WorldWideScience

Sample records for assessing radiation dose

  1. Cone beam computed tomography radiation dose and image quality assessments.

    Science.gov (United States)

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  2. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    Science.gov (United States)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  3. Radiation dose assessment of ACP hot cell in accident

    Energy Technology Data Exchange (ETDEWEB)

    Kook, D. H.; Jeong, W. M.; Koo, J. H.; Jeo, I. J.; Lee, E. P.; Ryu, K. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The Advanced spent fuel Condition in Process(ACP) is under development for the effective management of spent fuel which had been generated in nuclear plants. The ACP needs a hot cell where most operations will be performed. To give priority to the environments safety, radiation doses evaluations for the radioactive nuclides in accident cases were preliminarily performed with the meteorological data around facility site. Fire accident prevails over several accidnets. Internal Dose and External Dose evaluation according to short dispersion data for that case show a safe margin for regulation limits and SAR limit of IMEF where this facility will be constructed.

  4. Assessment of population external irradiation doses with consideration of Rospotrebnadzor bodies equipment for monitoring of photon radiation dose

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available This paper provides review of equipment and methodology for measurement of photon radiation dose; analysis of possible reasons for considerable deviation between the Russian Federation population annual effective external irradiation doses and the relevant average global value. Data on Rospotrebnadzor bodies dosimetry equipment used for measurement of gamma radiation dose are collected and systematized. Over 60 kinds of dosimeters are used for monitoring of population external irradiation doses. Most of dosimeters used in the country have gas-discharge detectors (Geiger-Mueller counters, minor biochemical annunciators, etc. which have higher total values of own background level and of space radiation response than the modern dosimeters with scintillation detectors. This feature of dosimeters is apparently one of most plausible reasons of a bit overstating assessment of population external irradiation doses. The options for specification of population external irradiation doses assessment are: correction of gamma radiation dose measurement results with consideration of dosimeters own background level and space radiation response, introduction of more up-to-date dosimeters with scintillation detectors, etc. The most promising direction of research in verification of population external irradiation doses assessment is account of dosimetry equipment.

  5. Dosimetry experiences and lessons learned for radiation dose assessment in Korean nuclear power plants.

    Science.gov (United States)

    Choi, Jong Rak; Kim, Hee Geun; Kong, Tae Young; Son, Jung Kwon

    2013-07-01

    Since the first Korean nuclear power plant (NPP), Kori 1, commenced operation in 1978, a total of 21 NPPs had been put into operation in Korea by the end of 2011. Radiation doses of NPP workers have been periodically evaluated and controlled within the prescribed dose limit. Radiation dose assessment is carried out monthly by reading personal dosemeters for external radiation exposure, which have traceability in compliance with strict technical guidelines. In the case of the internal radiation exposure, workers who have access to the possible area of polluted air are also evaluated for their internal dose after maintenance task. In this article, the overall situation and experience for the assessment and distribution of radiation doses in Korean NPPs is described.

  6. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  7. Personal radiation monitoring and assessment of doses received by radiation workers (1996)

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N.D.

    1996-12-01

    Since late 1986, all persons monitored by the Australian Radiation Laboratory have been registered on a data base which maintains records of the doses received by each individual wearer. At present, the Service regularly monitors approximately 30,000 persons, which is roughly 90 percent of those monitored in Australia, and maintains dose histories of over 75,000 people. The skin dose for occupationally exposed workers can be measured by using one of the five types of monitor issued by the Service: Thermoluminescent Dosemeter (TLD monitor), Finger TLD 3, Neutron Monitor, Special TLD and Environmental monitor. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 5 figs.

  8. The Thule accident: Assessment of radiation doses from terrestrial radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ulbak, K. (National Institute of Radiation Protection, Herlev (Denmark))

    2011-12-15

    Risoe DTU has carried out research on the terrestrial contamination in the Thule area after the radioactive contents of four nuclear weapons were dispersed following the crash of an American B-52 bomber in 1968. The results of Risoe DTU's studies are described in the report Thule-2007 - Investigation of radioactive pollution on land, which covers all measurements that were carried out on land in Thule in the years 2003, 2006, 2007 and 2008. The present report uses Risoe DTU's report as a basis for assessing radiation doses and consequently the risk for individuals as a result of terrestrial radioactive contamination in the Thule area. The assessment of radiation doses involves a number of conservative assumptions, estimates, and measurements, all of which are subject to considerable uncertainty. In some cases, models have been used based on experiences from other contaminated areas elsewhere in the world, which are subject to climatic and other conditions that diverge from those in the Thule area. The calculated doses are thus associated with considerable uncertainty, which must be taken into account when the results are used for comparison and when the risks of staying in the Thule area are assessed. It has therefore been chosen to provide the assessed radiation doses in the form of indicative orders of magnitude, which are applicable to everyone who might stay in the area, across various age groups. If the estimated doses in this report are combined with the National Institute of Radiation Protection's recommended reference level for contamination as a result of the Thule Accident of 1 mSv/year, the assessed magnitudes of radiation doses for inhalation and ingestion as exposure pathways are many orders of magnitude below the reference level (10,000-10 million times smaller). The wound contamination exposure pathway has a magnitude of radiation dose that is smaller than the reference level by a factor of 10-1000, and it should be recalled that the

  9. RADIATION HYGIENIC MONITORING AND ASSESSMENT OF POPULATION DOSES IN RADIOACTIVELY CONTAMINATED AREAS OF TULA REGION

    Directory of Open Access Journals (Sweden)

    T. M. Chichura

    2016-01-01

    Full Text Available The goal. The analyses of radiation hygienic monitoring conducted in Tula region territories affected by the Chernobyl NPP accident regarding cesium-137 and strontium- 90 in the local foodstuffs and the analyses of populational annual effective dose. The materials and methods. The survey was conducted in Tula Region since 1997 to 2015. Over that period, more than fifty thousand samples of the main foodstuffs from the post-Chernobyl contaminated area were analyzed. Simultaneously with that, the external gamma - radiation dose rate was measured in the fixed control points. The dynamics of cesium -137 and strontium-90 content in foodstuffs were assessed along with the maximum values of the mean annual effective doses to the population and the contribution of the collective dose from medical exposures into the structure of the annual effective collective dose to the population. The results. The amount of cesium-137 and strontium -90 in the local foodstuffs was identified. The external gamma- radiation dose rate values were found to be stable and not exceeding the natural fluctuations range typical for the middle latitudes of Russia’s European territory. The maximum mean annual effective dose to the population reflects the stable radiation situation and does not exceed the permissible value of 1 mSv. The contribution of the collective dose from medical exposures of the population has been continuously reducing as well as the average individual dose to the population per one medical treatment under the annual increase of the medical treatments quantities. The conclusion. There is no exceedance of the admissible levels of cesium-137 and strontium- 90 content in the local foodstuffs. The mean annual effective dose to the population has decreased which makes it possible to transfer the settlements affected by the Chernobyl NPP accident to normal life style. This is covered by the draft concept of the settlements’ transfer to normal life style.

  10. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.

    Science.gov (United States)

    Takahashi, F; Endo, A

    2007-01-01

    A system utilising radiation transport codes has been developed to derive accurate dose distributions in a human body for radiological accidents. A suitable model is quite essential for a numerical analysis. Therefore, two tools were developed to setup a 'problem-dependent' input file, defining a radiation source and an exposed person to simulate the radiation transport in an accident with the Monte Carlo calculation codes-MCNP and MCNPX. Necessary resources are defined by a dialogue method with a generally used personal computer for both the tools. The tools prepare human body and source models described in the input file format of the employed Monte Carlo codes. The tools were validated for dose assessment in comparison with a past criticality accident and a hypothesized exposure.

  11. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Bolch, Wesley E. [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2015-06-15

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, {sup 201}Tl produces the highest absorbed dose whereas {sup 82}Rb and {sup 15}O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of {sup 82}Rb is 48% and 77% lower than that of {sup 99m}Tc-tetrofosmin (rest), respectively. Conclusions: {sup 82}Rb results in lower effective dose in adults compared to {sup 99m}Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.

  12. Pilot website to support international collaboration for dose assessments in a radiation emergency

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, G.K., E-mail: Gordon.Livingston@orise.orau.gov [Oak Ridge Associated Universities, REAC/TS, Radiation Emergency Medicine (REM), P.O. Box 117, Oak Ridge, TN 37831 (United States); Wilkins, R.C., E-mail: Ruth.Wilkins@hc-sc.gc.ca [Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, ON K1A 1C1 (Canada); Ainsbury, E.A., E-mail: liz.ainsbury@hpa.org.uk [Health Protection Agency, Radiation Protection Division, Chilton, Didcot, Oxfordshire OX11 0RQ (United Kingdom)

    2011-09-15

    Nuclear terrorism has emerged as a significant threat which could require timely medical interventions to reduce potential radiation casualties. Early dose assessments are critical since optimal care depends on knowing a victim's radiation dose. The dicentric chromosome aberration assay is considered the 'gold standard' to estimate the radiation dose because the yield of dicentrics correlates positively with the absorbed dose. Dicentrics have a low background frequency, are independent of age and gender and are relatively easy to identify. This diagnostic test for radiation exposure, however, is labor intensive and any single or small group of laboratories could easily be overwhelmed by a mass casualty event. One solution to this potential problem is to link the global WHO BioDoseNet members via the Internet so multiple laboratories could work cooperatively to screen specimens for dicentric chromosomes and generate timely dose estimates. Inter-laboratory comparison studies have shown that analysis of electronic chromosome images viewed on the computer monitor produces scoring accuracy equivalent to viewing live images in the microscope. This functional equivalence was demonstrated during a comparative study involving five laboratories constructing {sup 60}Co gamma ray calibration curves and was further confirmed when comparing results of blind dose estimates submitted by each laboratory. It has been further validated in two recent WHO BioDoseNet trial exercises where 20 metaphase images were shared by e-mail and 50 images were shared on a test website created for this purpose. The Internet-based exercise demonstrated a high level of concordance among 20 expert scorers who evaluated the same 50 metaphase spreads selected to exhibit no, low, moderate and severe radiation damage. Nineteen of 20 scorers produced dicentric equivalent counts within the 95% confidence limits of the mean. The Chi-squared test showed strong evidence of homogeneity in the data

  13. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  14. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Matthew A. Coleman Ph.D.; Narayani Ramakrishnan, Ph.D.; Sally A. Amundson; James D. Tucker, Ph.D.; Stephen D. Dertinger, Ph.D.; Natalia I. Ossetrova, Ph.D.; Tao Chen

    2009-11-16

    Exposure to ionizing radiation produces few immediate outwardly-visible clinical signs, yet, depending on dose, can severely damage vital physiological functions within days to weeks and produce long-lasting health consequences among survivors. In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate the worried but unharmed from those individuals who must receive medical attention. Physical, clinical and biological dosimetry are usually combined for the best dose assessment. However, because of the practical limits of physical and clinical dosimetry, many attempts have been made to develop a dosimetry system based on changes in biological parameters, including techniques for hematology, biochemistry, immunology, cytogenetics, etc. Lymphocyte counts and chromosome aberrations analyses are among the methods that have been routinely used for estimating radiation dose. However, these assays require several days to a week to be completed and therefore cannot be used to obtain a fast estimate of the dose during the first few days after exposure when the information would be most critical for identifying victims of radiation accidents who could benefit the most by medical intervention. The steadily increasing sophistication in our understanding of the early biochemical responses of irradiated cells and tissues provides the opportunity for developing mechanism-based biosignatures of exposure. Compelling breakthroughs have been made in the technologies for genome-scale analysis of cellular transcriptional and proteomic profiles. There have also been major strides in the mechanistic understanding of the early events in DNA damage and radiation damage products, as well as in the cellular pathways that lead to radiation injury. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation protein machines are modified and activated, and large

  15. An assessment of bias and uncertainty in recorded dose from external sources of radiation for workers at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Fix, J.J.; Gilbert, E.S.; Baumgartner, W.V.

    1994-08-01

    Worker dose estimates are used in epidemiologic studies of nuclear workers. A major objective of these studies is to provide a direct assessment of the carcinogenic risk of exposure to ionizing radiation at low doses and dose rates. If dose estimates used in analyses of worker data are biased, then risk estimates expressed per unit of dose will also be biased. In addition, random error in dose estimates may lead to underestimation of risk coefficients and can also distort dose-response analyses. Analyses of data from nuclear worker studies, including Hanford, have typically not been adjusted for biases and uncertainties in dose estimates in part because of the lack of adequate information on the nature and magnitude of these biases and uncertainties. This report describes an approach used to assess bias and uncertainty in radiation dose for Hanford dosimetry systems. The approach can be considered as an elaboration of work conducted by a technical committee appointed by the National Academy of Sciences (NAS) used to quantify the bias and uncertainty in estimated doses for personnel exposed to radiation as a result of atmospheric testing of nuclear weapons between 1945 and 1962. In addition, laboratory studies were conducted to measure bias for selected sources of photon radiation resulting from angular response characteristics of Hanford dosimeter systems. An overall assessment is presented of bias and uncertainty for photon radiation greater than 100 keV. This radiation is expected to have caused the vast majority of recorded dose for Hanford workers.

  16. Additional dose assessment from the activation of high-energy linear accelerators used in radiation therapy

    Directory of Open Access Journals (Sweden)

    Ateia Embarka

    2008-01-01

    Full Text Available It is well known that medical linear accelerators generate activation products when operated above certain electron (photon energies. The aim of the present work is to assess the activation behavior of a medium-energy radiotherapy linear accelerator by applying in situ gamma-ray spectrometry and dose measurements, and to estimate the additional dose to radiotherapy staff on the basis of these results. Spectral analysis was performed parallel to dose rate measurements in the isocenter of the linear accelerator, immediately after the termination of irradiation. The following radioisotopes were detected by spectral analysis: 28Al, 62Cu, 56Mn, 64Cu, 187W, and 57Ni. The short-lived isotopes such as 28Al and 62Cu are the most important factors of the clinical routine, while the contribution to the radiation dose of medium-lived isotopes such as 56Mn, 57Ni, 64Cu, and 187W increases during the working day. Measured dose rates at the isocenter ranged from 2.2 µSv/h to 10 µSv/h in various measuring points of interest for the members of the radiotherapy staff. Within the period of 10 minutes, the dose rate decreased to values of 0.8 µSv/h. According to actual workloads in radiotherapy departments, a realistic exposure scenario was set, resulting in a maximal additional annual whole body dose to the radiotherapy staff of about 3.5 mSv.

  17. Radiation dose assessment in a 320-detector-row CT scanner used in cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goma, Carles; Ruiz, Agustin; Jornet, Nuria; Latorre, Artur; Pallerol, Rosa M.; Carrasco, Pablo; Eudaldo, Teresa; Ribas, Montserrat [Servei de Radiofisica i Radioproteccio, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona (Spain)

    2011-03-15

    Purpose: In the present era of cone-beam CT scanners, the use of the standardized CTDI{sub 100} as a surrogate of the idealized CTDI is strongly discouraged and, consequently, so should be the use of the dose-length product (DLP) as an estimate of the total energy imparted to the patient. However, the DLP is still widely used as a reference quantity to normalize the effective dose for a given scan protocol mainly because the CTDI{sub 100} is an easy-to-measure quantity. The aim of this article is therefore to describe a method for radiation dose assessment in large cone-beam single axial scans, which leads to a straightforward estimation of the total energy imparted to the patient. The authors developed a method accessible to all medical physicists and easy to implement in clinical practice in an attempt to update the bridge between CT dosimetry and the estimation of the effective dose. Methods: The authors used commercially available material and a simple mathematical model. The method described herein is based on the dosimetry paradigm introduced by the AAPM Task Group 111. It consists of measuring the dose profiles at the center and the periphery of a long body phantom with a commercial solid-state detector. A weighted dose profile is then calculated from these measurements. To calculate the CT dosimetric quantities analytically, a Gaussian function was fitted to the dose profile data. Furthermore, the Gaussian model has the power to condense the z-axis information of the dose profile in two parameters: The single-scan central dose, f(0), and the width of the profile, {sigma}. To check the energy dependence of the solid-state detector, the authors compared the dose profiles to measurements made with a small volume ion chamber. To validate the overall method, the authors compared the CTDI{sub 100} calculated analytically to the measurement made with a 100 mm pencil ion chamber. Results: For the central and weighted dose profiles, the authors found a good

  18. Radioactivity in food and the environment: calculations of UK radiation doses using integrated assessment methods

    Energy Technology Data Exchange (ETDEWEB)

    Camplin, W C; Brownless, G P; Round, G D; Winpenny, K; Hunt, G J [Centre for Environment, Fisheries and Aquaculture Science, CEFAS Laboratory, Lowestoft (United Kingdom)

    2002-12-01

    A new method for estimating radiation doses to UK critical groups is proposed for discussion. Amongst others, the Food Standards Agency (FSA) and the Scottish Environment Protection Agency (SEPA) undertake surveillance of UK food and the environment as a check on the effect of discharges of radioactive wastes. Discharges in gaseous and liquid form are made under authorisation by the Environment Agency and SEPA under powers in the Radioactive Substance Act. Results of surveillance by the FSA and SEPA are published in the Radioactivity in Food and the Environment (RIFE) report series. In these reports, doses to critical groups are normally estimated separately for gaseous and liquid discharge pathways. Simple summation of these doses would tend to overestimate doses actually received. Three different methods of combining the effects of both types of discharge in an integrated assessment are considered and ranked according to their ease of application, transparency, scientific rigour and presentational issues. A single integrated assessment method is then chosen for further study. Doses are calculated for surveillance data for the calendar year 2000 and compared with those from the existing RIFE method.

  19. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)

    Science.gov (United States)

    2005-06-01

    chromosomal aberrations in the exposed individual’s peripheral blood lymphocytes. The presence of dicentrics , a chromosomal aberration, in an individual’s... dicentric and premature chromosome condensation (PCC) assays were used to assess the dose for three severely exposed workers (Hayata 2001; Kanda 2002...lymphocyte chromosome damage in 10 of the 13 severely irradiated Chernobyl victims, suggested that the frequency of metaphase spreads without dicentric

  20. CT outperforms radiographs at a comparable radiation dose in the assessment for spondylolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fadell, Michael F.; Stewart, Jaime R.; Harned, Roger K.; Ingram, James D.; Miller, Angie L.; Strain, John D.; Weinman, Jason P. [Children' s Hospital Colorado, Department of Radiology, Aurora, CO (United States); University of Colorado Hospital, Department of Radiology, Aurora, CO (United States); Gralla, Jane [University of Colorado Denver, Department of Pediatrics, Aurora, CO (United States); Bercha, Istiaq [Children' s Hospital Colorado, Department of Radiology, Aurora, CO (United States)

    2015-07-15

    Lumbar spondylolysis, a unilateral or bilateral fracture at pars interarticularis, is a common cause of low back pain in children. The initial imaging study in the diagnosis of lumbar spondylolysis has historically been lumbar spine radiographs; however, radiographs can be equivocal or false-negative. Definitive diagnosis can be achieved with computed tomography (CT), but its use has been limited due to the dose of ionizing radiation to the patient. By limiting the z-axis coverage to the relevant anatomy and optimizing the CT protocol, we are able to provide a definitive diagnosis of fractures of the pars interarticularis at comparable or lower radiation dose than commonly performed lumbar spine radiographs. As there is no gold standard for the diagnosis of spondylolysis besides surgery, we compared interobserver agreement and degree of confidence to determine which modality is preferable. Sixty-two patients with low back pain ages 5-18 years were assessed for the presence of spondylolysis. Forty-seven patients were evaluated by radiography and 15 patients were evaluated by limited field-of-view CT. Both radiographic and CT examinations were assessed anonymously in random order for the presence or absence of spondylolysis by six raters. Agreement was assessed among raters using a Fleiss Kappa statistic for multiple raters. CT provided a significantly higher level of agreement among raters than radiographs (P < 0.001). The overall Kappa for rater agreement with radiographs was 0.24, 0.34 and 0.40 for 2, 3 or 4 views, respectively, and 0.88 with CT. Interobserver agreement is significantly greater using limited z-axis coverage CT when compared with radiographs. Radiologist confidence improved significantly with CT compared to radiographs regardless of the number of views. (orig.)

  1. Personnel dose assessment due to the normal operations with the artificial radiation sources according to the data from the unified system of individual dose control (USIDC

    Directory of Open Access Journals (Sweden)

    Yu. I. Stepkin

    2016-01-01

    Full Text Available The aim of the study was personnel dose assessment due to the normal operations with the artificial radiation sources. The article is based on the data from the Unified System of Individual Dose Control and Voronezh Region’s radiation-hygienic passport. The data from No.1-DOZ “Information on personnel exposure doses under normal operation of technogenic ionizing radiation sources” and over a period of 2006-2010 years were analyzed. In 2006-2015, the number of organizations, which submitted form No.1-DOZ “Information on personnel exposure doses under normal operation of technogenic ionizing radiation sources”, increased from 175 to 229. In amount of the radiation facilities, Novovoronezh Nuclear Power Plant is the first. Novovoronezh NPP has 1512 sources, which amounts to 51,9% from all sources in Voronezh Region (2915. Health care facilities have 869 radiation sources or 29,8%. X-ray machines are the main part of these sources (844 health care facilities or 97,1% of all medical sources. Industrial sources occupy third place with 305 facilities or 10,5% of all considered sources. In 2015, according to the data from Voronezh Region’s radiation-hygienic passport, the number of “A” group personnel were 4237, the number of “B” group personnel were 2341. The average individual dose for personnel was over the range from 0.66 to 2.02 mSv. Collective dose was from 4.16 to 11.79 man-sieverts per year. The increase of number of the radiation sources has attended with the decrease of individual and collective doses. The most likely it is related to using the modern facilities. In 2015, the maximum value of the average individual dose of “A” group personnel was registered in Voronezh regional hospital (6.17 mSv y–1. There are medical facilities with unsealed and sealed sources in this hospital. In 2006-2015, the average individual doses of personnel of all radiation facilities that use radiation sources in Voronezh

  2. Assessment of fetal radiation dose to patients and staff in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Osei, E.K

    2000-07-01

    A major source of uncertainty in the estimation of fetal absorbed radiation dose is the influence of fetal size and position as these change with gestational age. Consequently, dose to the fetus is related to gestational age. Most studies of fetal dose estimation during pregnancy assume that the uterus dose is equal to fetal dose. These dose estimates do not take account of gestational age and individual fetal depth, factors which are significant when calculating dose. To establish both positional and size data for estimation of fetal absorbed dose from radiological examinations, the depths from the mother's anterior surface to the mid-line of the fetal head and abdomen were measured from ultrasound scans in 215 pregnant women. Depths were measured along a ray path projected in the anterior-posterior direction from the mother's abdomen. The fetal size was estimated from measurements of the fetal abdominal and head circumference, femur length and the biparietal diameter. The effects of fetal presentation, maternal bladder volume, placenta location, gestational age and maternal AP thickness on fetal depth and size were analysed. A Monte Carlo (MC) model was developed, and used to derive factors for converting dose-area product and free-in-air entrance surface dose from medical exposure of a pregnant patient to absorbed dose to the uterus/embryo, and for converting uterus dose to fetal dose in the later stages of pregnancy. Also presented are factors for converting thermoluminescence dosimeter reading from occupational exposure of a pregnant worker to equivalent dose to the fetus. The MC model was verified experimentally by direct measurement of uterus depth dose in a female Rando phantom, and also by comparison with other experimental work and MC results in the literature. The application of the various conversion factors is demonstrated by a review of the dose estimation process in 50 cases of fetal irradiation from medical exposures. (author)

  3. Assessment of Environmental Gamma Radiation Dose Rate in Ardabil and Sarein in 2009

    Directory of Open Access Journals (Sweden)

    M Alighadri

    2011-10-01

    Full Text Available Background and Objectives: Gamma rays, the most energetic photons within the any other wave in the electromagnetic spectrum, pose enough energy to form charged particles and adversely affect human health. Provided that the external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined, environmental gamma dose rate and corresponding annual effective dose were determined in the cities of Ardabil and Sar Ein.Materials and Methods: Outdoor environmental gamma dose rates were measured using an Ion Chamber Survey Meter in 48 selected locations (one in city center and the remaining in cardinal and ordinal directions in Ardabil and Sar Ein. Ten more locations were monitored along the hot springs effluent in Sar Ein. Measurements of gamma radiation dose rate were performed at 20 and 100 cm above the ground for a period of one hour.Results: Average outdoor environmental gamma dose rate were determined as 265, 219, and 208  for Ardabil, Sar Ein, and along the hot spring effluent, respectively. The annual affective dose for Ardabil and Sar Ein residents were estimated to be 1.45 and 1.39 mSv, respectively.Conclusion: Calculated annual effective dose of 1.49 and 1.35 are appreciably higher than the population weighted average exposure to environmental gamma radiation worldwide and that analysis of soil content to different radionuclide is suggested.

  4. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi, Revision 1

    Science.gov (United States)

    2014-04-01

    increase of additional photon energy as a result of Compton scattering of gamma photons and subsequent bremsstrahlung25 radiation; • Gamma photons...information (cont.) Unit EPD Dates (2011) Elapsed Time (hours) Dose (mrem)* Dose Rate (µrad h−1) Notes 1 Combat Camera Squadron 6-14 April 193 5...frequencies or percentage of positive versus negative surveys appears to coincide with known dates of FDNPS effluent releases

  5. Revised series of stylized anthropometric phantoms for internal and external radiation dose assessment

    Science.gov (United States)

    Han, Eunyoung

    At present, the dosimetry systems of both the International Commission on Radiological Protection, and the Society of Nuclear Medicine's Medical Internal Radiation Dose Committee utilize a series of stylized or mathematical anthropometric models of patient anatomy developed in 1987 at the Oak Ridge National Laboratory (ORNL). In this study, substantial revisions to the ORNL phantom series are reported with tissue compositions, tissue densities, and organ masses adjusted to match their most recent values in the literature. In addition, both the ICRP and MIRD systems of internal dosimetry implicitly consider that electron and beta-particle energy emitted within the source organs of the patient are fully deposited within these organs. With the development of the revised ORNL phantom series, three additional applications were explored as part of this dissertation research. First, the phantoms were used in combination to assess external radiation exposures to family members caring or interacting with patients released from the hospital following radionuclide therapy with I-131. Values of family member effective dose are then compared to values obtained using NRC guidance and based on a simple point-source methodology which ignores the effects of photon attenuation and scatter within both the source individual (patient) and the target individual (family member). Second, the anatomical structures of the extrathoracic airways and thoracic airways (exclusive of the lungs themselves) have been included in the entire revised ORNL phantom series of pediatric individuals. Values of cross-region photon dose are explored for use in radioactive aerosol inhalation exposures to members of the general public, and comparisons are made to values given by the ICRP in which surrogate organ assignments were made in the absence of explicit models of these airways. Finally, the revised ORNL phantoms of the adult male and adult female are used to determine internal photon exposures to

  6. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bahruddin, N. A.; Ang, W. C.; Salehhon, N.

    2016-03-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques.

  7. ISCORS ASSESSMENT OF RADIOACTIVITY IN SEWAGE SLUDGE: MODELING TO ASSESS RADIATION DOSES

    Science.gov (United States)

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tran...

  8. Accurate dose assessment system for an exposed person utilising radiation transport calculation codes in emergency response to a radiological accident.

    Science.gov (United States)

    Takahashi, F; Shigemori, Y; Seki, A

    2009-01-01

    A system has been developed to assess radiation dose distribution inside the body of exposed persons in a radiological accident by utilising radiation transport calculation codes-MCNP and MCNPX. The system consists mainly of two parts, pre-processor and post-processor of the radiation transport calculation. Programs for the pre-processor are used to set up a 'problem-dependent' input file, which defines the accident condition and dosimetric quantities to be estimated. The program developed for the post-processor part can effectively indicate dose information based upon the output file of the code. All of the programs in the dosimetry system can be executed with a generally used personal computer and accurately give the dose profile to an exposed person in a radiological accident without complicated procedures. An experiment using a physical phantom was carried out to verify the availability of the dosimetry system with the developed programs in a gamma ray irradiation field.

  9. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  10. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi

    Science.gov (United States)

    2013-09-01

    pound-mass per cubic foot (lb ft–3) 1.601 846 × 101 kilogram per cubic meter (kg m–3) Pound-force (lbf avoirdupois) 4.448 222 Newton (N) Energy/Work...dose from natural background radiation (including radon ) for the U.S. population (3.1 mSv [0.31 rem]) as reported in NCRP (2009a). In addition...Figure 23 provides ubiquitous background radiation levels (excluding contributions from radon ) for the prefectures in Japan prior to the FDNPS releases

  11. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    Science.gov (United States)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  12. Radiation Dose Assessments for Shore-Based Individuals in Operation Tomodachi, Revision 1

    Science.gov (United States)

    2012-12-31

    ubiquitous background radiation is about 0.310 rem (95 percent confidence interval of 0.094 to 1.21 rem [0.94 to 12.1 mSv]) (NCRP, 2009c). Radon - 222 ...per cubic meter (kg m–3) Pound-force (lbf avoirdupois) 4.448 222 Newton (N) Energy/Work/Power electronvolt (eV) 1.602 177 × 10–19 joule (J) erg...221 E-4. Dose from Ingestion................................................................................ 222 E-5

  13. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Nagle, Scott K. [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Robinson, Terry E. [Department of Pediatrics, Stanford School of Medicine, 770 Welch Road, Palo Alto, California 94304 (United States)

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  14. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  15. Assessment of potential radiation dose rates to marine organisms around the Korean Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Myung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Jun Ho [University of Science and Technology, Daejeon (Korea, Republic of)

    2016-05-15

    It is very difficult to set a regulatory guidance or criteria for the protection of non-human species from the ionizing radiation, because there are no generally or internationally accepted methods for demonstrating the compliance with such criteria. It is needed that Korea develop the primary dose rate standards for the protection of both aquatic and terrestrial biota in the near future. The potential dose rates due to both external and internal radiation exposures to marine organisms such as plaice/flounder, gray mullet, and brown seaweed collected within territorial seas around the Korean Peninsula were estimated. The total dose rates to plaice/flounder, gray mullet and brown seaweed due to {sup 40}K, a primordial radionuclide in marine environment, were found to be 0.2%, 0.08% and 0.3% of approximately the values of the Derived Consideration Reference Levels (DCRLs, i.e. 1-10 mGy d{sup -1}), respectively, as suggested by the International Commission on Radiological Protection (ICRP) publication 124. The total dose rates to marine fishes and brown seaweed due to anthropogenic radionuclides such as {sup 90}Sr, {sup 137}Cs and {sup 239+240}Pu were considered to be negligible compared to the total dose rate due to {sup 40}K. The external exposure to benthic fish due to all radionuclides was much higher than that of pelagic fish. From this study, it is recommended that the further study is required to develop a national regulatory guidance for the evaluation of doses to non-human species.

  16. Assessment of internal doses

    CERN Document Server

    Rahola, T; Falk, R; Isaksson, M; Skuterud, L

    2002-01-01

    There is a definite need for training in dose calculation. Our first course was successful and was followed by a second, both courses were fully booked. An example of new tools for software products for bioassay analysis and internal dose assessment is the Integrated Modules for Bioassay Analysis (IMBA) were demonstrated at the second course. This suite of quality assured code modules have been adopted in the UK as the standard for regulatory assessment purposes. The intercomparison measurements are an important part of the Quality Assurance work. In what is known as the sup O utside workers ' directive it is stated that the internal dose measurements shall be included in the European Unions supervision system for radiation protection. The emergency preparedness regarding internal contamination was much improved by the training with and calibration of handheld instruments from participants' laboratories. More improvement will be gained with the handbook giving practical instructions on what to do in case of e...

  17. Study of the radiation dose reduction capability of a CT reconstruction algorithm: LCD performance assessment using mathematical model observers

    Science.gov (United States)

    Fan, Jiahua; Tseng, Hsin-Wu; Kupinski, Matthew; Cao, Guangzhi; Sainath, Paavana; Hsieh, Jiang

    2013-03-01

    Radiation dose on patient has become a major concern today for Computed Tomography (CT) imaging in clinical practice. Various hardware and algorithm solutions have been designed to reduce dose. Among them, iterative reconstruction (IR) has been widely expected to be an effective dose reduction approach for CT. However, there is no clear understanding on the exact amount of dose saving an IR approach can offer for various clinical applications. We know that quantitative image quality assessment should be task-based. This work applied mathematical model observers to study detectability performance of CT scan data reconstructed using an advanced IR approach as well as the conventional filtered back-projection (FBP) approach. The purpose of this work is to establish a practical and robust approach for CT IR detectability image quality evaluation and to assess the dose saving capability of the IR method under study. Low contrast (LC) objects imbedded in head size and body size phantoms were imaged multiple times with different dose levels. Independent signal present and absent pairs were generated for model observer study training and testing. Receiver Operating Characteristic (ROC) curves for location known exact and location ROC (LROC) curves for location unknown as well as their corresponding the area under the curve (AUC) values were calculated. Results showed approximately 3 times dose reduction has been achieved using the IR method under study.

  18. Assessment of temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after a nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Go, A Ra; Kim, Min Jun; Kim, Kwang Pyo [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of); Cho, Nam Chan; Seol, Jeung Gun [Radiation Safety Team, Korea Electric Power Corporation Nuclear Fuel, Seoul (Korea, Republic of)

    2015-12-15

    It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were 4.3-96 kBq m{sup -2} for {sup 134}Cs, 1.4-300 kBq m{sup -2} for {sup 137}Cs, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging 0.11-2.4 mSv y{sup -1} at Kawauchi area and 0.69-1.1 mSv y{sup -1} at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses

  19. Probabilistic assessment of the influence of lake properties in long-term radiation doses to humans.

    Science.gov (United States)

    Pohjola, Jari; Turunen, Jari; Lipping, Tarmo; Ikonen, Ari T K

    2016-11-01

    The assessment processes concerning the safety of nuclear waste repositories include the modelling of radionuclide transport in biosphere and the evaluation of the doses to the most affected humans. In this paper, a scenario, in which a contaminated lake is the water source for drinking water, irrigation water and watering of livestock, is presented. The objective of the paper is to probabilistically study the influence of lake properties as parameters in the assessment scenario. The properties of the lake are a result of previously conducted probabilistic studies, where the land uplift of the terrain surrounding the repositories and the formation of water bodies were studied in a 10,000-year time span using Monte Carlo simulation. The lake is formed at 3000 years from present day and the changing properties of the lake have been used in the study. The studied radionuclides (36)Cl, (135)Cs, (129)I, (237)Np, (90)Sr, (99)Tc and (238)U enter the lake with a rate of 1 Bq/year. The transport process from the lake water to humans is described and the doses (dose conversion factors) to adult humans are evaluated based on a study on average food consumption. Sensitivity analysis is used for identifying the parameters having the most influence on the outcome of the dose. Based on the results from the sensitivity analysis, the volumetric outflow rate of the lake and the volume of the lake were taken into closer consideration. The results show the influence of probabilistically derived geomorphic lake input parameters on the dose.

  20. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Southern Denmark, Department of Nuclear Medicine, Odense (Denmark)

    2016-12-15

    Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers. The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For {sup 18}F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively. The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers. (orig.)

  1. PABLM. Accumulated Environment Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E.Jr.; Soldat, J.K. [Pacific Northwest Lab., Richland, WA (United States)

    1981-04-01

    PABLM calculates internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides after the releases have ended. Radioactive decay is considered during the release, after deposition, and during holdup of food after harvest. The radiation dose models consider exposure to radionuclides deposited on the ground or crops from contaminated air or irrigation water, radionuclides in contaminated drinking water, aquatic foods raised in contaminated water, and radionuclides in bodies of water and sediments where people might fish, boat, or swim. For vegetation, the radiation dose model considers both direct deposition and uptake through roots. Doses may be calculated for either a maximum-exposed individual or for a population group. The program is designed to calculate accumulated radiation doses from the chronic ingestion of food products that contain radionuclides and doses from the external exposure to radionuclides in the environment. A first-year committed dose is calculated as well as an integrated dose for a selected number of years.

  2. Dose Estimation in Radiation Cytogenetics

    Science.gov (United States)

    Ainsbury, Elizabeth; Lloyd, David

    2009-04-01

    Throughout the radiation cytogenetics community, a core group of methods exists to produce an estimate of radiation dose from an observed yield of DNA damage in blood. Mathematical and statistical analysis is extremely important for accurate assessment of data and results, and a number of classical statistical methods are commonly employed. However, the large number of statistical techniques, and the complexity of the methods, can lead to errors in data analysis and misinterpretation of results. Cytogenetics dose estimation software has been developed to simplify mathematical and statistical analysis of cytogenetic data. ``Dose Estimate'' is a collection of mathematical and statistical methods based on the cytogenetics methods and programs written by Alan Edwards, David Papworth, and others. Details of the biological and mathematical techniques used in the software will be presented, including maximum likelihood estimation of yield curve coefficients for the dicentric or translocation assays. Proposals for increasing the sophistication of the software through implementation of recently published Bayesian analysis techniques for cytogenetics will also be outlined.

  3. Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

    1995-07-01

    This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

  4. Evaluation of the Comet Assay for Assessing the Dose-Response Relationship of DNA Damage Induced by Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2013-11-01

    Full Text Available Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001. A time-response relationship was also found within 72 h after irradiation (p < 0.001. The curves for DNA double-strand breaks and DNA repair in vitro of human lymphocytes presented a nice model, and a smooth, three-dimensional plane model was obtained when the two curves were combined.

  5. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Nilseia Aparecida Barbosa

    2014-08-01

    heterogeneous eye model, indicating that the homogeneous water eye model is a reasonable one. The determined isodose curves give a good visualization of dose distributions inside the eye structures, pointing out their most exposed volume....................................................Cite this article as:Barbosa NA, da Rosa LAR, de Menezes AF, Reis JP, Facure A, Braz D. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code. Int J Cancer Ther Oncol 2014; 2(3:02038. DOI: 10.14319/ijcto.0203.8

  6. Assessment of uncertainties in radiation-induced cancer risk predictions at clinically relevant doses

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69117 (Germany); Moteabbed, M.; Paganetti, H., E-mail: hpaganetti@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-01-15

    Purpose: Theoretical dose–response models offer the possibility to assess second cancer induction risks after external beam therapy. The parameters used in these models are determined with limited data from epidemiological studies. Risk estimations are thus associated with considerable uncertainties. This study aims at illustrating uncertainties when predicting the risk for organ-specific second cancers in the primary radiation field illustrated by choosing selected treatment plans for brain cancer patients. Methods: A widely used risk model was considered in this study. The uncertainties of the model parameters were estimated with reported data of second cancer incidences for various organs. Standard error propagation was then subsequently applied to assess the uncertainty in the risk model. Next, second cancer risks of five pediatric patients treated for cancer in the head and neck regions were calculated. For each case, treatment plans for proton and photon therapy were designed to estimate the uncertainties (a) in the lifetime attributable risk (LAR) for a given treatment modality and (b) when comparing risks of two different treatment modalities. Results: Uncertainties in excess of 100% of the risk were found for almost all organs considered. When applied to treatment plans, the calculated LAR values have uncertainties of the same magnitude. A comparison between cancer risks of different treatment modalities, however, does allow statistically significant conclusions. In the studied cases, the patient averaged LAR ratio of proton and photon treatments was 0.35, 0.56, and 0.59 for brain carcinoma, brain sarcoma, and bone sarcoma, respectively. Their corresponding uncertainties were estimated to be potentially below 5%, depending on uncertainties in dosimetry. Conclusions: The uncertainty in the dose–response curve in cancer risk models makes it currently impractical to predict the risk for an individual external beam treatment. On the other hand, the ratio

  7. High-pitch dual-source CT angiography of supra-aortic arteries: assessment of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Korn, A.; Fenchel, M.; Bender, B.; Danz, S.; Ernemann, U. [Department of Diagnostic und Interventional Neuroradiology, Tuebingen (Germany); Thomas, C.; Ketelsen, D.; Claussen, C.D.; Heuschmid, M. [Department of Diagnostic und Interventional Radiology, Tuebingen (Germany); Moonis, G. [Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA (United States); Krauss, B. [Siemens AG, Imaging and Therapy Division, Forchheim (Germany); Brodoefel, H. [Department of Diagnostic und Interventional Radiology, Tuebingen (Germany); Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA (United States); Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (United States)

    2013-04-15

    High-pitch CT angiography (CTA) is a recent innovation that allows significant shortening of scan time with volume coverage of 43 mm per second. The aim of our study was to assess this technique in CTA of the head and neck. CTA of supra-aortic arteries was performed in 50 patients using two acquisition protocols: conventional single-source 64-slice (pitch 1.2) and high-pitch dual-source 128-slice CT (pitch 3.2). Subjective and objective image quality of supra-aortic vessel ostia as well as intra- and extra-cranial segments was retrospectively assessed by blinded readers and radiation dose compared between the two protocols. Conventional and high-pitch CTA achieved comparable signal-to-noise ratios in arterial (54.3 {+-} 16.5 versus 57.3 {+-} 14.8; p = 0.50) and venous segments (15.8 {+-} 6.7 versus 18.9 {+-} 8.9; p = 0.21). High-pitch scanning was, however, associated with sharper delineation of vessel contours and image quality significantly improved at the level of supra-aortic vessel ostia (p < 0.0001) as well as along the brachiocephalic trunk (p < 0.0001), the subclavian arteries (p < 0.0001), proximal common carotid arteries (p = 0.01), and vertebral V1 segments (p < 0.0001). Using the high-pitch mode, the dose-length product was reduced by about 35 % (218.2 {+-} 30 versus 141.8 {+-} 20 mGy x cm). Due to elimination of transmitted cardiac motion, high-pitch CTA of the neck improves image quality in the proximity of the aortic arch while significantly lowering radiation dose. The technique thus qualifies as a promising alternative to conventional spiral CTA and may be particularly useful for identification of ostial stenosis. (orig.)

