIGER DELTA NIGERIA AND ITS SIGNIFICANCE IN FLOOD CONTROL

    Directory of Open Access Journals (Sweden)

    Enwere Chidimma Loveline

    2015-08-01

    Full Text Available  Wetlands perform a wide variety of functions that include flood control, ground water recharge, shore line stabilization, storm protection and climate moderation. However, despite these huge wetland functions, it has witnessed poor appreciation and dreadful conditions. Niger Delta has witnessed constant coastal erosion and rising sea level, this has led to large portions of the landmass being eroded. This paper aims to review some environmental effects of flooding in the Niger Delta region of Nigeria to provide the desired knowledge of role that wetlands play in reducing flood impacts. However, having witnessed the flood, the experience opened my eyes to the environmental challenges facing Niger Delta with respect to Wetlands degradation, poor perception of wetland values and functions, poor environmental practices and non-implementation of environmental regulations. This memorable experience rekindled the desire and motivation to seek a solution to wetland degradation with the aim of recognizing significance of wetlands at the centre of achieving both livelihood and biodiversity improvements to address coastal flooding problem.The study therefore concludes that wetlands are very significant in flood control and thus the conservation and restoration of wetlands, should put in place measures to reduce wetland destruction.International Journal of EnvironmentVolume-4, Issue-3, June-August 2015Page: 177-184

  13. [Factors affecting the vegetation restoration after fires in cold temperate wetlands: A review].

    Science.gov (United States)

    Zhao, Feng-Jun; Wang, Li-Zhong; Shu, Li-Fu; Chen, Peng-Yu; Chen, Li-guang

    2013-03-01

    Cold temperate wetland plays an important role in maintaining regional ecological balance. Fire is an important disturbance factor in wetland ecosystem. Severe burning can induce the marked degradation of the ecological functions of wetland ecosystem. The vegetation restoration, especially the early vegetation restoration, after fires, is the premise and basis for the recovery of the ecological functions of the ecosystem. This paper reviewed the research progress on the factors affecting the vegetation restoration after fires in wetlands. The vegetation restoration after fires in cold temperate wetlands was controlled by the fire intensity, fire size, vegetation types before fires, regeneration characteristics of plant species, and site conditions. It was considered that the long-term monitoring on the post-fire vegetation restoration in cold temperate wetland, the key factors affecting the vegetation restoration, the roles of frozen soil layer on the post-fire vegetation restoration, and the theories and technologies on the vegetation restoration would be the main research directions in the future.

  14. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A network model framework for prioritizing wetland conservation in the Great Plains

    Science.gov (United States)

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  16. The Multimedia Environmental Pollutant Assessment System (MEPAS reg-sign): Completely-Stirred Tank Reactor (CSTR) formulations for the wetland pathway

    International Nuclear Information System (INIS)

    McDonald, J.P.; van der Aa, N.G.F.M.; Whelan, G.

    1997-06-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is a physics-based environmental analysis code integrating source-term, fate, and exposure models for concentration, dose, or risk endpoints. Developed by Pacific Northwest National Laboratory for the US Department of Energy, MEPAS is designed for site-specific assessments using readily available information. Endpoints are computed for chemical and radioactive pollutants. For human health impacts, risks are computed for radioactive and hazardous carcinogens, and hazard quotients for noncarcinogens. This system has wide applicability to environmental problems using air, groundwater, surface-water, overland, wetland, and exposure models. MEPAS enables users to simulate release of contaminants from a source; transport of contaminants through the air, groundwater, surface-water, overland, or wetland pathways; and transfer of contaminants through food chains and exposure pathways to the exposed individual or population. Whenever available and appropriate, guidance and/or models from the US Environmental Protection Agency, International Commission on Radiological Protection, and National Council on Radiation Protection and Measurements were used to facilitate compatibility and acceptance. Although based on relatively standard transport and exposure computation approaches, MEPAS uniquely integrated these approaches into a single system, providing a consistent basis for evaluating health impacts for a large number of problems and sites. Implemented on a desktop computer, a user-friendly platform allows the user to define the problem, input the required data, and execute the appropriate models. This document describes the mathematical formulations for the Completely-Stirred Tank Reactor (CSTR) component of MEPAS as applied to the wetland pathway

  17. Evaluation of a market in wetland credits: entrepreneurial wetland banking in Chicago.

    Science.gov (United States)

    Robertson, Morgan; Hayden, Nicholas

    2008-06-01

    With the rise of market-led approaches to environmental policy, compensation for permitted discharge of dredge or fill material into wetlands under Section 404 of the U.S. Clean Water Act has been purchased increasingly from entrepreneurial third-party providers. The growth of this practice (i.e., entrepreneurial wetland banking) has resolved many challenges associated with wetland compensation. But it has also produced (1) quantifiable temporal loss of wetland ecological functions, (2) spatial redistribution of wetland area, and (3) a degree of regulatory instability that may pose a threat to entrepreneurial compensation as a sustainable component of wetland-compensation policy. We used achieved compensation ratios, lapse between bank credit sale and the attainment of performance standards, distance between impact and bank site, and changes in bank market area to examine these 3 factors. We analyzed data from a census of all such transactions in the Chicago District of the U.S. Army Corps of Engineers, compiled from site visits, Corps databases, and contacts with consultants and Section 404 permittees. Entrepreneurial banking provided compensation at a lower overall ratio than nonbank forms of compensation. Approximately 60% of bank credits were sold after site-protection standards were met but before ecological performance standards were met at the bank site. The average distance between bank and impact site was approximately 26 km. The area of markets within which established banks can sell wetland credits has fluctuated considerably over the study period. Comparing these data with similar data for other compensation mechanisms will assist in evaluating banking as an element of conservation policy. Data characterizing the performance of entrepreneurial wetland banks in actual regulatory environments are scarce, even though it is the most established of similar markets that have become instrumental to federal policy in administering several major environmental

  18. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA across political boundaries (states, wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise. Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our

  19. Climatic change and variability: The effects of an altered water regime on Great Lakes coastal wetlands

    International Nuclear Information System (INIS)

    Mortsch, L.

    1990-01-01

    Wetlands of Canada are disappearing at a rapid rate due to urban encroachment and agricultural land drainage. Climatic change may be another threat to their continued viability. Wetlands perform numerous functions such as providing wildlife habitat, enhancing water quality, providing recreation opportunities and supporting commercial activities. Impact scenarios of global warming on Great Lakes hydrology and wetland ecosystem response to water level changes are tabulated. Wetland response to lower annual water levels depends on the type of wetland, its geomorphology and bathymetry. Marshes and open water wetland adapt more readily to lower levels than swamps. Swamps are less resilient since trees cannot regenerate and colonize quickly. Enclosed and barrier beach wetlands are more prone to drying out and loosing wetland vegetation during low water periods. In open shoreline wetlands, the areal extent could increase if there is a gentle slope and other suitable conditions. Precambrian Shield wetlands are located in areas of irregular slope and rocky substrate, and would have fewer sites for successful colonization. 15 refs., 2 tabs

  20. Forms of organic phosphorus in wetland soils

    Science.gov (United States)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  1. Evaluating the significance of wetland restoration scenarios on phosphorus removal.

    Science.gov (United States)

    Daneshvar, Fariborz; Nejadhashemi, A Pouyan; Adhikari, Umesh; Elahi, Behin; Abouali, Mohammad; Herman, Matthew R; Martinez-Martinez, Edwin; Calappi, Timothy J; Rohn, Bridget G

    2017-05-01

    Freshwater resources are vital for human and natural systems. However, anthropogenic activities, such as agricultural practices, have led to the degradation of the quality of these limited resources through pollutant loading. Agricultural Best Management Practices (BMPs), such as wetlands, are recommended as a valuable solution for pollutant removal. However, evaluation of their long-term impacts is difficult and requires modeling since performing in-situ monitoring is expensive and not feasible at the watershed scale. In this study, the impact of natural wetland implementation on total phosphorus reduction was evaluated both at the subwatershed and watershed levels. The study area is the Saginaw River Watershed, which is largest watershed in Michigan. The phosphorus reduction performances of four different wetland sizes (2, 4, 6, and 8 ha) were evaluated within this study area by implementing one wetland at a time in areas identified to have the highest potential for wetland restoration. The subwatershed level phosphorus loads were obtained from a calibrated Soil and Water Assessment Tool (SWAT) model. These loads were then incorporated into a wetland model (System for Urban Stormwater Treatment and Analysis IntegratioN-SUSTAIN) to evaluate phosphorus reduction at the subwatershed level and then the SWAT model was again used to route phosphorus transport to the watershed outlet. Statistical analyses were performed to evaluate the spatial impact of wetland size and placement on phosphorus reduction. Overall, the performance of 2 ha wetlands in total phosphorus reduction was significantly lower than the larger sizes at both the subwatershed and watershed levels. Regarding wetland implementation sites, wetlands located in headwaters and downstream had significantly higher phosphorus reduction than the ones located in the middle of the watershed. More specifically, wetlands implemented at distances ranging from 200 to 250 km and 50-100 km from the outlet had the

  2. Phosphorus storage and mobilization in coastal Phragmites wetlands: Influence of local-scale hydrodynamics

    Science.gov (United States)

    Karstens, Svenja; Buczko, Uwe; Glatzel, Stephan

    2016-04-01

    Coastal Phragmites wetlands are at the interface between terrestrial and aquatic ecosystems and are of paramount importance for nutrient regulation. They can act both as sinks and sources for phosphorus, depending on environmental conditions, sediment properties as well as on antecedent nutrient loading and sorption capacity of the sediments. The Darss-Zingst Bodden Chain is a shallow lagoon system at the German Baltic Sea coast with a long eutrophication history. It is lined almost at its entire length by reed wetlands. In order to elucidate under which conditions these wetlands act as sources or sinks for phosphorus, in-situ data of chemo-physical characteristics of water and sediment samples were combined with hydrodynamic measurements and laboratory experiments. Small-scale basin structures within the wetland serve as sinks for fine-grained particles rich in phosphorus, iron, manganese and organic matter. Without turbulent mixing the bottom water and the sediment surface lack replenishment of oxygen. During stagnant periods with low water level, low turbulence and thus low-oxygen conditions phosphorus from the sediments is released. But the sediments are capable of becoming sinks again once oxygen is resupplied. A thin oxic sediment surface layer rich in iron and manganese adsorbs phosphorus quickly. We demonstrate that sediments in coastal Phragmites wetlands can serve both as sources and sinks of soluble reactive phosphorus on a very short time-scale, depending on local-scale hydrodynamics and the state of the oxic-anoxic sediment interface.

  3. Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland, Upper Klamath River Basin, Oregon, 2003-05

    Science.gov (United States)

    Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven

    2009-01-01

    Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation

  4. Prairie Pothole Region wetlands and subsurface drainage systems: Key factors for determining drainage setback distances

    Science.gov (United States)

    Tangen, Brian; Wiltermuth, Mark T.