  8. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  9. Comparison of two methods for assessing leakage radiation dose around the head of the medical linear accelerators

    Institute of Scientific and Technical Information of China (English)

    Ehab M Attalla

    2013-01-01

    Objective:The aim of this study was to measure the leakage by two methods with ion chamber and ready packs film, and to investigate the feasibility and the advantages of using two dosimetry methods for assessing leakage radiation around the head of the linear accelerators. Methods:Measurements were performed using a 30 cm3 ion chamber;the gantry at 0°, the X-ray head at 0°, the field size at between the central axis and a plane surface at a FSD of 100 as a reference, a series of concentric circles having radi of 50, 75, and 100 cm with their common centre at the reference point. The absorbed dose was measured at the reference point, and this would be used as the reference dose. With the diaphragm closed, the measurements were taken along the circumference of the three circles and at 45° intervals. Results:Leakage radiations while the treatment head was in the vertical position varied between 0.016%–0.04%. With the head lying horizontal y, leak-age radiation was the same order magnitude and varied between 0.02%–0.07%. In the second method, the verification was accomplished by closing the col imator jaws and covering the head of the treatment unit with the ready pack films. The films were marked to permit the determination of their positions on the machine after exposed and processed. With the diaphragm closed, and the ready packs films around the linear accelerator the beam turned on for 2500 cGy (2500 MU). The optical den-sity of these films was measured and compared with this of the reference dose. Leakage radiation varied according to the film positions and the magnitude of leakage was between 0.005%–0.075%. Conclusion:The dif erences between the values of the leakage radiation levels observed at dif erent measurement points do not only reflect dif erences in the ef ective shielding thickness of the head wal , but are also related to dif erences in the distances between the target and the measurement points. The experimental errors involved in dosimetric

  10. Is the Linear No-Threshold Dose-Response Paradigm Still Necessary for the Assessment of Health Effects of Low Dose Radiation?

    OpenAIRE

    Seong, Ki Moon; Seo, Songwon; Lee, Dalnim; Kim, Min-Jeong; Lee, Seung-Sook; Park, Sunhoo; Jin, Young Woo

    2016-01-01

    Inevitable human exposure to ionizing radiation from man-made sources has been increased with the proceeding of human civilization and consequently public concerns focus on the possible risk to human health. Moreover, Fukushima nuclear power plant accidents after the 2011 East-Japan earthquake and tsunami has brought the great fear and anxiety for the exposure of radiation at low levels, even much lower levels similar to natural background. Health effects of low dose radiation less than 100 m...

  11. Radiation dose estimates for radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E. [Oak Ridge Inst. of Science and Education, TN (United States). Radiation Internal Dose Information Center

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  12. Technical Basis for Expedited Processing of Radiation Dose Assessments for NTPR Hiroshima and Nagasaki Participants

    Science.gov (United States)

    2015-11-01

    routine consumption of local food ) 3.5 Organ and Skin EPG Exclusions Based on Limiting Doses Some organ or skin doses calculated for H&N EPGs using the...exposure while on-board ship (including consumption of seawater [McRaney, 1993]), so all potential exposures were the same as or less than the...energy > 15 keV, exposure at age 18 years, and attained age of 50 years. Furthermore, the LDs for skin cancers vary according to the ethnicity of

  13. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  14. A Probabilistic Approach to Uncertainty Analysis in NTPR Radiation Dose Assessments

    Science.gov (United States)

    2009-11-01

    Headquarters (HQ) Detachment, Enewetak Atoll .............................................. 115 5.1.1 Case Description and Cohort Participation Scenario...Administrative and Operations Detachments, Enewetak Atoll .......................... 122 5.2.1 Case Description and Cohort Participation Scenario...Figure 33. Comparison of the Dose Distribution from Probabilistic Analysis with Unbiased Film Badge Readings for the 7126th AU at Enewetak Atoll

  15. Assessment of Fukushima-Derived Radiation Doses and Effects on Wildlife in Japan

    NARCIS (Netherlands)

    Strand, P.; Aono, T.; Brown, J.E.; Garnier-Laplace, J.; Hosseini, A.; Sazykina, T.; Steenhuisen, F.; Vives i Battle, J.

    2014-01-01

    Following releases from the nuclear accident at the Fukushima-Daiichi Nuclear Power Station (FDNPS), contention has arisen over the potential radiological impact on wildlife. Under the auspices of the United Nations Scientific Committee on the Effects of Atomic Radiation, a suite of recently develop

  16. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M;

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  17. Radiation Dose Assessments for the Embryo, Fetus, and Nursing Infant during Operation Tomodachi

    Science.gov (United States)

    2013-08-01

    of breastfeeding by artificially choosing an effective intake time before or after the actual intake time (ICRP, 2004). However, because the total...milk; (3) used the DCs for the three month old infant for the entire nursing period; and, (4) assumed six months of breastfeeding starting at zero...weaning. The ICRP DCs, despite being based on a six-month duration of breastfeeding , can be used for estimating the doses from longer or shorter periods

  18. Dose assessment by quantification of chromosome aberrations and micronuclei in peripheral blood lymphocytes from patients exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Barbosa, Isvania; Pereira-MagnataI, Simey; Amaral, Ademir [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia - GERAR; Sotero, Graca [Fundacao de Hematologia e Hemoterapia, Recife, PE (Brazil); Melo, Homero Cavalcanti [Hospital do Cancer, Recife, PE (Brazil). Centro de Radioterapia de Pernambuco]. E-mail: isvania@uol.com.br

    2005-07-15

    Scoring of unstable chromosome aberrations (dicentrics, rings and fragments) and micronuclei in circulating lymphocytes are the most extensively studied biological means for estimating individual exposure to ionizing radiation (IR), which can be used as complementary methods to physical dosimetry or when the latter cannot be performed. In this work, the quantification of the frequencies of chromosome aberrations and micronuclei were carried out based on cytogenetic analyses of peripheral blood samples from 5 patients with cervical uterine cancer following radiotherapy in order to evaluate the absorbed dose as a result of partial-body exposure to 60Co source. Blood samples were collected from each patient in three phases of the treatment: before irradiation, 24 h after receiving 0.08 Gy and 1.8 Gy, respectively. The results presented in this report emphasize biological dosimetry, employing the quantification of chromosome aberrations and micronuclei in lymphocytes from peripheral blood, as an important methodology of dose assessment for either whole or partial-body exposure to IR.

  19. Radiation Dose Assessments for Shore-Based Individuals in Operation Tomodachi

    Science.gov (United States)

    2012-09-30

    mSv]) (NCRP, 2009c). Radon - 222 accounts for roughly 70 percent of the annual effective dose with a mean value of 0.212 rem (2.12 mSv) (95 percent...4.183 4.448 222 x E +3 6.894 757 x E +3 1.000 000 x E +2 1.000 000 x E -6 2.540 000 x E -5 1.609 344 x E +3 2.834 952 x E -2 4.448 222 1.129... 222 E-1. Scenario/Pathway Considerations .................................................... 222 E-2. Life Style Parameters

  20. Measurement of naturally occurring radionuclides in geothermal samples and assessment of radiological risks and radiation doses.

    Science.gov (United States)

    Parmaksiz, A

    2013-12-01

    The analysis of (226)Ra, (232)Th and (40)K radionuclides has been carried out in geothermal water and residue samples collected from six wells of geothermal power plant and disposal site, using gamma-spectrometry system equipped with a high-purity germanium detector. The activity concentrations of nine geothermal water samples were found to be lower than minimum detectable activity (MDA) values. The activity concentration of the residue samples ranged from 40 ± 4 to 2694 ± 85 Bq kg(-1) for (226)Ra, 33 ± 4 to 2388 ± 85 Bq kg(-1) for (232)Th, and MDA value to 967 ± 30 Bq kg(-1) for (40)K. In the study, some radiological indexes were examined and found to be higher than the reference values for majority of the residue samples. The annual effective doses arising from some residue samples were calculated to be higher than the permitted dose rate for the public, i.e. 1 mSv y(-1).

  1. Rapid assessment of high-dose radiation exposures through scoring of cell-fusion-induced premature chromosome condensation and ring chromosomes.

    Science.gov (United States)

    Lamadrid Boada, A I; Romero Aguilera, I; Terzoudi, G I; González Mesa, J E; Pantelias, G; García, O

    2013-09-18

    Analysis of premature chromosome condensation (PCC) mediated by fusion of G0-lymphocytes with mitotic CHO cells in combination with rapid visualization and quantification of rings (PCC-Rf) is proposed as an alternative technique for dose assessment of radiation-exposed individuals. Isolated lymphocytes or whole blood from six individuals were γ-irradiated with 5, 10, 15 and 20Gy at a dose rate of 0.5Gy/min. Following either 8- or 24-h post-exposure incubation of irradiated samples at 37°C, chromosome spreads were prepared by standard PCC cytogenetic procedures. The protocol for PCC fusion proved to be effective at doses as high as 20Gy, enabling the analysis of ring chromosomes and excess PCC fragments. The ring frequencies remained constant during the 8-24-h repair time; the pooled dose relationship between ring frequency (Y) and dose (D) was linear: Y=(0.088±0.005)×D. During the repair time, excess fragments decreased from 0.91 to 0.59 chromatid pieces per Gy, revealing the importance of information about the exact time of exposure for dose assessment on the basis of fragments. Compared with other cytogenetic assays to estimate radiation dose, the PCC-Rf method has the following benefits: a 48-h culture time is not required, allowing a much faster assessment of dose in comparison with conventional scoring of dicentrics and rings in assays for chemically-induced premature chromosome condensation (PCC-Rch), and it allows the analysis of heavily irradiated lymphocytes that are delayed or never reach mitosis, thus avoiding the problem of saturation at high doses. In conclusion, the use of the PCC fusion assay in conjunction with scoring of rings in G0-lymphocytes offers a suitable alternative for fast dose estimation following accidental exposure to high radiation doses.

  2. In Vitro Partial-Body Dose Assessment Using a Radiation Responsive Protein Biomarker

    Science.gov (United States)

    2005-01-01

    Follow-on epidemiologic analysis of the above objective data will facilitate a health risk assessment. Clinical signs and symptoms are unreliable... Parotid gland Dubray et al., 1992 Cytokines (IL-6, TNF-α) Skin and blood cells Beetz et al., 1997 GADD-45 and proto-oncogenes Blood Papathanasiou...et al., 1991 Substance P Parotid gland Aalto et al., 1995 Figure 2 Proto-oncogene and DNA repair protein expression Figure 2: Time course of

  3. Radionuclides in Animal Feed (Poultry) 'Assessment of Radiation Dose'

    Energy Technology Data Exchange (ETDEWEB)

    Algadi, S.; Salih, I. [Radiation Safety Institute (Sudan)

    2014-07-01

    In this work a comprehensive study has been carried out for the determination of presents evaluation of effective dose due to consumption of chicken fed by fodders collected from four major Sudanese companies (Hader, Koudjs, Wifi and Preconex SPN.V). The concentrations of radionuclides in the thirty two (32) feed samples have been determined by gamma spectrometry using NaI(Tl) detector. Radionuclides observed were: Pb-212 (daughter of Th-238), Pb-214, Bi-214 (daughters of U-238), Cs-137 and K-40 concentration. In additives the activity concentration of these radionuclides has found in the following ranges: 0.81 - 22.06 Bq/kg, 0.59 - 32.07 Bq/kg, 0.64 - 15.77 Bq/kg, 0.01 - 2.02 Bq/kg and 33.58 - 204.61 Bq/kg respectively. In feed concentrates activity concentration ranges has: 0.73 - 13.79 Bq/kg, 0.33 - 20.04 Bq/kg, 0.01 - 1.67 Bq/kg, 0.01 - 0.28 Bq/kg, 26.86 - 99.21 Bq/kg respectively. In fodders the activity concentration ranges has: 1.25 - 1.52 Bq/kg, 0.12 - 1.24 Bq/kg, 0.51 - 1.25 Bq/kg, 0.01 - 0.61 Bq/kg, 11.94 - 127.88 Bq/kg respectively. The 'animal product' activity concentration ranges has: 0.31 - 1.65 Bq/kg, 0.22 - 1.11 Bq/kg, 0.26 - 1.07 Bq/kg, 0.03 - 0.51 Bq/kg, 14.07 - 79.93 Bq/kg respectively. High concentrations (233.3 Bq/Kg) has typically found in toxo(additive); the lowest concentration (27.9 Bq/Kg ) has found in concentrate for layers and animal product. The total average effective dose due to the different feed-stuff has estimated and found to be 5.89x10{sup -6}±3.11x10{sup -6}mSv/y and 13.9 x 10{sup -7} ± 7.24 x 10{sup -7}mSv/y for age categories 7-12 y and >17 y respectively. If compared with the limits - Radioactivity Levels Permitted in foodstuffs Part 1 the Saudi Standards, Metrology and quality (300 Bq/Kg) and ICRP,FAO organization (5 mSv/y) - these values are very low. Document available in abstract form only. (authors)

  4. EDITORIAL Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment

    Science.gov (United States)

    Newhauser, Wayne

    2010-07-01

    from the symposium are interrelated and focus on dose and risk assessments related to radiation exposures from advanced radiation therapies. These research topics have become increasingly complex and require the combined expertise of researchers with highly specialized and diverse investigational skills. Innovative multidisciplinary teams will be needed to achieve breakthroughs and, ultimately, to translate the research into clinical practice (Disis and Slattery 2010). The symposium's scientific goals included fostering and promoting such multidisciplinary teams, which will work to solve these complex problems and thereby improve cancer outcomes. To help clarify how the 13 articles each contribute to the goal of improving cancer outcomes, a brief digression is necessary. The proportion of patients surviving their cancers for five years or more is large and increasing (Jemal et al 2009). Unfortunately, in survivors who received radiation therapy, the prevalence of radiogenic late effects is likewise large and increasing (cf Altekruse et al 2010, Meadows et al 2009, Hudson et al 2009, Friedman et al 2010), with the potential to become a public health issue of considerable scale (Travis 2006). A multitude of late effects are associated with radiation exposure, including the development of second cancers, cardiac toxicity, cognitive deficits, and musculoskeletal growth abnormalities in children. In modern radiation therapy, much effort is devoted to developing personalized treatments that control the tumor while minimizing acute toxicities to surrounding healthy tissues; comparatively less attention has been paid to minimizing late effects (Durante and Loeffler 2010). In recent years, however, there has been an encouraging increase in research activities seeking to quantify radiation exposures (Stovall et al 2006) and the associated risks of late effects from modern external-beam therapies (Xu et al 2008). In this issue, Zhang et al (2010) report on Monte Carlo and

  5. Assessment of the image contrast improvement and dose reduction in mammography with synchrotron radiation compared to standard units

    CERN Document Server

    Moeckli, R; Fiedler, S; Pachoud, M; Hessler, C; Meuli, R; Valley, J F

    2001-01-01

    An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard units. It was performed systematically in the energy range of interest for mammography through the evaluation of the contrast and the measurement of the mean glandular dose. Synchrotron radiation measurements were performed at the ESRF and a slit was placed between the test object and the screen-film system in order to reduce scatter. The conventional films were obtained on mammography units with an anti-scatter grid. In a recent paper, it was shown that the use of synchrotron radiation leads to a noticeable improvement of the image quality-dose relationship (Moeckli et al. Phys. Med. Biol. 45(12)3509). The reason of that enhancement is partly due to the monochromaticity of the synchrotron beam and partly due to the use of a slit instead of a grid. The dose reduction with synchrotron radiation can be attributed to a better X-ray total transmission of the slit and the contra...

  6. Assessment of internal radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Young; Chang, S. Y.; Lee, J. I.; Kim, J. S.; Song, M. Y. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-05-01

    This report describes the contents and results for implementation of internal radiation monitoring programme, measurement of uranium lung deposition by lung counter and assessment of committed effective dose for radiation workers of KNFC. The aim of radiation protection was achieved by implementing this activity. 9 refs., 8 tabs. (Author)

  7. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium: Agenda and Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Matthew A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramakrishnan, Narayani [National Inst. of Allergy and Infectious Diseases, Bethesda, MD (United States)

    2009-11-16

    In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate those individuals who must receive medical attention. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation the cellular machinery is modified. For example: large-scale changes occur in the gene expression profiles involving a broad variety of cellular pathways after a wide range of both low dose (<10 cGy) and high dose (>10 cGy) ionizing radiation exposures. Symposium 12 was organized to address a wide range of biological effects using the latest technologies. To address current models following ionizing radiation exposure, methods in biodosimetry and dose effects the symposia featured a general overview titled “Model Systems and Current Approaches in Biodosimetry” by Matthew A. Coleman, from Lawrence Livermore National Laboratory and a talk entitled “Brief Overview of Biodosimetry Projects in the NIH Rad/Nuc Program” by Dr. Narayani Ramakrishnan, National Institute of Allergy and Infectious Diseases. These two talk set the tone for issues in data and model integration as well as addressing the national need for robust technologies for biological dosimetry. The report continues with more description of the presentations, along with the agenda and abstracts of the papers presented.

  8. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Deva Jayanthi, D., E-mail: d.devajayanthi@gmail.co [Department of Physics, Women' s Christian College, Nagercoil 629001 (India); Maniyan, C.G. [Environmental Assessment Division, BARC, Mumbai 400085 (India); Perumal, S. [Department of Physics and Research Centre, S.T.Hindu College, Nagercoil 629002 (India)

    2011-07-15

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv. -- Highlights: {yields} The effective dose received by the villages of Natural High Background Area (NHBRA) such as Enayam, Midalam and Mel Midalam is high when compared with other study areas. {yields} The high dose indicates higher concentration of radioactive nuclides like Thorium and Uranium in the soil. {yields} As radiation is harmful to human life, the external and internal doses can be reduced by removing the monazite content present in the soil by mineral separation. {yields} Contribution from vegetables, fruits, fish and other non vegetarian items are also being examined. {yields} These results along with other socio-economic factors can throw considerable light on the epidemiological impacts due to low levels of chronic exposure.

  9. Investigation of radioactive pollution on land at Thule and assessment of radiation doses; Undersoegelse af radioaktiv forurening paa landjorden ved Thule og vurdering af straaledoser

    Energy Technology Data Exchange (ETDEWEB)

    2011-12-15

    Risoe National Laboratory at the Technical University of Denmark has carried out research on the terrestrial contamination in the Thule area, Greenland, after the radioactive contents of four nuclear weapons were dispersed following the crash of an American B-52 bomber in 1968. The results of this research are described in the report ''Thule-2007 - Investigation of radioactive pollution on land''. Based on this report, the National Board of Health made an assessment of radiation doses and the risk for individuals in the Thule area. The results of the assessment are described in the report ''The Thule accident. Assessment of radiation doses from terrestrial radioactive contamination''. The present report is a summary of these two reports. (ln)

  10. Advances in environmental radiation protection: re-thinking animal-environment interaction modelling for wildlife dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Beresford, Nicholas A. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Centre for Ecology and Hydrology, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm (Sweden); Gashchak, Sergey [Chornobyl Centre for Nuclear Safety, Radioactive Waste and Radioecology, 07100 Slavutych (Ukraine); Hinton, Thomas G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Centre de Cadarache, 13115 Saint Paul-lez-Durance (France)

    2014-07-01

    Current wildlife dose assessment models adopt simplistic approaches to the representation of animal-environment interaction. The simplest approaches are to assume either that environmental media (e.g. soil, sediment or water) are uniformly contaminated or relating organism exposure to activity concentrations in media collected at the point of sampling of the animal. The external exposure of a reference organism is then estimated by defining the geometric relationship between the organism and the medium. For example, a reference organism within the soil would have a 4p exposure geometry and a reference organism on the soil would have a 2p exposure geometry. At best, the current modelling approaches recognise differences in media activity concentrations by calculating exposure for different areas of contamination and then estimating the fraction of time that an organism spends in each area. In other fields of pollution ecology, for example wildlife risk assessment for chemical pollution, more advanced approaches are being implemented to model animal-environment interaction and estimate exposure. These approaches include individual-based movement modelling and random walk modelling and a variety of software tools have been developed to facilitate the implementation of these models. Although there are more advanced animal-environment interaction modelling approaches that are available, it is questionable whether these should be adopted for use in environmental radiation protection. Would their adoption significantly reduce uncertainty within the assessment process and, if so, by how much? These questions are being addressed within the new TREE (TRansfer - Exposure - Effects) research programme funded by the United Kingdom Natural Environment Research Council (NERC) and within Working Group (WG) 8 of the International Atomic Energy Agency's MODARIA programme. MODARIA WG8 is reviewing some of the alternative approaches that have been developed for animal

  11. Radiation safety assessment and development of environmental radiation monitoring technology; standardization of input parameters for the calculation of annual dose from routine releases from commercial reactor effluents

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, I. H.; Cho, D.; Youn, S. H.; Kim, H. S.; Lee, S. J.; Ahn, H. K. [Soonchunhyang University, Ahsan (Korea)

    2002-04-01

    This research is to develop a standard methodology for determining the input parameters that impose a substantial impact on radiation doses of residential individuals in the vicinity of four nuclear power plants in Korea. We have selected critical nuclei, pathways and organs related to the human exposure via simulated estimation with K-DOSE 60 based on the updated ICRP-60 and sensitivity analyses. From the results, we found that 1) the critical nuclides were found to be {sup 3}H, {sup 133}Xe, {sup 60}Co for Kori plants and {sup 14}C, {sup 41}Ar for Wolsong plants. The most critical pathway was 'vegetable intake' for adults and 'milk intake' for infants. However, there was no preference in the effective organs, and 2) sensitivity analyses showed that the chemical composition in a nuclide much more influenced upon the radiation dose than any other input parameters such as food intake, radiation discharge, and transfer/concentration coefficients by more than 102 factor. The effect of transfer/concentration coefficients on the radiation dose was negligible. All input parameters showed highly estimated correlation with the radiation dose, approximated to 1.0, except for food intake in Wolsong power plant (partial correlation coefficient (PCC)=0.877). Consequently, we suggest that a prediction model or scenarios for food intake reflecting the current living trend and a formal publications including details of chemical components in the critical nuclei from each plant are needed. Also, standardized domestic values of the parameters used in the calculation must replace the values of the existed or default-set imported factors via properly designed experiments and/or modelling such as transport of liquid discharge in waters nearby the plants, exposure tests on corps and plants so on. 4 figs., 576 tabs. (Author)

  12. Assessment of the skin dose for aircrew.

    Science.gov (United States)

    Meier, Matthias M; Matthiä, Daniel

    2017-03-02

    Epidemiological studies are a useful instrument for investigating the influence of environmental factors on human health. In this context, the determination and quantification of the corresponding exposure is a demanding challenge. With regard to the investigation of the potential health effects in aircrew due to cosmic radiation, their occupational exposure at aviation altitudes is usually assessed in terms of the radiation protection quantity effective dose, which is stored in and available from official dose registers in many countries. However, when biological effects on a particular organ are investigated, knowledge of the corresponding exposure of that particular organ is necessary. In this study, we investigate the differences between the skin dose and the effective dose for the exposure of aircrew to cosmic radiation using a mathematical model for the radiation field at aviation altitudes. Furthermore, we present a method to deduce skin dose values from the officially registered effective doses.

  13. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols

    Science.gov (United States)

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    Objectives This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Materials and Methods Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Results Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. Conclusion The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners. PMID:27552224

  14. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment; Quantificacao de micronucleos em linfocitos de pacientes expostas a radiacao gama para a avaliacao da dose absorvida

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-15

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with {sup 60}Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  15. Genotoxicity assessment of low-level doses of gamma radiation with the SOS chromotest and the Ames test.

    Science.gov (United States)

    Bolsunovsky, A Ya; Sinitsyna, O I; Frolova, T S; Vasyunina, E A; Dementyev, D V

    2016-07-01

    This is the first study to present data on the genotoxicity of low γ-irradiation doses for E. coli and S. typhimurium cells obtained using the SOS chromotest and the Ames test. The most pronounced effect was recorded in the first 24 h of γ-irradiation. After 72 h in the Ames test and after 96 h in the SOS chromotest, a significant effect of γ-irradiation on bacterial cells was detected. The absence of genotoxicity at the later stages can be explained by the adaptation of bacterial cells to the conditions of exposure. The findings allow the bacterial test system to be used for studying the effects of low doses at the early stages of exposure to radiation.

  16. Radiation doses and risks from internal emitters

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, John [Health Protection Agency, Radiation Protection Division, CRCE, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Day, Philip [School of Chemistry, University of Manchester, Manchester M13 9PL (United Kingdom)], E-mail: john.harrison@hpa.org.uk, E-mail: philip.day@manchester.ac.uk

    2008-06-01

    , the same is not true of the ICRP protection quantities equivalent and effective dose (i.e. those measured in sieverts). The ICRP quantities are intended for practical application in radiological protection and the choice of radiation and tissue weighting factors used in their calculation involves simplifying assumptions regarded as acceptable for this purpose. Best estimates of doses and risks to individuals and specific population groups may be calculated using ICRP biokinetic and dosimetric approaches, but would require the use of best available information on RBE and age-, sex- and population-specific risk factors. Consideration of uncertainties is important in applications such as the assessment of the probability of cancer causation for an individual and in estimating doses in epidemiological studies. While the ICRP system of protection does not take explicit account of uncertainties, an understanding of the various contributions to uncertainty can be seen to be of value when making judgments on the optimisation of protection. (review)

  17. Utirik Atoll Dose Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  18. Radiation dose and subsequent risk for stomach cancer in long-term survivors of cervical cancer

    DEFF Research Database (Denmark)

    Kleinerman, Ruth A; Smith, Susan A; Holowaty, Eric;

    2013-01-01

    To assess the dose-response relationship for stomach cancer after radiation therapy for cervical cancer.......To assess the dose-response relationship for stomach cancer after radiation therapy for cervical cancer....

  19. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  20. Radiation dose assessment for the biota of terrestrial ecosystems in the shoreline zone of the Chernobyl nuclear power plant cooling pond.

    Science.gov (United States)

    Oskolkov, Boris Ya; Bondarkov, Mikhail D; Gaschak, Sergey P; Maksimenko, Andrey M; Hinton, Thomas G; Coughlin, Daniel; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. This paper addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from 90Sr and 137Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to draw down naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  1. RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  2. A study on the radiation and environmental safety -Development of a real-time radiological dose assessment system-

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Heui; Lee, Yung Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The real-time dose assessment system under development has been updated and the technology for tracer experiment has been established. The calculation of external gamma dose is the most difficult and time-consuming part of the dose calculations. The characteristics of external gamma exposure have been investigated and the method for reducing the calculation time has been devised. The internal exposure via the ingestion of the contaminated foodstuffs is one of the important pathways to the total radiological exposure. In the emergency, it is necessary to take an action such like food ban to protect the internal exposure. An algorithm for the interface between the real-time system and the food chain model has been provided. The second field tracer experiment over flat terrain has been carried out on a plain in Iksan city in Junrabook-Do. Sequential tracer sampler which can be sampled the tracer gas over arbitrary 12 time interval has been designed and manufactured. SF{sub 6} has been used as the tracer gas and the sampled gas has been analysed by gas-chromatographer. 55 figs, 32 tabs, 65 refs. (Author).

  3. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  4. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  5. Evaluation of doses from radiodiagnostic procedures performed in veterinary medicine and assessing of the doses of secondary radiation in the medical staff and animal owners; Avaliacao das doses resultantes de procedimentos radiodiagnosticos realizados em medicina veterinaria e avaliacao das doses secundarias de radiacao espalhada no corpo clinico e nos proprietarios dos animais

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Glauco Rogerio

    2012-07-01

    The primary goal in veterinary radiography is to produce radiographs of diagnostic quality on the first attempt. This goal serves three purposes: (1) to decrease radiation exposure to the patient and veterinary personnel; (2) to decrease the cost of the study for the client; and (3) to produce diagnostic data for rapid interpretation and treatment of the patient. This work aimed to determine the doses in dogs submitted to chest and abdomen X rays using the technique of thermoluminescence (TL) dosimetry. The radiation doses were assessed using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) and lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti). The obtained results indicate that is extremely important the assessment of radiation doses involved in veterinary diagnostic radiology procedures, to evaluate the delivered doses to the animals, to be used as a parameter in the individual monitoring of pet's owners, who assist the animal positioning, and to protect occupationally exposed workers at the Veterinary Radiology Clinics. (author)

  6. Multicenter study assessing ophthalmologist's knowledge towards radiation dose when prescribing CT scans for pediatric patients: A Saudi Arabian perspective

    Directory of Open Access Journals (Sweden)

    Hussain Almohiy

    2016-01-01

    Conclusion: Knowledge of Ophthalmologists towards the risk of radiation exposure in pediatric CT is poor and suggest a propensity of misappropriate radiation use and under-utilization of alternative radiation-free methods. Structured education sessions and deliberation of the radiation dangers with patients are recommended.

  7. Radioactivity measurements in the vicinity of the mine waste heap at Crossen and radiation dose assessment; Radioaktivitaetsmessungen in der Umgebung der Bergehalde Crossen und Abschaetzung der Strahlenexposition

    Energy Technology Data Exchange (ETDEWEB)

    Kulzer, R.

    1998-09-01

    The radiation dose to the population living in the vicinity of the mine waste heap is assessed. The measurements carried out were to verify the dose relevance of ambient radioactivity on site, in particular the ingestion and inhalation pathways and the external exposure pathways. The nuclide Pb-210 was used as an indicator because of its large dose factor for assessment of ingestion and its airborne dispersion as an Rn-222 daughter product. The waste heap material releases large quantities of this nuclide. Ingestion of radioactivity from the waste heap may be caused by wind-borne erosion and activity deposition on plants in the area. Thererfore, the specific activities of Pb-210 and Ra-226 have been measured in soil and plant specimens sampled at various distances from the waste heap. (orig./CB) [Deutsch] Die Strahlenexposition der in der Naehe einer Bergehalde lebenden Bevoelkerung wird bestimmt. Zu diesem Zweck wurden Messungen realisiert, die den Ingestions- und Inhalationspfad sowie die externe Exposition fuer die vorgefundene Situation auf ihre Dosisrelevanz ueberpruefen sollten. Hierzu diente das Nuklid Pb-210 mit seinem grossen Dosisfaktor fuer die Ingestion und seiner besonderen Verbreitungsmoeglichkeit ueber die Luft als Tochter von Rn-222. Dieses wird aus dem Haldenmaterial in grossen Mengen freigesetzt. Haldenmaterial kann ueber den Ingestionspfad in den menschlichen Koerper aufgenommen werden, wenn es durch Winderosion auf Pflanzenoberflaechen in der Umgebung abgelagert wird.Deshalb wurden die spezifischen Aktivitaeten an Pb-210 und Ra-226 von Boden- und Pflanzenproben in verschiedenen Entfernungen zur Halde bestimmt.

  8. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications. [Radiation dose rates from shielded spent fuels and high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.

  9. An analysis of the radiation field characteristics for extremity dose assessment during maintenance periods at nuclear power plants in Korea.

    Science.gov (United States)

    Kim, Hee Geun; Kong, Tae Young

    2012-12-01

    Workers who maintain the water chambers of steam generators during maintenance periods in nuclear power plants (NPPs) have a higher likelihood of high radiation exposure, even if they are exposed for a short period of time. In particular, it is expected that the hands of workers would receive the highest radiation exposure as a consequence of hand contact with radioactive materials. In this study, a characteristic analysis of inhomogeneous radiation fields for contact operations was conducted using thermoluminescent dosemeters for the whole body and extremities during maintenance periods at Korean NPPs. It was observed that inhomogeneous radiation fields for contact operations at NPPs were dominated by high-energy photons.

  10. Megagray Dosimetry (or Monitoring of Very Large Radiation Doses)

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Uribe, R.M.; Miller, Arne

    1983-01-01

    A number of suitably calibrated plastic and dyed films and solid-state systems can provide mapping of very intense radiation fields with high spatial resolution and reasonable limits of uncertainty of absorbed dose assessment. Although most systems of this type suffer from rate dependence...... and temperature dependence of response when irradiated with charged particle beams at high dose rates, a few are stable, easily calibrated, and capable of faithful imaging of detailed dose profiles, even at doses up to 106 Gy and dose rates up to 108 Gy·s−1. Candidates include certain undyed plastic films (e...

  11. Dose-effect relationship in radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Oberhausen, E.

    1983-01-01

    As criterion for the evaluation of risk in connection with nuclear accidents the diminishing of life expectance is assumed. This would allow a better weighting of the different detriments. The possible dose-effect relations for the different detriments caused by radiation are discussed. Some models for a realistic evaluation of the different radiation detriments are proposed.

  12. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...... mapping. The paper further gives recommendations for effective dose mapping including traceable dosimetry, documented procedures for placement of dosimeters, and evaluation of measurement uncertainties. (C) 1999 Elsevier Science Ltd. All rights reserved....

  13. Near Real-Time Assessment of Anatomic and Dosimetric Variations for Head and Neck Radiation Therapy via Graphics Processing Unit–based Dose Deformation Framework

    Energy Technology Data Exchange (ETDEWEB)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Santhanam, Anand; Neylon, John; Min, Yugang; Armstrong, Tess; Sheng, Ke [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Staton, Robert J.; Pukala, Jason [Department of Radiation Oncology, UF Health Cancer Center - Orlando Health, Orlando, Florida (United States); Pham, Andrew; Low, Daniel A.; Lee, Steve P. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Steinberg, Michael; Manon, Rafael [Department of Radiation Oncology, UF Health Cancer Center - Orlando Health, Orlando, Florida (United States); Chen, Allen M.; Kupelian, Patrick [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States)

    2015-06-01

    Purpose: The purpose of this study was to systematically monitor anatomic variations and their dosimetric consequences during intensity modulated radiation therapy (IMRT) for head and neck (H&N) cancer by using a graphics processing unit (GPU)-based deformable image registration (DIR) framework. Methods and Materials: Eleven IMRT H&N patients undergoing IMRT with daily megavoltage computed tomography (CT) and weekly kilovoltage CT (kVCT) scans were included in this analysis. Pretreatment kVCTs were automatically registered with their corresponding planning CTs through a GPU-based DIR framework. The deformation of each contoured structure in the H&N region was computed to account for nonrigid change in the patient setup. The Jacobian determinant of the planning target volumes and the surrounding critical structures were used to quantify anatomical volume changes. The actual delivered dose was calculated accounting for the organ deformation. The dose distribution uncertainties due to registration errors were estimated using a landmark-based gamma evaluation. Results: Dramatic interfractional anatomic changes were observed. During the treatment course of 6 to 7 weeks, the parotid gland volumes changed up to 34.7%, and the center-of-mass displacement of the 2 parotid glands varied in the range of 0.9 to 8.8 mm. For the primary treatment volume, the cumulative minimum and mean and equivalent uniform doses assessed by the weekly kVCTs were lower than the planned doses by up to 14.9% (P=.14), 2% (P=.39), and 7.3% (P=.05), respectively. The cumulative mean doses were significantly higher than the planned dose for the left parotid (P=.03) and right parotid glands (P=.006). The computation including DIR and dose accumulation was ultrafast (∼45 seconds) with registration accuracy at the subvoxel level. Conclusions: A systematic analysis of anatomic variations in the H&N region and their dosimetric consequences is critical in improving treatment efficacy. Nearly real

  14. Reducing radiation dose in CT enterography.

    Science.gov (United States)

    Del Gaizo, Andrew J; Fletcher, Joel G; Yu, Lifeng; Paden, Robert G; Spencer, Garrett Clay; Leng, Shuai; Silva, Annelise M; Fidler, Jeff L; Silva, Alvin C; Hara, Amy K

    2013-01-01

    Computed tomographic (CT) enterography is a diagnostic examination that is increasingly being used to evaluate disorders of the small bowel. An undesirable consequence of CT, however, is patient exposure to ionizing radiation. This is of particular concern with CT enterography because patients tend to be young and require numerous follow-up examinations. There are multiple strategies to reduce radiation dose at CT enterography, including adjusting acquisition parameters, reducing scan length, and reducing tube voltage or tube current. The drawback to dose reduction strategies is degradation of image quality due to increased image noise. However, image noise can be reduced with commercial iterative reconstruction and denoising techniques. With a combination of low-dose techniques and noise-control strategies, one can markedly reduce radiation dose at CT enterography while maintaining diagnostic accuracy.

  15. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  16. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiat......Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  17. Radiation Dose and Risk Assessments from Polonium-210 in Green Mussels (Perna viridis) and Seafood Consumers Living nearby the Industrial Area in Chonburi Province, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Tumnoi, Y.; Phaopeng, N. [Office of Atoms for Peace - OAP (Thailand)

    2014-07-01

    Marine environmental samples including seawater (filtered and unfiltered), suspended particles, and green mussels (Perna viridis) were collected from Sriracha and Angsira areas located in Chonburi province in order to determine Po-210 radioactivity. The former was chosen because it is generally believed that this area has been contaminated by one of the largest industrial estates in Thailand and others human-activities (non-nuclear activities) nearby such as oil refineries and Coal Power Plants. Discharges, ashes, and wastes released from these activities may result in an increase of Po-210 concentration in marine environment when compared to other areas. The later was designated to serve as a control site in this study since this area is unlikely to be impacted by industrial activities. Our results revealed that, in the filtered seawater, averaged values of Po-210 level were 0.26 + 0.14 mBq/L (Sriracha) and 0.56 + 0.42 mBq/L (Angsira) and, in the unfiltered seawater, means of Po-210 radioactivity were 2.37 + 0.32 mBq/L (Sriracha) and 4.20 + 2.78 mBq/L (Angsira). Furthermore, the suspended particles contained Po-210 concentrations with averaged values of 14.11 + 8.87 Bq/kg dw (Sriracha) and 102.21 + 51.49 Bq/kg dw (Angsira) while averaged Po-210 levels of 35.74 + 17.53 Bq/kg dw (Sriracha) and 71.12 + 62.88 Bq/kg dw (Angsira) were found in the green mussels examined. The present finding indicates that there is no radiological impact caused by those human activities to the marine environment at Sriracha. Radiation dose assessment was also performed in both the green mussels and human who consume green mussels. The results show that the green mussels farmed at Sriracha and Angsira received averaged radiation dose rates from Po-210 at 0.0007 and 0.0015 mGy/d, respectively. In addition, our results reveal that populations living in Chonburi province and ingesting the green mussels from these 2 locations received radiation dose rates from Po-210 at the means of 44.25 and

  18. Radiation doses from computed tomography in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J.E.M.; Tingey, D.R.C

    1997-11-01

    Recent surveys in various countries have shown that computed tomography (CT) is a significant and growing contributor to the radiation dose from diagnostic radiology. Australia, with 332 CT scanners (18 per million people), is well endowed with CT equipment compared to European countries (6 to 13 per million people). Only Japan, with 8500 units (78 per million people), has a significantly higher proportion of CT scanners. In view of this, a survey of CT facilities, frequency of examinations, techniques and patient doses has been performed in Australia. It is estimated that there are 1 million CT examinations in Australia each year, resulting in a collective effective dose of 7000 Sv and a per caput dose of 0.39 mSv. This per caput dose is much larger than found in earlier studies in the UK and New Zealand but is less than 0.48 mSv in Japan. Using the ICRP risk factors, radiation doses from CT could be inducing about 280 fatal cancers per year in Australia. CT is therefore a significant, if not the major, single contributor to radiation doses and possible risk from diagnostic radiology. (authors) 28 refs., 11 tabs., 10 figs.

  19. Upper-Bound Radiation Dose Assessment for Military Personnel at McMurdo Station, Antarctica, between 1962 and 1979

    Science.gov (United States)

    2013-06-01

    Antarctica due to the Antarctic Treaty (Foster and Jones, 1982). During DF 77, radiological surveys were completed for the remaining buildings and... Antarctic Treaty , no radioactive waste could be disposed of in Antarctica (Foster and Jones, 1982). All radioactive waste had to be transported to the...available, the doses varied based on the Navy occupational ratings of the individuals wearing the film badges ( Antarctic Support Force (ASF), 1962-1979

  20. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  1. Radiation dose in temporomandibular joint zonography

    Energy Technology Data Exchange (ETDEWEB)

    Coucke, M.E.; Bourgoignie, R.R.; Dermaut, L.R.; Bourgoignie, K.A.; Jacobs, R.J. (Department of Orthodontics, Universitair Ziekenhuis, Ghent (Belgium))

    1991-06-01

    Temporomandibular joint morphology and function can be evaluated by panoramic zonography. Thermoluminescent dosimetry was applied to evaluate the radiation dose to predetermined sites on a phantom eye, thyroid, pituitary, and parotid, and the dose distribution on the skin of the head and neck when the TMJ program of the Zonarc panoramic x-ray unit was used. Findings are discussed with reference to similar radiographic techniques.

  2. Radiation Leukemogenesis at Low Dose Rates

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  3. Radioactivity of cigarettes and the importance of (210)Po and thorium isotopes for radiation dose assessment due to smoking.

    Science.gov (United States)

    Kubalek, Davor; Serša, Gregor; Štrok, Marko; Benedik, Ljudmila; Jeran, Zvonka

    2016-05-01

    Tobacco and tobacco smoke are very complex mixtures. In addition to various chemical and organic compounds they also contain natural radioactive elements (radionuclides). In this work, the natural radionuclide activity concentrations ((234)U, (238)U, (228)Th, (230)Th, (232)Th, (226)Ra, (210)Pb and (210)Po) of nine different cigarette samples available on the Slovenian market are reported. In addition to (210)Po, the transfer of thorium isotopes from a cigarette to a smoker's body and lungs have been determined for the first time. Cigarette smoke and exhaled air from smokers' lungs were collected from volunteer smokers (C-4 brand) to determinate what quantity of (210)Po and thorium isotopes is transferred from the tobacco to the smoker's lungs. Cigarette ash and smoked filters were also collected and analysed. Among the determined isotopes, (210)Pb and (210)Po showed the highest activity concentrations. During the smoking of one cigarette approximately 22% of (210)Po (and presumably its predecessor (210)Pb), 0.6% of (228)Th, 24% of (230)Th, and 31% of (232)Th are transferred from the cigarette and retained in the smoker's body. The estimated annual effective dose for smokers is 61 μSv/year from (210)Po; 9 μSv/year from (210)Pb; 6 μSv/year from (228)Th; 47 μSv/year from (230)Th, and 37 μSv/year from (232)Th. These results show the importance of thorium isotopes in contributing to the annual effective dose for smoking.

  4. Radiation doses to children with shunt-treated hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Holmedal, Lise J. [Helse Fonna, Department of Radiology, Stord Hospital, Stord (Norway); Friberg, Eva G.; Boerretzen, Ingelin; Olerud, Hilde [The Norwegian Radiation Protection Authority, Oesteraas (Norway); Laegreid, Liv [Haukeland University Hospital, Department of Paediatrics, Bergen (Norway); Rosendahl, Karen [University of Bergen, Department of Surgical Sciences, Radiology Section, Bergen (Norway); Great Ormond Street Hospital for Children, Department of Diagnostic Radiology, London (United Kingdom)

    2007-12-15

    Children with shunt-treated hydrocephalus are still followed routinely with frequent head CT scans. To estimate the effective dose, brain and lens doses from these examinations during childhood, and to assess dose variation per examination. All children born between 1983 and 1995 and treated for hydrocephalus between 1983 and 2002 were included. We retrospectively registered the number of examinations and the applied scan parameters. The effective dose was calculated using mean conversion factors from the CT dose index measured free in air, while doses to the lens and brain were estimated using tabulated CT dose index values measured in a head phantom. A total of 687 CT examinations were performed in 67 children. The mean effective dose, lens dose and brain dose to children over 6 months of age were 1.2 mSv, 52 mGy and 33 mGy, respectively, and the corresponding doses to younger children were 3.2 mSv, 60 mGy and 48 mGy. The effective dose per CT examination varied by a factor of 64. None of the children was exposed to doses known to cause deterministic effects. However, since the threshold for radiation-induced damage is not known with certainty, alternative modalities such as US and MRI should be used whenever possible. (orig.)

  5. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  6. Methods of calculating radiation absorbed dose.

    Science.gov (United States)

    Wegst, A V

    1987-01-01

    The new tumoricidal radioactive agents being developed will require a careful estimate of radiation absorbed tumor and critical organ dose for each patient. Clinical methods will need to be developed using standard imaging or counting instruments to determine cumulated organ activities with tracer amounts before the therapeutic administration of the material. Standard MIRD dosimetry methods can then be applied.

  7. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Sharon [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); Back, Michael [Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun [National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore); Lu, Jaide Jay, E-mail: mdcljj@nus.edu.sg [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore)

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  8. Space radiation absorbed dose distribution in a human phantom

    Science.gov (United States)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  9. X-γ Radiation Dose Survey for HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    SONGXiariying; LIXu; YANGJinwei

    2003-01-01

    X-γ radiation belong to the ionizing radiation. Ionizing radiation sinks to energy in organism but produce a disservice to the organism. Just as medicine, the disservice of the radiation towards Organism is decided by to accept radiation quantify, the radiation quantify was named dose. Radiation protection's basic missions is to want to result the dose to fix quantify. In this survey the dose at workplace and its surroundings environments of HL-2A device was measured and the assessment was given out.

  10. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.; Fois, G.; Edouard, M.; Nemoz, C.; Renier, M.; Requardt, H.; Esteve, F.; Adam, JF.; Elleaume, H.; Bravin, A., E-mail: prezado@esrf.fr [ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France)

    2009-03-15

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  11. Radiation dose to physicians’ eye lens during interventional radiology

    Science.gov (United States)

    Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.

    2016-03-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.

  12. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen normaalikaeytoen, kaeyttoehaeirioeiden ja onnettomuustilanteiden aiheuttamien saeteilyannosten arviointi

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M. [VTT Energy, Espoo (Finland)

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  13. Assessment of ambient dose equivalent rate performance of an automatic survey meter as an instrument to quantify the presence of radiation in soils

    CERN Document Server

    Yoshimura, E M; Okuno, E

    2002-01-01

    Those who work in radiation protection are faced with various quantities that were created to account for the effects of ionizing radiation in the human body. As far as the experimental point of view is concerned, each available equipment is planned to measure a distinct quantity, for a specific radiation protection application, and it is not always clear which one it is. This paper shows a series of tests, planned and applied to a portable gamma ray spectrometer, in order to assure that the monitoring low dose levels of radiation with it is reliable. The equipment is fully automated and does not allow modifications of the conversion factors from counts to ambient dose equivalent. It is therefore necessary to assure that the values provided by the equipment are correct and refer to the actual situation one expects to find in practice. The system is based on an NaI(Tl) scintillation detector, mounted with its electronics in a portable case, suitable for field measurements. It measures ambient dose equivalent r...

  14. Prenatal radiation exposure. Dose calculation; Praenatale Strahlenexposition. Dosisermittlung

    Energy Technology Data Exchange (ETDEWEB)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Diagnostic and Interventional Radiology; Roeser, A. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Radiotherapy and Radio-Oncology

    2015-05-15

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  15. Dose assessment for the fetus considering scattered and secondary radiation from photon and proton therapy when treating a brain tumor of the mother

    Science.gov (United States)

    Geng, Changran; Moteabbed, Maryam; Seco, Joao; Gao, Yiming; Xu, X. George; Ramos-Méndez, José; Faddegon, Bruce; Paganetti, Harald

    2016-01-01

    The goal of this work was to determine the scattered photon dose and secondary neutron dose and resulting risk for the sensitive fetus from photon and proton radiotherapy when treating a brain tumor during pregnancy. Anthropomorphic pregnancy phantoms with three stages (3-, 6-, 9-month) based on ICRP reference parameters were implemented in Monte Carlo platform TOPAS, to evaluate the scattered dose and secondary neutron dose and dose equivalent. To evaluate the dose equivalent, dose averaged quality factors were considered for neutrons. This study compared three treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS) and 6-MV 3D conformal photon therapy. The results show that, for 3D conformal photon therapy, the scattered photon dose equivalent to the fetal body increases from 0.011 to 0.030 mSv per treatment Gy with increasing stage of gestation. For PBS, the neutron dose equivalent to the fetal body was significantly lower, i.e. increasing from 1.5  ×  10-3 to 2.5  ×  10-3 mSv per treatment Gy with increasing stage of gestation. For PPT, the neutron dose equivalent of the fetus decreases from 0.17 to 0.13 mSv per treatment Gy with the growing fetus. The ratios of dose equivalents to the fetus for a 52.2 Gy(RBE) course of radiation therapy to a typical CT scan of the mother’s head ranged from 3.4-4.4 for PBS, 30-41 for 3D conformal photon therapy and 180-500 for PPT, respectively. The attained dose to a fetus from the three modalities is far lower than the thresholds of malformation, severe mental retardation and lethal death. The childhood cancer excessive absolute risk was estimated using a linear no-threshold dose-response relationship. The risk would be 1.0 (95% CI: 0.6, 1.6) and 0.1 (95% CI:  -0.01, 0.52) in 105 for the 9-month fetus for PBS with a prescribed dose of 52.2 Gy(RBE). The increased risks for PPT and photon therapy are about two and one orders of magnitude larger than that for PBS

  16. BCC and Childhood Low Dose Radiation

    Directory of Open Access Journals (Sweden)

    Arash Beiraghi Toosi

    2014-10-01

    Full Text Available Skin cancer is a late complication of ionizing radiation. Two skin neoplasms prominent Basal Cell Carcinoma (BCC and Squamous Cell Carcinoma (SCC are the most famous complications of radiotherapy. Basal Cell Carcinoma (BCC is the most common human malignant neoplasm. Many genetic and environmental factors are involved in its onset. BCC is observed in sun-exposed areas of skin. Some patients with scalp BCC have had a history of scalp radiation for the treatment of tinea capitis in childhood. Evidence that ionizing radiation is carcinogenic first came from past reports of nonmelanoma skin cancers on the hands of workers using radiation devices. The total dose of radiation and irradiated site exposed to sunlight can lead to a short incubation period. It is not clear whether BCC in these cases has a more aggressive nature and requires a more aggressive resection of the lesion. The aim of this review was to evaluate the differences between BCC specification and treatment results between irradiated and nonirradiated patients.

  17. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  18. Radiation dose to the eye lens

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; D. Nielsen, Kamilla;

    2015-01-01

    field in oncology patients undergoing eyes-to-thighs PET/CT must always include the base of the scull according to department guidelines. The eye lens is sensitive to radiation exposure and if possible it should be avoided to scan the eye. If the patient’s head is kipped backwards during the scan one...... might avoid including the eye in the CT scan without losing sufficient visualization of the scull base. The aim of this study was to evaluate the possibility of decreasing the radiation dose to the eye lens, simply by changing the head position, when doing the PET/CT scan from the base of the scull...... pillow below the head (standard), and (b) kipped backwards with the pillow below the neck (kipped). For each head position, CT scans were repeated 5 times with both a low dose and a high dose CT protocol; in this way, a total of 20 CT scans were performed. Robust standard errors were used in order...

  19. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  20. SU-E-P-57: Radiation Doses Assessment to Paediatric Patients for Some Digital Diagnostic Radiology Examination in Emergency Department in Qatar

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, I; Aly, A; Al Naemi, H [Hamad Medical Corporation, Doha (Qatar)

    2015-06-15

    Purpose: The aim of this study was to evaluate radiation doses to pediatric patients undergoing standard radiographic examinations using Direct Digital Radiography (DDR) in Paediatric emergency center of Hamad General Hospital (HGH) in state of Qatar and compared with regional and international Dose Reference Levels (DRLs). Methods: Entrance Skin Dose (ESD) was measured for 2739 patients for two common X-ray examinations namely: Chest AP/PA, Abdomen. Exposure factors such as kV, mAs and Focal to Skin Distance (FSD) were recorded for each patient. Tube Output was measured for a range of selected kV values. ESD for each individual patient was calculated using the tube output and the technical exposure factors for each examination. The ESD values were compared with the some international Dose Reference Levels (DRL) for all types of examinations. Results: The most performed procedure during the time of this study was chest PA/PA (85%). The mean ESD values obtained from AP chest, PA chest and AP abdomen ranged 91–120, 80–84 and 209 – 659 µGy per radiograph for different age’s groups respectively. Two protocols have been used for chest AP and PA using different radiological parameters, and the different of ESD values for chest PA and were 41% for 1 years old child, 57% for 5 years old for chest AP. Conclusion: The mean ESD were compared with those found in literature and were found to be comparable. The radiation dose can be reduced more for Chest AP and PA examination by optimization of each investigation and hence more studies are required for this task. The results presented will serve as a baseline data needed for deriving local reference doses for pediatric X-ray examinations in this local department and hence it can be applied in the whole Qatar.

  1. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Toshihiko, E-mail: tiuchi@chiba-cc.jp [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hatano, Kazuo [Division of Radiation Oncology, Tokyo Bay Advanced Imaging and Radiation Oncology Clinic, Makuhari, Chiba (Japan); Uchino, Yoshio [Division of Nuclear Medicine, Chiba Ryogo Center, Chiba (Japan); Itami, Makiko [Division of Surgical Pathology, Chiba Cancer Center, Chiba (Japan); Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hara, Ryusuke [Division of Radiation Oncology, Chiba Cancer Center, Chiba (Japan)

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  2. Assessments of Coronary Artery Visibility and Radiation Dose in Infants with Congenital Heart Disease on Cardiac 128-slice CT and on Cardiac 64-slice CT.

    Science.gov (United States)

    Cui, Y; Huang, M; Zheng, J; Li, J; Liu, H; Liang, C

    2016-01-01

    The aim of this study was to compare the coronary artery visibility and radiation dose in infants with CHD on cardiac 128-slice CT and on cardiac 64-slice CT. The images of 200 patients were analyzed in this study, 100 patients were selected randomly from a group of 789 infants (coronary artery segments was graded on a four-point scale. The coronary arteries were considered to be detected or visible when grade was 2 or higher. The visibility of the coronary artery segments and the radiation dose was compared between the two groups. Except for the rate of LM (96 vs. 99%), the detection rates of the total, LAD, LCX, RCA, and the proximal segment of the RCA in the 256-slice CT group were significantly higher than those in the 64-slice CT group (51.7, 53.33, 33.67, 53.33, and 99 vs. 34.8, 34.33, 18, 30.67, and 75%, respectively). The counts of visibility score (4/3/2/1) for the LM and the proximal segment of the RCA were 62/22/12/4 and 56/20/17/7, respectively, in the 128-slice CT group and 17/42/30/1 and 9/30/38/25, respectively, in the 64-slice CT group. There were significant differences, especially for score 4 and 3, between the two groups. The radiation dose in the 128-slice CT group was significantly decreased than those in the 64-slice CT group (CTDIvol 1.88 ± 0.51 vs. 5.61 ± 0.63 mGy; SSDE 4.48 ± 1.15 vs. 13.97 ± 1.52 mGy; effective radiation dose 1.36 ± 0.44 vs. 4.06 ± 0.7 mSv). With reduced radiation dose, the visibility of the coronary artery in infants with CHD via prospective ECG-triggered mode on a 128-slice CT is superior to that of the 64-slice CT using retrospective ECG-gated spiral mode.

  3. TH-E-BRF-03: A Multivariate Interaction Model for Assessment of Hippocampal Vascular Dose-Response and Early Prediction of Radiation-Induced Neurocognitive Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Farjam, R; Pramanik, P; Srinivasan, A; Chapman, C; Tsien, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States)

    2014-06-15

    Purpose: Vascular injury could be a cause of hippocampal dysfunction leading to late neurocognitive decline in patients receiving brain radiotherapy (RT). Hence, our aim was to develop a multivariate interaction model for characterization of hippocampal vascular dose-response and early prediction of radiation-induced late neurocognitive impairments. Methods: 27 patients (17 males and 10 females, age 31–80 years) were enrolled in an IRB-approved prospective longitudinal study. All patients were diagnosed with a low-grade glioma or benign tumor and treated by 3-D conformal or intensity-modulated RT with a median dose of 54 Gy (50.4–59.4 Gy in 1.8− Gy fractions). Six DCE-MRI scans were performed from pre-RT to 18 months post-RT. DCE data were fitted to the modified Toft model to obtain the transfer constant of gadolinium influx from the intravascular space into the extravascular extracellular space, Ktrans, and the fraction of blood plasma volume, Vp. The hippocampus vascular property alterations after starting RT were characterized by changes in the hippocampal mean values of, μh(Ktrans)τ and μh(Vp)τ. The dose-response, Δμh(Ktrans/Vp)pre->τ, was modeled using a multivariate linear regression considering integrations of doses with age, sex, hippocampal laterality and presence of tumor/edema near a hippocampus. Finally, the early vascular dose-response in hippocampus was correlated with neurocognitive decline 6 and 18 months post-RT. Results: The μh(Ktrans) increased significantly from pre-RT to 1 month post-RT (p<0.0004). The multivariate model showed that the dose effect on Δμh(Ktrans)pre->1M post-RT was interacted with sex (p<0.0007) and age (p<0.00004), with the dose-response more pronounced in older females. Also, the vascular dose-response in the left hippocampus of females was significantly correlated with memory function decline at 6 (r = − 0.95, p<0.0006) and 18 (r = −0.88, p<0.02) months post-RT. Conclusion: The hippocampal vascular

  4. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  5. Radiation doses to neonates requiring intensive care

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A. (Weston Park Hospital, Sheffield (UK)); Dellagrammaticas, H.D. (Sheffield Univ. (UK))

    1983-06-01

    Radiological investigations have become accepted as an important part of the range of facilities required to support severely ill newborn babies. Since the infants are so small, many of the examinations are virtually ''whole-body'' irradiations and it was thought that the total doses received might be appreciable. A group of such babies admitted to the Neonatal Intensive Care Unit in Sheffield over a six-month period have been studied. X-ray exposure factors used for each examination have been noted and total skin, gonad and bone marrow doses calculated, supplemented by measurements on phantoms. It is concluded that in most cases doses received are of the same order as those received over the same period from natural background radiation and probably less than those received from prenatal obstetric radiography, so that the additional risks from the diagnostic exposure are small. The highest doses are received in CT scans and barium examinations and it is recommended that the need for these should be carefully considered.

  6. Radiological dose assessment for vault storage concepts

    Energy Technology Data Exchange (ETDEWEB)

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  7. Radiation dose estimation of patients undergoing lumbar spine radiography

    Directory of Open Access Journals (Sweden)

    Prince Kwabena Gyekye

    2013-01-01

    Full Text Available Radiation dose to organs of 100 adult patients undergoing lumbar spine (LS radiography at a University Hospital have been assessed. Free in air kerma measurement using an ionization chamber was used for the patient dosimetry. Organ and effective dose to the patients were estimated using PCXMC (version 1.5 software. The organs that recorded significant dose due to LS radiography were lungs, stomach, liver, adrenals, kidney, pancreas, spleen, galbladder, and the heart. It was observed that the stomach recorded the highest dose (48.2 ± 1.2 μGy for LS anteroposterior (AP. The spleen also recorded the highest dose (41.2 ± 0.5 μGy for LS lateral (LAT. The mean entrance surface air kerma (ESAK of LS LAT (122.2 μGy was approximately twice that of LS AP (76.3 μGy, but the effective dose for both examinations were approximately the same (LS LAT = 8.6 μSv and LS AP = 10.4 μSv. The overall stochastic health effect of radiation to patients due to LS radiography in the University Hospital is independent of the projection of the examination (AP or LAT.

  8. Dose assessment in the criticality accident at Tokai-mura

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira, E-mail: endo.akira3@jaea.go.j [Japan Atomic Energy Agency, Tokai-mura, Ibaraki, 319-1195 (Japan)

    2010-12-15

    The present paper reviews a dose assessment carried out after the criticality accident that occurred on September 30, 1999 at JCO in Tokai-mura, Japan. In the accident, almost all doses were caused by external exposure to neutrons and {gamma}-rays emitted upon the fission of uranium. By a joint effort of Japanese experts in radiation dosimetry, a dose assessment was performed for neighboring residents, JCO employees including 3 workers who were at the accident spot, and emergency response personnel. The dose assessment was carried out using records of dosimeters, radiation monitoring data in and around the site, analysis of biological specimens, and computer simulation techniques. It was concluded from the results of the dose assessment that deterministic effects are not expected, except for the 3 heavily exposed workers, and that the probability of stochastic effects is very small and will be undetectable.

  9. Dose assessment of aircrew using passive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, M.; Berge, T.; Schoener, W.; Summerer, L.; Vana, N

    2002-07-01

    Radiation exposure of aircrew is a serious concern which has been given special emphasis in the European Council directive 96/29/Euratom. The cosmic ray induced neutron component can contribute more than 50% to the biologically relevant dose at aviation altitudes. Various computational approaches to route dose assessment, e.g. CARI, are in use nowadays and are compared with experimental data. Measurements of aircrew exposure usually involve extensive instrumentation in order to cover the whole particle spectrum and energy range present inside aircraft. Due to their small size and easy handling, thermoluminescence dosemeters represent an appropriate alternative. Previous measurements onboard aircraft applying the high-temperature ratio method with LiF:Mg,Ti dosemeters for the determination of an 'averaged' linear energy transfer of mixed radiation fields demonstrate the ability of this method to evaluate the dose equivalent, according to the Q(LET{sub (}) relationship proposed by the ICRP. Measurements with CaF{sub 2}:Tm dosemeters are currently in progress and are discussed here. (author)

  10. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice

    Science.gov (United States)

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi

    2015-01-01

    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing 137CsCl (0 and 100 Bq/ml). The 137Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the 137CsCl water. The litter size and the sex ratio of the group ingesting the 137Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the 137Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively. PMID:26825299

  11. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  12. Problems in evaluating radiation dose via terrestrial and aquatic pathways.

    Science.gov (United States)

    Vaughan, B E; Soldat, J K; Schreckhise, R G; Watson, E C; McKenzie, D H

    1981-12-01

    This review is concerned with exposure risk and the environmental pathways models used for predictive assessment of radiation dose. Exposure factors, the adequacy of available data, and the model subcomponents are critically reviewed from the standpoint of absolute error propagation. Although the models are inherently capable of better absolute accuracy, a calculated dose is usually overestimated by from two to six orders of magnitude, in practice. The principal reason for so large an error lies in using "generic" concentration ratios in situations where site specific data are needed. Major opinion of the model makers suggests a number midway between these extremes, with only a small likelihood of ever underestimating the radiation dose. Detailed evaluations are made of source considerations influencing dose (i.e., physical and chemical status of released material); dispersal mechanisms (atmospheric, hydrologic and biotic vector transport); mobilization and uptake mechanisms (i.e., chemical and other factors affecting the biological availability of radioelements); and critical pathways. Examples are shown of confounding in food-chain pathways, due to uncritical application of concentration ratios. Current thoughts of replacing the critical pathways approach to calculating dose with comprehensive model calculations are also shown to be ill-advised, given present limitations in the comprehensive data base. The pathways models may also require improved parametrization, as they are not at present structured adequately to lend themselves to validation. The extremely wide errors associated with predicting exposure stand in striking contrast to the error range associated with the extrapolation of animal effects data to the human being.

  13. Measurement of absorbed dose and proposed radiation exposure level

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Takayuki; Koizumi, Masayuki; Furukawa, Tomo [Tokai Univ., Isehara, Kanagawa (Japan). Hospital

    2003-03-01

    Absorbed dose was measured in clinical X-ray examinations using thermoluminescence dosimeter (TLD). Moreover, we distributed the levels of radiation exposure into 3 classes. The presumed dose of the internal organs, e.g., uterus dose, was computed to depth doses with a surface dose. This information provides a prediction of the influence of radiation, and the examination can be performed with the informed consent of the patient. Moreover, we examined the distribution of the level of absorbed dose. We proposed two kinds of radiation exposure level, one to the fetus in a pregnant woman and a general level of radiation exposure that is not applied to pregnant women. The levels were as follows: 0.5 mGy and 100 mGy were considered the boundaries for fetal radiation exposure in a pregnant woman, and 200 mGy and 3 Gy were considered the boundaries for the general level of radiation exposure (excluding pregnant women). (author)

  14. Assessment of internal doses in emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Rahola, T.; Muikku, M. [Radiation and Nuclear Safety Authority - STUK (Finland); Falk, R.; Johansson, J. [Swedish Radiation Protection Authority - SSI (Sweden); Liland, A.; Thorshaug, S. [NRPA (Norway)

    2006-04-15

    The need for assessing internal radiation doses in emergency situations was demonstrated after accidents in Brazil, Ukraine and other countries. Lately more and more concern has been expressed regarding malevolent use of radiation and radioactive materials. The scenarios for such use are more difficult to predict than for nuclear power plant or weapons accidents. Much of the results of the work done in the IRADES project can be adopted for use in various accidental situations involving radionuclides that are not addressed in this report. If an emergency situation occurs in only one or a few of the Nordic countries, experts from the other countries could be called upon to assist in monitoring. A big advantage is then our common platform. In the Nordic countries much work has been put down on quality assurance of measurements and on training of dose assessment calculations. Attention to this was addressed at the internal dosimetry course in October 2005. Nordic emergency preparedness exercises have so far not included training of direct measurements of people in the early phase of an emergency. The aim of the IRADES project was to improve the preparedness especially for thyroid measurements. The modest financial support did not enable the participants to make big efforts but certainly acted as a much appreciated reminder of the importance of being prepared also to handle situations with malevolent use of radioactive materials. It was left to each country to decide to which extent to improve the practical skills. There is still a need for detailed national implementation plans. Measurement strategies need to be developed in each country separately taking into account national regulations, local circumstances and resources. End users of the IRADES report are the radiation protection authorities. (au)

  15. Direct determination of internal radiation dose in human blood

    CERN Document Server

    Tanır, Ayse Güneş

    2014-01-01

    The purpose of this study is to measure the internal radiation dose using a human blood sample. In the literature, there is no process that allows the direct measurement of the internal radiation dose received by a person. The luminescence counts from a blood sample having a laboratory-injected radiation dose and the waste blood of the patient injected with a radiopharmaceutical for diagnostic purposes were both measured. The decay and dose-response curves were plotted for the different doses. The doses received by the different blood aliquots can be determined by interpolating the luminescence counts to the dose-response curve. This study shows that the dose received by a person can be measured directly, simply and retrospectively by using only a very small amount of blood sample. The results will have important ramifications for the medicine and healthcare fields in particular. This will also be very important in cases of suspicion of radiation poisoning, malpractice and so on.

  16. Measurement of radiation dose to ovaries from CT of the head and trunk

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habdhan, M.A.M.; Kinsara, A.R. [King Abdul Aziz Univ., Nuclear Engineering Dept., Jeddah (Saudi Arabia)

    2001-07-01

    With the rise in concern about doses received by patients over recent years, there has been a growing requirement for information on typical doses and the range of dose received during Computerized Tomography (CT). This study was performed for the assessment of radiation dose to the ovaries from various CT protocols for head and trunk imaging. Thermo luminescent dosimeters (TLD) were used for the dosimetry measurement in an anthropomorphic Rando Alderson phantom. The wanted (obligatory) and unwanted (non-useful) radiation doses delivered to the ovaries during CT examinations of head, facial bone, orbits, abdomen, chest, pelvis, neck, nasopharynx, cervical spine, lumber spine and sacroiliac joint were assessed. The results are compared with the corresponding values published in the literature. A comparison of the received dose from CT examinations and general radiography examinations by the ovaries was made. It is found that relatively high doses of unwanted radiation are delivered with computerized tomography. (author)

  17. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    Science.gov (United States)

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis.

  18. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    CERN Document Server

    Dobrescu, Lidia

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase of the annual collective dose. High doses of radiation are cumulated from Computed Tomography investigations. An integrated system for radiation safety of the patients investigated by radiological imaging methods, based on smart cards and Public Key Infrastructure allow radiation absorbed dose data storage.

  19. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  20. Preliminary dose assessment of the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.P.

    1987-01-01

    From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.

  1. Direct determination of external radiation dose in human blood

    CERN Document Server

    Tanir, AG; Sahiner, E; Bolukdemir, MH; Koc, K; Meric, N; Keles, SK; Kucuk, O

    2014-01-01

    In this study it was shown that it is possible to determine radiation doses from external beam therapy both directly and retrospectively from a human blood sample. To the best of our knowledge no other studies exist on the direct measurement of doses received by a person from external beam therapy. Optically stimulated luminescence counts from a healthy blood sample exposed to an external radiation source were measured. Blood aliquots were given 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100 and 200Gy beta doses and their decay and dose-response curves were plotted. While the luminescence intensities were found to be relatively low for the doses smaller than 10Gy, they were measured considerably higher for doses greater than 10Gy. The dose received by the blood aliquots was determined by interpolating the luminescence counts of 10Gy to the dose-response curve. This study has important ramifications for healthcare, medicine and radiation protection

  2. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  3. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  4. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    Science.gov (United States)

    Lubis, L. E.; Badawy, M. K.

    2016-03-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care.

  5. Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose {sup 131}I Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Kim, Kyeong Min; Woo, Sang Keun; Choi, Tae Hyun; Kang, Hye Jin; Oh, Dong Hyun; Kim, Byeong Il; Choen, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-02-15

    We assessed the absorbed dose to the tumor (Dose tumor) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with {sup 131}I rituximab for NHL. Patients with NHL (n=4) were administered a therapeutic dose of {sup 131}I rituximab. Serial WB planar images after RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROIs were drawn on the region of tumor (n=7) and left medial thigh as background, and Dosetumor was calculated. The correlation between Dosetumor and the CT-based tumor volume change after RIT was analyzed. The differences of Dosetumor and the tumor volume change according to the number of RIT were also assessed. The values of absorbed dose were 397.7{+-}646.2cGy (53.0{approx}2853.0cGy). The values of CT-based tumor volume were 11.3{+-}9.1 cc (2.9{approx}34.2cc), and the % changes of tumor volume before and after RIT were -29.8{+-}44.3% (-100.0%{approx}+42.5%), respectively. Dosetumor and the tumor volume change did not show the linear relationship (p>0.05). Dosetumor and the tumor volume change did not correlate with the number of repeated administration (p>0.05). We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

  6. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  7. PABLM; accumulated environment radiation dose. [UNIVAC1100; FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.B.; Tobias, M.L.; Fox, J.N.; Lawler, B.E.; Koppel, J.U.; Triplett, J.R.; Lynn, L.L.; Waldman, L.A.; Goldberg, I.; Greebler, P.; Kelley, M.D.; Davis, R.A.; Keck, C.E.; Redfield, J.A.; Murphy,; Soldat, J.K.

    PABLM calculates internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides after the releases have ended. Radioactive decay is considered during the release, after deposition, and during holdup of food after harvest. The radiation dose models consider exposure to radionuclides deposited on the ground or crops from contaminated air or irrigation water, radionuclides in contaminated drinking water, aquatic foods raised in contaminated water, and radionuclides in bodies of water and sediments where people might fish, boat, or swim. For vegetation, the radiation dose model considers both direct deposition and uptake through roots. Doses may be calculated for either a maximum-exposed individual or for a population group. The program is designed to calculate accumulated radiation doses from the chronic ingestion of food products that contain radionuclides and doses from the external exposure to radionuclides in the environment. A first-year committed dose is calculated as well as an integrated dose for a selected number of years.UNIVAC1100; FORTRAN; EXEC8; 80,000 words of memory are required to execute the PABLM program.

  8. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  9. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    Science.gov (United States)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and

  10. Problems with the assessment of internal radiation doses from radioactive tumortracers; Probleme bei der Bestimmung der durch radioaktive Tumormarker bedingten internen Strahlendosen

    Energy Technology Data Exchange (ETDEWEB)

    Havlik, E. [Wien Univ. (Austria). Inst. fuer Biomedizinische Technik und Physik]|[Ludwig-Boltzmann-Institut fuer Nuklearmedizin, Vienna (Austria); Kurtaran, A.; Smith-Jones, P. [Vienna Univ. (Austria). Universitaetsklinik fuer Nuklearmedizin; Virgolini, I. [Ludwig-Boltzmann-Institut fuer Nuklearmedizin, Vienna (Austria)]|[Vienna Univ. (Austria). Universitaetsklinik fuer Nuklearmedizin

    1998-12-31

    In the field of nuclear medicine, various radioactive compounds are taken up by tumors and their metastases. Several computer programs (e.g. MIRDOSE, LUDEP) are available for the calculation of internal radiation doses. These programs require the determination of the time based activity distribution of the radiotracer in individual organs. The determination of organ doses can be problematic due to the interpretation of the measurement data, the biokinetics of the tracer and the morphology of the target organs. Calculations based on scintigraphic data can have high errors associated with the background subtraction method. Additionally, the determination of the residence times are important. They are derived from the time-activity courses. However, a problematic area is the accurate determination of the sizes of both the tumor and its metastases. These aspects will be discussed using actual examples based on such new tumor tracers as VIP and DOTA-lanreotide. (orig.) [Deutsch] In der Nuklearmedizin werden radioaktiv markierte, in Tumoren und Metastasen gespeicherte Substanzen eingesetzt. Voraussetzung fuer die Berechnung der internen Strahlendosen im Zielgewebe und in anderen Geweben bzw. Organen sind Daten ueber die Verteilung und ueber das zeitliche Verhalten der Tracer. Computerprogramme unterstuetzen diese Berechnungen (z.B. MIRDOSE, LUDEP). Bei der Bestimmung der Gewebedosen ergeben sich Probleme, die in der Interpretation der Messdaten, in er Biokinetik der Substanzen und in der Morphologie der Zielgewebe liegen. Bei der Auswertung von szintigraphischen Aufnahmen stellt die Hintergrundsubtraktion einen wesentlichen Unsicherheitsfaktor dar. Weiters werden die Strahlendosen in den Geweben von den mittleren Aufenthaltsdauern der radioaktiven Substanzen bestimmt, welche wiederum ueber Zeit-Aktivitaets-Verlaeufe bestimmt werden muessen, die in eine mathematische Form gezwaengt werden. Schliesslich ist die Bestimmung der Masse von Tumoren/Metastasen oft problematisch

  11. Radiation dose in neurological computed tomographic scanning

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, R.C.; Bushong, S.C.; Archer, B.A.; Glaze, S.A.

    1979-07-01

    Patient dose and dose distribution during neurologicl computed tomography examinations were determined with five different computed tomography scanners. Maximum intracranial doses ranged from 1.17 to 2.67 rads. Doses to the lens of the eye ranged from 0.23 to 2.81 rads. These levels are considered and compared with patient doses reported for other computed tomography studies and for conventional tomographic examinations. In general, patient dose during computer tomographic examinations is less than one quarter of that during conventional tomography of the head.

  12. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  13. Patient radiation dose in conventional and xerographic cephalography

    Energy Technology Data Exchange (ETDEWEB)

    Copley, R.L.; Glaze, S.A.; Bushong, S.C.; West, D.C.

    1979-11-01

    A comparison of the radiation doses for xeroradiographic and conventional film screen cephalography was made. Alderson tissue-equivalent phantoms were used for patient simulation. An optimum technique in terms of patient dose and image quality indicated that the dose for the Xerox process ranged from five to eleven times greater than that for the conventional process for entrance and exit exposures, respectively. This dose, however, falls within an acceptable range for other dental and medical radiation doses. It is recommended that conventional cephalography be used for routine purposes and that xeroradiography be reserved for situations requiring the increased image quality that the process affords.

  14. Low doses of radiation reduce risks in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R.E.J. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    2004-05-01

    The 'Linear No Threshold' hypothesis, used in all radiation protection practices, assumes that all doses, no matter how low, increase risk. The protective effects of adaptive responses to radiation, shown to exist in lower organisms and in human and other mammalian cells, are inconsistent with this hypothesis. An in vivo test of the hypothesis in mice showed that a 100-mGy dose of {gamma}-radiation protected the mice by increasing latency for acute myeloid leukemia initiated by a subsequent large dose. A similar result was observed in cancer prone mice, where a 10-mGy adapting exposure prior to a large acute dose increased latency for lymphomas without altering frequency. Increasing the adapting dose to 100-mGy eliminated the protective effect. In the cancer prone mice, a 10-mGy dose alone, without a subsequent high dose, increased latency for spontaneous osteosarcomas and lymphomas without altering frequency. Increasing the dose to 100-mGy decreased latency for spontaneous osteosarcomas but still increased latency for lymphomas, indicating that this higher dose was in a transition zone between reduced and increased risk, and that the transition dose from protective to detrimental effects is tumor type specific. In genetically normal fetal mice, prior low doses also protected against radiation induced teratogenic effects. In genetically normal adult male mice, high doses induce mutations in sperm stem cells, detectable as heritable mutations in the offspring of these mice. A prior 100 mGy dose protected the male mice from induction of these heritable mutations by the large dose. We conclude that adaptive responses are induced by low doses in normal or cancer prone mice, and that these responses can reduce the risk of cancer, teratogenesis and heritable mutations. At low doses in vivo, the relationship between dose and risk is not linear, and low doses can reduce risk. (author)

  15. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    affected DEGs associated with cellular signaling and immune response; 70 mGy radiation affected cell cycle regulation and DNA damage repair, cellular energy production; and 280 mGy radiation affected pathways related to cell cycle regulation and DNA repair, mitochondrial dysfunction and immune functions. Twelve genes representative of key pathways found in this study were verified by qPCR. Potential common MoAs of low-dose gamma radiation may include induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation (OXPHOS). Although common MoAs were proposed, a number of DEGs and pathways were still found to be dose-specific, potentially indicating multiple mechanisms of action (MOAs) of low-dose gamma radiation in fish. In addition, plasma glucose displayed an apparent increase with increasing radiation doses, although the results were not significantly different from the control. These findings suggested that sublethal doses of gamma radiation may cause dose-dependent transcriptional changes in the liver of Atlantic salmon after short-term exposure. The current study predicted multiple MoA for gamma radiation and may aid future impact assessment of environmental radioactivity in fish.

  16. Systematic review on physician's knowledge about radiation doses and radiation risks of computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Krille, Lucian, E-mail: lucian.krille@unimedizin-mainz.d [Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg - University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz (Germany); Hammer, Gael P.; Merzenich, Hiltrud [Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg - University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz (Germany); Zeeb, Hajo [Bremen Institute for Prevention Research and Social Medicine (BIPS), Department of Prevention and Evaluation, Linzer Strasse 10, D-28359 Bremen (Germany)

    2010-10-15

    Background: The frequent use of computed tomography is a major cause of the increasing medical radiation exposure of the general population. Consequently, dose reduction and radiation protection is a topic of scientific and public concern. Aim: We evaluated the available literature on physicians' knowledge regarding radiation dosages and risks due to computed tomography. Methods: A systematic review in accordance with the Cochrane and PRISMA statements was performed using eight databases. 3091 references were found. Only primary studies assessing physicians' knowledge about computed tomography were included. Results: 14 relevant articles were identified, all focussing on dose estimations for CT. Overall, the surveys showed moderate to low knowledge among physicians concerning radiation doses and the involved health risks. However, the surveys varied considerably in conduct and quality. For some countries, more than one survey was available. There was no general trend in knowledge in any country except a slight improvement of knowledge on health risks and radiation doses in two consecutive local German surveys. Conclusions: Knowledge gaps concerning radiation doses and associated health risks among physicians are evident from published research. However, knowledge on radiation doses cannot be interpreted as reliable indicator for good medical practice.

  17. Audit of radiation dose during balloon mitral valvuloplasty procedure

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, Roshan S [Department of Radiology, Christian Medical College, Vellore-632004, TN (India); Chandy, Sunil [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); Peace, B S Timothy [Department of Radiology, Christian Medical College, Vellore-632004, TN (India); George, Paul [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); John, Bobby [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); Pati, Purendra [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India)

    2006-12-15

    Radiation doses to patients during cardiological procedures are of concern in the present day scenario. This study was intended to audit the radiation dose imparted to patients during the balloon mitral valvuloplasty (BMV) procedure. Thirty seven patients who underwent the BMV procedure performed using two dedicated cardiovascular machines were included in the study. The radiation doses imparted to patients were measured using a dose area product (DAP) meter. The mean DAP value for patients who underwent the BMV procedure from one machine was 19.16 Gy cm{sup 2} and from the other was 21.19 Gy cm{sup 2}. Optimisation of exposure parameters and radiation doses was possible for one machine with the use of appropriate copper filters and optimised exposure parameters, and the mean DAP value after optimisation was 9.36 Gy cm{sup 2}.

  18. Measurement of the Radiation Dose Rates of Patients Receiving Treatment with I-131 Using Telescopic Radiation Survey Meter

    Directory of Open Access Journals (Sweden)

    Yehia Lahfi

    2016-03-01

    Full Text Available Introduction In order to discharge the patients receiving treatment with large radiation doses of 131I for thyroid cancer, it is necessary to measure and evaluate the external dose rates of these patients. The aim of the study was to assess a new method of external dose rate measurement, and to analyze the obtained results as a function of time. Materials and Methods In this study, a telescopic radiation survey meter was utilized to measure the external dose rates of a sample population of 192 patients receiving treatment with high-dose 131I at one, 24, and 48 hours after dose administration. Results The proposed technique could reduce the occupational radiation exposure of the physicist by a factor of 1/16. Moreover, the external dose rates of both genders rapidly decreased with time according to bi-exponential equations, which could be attributed to the additional factors associated with iodine excretion, as well as the physiology of the body in terms of 131I uptake. Conclusion According to the results of this study, telescopic radiation survey meter could be used to measure the external dose rates of patients receiving treatment with 131I. Furthermore, the average difference in the radiation exposure between female and male patients was calculated to be less than 17%.

  19. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...... in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent......Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved...

  20. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Physics, University of Western Australia, Perth, Western Australia (Australia); Foo, Kerwyn [Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria (Australia); Gulliford, Sarah L. [Joint Department of Physics, Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey (United Kingdom); Kennedy, Angel [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); Joseph, David J. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Denham, James W. [School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales (Australia)

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  1. Development of MAAP5.0.3 Dose Model for Radiation Environment Effect Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The equipment survivability assessment under the severe accident conditions should be performed. For the environmental conditions such as the pressure and temperature, they can be calculated using MAAP (Modular Accident Analysis Program) code. However, since MAAP itself cannot calculate the radiation DOSE, MAAP5 DOSE model should be developed in order to calculate the DOSE rate during the severe accidents. In this study, we developed the MAAP5 DOSE model for spent fuel pool of OPR1000 type NPP and calculated the DOSE to assess the survivability of the facilities in spent fuel pool and fuel handling region. Until now, there are so many uncertainties in the analysis for radiation effect during the severe accident. However, in terms of the establishment of the severe accident management strategy, quantitative analysis in order to find the general trend for radiation increase during the severe accident is useful. For the radiation environmental effect analysis, the previous studies are mainly focused inside the containment. However, after the Fukushima accident, the severe accident phenomena in the SFP have been the great issues in the nuclear industry including Korea. So, in this study, the dose rate for spent fuel building when the severe accident happens in the SFP is calculated using MAAP5 DOSE. As expected, the dose rate is increased right after the spent fuel is partially uncovered. However, the amount of dose is less significant since the rate of temperature increase is much faster than the rate of dose increase.