    2018-01-01

    Use of agricultural subsurface drainage systems in the Prairie Pothole Region of North America continues to increase, prompting concerns over potential negative effects to the Region's vital wetlands. The U.S. Fish and Wildlife Service protects a large number of wetlands through conservation easements that often utilize standard lateral setback distances to provide buffers between wetlands and drainage systems. Because of a lack of information pertaining to the efficacy of these setback distances for protecting wetlands, information is required to support the decision making for placement of subsurface drainage systems adjacent to wetlands. We used qualitative graphical analyses and data comparisons to identify characteristics of subsurface drainage systems and wetland catchments that could be considered when assessing setback distances. We also compared setback distances with catchment slope lengths to determine if they typically exclude drainage systems from the catchment. We demonstrated that depth of a subsurface drainage system is a key factor for determining drainage setback distances. Drainage systems located closer to the surface (shallow) typically could be associated with shorter lateral setback distances compared with deeper systems. Subsurface drainage systems would be allowed within a wetland's catchment for 44–59% of catchments associated with wetland conservation easements in North Dakota. More specifically, results suggest that drainage setback distances generally would exclude drainage systems from catchments of the smaller wetlands that typically have shorter slopes in the adjacent upland contributing area. For larger wetlands, however, considerable areas of the catchment would be vulnerable to drainage that may affect wetland hydrology. U.S. Fish and Wildlife Service easements are associated with > 2,000 km2 of wetlands in North Dakota, demonstrating great potential to protect these systems from drainage depending on policies for installing

  5. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion......, and the major challenge for its accurate measurement is avoiding disturbing small-scale gradients in O2 concentration and demand in the pathway. Small O2 sensors with rapid response times and high spatial resolution are the most popular methods for quantifying O2 transport and rhizosphere oxidation...... such as stirring of solutions. In some species, pressurized gas flows develop in shoots and rhizomes, and their contribution to gas fluxes can be assessed with pressure transducers and flow meters. Other gases produced in wetlands (e.g., CO2, CH4, and N2O) are also transported in aerenchyma. Their fluxes...

  6. WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia

    Directory of Open Access Journals (Sweden)

    T. J. Bohn

    2015-06-01

    Full Text Available Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP, focused on the West Siberian Lowland (WETCHIMP-WSL. We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr−1, inversions (6.06 ± 1.22 Tg CH4 yr−1, and in situ observations (3.91 ± 1.29 Tg CH4 yr−1 largely agreed; (b forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver

  7. Wetland Management - A Success Story In Transition - Restoration of Bhoj Wetland, India

    Science.gov (United States)

    Mudgal, M. K.; Tech, B. M.; Miwwa

    Wetlands are beautiful, biologically diverse, hydrologically disperse and ecological vibrant landscape world wide, embracing soils, water, plants, animals and human be- ing. The population growth in the catchment of wetlands led to multifarious human interventions for deriving maximum benefit from the wetlands and their catchments neglecting and disrespecting the principles of sustainability. This act of destruction has been pronounced in developing countries which are under the grip of poverty, illiteracy and lack of environmental education. SBhoj WetlandS is a Lake situated ´ in Central India, Earthen Dam across the river KOLANS in 1061 AD by then ruler king BHOJ. Till 1950 this Wetland was served as a principal source of water supply, even not requiring filtration. As the city grew and the wetland started getting encir- cled by habitation and urban development, the anthropogenic pressures on the lake increased, thus accelerating the process of eutrophication, making the water unfit for human consumption without due treatment due to deterioration of quality of water. For the conservation and management of Bhoj Wetland (Lake Bhopal) a project is under- taken in the financial assistance from Japan Bank for International Cooperation (JBIC, Japan). The project envisages tackle various issues of conservation and management ofn the wetlands under a multi prongs strategies and manner. Although these issues are deeply interrelated and interlinked but for operational and management ease, these issues have been divided into various sub projects which are being tackled indepen- dently, albeit with undercurrent knowledge and understanding of the related issues and interconnectivity with each other. The Project itself is an apt example of the spectrum of varied problems and issues that come to light when attempts are made for sustain- able conservation and management of a wetland. The Project as envisaged intends to conserve and manage through 14 sub projects as under:- Sub

  8. Landowner preferences for wetlands conservation programs in two Southern Ontario watersheds.

    Science.gov (United States)

    Trenholm, Ryan; Haider, Wolfgang; Lantz, Van; Knowler, Duncan; Haegeli, Pascal

    2017-09-15

    Wetlands in the region of Southern Ontario, Canada have declined substantially from their historic area. Existing regulations and programs have not abated this decline. However, reversing this trend by protecting or restoring wetlands will increase the supply of important ecosystem services. In particular, these actions will contribute to moderating the impacts of extreme weather predicted to result from climate change as well as reducing phosphorous loads in Lake Erie and ensuing eutrophication. Since the majority of land in the region is privately owned, landowners can play an important role. Thus, we assessed landowner preferences for voluntary incentive-based wetlands conservation programs using separate choice experiments mailed to farm and non-farm landowners in the Grand River and Upper Thames River watersheds. Latent class models were separately estimated for the two data sets. Marginal willingness to accept, compensating surplus, and participation rates were estimated from the resulting models to gain insight into the financial compensation required by landowners and their potential participation. Many of the participating landowners appear willing to participate in wetlands conservation at reasonable cost, with more willing groups notably marked by past participation in incentive-based conservation programs. They generally favor wetlands conservation programs that divert smaller areas of land to wetlands conservation, target marginal agricultural land, use treed buffers to protect wetlands, offer technical help, and pay financial incentives. However, landowners appear reluctant to receive public recognition of their wetland conservation actions. Our results are of interest to natural resource managers designing or refining wetlands conservation programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew S.; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  10. Carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CRFAW)

    International Nuclear Information System (INIS)

    Ciborowski, J.; Dixon, G.; Foote, L.; Liber, K.; Smits, J.

    2010-01-01

    This abstract provided details of the Carbon Dynamics, Food Web Structure and Reclamation Strategies in Athabasca Oil Sands Wetlands (CFRAW) program, a collaboration between oil sands industry partners and university laboratories. CFRAW researchers are investigating the effects of mine tailings and process waters on the development, health, and function of wetland communities in post-mining landscapes. The aim of the program is to accurately predict how quickly the reclaimed wetlands will approach conditions seen in reference wetland systems. The program is also examining the effects of hydrocarbons as a surrogate source of carbon after they are metabolized by bacteria. The biological uptake, pathways, and movement through the food web of materials used by the biota in constructed wetlands are also being studied. Flux estimates will be used to determine if wetlands amended with peat will maintain their productivity. A conceptual model of carbon pathways and budgets is also being developed.

  11. Juvenile salmonid use of freshwater emergent wetlands in the floodplain and its implications for conservation management

    Science.gov (United States)

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2006-01-01

    A recent trend of enhancing freshwater emergent wetlands for waterfowl and other wildlife has raised concern about the effects of such measures on juvenile salmonids. We undertook this study to quantify the degree and extent of juvenile Pacific salmon Oncorhynchus spp. utilization of enhanced and unenhanced emergent wetlands within the floodplain of the lower Chehalis River, Washington, and to determine the fate of the salmon using them. Enhanced emergent wetlands contained water control structures that provided an outlet for fish emigration and a longer hydroperiod for rearing than unenhanced wetlands. Age-0 and age-1 coho salmon O. kisutch were the most common salmonid at all sites, enhanced wetlands having significantly higher age-1 abundance than unenhanced wetlands that were a similar distance from the main-stem river. Yearling coho salmon benefited from rearing in two enhanced wetland habitats, where their specific growth rate and minimum estimates of survival (1.43%/d by weight and 30%; 1.37%/d and 57%) were comparable to those in other side-channel rearing studies. Dissolved oxygen concentrations decreased in emergent wetlands throughout the season and approached the limits lethal to juvenile salmon by May or June each year. Emigration patterns suggested that age-0 and age-1 coho salmon emigrated as habitat conditions declined. This observation was further supported by the results of an experimental release of coho salmon. Survival of fish utilizing emergent wetlands was dependent on movement to the river before water quality decreased or stranding occurred from wetland desiccation. Thus, our results suggest that enhancing freshwater wetlands via water control structures can benefit juvenile salmonids, at least in the short term, by providing conditions for greater growth, survival, and emigration.

  12. Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland, northeast of China: implications for the filtration functions of wetlands.

    Science.gov (United States)

    Liu, Jin; Ye, Siyuan; Yuan, Hongming; Ding, Xigui; Zhao, Guangming; Yang, Shixiong; He, Lei; Wang, Jin; Pei, Shaofeng; Huang, Xiaoyu

    2018-02-01

    Grain size and concentrations of organic carbon (Corg) and particulate metals (PMs) As, Cd, Cr, Cu, Hg, Pb, Zn, Al, Fe, and Mn of 373 surface sediment samples, salinities in 67 surface water samples, were analyzed in various environments, including the upper delta plain wetlands (UDPW), its adjacent shallow sea wetland (SSW) in the Liaodong Bay, and river channels that are running through the Liaohe Delta, to evaluate the spatial distribution, transportation environmental dynamics of metals, and the provenance of metal pollution and assess the filtration functions of wetlands. The concentrations of PMs for UDPW were generally higher by a factor of ~ 10-22% compared with its analogues in SSW, suggesting the accumulation of PMs within the UDPW indicates that the UDPW systems are efficiently physical and chemical traps for PMs of anthropogenic sources by retaining and storing pollutants flowing into the sea. However, there was sever sewage irrigation-induced Cd pollution with a geo-accumulation index of 0.62-3.11 in an area of ~ 86 km 2 of the adjacent shallow sea wetland, where large amount wetlands were historically moved for agriculture in the UDPW. Remarkably, the distributions of PMs were controlled by salinity-induced desorption and re-adsorption mechanisms and significantly dispersed the contamination coverage by the three-dimensional hydrodynamic and sedimentation processes that dominated by inputs of freshwater and ocean dynamics including NE-SW tidal currents and NE-E longshore drifts in the SSW of the Liaodong Bay. A high agreement between the UDPW and the SSW datasets in principal component analysis essentially reflects that the characteristics of PM sources in the SSW were actually inherited from that in the UDPW, with a much closer relationship among metals, organic matter, and fine particulates in SSW than that of UDPW, which was judged by their correlation coefficient range of 0.406-0.919 in SSW against those of 0.042-0.654 in UDPW.

  13. Spatial and temporal variation in invertebrate consumer diets in forested and herbaceous wetlands

    Science.gov (United States)

    Alani N. Taylor; Darold P. Batzer

    2010-01-01

    Macroinvertebrates have important functional roles in wetland ecosystems, but these roles are not always well understood. This study assessed which foods invertebrate consumers assimilate within a set of wetland habitats. During 2006 and 2007, non-Tanypodinae chironomid larvae and select crustaceans (Crangonyx amphipods, Caecidotea isopods, Simocephalus cladocerans)...

  14. Community structure and quality after 10 years in two central Ohio mitigation bank wetlands.

    Science.gov (United States)

    Spieles, Douglas J; Coneybeer, Meagan; Horn, Jonathan

    2006-11-01

    We evaluate two 10-year-old mitigation bank wetlands in central Ohio, one created and one with restored and enhanced components, by analysis of vegetation characteristics and by comparison of the year-10 vegetation and macroinvertebrate communities with reference wetlands. To assess different measures of wetland development, we compare the prevalence of native hydrophytes with an index of floristic quality and we evaluate the predictability of these parameters in year 10, given 5 years of data. Results show that the mitigation wetlands in this study meet vegetation performance criteria of native hydrophyte establishment by year 5 and maintain these characteristics through year 10. Species richness and floristic quality, as well as vegetative similarity with reference wetlands, differ among mitigation wetlands in year 1 and also in their rate of change during the first 10 years. The prevalence of native hydrophytes is reasonably predictable by year 10, but 5 years of monitoring is not sufficient to predict future trends of floristic quality in either the created or restored wetland. By year 10, macroinvertebrate taxa richness does not statistically differ among these wetlands, but mitigation wetlands differ from reference sites by tolerance index and by trophic guild dominance. The created wetland herbivore biomass is significantly smaller than its reference, whereas detritivore biomass is significantly greater in the created wetland and smaller in the restored wetland as compared with respective reference wetlands. These analyses illustrate differences in measures of wetland performance and contrast the monitoring duration necessary for legal compliance with the duration required for development of more complex indicators of ecosystem integrity.