  2. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  3. A national survey on radiation dose in CT in The Netherlands

    NARCIS (Netherlands)

    Molen, A.J. van der; Schilham, A.; Stoop, P.; Prokop, M.; Geleijns, J.

    2013-01-01

    Objectives To assess radiation exposure due to CT in the Netherlands. Methods Twenty-one hospitals participated in a dose survey for the 21 most frequently used CT protocols. Hospitals completed a Web survey with detailed parameters for one patient per protocol, including the dose length product (

  4. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  5. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  6. Assessment of radiation doses to the para-aortic, pelvic, and inguinal lymph nodes delivered by image-guided adaptive brachytherapy in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Mohamed, Sandy M I; Aagaard, Torben; Fokdal, Lars U;

    2015-01-01

    PURPOSE: This study evaluated the dose delivered to lymph nodes (LNs) by brachytherapy (BT) and the effect of BT image-guided optimization on the LN dose. METHODS AND MATERIALS: Twenty-five patients with locally advanced cervical cancer were retrospectively analyzed, 16 patients of them had LN...... group, D98%, D50%, and D2% (the dose that covers 98%, 50%, and 2% of the volume, respectively) were evaluated for optimized and standard BT plans. The correlation between total reference air kerma (TRAK) and D50% of the LN groups was evaluated. RESULTS: BT contributed considerable dose (mean D50% was 3.......8-6.2 Gy equivalent total dose in 2-Gy fractions) to the pelvic LN (external iliac, internal iliac, obturator, and presacral) in optimized plans, whereas less-dose contribution to CI, para-aortic, and inguinal (mean D50% was 0.5-1.9 Gy equivalent total dose in 2-Gy fractions) was observed. Optimized plans...

  7. Assessment of patient dose in medical processes by in-vivo dose measuring devices: A review

    Science.gov (United States)

    Tuncel, Nina

    2016-11-01

    In-vivo dosimetry (IVD) in medicine especially in radiation therapy is a well-established and recommended procedure for the estimation of the dose delivered to a patient during the radiation treatment. It became even more important with the emerging use of new and more complex radiotherapy techniques such as intensity-modulated or image-guided radiation therapy. While IVD has been used in brachytherapy for decades and the initial motivation for performing was mainly to assess doses to organs at risk by direct measurements, it is now possible to calculate 3D for detection of deviations or errors. In-vivo dosimeters can be divided into real-time and passive detectors that need some finite time following irradiation for their analysis. They require a calibration against a calibrated ionization chamber in a known radiation field. Most of these detectors have a response that is energy and/or dose rate dependent and consequently require adjustments of the response to account for changes in the actual radiation conditions compared to the calibration situation. Correction factors are therefore necessary to take. Today, the most common dosimeters for patients' dose verification through in-vivo measurements are semiconductor diodes, thermo-luminescent dosimeters, optically stimulated luminescence dosimeters, metal-oxide-semiconductor field-effect transistors and plastic scintillator detectors with small outer diameters.

  8. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  9. Low dose ionizing radiation induced acoustic neuroma: A putative link?

    Directory of Open Access Journals (Sweden)

    Sachin A Borkar

    2012-01-01

    Full Text Available Although exposure to high dose ionizing radiation (following therapeutic radiotherapy has been incriminated in the pathogenesis of many brain tumors, exposure to chronic low dose ionizing radiation has not yet been shown to be associated with tumorigenesis. The authors report a case of a 50-year-old atomic reactor scientist who received a cumulative dose of 78.9 mSv over a 10-year period and was detected to have an acoustic neuroma another 15 years later. Although there is no proof that exposure to ionizing radiation was the cause for the development of the acoustic neuroma, this case highlights the need for extended follow-up periods following exposure to low dose ionizing radiation.

  10. Radiation dose measurement of paediatric patients in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, K. [Training Centre of Medical Physics and Biomedical Engineering, University of Tartu (Estonia); Lintrop, M. [Department of Radiology, Tartu University Hospital, Tartu (Estonia); Servomaa, A.; Parviainen, T. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Eek, V.; Filippova, I. [Estonian Radiation Protection Centre, Tallinn (Estonia)

    2003-06-01

    According to the Medical Exposure Directive (97/43/Euratom) the radiation doses to patients should be measured in every hospital and doses should be compared to the reference doses established by the competent authorities. Special attention should be paid to the paediatric x-ray examinations, because the paediatric patients are more radiosensitive than adult patients. The requirement of measurements of radiation dose to patients is not yet included in the Estonian radiation act, but the purpose to join the European Communities makes the quality control in radiology very actual in Estonia. The necessity exists to introduce suitable measurement methods in the Xray departments of Estonian hospitals for establishing feedback system for radiologists, radiographers and medical physicists in optimising the radiation burden of patients and image quality. (orig.)

  11. Monitoring of radiation exposure and registration of doses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.).

  12. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  13. Evaluation of occupational and patient radiation doses in orthopedic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Salman bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P.O. Box 422, Alkharj (Saudi Arabia); Habiballah, B.; Abdelaziz, I. [Sudan Univesity of Science and Technology, College of Medical Radiologic Sciences, P.O. Box 1908, Khartoum (Sudan); Alzimami, K. [King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, P.O. Box 10219, 11433 Riyadh (Saudi Arabia); Osman, H. [Taif University, College of Applied Medical Science, Radiology Department, Taif (Saudi Arabia); Omer, H. [University of Dammam, Faculty of Medicine, Dammam (Saudi Arabia); Sassi, S. A., E-mail: Abdelmoneim_a@yahoo.com [Prince Sultan Medical City, Department of Medical Physics, Riyadh (Saudi Arabia)

    2014-08-15

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  14. Space life sciences: radiation risk assessment and radiation measurements in low Earth orbit.

    Science.gov (United States)

    2004-01-01

    The volume contains papers presented at COSPAR symposia in October 2002 about radiation risk assessment and radiation measurements in low Earth orbit. The risk assessment symposium brought together multidisciplinary expertise including physicists, biologists, and theoretical modelers. Topics included current knowledge about known and predicted radiation environments, radiation shielding, physics cross section models, improved ion beam transport codes, biological demonstrations of specific shielding materials and applications to a manned mission to Mars, advancements in biological measurement of radiation-induced protein expression profiles, and integration of physical and biological parameters to assess key elements of radiation risk. Papers from the radiation measurements in low Earth orbit symposium included data about dose, linear energy transfer spectra, and charge spectra from recent measurements on the International Space Station (ISS), comparison between calculations and measurements of dose distribution inside a human phantom and the neutron component inside the ISS; and reviews of trapped antiprotons and positrons inside the Earth's magnetosphere.

  15. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  16. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  17. Surface dose with grids in electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-H.; Huang, C.-Y.; Lin, J.-P.; Chu, T.-C. E-mail: tcchu@mx.nthu.edu.tw

    2002-03-01

    This investigation attempts to solve the problem of the lack of skin-sparing effect in electron radiation therapy and to increase the tolerance of skin to radiation using the grid technique. Electron grid therapy involves the mounting of a Cerrobend grid in the electron cone. Film dosimetry was employed to measure the relative surface dose and the percentage depth dose profile of electron grid portals. Various grid hole diameters (d=0.45, 1.0, 1.5 cm) and grid hole spacings (s=0.4, 0.2 cm) were considered for electron beams from 6 to 14 MeV. Experimental results indicate that the electron grid technique can reduce the relative surface dose in electron radiation therapy. Degradations of the relative surface dose depend on the percentage of open area in the grid portal. A proper grid design allows the surface dose to be reduced and the range of nonhomogeneous doses to be limited to a depth at which the target volume can receive a homogeneous dose. The grid technique can lower the surface dose in electron radiation therapy.

  18. Malignant melanoma of the tongue following low-dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-03-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented.

  19. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  20. Health risks associated with low dose diagnostic or therapeutic radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R. [McMaster Univ., Dept. of Medical Physics and Applied Radiation Sciences, Hamilton, Ontario (Canada)

    2007-07-01

    The health risks to humans associated with exposure to low doses of ionizing radiation have been extrapolated from effects observed at high doses, dose rates, and mixed radiation qualities using a linear no threshold model. Based on this approach, it has been argued that human exposure to low doses of diagnostics X-rays and gamma-rays increase an individual's risk of developing cancer throughout their life-time. Also, repeated medical diagnostic procedures involving low dose exposures will have an additive effect and consequently further increase health risk. The specific aim of this seminar will be to address the relative risk associated with diagnostic X-rays from CT scans and gamma-rays from positron emission tomography (PET) scans. Objectives of the talk will include: 1) Defining low dose exposures at a cellular level and relate that to diagnostic or therapeutic exposures, 2) Describing modern tools in molecular cytogenetics to estimate radiation exposure and assess radiation risk, 3) Identifying the different cellular mechanisms that influence radiation risk at high and low dose exposures and relate that to individual radiation risk. (author)

  1. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities.

  2. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  3. Scatter factors assessment in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y.; Martinez-Rovira, I.; Sanchez, M. [Laboratoire Imagerie et Modelisation en Neurobiologie et Cancerologie IMNC-UMR 8165, Centre National de la Recherche Scientifique (CNRS), Campus Universitaire, Bat. 440, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, E-08028 Barcelona (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, B.P. 220, 38043 Grenoble Cedex (France); Servicio de Radiofisica, Complejo Hospitalario de Santiago de Compostela, Rua Choupana S/N, 15706 Santiago de Compostela (Spain)

    2012-03-15

    Purpose: The success of the preclinical studies in Microbeam Radiation Therapy (MRT) paved the way to the clinical trials under preparation at the Biomedical Beamline of the European Synchrotron Radiation Facility. Within this framework, an accurate determination of the deposited dose is crucial. With that aim, the scatter factors, which translate the absolute dose measured in reference conditions (2 x 2 cm{sup 2} field size at 2 cm-depth in water) to peak doses, were assessed. Methods: Monte Carlo (MC) simulations were performed with two different widely used codes, PENELOPE and GEANT4, for the sake of safety. The scatter factors were obtained as the ratio of the doses that are deposited by a microbeam and by a field of reference size, at the reference depth. The calculated values were compared with the experimental data obtained by radiochromic (ISP HD-810) films and a PTW 34070 large area chamber. Results: The scatter factors for different microbeam field sizes assessed by the two MC codes were in agreement and reproduced the experimental data within uncertainty bars. Those correction factors were shown to be non-negligible for the future MRT clinical settings: an average 30% lower dose was deposited by a 50 {mu}m microbeam with respect to the reference conditions. Conclusions: For the first time, the scatter factors in MRT were systematically studied. They constitute an essential key to deposit accurate doses in the forthcoming clinical trials in MRT. The good agreement between the different calculations and the experimental data confirms the reliability of this challenging micrometric dose estimation.

  4. An updated dose assessment for Rongelap Island

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  5. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  6. Does vertebroplasty affect radiation dose distribution?: comparison of spatial dose distributions in a cement-injected vertebra as calculated by treatment planning system and actual spatial dose distribution.

    Science.gov (United States)

    Komemushi, Atsushi; Tanigawa, Noboru; Kariya, Shuji; Yagi, Rie; Nakatani, Miyuki; Suzuki, Satoshi; Sano, Akira; Ikeda, Koshi; Utsunomiya, Keita; Harima, Yoko; Sawada, Satoshi

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution.

  7. Direct determination of radiation dose in human blood

    CERN Document Server

    Tanir, Ayse Gunes; Sahiner, Eren; Bolukdemir, Mustafa Hicabi; Koc, Kemal; Meric, Niyazi; Kelec, Sule Kaya

    2014-01-01

    Our purpose is to measure the internal radiation dose (ID) using human blood sample. In the literature, there is no process that allows the direct measurement of ID received by a person. This study has shown that it is possible to determine ID in human blood exposed to internal or external ionizing radiation treatment both directly and retrospectively. OSL technique was used to measure the total dose from the blood sample. OSL counts from the waste blood of the patient injected with a radiopharmaceutical for diagnostic or treatment purposes and from a blood sample having a laboratory-injected radiation dose were both used for measurements. The decay and dose-response curves (DRC) were plotted for different doses. The doses received by different blood aliquots have been determined by interpolating the natural luminescence counts to DRC. In addition, OSL counts from a healthy blood sample exposed to an external radiation source were measured. The blood aliquots were given different 0-200Gy beta doses and their ...

  8. Spontaneous and radiation-induced micronucleus frequencies in low dose radiation exposed worker's peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Kyung; Lee, Hye Jin; Park, Mi Young; Park, Hyun Jin; Kim, Tae Hwan [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Ji, Young Hoon; Kim, Ki Sup; Lee, Su Jae; Lee, Yun Sil; Cho, Chul Koo; Choi, Soo Yong; Kang, Chang Mo [Kyungpook National Univ., Daegu (Korea, Republic of)

    2005-07-01

    Many studies have been performed to assess the development and application of potentially useful biodosimetry. At present, although chromosome dicentric assay is a sensitive method for dose estimation, it is laborious and requires enough experience for estimation, and without automation its scope for population screening is limited. Therefore, we need an alternative cytogenetic dosimetry to estimate the absorbed dose of victims after low dose exposure such as radiation accidents in hospital workers and workers of radiation related facilities. An alternative and simple cytogenetic technique is the measurement of the micronucleus frequency in cultured human lymphocytes. The reliability of conventional micronucleus (MN) assays is diminished owing to the inclusion of nondividing cells in the estimate, but this problem has been overcome by the development of the cytokinesisblocked (CB) MN assay. The reliable and ease assays of the cytokinesis blocked-approach are obvious advantages in biological monitoring, but there are no developed recognizable and reliable techniques for biological dosimetry of a low dose exposure until recently. Adaptive response is important in determining the biological responses at low doses of radiation and has the potential to impact the shape of the dose-response relationship. We analyzed the frequency of both spontaneous and in vitro {sup 137}Cs {gamma}-rays-induced MNs to estimate the low dose radiation-exposed workers as a screening test.

  9. Time-dependent radiation dose simulations during interplanetary space flights

    Science.gov (United States)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  10. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  11. Radiation Doses to Skin from Dermal Contamination

    Science.gov (United States)

    2010-10-01

    and they probably contain a higher proportion of volatile radionuclides (e.g., cesium , strontium and iodine) that are preferentially deposited on...of skin cancer is the health effect of concern but would be result in an overestimate of the biologically significant dose when deterministic...factors for alpha-emitting radionuclides. Uncertainty in the biological effectiveness of alpha particles in inducing cancer in humans relative to high

  12. Determination of the dose of gamma radiation sterilization for assessment of biological parameters of male Ceratitis capitada (Diptera: Tephritidae), tsl - Vienna 8 strain; Determinacao da dose de radiacao gama esterilizante pela avaliacao dos parametros biologicos de machos de Ceratitis capitata (Diptera: Tephritidae), linhagem tsl - Vienna 8

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Aline Cristina Pereira da

    2011-07-01

    The Vienna-8, tsl (temperature sensitive lethal) strain of Ceratitis capitata, by presenting mutations that facilitate the mass rearing and release only of sterile males in the field, has been used in (Sterile Insect Technique) programmes. The objective of this study was to determine the radiation dose that provides the highest level of sterility for Vienna-8, tsl males assessing their biological parameters that indicate the quality of sterile males to be released. Brown pupae (males) of the tsl strain were obtained from the mass rearing of the Food Irradiation and Radio entomology laboratory of CENA/USP, and they were irradiated (with gamma radiation - {sup 60}Co) 24 hours before the emergence at rates of 0, 30, 60, 90 and 120 Gy. The determination of the sterilizing dose was based on fertility of sexually mature females of the bisexual strain and not irradiated, mated with males of different treatments. Eggs were collected daily during 6 days, were counted and it was possible to estimate fecundity, and assess the hatching rate. The emergence and flight ability were determined by following the protocol of quality control manual for FAO/IAEA/USDA (2003). To assess the longevity under nutritional stress, the insects were kept a period of 48 h after emergence in the absence of water and food, and after this period, mortality was recorded. The size of the testes (left and right) was obtained by dissecting irradiated and non-irradiated males at the eighth day of life, and measure the testes in an ocular micrometer, considering the maximum length and width of each sample. To determine the sperm number was necessary to dissect the males and break their testicles. No difference was observed in emergence rate, flight ability and longevity of irradiated and non-irradiated males, nor in the fecundity of females mated with males of different treatments. The sterilizing dose that resulted in lower fertility of females was 120 Gy, with 1.5% hatching. Considering the parameters

  13. Assessing dose rate distributions in VMAT plans

    Science.gov (United States)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  14. [Use of ionizing radiation sources in metallurgy: risk assessment].

    Science.gov (United States)

    Giugni, U

    2012-01-01

    Use of ionizing radiation sources in the metallurgical industry: risk assessment. Radioactive sources and fixed or mobile X-ray equipment are used for both process and quality control. The use of ionizing radiation sources requires careful risk assessment. The text lists the characteristics of the sources and the legal requirements, and contains a description of the documentation required and the methods used for risk assessment. It describes how to estimate the doses to operators and the relevant classification criteria used for the purpose of radiation protection. Training programs must be organized in close collaboration between the radiation protection expert and the occupational physician.

  15. What can be learned from epidemiologic studies of persons exposed to low doses of radiation?

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, E.S.

    1993-04-01

    The main objective of radiation risk assessment is to determine the risk of various adverse health effects associated with exposure to low doses and low dose rates. Extrapolation of risks from studies of persons exposed at high doses (generally exceeding 1 Sv) and dose rates has been the primary approach used to achieve this objective. The study of Japanese atomic bomb survivors in Hiroshima and Nagasaki has played an especially important role in risk assessment efforts. A direct assessment of the dose-response function based on studies of persons exposed at low doses and dose rates is obviously desirable. This paper focuses on the potential of both current and future nuclear workers studies for investigating the dose-response functions at low doses, and also discusses analyses making use of the low dose portion of the atomic bomb survivor data. Difficulties in using these data are the statistical imprecision of estimated dose-response parameters, and potential bias resulting from confounding factors and from uncertainties in dose estimates.

  16. Is There a Dose-Response Relationship for Heart Disease With Low-Dose Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eugene [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Corbett, James R. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean M. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B.; Feng, Mary; Jagsi, Reshma; Kessler, Marc L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ficaro, Edward C. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J., E-mail: ljpierce@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-03-15

    Purpose: To quantify cardiac radiation therapy (RT) exposure using sensitive measures of cardiac dysfunction; and to correlate dysfunction with heart doses, in the setting of adjuvant RT for left-sided breast cancer. Methods and Materials: On a randomized trial, 32 women with node-positive left-sided breast cancer underwent pre-RT stress single photon emission computed tomography (SPECT-CT) myocardial perfusion scans. Patients received RT to the breast/chest wall and regional lymph nodes to doses of 50 to 52.2 Gy. Repeat SPECT-CT scans were performed 1 year after RT. Perfusion defects (PD), summed stress defects scores (SSS), and ejection fractions (EF) were evaluated. Doses to the heart and coronary arteries were quantified. Results: The mean difference in pre- and post-RT PD was −0.38% ± 3.20% (P=.68), with no clinically significant defects. To assess for subclinical effects, PD were also examined using a 1.5-SD below the normal mean threshold, with a mean difference of 2.53% ± 12.57% (P=.38). The mean differences in SSS and EF before and after RT were 0.78% ± 2.50% (P=.08) and 1.75% ± 7.29% (P=.39), respectively. The average heart Dmean and D95 were 2.82 Gy (range, 1.11-6.06 Gy) and 0.90 Gy (range, 0.13-2.17 Gy), respectively. The average Dmean and D95 to the left anterior descending artery were 7.22 Gy (range, 2.58-18.05 Gy) and 3.22 Gy (range, 1.23-6.86 Gy), respectively. No correlations were found between cardiac doses and changes in PD, SSS, and EF. Conclusions: Using sensitive measures of cardiac function, no clinically significant defects were found after RT, with the average heart Dmean <5 Gy. Although a dose response may exist for measures of cardiac dysfunction at higher doses, no correlation was found in the present study for low doses delivered to cardiac structures and perfusion, SSS, or EF.

  17. ESR dose assessment in irradiated chicken legs

    Energy Technology Data Exchange (ETDEWEB)

    Bordi, F. [II Universita, Rome (Italy). Dipartimento di Medicina Interna; Fattibene, P.; Onori, S.; Pantaloni, M. [Istituto Superiore di Santia, Rome (Italy)]|[Istituto Nazionale di Fisica Nucleare, Rome (Italy). Sezione Sanita

    1994-05-01

    The electron spin resonance technique has received a wide consensus for dose assessment in irradiated chicken bone. Nevertheless, some practical problems are still open like the most suitable mathematical expression to be used for dose evaluation with the re-irradiation method. In the present paper the linear and exponential approximations were analyzed using 40 bone chicken samples and a reproducible readout procedure. The results suggested the use of the exponential dose-effect relationship and gave some indications on the procedure to be practically adopted. (author).

  18. Environmental standards for ionizing radiation: theoretical basis for dose-response curves.

    Science.gov (United States)

    Upton, A C

    1983-10-01

    The types of injury attributable to ionizing radiation are subdivided, for purposes of risk assessment and radiological protection, into two broad categories: stochastic effects and nonstochastic effects. Stochastic effects are viewed as probablistic phenomena, varying in frequency but not severity as a function of the dose, without any threshold; nonstochastic effects are viewed as deterministic phenomena, varying in both frequency and severity as a function of the dose, with clinical thresholds. Included among stochastic effects are heritable effects (mutations and chromosome aberrations) and carcinogenic effects. Both types of effects are envisioned as unicellular phenomena which can result from nonlethal injury of individual cells, without the necessity of damage to other cells. For the induction of mutations and chromosome aberrations in the low-to-intermediate dose range, the dose-response curve with high-linear energy transfer (LET) radiation generally conforms to a linear nonthreshold relationship and varies relatively little with the dose rate. In contrast, the curve with low-LET radiation generally conforms to a linear-quadratic relationship, rising less steeply than the curve with high-LET radiation and increasing in slope with increasing dose and dose rate. The dose-response curve for carcinogenic effects varies widely from one type of neoplasm to another in the intermediate-to-high dose range, in part because of differences in the way large doses of radiation can affect the promotion and progression of different neoplasms. Information about dose-response relations for low-level irradiation is fragmentary but consistent, in general, with the hypothesis that the neoplastic transformation may result from mutation, chromosome aberration or genetic recombination in a single susceptible cell.

  19. Uncertainty of dose measurement in radiation processing

    DEFF Research Database (Denmark)

    Miller, A.

    1996-01-01

    The major standard organizations of the world have addressed the issue of reporting uncertainties in measurement reports and certificates. There is, however, still some ambiguity in the minds of many people who try to implement the recommendations in real life. This paper is a contribution...... to the running debate and presents the author's view, which is based upon experience in radiation processing dosimetry. The origin of all uncertainty components must be identified and can be classified according to Type A and Type B, but it is equally important to separate the uncertainty components into those...... that contribute to the observable uncertainty of repeated measurements and those that do not. Examples of the use of these principles are presented in the paper....

  20. Assessment of radiation dose to infants from breast milk following the administration of /sup 99m/Tc pertechnetate to nursing mothers

    Energy Technology Data Exchange (ETDEWEB)

    Ogunleye, O.T.

    1983-07-01

    Results of measurements of /sup 99m/Tc activity in the milk samples of nursing mothers who received /sup 99m/Tc pertechnetate for thyroid scans are presented. The maximum concentration is found around 2 hours after injection. The total body dose to a 3-month-old infant feeding on the assayed milk varied with time from about 685 mrad to 0.5 mrad.

  1. Analysis of Radiation Impact on White Mice through Radiation Dose Mapping in Medical Physics Laboratory

    Science.gov (United States)

    Sutikno, Madnasri; Susilo; Arya Wijayanti, Riza

    2016-08-01

    A study about X-ray radiation impact on the white mice through radiation dose mapping in Medical Physic Laboratory is already done. The purpose of this research is to determine the minimum distance of radiologist to X-ray instrument through treatment on the white mice. The radiation exposure doses are measured on the some points in the distance from radiation source between 30 cm up to 80 with interval of 30 cm. The impact of radiation exposure on the white mice and the effects of radiation measurement in different directions are investigated. It is founded that minimum distance of radiation worker to radiation source is 180 cm and X-ray has decreased leukocyte number and haemoglobin and has increased thrombocyte number in the blood of white mice.

  2. Responses to low doses of ionizing radiation in biological systems.

    Science.gov (United States)

    Feinendegen, Ludwig E; Pollycove, Myron; Sondhaus, Charles A

    2004-07-01

    Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems.To examine tissue effects specific for low-dose radiation, (1) absorbed dose in tissue is replaced by the sum of the energies deposited by each track event, or hit, in a cell-equivalent tissue micromass (1 ng) in all micromasses exposed, that is, by the mean energy delivered by all microdose hits in the exposed micromasses, with cell dose expressing the total energy per micromass from multiple microdoses; and (2) tissue effects are related to cell damage and protective cellular responses per average microdose hit from a given radiation quality for all such hits in the exposed micromasses.The probability of immediate DNA damage per low-linear-energy-transfer (LET) average micro-dose hit is extremely small, increasing over a certain dose range in proportion to the number of hits. Delayed temporary adaptive protection (AP) involves (a) induced detoxification of reactive oxygen species, (b) enhanced rate of DNA repair, (c) induced removal of damaged cells by apoptosis followed by normal cell replacement and by cell differentiation, and (d) stimulated immune response, all with corresponding changes in gene expression. These AP categories may last from less than a day to weeks and be tested by cell responses against renewed irradiation. They operate physiologically against nonradiogenic, largely endogenous DNA damage, which occurs abundantly and continually. Background radiation damage caused by rare microdose hits per micromass is many orders of magnitude less frequent. Except for apoptosis, AP increasingly fails above about 200 mGy of low-LET radiation, corresponding to about 200 microdose hits per exposed micromass. This ratio appears to exceed approximately

  3. Radiation dose study in nuclear medicine using GATE

    Science.gov (United States)

    Aguwa, Kasarachi

    Dose as a result of radiation exposure is the notion generally used to disclose the imparted energy in a volume of tissue to a potential biological effect. The basic unit defined by the international system of units (SI system) is the radiation absorbed dose, which is expressed as the mean imparted energy in a mass element of the tissue known as "gray" (Gy) or J/kg. The procedure for ascertaining the absorbed dose is complicated since it involves the radiation transport of numerous types of charged particles and coupled photon interactions. The most precise method is to perform a full 3D Monte Carlo simulation of the radiation transport. There are various Monte Carlo toolkits that have tool compartments for dose calculations and measurements. The dose studies in this thesis were performed using the GEANT4 Application for Emission Tomography (GATE) software (Jan et al., 2011) GATE simulation toolkit has been used extensively in the medical imaging community, due to the fact that it uses the full capabilities of GEANT4. It also utilizes an easy to-learn GATE macro language, which is more accessible than learning the GEANT4/C++ programming language. This work combines GATE with digital phantoms generated using the NCAT (NURBS-based cardiac-torso phantom) toolkit (Segars et al., 2004) to allow efficient and effective estimation of 3D radiation dose maps. The GATE simulation tool has developed into a beneficial tool for Monte Carlo simulations involving both radiotherapy and imaging experiments. This work will present an overview of absorbed dose of common radionuclides used in nuclear medicine and serve as a guide to a user who is setting up a GATE simulation for a PET and SPECT study.

  4. Radiation dose reduction efficiency of buildings after the accident at the Fukushima Daiichi Nuclear Power Station.

    Directory of Open Access Journals (Sweden)

    Satoru Monzen

    Full Text Available Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55 ± 0.04, 0.15 ± 0.02, and 0.19 ± 0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites.

  5. Update on radiation safety and dose reduction in pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, Mahadevappa [Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2015-09-15

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  6. Update on radiation safety and dose reduction in pediatric neuroradiology.

    Science.gov (United States)

    Mahesh, Mahadevappa

    2015-09-01

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology.

  7. Management of pediatric radiation dose using Agfa computed radiography

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzing, R. [Agfa Corp., Greenville, SC (United States)

    2004-10-01

    Radiation dose to patients and its management have become important considerations in modern radiographic imaging procedures, but they acquire particular significance in the imaging of children. Because of their longer life expectancy, children exposed to radiation are thought to have a significantly increased risk of radiation-related late sequelae compared to adults first exposed to radiation later in life. Therefore, current clinical thinking dictates that dose in pediatric radiography be minimized, while simultaneously ensuring sufficient diagnostic information in the image, and reducing the need for repeat exposures. Dose management obviously starts with characterization and control of the exposure technique. However, it extends farther through the imaging chain to the acquisition system, and even to the image processing techniques used to optimize acquired images for display. Further, other factors, such as quality control procedures and the ability to handle special pediatric procedures, like scoliosis exams, also come into play. The need for dose management in modern radiography systems has spawned a variety of different solutions, some of which are similar across different manufacturers, and some of which are unique. This paper covers the techniques used in Agfa Computed Radiography (CR) systems to manage dose in a pediatric environment. (orig.)

  8. Terrestrial gamma radiation dose measurement and health hazard along river Alaknanda and Ganges in India

    Directory of Open Access Journals (Sweden)

    Prerna Sharma

    2014-10-01

    Full Text Available Direct measurement of absorbed dose rate in air due to exposure from outdoor terrestrial γ radiation and assessment of consequent public health hazard continues to be of environmental and public concern. Present study was aimed to establish a baseline data of annual effective dose and to assess the associated health risk from outdoor terrestrial γ radiation along the river Alaknanda and Ganges of India. Terrestrial γ radiation exposure doses (excluding cosmic radiation were measured using a Plastic Scintillation Counter. Absorbed dose rates in air were measured at eight designated locations from Nandprayag to Allahabad along the river. From the average absorbed dose rates, annual effective dose (AED and excess life time cancer risks (ELCR were calculated by standard method. Results showed that absorbed dose rates in air ranged between 81.33 ± 2.34 nSv.h−1 and 144 ± 5.77 nSv.h−1 and calculated AED ranged between 0.10 ± 0.012 mSv.y−1 to 0.18 ± 0.007 mSv.y−1 at the designated locations along these rivers. Calculated ELCR were found in the range of 0.375 × 10−3 to 0.662 × 10−3. Present study measured the outdoor γ radiation levels along the rivers. The calculated annual effective doses and life time cancer risk were found higher than the world average value at higher altitudes. But the measured doses and calculated risks at plains were close to that of reported average values.

  9. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  10. Upper-Bound Radiation Dose Assessment for Military Personnel at McMurdo Station, Antarctica, between 1962 and 1979, Revision 1

    Science.gov (United States)

    2016-07-29

    report, which will be further detailed in a separate document. 1.1 Background The McMurdo Station is located 850 miles from the South Pole . The U.S...the plant in March 1964 (Foster and Jones, 1982). Figure 1. Location of McMurdo Station McMurdo is 850 miles from the South Pole 7...39 Building, would have been approximately 0.3 R h−1 (3 mGy h−1) using the inverse square law (Cember, 1983). Such a dose rate would result in a

  11. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    Science.gov (United States)

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  12. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  13. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  14. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  15. Cancer risk from low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A.

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.).

  16. Feasibility of radiation dose range capable to cause subacute course of radiation syndrome

    Directory of Open Access Journals (Sweden)

    Krasnyuk V.I.

    2013-12-01

    Full Text Available There had been analysed cases of radiation syndrome which clinical picture takes an intermediate place between the acute radiation syndrome (ARS and the chronic radiation syndrome (CRS, and differs from them because of a subacute. This variant of disease can develop as a result of the fractioned or prolonged radiation lasting from several days to several weeks. Development of primary reaction took place only in the extremely hard cases which ends with an early fatality. After the general radiation the marrow failure was characterized by directly expressed formation and restoration period, specific features of which were defined by the radiation duration, a total dose and dose derivative. The most typical outcomes of a subacute radiation syndrome are death from infectious complications in the period of an eruptive phase or leukosis development in the remote period.

  17. Effect of low dose ionizing radiation upon concentration of

    Energy Technology Data Exchange (ETDEWEB)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-07-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  18. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    Energy Technology Data Exchange (ETDEWEB)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  19. Image quality and radiation dose in cardiac imaging

    NARCIS (Netherlands)

    Dijk, van Joris David

    2016-01-01

    Coronary artery disease is a major cause of death accounting for 8% of all deaths in the Netherlands. This disease can be detected in an early stage by cardiac imaging. However, this detection comes at the price of a relatively high radiation dose which is potentially harmful for the patient. Despit

  20. Radiation Dose-Volume Effects In the Esophagus

    Science.gov (United States)

    Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B.

    2013-01-01

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose–volume measures derived from three-dimensional conformal radiotherapy for non–small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. PMID:20171523

  1. Chronic low-dose radiation protects cells from high-dose radiation via increase of AKT expression by NF-{sub k}B

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung Sun; Seong, Ki Moon; Kim, Ji Young; Kim, Cha Soon; Yang, Kwang Hee; Nam, Seon Young [Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., LTD., Gyeongju (Korea, Republic of)

    2013-04-15

    Exposure to low-dose and low-dose rate of ionizing radiation is an important issue in radiation protection. Low-dose ionizing radiation has been observed to elicit distinctly different responses compared to high-dose radiation, in various biological systems including the reproductive, immune, and hematopoietic systems (Liu et al. 2006). Some data were reported that low-dose radiation could initiate beneficial effects by stimulating cell growth, DNA repair, activation of transcription factors and gene expression (Calabrese et al., 2004). Cells exposed to low-dose radiation can develop adaptive resistance to subsequent high-dose radiation induced DNA damage, gene mutation, and cell death. We previously reported that low-dose of ionizing radiation induced cell survival through the activation of AKT (protein kinase B, PKB) pathway (Park et al., 2009). AKT has been shown to be potently activated in response to a wide variety of growth factors and ionizing radiation. Cell survival against ionizing radiation seems to be associated with the activation of AKT pathway via phosphorylation of its downstream nuclear target molecules. In the present study, we examined the effects of chronic low-dose irradiation in human lung fibroblast cells. The aim was to explore the possibility of a low-dose radiation-induced adaptive cellular response against subsequent challenging high-dose irradiation. In the present study, we examined the regulatory mechanism responsible for cellular response induced by chronic low-dose of ionizing radiation in normal human cells. We found that the level of AKT protein was closely associated with cell survival. In addition, NF-{sub k}B activation by chronic low-dose radiation regulates AKT activation via gene expression and acinus expression. In conclusion, our data demonstrate that chronic low-dose radiation could inhibit the cell death induced by cytotoxic high-dose radiation through the modulation of the level of AKT and acinus proteins via NF-{sub k

  2. On the radiation dose required to cure intracranial germinoma

    Energy Technology Data Exchange (ETDEWEB)

    Shibamoto, Yuta [Kyoto Univ. (Japan). Inst. for Frontier Medical Sciences

    1999-09-01

    Despite its high radiosensitivity, intracranial germinoma has most often been treated with a radiation dose of 50 Gy. Relatively old literature suggested that 50 Gy was appropriate, but several newer studies indicate that 40-45 Gy may be sufficient. Regarding this issue, we conducted a phase II study in which the total dose to the primary site was planned to be 40 Gy to tumors <2.5 cm in diameter, 45 Gy to 2.5-4 cm tumors, and 50 Gy to tumors >4 cm, using 1.6-1.8 Gy daily fractions. Thirty-eight patients were enrolled. Within a median follow-up period of 116 months, no patients developed local recurrence, and only two developed CSF dissemination. Intracranial germinoma <4 cm in diameter can be cured with radiation doses of 40-45 Gy. Radiotherapy alone with these reduced doses should be compared with the ongoing protocols of chemotherapy plus further reduced dose (24-30 Gy) radiation in future studies. (author)

  3. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  4. ASSESSMENT OF AGE-DEPENDENT RADIATION DOSE DUE TO INTAKE OF URANIUM AND THORIUM IN DRINKING WATER FROM SIKAR DISTRICT, RAJASTHAN, INDIA.

    Science.gov (United States)

    Duggal, Vikas; Rani, Asha; Balaram, V

    2016-10-01

    The concentrations of (238)U and (232)Th have been determined in drinking water samples collected from the Sikar district of Rajasthan State, India. The samples have been analysed by using high-resolution inductively coupled plasma mass spectrometry. (238)U content in water samples ranged from 8.20 to 202.63 µg l(-1) and (232)Th content ranged from 0.57 to 1.46 µg l(-1) The measured (238)U content in 25 % of the analysed samples exceeded the World Health Organization (WHO) and United States Environmental Protection Agency drinking water guidelines of 30 µg l(-1) and 12.5 % of the samples exceeded the 60 µg l(-1) Indian maximum acceptable concentration recommended by the Atomic Energy Regulatory Board, India. The annual effective doses (µSv y(-1)) due to ingestion of (238)U and (232)Th for different age groups were also calculated. The results compared with the recommended value reported by the WHO.

  5. Impact of dose calculation algorithm on radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhou; Chen; Ying; Xiao; Jun; Li

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimizing the normal tissue complication probability.Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems.The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work.The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic.Further,the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups.All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy.

  6. In vitro cell culture lethal dose submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: carolina_sm@hotmail.com; Ikeda, Tamiko I.; Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil)

    2009-07-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that {sup 60}Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  7. Retrospective study on the dose assessment in Algeria over a period 1998-2002

    Energy Technology Data Exchange (ETDEWEB)

    Boudena, B.; Chalal, M.; Bellal, A.; Imatoukene, D. [Nuclear Research Center of Algiers (Algeria)

    2006-07-01

    Full text: In Algeria, the assessment of individual doses of workers occupationally exposed to external radiations is made by the national individual monitoring service at the Nuclear Research Center of Algiers (N.R.C.A.) with photographic dosimeter. In this paper, we have undertaken a retrospective study on dose assessment of workers exposed to external radiations involved in medical and industrial activities according to the new occupational dose limits over a period of five consecutive years (1998 2002). This survey has permitted to observe the impact that would have new dose limits once adopted by our legislation. (author)

  8. PET/CT-guided Interventions: Personnel Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  9. [Fetus radiation doses from nuclear medicine and radiology diagnostic procedures. Potential risks and radiation protection instructions].

    Science.gov (United States)

    Markou, Pavlos

    2007-01-01

    Although in pregnancy it is strongly recommended to avoid diagnostic nuclear medicine and radiology procedures, in cases of clinical necessity or when pregnancy is not known to the physician, these diagnostic procedures are to be applied. In such cases, counseling based on accurate information and comprehensive discussion about the risks of radiation exposure to the fetus should follow. In this article, estimations of the absorbed radiation doses due to nuclear medicine and radiology diagnostic procedures during the pregnancy and their possible risk effects to the fetus are examined and then discussed. Stochastic and detrimental effects are evaluated with respect to other risk factors and related to the fetus absorbed radiation dose and to the post-conception age. The possible termination of a pregnancy, due to radiation exposure is discussed. Special radiation protection instructions are given for radiation exposures in cases of possible, confirmed or unknown pregnancies. It is concluded that nuclear medicine and radiology diagnostic procedures, if not repeated during the pregnancy, are rarely an indication for the termination of pregnancy, because the dose received by the fetus is expected to be less than 100 mSv, which indicates the threshold dose for having deterministic effects. Therefore, the risk for the fetus due to these diagnostic procedures is low. However, stochastic effects are still possible but will be minimized if the radiation absorbed dose to the fetus is kept as low as possible.

  10. Modeling Dose-response at Low Dose: A Systems Biology Approach for Ionization Radiation.

    Science.gov (United States)

    Zhao, Yuchao; Ricci, Paolo F

    2010-03-18

    For ionization radiation (IR) induced cancer, a linear non-threshold (LNT) model at very low doses is the default used by a number of national and international organizations and in regulatory law. This default denies any positive benefit from any level of exposure. However, experimental observations and theoretical biology have found that both linear and J-shaped IR dose-response curves can exist at those very low doses. We develop low dose J-shaped dose-response, based on systems biology, and thus justify its use regarding exposure to IR. This approach incorporates detailed, molecular and cellular descriptions of biological/toxicological mechanisms to develop a dose-response model through a set of nonlinear, differential equations describing the signaling pathways and biochemical mechanisms of cell cycle checkpoint, apoptosis, and tumor incidence due to IR. This approach yields a J-shaped dose response curve while showing where LNT behaviors are likely to occur. The results confirm the hypothesis of the J-shaped dose response curve: the main reason is that, at low-doses of IR, cells stimulate protective systems through a longer cell arrest time per unit of IR dose. We suggest that the policy implications of this approach are an increasingly correct way to deal with precautionary measures in public health.

  11. Exploring the limits of spatial resolution in radiation dose delivery.

    Science.gov (United States)

    Otto, Karl; Clark, Brenda G; Huntzinger, Calvin

    2002-08-01

    Flexibility and complexity in patient treatment due to advances in radiotherapy techniques necessitates a simple method for evaluating spatial resolution capabilities of the dose delivery device. Our purpose in this investigation is to evaluate a model that describes the ability of a radiation therapy device to deliver a desired dose distribution. The model is based on linear systems theory and is analogous to methods used to describe resolution degradation in imaging systems. A qualitative analysis of spatial resolution degradation using the model is presented in the spatial and spatial frequency domains. The ability of the model to predict the effects of geometric dose conformity to treatment volumes is evaluated by varying multileaf collimator leaf width and magnitude of dose spreading. Dose distributions for three clinical treatment shapes, circular shapes of varying diameter and one intensity modulated shape are used in the evaluation. We show that the model accurately predicts the dependence of dose conformity on these parameters. The spatial resolution capabilities of different radiation therapy devices can be quantified using the model, providing a simple method for comparing different treatment machine characteristics. Also, as different treatment sites have different resolution requirements this model may be used to tailor machine characteristics to the specific site.