  15. Island biogeography and landscape structure: Integrating ecological concepts in a landscape perspective of anthropogenic impacts in temporary wetlands

    International Nuclear Information System (INIS)

    Angeler, David G.; Alvarez-Cobelas, Miguel

    2005-01-01

    Although our understanding of environmental risk assessment in temporary wetlands has been improved by the use of multi-species toxicity testing, we still know little of how landscape variables mediate the strength of, and recovery from, anthropogenic stress in such ecosystems. To bridge this research gap, we provide a theoretical framework of the response of temporary wetlands to anthropogenic disturbance along a habitat-isolation continuum based on island biogeography theory, landscape ecology and dispersal and colonization strategies of temporary wetland organisms. - Environmental risk assessment in temporary wetlands may benefit from consideration of island biogeography theory and landscape structure

  16. Pre- and post-construction analysis of a wetland used for mine drainage control

    International Nuclear Information System (INIS)

    Wise, K.M.; Mitsch, W.J.

    1994-01-01

    A 0.39 ha constructed wetland in Athens County, Ohio is being evaluated for its ability to remove contaminants from acidic mine drainage. The wetland receives water flow from Lick run stream which is contaminated by two major abandoned underground mine seeps. The wetland effluent is then directed back into Lick Run, a tributary of the Hocking River. Data were collected 1.5 years prior to construction and 11 months following completion of the passive wetland system. Preconstruction data reported average spring quarter 1991 and 1992 iron concentrations in the stream at the future wetland influent and effluents sites to be 330 and 106 mg/l, while spring quarter 1993 showed iron levels at the wetland influent and effluent to be 64 and 3 mg/l, respectively. Iron removal percentages were 68% prior to the construction of the wetland and 95% following its completion. Preconstruction data were analyzed using a dynamic computer model and preliminary comparison with the first 11 months of the wetland data show the actual iron removal rates to be 4 g/m 2 day 1 compared to the predicted value of 6.5 g/m 2 day 1 (based on data collected from April 1991--March 1992, under similar hydrologic conditions)

  17. Improved coastal wetland mapping using very-high 2-meter spatial resolution imagery

    Science.gov (United States)

    McCarthy, Matthew J.; Merton, Elizabeth J.; Muller-Karger, Frank E.

    2015-08-01

    Accurate wetland maps are a fundamental requirement for land use management and for wetland restoration planning. Several wetland map products are available today; most of them based on remote sensing images, but their different data sources and mapping methods lead to substantially different estimations of wetland location and extent. We used two very high-resolution (2 m) WorldView-2 satellite images and one (30 m) Landsat 8 Operational Land Imager (OLI) image to assess wetland coverage in two coastal areas of Tampa Bay (Florida): Fort De Soto State Park and Weedon Island Preserve. An initial unsupervised classification derived from WorldView-2 was more accurate at identifying wetlands based on ground truth data collected in the field than the classification derived from Landsat 8 OLI (82% vs. 46% accuracy). The WorldView-2 data was then used to define the parameters of a simple and efficient decision tree with four nodes for a more exacting classification. The criteria for the decision tree were derived by extracting radiance spectra at 1500 separate pixels from the WorldView-2 data within field-validated regions. Results for both study areas showed high accuracy in both wetland (82% at Fort De Soto State Park, and 94% at Weedon Island Preserve) and non-wetland vegetation classes (90% and 83%, respectively). Historical, published land-use maps overestimate wetland surface cover by factors of 2-10 in the study areas. The proposed methods improve speed and efficiency of wetland map production, allow semi-annual monitoring through repeat satellite passes, and improve the accuracy and precision with which wetlands are identified.

  18. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to Me

  19. Presence of indicator plant species as a predictor of wetland vegetation integrity

    Science.gov (United States)

    Stapanian, Martin A.; Adams, Jean V.; Gara, Brian

    2013-01-01

    We fit regression and classification tree models to vegetation data collected from Ohio (USA) wetlands to determine (1) which species best predict Ohio vegetation index of biotic integrity (OVIBI) score and (2) which species best predict high-quality wetlands (OVIBI score >75). The simplest regression tree model predicted OVIBI score based on the occurrence of three plant species: skunk-cabbage (Symplocarpus foetidus), cinnamon fern (Osmunda cinnamomea), and swamp rose (Rosa palustris). The lowest OVIBI scores were best predicted by the absence of the selected plant species rather than by the presence of other species. The simplest classification tree model predicted high-quality wetlands based on the occurrence of two plant species: skunk-cabbage and marsh-fern (Thelypteris palustris). The overall misclassification rate from this tree was 13 %. Again, low-quality wetlands were better predicted than high-quality wetlands by the absence of selected species rather than the presence of other species using the classification tree model. Our results suggest that a species’ wetland status classification and coefficient of conservatism are of little use in predicting wetland quality. A simple, statistically derived species checklist such as the one created in this study could be used by field biologists to quickly and efficiently identify wetland sites likely to be regulated as high-quality, and requiring more intensive field assessments. Alternatively, it can be used for advanced determinations of low-quality wetlands. Agencies can save considerable money by screening wetlands for the presence/absence of such “indicator” species before issuing permits.

  20. Using decomposition kinetics to model the removal of mine water pollutants in constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Tarutis, W J; Unz, R F [Pennsylvania State University, University Park, PA (United States)

    1994-01-01

    Although numerous mathematical models have been used to describe decomposition, few, if any, have been used to model the removal of pollutants in constructed wetlands. A steady state method based on decomposition kinetics and reaction stoichiometry has been developed which simulates the removal of ferrous iron entering wetlands constructed for mine drainage treatment. Input variables for the model include organic matter concentration, reaction rate coefficient, porosity and dry density, and hydraulic detection time. Application of the model assumes complete anaerobic conditions within the entire substrate profile, constant temperature, no additional organic matter input, and subsurface flow only. For these ideal conditions, model simulations indicate that wetlands constructed with readily decomposable substrates rich in organic carbon are initially capable of removing far greater amounts of iron than wetlands built with less biodegradable substrates. However, after three to five years of operation this difference becomes negligible. For acceptable long-term treatment performance, therefore, periodic additions of decomposable organic matter will be required.

  1. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-01-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities

  2. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1994-10-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities.

  3. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    Science.gov (United States)

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms.

  4. Human wetland dependency and socio-economic evaluation of wetland functions through participatory approach in rural India

    Directory of Open Access Journals (Sweden)

    Malabika Biswas

    2010-12-01

    Full Text Available Wetlands are an important source of natural resources upon which rural economies depend. They have increasingly been valuable for their goods and services, and the intrinsic ecological value they provide to local populations, as well as people living outside the periphery of the wetlands. Stakeholders' participation is essential to the protection and preservation of wetlands because it plays a very important role economically as well as ecologically in the wetland system. The objective of this study was to determine whether gender, educational status, mouzas (which are constituents of a block according to the land reform of the West Bengal Government in India, and wetland functions have any influence on the annual income of the local community. Considering a floodplain wetland in rural India, the focus was extended to recognize the pattern of wetland functions according to the nature of people's involvement through cluster analysis of the male and female populations. Using the statistical software R-2.8.1, an ANOVA (analysis of variance table was constructed. Since the p value (significance level was lower than 0.05 for each case, it can be concluded that gender, educational status, mouzas, and wetland functions have a significant influence on annual income. However, S-PLUS-2000 was applied to obtain a complete scenario of the pattern of wetland functions, in terms of involvement of males and females, through cluster analysis. The main conclusion is that gender, educational status, mouzas, and wetland functions have significant impacts on annual income, while the pattern of occupation of the local community based on wetland functions is completely different for the male and female populations.

  5. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  6. Climate change and intertidal wetlands.

    Science.gov (United States)

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  7. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    Alisa L. Gallant

    2014-03-01

    Full Text Available Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  8. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    Science.gov (United States)

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  9. How critical are wetlands for provisioning ecosystem services in East Africa?

    Science.gov (United States)

    Gettel, G. M.; van Dam, A. A.; Hes, E.; Irvine, K.

    2017-12-01

    East Africa is rapidly losing wetlands as the region intensifies agricultural development in rice, sugarcane, and aquaculture production. However, these wetlands are critically important to the livelihoods of region's most vulnerable smallholders, who depend on them for fisheries, water abstraction, and dry-season subsistence agriculture, including livestock grazing. At the same time, wetlands are used for their regulating services, including for water purification of waste-water in some of the region's largest capital cities (e.g. Kampala and Kigali). They also store an enormous, but poorly quantified amount of below-ground carbon and prevent excess nitrogen inputs to sensitive downstream ecosystems. Our research in papyrus wetlands in the Lake Victoria Basin aims to quantify trade-offs in provisioning and regulating services and link these services to socio-economic conditions of the smallholders. We present a framework for evaluating these trade-offs, which can ultimately be used for more informed management decisions for sustainable wetland management and for evaluating impacts on livelihoods. Specifically, we have found that papyrus wetlands can maintain many of their regulating functions, including high plant productivity and denitrification rates when native vegetation is allowed to grow back during wet-seasons, while during dry seasons they can be developed for economically important agricultural activities, including livestock grazing and crop production. This shows the possibility to include wetlands in management plans aimed to increase agricultural production without jeopardizing their ability to maintain other important regulating services. These patterns highlight the need to evaluate the regional importance of these wetlands for both food production and regulating services.

  10. Working group report on wetlands and wildlife

    International Nuclear Information System (INIS)

    Teels, B.

    1991-01-01

    The results and conclusions of a working group held to discuss the state of knowledge and knowledge gaps concerning climatic change impacts on wetlands and wildlife are presented. Prairie pothole wetlands are extremely productive and produce ca 50% of all ducks in North America. The most productive, and most vulnerable to climate change, are small potholes, often less than one acre in area. Changes in water regimes and land use will have more impact on wildlife than changes in temperature. There are gaps in knowledge relating to: boreal wetlands and their wildlife, and response to climate; wetland inventories that include the smallest wetlands; coordinated schemes for monitoring status and trends of wetlands and wildlife; and understanding of ecological relationships within wetlands and their wildlife communities. Recommendations include: coordinate and enhance existing databases to provide an integrated monitoring system; establish research programs to increase understanding of ecological relationships within wetland ecosystems; evaluate programs and policies that affect wetlands; and promote heightened public awareness of general values of wetlands

  11. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  12. The state of oil sands wetland reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    The state of oil sand and wetlands reclamation was the subject of this presentation. Wildlife habitat and response, plant community and production, and microbial biology were examples of research areas surrounding this body of knowledge. Hydrological research and landscape ecology were discussed along with peatlands and marshes such as the Corvette and the Kia. A few examples of what has been learned in the area of wetlands reclamation was presented. Other topics were also discussed, such as timeframes, pragmatic policy approaches, reclamation costs, research needs and some ideas on maturing the field. It was concluded that environmental conditions change with time and area because of time, chemistry, physics, stoichiometry, as well as biotic mediation and facilitation. figs.

  13. Challenges in complementing data from ground-based sensors with satellite-derived products to measure ecological changes in relation to climate – lessons from temperate wetland-upland landscapes

    Science.gov (United States)

    Gallant, Alisa L.; Sadinski, Walter J.; Brown, Jesslyn F.; Senay, Gabriel B.; Roth, Mark F.

    2018-01-01

    Assessing climate-related ecological changes across spatiotemporal scales meaningful to resource managers is challenging because no one method reliably produces essential data at both fine and broad scales. We recently confronted such challenges while integrating data from ground- and satellite-based sensors for an assessment of four wetland-rich study areas in the U.S. Midwest. We examined relations between temperature and precipitation and a set of variables measured on the ground at individual wetlands and another set measured via satellite sensors within surrounding 4 km2 landscape blocks. At the block scale, we used evapotranspiration and vegetation greenness as remotely sensed proxies for water availability and to estimate seasonal photosynthetic activity. We used sensors on the ground to coincidentally measure surface-water availability and amphibian calling activity at individual wetlands within blocks. Responses of landscape blocks generally paralleled changes in conditions measured on the ground, but the latter were more dynamic, and changes in ecological conditions on the ground that were critical for biota were not always apparent in measurements of related parameters in blocks. Here, we evaluate the effectiveness of decisions and assumptions we made in applying the remotely sensed data for the assessment and the value of integrating observations across scales, sensors, and disciplines.

  14. Design and Implement a System of Wastewater Treatment Based on Wetlands

    Directory of Open Access Journals (Sweden)

    Martha L. Dominínguez-Patiño

    2012-04-01

    Full Text Available The wetlands are considered as a natural passive cleaning of waste water. Is a process characterizes by its simplicity of operation, low or zero-energy consumption and low waste production. These consist of shallow ponds planted with plants. The processes of decontamination are performed simultaneously by its physical, chemical and biological properties. The objectives of this work are design and implement a system of artificial wetlands as an alternative method for treating waste water produced from the Faculty of Chemistry Science and Engineering that allow to reduce the costs of operation, knowing the degree of water pollution to determine how efficient the wetland and, finally improve the health and environmental conditions of the irrigation water. So the first step was to know the degree of water pollution and quantity to determine the wetland process variables. The second step was to determine the kind of plants that allow reducing the water contaminants. The Manning formula was applied to evaluate the free flow and Darcy’s equation for the surface flow by wetlands. A micro-scale prototype was design and built based on buckets. The absorption capacity of several plants (Bacopa monnieri, Nephrolepis exaltata,Tradescantia zebrine was determined. Also we use a natural filter consisting of Tezontle (first layer, sand (second layer, gravel (third layer, sand (fourth layer, Tezontle (fifth layer, gravel (sixth layer, sand (seventh layer and, organic substrate (eighth layer. A wetland decreases more than 60% the cost compared to a water purification plant as everything is based biodegradable materials and not using any energy or sophisticated equipment to water filtration. Wetlands not only help to purify the water, but also help the conservation of flora and fauna that is dependent on wet conditions, as only biodegradable materials are used there is no pollution to the ground, helping the conservation of the environment. Today we are

  15. Engineered wetlands : an innovative environmental solution

    International Nuclear Information System (INIS)

    Wallace, S.; Davis, B.M.

    2008-01-01

    Engineered wetlands are now considered as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and waters. Engineered wetlands incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems in order to enhance oxygen delivery to the wetland's aerobic micro-organisms. The wetlands typically emphasize specific characteristics of wetland ecosystems to improve treatment capacities. This article discussed an engineered wetlands installed at a set of pipeline terminals as well as at a former British Petroleum (BP) refinery. The pipeline terminal generated contact wastewater containing BTEX and ammonia, and a subsurface engineered wetland was built in 1998. To date, the 16,000 2 foot wetland has treated a flow-equalized input of approximately 1.5 m 3 per day of contaminants. At the refinery, a wetland treatment system was designed to treat 6000 m 3 of benzene, toluene, ethylbenzene and xylene (BTEX) and volatile organic compounds (VOCs). The treatment site consists of a golf course, river front trails, and a white water kayak course. A cascade aeration system was used for iron oxidation and air-stripping. A soil matrix biofilter was used for passive gas phase benzene removal, as well as for the removal of ferric hydroxide precipitates. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 1 fig

  16. Identification and Characterisation of Wetlands For A Correct Basin Management

    Science.gov (United States)

    Quadrado, F.; Gomes, F.

    The effects of human activities on water resources have great conse- quences for water users. Some of the problems affecting water resources arise from conflicting uses, including discharge of untreated industrial and domestic wastewater and inadequate agricultural practices on the watersheds. The knowledge of hydrologic and water quality characteristics and behaviour of the system will provide the basis for action to prevent the degradation of water resources. So comprehensive and ratio- nal water management is a necessary condition for social and economic development. The Water Framework Directive defines a good status for all waters all types of waters to be achieved in 15 years. To wetlands the Directive purpose the prevention of their degradation and the protection of those wetlands directly depending on aquatic sys- tems. The sensitiveness of wetlands leads to a difficult management of this resources where it is necessary to know the dynamic of the system and the pressures that can change the ecosystem equilibrium. In spite of the critical role of wetlands, there is a lack of information related with these areas, many times not included in the monitor- ing activity routines. A water quality-monitoring network is an essential instrument of water management. Portugal is now redesigning their freshwater network monitoring in a watershed basis, to provide the necessary data to preserve and control the water quality of the rivers and reservoirs. The combined approach principle to the protec- tion of water that is defended in the Water Framework Directive, was adopted. One of the criterion used to the localisation of sampling stations were characterisation of protected areas. Portugal due to his natural and climate conditions have some impor- tant and unique ecosystems, sometimes being considered as protected areas. Their characteristics must be studied and their equilibrium preserved. Anyhow a little at- tention had been provided to these zones and the actual

  17. Nature versus nurture: functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.

    2009-01-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.

  18. The nitrogen abatement cost in wetlands

    International Nuclear Information System (INIS)

    Bystroem, Olof

    1998-01-01

    The costs of abating agricultural nitrogen pollution in wetlands are estimated. By linking costs for construction of wetlands to the denitrification capacity of wetlands, an abatement cost function can be formed. A construction-cost function and a denitrification function for wetlands is estimated empirically. This paper establishes a link between abatement costs and the nitrogen load on wetlands. Since abatement costs fluctuate with nitrogen load, ignoring this link results in incorrect estimates of abatement costs. The results demonstrate that wetlands have the capacity to provide low cost abatement of nitrogen compounds in runoff. For the Kattegatt region in Sweden, marginal abatement costs for wetlands are shown to be lower than costs of land use changing measures, such as extended land under fallow or cultivation of fuel woods, but higher than the marginal costs of reducing nitrogen fertilizer

  19. 40 CFR 257.9 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... not locate such units in wetlands, unless the owner or operator can make the following demonstrations... actions (e.g., restoration of existing degraded wetlands or creation of man-made wetlands); and (5) Sufficient information is available to make a reasonable determination with respect to these demonstrations...

  20. Use of alligator hole abundance and occupancy rate as indicators for restoration of a human-altered wetland

    Science.gov (United States)

    Fujisaki, Ikuko; Mazzotti, Frank J.; Hart, Kristen M.; Rice, Kenneth G.; Ogurcak, Danielle; Rochford, Michael; Jeffery, Brian M.; Brandt, Laura A.; Cherkiss, Michael S.

    2012-01-01

    Use of indicator species as a measure of ecosystem conditions is an established science application in environmental management. Because of its role in shaping wetland systems, the American alligator (Alligator mississippiensis) is one of the ecological indicators for wetland restoration in south Florida, USA. We conducted landscape-level aerial surveys of alligator holes in two different habitats in a wetland where anthropogenic modification of surface hydrology has altered the natural system. Alligator holes were scarcer in an area where modified hydrology caused draining and frequent dry-downs compared to another area that maintains a functional wetland system. Lower abundance of alligator holes indicates lack of alligator activities, lower overall species diversity, and lack of dry-season aquatic refugia for other organisms. The occupancy rate of alligator holes was lower than the current restoration target for the Everglades, and was variable by size class with large size-class alligators predominantly occupying alligator holes. This may indicate unequal size-class distribution, different habitat selection by size classes, or possibly a lack of recruitment. Our study provides pre-restoration baseline information about one indicator species for the Everglades. Success of the restoration can be assessed via effective synthesis of information derived by collective research efforts on the entire suite of selected ecological indicators.

  1. Conservation of Mexican wetlands: role of the North American Wetlands Conservation Act

    Science.gov (United States)

    Wilson, M.H.; Ryan, D.A.

    1997-01-01

    Mexico's wetlands support a tremendous biological diversity and provide significant natural resource benefits to local communities. Because they are also critical stopover and wintering grounds for much of North America's waterfowl and other migratory birds, Mexico has become an important participant in continental efforts to conserve these resources through the North American Wetlands Conservation Act. Funding from the Act has supported partnerships in a number of Mexico's priority wetlands to conduct data analyses and dissemination, mapping, environmental education, wetland restoration, development of sustainable economic alternatives for local people, and reserve planning and management. These partnerships, with the close involvement of Mexico's Federal Government authority, the Instituto Nacional de Ecologia, have advanced conservation in a uniquely Mexican model that differs from that employed in the United States and Canada.

  2. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  3. Assessing Wetland Anthropogenic Stress using GIS; a Multi-scale Watershed Approach

    Science.gov (United States)

    Watersheds are widely recognized as essential summary units for ecosystem research and management, particularly in aquatic systems. As the drainage basin in which surface water drains toward a lake, stream, river, or wetland at a lower elevation, watersheds represent spatially e...

  4. Floodplain Hydrodynamics and Ecosystem Function in a Dryland Wetland

    Science.gov (United States)

    Rodriguez, J. F.; Sandi, S. G.; Saco, P. M.; Wen, L.; Saintilan, N.; Kuczera, G. A.

    2017-12-01

    The Macquarie Marshes is a floodplain wetland system located in the semiarid region of south-east Australia, regularly flooded by small channels and creeks that get their water from a regulated river system. Flood-dependent vegetation in the wetland includes semi-permanent wetland areas (reed beds, lagoons, and mixed marsh), and floodplain forests and woodlands mainly dominated by River Red Gum (Eucalyptus Camaldulensis). These plant communities support a rich ecosystem and provide sanctuary for birds, frogs and fish and their ecological importance has been recognized under the Ramsar convention. During droughts, wetland vegetation can deteriorate or transition to terrestrial vegetation. Most recently, during the Millennium drought (2001-2009) large areas of water couch and common reeds transitioned to terrestrial vegetation and many patches of River Red Gum reported up to an 80% mortality. Since then, a significant recovery has occurred after a few years of record or near record rainfall. In order to support management decisions regarding watering of the wetland from the upstream reservoir, we have developed an eco-hydraulic model that relates vegetation distribution to the inundation regime (present and past) determined by floodplain hydrodynamics. The model couples hydrodynamic simulations with a rules-based vegetation module that considers water requirements for different plant associations and transition rules accounting for patch dynamics and vegetation resilience. The model has been setup and calibrated with satellite-derived inundation and vegetation maps as well as fractional cover products during the period from 1991 to 2013. We use the model to predict short-term wetland evolution under dry and wet future conditions.

  5. Impact of chloride on denitrification potential in roadside wetlands.

    Science.gov (United States)

    Lancaster, Nakita A; Bushey, Joseph T; Tobias, Craig R; Song, Bongkeun; Vadas, Timothy M

    2016-05-01

    Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl(-) concentrations from 0 to 5000 mg L(-1) for 96 h. Denitrification rates were measured by the isotope pairing technique using (15)N-NO3(-), while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p wetlands at a Cl(-) dosage of 2500 or 5000 mg L(-1), but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl(-). The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl(-) were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl(-). The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl(-) use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on N removal rates. Copyright © 2016 Elsevier Ltd. All rights

  6. Numerical study of hydrodynamic and salinity transport processes in the Pink Beach wetlands of the Liao River estuary, China

    Directory of Open Access Journals (Sweden)

    H. Qiao

    2018-06-01

    Full Text Available Interaction studies of vegetation within flow environments are essential for the determination of bank protection, morphological characteristics and ecological conditions for wetlands. This paper uses the MIKE 21 hydrodynamic and salinity model to simulate the hydrodynamic characteristics and salinity transport processes in the Pink Beach wetlands of the Liao River estuary. The effect of wetland plants on tidal flow in wetland areas is represented by a varying Manning coefficient in the bottom friction term. Acquisition of the vegetation distribution is based on Landsat TM satellites by remote sensing techniques. Detailed comparisons between field observation and simulated results of water depth, salinity and tidal currents are presented in the vegetated domain of the Pink Beach wetlands. Satisfactory results were obtained from simulations of both flow characteristics and salinity concentration, with or without vegetation. A numerical experiment was conducted based on variations in vegetation density, and compared with the tidal currents in non-vegetated areas; the computed current speed decreased remarkably with an increase in vegetation density. The impact of vegetation on water depth and salinity was simulated, and the findings revealed that wetland vegetation has an insignificant effect on the water depth and salinity in this wetland domain. Several stations (from upstream to downstream in the Pink Beach wetlands were selected to estimate the longitudinal variation of salinity under different river runoff conditions; the results showed that salinity concentration decreases with an increase in river runoff. This study can consequently help increase the understanding of favourable salinity conditions for particular vegetation growth in the Pink Beach wetlands of the Liao River estuary. The results also provide crucial guidance for related interaction studies of vegetation, flow and salinity in other wetland systems.