  12. ASSESSMENT OF COLLECTIVE DOSE FOR TRAVELLERS BY WATERS

    Institute of Scientific and Technical Information of China (English)

    岳清宇; 姜萍; 等

    1995-01-01

    People travelling by air will receive more exposure dose and by water will receive less one.According to statistic data from the Ministry of Communications in 1988,the turnover in that year was about 2×1010 man.km.The total number of fishermen for inshore fishing was nearly two million reported by Ministry of Agriculture,Animal Husbandry and Fishery.Based on measured data on 212 points in six typical shipping lines of inshore lines and inland rivers,and the total voyage is 5625km,the average natural radiation dose rate received by travellers was calculated.From that assessment of collective effective dose for passengers by water and fishermen was derived.The value is 32.7man.Sv for passengers and 265.3man.Sv for fishermen.

  13. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    Science.gov (United States)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  14. Complexity analysis of the UV radiation dose time series

    CERN Document Server

    Mihailovic, Dragutin T

    2013-01-01

    We have used the Lempel-Ziv and sample entropy measures to assess the complexity in the UV radiation activity in the Vojvodina region (Serbia) for the period 1990-2007. In particular, we have examined the reconstructed daily sum (dose) of the UV-B time series from seven representative places in this region and calculated the Lempel-Ziv Complexity (LZC) and Sample Entropy (SE) values for each time series. The results indicate that the LZC values in some places are close to each other while in others they differ. We have devided the period 1990-2007 into two subintervals: (a) 1990-1998 and (b) 1999-2007 and calculated LZC and SE values for the various time series in these subintervals. It is found that during the period 1999-2007, there is a decrease in their complexities, and corresponding changes in the SE, in comparison to the period 1990-1998. This complexity loss may be attributed to increased (i) human intervention in the post civil war period (land and crop use and urbanization) and military activities i...

  15. Experimental measurement of radiation dose in a dedicated breast CT system

    CERN Document Server

    Shan-Wei, Shen; Hang, Shu; Xiao, Tang; Cun-Feng, Wei; Yu-Shou, Song; Rong-Jian, Shi; Long, Wei

    2013-01-01

    Radiation dose is an important performance indicator of a dedicated breast CT (DBCT). In this paper, the method of putting thermoluminescent dosimeters (TLD) into a breast shaped PMMA phantom to study the dose distribution in breasts was improved by using smaller TLDs and a new half-ellipsoid PMMA phantom. Then the weighted CT dose index (CTDIw) was introduced to average glandular assessment in DBCT for the first time and two measurement modes were proposed for different sizes of breasts. The dose deviations caused by using cylindrical phantoms were simulated using the Monte Carlo method and a set of correction factors were calculated. The results of the confirmatory measurement with a cylindrical phantom (11cm/8cm) show that CTDIw gives a relatively conservative overestimate of the average glandular dose comparing to the results of Monte Carlo simulation and TLDs measurement. But with better practicability and stability, the CTDIw is suitable for dose evaluations in daily clinical practice. Both of the TLDs ...

  16. Contribution of maternal radionuclide burdens to prenatal radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 {mu}Ci into a woman`s blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors.

  17. Offsite radiation doses summarized from Hanford environmental monitoring reports for the years 1957-1984. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Price, K.R.; McCormack, W.D.

    1986-02-01

    Since 1957, evaluations of offsite impacts from each year of operation have been summarized in publicly available, annual environmental reports. These evaluations included estimates of potential radiation exposure to members of the public, either in terms of percentages of the then permissible limits or in terms of radiation dose. The estimated potential radiation doses to maximally exposed individuals from each year of Hanford operations are summarized in a series of tables and figures. The applicable standard for radiation dose to an individual for whom the maximum exposure was estimated is also shown. Although the estimates address potential radiation doses to the public from each year of operations at Hanford between 1957 and 1984, their sum will not produce an accurate estimate of doses accumulated over this time period. The estimates were the best evaluations available at the time to assess potential dose from the current year of operation as well as from any radionuclides still present in the environment from previous years of operation. There was a constant striving for improved evaluation of the potential radiation doses received by members of the public, and as a result the methods and assumptions used to estimate doses were periodically modified to add new pathways of exposure and to increase the accuracy of the dose calculations. Three conclusions were reached from this review: radiation doses reported for the years 1957 through 1984 for the maximum individual did not exceed the applicable dose standards; radiation doses reported over the past 27 years are not additive because of the changing and inconsistent methods used; and results from environmental monitoring and the associated dose calculations reported over the 27 years from 1957 through 1984 do not suggest a significant dose contribution from the buildup in the environment of radioactive materials associated with Hanford operations.

  18. Effects of radiation types and dose rates on selected cable-insulating materials

    Science.gov (United States)

    Hanisch, F.; Maier, P.; Okada, S.; Schönbacher, H.

    A series of radiation tests have been carried out on halogen-free cable-insulating and cable-sheathing materials comprising commercial LDPE, EPR, EVA and SIR compounds. samples were irradiated at five different radiation sources, e.g. a nuclear reactor, fuel elements, a 60Co source, and in the stray radiation field of high-energy proton and electron accelerators at CERN and DESY. The integrated doses were within 50-5000 kGy and the dose rates within 10 mGy/s-70 Gy/s. Tensile tests and gel-fraction measurements were carried out. The results confirm that LDPEs are very sensitive to long-term ageing effects, and that important errors exceeding an order of magnitude can be made when assessing radiation damage by accelerated tests. On the other hand, well-stabilized LDPEs and the cross-linked rubber compounds do not show large dose-rate effects for the values given above. Furthermore, the interpretation of the elongation-at-break data and their relation to gel-fraction measurements show that radiation damage is related to the total absorbed dose irrespective of the different radiation types used in this experiment.

  19. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  20. Digital radiography of scoliosis with a scanning method: radiation dose optimization

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, Haakan; Andersson, Torbjoern [Department of Radiology, Oerebro University Hospital, 701 85 Oerebro (Sweden); Verdonck, Bert [Philips Medical Systems, P.O. Box 10,000, 5680 Best (Netherlands); Beckman, Karl-Wilhelm; Persliden, Jan [Department of Medical Physics, Oerebro University Hospital, 701 85 Oerebro (Sweden)

    2003-03-01

    The aim of this study was optimization of the radiation dose-image quality relationship for a digital scanning method of scoliosis radiography. The examination is performed as a digital multi-image translation scan that is reconstructed to a single image in a workstation. Entrance dose was recorded with thermoluminescent dosimeters placed dorsally on an Alderson phantom. At the same time, kerma area product (KAP) values were recorded. A Monte Carlo calculation of effective dose was also made. Image quality was evaluated with a contrast-detail phantom and Visual Grading. The radiation dose was reduced by lowering the image intensifier entrance dose request, adjusting pulse frequency and scan speed, and by raising tube voltage. The calculated effective dose was reduced from 0.15 to 0.05 mSv with reduction of KAP from 1.07 to 0.25 Gy cm{sup 2} and entrance dose from 0.90 to 0.21 mGy. The image quality was reduced with the Image Quality Figure going from 52 to 62 and a corresponding reduction in image quality as assessed with Visual Grading. The optimization resulted in a dose reduction to 31% of the original effective dose with an acceptable reduction in image quality considering the intended use of the images for angle measurements. (orig.)

  1. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris.

    Directory of Open Access Journals (Sweden)

    Karolina Stark

    Full Text Available Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later, to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  2. Diagnostic accuracy at several reduced radiation dose levels for CT imaging in the diagnosis of appendicitis

    Science.gov (United States)

    Zhang, Di; Khatonabadi, Maryam; Kim, Hyun; Jude, Matilda; Zaragoza, Edward; Lee, Margaret; Patel, Maitraya; Poon, Cheryce; Douek, Michael; Andrews-Tang, Denise; Doepke, Laura; McNitt-Gray, Shawn; Cagnon, Chris; DeMarco, John; McNitt-Gray, Michael

    2012-03-01

    Purpose: While several studies have investigated the tradeoffs between radiation dose and image quality (noise) in CT imaging, the purpose of this study was to take this analysis a step further by investigating the tradeoffs between patient radiation dose (including organ dose) and diagnostic accuracy in diagnosis of appendicitis using CT. Methods: This study was IRB approved and utilized data from 20 patients who underwent clinical CT exams for indications of appendicitis. Medical record review established true diagnosis of appendicitis, with 10 positives and 10 negatives. A validated software tool used raw projection data from each scan to create simulated images at lower dose levels (70%, 50%, 30%, 20% of original). An observer study was performed with 6 radiologists reviewing each case at each dose level in random order over several sessions. Readers assessed image quality and provided confidence in their diagnosis of appendicitis, each on a 5 point scale. Liver doses at each case and each dose level were estimated using Monte Carlo simulation based methods. Results: Overall diagnostic accuracy varies across dose levels: 92%, 93%, 91%, 90% and 90% across the 100%, 70%, 50%, 30% and 20% dose levels respectively. And it is 93%, 95%, 88%, 90% and 90% across the 13.5-22mGy, 9.6-13.5mGy, 6.4-9.6mGy, 4-6.4mGy, and 2-4mGy liver dose ranges respectively. Only 4 out of 600 observations were rated "unacceptable" for image quality. Conclusion: The results from this pilot study indicate that the diagnostic accuracy does not change dramatically even at significantly reduced radiation dose.

  3. Completeness of reporting of radiation therapy planning, dose, and delivery in veterinary radiation oncology manuscripts from 2005 to 2010.

    Science.gov (United States)

    Keyerleber, Michele A; McEntee, Margaret C; Farrelly, John; Podgorsak, Matthew

    2012-01-01

    Surrounding a shift toward evidence-based medicine and widespread adoption of reporting guidelines such as the Consolidated Standards of Reporting Trials (CONSORT) statement, there has been a growing body of literature evaluating the quality of reporting in human and veterinary medicine. These reviews have consistently demonstrated the presence of substantive deficiencies in completeness of reporting. The purpose of this study was to assess the current status of reporting in veterinary radiation oncology manuscripts in regards to treatment planning methods, dose, and delivery and to introduce a set of reporting guidelines to serve as a standard for future reporting. Forty-six veterinary radiation oncology manuscripts published between 2005 and 2010 were evaluated for reporting of 50 items pertaining to patient data, treatment planning, radiation dose, delivery of therapy, quality assurance, and adjunctive therapy. A mean of 40% of checklist items were reported in a given manuscript (range = 8-75%). Only 9/50 (18%) checklist items were reported in > or = 80% manuscripts. The completeness of reporting was best in regards to a statement of prescription radiation protocol (91-98% reported) and worst in regards to specification of absorbed dose within target volumes and surrounding normal tissues (0-6% reported). No manuscripts met the current International Commission of Radiation Units and Measurements (ICRU) dose specification recommendations. Incomplete reporting may stem from the predominance of retrospective manuscripts and the variability of protocols and equipment in veterinary radiation oncology. Adoption of reporting guidelines as outlined in this study is recommended to improve the quality of reporting in veterinary radiation oncology.

  4. Strategies to reduce radiation dose in cardiac PET/CT

    Science.gov (United States)

    Wu, Tung Hsin; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Jay; S. P. Mok, Greta; Yang, Ching-Ching; Huang, Tzung-Chi

    2011-08-01

    Our aim was to investigate CT dose reduction strategies on a hybrid PET/CT scanner for cardiac applications.MaterialsImage quality and dose estimation of different CT scanning protocols for CT coronary angiography (CTCA), and CT-based attenuation correction for PET imaging were investigated. Fifteen patients underwent CTCA, perfusion PET imaging at rest and under stress, and FDG PET for myocardial viability. These patients were divided into three groups based on the CTCA technique performed: retrospectively gated helical (RGH), ECG tube current modulation (ETCM), and prospective gated axial (PGA) acquisitions. All emission images were corrected for photon attenuation using CT images obtained by default setting and an ultra-low dose CT (ULDCT) scan.ResultsRadiation dose in RGH technique was 22.2±4.0 mSv. It was reduced to 10.95±0.82 and 4.13±0.31 mSv using ETCM and PGA techniques, respectively. Radiation dose in CT transmission scan was reduced by 96.5% (from 4.53±0.5 to 0.16±0.01 mSv) when applying ULDCT as compared to the default CT. No significant difference in terms of image quality was found among various protocols.ConclusionThe proposed CT scanning strategies, i.e. ETCM or PGA for CTCA and ULDCT for PET attenuation correction, could reduce radiation dose up to 47% without degrading imaging quality in an integrated cardiac PET/CT coronary artery examination.

  5. Low dose radiation enhances the Locomotor activity of D. melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ki Moon; Lee, Buyng Sub; Nam Seon Young; Kim, Ji Young; Yang, Kwang Hee; Choi, Tae In; Kim, Cha Soon [Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Gyeongju (Korea, Republic of)

    2013-04-15

    Mild stresses at low level including radiation can induce the beneficial effects in many vertebrate and invertebrate species. However, a large amount of studies in radiation biology have focused on the detrimental effects of high dose radiation (HDR) such as the increased incidence of cancers and developmental diseases. Low dose radiation (LDR) induces biologically favorable effects in diverse fields, for example, cancer development, genomic instability, immune response, and longevity. Our previous data indicated that LDR promotes cells proliferation of which degree is not much but significant, and microarray data explained that LDR irradiated fruit flies showing the augmented immunity significantly changed the program for gene expression of many genes in Gene Ontology (GO) categories related to metabolic process. Metabolic process in development one of major contributors in organism growth, interbreeding, motility, and aging. Therefore, it is valuable to examine whether LDR change the physiological parameters related to metabolism, and how LDR regulates the metabolism in D. melanogaster. In this study, to investigate that LDR influences change of the metabolism, a representative parameter, locomotor activity. In addition, the activation of several cellular signal molecules was determined to investigate the specific molecular mechanism of LDR effects on the metabolism. We explored whether ionizing radiation affects the motility activity. We performed the RING assays to evaluate the locomotor activity, a representative parameter presenting motility of fruit flies. HDR dramatically decreased the motor activity of irradiated flies. Surprisingly, the irradiated flies at low dose radiation in both acute and chronic showed the significantly increased locomotor activity, compared to non-irradiated flies. Irradiation would induce change of the several signal pathways for flies to respond to it. The activation of some proteins involved in the cells proliferation and stress

  6. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-10-14

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides.

  7. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate.

    Science.gov (United States)

    Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Sanusi, Syazwan Mohd; Gabdo, Hamman Tukur

    2016-06-01

    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3.

  8. Radiation doses inside industrial irradiation installation with linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre R., E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pelegrineli, Samuel Q.; Alo, Gabriel F., E-mail: samuelfisica@yahoo.com.br, E-mail: gabriel.alo@aceletron.com.br [Aceletron Irradiacao Industrial, Aceletrica Comercio e Representacoes Ltda, Rio de Janeiro, RJ (Brazil); Silva, Francisco C.A. Da, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  9. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D. [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  10. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  11. A A field test for extremity dose assessment during outages at Korean nuclear power plants.

    Science.gov (United States)

    Kim, Hee Geun; Kong, Tae Young

    2013-05-01

    During maintenance on the water chamber of a steam generator, the pressuriser heater and the pressure tube feeder in nuclear power plants, workers are likely to receive high radiation doses due to the severe workplace conditions. In particular, it is expected that workers' hands would receive the highest radiation doses because of their contact with the radioactive materials. In this study, field tests for extremity dose assessments in radiation workers undertaking contact tasks with high radiation doses were conducted during outages at pressurised water reactors and pressurised heavy water reactors in Korea. In the test, the radiation workers were required to wear additional thermoluminescent dosemeters (TLDs) on their backs and wrists and an extremity dosemeter on the finger, as well as a main TLD on the chest while performing the maintenance tasks.

  12. Wound Trauma Alters Ionizing Radiation Dose Assessment

    Science.gov (United States)

    2012-06-11

    microcirculation failure, massive cellular damage, sepsis, and disruption of vital organ functions, leading to multiple-organ dysfunction syndrome ... clippers . Mice were placed in well-ventilated acrylic restrainers for irradiation or sham treatments. Within 1 h after irradiation or sham irradiation

  13. Erythemal ultraviolet solar radiation doses received by young skiers.

    Science.gov (United States)

    Serrano, María-Antonia; Cañada, Javier; Moreno, Juan Carlos

    2013-11-01

    Children are a special group since epidemiological evidence indicates that excessive exposure to sunlight at an early age increases the risk of skin cancer in later life. The purpose of this study is to quantify children's UV exposure when skiing, using dosimeters (VioSpor) placed on the shoulders of 10 participants. The children received a median daily Standard Erythema Dose of 2.1 within a range of 4.9-0.71, this being approximately 35% of the calculated 24 h ambient UV radiation on the horizontal plane. According to the results obtained, young skiers are exposed to UV radiation that can potentially cause skin damage and erythema and increase the risk of skin cancer in the course of a lifetime. These findings emphasise the need for adequate protective measures against solar radiation when skiing. The results also suggest that sun-protection campaigns should be undertaken aimed at children engaged in outdoor sports, including winter activities.

  14. Patient radiation doses in the most common interventional cardiology procedures in Croatia: first results.

    Science.gov (United States)

    Brnić, Z; Krpan, T; Faj, D; Kubelka, D; Ramac, J Popić; Posedel, D; Steiner, R; Vidjak, V; Brnić, V; Visković, K; Baraban, V

    2010-02-01

    Apart from its benefits, the interventional cardiology (IC) is known to generate high radiation doses to patients and medical staff involved. The European Union Medical Exposures Directive 97/43/Euroatom strongly recommend patient dosimetry in interventional radiology, including IC. IC patient radiation doses in four representative IC rooms in Croatia were investigated. Setting reference levels for these procedures have difficulties due to the large difference in procedure complexity. Nevertheless, it is important that some guideline values are available as a benchmark to guide the operators during these potentially high-dose procedures. Local and national diagnostic reference levels (DRLs) were proposed as a guidance. A total of 138 diagnostic (coronary angiography, CA) and 151 therapeutic (PTCA, stenting) procedures were included. Patient irradiation was measured in terms of kerma-area product (KAP), fluoroscopy time (FT) and number of cine-frames (F). KAP was recorded using calibrated KAP-meters. DRLs of KAP, FT and F were calculated as third quartile values rounded up to the integer. Skin doses were assessed on a selected sample of high skin dose procedures, using radiochromic films, and peak skin doses (PSD) were presented. A relative large range of doses in IC was detected. National DRLs were proposed as follows: 32 Gy cm(2), 6.6 min and 610 frames for CA and 72 Gy cm(2), 19 min and 1270 frames for PTCA. PSD 2 Gy in 8 % of selected patients. Measuring the patient doses in radiological procedures is required by law, but rarely implemented in Croatia. The doses recorded in the study are acceptable when compared with the literature, but optimisation is possible. The preliminary DRL values proposed may be used as a guideline for local departments, and should be a basis for radiation reduction measures and quality assurance programmes in IC in Croatia.

  15. Patient doses and radiation risks in film-screen mammography in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A.; Parviainen, T.; Komppa, T. [Finnish Centre for Radiation and Nuclear Safety (STUK), Helsinki (Finland)

    1995-12-31

    Screen-film mamography is the most sensitive method for the early detection of breast cancer. Breast doses in mamography should be measured for several reasons, especially for the evaluation of patient risk in a screening programme, but also for the assessment and comparison of imaging techniques and equipment performance. In this study, the factors affecting patient doses were assessed by making performance and patient dose measurements; about 50 mammographic units used for screening were included in the study. The lifetime risk as a function of age at exposure was calculated using the average glandular dose, the relative risk model shown in the BEIR V report, and the breast cancer mortality in Finland. The mean surface dose of a 4.5 cm thick phantom was 6.3 mGy, and the mean glandular dose 1.0 mGy. Analysis of the surface dose with respect to film optical density, relative speed of film processing, sensitivity of image receptors, and antiscatter grid showed that the mean surface dose could be decreased by more than 50%. For the screened age group of 50 to 59 years, the risk of exposure-induced death (REID) of breast cancer is about 1.4 x 10{sup -6} mSv{sup -1}, and the average loss of life expectancy due to the radiation-induced breast cancer deaths (LLE/REID) is about 9.5 years. (Author).

  16. The influence of high doses of radiation in citrine stones

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, M. I. [Universidade Nove de Julho - UNINOVE, Rua Vergueiro 235/249, 01504-001 Sao Paulo (Brazil); Caldas, L. V. E., E-mail: miteixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The possibility of using samples of Brazilian stones as quartz, amethyst, topaz, jasper, etc. for high-dose dosimetry has been studied in recent years at IPEN, using the techniques of optical absorption (Oa), thermoluminescent (Tl), optically stimulated luminescence (OSL) and resonance paramagnetic electron (EPR). In this work, the Tl properties of citrine samples were studied. They were exposed to different doses of gamma radiation ({sup 60}Co). The natural citrine stone was extracted from a mine in Minas Gerais state, Brazil; it is a tecto silicate ranked as one of three-dimensional structure, showing clear yellow to golden brown color. The natural citrine stone is classified as quartz (SiO{sub 2}), and it has a lower symmetry and more compact reticulum. The Tl emission curve showed two peaks at 160 grades C and 220 grades C. To remove the Tl peak (160 grades C) of the sintered citrine pellet glow curves, different thermal treatments were tested during several time intervals. The Tl dose-response curve between 50 Gy and 100 kGy, the reproducibility of Tl response and the lower detection dose were obtained. The results show that citrine may be useful as high-dose detectors. (Author)

  17. Low-dose radiation employed in diagnostic imaging causes genetic effects in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Ponzinibbio, Maria V.; Peral-Garcia, Pilar; Seoane, Analia (Inst. de Genetica Veterinaria, Univ. Nacional de La Plata CONICET, La Plata (Argentina)), e-mail: aseoane@fcv.unlp.edu.ar; Crudeli, Cintia (Agencia Nacional de Promocion Cientifica y Tecnologica, La Plata (Argentina))

    2010-11-15

    Background: Exposure to environmental, diagnostic, and occupational sources of radiation frequently involves low doses. Although these doses have no immediately noticeable impact on human health there is great interest in their long-term biological effects. Purpose: To assess immediate and time-delayed DNA damage in two cell lines exposed to low doses of ionizing radiation by using the comet assay and micronucleus test, and to compare these two techniques in the analysis of low-dose induced genotoxicity. Material and Methods: CHO and MRC-5 cells were exposed to 50 milliSievert (mSv) of ionizing radiation and assayed immediately after irradiation and at 16 or 12 passages post-irradiation, respectively. Comet assay and micronucleus test were employed. Results: The comet assay values observed in 50 mSv-treated cells were significantly higher than in the control group for both sample times and cell lines (P < 0.001). Micronuclei frequencies were higher in treated cells than in the control group (P < 0.01, CHO cells passage 16; P < 0.05, MRC-5 cells immediately after exposure; P < 0.01 MRC-5 cells passage 12). Correlation analysis between the two techniques was statistically significant (correlation coefficient 0.82, P < 0.05 and correlation coefficient 0.86, P < 0.05 for CHO and MRC-5 cells, respectively). Cells scored at passages 12 or 16 showed more damage than those scored immediately after exposure in both cell lines (no statistically significant differences). Conclusion: Cytomolecular and cytogenetic damage was observed in cells exposed to very low doses of X-rays and their progeny. A single low dose of ionizing radiation was sufficient to induce such response, indicating that mammalian cells are exquisitely sensitive to it. Comet and micronucleus assays are sensitive enough to assess this damage, although the former seems to be more efficient

  18. A Survey of Pediatric CT Protocols and Radiation Doses in South Korean Hospitals to Optimize the Radiation Dose for Pediatric CT Scanning

    OpenAIRE

    Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; KOO, HYUN JUNG

    2015-01-01

    Abstract Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been...

  19. Adaptive response and split-dose effect of radiation on the survival of mice

    Indian Academy of Sciences (India)

    Ashu Bhan Tiku; R K Kale

    2004-03-01

    Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of animals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0.015 Gy/s dose rate and observed on a regular basis for 30 days. Since almost 50% lethality was seen with 8 Gy, it was selected as the challenging dose for further studies. Irradiation of mice with conditioning doses (0.25 or 0.5 Gy) and subsequent exposure to 8 Gy caused significant increase in the survival of mice compared to irradiated control. The splitting of challenging dose did not influence the efficiency of conditioning doses (0.25 Gy and 0.5 Gy) to induce an adaptive response. However conditioning doses given in fractions (0.25 Gy + 0.25 Gy) or (0.5 Gy + 0.5 Gy) were able to modulate the response of challenging dose of 8 Gy. These results clearly showed the occurrence of adaptive response in terms of survival of animals. The conditioning dose given in small fractions seemed to be more effective. The findings have been discussed from a mechanistic point of view. The possible biological implications, potential medical benefits, uncertainties and controversies related to adaptive response have also been addressed.

  20. Readjustment of abdominal computed tomography protocols in a university hospital: impact on radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Ricardo Francisco Tavares; Salvadori, Priscila Silveira; Torres, Lucas Rios; Bretas, Elisa Almeida Sathler; Bekhor, Daniel; Medeiros, Regina Bitelli; D' Ippolito, Giuseppe, E-mail: ricardo.romano@unifesp.br [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina; Caldana, Rogerio Pedreschi [Fleury Medicina e Saude, Sao Paulo, SP (Brazil)

    2015-09-15

    Objective: To assess the reduction of estimated radiation dose in abdominal computed tomography following the implementation of new scan protocols on the basis of clinical suspicion and of adjusted images acquisition parameters. Materials and Methods: Retrospective and prospective review of reports on radiation dose from abdominal CT scans performed three months before (group A - 551 studies) and three months after (group B - 788 studies) implementation of new scan protocols proposed as a function of clinical indications. Also, the images acquisition parameters were adjusted to reduce the radiation dose at each scan phase. The groups were compared for mean number of acquisition phases, mean CTDI{sub vol} per phase, mean DLP per phase, and mean DLP per scan. Results: A significant reduction was observed for group B as regards all the analyzed aspects, as follows: 33.9%, 25.0%, 27.0% and 52.5%, respectively for number of acquisition phases, CTDI{sub vol} per phase, DLP per phase and DLP per scan (p < 0.001). Conclusion: The rational use of abdominal computed tomography scan phases based on the clinical suspicion in conjunction with the adjusted images acquisition parameters allows for a 50% reduction in the radiation dose from abdominal computed tomography scans. (author)

  1. Potential radiation dose from eating fish exposed to actinide contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1980-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, /sup 239,240/Pu and /sup 241/Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (approx.1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs.

  2. Potential radiation dose from eating fish exposed to actinide contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K. (Battelle Pacific Northwest Labs., Richland, WA (USA))

    1981-04-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, sup(239,240)Pu and /sup 241/Am that are approx. 3 orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-Pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (of the order of 1 lb) of these fillets every day for 70 yr. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources.

  3. The effect of pitch and collimation on radiation dose in spiral CT

    Institute of Scientific and Technical Information of China (English)

    CHENG Qi-Jun; TSANG Cheung; FENG Ding-Hua

    2005-01-01

    Measurements of radiation dose to patients in spiral computed tomography (CT) were completed for various collimations, table speeds and pitch. A standard CT head dosimetry phantom and thermoluminescent dosimeters (TLD) were used for the measurement. The.effect of collimation and pitch on radiation dose was studied. The results indicated that the radiation dose at the given tube current, voltage and rotation speed was inversely proportional to pitch. And the increasing times of dose were as decreasing times of pitch. This regular pattern was tenable for radiation dose at both central holes and peripheral holes of the phantom at pitch = 1, >1 and <1. The collimation had no impact on the radiation dose. The results also indicated that radiation dose at central holes was nearly equal to that at peripheral holes. There was no significant difference between them statistically. The study demonstrates that the pitch in spiral CT scans is the primary parameter and has significant impact on radiation dose.

  4. Radiation dose to patients and image quality evaluation from coronary 256-slice computed tomographic angiography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang-Kuang [Department of Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taiwan (China); College of Medicine, Fu Jen Catholic University, Taiwan (China); Department of Radiological Technology, Yuan Pei University, Taiwan (China); Wu, Tung-Hsin [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, 155 Li-Nong St., Section 2, Taipei 112, Taiwan (China); Yang, Ching-Ching [Department of Radiological Technology, Tzu Chi College of Technology, Hualien, Taiwan (China); Tsai, Chia-Jung [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, 155 Li-Nong St., Section 2, Taipei 112, Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.t [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, 155 Li-Nong St., Section 2, Taipei 112, Taiwan (China)

    2010-07-21

    The aim of this study is to assess radiation dose and the corresponding image quality from suggested CT protocols which depends on different mean heart rate and high heart rate variability by using 256-slice CT. Fifty consecutive patients referred for a cardiac CT examination were included in this study. All coronary computed tomographic angiography (CCTA) examinations were performed on a 256-slice CT scanner with one of five different protocols: retrospective ECG-gating (RGH) with full dose exposure in all R-R intervals (protocol A), RGH of 30-80% pulsing window with tube current modulation (B), RGH of 78{+-}5% pulsing window with tube current modulation (C), prospective ECG-triggering (PGT) of 78% R-R interval with 5% padding window (D) and PGT of 78% R-R interval without padding window (E). Radiation dose parameters and image quality scoring were determined and compared. In this study, no significant differences were found in comparison on image quality of the five different protocols. Protocol A obtained the highest radiation dose comparing with those of protocols B, C, D and E by a factor of 1.6, 2.4, 2.5 and 4.3, respectively (p<0.001), which were ranged between 2.7 and 11.8 mSv. The PGT could significantly reduce radiation dose delivered to patients, as compared to the RGH. However, the use of PGT has limitations and is only good in assessing cases with lower mean heart rate and stable heart rate variability. With higher mean heart rate and high heart rate variability circumstances, the RGH within 30-80% of R-R interval pulsing window is suggested as a feasible technique for assessing diagnostic performance.

  5. Radiation signature on exposed cells: Relevance in dose estimation

    Institute of Scientific and Technical Information of China (English)

    Venkatachalam; Perumal; Tamizh; Selvan; Gnana; Sekaran; Venkateswarlu; Raavi; Safa; Abdul; Syed; Basheerudeen; Karthik; Kanagaraj; Amith; Roy; Chowdhury; Solomon; FD; Paul

    2015-01-01

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence insitu hybridization and an emerging protein marker the g-H2 AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.

  6. Radiation signature on exposed cells: Relevance in dose estimation.

    Science.gov (United States)

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon Fd

    2015-09-28

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.

  7. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  8. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  9. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields

    Science.gov (United States)

    Fartaria, M. J.; Reis, C.; Pereira, J.; Pereira, M. F.; Cardoso, J. V.; Santos, L. M.; Oliveira, C.; Holovey, V.; Pascoal, A.; Alves, J. G.

    2016-09-01

    The aim of this paper is the characterization of four thermoluminescence detectors (TLD), namely, LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu for the measurement of the entrance surface air kerma (ESAK) and estimation of the mean glandular dose (MGD) in digital mammography examinations at hospitals and clinics. Low-energy x-ray beams in the typical energy ranges of mammography, produced with a tungsten target and additional 60 µm molybdenum filtration were implemented and characterized at the Laboratory of Metrology of Ionizing Radiation at Instituto Superior Técnico. These beams were used for the characterization of the TLDs in terms of sensitivity, linearity, reproducibility, energy dependence and fading at 40 °C. The energy dependence test was further extended using clinical beams produced by mammography units at hospitals and clinics. The method proposed by the International Atomic Energy Agency was used for the measurement of ESAK and assessment of MGD. The combined standard uncertainty for the measurement of ESAK (and MGD) was determined in accordance to the Guide to the expression of uncertainty in measurement. The x-ray beams generated in the 23-40 kVp range presented HVL values from 0.36 to 0.46 mm Al. The beam produced at 28 kVp (HVL 0.39 mm Al) was considered as reference. The radiation field defined a circle with 84 mm diameter with a maximum variation of the beam intensity of less than 1% at the top flat (plateau) within 4 cm of the central axis. The estimated total uncertainty for the measurement of air kerma was 0.42%. All the TL detectors tested showed good performance except the commercial Li2B4O7:Mn (or TLD-800) which was excluded due to its poor sensitivity in our experimental set up. Both lithium fluorides showed better linearity and reproducibility as well as lower energy dependence and fading when compared to lithium borates. The stable behaviour of LiF:Mg,Ti and LiF:Mg,Cu,P detectors is reflected in the low combined standard

  10. Standardisation and Validation of Cytogenetic Markers to Quantify Radiation Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Venkatachalam Perumal

    2011-02-01

    Full Text Available The amounts of radiation exposure received by radiation workers are monitored generally by physical dosimeters like thermoluminescence dosimeter (TLD and film badge. However, in practice the over-exposure recorded by physical dosimeters need to be confirmed with biological dosimeters. In addition to confirming the dose recorded by physical dosimeters, biological dosimeters play an important role in estimating the doses received during accidental exposures. Exposure to high levels of radiation induces certain  biochemical, biophysical, and immunological changes (biomarkers in a cell. Measurement of these changes are generally precise but cannot be effectively used to assess the dose, as the level of these changes return to normalcy within hours to months after exposure. Thus, among various biological indicators, cytogenetic indicators are considered practical and reliable for dose estimation. The paper highlights the importance and establishment of biodosimetry facility using genetic markers such as the sensitive dicentric chromosomes, rapid micronucleus assay and stable translocations measured using fluorescence in situ hybridisation and GTG banding for retrospective dose estimation. Finally, the development of gH2AX assay, as a potential marker of triage dosimeter, is discussed.Defence Science Journal, 2011, 61(2, pp.125-132, DOI:http://dx.doi.org/10.14429/dsj.61.832

  11. Aircrew radiation dose estimates during recent solar particle events and the effect of particle anisotropy.

    Science.gov (United States)

    Al Anid, H; Lewis, B J; Bennett, L G I; Takada, M; Duldig, M

    2014-01-01

    A model was developed using a Monte-Carlo radiation transport code, MCNPX, to estimate the additional radiation exposure to aircrew members during solar particle events. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere to aircraft altitudes. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during ground level enhancements (GLEs) 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis.

  12. Radiation protection, radiation safety and radiation shielding assessment of HIE-ISOLDE.

    Science.gov (United States)

    Romanets, Y; Bernardes, A P; Dorsival, A; Gonçalves, I F; Kadi, Y; di Maria, S; Vaz, P; Vlachoudis, V; Vollaire, J

    2013-07-01

    The high intensity and energy ISOLDE (HIE-ISOLDE) project is an upgrade to the existing ISOLDE facility at CERN. The foreseen increase in the nominal intensity and the energy of the primary proton beam of the existing ISOLDE facility aims at increasing the intensity of the produced radioactive ion beams (RIBs). The currently existing ISOLDE facility uses the proton beam from the proton-synchrotron booster with an energy of 1.4 GeV and an intensity up to 2 μA. After upgrade (final stage), the HIE-ISOLDE facility is supposed to run at an energy up to 2 GeV and an intensity up to 4 μA. The foreseen upgrade imposes constrains, from the radiation protection and the radiation safety point of view, to the existing experimental and supply areas. Taking into account the upgraded energy and intensity of the primary proton beam, a new assessment of the radiation protection and radiation safety of the HIE-ISOLDE facility is necessary. Special attention must be devoted to the shielding assessment of the beam dumps and of the experimental areas. In this work the state-of-the-art Monte Carlo particle transport simulation program FLUKA was used to perform the computation of the ambient dose equivalent rate distribution and of the particle fluxes in the projected HIE-ISOLDE facility (taking into account the upgrade nominal primary proton beam energy and intensity) and the shielding assessment of the facility, with the aim of identifying in the existing facility (ISOLDE) the critical areas and locations where new or reinforced shielding may be necessary. The consequences of the upgraded proton beam parameters on the operational radiation protection of the facility were studied.

  13. Development of internal dose assessment procedure for workers in industries using raw materials containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Kyu; KIm, Yong Geon; Ji, Seung Woo; Kim, Kwang Pyo [College of Engineering, Kyung Hee University, Yongin (Korea, Republic of); Koo, Bon Cheol; Chang, Byung Uck [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-09-15

    It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are 10 Bq·g-1 for 40K and 1 Bq·g-1 for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups (<0.1 mSv, 0.1-0.3 mSv, and >0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels (<0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and >1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

  14. Hepatic CT perfusion measurements: A feasibility study for radiation dose reduction using new image reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Noriyuki, E-mail: noriyuki@med.kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Yoshikawa, Takeshi, E-mail: yoshikawa0816@aol.com [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Somiya, Yuichiro, E-mail: somiya13@med.kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Sekitani, Toshinori, E-mail: atieinks-toshi@nifty.com [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Sugihara, Naoki, E-mail: naoki.sugihara@toshiba.co.jp [Toshiba Medical Systems Co., 1385 Shimoishigami, Otawara 324-0036 (Japan); Koyama, Hisanobu, E-mail: hkoyama@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Kanda, Tomonori, E-mail: k_a@hotmail.co.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Kanata, Naoki, E-mail: takikina12345@yahoo.co.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Murakami, Tohru, E-mail: mura@med.kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Kawamitsu, Hideaki, E-mail: kawamitu@med.kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Sugimura, Kazuro, E-mail: sugimura@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan)

    2012-11-15

    Objectives: To assess the effects of image reconstruction method on hepatic CT perfusion (CTP) values using two CT protocols with different radiation doses. Materials and methods: Sixty patients underwent hepatic CTP and were randomly divided into two groups. Tube currents of 210 or 250 mA were used for the standard dose group and 120 or 140 mA for the low dose group. The higher currents were selected for large patients. Demographic features of the groups were compared. CT images were reconstructed by using filtered back projection (FBP), image filter (quantum de-noising, QDS), and adaptive iterative dose reduction (AIDR). Hepatic arterial and portal perfusion (HAP and HPP, ml/min/100 ml) and arterial perfusion fraction (APF, %) were calculated using the dual-input maximum slope method. ROIs were placed on each hepatic segment. Perfusion and Hounsfield unit (HU) values, and image noises (standard deviations of HU value, SD) were measured and compared between the groups and among the methods. Results: There were no significant differences in the demographic features of the groups, nor were there any significant differences in mean perfusion and HU values for either the groups or the image reconstruction methods. Mean SDs of each of the image reconstruction methods were significantly lower (p < 0.0001) for the standard dose group than the low dose group, while mean SDs for AIDR were significantly lower than those for FBP for both groups (p = 0.0006 and 0.013). Radiation dose reductions were approximately 45%. Conclusions: Image reconstruction method did not affect hepatic perfusion values calculated by dual-input maximum slope method with or without radiation dose reductions. AIDR significantly reduced images noises.

  15. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X., E-mail: lhong0812@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Shankar, Viswanathan [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (United States); Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Kuo, Hsiang-Chi [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Mynampati, Dinesh [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Yaparpalvi, Ravindra [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Goddard, Lee [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States)

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  16. Radiation dose and image quality for paediatric interventional cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E [Radiology Department, Medicine School, Complutense University and San Carlos University Hospital, 28040 Madrid (Spain); Ubeda, C [Clinical Sciences Department, Faculty of the Science of Health, Tarapaca University, 18 de Septiembre 2222, Arica (Chile); Leyton, F [Institute of Public Health of Chile, Marathon 1000, Nunoa, Santiago (Chile); Miranda, P [Hemodynamic Department, Cardiovascular Service, Luis Calvo Mackenna Hospital, Avenida Antonio Varas 360, Providencia, Santiago (Chile)], E-mail: eliseov@med.ucm.es

    2008-08-07

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 {mu}Gy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 {mu}Gy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  17. Radiation dose and image quality for paediatric interventional cardiology

    Science.gov (United States)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  18. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joanna C.; Dharmarajan, Kavita V. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wexler, Leonard H. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); La Quaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Happersett, Laura [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  19. Radiation doses to aquatic organisms from natural radionuclides.

    Science.gov (United States)

    Brown, J E; Jones, S R; Saxén, R; Thørring, H; Vives i Batlle, J

    2004-12-01

    A framework for protection of the environment is likely to require a methodology for assessing dose rates arising from naturally occurring radionuclides. This paper addresses this issue for European aquatic environments through a process of (a) data collation, mainly with respect to levels of radioactivity in water sediments and aquatic flora and fauna, (b) the use of suitable distribution coefficients, concentration factors and global data where data gaps are present and (c) the utilisation of a reference organism approach whereby a finite number of suitable geometries are selected to allow dose per unit concentration factors to be derived and subsequent absorbed dose calculations (weighted or unweighted) to be made. The majority of the calculated absorbed dose, for both marine and freshwater organisms, arises from internally incorporated alpha emitters, with 210Po and 226Ra being the major contributors. Calculated doses are somewhat higher for freshwater compared to marine organisms, and the range of doses is also much greater. This reflects both the much greater variability of radionuclide concentrations in freshwater as compared to seawater, and also variability or uncertainty in concentration factor values. This work has revealed a number of substantial gaps in published empirical data especially for European aquatic environments.