  7. Towards Mapping the Provision of Ecosystem Services from Headwater Wetlands in the Susquehanna River Basin

    Science.gov (United States)

    Headwater wetlands provide a range of ecosystem services including habitat provisioning and flood retention. Following the River Ecosystem Synthesis framework we identified and assessed not only headwater wetlands, but unconstrained reaches with the potential to support diverse s...

  8. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes

    Directory of Open Access Journals (Sweden)

    Julia Reschke

    2012-10-01

    Full Text Available Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENIVSAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW in northern Russia (SW = degree of saturation with water, 1 = saturated, which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of

  9. Mercury dynamics in a San Francisco estuary tidal wetland: assessing dynamics using in situ measurements

    Science.gov (United States)

    Bergamaschi, Brian A.; Fleck, Jacob A.; Downing, Bryan D.; Boss, Emmanuel; Pellerin, Brian A.; Ganju, Neil K.; Schoellhamer, David H.; Byington, Amy A.; Heim, Wesley A.; Stephenson, Mark; Fujii, Roger

    2012-01-01

    We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.

  10. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    Science.gov (United States)

    Weber, Lisa C.; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  11. Drought monitoring of Tumen river basin wetlands between 1991 and 2016 using Landsat TM/ETM+

    Science.gov (United States)

    Yu, H.; Zhu, W.; Lee, W. K.; Heo, S.

    2017-12-01

    Wetlands area described as "the kidney of earth" owing to the importance of functions for stabilizing environment, long-term protection of water sources, as well as effectively minimize sediment loss, purify surface water from industrial and agricultural pollutants, and enhancing aquifer recharge. Drought monitoring in wetlands is vital due to the condition of water supply directly affecting the growth of wetland plants and local biodiversity. In this study, Vegetation Temperature Condition Index derived from Normalized Difference Vegetation Index and Land Surface Temperature is used to observe drought status from 1991 to 2016. For doing this, Landsat TM/ETM+ data for six periods are used to analytical processing. On the other hand, soil moisture maps which are acquired from CMA Land Data Assimilation System Version 1.0 for validating reliability of drought monitoring. As a result, the study shows most of area at normal moist level (decreased 25.8%) became slightly drought (increased 29.7%) in Tumen river basin cross-border (China and North Korea) wetland. The correlation between vegetation temperature condition index and soil moisture are 0.69, 0.32 and 0.2 for the layers of 0 5cm, 0 10cm, and 10 20cm, respectively. Although climate change probably contributes to the process of drought by decreasing precipitation and increasing temperature, human activities are shown as main factor that led to the process in this wetland.

  12. Engineered wetlands : an innovative environmental solution

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.; Davis, B.M. [Jacques Whitford NAWE, White Bear Lake, MN (United States)

    2008-03-15

    Engineered wetlands are now considered as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and waters. Engineered wetlands incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems in order to enhance oxygen delivery to the wetland's aerobic micro-organisms. The wetlands typically emphasize specific characteristics of wetland ecosystems to improve treatment capacities. This article discussed an engineered wetlands installed at a set of pipeline terminals as well as at a former British Petroleum (BP) refinery. The pipeline terminal generated contact wastewater containing BTEX and ammonia, and a subsurface engineered wetland was built in 1998. To date, the 16,000{sup 2} foot wetland has treated a flow-equalized input of approximately 1.5 m{sup 3} per day of contaminants. At the refinery, a wetland treatment system was designed to treat 6000 m{sup 3} of benzene, toluene, ethylbenzene and xylene (BTEX) and volatile organic compounds (VOCs). The treatment site consists of a golf course, river front trails, and a white water kayak course. A cascade aeration system was used for iron oxidation and air-stripping. A soil matrix biofilter was used for passive gas phase benzene removal, as well as for the removal of ferric hydroxide precipitates. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 1 fig.

  13. Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China

    Science.gov (United States)

    Xi, Min; Zi, Yuanyuan; Wang, Qinggai; Wang, Sen; Cui, Guolu; Kong, Fanlong

    2018-02-01

    The contents and the spectral analysis of dissolved organic matter (DOM) in four typical wetlands, such as naked tidal, suaeda salsa, reed and spartina, were conducted to investigate the content, structure, and source of DOM in coastal wetland soil. The soil samples were obtained from Jiaozhou Bay in January, April, July, and October of 2014. Results showed that the DOM contents in soil of four typical wetland were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in horizontal direction, and decreased with the increase of soil depth on vertical section. In addition, the DOM contents changed with the seasons, in order of spring > summer > autumn > winter. The structural characteristics of DOM in Jiaozhou Bay wetland, such as aromaticity, hydrophobicity, molecular weight, polymerization degree of benzene ring carbon frame structure and so on were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in the horizontal direction. On the vertical direction, they showed a decreasing trend with the increase of soil depth. The results of three dimensional fluorescence spectra and fluorescence spectrum parameters (FI, HIX, and BIX) indicated that the DOM in Jiaozhou Bay was mainly derived from the biological activities. The contents and structure of DOM had certain relevance, but the contents and source as well as the structure and source of DOM had no significant correlation. The external pollution including domestic sewage, industrial wastewater, and aquaculture sewage affected the correlation among the content, structure and source of DOM by influencing the percentage of non-fluorescent substance in DOM and disturbing the determination of protein-like fluorescence.

  14. North American Wetlands and Mosquito Control

    Science.gov (United States)

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  15. Impact of chloride on denitrification potential in roadside wetlands

    International Nuclear Information System (INIS)

    Lancaster, Nakita A.; Bushey, Joseph T.; Tobias, Craig R.; Song, Bongkeun; Vadas, Timothy M.

    2016-01-01

    Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl − concentrations from 0 to 5000 mg L −1 for 96 h. Denitrification rates were measured by the isotope pairing technique using 15 N–NO 3 − , while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p < 0.05) inhibited denitrification in forested wetlands at a Cl − dosage of 2500 or 5000 mg L −1 , but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl − . The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl − were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl − . The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl − use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on

  16. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  17. VSWI Wetlands Advisory Layer

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset represents the DEC Wetlands Program's Advisory layer. This layer makes the most up-to-date, non-jurisdictional, wetlands mapping avaiable to the public...

  18. Remediating while preserving wetland habitat at an LLR waste site in Canada

    International Nuclear Information System (INIS)

    Kleb, H.R.; Zelmer, R.L.

    2007-01-01

    The Low-Level Radioactive Waste Management Office was established in 1982 to carry out the federal government's responsibilities for low-level radioactive (LLR) waste management in Canada. The Office operates programs to characterize, delineate, decontaminate and consolidate historic LLR waste for interim and long-term storage. In this capacity, the Office is currently considering the remediation of 9,000 cubic metres of contaminated sediment in a coastal marsh in the context of a major remediation project involving multiple urban sites. The marsh is situated between the Lake Ontario shoreline and the urban fringe of the Town of Port Hope. The marsh is designated a Cattail Mineral Shallow Marsh under the Ecological Land Classification system for Southern Ontario and was recently named the A.K. Sculthorpe Marsh in memory of a local community member. The marsh remediation will therefore require trade off between the disruption of a sensitive wetland and the removal of contaminated sediment. This paper discusses the issues and trade-off relating to the waste characterization, environmental assessment and regulatory findings and thus the remediation objectives for the marsh. Considerations include the spatial distribution of contaminated sediment, the bioavailability of contaminants, the current condition of the wetland and the predicted effects of remediation. Also considered is the significance of the wetland from provincial and municipal regulatory perspectives and the resulting directives for marsh remediation. (authors)

  19. Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987-2016) case study of Hamoun Wetland, Iran.

    Science.gov (United States)

    Kharazmi, Rasoul; Tavili, Ali; Rahdari, Mohammad Reza; Chaban, Lyudmila; Panidi, Evgeny; Rodrigo-Comino, Jesús

    2018-05-23

    The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R 2  = 0.94) than fall and spring (R 2  = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun

  20. Peatlands and potatoes; organic wetland soils in Uganda

    Science.gov (United States)

    Farmer, Jenny; Langan, Charlie; Gimona, Alessandro; Poggio, Laura; Smith, Jo

    2017-04-01

    Land use change in Uganda's wetlands has received very little research attention. Peat soils dominate the papyrus wetlands of the south west of the country, but the areas they are found in have been increasingly converted to potato cultivation. Our research in Uganda set out to (a) document both the annual use of and changes to these soils under potato cultivation, and (b) the extent and condition of these soils across wetland systems. During our research we found it was necessary to develop locally appropriate protocols for sampling and analysis of soil characteristics, based on field conditions and locally available resources. Over the period of one year we studied the use of the peat soil for potato cultivation by smallholder farmers in Ruhuma wetland and measured changes to surface peat properties and soil nutrients in fields over that time. Farmer's use of the fields changed over the year, with cultivation, harvesting and fallow periods, which impacted on soil micro-topography. Measured soil properties changed over the course of the year as a result of the land use, with bulk density, nitrogen content, potassium and magnesium all reducing. Comparison of changes in soil carbon stocks over the study period were difficult to make as it was not possible to reach the bottom of the peat layer. However, a layer of fallow weeds discarded onto the soil prior to preparation of the raised potato beds provided a time marker which gave insight into carbon losses over the year. To determine the peatland extent, a spatial survey was conducted in the Kanyabaha-Rushebeya wetland system, capturing peat depths and key soil properties (bulk density, organic matter and carbon contents). Generalised additive models were used to map peat depth and soil characteristics across the system, and maps were developed for these as well as drainage and land use classes. Comparison of peat cores between the two study areas indicates spatial variability in peat depths and the influence of

  1. Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland

    International Nuclear Information System (INIS)

    Wiessner, A.; Kuschk, P.; Jechorek, M.; Seidel, H.; Kaestner, M.

    2008-01-01

    Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S 2- and S 0 in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands. - In an experimental constructed wetland a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability was observed

  2. The emergence of treatment wetlands

    International Nuclear Information System (INIS)

    Cole, S.

    1998-01-01

    Judging by the growing number of wetlands built for wastewater treatment around the world, this natural technology seems to have firmly established roots. After almost 30 years of use in wastewater treatment, constructed treatment wetlands now number over 500 in Europe and 600 in North America. Marsh-type surface flow systems are most common in North America, but subsurface flow wetlands, where wastewater flows beneath the surface of a gravel-rock bed, predominate in Europe. The inexpensive, low maintenance technology is in high demand in Central America, Eastern Europe, and Asia. New applications, from nitrate-contaminated ground water to effluent from high-intensity livestock operations, are also increasing. But in the United States, treatment-wetland technology has not yet gained national regulatory acceptance. Some states and EPA regions are eager to endorse them, but others are wary of this nontraditional method of treating wastewater. In part, this reluctance exists because the technology is not yet completely understood. Treatment wetlands also pose a potential threat to wildlife attracted to this new habitat -an ecosystem exposed to toxic compounds. New efforts are under way, however, to place the technology onto firmer scientific and regulatory ground. Long-term demonstration and monitoring field studies are currently probing the inner workings of wetlands and their water quality capabilities to provide better data on how to design more effective systems. A recent study of US policy and regulatory issues surrounding treatment wetlands has recommended that the federal government actively promote the technology and clear the regulatory roadblocks to enable wider use. Proponents argue that the net environmental benefits of constructed wetlands, such as restoring habitat and increasing wetlands inventory, should be considered. 8 refs., 6 photos

  3. ASSESSING THE EFFECT OF ANTIBIOTICS ON THE RESISTANCE OF RESIDENT MICROBES IN WETLANDS CONSTRUCTED FOR WASTEWATER TREATMENT

    Science.gov (United States)

    The use of constructed wetlands as a cost effective and environmentally friendly option for wastewater treatment is becoming more prevalent. These systems are championed as combining many of the benefits of tertiary treatment while also providing high quality wetland habitat as...