  20. Hardening electronic devices against very high total dose radiation environments

    Science.gov (United States)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  1. The spectrum of mutation produced by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Morley,Alexander,A; Turner, David,R

    2004-10-31

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  2. Perspectives on radiation dose estimates for A-bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    1986-12-01

    Four decades after the actual events, quantitative characterization of the radiation fields at Hiroshima and Nagasaki continues to be sought, with high accuracy a goal justified by the unique contribution to radiation protection standards that is represented by the medical records of exposed survivors. The most recent effort is distinguished by its reliance on computer modeling and concomitant detail, and by its decentralized direction, both internationally and internally to the US and Japan, with resultant ongoing peer review and wide scope of inquiry. A new system for individual dose estimation has been agreed upon, and its scientific basis has been elaborated in the literature as well as in a comprehensive treatise to be published in the Spring of 1987. In perspective, this new system appears to be an unusually successful achievement that offers the expectation of reliable estimates with the desired accuracy. Some aspects leading to this expectation, along with a caveat, are discussed here. 4 refs., 8 figs., 3 tabs.

  3. Exposure to low dose ionising radiation: Molecular and clinical consequences.

    LENUS (Irish Health Repository)

    Martin, Lynn M

    2014-07-10

    This review article provides a comprehensive overview of the experimental data detailing the incidence, mechanism and significance of low dose hyper-radiosensitivity (HRS). Important discoveries gained from past and present studies are mapped and highlighted to illustrate the pathway to our current understanding of HRS and the impact of HRS on the cellular response to radiation in mammalian cells. Particular attention is paid to the balance of evidence suggesting a role for DNA repair processes in the response, evidence suggesting a role for the cell cycle checkpoint processes, and evidence investigating the clinical implications\\/relevance of the effect.

  4. Ceramic Matrix Composites Performances Under High Gamma Radiation Doses

    Science.gov (United States)

    Cemmi, A.; Baccaro, S.; Fiore, S.; Gislon, P.; Serra, E.; Fassina, S.; Ferrari, E.; Ghisolfi, E.

    2014-06-01

    Ceramic matrix composites reinforced by continuous ceramic fibers (CMCs) represent a class of advanced materials developed for applications in automotive, aerospace, nuclear fusion reactors and in other specific systems for harsh environments. In the present work, the silicon carbide/silicon carbide (SiCf/SiC) composites, manufactured by Chemical Vapour Infiltration process at FN S.p.A. plant, have been evaluated in term of gamma radiation hardness at three different absorbed doses (up to around 3MGy). Samples behavior has been investigated before and after irradiation by means of mechanical tests (flexural strength) and by surface and structural analyses (X-ray diffraction, SEM, FTIR-ATR, EPR).

  5. 3D measurement of absolute radiation dose in grid therapy

    Energy Technology Data Exchange (ETDEWEB)

    Trapp, J V [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Department of Applied Physics, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia); Warrington, A P [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Partridge, M [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Philps, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Leach, M O [Cancer Research UK Clinical MR Research Group, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Webb, S [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  6. Radiation Doses to Hanford Workers from Natural Potassium-40

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lynch, Timothy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weier, Dennis R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-01

    The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 and 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y-1 for men and 0.123 mSv y-1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y-1. Calculated effective doses range from 0.069 to 0.243 mSv y-1 for adult males, and 0.067 to 0.203 mSv y-1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values should be investigated. From our data, it cannot be determined whether the potassium concentration in muscle in people with large BMI values differs from that in people with small BMI values. Similarly, it would be important to know the potassium concentration in other soft tissues, since much of the radiation dose is due to beta radiation, in which the source and target tissues are the same. These uncertainties should be evaluated to determine their consequences for dosimetry.

  7. Effects of radiation dose reduction in Volume Perfusion CT imaging of acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Brockmann, Carolin; Afat, Saif; Pjontek, Rastislav; Nikobashman, Omid; Brockmann, Marc A.; Wiesmann, Martin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Yang, Zepa; Kim, Changwon [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Suwon (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kim, Jong Hyo [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Suwon (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon (Korea, Republic of)

    2015-12-15

    To examine the influence of radiation dose reduction on image quality and sensitivity of Volume Perfusion CT (VPCT) maps regarding the detection of ischemic brain lesions. VPCT data of 20 patients with suspected ischemic stroke acquired at 80 kV and 180 mAs were included. Using realistic reduced-dose simulation, low-dose VPCT datasets with 144 mAs, 108 mAs, 72 mAs and 36 mAs (80 %, 60 %, 40 % and 20 % of the original levels) were generated, resulting in a total of 100 datasets. Perfusion maps were created and signal-to-noise-ratio (SNR) measurements were performed. Qualitative analyses were conducted by two blinded readers, who also assessed the presence/absence of ischemic lesions and scored CBV and CBF maps using a modified ASPECTS-score. SNR of all low-dose datasets were significantly lower than those of the original datasets (p <.05). All datasets down to 72 mAs (40 %) yielded sufficient image quality and high sensitivity with excellent inter-observer-agreements, whereas 36 mAs datasets (20 %) yielded poor image quality in 15 % of the cases with lower sensitivity and inter-observer-agreements. Low-dose VPCT using decreased tube currents down to 72 mAs (40 % of original radiation dose) produces sufficient perfusion maps for the detection of ischemic brain lesions. (orig.)

  8. Improved image quality and radiation dose reduction in liver dynamic CT scan with the protocol change

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yu Jin; Cho, Pyong Kon [Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2015-06-15

    The purpose is reducing radiation dose while maintaining of image quality in liver dynamic CT(LDCT) scan, by protocols generally used and the tube voltage set at a low level protocol compared to the radiation dose and image quality. The target is body mass index, 18.5-24 patients out of 40 patients who underwent the ACT(abdominal CT). Group A(tube voltage : 120 kVp, SAFIRE strength 1) of 20 people among 40 people, to apply the general abdominal CT scan protocol, group B(tube voltage : 100 kVp, apply SAFIRE strength 0-5) was 20 people, set a lower tube voltage. Image quality evaluation was setting a region of interest(ROI) in the liver parenchyma, aorta, superior mesenteric artery (SMA), celiac trunk, visceral fat of arterial phase. In the ROI were compared by measuring the noise, signal to noise ratio(SNR), contrast to noise ratio(CNR), CT number. In addition, qualitative assessments to evaluate two people in the rich professional experience in Radiology by 0-3 points. We compared the total radiation dose, dose length product(DLP) and effective dose, volume computed tomography dose index(CTDIvol). The higher SAFIRE in the tube voltage 100 kVp, noise is reduced, CT number was increased. Thus, SNR and CNR was increased higher the SAFIRE step. Compared with the tube voltage 120 kVp, noise, SNR, CNR was most similar in SAFIRE strength 2 and 3. Qualitative assessment SAFIRE strength 2 is the most common SAFIRE strength 2 the most common qualitative assessment, if the tube voltage of 100 kVp when the quality of the images better evaluated was SAFIRE strength 1. Dose was reduced from 21.69%, in 100 kVp than 120 kVp. In the case of a relatively high BMI is not LDCT scan, When it is shipped from the factory tube voltage is set higher, unnecessary radiation exposure when considering the reality that is concerned, when according to the results of this study, set a lower tube voltage and adjust the SAFIRE strength to 1 or 2, the radiation without compromising image quality

  9. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Matzke, Melissa M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Waters, Katrina M., E-mail: katrina.waters@pnnl.gov [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States)

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  10. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem; Cucinotta, Francis A.

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts be-cause organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user-friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations direc-torate (MOD), and space biophysics researchers. Assessment of astronauts' organ doses and ARS from the exposure to historically large SPEs is in support of mission design and opera-tion planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI prod-uct, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  11. Evaluation of Radiation Dose Received by Premature Neonates Admitted to Neonatal Intensive Care Unit

    Science.gov (United States)

    Aramesh, Mohmmadreza; Zanganeh, Kobra Aria; Dehdashtian, Masoud; Malekian, Arash; Fatahiasl, Jafar

    2017-01-01

    Background This study aimed to evaluate the radiation dose received by premature neonates using diagnostic radiographies. Methods This cross-sectional study was conducted on 116 premature neonates with gestational age from 25 to 37 weeks; with the diagnosis of neonatal respiratory distress syndrome (NRDS) and tachypnea, they were admitted to a neonatal intensive care unit (NICU) at Ahvaz Imam Khomeini Hospital in 2015. For assessing the dose received, the model GR-200 thermoluminescent dosimeter (TLD) was used. For each premature neonate under radiation, three TLDs separately (one for each) were placed on surfaces of Ch1, T1, and G1 (chest, thyroid, and gonad of first newborn, respectively). Moreover, for the adjacent neonate at a distance of 60 - 100 cm, two TLDs were laid in the surfaces of T2 and G2 (thyroid and gonad of second newborn, respectively). The dose received by TLDs for any baby and the adjacent neonate under the entrance surface dose (ESD) was estimated. Results The mean of neonates’ weight under study was 1,950.78 ± 484.9 g. During the hospitalization period, minimum one and maximum three radiographies were done for any premature neonate. The doses received in the premature neonates to Ch1, T1 and G1 were 0.08 ± 0.01, 0.06 ± 0.01, and 0.05 ± 0.01 mSv, respectively and for adjacent infants for T2 and G2 were 0.003 ± 0.001 and 0.002 ± 0.0009 mSv, respectively. Conclusions In the study, radiation dose received by organs at risk of premature neonates was lower than the international criteria and standards, therefore, also due to the lack of radiation damage threshold, to limit collimator, and the use of the proper filtration, kilovoltage and time during radiography of premature neonates are recommended. PMID:28090228

  12. Injury of the blood-testies barrier after low-dose-rate chronic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Hoon; Bae Min Ji; Lee, Chang Geun; Yang, Kwang Mo; Jur, Kyu; Kim, Jong Sun [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-04-15

    The systemic effect of radiation increases in proportionally with the dose and dose rate. Little is known concerning the relationships between harmful effects and accumulated dose, which is derived from continuous low-dose rate radiation exposure. Recent our studies show that low-dose-rate chronic radiation exposure (3.49 mGy/h) causes adverse effects in the testis at a dose of 2 Gy (6 mGy/h). However, the mechanism of the low-dose-rate 2 Gy irradiation induced testicular injury remains unclear. The present results indicate that low-dose rate chronic radiation might affect the BTB permeability, possibly by decreasing levels of ZO-1, Occludin-1, and NPC-2. Furthermore, our results suggest that there is a risk of male infertility through BTB impairment even with low-dose-rate radiation if exposure is continuous.

  13. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT.

    Science.gov (United States)

    McNitt-Gray, Michael F

    2002-01-01

    This article describes basic radiation dose concepts as well as those specifically developed to describe the radiation dose from computed tomography (CT). Basic concepts of radiation dose are reviewed, including exposure, absorbed dose, and effective dose. Radiation dose from CT demonstrates variations within the scan plane and along the z axis because of its unique geometry and usage. Several CT-specific dose descriptors have been developed: the Multiple Scan Average Dose descriptor, the Computed Tomography Dose Index (CTDI) and its variations (CTDI(100), CTDI(w), CTDI(vol)), and the dose-length product. Factors that affect radiation dose from CT include the beam energy, tube current-time product, pitch, collimation, patient size, and dose reduction options. Methods of reducing the radiation dose to a patient from CT include reducing the milliampere-seconds value, increasing the pitch, varying the milliampere-seconds value according to patient size, and reducing the beam energy. The effective dose from CT can be estimated by using Monte Carlo methods to simulate CT of a mathematical patient model, by estimating the energy imparted to the body region being scanned, or by using conversion factors for general anatomic regions. Issues related to radiation dose from CT are being addressed by the Society for Pediatric Radiology, the American Association of Physicists in Medicine, the American College of Radiology, and the Center for Devices and Radiological Health of the Food and Drug Administration.

  14. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    Science.gov (United States)

    Scarboro, Sarah B.; Stovall, Marilyn; White, Allen; Smith, Susan A.; Yaldo, Derek; Kry, Stephen F.; Howell, Rebecca M.

    2010-12-01

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by >=2.5 cm.

  15. Effect of organ size and position on out-of-field dose distributions during radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Scarboro, Sarah B; White, Allen; Yaldo, Derek; Kry, Stephen F; Howell, Rebecca M [University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX (United States); Stovall, Marilyn; Smith, Susan A, E-mail: Rhowell@mdanderson.or [The University of Texas M D Anderson Cancer Center, Houston, TX (United States)

    2010-12-07

    Mantle field irradiation has historically been the standard radiation treatment for Hodgkin lymphoma. It involves treating large regions of the chest and neck with high doses of radiation (up to 30 Gy). Previous epidemiological studies on the incidence of second malignancies following radiation therapy for Hodgkin lymphoma have revealed an increased incidence of second tumors in various organs, including lung, breast, thyroid and digestive tract. Multiple other studies, including the Surveillance, Epidemiology and End Results, indicated an increased incidence in digestive tract including stomach cancers following mantle field radiotherapy. Assessment of stomach dose is challenging because the stomach is outside the treatment field but very near the treatment border where there are steep dose gradients. In addition, the stomach can vary greatly in size and position. We sought to evaluate the dosimetric impact of the size and variable position of the stomach relative to the field border for a typical Hodgkin lymphoma mantle field irradiation. The mean stomach dose was measured using thermoluminescent dosimetry for nine variations in stomach size and position. The mean doses to the nine stomach variations ranged from 0.43 to 0.83 Gy when 30 Gy was delivered to the treatment isocenter. Statistical analyses indicated that there were no significant differences in the mean stomach dose when the stomach was symmetrically expanded up to 3 cm or shifted laterally (medial, anterior or posterior shifts) by up to 3 cm. There was, however, a significant (P > 0.01) difference in the mean dose when the stomach was shifted superiorly or inferiorly by {>=}2.5 cm.

  16. Cardiovascular risks associated with low dose ionizing particle radiation.

    Directory of Open Access Journals (Sweden)

    Xinhua Yan

    Full Text Available Previous epidemiologic data demonstrate that cardiovascular (CV morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1H; 0.5 Gy, 1 GeV and iron ion ((56Fe; 0.15 Gy, 1GeV/nucleon irradiation with and without an acute myocardial ischemia (AMI event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  17. Natural Radioactivity Measurements and Radiation Dose Estimation in Some Sedimentary Rock Samples in Turkey

    Directory of Open Access Journals (Sweden)

    I. Akkurt

    2014-01-01

    Full Text Available The natural radioactivity existed since creation of the universe due to the long life time of some radionuclides. This natural radioactivity is caused by γ-radiation originating from the uranium and thorium series and 40K. In this study, the gamma radiation has been measured to determine natural radioactivity of 238U, 232Th, and 40K in collected sedimentary rock samples in different places of Turkey. The measurements have been performed using γ-ray spectrometer containing NaI(Tl detector and multichannel analyser (MCA. Absorbed dose rate (D, annual effective dose (AED, radium equivalent activities (Raeq, external hazard index (Hex, and internal hazard index (Hin associated with the natural radionuclide were calculated to assess the radiation hazard of the natural radioactivity in the sedimentary rock samples. The average values of absorbed dose rate in air (D, annual effective dose (AED, radium equivalent activity (Raeq, external hazard index (Hex, and internal hazard index (Hin were calculated and these were 45.425 nGy/h, 0.056 mSv/y, 99.014 Bq/kg, 0.267, and 0.361, respectively.

  18. Radiation-induced hypopituitarism is dose-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Littley, M.D.; Shalet, S.M.; Beardwell, C.G.; Robinson, E.L.; Sutton, M.L. (Christie Hospital and Holt Radium Inst., Manchester (UK) Withington Hospital, Manchester (UK))

    1989-09-01

    Radiation-induced hypopituitarism has been studies prospectively for up to 12 years in 251 adult patients treated for pituitary disease with external radiotherapy, ranging in dose from 20 Gy in eight fractions over 11 days to 45 Gy in 15 fractions over 21 days. Ten further patients were studied 2-4 years after whole-body irradiation for haematological malignancies using 12 Gy in six fractions over 3 days and seven patients were studied 3-11 years after whole-brain radiotherapy for a primary brain tumour (30 Gy, eight fractions, 11 days). Five years after treatment, patients who received 20 Gy had an incidence of TSH deficiency of 9% and in patients treated with 35-37 Gy, 40 Gy and 42-45 Gy, the incidence of TSH deficiency increased significantly with increasing dose. A similar relationship was observed for both ACTH and gonadotrophin deficiencies when the 20 Gy group was compared to patients treated with 35-45 Gy. Growth hormone deficiency was universal by 5 years over the dose range 35-45 Gy. In seven patients who were treated with 30 Gy in eight fractions over 11 days, deficiencies were observed at a similar frequency to the 40 Gy group (15 fractions, 21 days). No evidence of pituitary dysfunction was detected in the ten patients who received 12 Gy (six fractions, 3 days). (author).

  19. Technology Development for Radiation Dose Measurement and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Hwan; Chang, S. Y.; Lee, T. Y. (and others)

    2007-06-15

    The correction factors essential for the operation of In-Vivo counting system were produced and implemented into a field operation for the improvement of accuracy in measurement of the radioactivity inside a human body. The BiDAS2007 code which calculate an internal dose was developed by upgrading the former code prepared in the previous stage of this project. The method of using the multibioassy data, the maximum likelihood function and the Bayesian statistics were established to an internal dose based on the measurement data of radioactivity, intakes and retention of radioactivity in a human body and it can improve the accuracy in estimation of the intakes of radioactivity and the committed effective dose equivalent. In order to solve the problem of low detection efficiency of the conventional Bonner Sphere (BS) to a high energy neutron, the extended BS's were manufactured and the technique for neutron field spectrometry was established. The fast neutron and gamma spectrometry system with a BC501A scintillation detector was also prepared. Several neutron fluence spectra at several nuclear facilities were measured and collected by using the extended BS. The spectrum weighted responses of some neutron monitoring instruments were also derived by using these spectra and the detector response functions. A high efficient TL material for the neutron personal dosimeter was developed. It solved the main problem of low thermal stability and high residual dose of the commercial TLDs and has the sensitivity to neutron and to gamma radiation with 40 and 10 times higher respectively than them.

  20. Assessment of Patient Dose from CT Examinations in Khorasan, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2013-03-01

    Full Text Available Introduction Computed Tomography scans are a very important tool for diagnosis and assessment of response to treatment in the practice of medicine. Ionizing radiation in medical imaging is undoubtedly one of the most powerful diagnostic tools in medicine. Yet, as with all medical interventions, there are potential risks in addition to the clear potential benefits. Materials and Methods Two reference dose quantities have been defined in order to promote the use of good technique in CT. These are weighted CT dose index (CTDIw in (mGy for a single slice in serial scanning or per rotation in helical scanning, and dose–length product (DLP per complete examination (mGy.cm, All measurements were performed using a pencil shaped ionization chamber introduced into polymethyl methacrylate cylindrical brain and body phantoms. This survey was performed on 7 CT scanners in Khorasan Province-Iran. Results DLP for brain, chest, abdomen and pelvic examinations had a range of 255 - 1026, 76-1277, 48-737, 69-854 mGy.cm, respectively. Conclusion The results obtained in this study show that the DLP values obtained in this province are lower than European Commission reference dose levels (EC RDL, in other words performance of all the scanners were satisfactory.

  1. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    Science.gov (United States)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  2. Cosmic radiation dose measurements from the RaD-X flight campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing

    2016-10-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  3. Individual Dose Monitor of External Radiation Personnel in IMP (1996~2001)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For evaluating the individual annual effective dose of eternal radiation personnel in IMP, we monitored individual dose of external radiation personnel every year. The monitoring results are shown in Table 1, from which it is known from 1998 to 2001, we monitored 1099 workers, the mean annual effective dose is 0.13 mSv.

  4. A method to adjust radiation dose-response relationships for clinical risk factors

    DEFF Research Database (Denmark)

    Appelt, Ane Lindegaard; Vogelius, Ivan R

    2012-01-01

    Several clinical risk factors for radiation induced toxicity have been identified in the literature. Here, we present a method to quantify the effect of clinical risk factors on radiation dose-response curves and apply the method to adjust the dose-response for radiation pneumonitis for patients...

  5. Study of radiation exposure dose in young dental patients

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, Atsushi (Fukuoka Dental College, Fukuoka (Japan))

    1983-08-01

    In order to clarify the trend in dental radiography for young patients up to 18 years old and the accompanying radiation exposures, surveys were made at Fukuoka Dental College Hospital and thirty-five dental offices in Fukuoka city and Kitakyushu city. Each kind of radiography increased in average number with age and 16-18 group was given 4.60 times of radiography of one kind or another in the clinic of college hospital. In the dental offices, the number of radiography taken was about one-fourth that of the clinic of college hospital. Although exposure dose varies with exposure factors, distance and angle of exposure, in addition to time factor, were found to affect doses subtly. In the clinic of college hospital the average of estimated doses to organs per person per year were 105.4 mrad (25.2 mrad for 5-year-old children) in the salivary gland, 55.9 mrad (18.9 mrad for 5-year-old) in the thyroid gland, 52.1 mrad (15.0 mrad for 5-year-old) in the lens of the eye and 52.2 mrad (8.7 mrad for 5-year-old) in the sella turcica. In the dental offices, the same average of estimated doses to organs were 40.5 mrad (7.4 mrad for 5-year-old) in the salivary gland, 17.4 mrad (8.0 mrad for 5-year-old) in the thyroid gland, 12.2 mrad (6.1 mrad for 5-year-old) in the lens of eye and 13.1 mrad (1.3 mrad for 5-year-old) in the sella turcica. In all kinds of radiograpy, the estimated doses in genital glands were in ..mu..rad. In the dental offices, both the percentage of young patients to all patients and the radiographing rate were lower as compared with those in the clinic of college hospital. The estimated doses were also lower at one-half to one-fifth and those by age and by organ were found to be one-tenth or lower.

  6. Chest CT using spectral filtration: radiation dose, image quality, and spectrum of clinical utility

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Franziska M.; Johnson, Thorsten R.C.; Sommer, Wieland H.; Thierfelder, Kolja M.; Meinel, Felix G. [University Hospital Munich, Institute for Clinical Radiology, Munich (Germany)

    2015-06-01

    To determine the radiation dose, image quality, and clinical utility of non-enhanced chest CT with spectral filtration. We retrospectively analysed 25 non-contrast chest CT examinations acquired with spectral filtration (tin-filtered Sn100 kVp spectrum) compared to 25 examinations acquired without spectral filtration (120 kV). Radiation metrics were compared. Image noise was measured. Contrast-to-noise-ratio (CNR) and figure-of-merit (FOM) were calculated. Diagnostic confidence for the assessment of various thoracic pathologies was rated by two independent readers. Effective chest diameters were comparable between groups (P = 0.613). In spectral filtration CT, median CTDI{sub vol}, DLP, and size-specific dose estimate (SSDE) were reduced (0.46 vs. 4.3 mGy, 16 vs. 141 mGy*cm, and 0.65 vs. 5.9 mGy, all P < 0.001). Spectral filtration CT had higher image noise (21.3 vs. 13.2 HU, P < 0.001) and lower CNR (47.2 vs. 75.3, P < 0.001), but was more dose-efficient (FOM 10,659 vs. 2,231/mSv, P < 0.001). Diagnostic confidence for parenchymal lung disease and osseous pathologies was lower with spectral filtration CT, but no significant difference was found for pleural pathologies, pulmonary nodules, or pneumonia. Non-contrast chest CT using spectral filtration appears to be sufficient for the assessment of a considerable spectrum of thoracic pathologies, while providing superior dose efficiency, allowing for substantial radiation dose reduction. (orig.)

  7. Coronary computed tomography angiography using ultra-low-dose contrast media: radiation dose and image quality.

    Science.gov (United States)

    Komatsu, Sei; Kamata, Teruaki; Imai, Atsuko; Ohara, Tomoki; Takewa, Mitsuhiko; Ohe, Ryoko; Miyaji, Kazuaki; Yoshida, Junichi; Kodama, Kazuhisa

    2013-08-01

    To analyze the invasiveness and image quality of coronary CT angiography (CCTA) with 80 kV. We enrolled 181 patients with low body weight and low calcium level. Of these, 154 patients were randomly assigned to 1 of 3 groups: 280 HU/80 kV (n = 51); 350 HU/80 kV (n = 51); or 350 HU/120 kV (n = 52). The amount of contrast media (CM) was decided with a CT number-controlling system. Twenty-seven patients were excluded because of an invalid time density curve by timing bolus. The predicted amount of CM, volume CT dose index, dose-length product, effective dose, image noise, and 5-point image quality were measured. The amounts of CM for the 80 kV/280 HU, 80 kV/350 HU, and 120 kV/350 HU groups were 10 ± 4 mL, 15 ± 7 mL, and 30 ± 6 mL, respectively. Although image noise was greater at 80 than 120 kV, there was no significant difference in image quality between 80 kV/350 HU and 120 kV/350 HU (p = 0.390). There was no significant difference in image quality between 80 kV/280 HU and 80 kV/350 HU (4.4 ± 0.7 vs. 4.7 ± 0.4, p = 0.056). The amount of CM and effective dose was lower for 80 kV CCTA than for 120 kV CCTA. CCTA at 80 kV/280 HU may decrease the amount of CM and radiation dose necessary while maintaining image quality.

  8. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  9. Evaluation of the effective dose in an anthropomorphic phantom in radiation emergencies; Avaliacao da dose efetiva em um fantoma antropomorfico em situacoes de emergencia radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.K.; Santos, D.S., E-mail: liviatelecom@hotmail.com [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This study aims to perform a modeling of the human anatomy using Voxel models applied to Monte Carlo code and the Visual Monte Carlo software, simulating irradiation of the human body, so you can make the dose assessment in individuals who have been exposed to any external ionizing radiation source. Making the future, an assessment of both results with limits of validity of TECDOC-1162 expressions of the IAEA in case of point source.

  10. Galactic cosmic ray induced radiation dose on terrestrial exoplanets

    CERN Document Server

    Atri, Dimitra; Griessmeier, Jean-Mathias

    2013-01-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground and space based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets, falling in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in case of super earths. Such exoplanets are subjected to a high flux of Galactic Cosmic Rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin, which strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another fac...

  11. Steepness of the radiation dose-response curve for dose-per-fraction escalation keeping the number of fractions fixed.

    Science.gov (United States)

    Bentzen, Søren M

    2005-01-01

    Clinically, there is growing interest in strategies for intensifying radiation therapy by escalating the dose per fraction. This paper considers the steepness of the dose-response curve in this case. The steepness of a radiation dose-response curve is most conveniently quantified by the normalized dose-response gradient, gamma. Under the assumption of a linear-quadratic dose-effect model, a simple analytical relationship is derived between the gamma-value for a dose-response curve generated by varying the total dose while keeping the number of fractions constant, i.e. escalating the dose per fraction, and the gamma-value for a dose-response curve generated by varying the total dose while keeping the dose per fraction constant. This formulation is compared with clinical dose-response data from the literature and shown to be in good agreement with the observations. Some implications of this formulation for non-uniform dose distributions delivered using 3D conformal radiotherapy or intensity modulated radiotherapy (IMRT) are briefly discussed.

  12. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.

    Directory of Open Access Journals (Sweden)

    Daniel G Zhang

    Full Text Available MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF and conventional flattened 6MV photon beams were used. High dose rate (HDR brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL would be needed.

  13. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy.

    Science.gov (United States)

    Zhang, Daniel G; Feygelman, Vladimir; Moros, Eduardo G; Latifi, Kujtim; Zhang, Geoffrey G

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed.

  14. Radiation protection: doses estimation and optimization; Radioprotection: estimation des doses et optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Scanff, P.; Aubert, B.; Lebreton, C.; Rehel, J.L.; Brisse, H.; Madec, L.; Gaboriaud, G.; Lemoine, T.; Neuenschwander, S.; Rosenwald, J.C.; Tack, D.; Gevenois, P.A.; Robilliard, M.; Bayol, A

    2006-10-15

    The objectives were to bring notions relative to the safety of the procedures, notably in term of irradiation and the good use of the examinations in hospitals: biology, imaging, functional tests, endoscopy. The various approached subjects are: knowledge of the medical exposures to the ionising radiations, indicators for the dose to patient; The point on the collection of the data necessary for the update of the diagnostic reference levels, 2 years after the appearance of the order of February 12., 2004; Determination of the exposure of the premature babies in intensive care of neonates in the Beclere hospital; Calculation of the effective dose for T.D.M. acquisitions: comparison of dedicated software available on the market; Analysis of the system of automatic modulation of the load in T.D.M. on pediatric phantoms; dosimetry study of scanner examinations with automatic modulation of the load on pediatric phantoms; optimization image quality/dose in pediatric computed tomography with contrast product: use of a factor of merit. (N.C.)

  15. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  16. Radiation Sialadenitis Induced by High-dose Radioactive Iodine Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Shin Young; Lee, Jaetae [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2010-06-15

    Radioactive iodine ({sup 131}I) is accumulated in the thyroid tissue and plays an important role in the treatment of differentiated papillary and follicular cancers after thyroidectomy. Simultaneously, {sup 131}I is concentrated in the salivary glands and secreted into the saliva. Dose-related damage to the salivary parenchyma results from the {sup 131}I irradiation. Salivary gland swelling and pain, usually involving the parotid, can be seen. The symptoms may develop immediately after a therapeutic dose of {sup 131}I and/or months later and progress in intensity with time. In conjunction with the radiation sialadenitis, secondary complications reported include xerostomia, taste alterations, infection, increases in caries, facial nerve involvement, candidiasis, and neoplasia. Prevention of {sup 131}I sialadenitis may involve the use of sialogogic agents to hasten the transit time of the radioactive iodine through the salivary glands. However, studies are not available to delineate the efficacy of this approach. Treatment of the varied complications that may develop encompass numerous approaches and include gland massage, sialogogic agents, duct probing, antibiotics, mouthwashes, good oral hygiene, and adequate hydration. Recently interventional sialoendoscopy has been introduced an effective tool for the management of patients with {sup 131}I-induced sialadenitis that is unresponsive to medical treatment.

  17. Palliative radiation treatment of cutaneous mycosis fungoides - a dose response

    Energy Technology Data Exchange (ETDEWEB)

    Cotter, G.W.; Baglan, R.J.; Wasserman, T.H.; Mill, W.

    1983-10-01

    Between 1966 and 1981, 20 patients (191 lesions) underwent palliative radiation therapy for control of biopsy-proven cutaneous mycosis fungoides. Six patients (47 lesions) and an additional 34 lesions from the remaining 14 patients with complete response to treatment were excluded from the study because of follow-up of less than one year. Included in the remaining 110 lesions were all recurrences and all partial responses. The modalities for treatment included superficial X rays, Cobalt-60 or electron beam irradiation. The total tumor doses employed ranged from 600-4000 cGy. The 110 lesions (14 patients) were retrospectively analyzed to determine the dose required for local control of the lesions. Fifty-three percent of the lesions were classified as plaques, 20% as tumors less than or equal to 3 cm in diameter, and 27% as tumors > 3 cm in diameter. Complete response to treatment was observed in 95% of the plaque lesions, 95% of the tumors less than or equal to 3 cm in diameter and 93% of tumor > 3 cm in diameter. A complete response to treatment was noted in all lesions receiving greater than 2000 cGy. In the total population of lesions having a complete response, a local infield recurrence rate of 42% was noted in the group receiving less than or equal to 1000 cGy, 32% in those receiving 1001-2000 cGy, 21% in those receiving 2001-3000 cGy, and 0% in the group receiving > 3000 cGy. The data from this study indicate that tumor doses equivalent to at least 3000 cGy at 200 cGy per fraction, five fractions per week (TDF greater than or equal to) are needed for adquate local control of cutaneous mycosis fungoides lesions.

  18. Reduced-dose CT protocol for the assessment of cerebral vasospasm

    Energy Technology Data Exchange (ETDEWEB)

    Bricout, N.; Estrade, L.; Boustia, F.; Kalsoum, E.; Pruvo, J.P.; Leclerc, X. [Hopital Roger Salengro, CHRU de Lille, Department of Neuroradiology, Universite Lille Nord de France, Lille cedex (France)

    2015-12-15

    Despite the increased radiation dose, multimodal CT including noncontrast CT (NCT), CT angiography (CTA), and perfusion CT (PCT) remains a useful tool for the diagnosis of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). The aim of this study was to assess the radiation dose and the image quality between a standard-dose and a reduced-dose multimodal CT protocol. The study group consisted of 26 aSAH patients with a suspicion of DCI on clinical examination and transcranial doppler. Two different CT protocols were used: a standard-dose protocol (NCT 120 kV, 350 mAs; CTA 100 kV, 250 mAs; PCT 80 kV, 200 mAs) from August 2011 to October 2013 (n = 13) and a reduced-dose protocol (NCT 100 kV, 400 mAs; CTA 100 kV, 220 mAs; PCT 80 kV, 180 mAs) from November 2013 to May 2014 (n = 13). Dose-length product (DLP), effective dose, volume CT dose index (CTDI), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and overall image quality were determined for each examination. The overall image quality was judged as good or excellent in all cases. The reduced-dose protocol allowed a 15 % decrease in both the median total DLP (2438 vs 2898 mGy cm, p < 0.0001) and the effective dose as well as a significant decrease in median CTDI of 23, 31, and 10 % for NCT, CTA, and CTP, respectively. This dose reduction did not result in significant alteration of SNR (except for NCT) or CNR between groups. The present study showed that the reduced-dose multimodal CT protocol enabled a significant reduction of radiation dose without image quality impairment. (orig.)

  19. CT of the chest in suspected child abuse using submillisievert radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Thomas R.; Seibert, J.A.; Stein-Wexler, Rebecca [Medical Center Children' s Hospital, Division of Pediatric Radiology, University of California-Davis, Sacramento, CA (United States); Lee, Justin S. [University of California-Davis, Department of Radiology, Sacramento, CA (United States); Coulter, Kevin P. [Medical Center Children' s Hospital, Department of Pediatrics, University of California-Davis, Sacramento, CA (United States)

    2015-07-15

    The cornerstone of child abuse imaging is the skeletal survey, but initial imaging with radiographs may not demonstrate acute and non-displaced fractures, especially those involving the ribs. Given the high mortality of undiagnosed non-accidental trauma, timely diagnosis is crucial. CT is more sensitive in assessing rib fractures; however the effective radiation dose of a standard chest CT is high. We retrospectively identified four children (three boys, one girl; age range 1-4 months) admitted between January 2013 and February 2014 with high suspicion for non-accidental trauma from unexplained fractures of the long bones; these children all had CT of the chest when no rib fractures were evident on the skeletal survey. The absorbed radiation dose estimates for organs and tissue from the four-view chest radiographs and subsequent CT were determined using Monte Carlo photon transport software, and the effective dose was calculated using published tissue-weighting factors. In two children, CT showed multiple fractures of the ribs, scapula and vertebral body that were not evident on the initial skeletal survey. The average effective dose for a four-view chest radiograph across the four children was 0.29 mSv and the average effective dose for the chest CT was 0.56 mSv. Therefore the effective dose of a chest CT is on average less than twice that of a four-view chest radiograph. Our protocol thus shows that a reduced-dose chest CT may be useful in the evaluation of high specificity fractures of non-accidental trauma when the four-view chest radiographs are negative. (orig.)

  20. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses.

    Directory of Open Access Journals (Sweden)

    Hae Mi Joo

    Full Text Available Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6 and LAD2 cells, mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6 and LAD2 cells that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i. The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13, and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.

  1. Identification and dose assessment of irradiated cardamom and cloves by EPR spectrometry

    Science.gov (United States)

    Beshir, W. B.

    2014-03-01

    The use of electron paramagnetic resonance spectroscopy to accurately distinguish irradiated from unirradiated cardamom and cloves and assesses the absorbed dose to radiation processed cardamom and cloves are examined. The results were successful for identifying both irradiated and unirradiated cardamom and cloves. Additive reirradiation of cardamom and cloves produces reproducible dose-response functions, which can be used to assess the initial dose by back-extrapolation. Third degree polynomial function was used to fit the EPR signal/dose curves. It was found that this 3rd degree polynomial function provides satisfactory results without correction of decay for free radicals. The stability of the radiation induced EPR signal of irradiated cardamom and cloves were studied over a storage period of almost 8 months.

  2. Radiation dose measurements during kilovoltage-cone beam computed tomography imaging in radiotherapy

    Directory of Open Access Journals (Sweden)

    A Sathish Kumar

    2016-01-01

    Conclusion: Radiation dose to the eye, breast, and the surface of the pelvis have been arrived at during CBCT. The doses measured on patients agreed closely with those measured on humanoid phantom and with published values.

  3. Analysis of technologies and experiences for reducing occupational radiation dose and study for applying to regulations

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyun; Park, Moon Soo; Lee, Un Jang; Song, Jae Hyuk; Kim, Byeong Soo; Kim, Chong Uk [Seoul National Univ., Seoul (Korea, Republic of)

    2003-01-15

    To reduce Occupational Radiation Dose (ORD) effectively and enhance the radiological safety, the comprehensive assessment of the experiences to reduce ORD should be made by regulatory body as well as utilities. Hence, the objective of this study is to assess the experiences for reducing ORD from the regulatory viewpoint. With the research objective, the followings are performed in this research; analysis of occupational dose trends at domestic and foreign NPPs, identification of the effective technologies for reducing ORD, examination of the effects of the technologies for reducing ORD, derivation of the regulatory means for implementing he research results. From this study, the regulatory means for effective reduction of ORD are derived. Hence, the results can be utilized as a basic materials for ALARA requirements.

  4. Higher radiation dose with a shorter treatment duration improves outcome for locally advanced carcinoma of anal canal

    Institute of Scientific and Technical Information of China (English)

    Kim Huang; Daphne Haas-Kogan; Vivian Weinberg; Richard Krieg

    2007-01-01

    AIM: To assess whether radiation dose and duration of treatment influence local control and survival of patients with locally advanced anal cancer treated with definitive chemoradiation.METHODS: Twenty-eight consecutive patients who were treated with definitive radiation therapy for bulky anal cancers(> 5 cm in size) were reviewed. Nineteen patients had T3 lesions, 8 patients had T4 lesions, and 15 patients had lymph node involvement. The median tumor size was 7.5 cm. All but one patient received concurrent chemoradiation. The median radiation dose was 54 Gy. The median duration of treatment was 58 d.RESULTS: With a median follow-up of 2.5 years in all patients and 7.8 years in living patients, the 2-year local recurrence-free probability was 57% and overall survival rate was 67%. Neither radiation dose nor duration of treatment alone was predictive of either time to local failure or overall survival. However, longer treatment breaks can potentially mask an advantage over higher radiation doses. Therefore, we examined those patients who received ≥ 54 Gy within 60 d, comparing them to the rest of the patients. Of patients who received ≥ 54 Gy within 60 d, local progression-free probability was 89% versus 42% for the rest of the group (P = 0.01).CONCLUSION: Local failure is a significant problem in locally advanced carcinomas of the anal canal. Higher radiation doses with limited treatment breaks may offer an increase in local control and survival.

  5. Comparison of codes assessing radiation exposure of aircraft crew due to galactic cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bottollier-Depois, Jean-Francois [IRSN Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Beck, Peter; Latocha, Marcin [AIT Austrian Institute of Technology, Vienna (Austria). Health and Environment Dept.; Mares, Vladimir; Ruehm, Werner [HMGU Helmholtz Zentrum Muenchen, Neuherberg (Germany). Inst. of Radiation Protection; Matthiae, Daniel [DLR Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. of Aerospace Medicine; Wissmann, Frank [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2012-05-15

    The aim of this report is to compare the doses and dose rates calculated by various codes assessing radiation exposure of aircraft crew due to cosmic radiation. Some of the codes are used routinely for radiation protection purposes while others are purely for scientific use. The calculations were done using a set of representative, real flight routes around the globe. The results are presented in an anonymous way. This comparison is of major importance since a real determination of effective dose is not possible and, therefore, the different methods used to evaluate effective doses can be compared. Eleven codes have been used in this comparison exercise organised by EURADOS on harmonization of aircrew dosimetry practices in European countries. Some of these codes are based on simulations of the secondary field of cosmic radiation by Monte Carlo techniques; others use analytical solutions of the problem, while still others are mainly based on a fit to experimental data. The overall agreement between the codes, however, is better than 20 % from the median.

  6. Measurement of radiation dose at the north interaction point of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    MO Xiao-Hu; ZHANG Jian-Yong; ZHANG Tian-Bao; ZHANG Qing-Jiang; Achasov Mikhail; FU Cheng-Dong; Muchnoi Nikolay; QIN Qing; QU Hua-Min; WANG Yi-Fang; WU Jing-Min; XU Jin-Qiang; YU Bo-Xiang

    2009-01-01

    The technique details for measuring radiation dose are expounded.The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation.In addition, the photon radiation level move as background for future experiments is measured by a NaI(T1) detector.

  7. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A., E-mail: kleinerr@mail.nih.gov [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland (United States); Smith, Susan A. [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, Texas (United States); Holowaty, Eric [Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario (Canada); Hall, Per [Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm (Sweden); Pukkala, Eero [Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki (Finland); Vaalavirta, Leila [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Stovall, Marilyn; Weathers, Rita [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, Texas (United States); Gilbert, Ethel [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland (United States); Aleman, Berthe M.P. [Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kaijser, Magnus [Clinical Epidemiology Unit, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Andersson, Michael [Department of Oncology, Copenhagen University Hospital, Copenhagen (Denmark); Storm, Hans [Cancer Prevention and Documentation, Danish Cancer Society, Copenhagen (Denmark); Joensuu, Heikki [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Lynch, Charles F. [Department of Epidemiology, University of Iowa, Iowa City, Iowa (United States); and others

    2013-08-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer.

  8. Ambient radioactivity levels and radiation doses. Annual report 2014; Umweltradioaktivitaet und Strahlenbelastung. Jahresbericht 2014

    Energy Technology Data Exchange (ETDEWEB)

    Trugenberger-Schnabel, Angela; Loebke-Reinl, Angelika; Peter, Josef (comps.) [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2016-08-15

    The annual report 2014 on ambient radioactivity levels and radiation doses covers the following topics: (1) Actual data and their evaluation: natural environmental radioactivity, artificial environmental radioactivity, occupational radiation exposure, radiation exposures from medical applications, handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. (2) Fundamentals and general information: legal basis and explanations, basic information on natural environmental radioactivity, basic information on artificial radioactivity in the environment, basic information on occupational radiation exposure, basic information on radiation exposures from medical applications, basic information on the handling of radioactive materials and sources of ionizing radiation, basic information on non-ionizing radiation. (3) Tables.

  9. Realistic retrospective dose assessments to members of the public around Spanish nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.A., E-mail: majg@csn.es [Consejo de Seguridad Nuclear (CSN), Pedro Justo Dorado Dellmans 11, E-28040 Madrid (Spain); Martin-Valdepenas, J.M.; Garcia-Talavera, M.; Martin-Matarranz, J.L.; Salas, M.R.; Serrano, J.I.; Ramos, L.M. [Consejo de Seguridad Nuclear (CSN), Pedro Justo Dorado Dellmans 11, E-28040 Madrid (Spain)

    2011-11-15

    In the frame of an epidemiological study carried out in the influence areas around the Spanish nuclear facilities (ISCIII-CSN, 2009. Epidemiological Study of The Possible Effect of Ionizing Radiations Deriving from The Operation of Spanish Nuclear Fuel Cycle Facilities on The Health of The Population Living in Their Vicinity. Final report December 2009. Ministerio de Ciencia e Innovacion, Instituto de Salud Carlos III, Consejo de Seguridad Nuclear. Madrid. Available from: (http://www.csn.es/images/stories/actualidad{sub d}atos/especiales/epidemiologico/epidemiological{sub s}tudy.pdf)), annual effective doses to public have been assessed by the Spanish Nuclear Safety Council (CSN) for over 45 years using a retrospective realistic-dose methodology. These values are compared with data from natural radiation exposure. For the affected population, natural radiation effective doses are in average 2300 times higher than effective doses due to the operation of nuclear installations (nuclear power stations and fuel cycle facilities). When considering the impact on the whole Spanish population, effective doses attributable to nuclear facilities represent in average 3.5 x 10{sup -5} mSv/y, in contrast to 1.6 mSv/y from natural radiation or 1.3 mSv/y from medical exposures. - Highlights: > Most comprehensive dose assessment to public by nuclear facilities ever done in Spain. > Dose to public is dominated by liquid effluent pathways for the power stations. > Dose to public is dominated by Rn inhalation for milling and mining facilities. > Average annual doses to public in influence areas are negligible (10 {mu}Sv/y or less). > Doses from facilities average 3.5 x 10{sup -2} {mu}Sv/y per person onto whole Spanish population.

  10. Comparing Environmental Dose Rate Meters: A Method to Determine Natural and Non-natural Variations in External Radiation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Reinen, A.J.M.; Slaper, H.; Overwater, R.M.W.; Stoop, P

    2000-07-01

    A method is described to determine low excess dose rates from a radiation source in the environment, which are small compared to the natural fluctuations of the background radiation. First a 'virtual reference dose rate meter' is constructed from data of the national monitoring network, to know the natural variations of the background radiation. Results from this virtual monitor are then compared to data of dose rate meters at sites of interest, to determine non-natural or very local natural variations and excess dose rates. Daily averaged excess dose rates down to 2 to 3 nSv.h{sup -1} can be identified. The method is applied successfully near nuclear installations in the Netherlands and can be used for all types of dose rate meters and sample frequencies. Finally, the calculations to derive the 'virtual reference dose rate meter' can also be used as a quality assessment tool for environmental radiation monitoring networks. (author)

  11. A technique for multi-dimensional optimization of radiation dose, contrast dose, and image quality in CT imaging

    Science.gov (United States)

    Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan

    2016-03-01

    The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).

  12. Assessment of inhalation dose sensitivity by physicochemical properties of airborne particulates containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Young; Choi, Cheol Kyu; Kim, Yong Geon; Choi, Won Chul; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)

    2015-12-15

    Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of 0.01μm sized particulates were higher than doses due to 100μm sized particulates by factors of about 100 and 50 for {sup 238}U and {sup 230}Th, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of 11 g·cm{sup -3} and 0.7 g·cm{sup -3} resulted in dose difference by about 60 %. For {sup 238}U, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of {sup 238}U was about 9 times higher than dose for absorption F. For {sup 230}Th, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of {sup 230}Th was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and

  13. Simulated Space Radiation: Impact of Four Different Types of High-Dose Ionizing Radiation on the Lichen Xanthoria elegans

    Science.gov (United States)

    Brandt, Annette; Meeßen, Joachim; Jänicke, Reiner U.; Raguse, Marina; Ott, Sieglinde

    2017-02-01

    This study addresses the viability of the lichen Xanthoria elegans after high-dose ionizing irradiation in the frame of the STARLIFE campaign. The first set of experiments was intended to resemble several types of galactic cosmic radiation (GCR) as present beyond the magnetic shield of Earth. In the second set of experiments, γ radiation up to 113 kGy was applied to test the limit of lichen resistance to ionizing radiation. Entire thalli of Xanthoria elegans were irradiated in the anhydrobiotic state. After STARLIFE 1, the metabolic activity of both symbionts was quantified by live/dead staining with confocal laser scanning microscopy. The photosynthetic activity was measured after the respective irradiation to assess the ability of the symbiotic green algae to restore photosynthesis after irradiation. The STARLIFE campaign complements the results of the LIFE experiments at the EXPOSE-E facility on the International Space Station by testing the model organism Xanthoria elegans on its resistance to hazardous radiation that might be accumulated during long-term space exposure. In addition, the photosynthetic activity of metabolically active lichen was investigated after X-ray irradiation up to 100 Gy (3.3 Gy/min). Since previous astrobiological experiments were mostly performed with anhydrobiotic lichen, these experiments will broaden our knowledge on the correlation of physiological state and astrobiological stressors.

  14. A comparative analysis of exposure doses between the radiation workers in dental and general hospital

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Nam Hee; Chung, Woon Kwan; Dong, Kyung Rae; Ju, Yong Jin; Song, Ha Jin [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Choi, Eun Jin [Dept. of Public Health and Medicine, Dongshin University, Naju (Korea, Republic of)

    2015-02-15

    Research and investigation is required for the exposure dose of radiation workers to work in the dental hospital as increasing interest in exposure dose of the dental hospital recently accordingly, study aim to minimize radiation exposure by making a follow-up study of individual exposure doses of radiation workers, analyzing the status on individual radiation exposure management, prediction the radiation disability risk levels by radiation, and alerting the workers to the danger of radiation exposure. Especially given the changes in the dental hospital radiation safety awareness conducted the study in order to minimize radiation exposure. This study performed analyses by a comparison between general and dental hospital, comparing each occupation, with the 116,220 exposure dose data by quarter and year of 5,811 subjects at general and dental hospital across South Korea from January 1, 2008 through December 31, 2012. The following are the results obtained by analyzing average values year and quarter. In term of hospital, average doses were significantly higher in general hospitals than detal ones. In terms of job, average doses were higher in radiological technologists the other workers. Especially, they showed statistically significant differences between radiological technologists than dentists. The above-mentioned results indicate that radiation workers were exposed to radiation for the past 5 years to the extent not exceeding the dose limit (maximum 50 mSv y{sup -1}). The limitation of this study is that radiation workers before 2008 were excluded from the study. Objective evaluation standards did not apply to the work circumstance or condition of each hospital. Therefore, it is deemed necessary to work out analysis criteria that will be used as objective evaluation standard. It will be necessary to study radiation exposure in more precise ways on the basis of objective analysis standard in the future. Should try to minimize the radiation individual dose of

  15. Radiation dose reduction in perfusion CT imaging of the brain: A review of the literature.

    Science.gov (United States)

    Othman, Ahmed E; Afat, Saif; Brockmann, Marc A; Nikoubashman, Omid; Brockmann, Carolin; Nikolaou, Konstantin; Wiesmann, Martin

    2016-02-01

    Perfusion CT (PCT) of the brain is widely used in the settings of acute ischemic stroke and vasospasm monitoring. The high radiation dose associated with PCT is a central topic and has been a focus of interest for many researchers. Many studies have examined the effect of radiation dose reduction in PCT using different approaches. Reduction of tube current and tube voltage can be efficient and lead to a remarkable reduction of effective radiation dose while preserving acceptable image quality. The use of novel noise reduction techniques such as iterative reconstruction or spatiotemporal smoothing can produce sufficient image quality from low-dose perfusion protocols. Reduction of sampling frequency of perfusion images has only little potential to reduce radiation dose. In the present article we aimed to summarize the available data on radiation dose reduction in PCT imaging of the brain.

  16. Design of a total-dose radiation hardened monolithic CMOS DC-DC boost converter

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhi; Yu Hongbo; Liu Youbao [Xi' an Institute of Microelectronics Technology, Xi' an 710054 (China); Ning Hongying, E-mail: liuzhi6048@126.com [Xi' an University of Technology, Xi' an 710048 (China)

    2011-07-15

    This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation. In order to improve its radiation tolerant abilities, circuit-level and device-level RHBD (radiation-hardening by design) techniques were employed. Adaptive slope compensation was used to improve the inherent instability. The H-gate MOS transistors, annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose. A boost converter was fabricated by a standard commercial 0.35 {mu}m CMOS process. The hardened design converter can work properly in a wide range of total dose radiation environments, with increasing total dose radiation. The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance. (semiconductor integrated circuits)

  17. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  18. Dose reduction in computed tomography: the effect of eye and testicle shielding on radiation dose measured in patients with beryllium oxide-based optically stimulated luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Grobe, Henrik; Koch, Arne; Abolmaali, Nasreddin [Dresden University of Technology, OncoRay - Center for Radiation Research in Oncology, Molecular Imaging, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, P.O. Box 86, Dresden (Germany); Sommer, Marian; Henniger, Juergen [Dresden University of Technology, Radiation Physics Group, Institute of Nuclear and Particle Physics, Dresden (Germany); Hietschold, Volker [University Hospital Carl Gustav Carus, Institute and Policlinic of Radiological Diagnostics, Dresden (Germany)

    2009-05-15

    The aim of this study was to assess the effect of eye and testicle shielding on radiation dose to the lens and the testes of patients undergoing CT examinations. Fifty-one male patients underwent CT twice with identical protocols initially without, the second time with protective garments. Doses to the testes and the lenses were recorded with beryllium oxide-based dosimeters. The dose to the testes and lenses from CT exposure was reduced by 96.2% {+-} 1.7% and 28.2% {+-} 18.5%, when testicle and eye shielding was used, respectively. The effect of the eye shielding on the eye lens dose was found to depend on the x-ray tube position when the eye is primarily exposed during the scan. The maximum eye lens dose reduction achieved was found to be 43.2% {+-} 6.5% corresponding to the anterior position of the tube. A significant correlation between the patient's body mass index and dose exposure could not be found. Eye and testicle shields, apart from being inexpensive and easy to use, were proven to be effective in reducing eye lens and testicle radiation dose burden from CT exposures. (orig.)

  19. Donor-specific cell-based assays in studying sensitivity to low-dose radiation: a population-based perspective

    Directory of Open Access Journals (Sweden)

    Dora eIl'yasova

    2014-11-01

    Full Text Available Currently, a linear no-threshold model is used to estimate health risks associated with exposure to low-dose radiation, a prevalent exposure in the general population, because the direct estimation from epidemiological studies suffers from uncertainty. This model has been criticized based on unique biology of low-dose radiation. Whether the departure from linearity is toward increased or decreased risk is intensely debated. We present an approach based on individual radiosensitivity testing and discuss how individual radiosensitivity can be assessed with the goal to develop a quantifiable measure of cellular response that can be conducted via high-throughput population testing.

  20. Environmental dose rate assessment of ITER using the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Karimian Alireza

    2014-01-01

    Full Text Available Exposure to radiation is one of the main sources of risk to staff employed in reactor facilities. The staff of a tokamak is exposed to a wide range of neutrons and photons around the tokamak hall. The International Thermonuclear Experimental Reactor (ITER is a nuclear fusion engineering project and the most advanced experimental tokamak in the world. From the radiobiological point of view, ITER dose rates assessment is particularly important. The aim of this study is the assessment of the amount of radiation in ITER during its normal operation in a radial direction from the plasma chamber to the tokamak hall. To achieve this goal, the ITER system and its components were simulated by the Monte Carlo method using the MCNPX 2.6.0 code. Furthermore, the equivalent dose rates of some radiosensitive organs of the human body were calculated by using the medical internal radiation dose phantom. Our study is based on the deuterium-tritium plasma burning by 14.1 MeV neutron production and also photon radiation due to neutron activation. As our results show, the total equivalent dose rate on the outside of the bioshield wall of the tokamak hall is about 1 mSv per year, which is less than the annual occupational dose rate limit during the normal operation of ITER. Also, equivalent dose rates of radiosensitive organs have shown that the maximum dose rate belongs to the kidney. The data may help calculate how long the staff can stay in such an environment, before the equivalent dose rates reach the whole-body dose limits.

  1. Radiation therapy of intracranial germinomas: optimum radiation dose and treatment volume

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sei Kyung [Eulji Medical College, Taejon (Korea, Republic of); Suh, Chang Ok; Kim, Gwi Eon [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    1999-09-01

    To evaluate the possibility of decreasing the radiation dose and to determine optimum treatment volume in intracranial germinomas. Forty five patients with pathologically-verified or presumed germinomas by a radiosensitivity test who had been treated with radiotherapy (RT) alone between 1971 and 1992 were retrospectively analyzed. The average age was 17.2 years with 68.9% of the patients being between the ages of 10-20. The male and female ratio was 2.2:1. The locations of the primary tumors were at the pineal regions in 14 patients; the suprasellar regions in 12 patients; and multiple sites in 12 patients. Treatment volumes varied from a small local field (1Q) to the whole brain (7) or entire neuroaxis irradiation(28). All the cases after 1982 received craniospinal irradiation (CSI). Radiation .doses were 41-59 Gv (median 48.5 Gy) to the primary tumor site and 19.5-36 Gy (median 24 Gy) to the neuroaxis. The median follow-up period was 82 months with a range of 2-260 months. All the patients showed complete response after AT. Four patients suffered from recurrence 14. 65. 76, and 170 months after AT,. respectively, and two patients died with intercurrent disease. One of four recurrent cases was salvaged by re-irradiation. Therefore, a 5 and 10 year overall survival was 95.3 % and 84.7 % respectively. Five and ten year disease free survival was 97.6 % and 88.8 % respectively. All the recurrences occurred in the patients who received local RT (3/10) or whole brain RT (1/7) with a radiation dose of 48-50 Gy. None of the patients who received CSJ suffered recurrence. There was no recurrence among the 15 patients who received 45 Gy to the primary site and the 18 patients who received 24 Gy (6 patients received 19.5 Gy) to the neuroaxis. CSI is recommended for the treatment of intracranial germinomas. The radiation dose can be safely decreased to {<=}45 Gy on a primary tumor site and 19.5 Gy on the spine.

  2. Low Dose Radiation Cancer Risks: Epidemiological and Toxicological Models

    Energy Technology Data Exchange (ETDEWEB)

    David G. Hoel, PhD

    2012-04-19

    The basic purpose of this one year research grant was to extend the two stage clonal expansion model (TSCE) of carcinogenesis to exposures other than the usual single acute exposure. The two-stage clonal expansion model of carcinogenesis incorporates the biological process of carcinogenesis, which involves two mutations and the clonal proliferation of the intermediate cells, in a stochastic, mathematical way. The current TSCE model serves a general purpose of acute exposure models but requires numerical computation of both the survival and hazard functions. The primary objective of this research project was to develop the analytical expressions for the survival function and the hazard function of the occurrence of the first cancer cell for acute, continuous and multiple exposure cases within the framework of the piece-wise constant parameter two-stage clonal expansion model of carcinogenesis. For acute exposure and multiple exposures of acute series, it is either only allowed to have the first mutation rate vary with the dose, or to have all the parameters be dose dependent; for multiple exposures of continuous exposures, all the parameters are allowed to vary with the dose. With these analytical functions, it becomes easy to evaluate the risks of cancer and allows one to deal with the various exposure patterns in cancer risk assessment. A second objective was to apply the TSCE model with varing continuous exposures from the cancer studies of inhaled plutonium in beagle dogs. Using step functions to estimate the retention functions of the pulmonary exposure of plutonium the multiple exposure versions of the TSCE model was to be used to estimate the beagle dog lung cancer risks. The mathematical equations of the multiple exposure versions of the TSCE model were developed. A draft manuscript which is attached provides the results of this mathematical work. The application work using the beagle dog data from plutonium exposure has not been completed due to the fact

  3. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P. [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  4. Characteristics of the graded wildlife dose assessment code K-BIOTA and its application

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Kim, Byeong Ho; Choi, Yong Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    This paper describes the technical background for the Korean wildlife radiation dose assessment code, K-BIOTA, and the summary of its application. The K-BIOTA applies the graded approaches of 3 levels including the screening assessment (Level 1 and 2), and the detailed assessment based on the site specific data (Level 3). The screening level assessment is a preliminary step to determine whether the detailed assessment is needed, and calculates the dose rate for the grouped organisms, rather than an individual biota. In the Level 1 assessment, the risk quotient (RQ) is calculated by comparing the actual media concentration with the environmental media concentration limit (EMCL) derived from a bench-mark screening reference dose rate. If RQ for the Level 1 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 2 assessment, which calculates RQ using the average value of the concentration ratio (CR) and equilibrium distribution coefficient (Kd) for the grouped organisms, is carried out for the more realistic assessment. Thus, the Level 2 assessment is less conservative than the Level 1 assessment. If RQ for the Level 2 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 3 assessment is performed for the detailed assessment. In the Level 3 assessment, the radiation dose for the representative organism of a site is calculated by using the site specific data of occupancy factor, CR and Kd. In addition, the K-BIOTA allows the uncertainty analysis of the dose rate on CR, Kd and environmental medium concentration among input parameters optionally in the Level 3 assessment. The four probability density functions of normal, lognormal, uniform and exponential distribution can be applied. The applicability of the code was tested through the

  5. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lim Yiting [Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hedayati, Mohammad; Merchant, Akil A.; Zhang Yonggang; Yu, Hsiang-Hsuan M. [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Kastan, Michael B. [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States); Matsui, William, E-mail: matsuwi@jhmi.edu [Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); DeWeese, Theodore L., E-mail: deweete@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2012-11-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hours before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection

  6. Analysis of chronic radiation exposure at small doses

    Energy Technology Data Exchange (ETDEWEB)

    Krestinina, L.Y. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation)

    2000-05-01

    The purpose of the study was to analyze the late effects of radiation exposure among residents of settlements located on the territory of the East-Urals Radiation Trace (EURT) in the Southern Urals. In 1957 an explosion occurred at the depot of radioactive waste in the Southern Urals. An area of 23000 km{sup 2} was contaminated, with contamination density of over 0.1 Ci/m{sup 2} for {sup 90}Sr. There were 217 populated ares on that territory with total population about 270000. The residents of 22 villages with contamination density of over 4 Ci/km{sup 2} for {sup 90}Sr were evacuated. The times of evacuation differed from 7 to 670 days since the accident, depending on the level of contamination. In 1988-1993 an individualized registry was created at the Urals Research Center for Radiation Medicine (URCRM) which included information on the residents of 22 evacuated villages and a proportion of unevacuated residents of the EURT area. Currently, the registry contains data on 30000 residents. Of that number 17000 persons were born before, and 12000 after the accident (including about 9000 offspring of exposed residents evacuated from the EURT, and about 3000 persons who were born after the accident and have been living permanently in the EURT area). Over the 35-year period since the accident the residents have received mean effective doses ranging from 23 to 530 mSv. The mean effective doses received by permanent residents range from 5 to 60 mSv. The cohort of people exposed on the EURT territory was identified based on the information contained in the registry. If a person happened to be in the EURT area at the time of the accident, he/she was considered to be eligible for inclusion in the cohort. Over the 35-year period (from 1957 through 1992) 29.5% of 17872 residents died, and 35% of the original cohort were lost to follow-up for different reasons. To enable an analysis a control group was established which included residents of villages located outside, but close

  7. Assessment of secondary radiation and radiation protection in laser-driven proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faby, Sebastian; Wilkens, Jan J. [Technische Univ. Muenchen Klinikum rechts der Isar (Germany). Dept. of Radiation Oncology; Technische Univ. Muenchen (Germany). Physik-Dept.

    2015-09-01

    This work is a feasibility study of a radiation treatment unit with laser-driven protons based on a state-of-the-art energy selection system employing four dipole magnets in a compact shielded beamline. The secondary radiation emitted from the beamline and its energy selection system and the resulting effective dose to the patient are assessed. Further, it is evaluated whether or not such a compact system could be operated in a conventional treatment vault for clinical linear accelerators under the constraint of not exceeding the effective dose limit of 1 mSv per year to the general public outside the treatment room. The Monte Carlo code Geant4 is employed to simulate the secondary radiation generated while irradiating a hypothetical tumor. The secondary radiation inevitably generated inside the patient is taken into account as well, serving as a lower limit. The results show that the secondary radiation emanating from the shielded compact therapy system would pose a serious secondary dose contamination to the patient. This is due to the broad energy spectrum and in particular the angular distribution of the laser-driven protons, which make the investigated beamline together with the employed energy selection system quite inefficient. The secondary radiation also cannot be sufficiently absorbed in a conventional linear accelerator treatment vault to enable a clinical operation. A promising result, however, is the fact that the secondary radiation generated in the patient alone could be very well shielded by a regular treatment vault, allowing the application of more than 100 fractions of 2 Gy per day with protons. It is thus theoretically possible to treat patients with protons in such treatment vaults. Nevertheless, the results show that there is a clear need for alternative more efficient energy selection solutions for laser-driven protons.

  8. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  9. Radiation dose from multidetector CT studies in children: results from the first Italian nationwide survey

    Energy Technology Data Exchange (ETDEWEB)

    Granata, Claudio [IRCCS Istituto Giannina Gaslini, Department of Radiology, Genoa (Italy); Origgi, Daniela; Palorini, Federica [Istituto Europeo di Oncologia, Department of Medical Physics, Milan (Italy); Matranga, Domenica [University of Palermo, Department of Sciences for Health Promotion and Mother and Child Care ' ' G. D' Alessandro' ' , Palermo (Italy); Salerno, Sergio [University of Palermo, Department of Medical and Forensic Biopathology and Biotechnologies, Section of Radiology, Palermo (Italy)

    2015-05-01

    Multidetector CT (MDCT) scanners have contributed to the widespread use of CT in paediatric imaging. However, concerns are raised for the associated radiation exposure. Very few surveys on radiation exposure from MDCT studies in children are available. The aim of this study was to outline the status of radiation exposure in children from MDCT practice in Italy. In this retrospective multicentre study we asked Italian radiology units with an MDCT scanner with at least 16 slices to provide dosimetric and acquisition parameters of CT examinations in three age groups (1-5, 6-10, 11-15 years) for studies of head, chest and abdomen. The dosimetric results were reported in terms of third-quartile volumetric CT dose index (CTDI{sub vol}) (mGy), size-specific dose estimate (SSDE) (mGy), dose length product (DLP) (mGy cm), and total DLP for multiphase studies. These results were compared with paediatric European and adult Italian published data. A multivariate analysis assessed the association of CTDI{sub vol} with patient characteristics and scanning modalities. We collected data from 993 MDCT examinations performed at 25 centres. For age groups 1-5 years, 6-10 years and 11-15 years, the CTDI{sub vol}, DLP and total DLP values were statistically significantly below the values observed in our analogous national survey in adults, although the difference decreased with increasing age. CTDI{sub vol} variability among centres was statistically significant (variance = 0.07; 95% confidence interval = 0.03-0.16; P < 0.001). This study reviewed practice in Italian centres performing paediatric imaging with MDCT scanners. The variability of doses among centres suggests that the use of standardised CT protocols should be encouraged. (orig.)

  10. Data Integration Reveals Key Homeostatic Mechanisms Following Low Dose Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Matzke, Melissa M.; Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J.; Morgan, William F.; Waters, Katrina M.

    2015-05-01

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time - with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24 – 72 hr). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress were measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 were experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation.

  11. Effective Dose from Stray Radiation for a Patient Receiving Proton Therapy for Liver Cancer

    Science.gov (United States)

    Taddei, Phillip J; Krishnan, Sunil; Mirkovic, Dragan; Yepes, Pablo; Newhauser, Wayne D

    2010-01-01

    Because of its advantageous depth-dose relationship, proton radiotherapy is an emerging treatment modality for patients with liver cancer. Although the proton dose distribution conforms to the target, healthy tissues throughout the body receive low doses of stray radiation, particularly neutrons that originate in the treatment unit or in the patient. The aim of this study was to calculate the effective dose from stray radiation and estimate the corresponding risk of second cancer fatality for a patient receiving proton beam therapy for liver cancer. Effective dose from stray radiation was calculated using detailed Monte Carlo simulations of a double-scattering proton therapy treatment unit and a voxelized human phantom. The treatment plan and phantom were based on CT images of an actual adult patient diagnosed with primary hepatocellular carcinoma. For a prescribed dose of 60 Gy to the clinical target volume, the effective dose from stray radiation was 370 mSv; 61% of this dose was from neutrons originating outside of the patient while the remaining 39% was from neutrons originating within the patient. The excess lifetime risk of fatal second cancer corresponding to the total effective dose from stray radiation was 1.2%. The results of this study establish a baseline estimate of the stray radiation dose and corresponding risk for an adult patient undergoing proton radiotherapy for liver cancer and provide new evidence to corroborate the suitability of proton beam therapy for the treatment of liver tumors. PMID:20865142

  12. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  13. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  14. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation. PMID:26795421

  15. Monte Carlo estimation of radiation doses during paediatric barium meal and cystourethrography examinations

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriadis, A; Gialousis, G; Karlatira, M; Karaiskos, P; Georgiou, E; Yakoumakis, E [Medical Physics Department, Medical School, University of Athens, 75 Mikras Asias Str., Goudi 11527, Athens (Greece); Makri, T; Papaodysseas, S, E-mail: anestisdim@yahoo.com [Radiological Imaging Department, Ag. Sofia Hospital, Lebadias and Thibon, Goudi 11527, Athens (Greece)

    2011-01-21

    Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87, 2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54, 1.8, 3.1 mSv), the small intestines (1.34, 1.56, 2.78 mSv), the stomach (1.46, 1.02, 2.01 mSv) and the gall bladder (1.46, 1.66, 2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies.

  16. An Internal Dose Assessment Associated with Personal Food Intake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joeun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of); Hwang, Wontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    ICRP (International Commission on Radiological Protection), Therefore, had recommended the concept of 'Critical Group'. Recently the ICRP has recommended the use of 'Representative Person' on the new basic recommendation 103. On the other hand the U.S. NRC (Nuclear Regulatory Commission) has adopted more conservative concept, 'Maximum Exposed Individuals (MEI)' of critical Group. The dose assessment in Korea is based on MEI. Although dose assessment based on MEI is easy to receive the permission of the regulatory authority, it is not efficient. Meanwhile, the internal dose by food consumption takes an important part. Therefore, in this study, the internal dose assessment was performed in accordance with ICRP's new recommendations. The internal dose assessment was performed in accordance with ICRP's new recommendations. It showed 13.2% decreased of the annual internal dose due to gaseous effluents by replacing MEI to the concept of representative person. Also, this calculation based on new ICRP's recommendation has to be extended to all areas of individual dose assessment. Then, more accurate and efficient values might be obtained for dose assessment.

  17. Trends in Radiation Doses to Patients from Medical X-ray Examinations in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Olga Iacob; Irina Anca Popescu [Institute of Public Health, Iassy (Romania); Mihai Radu Iacob [University ' Al. I. Cuza' Iassy (Romania)

    2006-07-01

    Even if the doses received by patients during 2005 survey are lower than those estimated in the 2000 national survey on diagnostic medical radiation exposure by 27 percent, on average, their values still indicate an urgent need to develop radiation protection and optimization activities for X ray examinations, especially in pediatrics radiology. The increasing attention given in last years to radiation protection for conventional examinations, with development of national patient dosimetry protocols and reference doses, new radiation protection legislation and norms have played a significant part in this substantial reduction in effective doses. (N.C.)

  18. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    Science.gov (United States)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  19. Radiation dose to patient and personnel during extracorporeal shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Bush, W.H.; Jones, D.; Gibbons, R.P.

    1987-10-01

    Radiation dose to the patient and personnel was determined during extracorporeal shock wave lithotripsy treatment of 60 patients. Surface radiation dose to the patient's back from the fluoroscopy unit on the side with the kidney stone averaged 10 rem (100 mSv.) per case, although the range was wide (1 to 30 rem). The surface dose from the opposing biplane x-ray unit was less, averaging 5.5 rem (55 mSv.) per case but again with a wide range (0.1 to 21 rem). Exit dose at the lower abdomen averaged 13 mrem. (0.13 mSv.) per case and estimated female gonad dose averaged 100 mrem. (1.2 mSv.). Radiation dose to personnel working in the extracorporeal shock wave lithotripsy suite averaged less than 2 mrem. (0.02 mSv.) per case, making it a procedure that is safe in regard to radiation exposure.

  20. Assessment of patient doses and image quality in X-ray diagnostics in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Olerud, H.M.

    1998-06-01

    Results from other industrialized countries indicate that the annual number of diagnostic procedures approaches one for every member of the population, and in many cases the individual radiation doses are higher than from any other human activity. Furthermore, the doses to patients for the same type of examination differ widely from place to place, suggesting that there is a considerable potential for dose reduction. This motivated an investigation of the diagnostic use of X-rays in Norway. The trends in the number of X-ray examinations performed annually have been studied. The patient doses (all diagnostics) and image quality (mammography and computed tomography) have been assessed for various radiological procedures. This form the basis for the assessment of total collective effective dose (CED) from X-rays in Norway, and further risk estimates. The radiological practice has then been evaluated according to the radiation protection principles of justification and optimisation. Based on the 1993 examination frequency, the total CED was assessed to 3400 manSv (0.78 mSv/inhabitant). It is estimated that this radiation burden may cause about 100 excess cancer deaths annually. The frequency of CT examination has doubled every fifth year, and did in 1993 represent 7% of the total number of examinations and 30% of the total CED. 129 refs.

  1. Whole-body CT for lymphoma staging: Feasibility of halving radiation dose and risk by iterative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M., E-mail: mathias.meyer@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Klein, S.A., E-mail: stefan.klein@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Brix, G., E-mail: gbrix@bfs.de [Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Fink, C., E-mail: Christian.Fink@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Pilz, L., E-mail: lothar.pilz@medma.uni-heidelberg.de [Department of Biostatistics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Jafarov, H., E-mail: Hashim.Jafarov@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Hofmann, W.K., E-mail: w.k.hofmann@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoenberg, S.O., E-mail: Stefan.Schoenberg@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); and others

    2014-02-15

    Objectives: Patients with lymphoma are at higher-risk of secondary malignancies mainly due to effects of cancer therapy as well as frequent radiological surveillance. We thus aimed to investigate the objective and subjective image quality as well as radiation exposure and risk of full-dose standard (FDS), full-dose iterative (FDI), and half-dose iterative (HDI) image reconstruction in patients with lymphoma. Material and methods: In 100 lymphoma patients, contrast-enhanced whole-body staging was performed on a dual-source CT. To acquire full-dose and half-dose CT data simultaneously, the total current-time product was equally distributed on both tubes operating at 120 kV. HDI reconstructions were calculated by using only data from one tube. Quantitative image quality was assessed by measuring image noise in different tissues of the neck, thorax, and abdomen. Overall diagnostic image quality was assessed using a 5-point Likert scale. Radiation doses and risks were estimated for a male and female reference person. Results: For all anatomical regions apart from the lungs image noise was significantly lower and the overall subjective image quality significantly better when using FDI and HDI instead of FDS reconstruction (p < 0.05). For the half-dose protocol, the risk to develop a radiation-induced cancer was estimated to be less than 0.11/0.19% for an adult male/female. Conclusions: Image quality of FDI and more importantly of HDI is superior to FDS reconstruction, thus enabling to halve radiation dose and risk to lymphoma patients.

  2. Preoperative chemoradiation for locally advanced rectal cancer: comparison of three radiation dose and fractionation schedules

    Energy Technology Data Exchange (ETDEWEB)

    Park, Shin Hyung; Kim, Jae Chul [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2016-06-15

    The standard radiation dose for patients with locally rectal cancer treated with preoperative chemoradiotherapy is 45–50 Gy in 25–28 fractions. We aimed to assess whether a difference exists within this dose fractionation range. A retrospective analysis was performed to compare three dose fractionation schedules. Patients received 50 Gy in 25 fractions (group A), 50.4 Gy in 28 fractions (group B), or 45 Gy in 25 fractions (group C) to the whole pelvis, as well as concurrent 5-fluorouracil. Radical resection was scheduled for 8 weeks after concurrent chemoradiotherapy. Between September 2010 and August 2013, 175 patients were treated with preoperative chemoradiotherapy at our institution. Among those patients, 154 were eligible for analysis (55, 50, and 49 patients in groups A, B, and C, respectively). After the median follow-up period of 29 months (range, 5 to 48 months), no differences were found between the 3 groups regarding pathologic complete remission rate, tumor regression grade, treatment-related toxicity, 2-year locoregional recurrence-free survival, distant metastasis-free survival, disease-free survival, or overall survival. The circumferential resection margin width was a prognostic factor for 2-year locoregional recurrence-free survival, whereas ypN category was associated with distant metastasis-free survival, disease-free survival, and overall survival. High tumor regression grading score was correlated with 2-year distant metastasis-free survival and disease-free survival in univariate analysis. Three different radiation dose fractionation schedules, within the dose range recommended by the National Comprehensive Cancer Network, had no impact on pathologic tumor regression and early clinical outcome for locally advanced rectal cancer.

  3. Radiation doses and risks to neonates undergoing radiographic examinations in intensive care units in Tunisia

    Directory of Open Access Journals (Sweden)

    Abir Bouaoun

    2015-12-01

    Full Text Available Purpose: To assess the radiation doses to neonates from diagnostic radiography in order to derive the local diagnostic reference levels (LDRLs for optimisation purposes.Methods: This study was carried out in the neonatal intensive care units (NICU of  two hospitals in Tunis. 134 babies, with weights ranging from 635 g to 6680 g, performed chest-abdomen X-ray examinations. Neonates were categorized into groups of birth weight. For each X-ray examination, patient data and exposure parameters were recorded. Dose area product (DAP was measured and entrance surface dose (ESD was estimated. Effective dose was calculated from the Monte Carlo simulation software PCXMC.Results: DAP values increased with neonatal weight and demonstrated a wide variation (5.0 - 43.0 mGy.cm2, mean 23.4 mGy.cm2 for patient weight from 600 g to 4000 g. A wide variation was also observed for ESD (14 - 93 μGy, mean 55.2 μGy. The LDRLs expressed in term of DAP were estimated to be 17.6 mGy.cm2 and 29.1 mGy.cm2 for the first and the second NICU, respectively. In terms of effective dose, the average value was about 31.6 μSv per single radiological examination. The results show the necessity to use a standardized protocol with high voltage technique combined to lower current time product (mAs values and an adapted collimation which could lead to further reductions in the neonatal doses. Conclusion: This study presents the LDRLs and the effective doses for neonates in two NICUs and demonstrates the necessity to optimize patient protection for this category of patient.

  4. Radiation dose reduction in chest CT—Review of available options

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takeshi, E-mail: tkubo@kuhpkyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Kauczor, Hans Ulrich, E-mail: hu.kauczor@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Clinic Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)

    2014-10-15

    Highlights: • The present status of proliferating CT examinations was presented. • Technical improvements of CT scanners for radiation dose reduction were reviewed. • Advantage and disadvantage of methods for CT radiation dose reduction were discussed. • Evidences for safety of CT radiation dose reduction were reviewed. - Abstract: Computed tomography currently accounts for the majority of radiation exposure related to medical imaging. Although technological improvement of CT scanners has reduced the radiation dose of individual examinations, the benefit was overshadowed by the rapid increase in the number of CT examinations. Radiation exposure from CT examination should be kept as low as reasonably possible for patient safety. Measures to avoid inappropriate CT examinations are needed. Principles and information on radiation dose reduction in chest CT are reviewed in this article. The reduction of tube current and tube potential are the mainstays of dose reduction methods. Study results indicate that routine protocols with reduced tube current are feasible with diagnostic results comparable to conventional standard dose protocols. Tube current adjustment is facilitated by the advent of automatic tube current modulation systems by setting the appropriate image quality level for the purpose of the examination. Tube potential reduction is an effective method for CT pulmonary angiography. Tube potential reduction often requires higher tube current for satisfactory image quality, but may still contribute to significant radiation dose reduction. Use of lower tube potential also has considerable advantage for smaller patients. Improvement in image production, especially the introduction of iterative reconstruction methods, is expected to lower radiation dose significantly. Radiation dose reduction in CT is a multifaceted issue. Understanding these aspects leads to an optimal solution for various indications of chest CT.

  5. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  6. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  7. [Evaluating radiation dose load in medical personnel of radiologic diagnostic departments].

    Science.gov (United States)

    Trunov, B V; Koroleva, E P

    2014-01-01

    The article deals with materials on radiation hygienic evaluation of radiologic diagnostic departments in various medical institutions of Moscow. The studies covered work of medical staffers in X-ray examination and in contact with short-lived isotope generators. The authors outlined the examination types and stages with maximal radiation danger. Disimetric information obtained during the study helped to calculate values of equivalent, effective doses of radiation for medical personnel and maximal potential doses.

  8. A Comparison of Radiation Dose Between Standard and 3D Angiography in Congenital Heart Disease

    Energy Technology Data Exchange (ETDEWEB)

    Manica, João Luiz Langer, E-mail: joca.pesquisa@gmail.com; Borges, Mônica Scott; Medeiros, Rogério Fachel de; Fischer, Leandro dos Santos; Broetto, Gabriel; Rossi, Raul Ivo Filho [Instituto de Cardiologia / Fundação Universitária de Cardiologia, Porto Alegre, RS (Brazil)

    2014-08-15

    The use of three-dimensional rotational angiography (3D-RA) to assess patients with congenital heart diseases appears to be a promising technique despite the scarce literature available. The objective of this study was to describe our initial experience with 3D-RA and to compare its radiation dose to that of standard two-dimensional angiography (2D-SA). Between September 2011 and April 2012, 18 patients underwent simultaneous 3D-RA and 2D-SA during diagnostic cardiac catheterization. Radiation dose was assessed using the dose-area-product (DAP). The median patient age and weight were 12.5 years and 47.5 Kg, respectively. The median DAP of each 3D-RA acquisition was 1093µGy.m{sup 2} and 190µGy.m{sup 2} for each 2D-SA acquisition (p<0.01). In patients weighing more than 45Kg (n=7), this difference was attenuated but still significant (1525 µGy.m{sup 2} vs.413µGy.m{sup 2}, p=0.01). No difference was found between one 3D-RA and three 2D-SA (1525µGy.m{sup 2} vs.1238 µGy.m{sup 2}, p = 0.575) in this population. This difference was significantly higher in patients weighing less than 45Kg (n=9) (713µGy.m{sup 2} vs.81µGy.m{sup 2}, P = 0.008), even when comparing one 3D-RA with three 2D-SA (242µGy.m{sup 2}, respectively, p<0.008). 3D-RA was extremely useful for the assessment of conduits of univentricular hearts, tortuous branches of the pulmonary artery, and aorta relative to 2D-SA acquisitions. The radiation dose of 3D-RA used in our institution was higher than those previously reported in the literature and this difference was more evident in children. This type of assessment is of paramount importance when starting to perform 3D-RA.