  4. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    International Nuclear Information System (INIS)

    Slama, C.; Gardner Costa, J.; Ciborowski, J.

    2010-01-01

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  5. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Slama, C.; Gardner Costa, J.; Ciborowski, J. [Windsor Univ., ON (Canada)

    2010-07-01

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  6. Multiple factors influence the vegetation composition of Southeast U.S. wetlands restored in the Wetlands Reserve Program

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2013-01-01

    Degradation of wetlands on agricultural lands contributes to the loss of local or regional vegetation diversity. The U.S. Department of Agriculture’s Wetlands Reserve Program (WRP) funds the restoration of degraded wetlands on private ‘working lands’, but these WRP projects have not been studied in the Southeast United States. Wetland hydrogeomorphic type influences...

  7. Influences of channelization on discharge of suspended sediment and wetland vegetation in Kushiro Marsh, northern Japan

    Science.gov (United States)

    Nakamura, Futoshi; Sudo, Tadashi; Kameyama, Satoshi; Jitsu, Mieko

    1997-03-01

    The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from

  8. Emergence, growth, and dispersal of Chironomidae in reclaimed wetlands in the Athabasca oil sands region of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, K.; Ciborowski, J. [Windsor Univ., ON (Canada)

    2010-07-01

    Concerns over the environmental impacts of oil sands extraction in northeastern Alberta has increased as the industry continues to expand. This study examined if the emergence, growth, and dispersal of Chironomidae differ in reclaimed wetlands constructed with oil sands process materials (OSPM) when compared with growth in reference wetlands. Five floating 30 cm diameter halo traps were deployed in various wetlands for a 24 hour period. Exuviae trapped in the surface water film were then collected, identified, and counted. Chironomids grown in laboratories from egg masses collected from 2 OSPM-affected wetlands and 2 reference wetlands were paired according to geographic proximity under controlled conditions for 1 generation. Chironomid larval growth was quantified in situ in the wetlands by reciprocally transferring second instar, second generation culture larva. The dispersal of the larvae was quantified by tabulating the number of adults caught in sticky insect traps located along 3 radially-arranged transects in each wetland. A preliminary analysis has suggested that fewer chironomids emerged from the OSPM-affected wetlands. No differences in dispersal distance between the OSPM-affected and reference wetlands were observed.

  9. Emergence, growth, and dispersal of Chironomidae in reclaimed wetlands in the Athabasca oil sands region of Alberta

    International Nuclear Information System (INIS)

    Kennedy, K.; Ciborowski, J.

    2010-01-01

    Concerns over the environmental impacts of oil sands extraction in northeastern Alberta has increased as the industry continues to expand. This study examined if the emergence, growth, and dispersal of Chironomidae differ in reclaimed wetlands constructed with oil sands process materials (OSPM) when compared with growth in reference wetlands. Five floating 30 cm diameter halo traps were deployed in various wetlands for a 24 hour period. Exuviae trapped in the surface water film were then collected, identified, and counted. Chironomids grown in laboratories from egg masses collected from 2 OSPM-affected wetlands and 2 reference wetlands were paired according to geographic proximity under controlled conditions for 1 generation. Chironomid larval growth was quantified in situ in the wetlands by reciprocally transferring second instar, second generation culture larva. The dispersal of the larvae was quantified by tabulating the number of adults caught in sticky insect traps located along 3 radially-arranged transects in each wetland. A preliminary analysis has suggested that fewer chironomids emerged from the OSPM-affected wetlands. No differences in dispersal distance between the OSPM-affected and reference wetlands were observed.

  10. Industry and forest wetlands: Cooperative research initiatives

    International Nuclear Information System (INIS)

    Shepard, J.P.; Lucier, A.A.; Haines, L.W.

    1993-01-01

    In 1989 the forest products industry responded to a challenge of the National Wetlands Policy Forum to initiate a cooperative research program on forest wetlands management organized through the National Council of the Paper Industry for Air and Stream Improvement (NCASI). The objective is to determine how forest landowners can manage wetlands for timber production while protecting other wetland functions such as flood storage, water purification, and food chain/wildlife habitat support. Studies supported by the NCASI in 9 states are summarized. Technical support on wetland regulatory issues to member companies is part of the research program. Since guidelines for recognizing wetlands for regulatory proposed have changed frequently, the NCASI has recommend an explicit link between wetland delineation and a classification system that considers difference among wetland types in vegetation, soils, hydrology, appearance, landscape position, and other factors. 16 refs

  11. The Role of Driving Factors in Historical and Projected Carbon Dynamics in Wetland Ecosystems of Alaska

    Science.gov (United States)

    Lyu, Z.; Helene, G.; He, Y.; Zhuang, Q.; McGuire, A. D.; Bennett, A.; Breen, A. L.; Clein, J.; Euskirchen, E. S.; Johnson, K. D.; Kurkowski, T. A.; Pastick, N. J.; Rupp, S. T.; Wylie, B. K.; Zhu, Z.

    2017-12-01

    Wetlands are important terrestrial ecosystems in Alaska. It is important to understand and assess their role in the regional carbon dynamics in response to historical and projected environmental conditions. A coupled modeling framework that incorporates a fire disturbance model and two biogeochemical models was used to assess the relative influence of changing climate, atmospheric carbon dioxide (CO2) concentration, and fire regime on the historical and future carbon balance in wetland ecosystems of the four main Landscape Conservation Cooperatives (LCCs) of Alaska. Simulations were conducted for the historical period (1950-2009) and future projection period (2010-2099). These simulations estimate that the total carbon (C) storage in wetland ecosystems of Alaska is 5556 Tg C in 2009, with 89% of the C stored in soils. An estimated 175 Tg C was lost during the historical period, which is attributed to greater C lost from the Northwest Boreal LCC than C gained from the other three LCCs. The simulations for the projection period were conducted for six different scenarios driven by climate forcings from two different climate models for each of three CO2 emission scenarios. The mean total carbon storage increased 3.94 Tg C/yr by 2099, with variability among the simulations ranging from 2.02 Tg C/yr to 4.42 Tg C/yr. Across the four LCCs, the largest relative C storage increase occurred in the Arctic and North Pacific LCCs. These increases were primarily driven by increases in net primary production (NPP) that were greater than increases in heterotrophic respiration and fire emissions. Our analysis further indicates that NPP increase was primarily driven by CO2 fertilization ( 5% per 100 ppmv increase) as well as by increases in air temperature ( 1% per ° increase). Increases air temperature were estimated to be the primary cause for a projected 47.7% mean increase in wetlands biogenic CH4 emissions among the simulations ( 15% per ° increase). The combined effects of

  12. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    Directory of Open Access Journals (Sweden)

    Zeki Gökalp

    2016-07-01

    Full Text Available Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance costs, energy demands, easy operation and low sludge generation. Today, constructed wetland systems are largely used to treat domestic wastewaters, agricultural wastewaters, industrial wastewater and runoff waters and ultimately to prevent water pollution and to improve water quality of receiving water bodies. In present study, currently implemented practices in design, construction, operation and maintenance of constructed wetlands were assessed and potential mistakes made in different phases these systems were pointed out and possible solutions were proposed to overcome these problems.

  13. Global warming and prairie wetlands

    International Nuclear Information System (INIS)

    Poiani, K.A.; Johnson, W.C.

    1991-01-01

    In this article, the authors discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns and waterfowl habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model

  14. Wetland soils, hydrology and geomorphology

    Science.gov (United States)

    C. Rhett Jackson; James A. Thompson; Randall K. Kolka

    2014-01-01

    The hydrology, soils, and watershed processes of a wetland all interact with vegetation and animals over time to create the dynamic physical template upon which a wetland's ecosystem is based (Fig. 2.1). With respect to many ecosystem processes, the physical factors defining a wetland environment at any particular time are often treated as independent variables,...

  15. Ecosystem function in oil sands wetlands : rates of detrital decomposition, moss growth, and microbial respiration in oilsands wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Wytrykush, C. [Windsor Univ., ON (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    A study was conducted in which leaf litter breakdown and biomass accrual in 31 reference and oilsands affected (OSPM) wetlands in Northeastern Alberta was examined. The purpose was to determine how the decomposition of dead plant matter controls the primary productivity in wetlands. The data collected from this study will provide information about carbon flow and dynamics in oilsands affected wetlands. The study involved the investigation of wetlands that contrasted in water origin (OSPM vs. reference), sediment origin (OSPM vs. natural), sediment organic content and age. Mesh bags containing 5 g of dried Typha (cattail) or 20 g of damp moss were placed into 31 wetlands in order to monitor the rate at which biomass was lost to decomposition, as measured by changes in dry mass. After 1 year, moss growth was found to be greatest in younger wetlands with natural sediments. Cattail decomposition was found to be slower in wetlands containing OSPM water than that in reference wetlands. Preliminary analysis of respiration rates of biota associated with decomposing cattail indicate that the amount of oxygen consumed is not affected by wetland water source, sediment source, level of initial sediment organic content, or age.

  16. Potential impacts of climate change on groundwater supplies to the Doñana wetland, Spain

    OpenAIRE

    Jackson, Christopher R.; Guardiola-Albert, Carolina

    2011-01-01

    Climate change impacts on natural recharge and groundwater-wetland dynamics were investigated for the Almonte-Marismas aquifer, Spain, which supports the internationally important Doñana wetland. Simulations were carried out using outputs from 13 global climate models to assess the impacts of climate change. Reductions in flow from the aquifer to streams and springs flooding the wetland, induced by changes in recharge according to different climate projections, were modelled. The results proj...

  17. GlobWetland Africa: Implementing Sustainable Earth Observation Based Wetland Monitoring Capacity in Africa and Beyond

    DEFF Research Database (Denmark)

    Tottrup, Christian; Riffler, Michael; Wang, Tiejun

    and decision support, [iii] receive a freely available, open, flexible and modifiable framework for easy establishment of new wetland observatories, for easy integration in existing observatory infrastructures and for easy adaptation to new requirements, e.g. changes in management processes.......Lack of data, appropriate information and challenges in human and institutional capacity put a serious constraint on effective monitoring and management of wetlands in Africa. Conventional data are often lacking in time or space, of poor quality or available at locations that are not necessarily...... for the conservation, wiseuse and effective management of wetlands in Africa and to provide African stakeholders with the necessary EO methods and tools to better fulfil their commitments and obligations towards the Ramsar Convention on Wetlands. The main objective of GlobWetland Africa (GW-A) is to provide the major...

  18. Impacts of water development on aquatic macroinvertebrates, amphibians, and plants in wetlands of a semi-arid landscape

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.

    2004-01-01

    We compared the macroinvertebrate and amphibian communities of 12 excavated and 12 natural wetlands in western North Dakota, USA, to assess the effects of artificially lengthened hydroperiods on the biotic communities of wetlands in this semi-arid region. Excavated wetlands were much deeper and captured greater volumes of water than natural wetlands. Most excavated wetlands maintained water throughout the study period (May to October 1999), whereas most of the natural wetlands were dry by June. Excavated wetlands were largely unvegetated or contained submergent and deep-marsh plant species. The natural wetlands had two well-defined vegetative zones populated by plant species typical of wet meadows and shallow marshes. Excavated wetlands had a richer aquatic macroinvertebrate community that included several predatory taxa not found in natural wetlands. Taxa adapted to the short hydroperiods of seasonal wetlands were largely absent from excavated wetlands. The amphibian community of natural and excavated wetlands included the boreal chorus frog (Pseudacris maculata), northern leopard frog (Rana pipiens), plains spadefoot (Scaphiopus bombifrons), Woodhouse's toad (Bufo woodhousii woodhousii), and tiger salamander (Ambystoma tigrinum). The plains spadefoot occurred only in natural wetlands while tiger salamanders occurred in all 12 excavated wetlands and only one natural wetland. Boreal chorus frogs and northern leopard frogs were present in both wetland types; however, they successfully reproduced only in wetlands lacking tiger salamanders. Artificially extending the hydroperiod of wetlands by excavation has greatly influenced the composition of native biotic communities adapted to the naturally short hydroperiods of wetlands in this semi-arid region. The compositional change of the biotic communities can be related to hydrological changes and biotic interactions, especially predation related to excavation.

  19. Fate of Uranium in Wetlands: Impact of Drought Followed by Re-flooding

    Science.gov (United States)

    Gilson, E.; Huang, S.; Koster van Groos, P. G.; Scheckel, K.; Peacock, A. D.; Kaplan, D. I.; Jaffe, P. R.

    2014-12-01

    Uranium contamination in groundwater can be mitigated in anoxic zones by iron-reducing bacteria that reduce soluble U(VI) to insoluble U(IV) and by uranium immobilization through complexation and sorption. Wetlands often link ground and surface-waters, making them strategic systems for potentially limiting migration of uranium contamination. Little is known about how drought periods that result in the drying of wetland soils, and consequent redox changes, affect uranium fate and transport in wetlands. In order to better understand the fate and stability of immobilized uranium in wetland soils, and how dry periods affect the uranium stability, we dosed saturated wetland mesocosms planted with Scirpus acutus with low levels of uranyl-acetate for 5 months before imposing a 9-day drying period followed by a 13-day rewetting period. Concentrations of uranium in mesocosm effluent increased after rewetting, but the cumulative amount of uranium released in the 13 days following the drying constituted less than 1% of the uranium immobilized in the soil during the 5 months prior to the drought. This low level of remobilization suggests that the uranium immobilized in these soils was not primarily bioreduced U(IV), which could have been oxidized to soluble U(VI) during the drought and released in the effluent during the subsequent flood. XANES analyses confirm that most of the uranium immobilized in the mesocosms was U(VI) sorbed to iron oxides. Compared to mesocosms that did not experience drying or rewetting, mesocosms that were sacrificed immediately after drying and after 13 days of rewetting had less uranium in soil near roots and more uranium on root surfaces. Metal-reducing bacteria only dominated the bacterial community after 13 days of rewetting and not immediately after drying, indicating that these bacteria are not responsible for this redistribution of uranium after the drying and rewetting. Results show that short periods of drought conditions in a wetland may

  20. Mapping wetland loss and restoration potential in Flanders (Belgium: an ecosystem service perspective

    Directory of Open Access Journals (Sweden)

    Kris Decleer

    2016-12-01

    Full Text Available With the case of Flanders (northern part of Belgium we present an integrated approach to calculate accurate losses of wetlands, potentials for restoration, and their ecosystem services supplies and illustrate how these insights can be used to evaluate and support policy making. Flanders lost about 75% of its wetland habitats in the past 50-60 years, with currently only 68,000 ha remaining, often in a more or less degraded state. For five different wetland categories (excluding open waters we calculated that restoration of lost wetland is still possible for an additional total area of about 147,000 ha, assuming that, with time and appropriate measures and techniques, the necessary biophysical and ecological conditions can more or less be restored or created. Wetland restoration opportunities were mapped according to an open and forested landscape scenario. Despite the fact that for 49,000 ha wetland restoration is justifiable by the actual presence of an appropriate spatial planning and/or protection status, the official Flemish nature policy only foresees 7,400 to 10,600 ha of additional wetland (open waters excluded by 2050. The benefits of a more ambitious wetland restoration action program are underpinned by an explorative and quantified analysis of ecosystem service supply for each of the two scenarios, showing that the strongly increased supply of several important regulating and cultural ecosystem services might outweigh the decrease of food production, especially if extensive farming on temporary wet soils remains possible. Finally, we discuss the challenges of wetland restoration policies for biodiversity conservation and climate change.

  1. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert; Meg Iannacone

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity of outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed

  2. Wetland Flow and Salinity Budgets and Elements of a Decision Support System toward Implementation of Real-Time Seasonal Wetland Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Ortega, R.; Rahilly, P.; Johnson, C.B.

    2011-12-17

    The project has provided science-based tools for the long-term management of salinity in drainage discharges from wetlands to the San Joaquin River. The results of the project are being used to develop best management practices (BMP) and a decision support system to assist wetland managers adjust the timing of salt loads delivered to the San Joaquin River during spring drawdown. Adaptive drainage management scheduling has the potential to improve environmental compliance with salinity objectives in the Lower San Joaquin River by reducing the frequency of violation of Vernalis salinity standards, especially in dry and critically dry years. The paired approach to project implementation whereby adaptively managed and traditional practices were monitored in a side-by-side fashion has provided a quantitative measure of the impacts of the project on the timing of salt loading to the San Joaquin River. The most significant accomplishments of the project has been the technology transfer to wetland biologists, ditch tenders and water managers within the Grasslands Ecological Area. This “learning by doing” has build local community capacity within the Grassland Water District and California Department of Fish and Game providing these institutions with new capability to assess and effectively manage salinity within their wetlands while simultaneously providing benefits to salinity management of the San Joaquin River.

  3. Studies of Louisiana's Deltas and Wetlands using SAR

    Science.gov (United States)

    Jones, C. E.

    2017-12-01

    Sustainable coastal environments exist in delicate balance between subsidence, erosion, and sea level rise on one hand and accretion of sediment and retention of decomposing organic matter on the other. In this talk we present results from a series of studies using an airborne L-band SAR (UAVSAR) to measure changing conditions in the Mississippi River Delta and coastal wetlands of Louisiana. Change within the Mississippi River delta (MRD), which is a highly engineered environment, is contrasted to those in the Wax Lake Delta, a small, naturally evolving delta located to the west of the current-day lobe of the MRD. The UAVSAR studies provide evidence that in the MRD subsidence and erosion related to human activities are increasing risk of flooding, submergence, and land loss. These are not seen in the Wax Lake Delta, where new land is forming. We evaluate geomorphic and hydrologic changes In the Wax Lake Delta and wetlands hydrologically connected to the Wax Lake Outlet canal that are apparent on the timescales of the UAVSAR data set, which consists of both near-yearly acquisitions (2009-2016) and several series of repeat acquisitions in 2015 and 2016 capturing conditions across a tidal cycle. Using the yearly data, we observe the evolution of subaqueous channels and crevasses in the delta and changes in distributary channels within the wetlands. We use water level change derived from InSAR applied to the rapid repeat data acquired during different stages of a tidal cycle to study the natural pattern of water flux within the delta and the coastal wetlands. The studies, results, and plans for future work will be presented. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the California Dept. of Water Resources and with the National Aeronautics and Space Administration.

  4. Indicators of early successional trends in environmental condition and community function in constructed wetlands of the Athabasca Oilsands region

    Energy Technology Data Exchange (ETDEWEB)

    Ciborowski, J.; Kovalenko, K. [Windsor Univ., ON (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Mollard, F.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Smits, J.; Turcotte, D. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2010-07-01

    This presentation reported on a study that compared interannual environmental variation in post-mining Athabasca oil sands landscapes. In particular, it compared biological, ecotoxicological and carbon dynamic aspects of sixteen 5 to 30 year old wetlands with different ages, reclamation materials and stockpiled surface materials such as peat. In addition to determining carbon fluxes, standing stocks of hydrocarbons were measured along with organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, litter, zoobenthos, and aquatic insect emergence. Gas fluxes, microbial, plant, zoobenthic, amphibian, and tree swallow nestling production, and stable isotope signatures were used to determine carbon pathways, fluxes and budgets. Coarse taxon richness in reference wetlands reached an asymptote in 5 to 7 years. Richness, composition and emergent plant cover of oilsands-affected wetlands converged over a 15 to 20 year period with reference wetland patterns. The development of emergent but not submergent plant cover and associated biota accelerated with the addition of peat. Water chemistry was found to be more important than sediment in terms of regulating submergent biological properties. The study showed that the most important regulator of community composition may be residual salinity. Compared to more temperate biomes, the successional trends were slower.

  5. Indicators of early successional trends in environmental condition and community function in constructed wetlands of the Athabasca Oilsands region

    International Nuclear Information System (INIS)

    Ciborowski, J.; Kovalenko, K.; Dixon, G.; Farwell, A.; Foote, L.; Mollard, F.; Roy, M.; Smits, J.; Turcotte, D.

    2010-01-01

    This presentation reported on a study that compared interannual environmental variation in post-mining Athabasca oil sands landscapes. In particular, it compared biological, ecotoxicological and carbon dynamic aspects of sixteen 5 to 30 year old wetlands with different ages, reclamation materials and stockpiled surface materials such as peat. In addition to determining carbon fluxes, standing stocks of hydrocarbons were measured along with organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, litter, zoobenthos, and aquatic insect emergence. Gas fluxes, microbial, plant, zoobenthic, amphibian, and tree swallow nestling production, and stable isotope signatures were used to determine carbon pathways, fluxes and budgets. Coarse taxon richness in reference wetlands reached an asymptote in 5 to 7 years. Richness, composition and emergent plant cover of oilsands-affected wetlands converged over a 15 to 20 year period with reference wetland patterns. The development of emergent but not submergent plant cover and associated biota accelerated with the addition of peat. Water chemistry was found to be more important than sediment in terms of regulating submergent biological properties. The study showed that the most important regulator of community composition may be residual salinity. Compared to more temperate biomes, the successional trends were slower.

  6. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    Science.gov (United States)

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  7. Organic Carbon and Disinfection Byproduct Precursor Loads from a Constructed, Non-Tidal Wetland in California's Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Jacob A. Fleck

    2007-05-01

    Full Text Available Wetland restoration on peat islands in the Sacramento-San Joaquin Delta will change the quality of island drainage waters entering the Delta, a primary source of drinking water in California. Peat island drainage waters contain high concentrations of dissolved and particulate organic carbon (DOC and POC and organic precursors to drinking water disinfection byproducts, such as trihalomethanes (THMs. We quantified the net loads of DOC, POC, and THM-precursors from a constructed subsidence mitigation wetland on Twitchell Island in the Delta to determine the change in drainage water quality that may be caused by conversion of agricultural land on peat islands to permanently flooded, non-tidal wetlands. Creation of permanently flooded wetlands halts oxidative loss of the peat soils and thereby may mitigate the extensive land-surface subsidence of the islands that threatens levee stability in the Delta. Net loads from the wetland were dominated by DOC flushed from the oxidized shallow peat soil layer by seepage flow out of the wetland. The permanently flooded conditions in the overlying wetland resulted in a gradual evolution to anaerobic conditions in the shallow soil layer and a concomitant decrease in the flow could be minimized by reducing the hydraulic gradient between the wetland and the adjacent drainage ditch. Estimates of net loads from the wetland assuming efflux of surface water only were comparable in magnitude to net loads from nearby agricultural fields, but the wetland and agricultural net loads had opposite seasonal variations. Wetland surface water net loads of DOC, POC, and THM-precursors were lower during the winter months when the greatest amounts of water are available for diversion from the Delta to drinking water reservoirs.

  8. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Bien, Stephanie; Decker, Ashlee; Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States); Wulker, Brian [Intern, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  9. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    International Nuclear Information System (INIS)

    Powell, Jane; Bien, Stephanie; Decker, Ashlee; Homer, John; Wulker, Brian

    2013-01-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  10. Why are wetlands important?

    Science.gov (United States)

    Wetlands are among the most productive ecosystems in the world, comparable to rain forests and coral reefs. An immense variety of species of microbes, plants, insects, amphibians, reptiles, birds, fish, and mammals can be part of a wetland ecosystem.

  11. Emerging role of wetland methane emissions in driving 21st century climate change.

    Science.gov (United States)

    Zhang, Zhen; Zimmermann, Niklaus E; Stenke, Andrea; Li, Xin; Hodson, Elke L; Zhu, Gaofeng; Huang, Chunlin; Poulter, Benjamin

    2017-09-05

    Wetland methane (CH 4 ) emissions are the largest natural source in the global CH 4 budget, contributing to roughly one third of total natural and anthropogenic emissions. As the second most important anthropogenic greenhouse gas in the atmosphere after CO 2 , CH 4 is strongly associated with climate feedbacks. However, due to the paucity of data, wetland CH 4 feedbacks were not fully assessed in the Intergovernmental Panel on Climate Change Fifth Assessment Report. The degree to which future expansion of wetlands and CH 4 emissions will evolve and consequently drive climate feedbacks is thus a question of major concern. Here we present an ensemble estimate of wetland CH 4 emissions driven by 38 general circulation models for the 21st century. We find that climate change-induced increases in boreal wetland extent and temperature-driven increases in tropical CH 4 emissions will dominate anthropogenic CH 4 emissions by 38 to 56% toward the end of the 21st century under the Representative Concentration Pathway (RCP2.6). Depending on scenarios, wetland CH 4 feedbacks translate to an increase in additional global mean radiative forcing of 0.04 W·m -2 to 0.19 W·m -2 by the end of the 21st century. Under the "worst-case" RCP8.5 scenario, with no climate mitigation, boreal CH 4 emissions are enhanced by 18.05 Tg to 41.69 Tg, due to thawing of inundated areas during the cold season (December to May) and rising temperature, while tropical CH 4 emissions accelerate with a total increment of 48.36 Tg to 87.37 Tg by 2099. Our results suggest that climate mitigation policies must consider mitigation of wetland CH 4 feedbacks to maintain average global warming below 2 °C.

  12. Spatiotemporal flooding fluctuation analysis: wetland managment Bañado La Estrella, Chaco región, Argentina

    OpenAIRE

    Gómez Romina, Díaz; Cuellar, Ana Carolina; Brown, Alejandro

    2016-01-01

    The wetlands are widely distributed over the Chaco region. Despite their wide territorial extension and major functional role, Bañado la Estella wetlands have not been appropriately mapped, and this is not a protected area nowadays. Wetlands are ecosystems that depend on periodical flooding, which determine the presence of soils with hydromorphic features and species adapted to permanent or temporary flooding conditions.The bed of the Pilcomayo River began regressing to the west about 30 year...

  13. Genetic and geological classification wetlands proposed. Application to the spanish wetlands included in the Ramsar convention; Propuesta de clasificacion genetico-geologica de humedales. Aplicacion a los humedales espanoles incluidos en el Convenio de Ramsar

    Energy Technology Data Exchange (ETDEWEB)

    Duran Valsero, J. J.; Garcia de Domingo, A.; Robledo Ardila, P.

    2009-07-01

    The classification represents the first step in the research of the wetlands. There are several types of classifications established according different criteria: geographic, genetic, geologic, functional, hydric, biologic and others. In this work we considered the genetic and geologic classifications criteria are the more suitable because the criteria used are very concrete, descriptive and its application should be easier to put into practice. Every group established in this type of classification determines the develop naturals conditions allowing us to establish the evolution guidelines and same main management lines. The criteria used to develop this classification have been fundamentally: geologic, geomorphologic, tectonics, stratigraphic, and hydrogeologic because these determine greatly the physical wetland characteristics (geometric parameters, hydric nourishment system, hydrochemical characteristics and others). The general characteristics, guidelines behavior of the wetland, and the early evolution of every group of wetland could be essentials to detect and identified those actuations modifying the natural evolution in each concrete wetland. In this work we are applying these classification criteria to the Spanish wetlands included in the Ramsar Convention (until February 2006), defining twelve types of basic wetlands according the geologic and genetic characteristics. (Author) 19 refs.

  14. Adaptive wetland management in an uncertain and changing arid environment

    Directory of Open Access Journals (Sweden)

    Rebekah Downard

    2014-06-01

    Full Text Available Wetlands in the arid western United States provide rare and critical migratory bird habitat and constitute a critical nexus within larger social-ecological systems (SES where multiple changing land-use and water-use patterns meet. The Bear River Migratory Bird Refuge in Utah, USA, presents a case study of the ways that wetland managers have created adaptive management strategies that are responsive to the social and hydrological conditions of the agriculture-dominated SES within which they are located. Managers have acquired water rights and constructed infrastructure while cultivating collaborative relationships with other water users to increase the adaptive capacity of the region and decrease conflict. Historically, water management involved diversion and impoundment of water within wetland units timed around patterns of agricultural water needs. In the last 20 years, managers have learned from flood and drought events and developed a long-term adaptive management plan that specifies alternative management actions managers can choose each year based on habitat needs and projected water supply. Each alternative includes habitat goals and target wetland water depth. However, wetland management adapted to agricultural return-flow availability may prove insufficient as population growth and climate change alter patterns of land and water use. Future management will likely depend more on negotiation, collaboration, and learning from social developments within the SES than strictly focusing on water management within refuge boundaries. To face this problem, managers have worked to be included in negotiations with regional water users, a strategy that may prove instructive for other wetland managers in agriculture-dominated watersheds.

  15. Simulation of Constructed Wetland in treating Wastewater using Fuzzy Logic Technique

    Science.gov (United States)

    Sudarsan, J. S.; Subramani, Sheekha; Rajan, Rajitha J.; Shah, Isha; Nithiyanantham, S.

    2018-04-01

    Constructed wetlands act as a natural alternative to conventional methods of wastewater treatment. CW are found effective in wastewater containing inorganic matter, organic matter, toxic compounds, metals, nitrogen, phosphorous, heavy metals, organic chemicals, and pathogens. The treatment efficiency by the adaptation of CWs in treatment process is achieved by a complex interaction between plants, microorganisms, soil matrix and substances in the wastewater. Constructed wetland treatment systems are engineered systems designed in such a manner that it could take advantages of those processes occurring in natural wetlands in treating the wastewater concerned, but in a more controlled environment. Petrochemical wastewater was the type of wastewater taken for the study. Characteristics of petrochemical wastewater mainly oil, Biological Oxygen Demand (BOD) and Chemical oxygen demand (COD) were selected for treatment in constructed wetland as they are predominant in petrochemical wastewater. The conventional methods followed in the treatment are chemical and biological treatment. In this study, a fuzzy model for water quality assessment has been developed and water quality index value was obtained. The experiment conducted and further analysis using fuzzy logic indicated that interpretation of certain imprecise data can be improved within fuzzy inference system (FIS). Based on the analysis, we could observe that Typha sp contained wetland cell showed greater efficiency in removal of parameters such as COD and BOD than Phragmites sp. wetland cell.

  16. Assessment of hydrological regimes for vegetation on riparian wetlands in Han River Basin, Korea

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-01-01

    Full Text Available Hydrological regimes are regarded as one of the major determinants for wetland ecosystems, for they influence species composition, succession, productivity, and stability of vegetation communities. Since Korea launched the Four Major River Restoration Project in 2007, the water regimes of many of the riparian wetlands have changed, that is potentially affecting vegetation properties. For ecological conservation and management, it is important to connect hydrological characteristics and vegetation properties. The objective of this study is to investigate the influence of hydrological regimes on vegetation community, and develop a methodology that can connect them. Inundated exceedance probability (IEP and its district concept are suggested to gain insights into hydrological regimes on the Binae wetland that is rehabilitated by the Restoration Project in 2012 and belong to the riparian zone. Results of this study indicate that the areas with P = 0.08 or lower IEPs should have the disturbance for vegetation communities, or could be changed to a hydrophilic vegetation in the study area, and it should be considered in the restoration and rehabilitation project to conserve legally protected or endangered vegetation.

  17. Biodiversity impacts from salinity increase in a coastal wetland.

    Science.gov (United States)

    Amores, Maria José; Verones, Francesca; Raptis, Catherine; Juraske, Ronnie; Pfister, Stephan; Stoessel, Franziska; Antón, Assumpció; Castells, Francesc; Hellweg, Stefanie

    2013-06-18

    A Life Cycle Impact Assessment method was developed to evaluate the environmental impact associated with salinity on biodiversity in a Spanish coastal wetland. The developed characterization factor consists of a fate and an effect factor and equals 3.16 × 10(-1) ± 1.84 × 10(-1) PAF · m(3) · yr · m(-3) (PAF: Potentially Affected Fraction of species) indicating a "potential loss of 0.32 m(3) ecosystem" for a water consumption rate of 1 m(3) · yr(-1). As a result of groundwater consumption with a rate of 1 m(3) · yr(-1), the PAF in the lost cubic meter of ecosystem equals 0.05, which has been proposed as the maximum tolerable effect to keep the ecosystem intact. The fate factor was calculated from seasonal water balances of the wetland Albufera de Adra. The effect factor was obtained from the fitted curve of the potentially affected fraction of native wetland species due to salinity and can be applied to other wetlands with similar species composition. In order to test the applicability of the characterization factor, an assessment of water consumption of greenhouse crops in the area was conducted as a case study. Results converted into ecosystem quality damage using the ReCiPe method were compared to other categories. While tomatoes are responsible for up to 30% of the impact of increased salinity due to water consumption on ecosystem quality in the studied area, melons have the largest impact per tonne produced.

  18. The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.

    Science.gov (United States)

    Nahlik, Amanda M; Mitsch, William J

    2008-01-01

    Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.

  19. Modeling adaptation of wetland plants under changing environments

    Science.gov (United States)

    Muneepeerakul, R.; Muneepeerakul, C. P.

    2010-12-01

    An evolutionary-game-theoretic approach is used to study the changes in traits of wetland plants in response to environmental changes, e.g., altered patterns of rainfall and nutrients. Here, a wetland is considered as a complex adaptive system where plants can adapt their strategies and influence one another. The system is subject to stochastic rainfall, which controls the dynamics of water level, soil moisture, and alternation between aerobic and anaerobic conditions in soil. Based on our previous work, a plant unit is characterized by three traits, namely biomass nitrogen content, specific leaf area, and allocation to rhizome. These traits control the basic functions of plants such as assimilation, respiration, and nutrient uptake, while affecting their environment through litter chemistry, root oxygenation, and thus soil microbial dynamics. The outcome of this evolutionary game, i.e., the best-performing plant traits against the backdrop of these interactions and feedbacks, is analyzed and its implications on important roles of wetlands in supporting our sustainability such as carbon sequestration in biosphere, nutrient cycling, and repository of biodiversity are discussed.

  20. Climate change and prairie pothole wetlands: mitigating water-level and hydroperiod effects through upland management

    Science.gov (United States)

    Renton, David A.; Mushet, David M.; DeKeyser, Edward S.

    2015-01-01

    Prairie pothole wetlands offer crucial habitat for North America’s waterfowl populations. The wetlands also support an abundance of other species and provide ecological services valued by society. The hydrology of prairie pothole wetlands is dependent on atmospheric interactions. Therefore, changes to the region’s climate can have profound effects on wetland hydrology. The relevant literature related to climate change and upland management effects on prairie pothole wetland water levels and hydroperiods was reviewed. Climate change is widely expected to affect water levels and hydroperiods of prairie pothole wetlands, as well as the biota and ecological services that the wetlands support. In general, hydrologic model projections that incorporate future climate change scenarios forecast lower water levels in prairie pothole wetlands and longer periods spent in a dry condition, despite potential increases in precipitation. However, the extreme natural variability in climate and hydrology of prairie pothole wetlands n