  9. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  10. Correlation between scatter radiation dose at the height of the operators eye and dose to patient for different angiographies projections

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, F.; Nogueira, M. S.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Post-graduation in Sciences and Technology of Radiations, Minerals and Materials, Pte. Antonio Carlos No. 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Gubolino, L.; Pivetta, M. R. [Hospital dos Fornecedores de Cana de Piracicaba, Av. Barao de Valenca 616, 13405-233 Piracicaba (Brazil); Ubeda, C., E-mail: leyton.fernando@gmail.com [Tarapaca University, Health Sciences Faculty, Radiological Sciences Center, Av. Gral. Velasquez 1775, 1000007 Arica, Arica and Parinacota (Chile)

    2015-10-15

    Cases of radiation induced cataract among cardiology professionals have been reported in studies. In view of evidence of radiation injuries, the ICRP recommends limiting the radiation dose to the lens to 20 mSv per year for occupational exposure. The aim of this works was to report scattered radiation doses at the height of the operators eye in an interventional cardiology facility from procedures performed without use of radiation protection devices, correlated with different angiographic projections and operational modes. Measurements were made in a cardiac laboratory with an angiography X-ray system GE equipped with flat-panel detector. PMMA plates of 30 x 30 x 5 cm were used to simulate a patient with a thickness of 20 cm. Two fluoroscopy modes (low and normal, 15 frame/s), cine mode 15 frame/s. Four angiographic projections anterior posterior (Ap), lateral (Lat), left anterior oblique caudal (spider) and left anterior oblique cranial (Lao-45/cra-30) and a cardiac protocol for patient between 70 to 90 kg was used. Measurements of phantom entrance doses rate and scatter doses rate were performed with two Unfors Xi plus. The detector measuring scatter radiation was positioned at the usual distance of the cardiologists eyes during working conditions (1 m from the isocenter and 1.7 m from the floor). There is a good linear correlation between the kerma-area product and scatter dose at the lens. An experimental correlation factor of 2.3; 12.0; 12.2 and 17.6 μSv/Gy cm{sup 2} were found for the Ap, Lao/cra, spider and Lat projections, respectively. The entrance dose of PMMA for fluoroscopy low, medium and cine was 13, 39 and 282 mGy/min, respectively to Ap. (Author)

  11. Dose to red bone marrow of infants, children and adults from radiation of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, G M [Childhood Cancer Research Group, University of Oxford, 57 Woodstock Road, Oxford OX2 6HJ (United Kingdom); Fell, T P; Harrison, J D [Health Protection Agency, Radiation Protection Division, CRCE, Chilton, Didcot OX11 0RQ, Oxon (United Kingdom)], E-mail: Gerald.Kendall@ccrg.ox.ac.uk

    2009-06-15

    Natural radiation sources contribute much the largest part of the radiation exposure of the average person. This paper examines doses from natural radiation to the red bone marrow, the tissue in which leukaemia is considered to originate, with particular emphasis on doses to children. The most significant contributions are from x-rays and gamma rays, radionuclides in food and inhalation of isotopes of radon and their decay products. External radiation sources and radionuclides other than radon dominate marrow doses at all ages. The variation with age of the various components of marrow dose is considered, including doses received in utero and in each year up to the age of 15. Doses in utero include contributions resulting from the ingestion of radionuclides by the mother and placental transfer to the foetus. Postnatal doses include those from radionuclides in breast-milk and from radionuclides ingested in other foods. Doses are somewhat higher in the first year of life and there is a general slow decline from the second year of life onwards. The low linear energy transfer (LET) component of absorbed dose to the red bone marrow is much larger than the high LET component. However, because of the higher radiation weighting factor for the latter it contributes about 40% of the equivalent dose incurred up to the age of 15.

  12. Biological dose assessment by the analyses of chromosomal aberrations in 2 subjects accidentally exposed to ionizing radiation%2例电离辐射意外照射事件受检者染色体畸变分析和生物剂量估计

    Institute of Scientific and Technical Information of China (English)

    王金合; 姜峰; 韩林; 王平; 王喜爱; 吕玉民

    2011-01-01

    Objective: To investigate biological dose assessment by the analyses of chromosomal aberrations in 2 subjects accidentally exposed to ionizing radiation. Methods: Biological doses were estimated by the analysis of conventional chromosomal aberration from peripheral blood lymphocyte of the subjects. Results:The frequencies of dicentrics and translocation in 2 subjects were significantly higher than spontaneous frequency, and the equivalent whole body doses for the 2 subjects were estimated to be 0.21Gy (A) and 0.17Gy ( B) respectively. Conclusion:2 subjects suffered from over - exposure of ionizing radiation.%目的:对2例电离辐射意外照射事件受检人员进行外周血染色体畸变分析和生物剂量估计.方法:常规法分析受检者外周血淋巴细胞染色体畸变并估计受照剂量.结果:2例受检者的双着丝粒体和易位率均明显高于自发畸变率,估计的全身平均吸收剂量分别为0.21Gy(A)和0.17Gy(B).结论:2例受检者受到过量照射.

  13. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: dose/volume-response relations

    Energy Technology Data Exchange (ETDEWEB)

    Levegruen, S.; Schlegel, W. [Dept. of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Hof, H.; Debus, J. [Dept. of Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Essig, M. [Dept. of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2004-12-01

    of edema and/or BBBB) were significantly higher than those for small tissue changes (V12{sub 50} = 4.0 {+-} 0.3 cm{sup 3} and Dmean20{sub 50} = 7.6 {+-} 0.3 Gy). Conclusion: the derived dose/volume-response relations allow to quantitatively assess the risk of radiation-induced changes of brain tissue after radiosurgery in AVM patients. However, further understanding of the mechanism leading to brain tissue changes and their correlation with the desired obliteration is required. This knowledge will eventually help to optimize radiosurgical treatments in AVM patients. (orig.)

  14. Realistic retrospective dose assessments to members of the public around Spanish nuclear facilities.

    Science.gov (United States)

    Jiménez, M A; Martín-Valdepeñas, J M; García-Talavera, M; Martín-Matarranz, J L; Salas, M R; Serrano, J I; Ramos, L M

    2011-11-01

    In the frame of an epidemiological study carried out in the influence areas around the Spanish nuclear facilities (ISCIII-CSN, 2009. Epidemiological Study of The Possible Effect of Ionizing Radiations Deriving from The Operation of Spanish Nuclear Fuel Cycle Facilities on The Health of The Population Living in Their Vicinity. Final report December 2009. Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Consejo de Seguridad Nuclear. Madrid. Available from: http://www.csn.es/images/stories/actualidad_datos/especiales/epidemiologico/epidemiological_study.pdf), annual effective doses to public have been assessed by the Spanish Nuclear Safety Council (CSN) for over 45 years using a retrospective realistic-dose methodology. These values are compared with data from natural radiation exposure. For the affected population, natural radiation effective doses are in average 2300 times higher than effective doses due to the operation of nuclear installations (nuclear power stations and fuel cycle facilities). When considering the impact on the whole Spanish population, effective doses attributable to nuclear facilities represent in average 3.5×10(-5)mSv/y, in contrast to 1.6mSv/y from natural radiation or 1.3mSv/y from medical exposures.

  15. Radiation Therapy With Full-Dose Gemcitabine and Oxaliplatin for Unresectable Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Klaudia U.; Feng, Felix Y. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Griffith, Kent A. [Comprehensive Cancer Center Biostatistics Unit, University of Michigan, Ann Arbor, MI (United States); Francis, Isaac R. [Department of Radiology, University of Michigan, Ann Arbor, MI (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Desai, Sameer [Department of Internal Medicine, University of Michigan, Ann Arbor, MI (United States); Murphy, James D. [School of Medicine, University of Michigan, Ann Arbor, MI (United States); Zalupski, Mark M. [Department of Internal Medicine, University of Michigan, Ann Arbor, MI (United States); Ben-Josef, Edgar, E-mail: edgarb@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)

    2012-07-01

    Purpose: We completed a Phase I trial of gemcitabine and oxaliplatin with concurrent radiotherapy in patients with previously untreated pancreatic cancer. The results of a subset of patients with unresectable disease who went on to receive planned additional therapy are reported here. Methods and Materials: All patients received two 28-day cycles of gemcitabine (1,000 mg/m{sup 2} on Days 1, 8, and 15) and oxaliplatin (40-85 mg/m{sup 2} on Days 1 and 15, per a dose-escalation schema). Radiation therapy was delivered concurrently with Cycle 1 (27 Gy in 1.8-Gy fractions). At 9 weeks, patients were reassessed for resectability. Those deemed to have unresectable disease were offered a second round of treatment consisting of 2 cycles of gemcitabine and oxaliplatin and 27 Gy of radiation therapy (total, 54 Gy). Radiation was delivered to the gross tumor volume plus 1 cm by use of a three-dimensional conformal technique. We used the Common Terminology Criteria for Adverse Events to assess acute toxicity. Late toxicity was scored per the Radiation Therapy Oncology Group scale. Computed tomography scans were reviewed to determine pattern of failure, local response, and disease progression. Kaplan-Meier methodology and Cox regression models were used to evaluate survival and freedom from failure. Results: Thirty-two patients from the Phase I dose-escalation study had unresectable disease, three of whom had low-volume metastatic disease. Of this group, 16 patients went on to receive additional therapy to complete a total of 4 cycles of chemotherapy and 54 Gy of concurrent radiation. For this subset, 38% had at least a partial tumor response at a median of 3.2 months. Median survival was 11.8 months (range, 4.4-26.3 months). The 1-year freedom from local progression rate was 93.8% (95% confidence interval, 63.2-99.1). Conclusions: Radiation therapy to 54 Gy with concurrent full-dose gemcitabine and oxaliplatin is well tolerated and results in favorable rates of local tumor

  16. Industrial irradiator radiation safety program assessments

    Science.gov (United States)

    Smith, Mark A.

    2000-03-01

    Considerable attention is typically given to radiation safety in the design of irradiators and initially establishing the program. However, one component that may not receive enough attention is applying the continuous improvement philosophy to the radiation safety program. Periodic total program assessments of radiation safety can ensure that the design and implementation of the program continues to be applicable to the operations. The first step in the process must be to determine what is to be covered in the program assessment. While regulatory compliance audits are a component, the most useful evaluation will extend beyond looking only at compliance and determine whether the radiation safety program is the most appropriate for the particular operation. Several aspects of the irradiator operation, not all of which may routinely be considered "radiation safety", per se, should be included: Design aspects of the irradiator and operating system, system controls, and maintenance procedures, as well as the more traditional radiation safety program components such as surveys, measurements and training.

  17. Reduction in stray radiation dose using a body-shielding device during external radiation therapy.

    Science.gov (United States)

    Zhang, Shuxu; Jiang, Shaohui; Zhang, Quanbin; Lin, Shengqu; Wang, Ruihao; Zhou, Xiang; Zhang, Guoqian; Lei, Huaiyu; Yu, Hui

    2017-03-01

    With the purpose of reducing stray radiation dose (SRD) in out-of-field region (OFR) during radiotherapy with 6 MV intensity-modulated radiation therapy (IMRT), a body-shielding device (BSD) was prepared according to the measurements obtained in experimental testing. In experimental testing, optimal shielding conditions, such as 1 mm lead, 2 mm lead, and 1 mm lead plus 10 mm bolus, were investigated along the medial axis of a phantom using thermoluminescent dosimeters (TLDs). The SRDs at distances from field edge were then measured and analyzed for a clinical IMRT treatment plan for nasopharyngeal carcinoma before and after shielding using the BSD. In addition, SRDs in anterior, posterior, left and right directions of phantom were investigated with and without shielding, respectively. Also, the SRD at the bottom of treatment couch was measured. SRD decreased exponentially to a constant value with increasing distance from field edge. The shielding rate was 50%-80%; however, there were no significant differences in SRDs when shielded by 1 mm lead, 2 mm lead, or 1 mm lead plus 10 mm bolus (P>0.05). Importantly, the 10 mm bolus absorbed back-scattering radiation due to the interaction between photons and lead. As a result, 1 mm lead plus 10 mm bolus was selected to prepare the BSD. After shielding with BSD, total SRDs in the OFR decreased to almost 50% of those without shielding when irradiated with IMRT beams. Due to the effects of treatment couch and gantry angle, SRDs at distances were not identical in anterior, posterior, left and right direction of phantom without BSD. As higher dose in anterior and lower dose in posterior, SRDs were substantial similarities after shielding. There was no significant difference in SRDs for left and right directions with or without shielding. Interestingly, SRDs in the four directions were similar after shielding. From these results, the BSD developed in this study may significantly reduce SRD in the OFR during

  18. Effects of adaptive statistical iterative reconstruction on radiation dose reduction and diagnostic accuracy of pediatric abdominal CT

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sohi; Kim, Myung-Joon; Lee, Mi-Jung [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Seoul (Korea, Republic of); Yoon, Choon-Sik [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Kim, Dong Wook; Hong, Jung Hwa [Yonsei University College of Medicine, Biostatistics Collaboration Unit, Seoul (Korea, Republic of)

    2014-12-15

    Since children are more radio-sensitive than adults, there is a need to minimize radiation exposure during CT exams. To evaluate the effects of adaptive statistical iterative reconstruction (ASIR) on radiation dose reduction, image quality and diagnostic accuracy in pediatric abdominal CT. We retrospectively reviewed the abdominal CT examinations of 41 children (24 boys and 17 girls; mean age: 10 years) with a low-dose radiation protocol and reconstructed with ASIR (the ASIR group). We also reviewed routine-dose abdominal CT examinations of 41 age- and sex-matched controls reconstructed with filtered-back projection (control group). Image quality was assessed objectively as noise measured in the liver, spleen and aorta, as well as subjectively by three pediatric radiologists for diagnostic acceptability using a four-point scale. Radiation dose and objective image qualities of each group were compared with the paired t-test. Diagnostic accuracy was evaluated by reviewing follow-up imaging studies and medical records in 2012 and 2013. There was 46.3% dose reduction of size-specific dose estimates in ASIR group (from 13.4 to 7.2 mGy) compared with the control group. Objective noise was higher in the liver, spleen and aorta of the ASIR group (P < 0.001). However, the subjective image quality was average or superior in 84-100% of studies. Only one image was subjectively rated as unacceptable by one reviewer. There was only one case with interpretational error in the control group and none in the ASIR group. Use of the ASIR technique resulted in greater than a 45% reduction in radiation dose without impairing subjective image quality or diagnostic accuracy in pediatric abdominal CT, despite increased objective image noise. (orig.)

  19. [Formation of optimum dose fields in contact radiation therapy of malignant tumors].

    Science.gov (United States)

    Klepper, L Ia

    2003-01-01

    The definition of the homogeneity of a dose field in the contact radiation therapy for malignant tumors is introduced. The mathematical interpretation of problems in the formation of optimum dose fields, to which the maximum homogeneity of a dose field at the site of lesion corresponds, is presented. It is shown that the problems in the formation of optimum dose fields may be divided into two subsets in relation to whether the sources of radiation are located at the site of lesion or adjacent to the latter (application techniques of radiation). An analytical method for solving a problem in the formation of an optimal dose field in the ring circle by means of one ring source of radiation (the first type of problems). The investigation was conducted with the support of the Russian Fund of Fundamental Investigations (RFFI 01-01-00137).

  20. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  1. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  2. A Preliminary Study on the Radiation dose Distribution in the Pyroprocess Hot Cell Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chankyu; Kim, Myung Soo; Kim, Giyoon; Lee, Eunjoong; Lee, Jeong Tae; Cho, Gyuseong [KAIST, Daejeon (Korea, Republic of); Ahn, Seongkyu; Park, Sehwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Pyroprocessing is the promising technology for treatment of spent fuels. Because it is based on the collective recovery of TRU, it has an advantage in proliferation resistance compared to conventional aqueous processes. Development of pyroprocessing has positive effects to the public through reduction of the high-level radioactive waste and the effective use of energy resources. In Korea, Korea Atomic Energy Research Institute (KAERI) has researched pyroprocessing since 1997. The engineering scale integrated inactive pyroprocess facility (PRIDE) was constructed and test operation has been performed. A study on the preliminary conceptual design and cost estimation for a larger-scale model facility is in progress. The safeguards are essential in the pyroprocessing facility for proliferation resistance. To establish the reliable safeguards, the preliminary studies on radiation resistance requirements, assessment of the safeguards system applicability, and shielding of the safeguards equipment are required. Therefore, first of all, the radiation flux and dose distribution in hot cell environment have to be studied. The previous studies focused on the neutron flux at the pyroprocessing however they are limited to the individual unit process. In this study, the flux and dose distribution of neutron and gamma-ray in the hot cell environment of the pilot pyroprocessing facility are investigated. Based on the simplified material flow of pyroprocess, the material distribution model is established. In this study, the radiation flux and dose distribution in the hot cell environment of the pilot-scale pyroprocessing facility model is investigated preliminarily by the MCNP6 simulation. Based on the established material flow model, the material composition at each stage is calculated and used for the simulation. The simple hot cell structure and process batch size were assumed based on the previous studies.

  3. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    Science.gov (United States)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  4. Dose painting to treat single-lobe prostate cancer with hypofractionated high-dose radiation using targeted external beam radiation: Is it feasible?

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.; Ryan, Nicole; Raben, David, E-mail: david.raben@ucdenver.edu

    2015-10-01

    Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involved lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V{sub 70} (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V{sub 70} was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.

  5. Muller's Nobel lecture on dose-response for ionizing radiation: ideology or science?

    Science.gov (United States)

    Calabrese, Edward J

    2011-12-01

    In his Nobel Prize Lecture of December 12, 1946, Hermann J. Muller argued that the dose-response for radiation-induced germ cell mutations was linear and that there was "no escape from the conclusion that there is no threshold". However, assessment of correspondence between Muller and Curt Stern 1 month prior to his Nobel Prize Lecture reveals that Muller knew the results and implications of a recently completed study at the University of Rochester under the direction of Stern, which directly contradicted his Nobel Prize Lecture. This finding is of historical importance since Muller's Nobel Lecture gained considerable international attention and is a turning point in the acceptance of the linearity model in risk assessment for germ cell mutations and carcinogens.

  6. Radiation Dose Reduction during Radial Cardiac Catheterization: Evaluation of a Dedicated Radial Angiography Absorption Shielding Drape

    OpenAIRE

    Andrew Ertel; Jeffrey Nadelson; Adhir R. Shroff; Ranya Sweis; Dean Ferrera; Vidovich, Mladen I.

    2012-01-01

    Objectives. Radiation scatter protection shield drapes have been designed with the goal of decreasing radiation dose to the operators during transfemoral catheterization. We sought to investigate the impact on operator radiation exposure of various shielding drapes specifically designed for the radial approach. Background. Radial access for cardiac catheterization has increased due to improved patient comfort and decreased bleeding complications. There are concerns for increased radiation exp...

  7. Radiometric mapping of Goiania urban area: natural and artificial radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Nivaldo C.; Dias, Danila C.S.; Guerrero, Eder T. Z.; Alberti, Heber L.C., E-mail: ncsilva@cnen.gov.br, E-mail: danilacdias@gmail.com, E-mail: edertzg@cnen.gov.br, E-mail: heber@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Santos, Eliane E.; Pimenta, Lucinei R.; Costa, Heliana F., E-mail: esantos@cnen.gov.br, E-mail: lucinei@cnen.gov.br, E-mail: heliana@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro Oeste (CRCN-CO/CNEN-GO), Abadia de Goias, GO (Brazil)

    2013-07-01

    In the city of Goiania it is common to observe in some social groups, such as medical society, academy and communication (media), the association between cancer incidence and the 1987's Goiania radiological accident. Moreover, data of Population-Base Cancer Register published in 2010 by INCA (Instituto Nacional do Cancer), reveals that Goiania figures among the three cities where the major increases in cancer incidence were observed. Therefore, this project aims to provide a dose rate database over Goiania's road network aiming to: 1) assess the level radiation dose to which the population is exposed and 1) provide technical support for social communication of Brazilian Commission for Nuclear Energy. The monitoring was accomplished by using a mobile system (EBERLINE FHT 1376) which includes a 5-liter plastic scintillator detector coupled with a GPS (Global Positioning System) and a portable computer. This system allowed the recording of both the geographical coordinates and the dose rate of each single point. Using a NBR (Natural Background Rejection) the system is able to discriminate between natural and artificial radiation. After the field campaign, the raw data were then treated in a Geographical Information System (GIS) using the ArcGis software in order to produce dose maps. Therefore, this paper will present the results of the current stage of this research encompassing the monitoring of streets located on seven regions Goiania - divided in for administrative purposes. It is important to point out that more than 175175 individual data were collected with results ranging from 13 to 490 nSv/h. (author)

  8. Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation"

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William, F., Ph.D., D.Sc.

    2006-11-22

    The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shortening. No differences in cytogenetic damage, cancer induction or life span were observed between the hypomorphic mice indicating that genetic imbalance at the NBS1 loci does not modulate low dose radiation sensitivity.

  9. Accredited dose measurements for validation of radiation sterilized products

    DEFF Research Database (Denmark)

    Miller, A.

    1993-01-01

    The activities and services of the accredited Risø High Dose Reference Laboratory are described. The laboratory operates according to the European standard EN 45001 regarding Operation of Testing Laboratories, and it fulfills the requirements of being able to deliver traceable dose measurements f...... of the dosimetric parameters of an irradiation facility. 5. 5. Measurement of absorbed dose distribution in irradiated products. The paper describes these services and the procedures necessary for their execution....

  10. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    Science.gov (United States)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  11. Radiation doses received by premature babies in the neonatal intensive care unit; Doses d'irradiation recues par les prematures en service de reanimation

    Energy Technology Data Exchange (ETDEWEB)

    Thierry-Chef, I.; Maccia, C. [Centre d' Assurance de Qualite des Applications Technologiques dans le Domaine de la Sante, 92 - Bourg la Reine (France); Thierry-Chef, I.; Laurier, D.; Tirmarche, M. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DRPH/SRBE/LRPID), 92 - Fontenay-aux-Roses (France); Costil, J. [Hopital Armand Trousseau, Service de Reanimation Neonatale, 75 - Paris (France)

    2005-02-15

    Purpose. Because of frequent radiological investigations performed in 1 neonatal intensive care unit, a dosimetry study was carried out to assess the level of doses received by premature babies. Materials and methods. In vivo measurements were performed and effective doses were evaluated for single radiographs. Individual cumulative doses received over the period of stay were then estimated, for each premature baby entering the intensive care unit in 2002, taking into account the number of radiographs they underwent. Results. On average, babies stayed for a week and more than one radio-graph was taken per day. Results showed that, even if average doses per radiograph were relatively low (25{mu}Sv), cumulative doses strongly depended on the length of stay, and can reach a few mSv. Conclusion. Even if doses per radiograph are in agreement with European recommendations, optimisation of doses is particularly important because premature babies are more sensitive to radiation than adults and because they usually undergo further radiological examinations in other services. On the basis of the results of this dosimetry study, the implementation of a larger study is being discussed. (author)

  12. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in {sup 60}Co gamma radiation at radiation processing dose levels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.T.; Allisy-Roberts, P.J. [Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sevres cedex (France); Desrosiers, M.F. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Sharpe, P.H.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom); Pimpinella, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, Rome (Italy); Lourenco, V. [CEA Saclay, LIST, Laboratoire National Henri Becquerel, Gif-sur-Yvette (France); Zhang, Y.L. [National Institute of Metrology, Beijing (China); Miller, A. [Riso High Dose reference Laboratory, Riso DTU, Roskilde (Denmark); Generalova, V. [Institute for Physical-Technical and Radiotechnical Measurements, Moscow (Russian Federation); Sochor, V. [Czech Metrology Institute, Brno (Czech Republic)

    2011-06-15

    Eight national standards for absorbed dose to water in {sup 60}Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized by the Bureau International des Poids et Mesures, who also participated at the lowest dose level using their radiotherapy-level standard for the same quantity. The national standards are in general agreement within the standard uncertainties, which are in the range from 1 to 2 parts in 10{sup 2}. Evidence of a dose rate effect is presented and discussed briefly. (authors)

  13. Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment

    Science.gov (United States)

    Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.

    2016-03-01

    The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  14. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  15. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    rate effect is presented and discussed briefly. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication......Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized...

  16. Total dose radiation effects on SOI NMOS transistors with different layouts

    Institute of Scientific and Technical Information of China (English)

    TIAN Hao; ZHANG Zheng-Xuan; HE Wei; YU Wen-Jie; WANG Ru; CHEN Ming

    2008-01-01

    Partially-depleted Silicon-On-Insulator Negative Channel Metal Oxide Semiconductor (SOI NMOS)transistors with different layouts are fabricated on radiation hard Separation by IMplanted OXygen (SIMOX)substrate and tested using 10 keV X-ray radiation sources.The radiation performance is characterized by transistor threshold voltage shift and transistor leakage currents as a function of the total dose up to 2.0×106 rad(Si).The results show that the total dose radiation effects on NMOS devices are very sensitive to their layout structures.

  17. Radiation dose-volume effects in the lung

    DEFF Research Database (Denmark)

    Marks, Lawrence B; Bentzen, Soren M; Deasy, Joseph O;

    2010-01-01

    The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold "tolerance dose-volume" levels. There are strong volume and fractionation effects....

  18. Fetal and maternal dose assessment for diagnostic scans during pregnancy

    Science.gov (United States)

    Rafat Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie

    2016-05-01

    Despite the concerns about prenatal exposure to ionizing radiation, the number of nuclear medicine examinations performed for pregnant women increased in the past decade. This study attempts to better quantify radiation doses due to diagnostic nuclear medicine procedures during pregnancy with the help of our recently developed 3, 6, and 9 month pregnant hybrid phantoms. The reference pregnant models represent the adult female international commission on radiological protection (ICRP) reference phantom as a base template with a fetus in her gravid uterus. Six diagnostic scintigraphy scans using different radiopharmaceuticals were selected as typical diagnostic nuclear medicine procedures. Furthermore, the biokinetic data of radioiodine was updated in this study. A compartment representing iodide in fetal thyroid was addressed explicitly in the biokinetic model. Calculations were performed using the Monte Carlo transport method. Tabulated dose coefficients for both maternal and fetal organs are provided. The comparison was made with the previously published fetal doses calculated for stylized pregnant female phantoms. In general, the fetal dose in previous studies suffers from an underestimation of up to 100% compared to fetal dose at organ level in this study. A maximum of difference in dose was observed for the fetal thyroid compared to the previous studies, in which the traditional models did not contain the fetal thyroid. Cumulated activities of major source organs are primarily responsible for the discrepancies in the organ doses. The differences in fetal dose depend on several other factors including chord length distribution between fetal organs and maternal major source organs, and anatomical differences according to gestation periods. Finally, considering the results of this study, which was based on the realistic pregnant female phantoms, a more informed evaluation of the risks and benefits of the different procedures could be made.

  19. Radiation dose in computed tomography of the pelvis: comparison of helical and axial scanning.

    Science.gov (United States)

    Pitman, A G; Budd, R S; McKenzie, A F

    1997-11-01

    An anthropomorphic Rando phantom was used to compare radiation doses sustained during helical and conventional axial CT of the pelvis. The values obtained with the Rando phantom were validated against cadaveric phantoms, and show good agreement. For the authors' particular CT unit, helical scanning was found to deliver a lower radiation dose than conventional axial scanning. This was most prominent at 1.0-s tube rotation times (average dose ratio 1.24). For realistic scanning parameters and exposure factors, the ratio of radiation dose to pelvic organs can be expected to lie in the range of 40-100 mGy. The whole-body effective dose (ED) depends on selection of scanning parameters and patients anatomy. In a favourable case scenario, the ED for CT scanning of the pelvis in a male can be expected to be between 10 and 20 mSv if the scrotum is not included in the radiation field, while the ED in a female will be approximately 20 mSv. An examination of scatter radiation fall-off curves from a single slice shows that the spread of scatter radiation is only marginally affected by slice thickness. A total of 10-12 cm of human soft tissue acts as a good barrier against internal scattered radiation. The use of such scatter fall-off curves, together with manufacturers' dosimetry specifications, allows a fast estimate of absorbed dose.

  20. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices

    Science.gov (United States)

    Baoping, He; Zujun, Wang; Jiangkun, Sheng; Shaoyan, Huang

    2016-12-01

    In this paper, total ionizing dose effect of NMOS transistors in advanced CMOS technology are examined. The radiation tests are performed at 60Co sources at the dose rate of 50 rad (Si)/s. The investigation's results show that the radiation-induced charge buildup in the gate oxide can be ignored, and the field oxide isolation structure is the main total dose problem. The total ionizing dose (TID) radiation effects of field oxide parasitic transistors are studied in detail. An analytical model of radiation defect charge induced by TID damage in field oxide is established. The I - V characteristics of the NMOS parasitic transistors at different doses are modeled by using a surface potential method. The modeling method is verified by the experimental I - V characteristics of 180 nm commercial NMOS device induced by TID radiation at different doses. The model results are in good agreement with the radiation experimental results, which shows the analytical model can accurately predict the radiation response characteristics of advanced bulk CMOS technology device. Project supported by the National Natural Science Foundation of China (No. 11305126).

  1. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic

  2. Radiation doses to paediatric patients and comforters undergoing chest X rays.

    Science.gov (United States)

    Sulieman, A; Vlychou, M; Tsougos, I; Theodorou, K

    2011-09-01

    Pneumonia is an important cause of hospital admission among children in the developed world and it is estimated to be responsible for 3-18 % of all paediatric admissions. Chest X ray is an important examination for pneumonia diagnosis and for evaluation of complications. This study aims to determine the entrance surface dose (ESD), organ, effective doses and propose a local diagnostic reference level. The study was carried out at the university hospital of Larissa, Greece. Patients were divided into three groups: organ and effective doses were estimated using National Radiological Protection Board software. The ESD was determined by thermoluminescent dosemeters for 132 children and 76 comforters. The average ESD value was 55 ± 8 µGy. The effective dose for patients was 11.2 ± 5 µSv. The mean radiation dose for comforter is 22 ± 3 µGy. The radiation dose to the patients is well within dose constraint, in the light of the current practice.

  3. A Survey of Pediatric CT Protocols and Radiation Doses in South Korean Hospitals to Optimize the Radiation Dose for Pediatric CT Scanning.

    Science.gov (United States)

    Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung

    2015-12-01

    Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2-5 years), 23.5 to 44.1 (6-10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2-5 years), 3.9 to 9.3 (6-10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2-5 years), 5.7 to 12.4 (6-10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in certain age groups.

  4. Do changes in biomarkers from space radiation reflect dose or risk?

    Science.gov (United States)

    Brooks, A.

    The space environment is made up of many different kinds of radiation so that the proper use of biomarkers is essential to estimate radiation risk. This presentation will evaluate differences between biomarkers of dose and risk and demonstrate why they should not be confused following radiation exposures in deep space. Dose is a physical quantity, while risk is a biological quantity. Many examples exist w ereh dose or changes in biomarkers of dose are inappropriately used as predictors of risk. Without information on the biology of the system, the biomarkers of dose provide little help in predicting risk in tissues or radiation exposure types where no excess risk can be demonstrated. Many of these biomarkers of dose only reflect changes in radiation dose or exposure. However, these markers are often incorrectly used to predict risk. For example, exposure of the trachea or of the deep lung to high-LET alpha particles results in similar changes in the biomarker chromosome damage in these two tissues. Such an observation would predict that the risk for cancer induction would be similar in these two tissues. It has been noted , however, that there has never been a tracheal tumor observed in rats that inhaled radon, but with the same exposure, large numbers of tumors were produced in the deep lung. The biology of the different tissues is the major determinant of the risk rather than the radiation dose. Recognition of this fact has resulted in the generation of tissue weighting factors for use in radiation protection. When tissue weighting factors are used the values derived are still called "dose". It is important to recognize that tissue specific observations have been corrected to reflect risk, and therefore should no longer be viewed as dose. The relative biological effectiveness (RBE) is also used to estimate radiation risk. The use of biomarkers to derive RBE is a difficult since it involves the use of a biological response to a standard low-LET reference radiation

  5. Dose assessment in pediatric computerized tomography; Avaliacao de doses em tomografia computadorizada pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Luisa Maria Auredine Lima

    2004-07-01

    The objective of this work was the evaluation of radiation doses in paediatric computed tomography scans, considering the high doses usually involved and the absence of any previous evaluation in Brazil. Dose values were determined for skull and abdomen examinations, for different age ranges, by using the radiographic techniques routinely used in the clinical centers investigated. Measurements were done using pencil shape ionization chambers inserted in polymethylmethacrylate (PMMA) phantoms. These were compact phantoms of different diameters were specially designed and constructed for this work, which simulate different age ranges. Comparison of results with published values showed that doses were lower than the diagnostic reference levels established to adults exams by the European Commission. Nevertheless, doses in paediatric phantoms were higher than those obtained in adult phantoms. The paediatric dose values obtained in Hospitals A and B were lower than the reference level (DRL) adopted by SHIMPTON for different age ranges. In the range 0 - 0.5 year (neonatal), the values of DLP in Hospital B were 94 por cent superior to the DRL For the 10 years old children the values of CTDI{sub w} obtained were inferior in 89 por cent for skull and 83 por cent for abdomen examinations, compared to the values published by SHRIMPTON and WALL. Our measured CTDI{sub w} values were inferior to the values presented for SHRIMPTON and HUDA, for all the age ranges and types of examinations. It was observed that the normalized dose descriptors values in children in the neonatal range were always superior to the values of doses for the adult patient. In abdomen examinations, the difference was approximately 90% for the effective dose (E) and of 57%.for CTDI{sub w} . (author)

  6. Radiation assessment to paediatric with F-18-FDG undergo whole-body PET/CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Dhalisa, H., E-mail: dhalisa82@gmail.com; Rafidah, Z. [Kluster Oncology Science and Radiology, Advanced Medical Dental Institute, Universiti Sains Malaysia (USM), Bertam, Penang (Malaysia); Mohamad, A. S. [Department of Nuclear Medicine, National Cancer Institute, No 4 Jalan P7, Presint 7, Putrajaya (Malaysia)

    2016-01-22

    This study was carried out on wholebody radiation dose assessment to paediatrics patient who undergo PET/CT scanner at Institut Kanser Negara. Consist of 68 patients with varies of malignancies and epilepsy disease case covering age between 2 years to 12 years old. This is a retrospective study from 2010-2014. The use of PET/CT scanner as an advanced tool has been proven to give an extra radiation dose to the patient. It is because of the radiation exposure from the combination of both CT and PET scans rather than a single CT or PET scan. Furthermore, a study on radiation dose to paediatric patient undergoing PET/CT is rare in Malaysia. So, the aim of this study is to estimate the wholebody effective dose to paediatric patient in Malaysia. Effective dose from PET scan was calculated based on the activity of F18 FDG and dose coefficient reported in International Commission on Radiological Protection (ICRP) Publication 106. Effective dose from CT was determined using k coefficient as reported in ICRP publication 102 and Dose Length Product (DLP) value. The average effective dose from PET and CT were found to be 7.05mSv and 5.77mSv respectively. The mean wholebody effective dose received by a patient with combined PETCT examination was 12.78mSv. These results could be used as reference for dosimetry of a patient undergoing PETCT examination in Malaysia.

  7. A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure.

    Directory of Open Access Journals (Sweden)

    Mark P Little

    2009-10-01

    Full Text Available Atherosclerosis is the main cause of coronary heart disease and stroke, the two major causes of death in developed society. There is emerging evidence of excess risk of cardiovascular disease at low radiation doses in various occupationally exposed groups receiving small daily radiation doses. Assuming that they are causal, the mechanisms for effects of chronic fractionated radiation exposures on cardiovascular disease are unclear. We outline a spatial reaction-diffusion model for atherosclerosis and perform stability analysis, based wherever possible on human data. We show that a predicted consequence of multiple small radiation doses is to cause mean chemo-attractant (MCP-1 concentration to increase linearly with cumulative dose. The main driver for the increase in MCP-1 is monocyte death, and consequent reduction in MCP-1 degradation. The radiation-induced risks predicted by the model are quantitatively consistent with those observed in a number of occupationally-exposed groups. The changes in equilibrium MCP-1 concentrations with low density lipoprotein cholesterol concentration are also consistent with experimental and epidemiologic data. This proposed mechanism would be experimentally testable. If true, it also has substantive implications for radiological protection, which at present does not take cardiovascular disease into account. The Japanese A-bomb survivor data implies that cardiovascular disease and cancer mortality contribute similarly to radiogenic risk. The major uncertainty in assessing the low-dose risk of cardiovascular disease is the shape of the dose response relationship, which is unclear in the Japanese data. The analysis of the present paper suggests that linear extrapolation would be appropriate for this endpoint.

  8. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Frederick D.; Drubach, Laura A.; Treves, S. Ted; Fahey, Frederic H. [Boston Children' s Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); Harvard Medical School, Joint Program in Nuclear Medicine, Department of Radiology, Boston, MA (United States); Gelfand, Michael J. [Cincinnati Children' s Hospital Medical Center, Section of Nuclear Medicine, Department of Radiology, Cincinnati, OH (United States)

    2015-05-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients

  9. Radiation dose is associated with prognosis of small cell lung cancer with superior vena cava syndrome

    Science.gov (United States)

    Wang, Zhen-Bo; Ning, Fang-Ling; Wang, Xiao-Le; Cheng, Yu-Feng; Dong, Xin-Jun; Liu, Chang-Min; Chen, Shao-Shui

    2015-01-01

    Approximately 10% of small cell lung cancer (SCLC) cases develop superior vena cava syndrome (SVCS). Many SCLC patients with SVCS have relatively limited disease, requiring curative rather than palliative treatment. Besides chemotherapy, radiotherapy is important for treating SCLC with SVCS. We retrospectively evaluated the influence of radiotherapy dose on the prognosis of 57 patients with SCLC with SVCS treated with concurrent chemoradiotherapy. The mean biological equivalent radiation dose was 71.5 Gy. We administered etoposide/cisplatin as sequential and concurrent chemotherapy. All patients received at least one cycle of concurrent chemotherapy. All patients had partial or complete response; SVCS-associated symptoms were reduced in 87.7% (50/57) of patients within 3-10 days after treatment. Radiation dose did not affect 2-year local control (74.2% vs. 80.8%). Patients who received high-dose radiation had a lower 2-year overall survival rate than those who received low-dose radiation (11.6 vs. 33%; P = 0.024). The high dose group median survival was 15.0 months (95% confidence interval [CI]: 11.2-19.0) compared with 18.7 months (95% CI: 13.9-23.6) in the low dose group. Grade 3/4 neutropenia occurred in 22/26 high dose patients (84.6%) and 21/31 low dose patients (67.7%). In the high dose group, 30.8% of patients had grade 3/4 esophagitis compared with 19.4% of low dose patients. Only 29.0% of low dose patients received < 4 cycles of chemotherapy in the first 12 weeks after treatment began compared with 46.2% of high dose patients. Concurrent chemoradiotherapy is a tolerable modality for treating stage IIIA/IIIB SCLC with SVCS. Moderate-dose radiotherapy is preferable. PMID:26064339

  10. Facial exposure dose assessment during intraoral radiography by radiological technologists

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwan; Yang, Han Joon [Dept. of International Radiological Science, Hallym University of Graduate Studies, Chuncheon (Korea, Republic of)

    2014-09-15

    The study examined the changes in the decreased facial exposure dose for radiological technologists depending on increased distance between the workers and the X-ray tube head during intraoral radiography. First, the facial phantom similar to the human tissues was manufactured. The shooting examination was configured to the maxillary molars for adults (60 kVp, 10 mA, 50 msec) and for children (60 kVp, 10 mA, 20 msec), and the chamber was fixed where the facial part of the radiation worker would be placed using the intraoral radiography equipment. The distances between the X-ray tube head and the phantom were set to 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, and 40 cm. The phantom was radiated 20 times with each examination condition and the average scattered doses were examined. The rate at the distance of 40 cm decreased by about 92.6% to 7.43% based on the scattered rays radiated at the distance of 10 cm under the adult conditions. The rate at the distance of 40 cm decreased by about 97.6% to 2.58% based on the scattered rays radiated at the distance of 10 cm under the children conditions. Protection from the radiation exposure was required during the dental radiographic examination.

  11. Estradiol valerate and alcohol intake: dose-response assessments

    Science.gov (United States)

    Quirarte, Gina L; Reid, Larry D; de la Teja, I Sofía Ledesma; Reid, Meta L; Sánchez, Marco A; Díaz-Trujillo, Arnulfo; Aguilar-Vazquez, Azucena; Prado-Alcalá, Roberto A

    2007-01-01

    Background An injection of estradiol valerate (EV) provides estradiol for a prolonged period. Recent research indicates that a single 2.0 mg injection of EV modifies a female rat's appetite for alcoholic beverages. This research extends the initial research by assessing 8 doses of EV (from .001 to 2.0 mg/female rat), as well assessing the effects of 2.0 mg EV in females with ovariectomies. Results With the administration of EV, there was a dose-related loss of bodyweight reaching the maximum loss, when it occurred, at about 4 days after injections. Subsequently, rats returned to gaining weight regularly. Of the doses tested, only the 2.0 mg dose produced a consistent increase in intake of ethanol during the time previous research indicated that the rats would show enhanced intakes. There was, however, a dose-related trend for smaller doses to enhance intakes. Rats with ovariectomies showed a similar pattern of effects, to intact rats, with the 2 mg dose. After extensive histories of intake of alcohol, both placebo and EV-treated females had estradiol levels below the average measured in females without a history of alcohol-intake. Conclusion The data support the conclusion that pharmacological doses of estradiol can produce enduring changes that are manifest as an enhanced appetite for alcoholic beverages. The effect can occur among females without ovaries. PMID:17335585

  12. COMPARISON OF THE PERIPHERAL DOSES FROM DIFFERENT IMRT TECHNIQUES FOR PEDIATRIC HEAD AND NECK RADIATION THERAPY.

    Science.gov (United States)

    Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori

    2017-02-25

    Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region.

  13. [Radiation dose reduction using a non-linear image filter in MDCT].

    Science.gov (United States)

    Nakashima, Junya; Takahashi, Toshiyuki; Takahashi, Yoshimasa; Imai, Yasuhiro; Ishihara, Yotaro; Kato, Kyoichi; Nakazawa, Yasuo

    2010-05-20

    The development of MDCT enabled various high-quality 3D imaging and optimized scan timing with contrast injection in a multi-phase dynamic study. Since radiation dose tends to increase to yield such high-quality images, we have to make an effort to reduce radiation dose. A non-linear image filter (Neuro 3D filter: N3D filter) has been developed in order to improve image noise. The purpose of this study was to evaluate the physical performance and effectiveness of this non-linear image filter using phantoms, and show how we can reduce radiation dose in clinical use of this filter. This N3D filter reduced radiation dose by about 50%, with minimum deterioration of spatial reduction in phantom and clinical studies. This filter shows great potential for clinical application.

  14. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    Science.gov (United States)

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation.

  15. Improving the Accuracy of a Heliocentric Potential (HCP) Prediction Model for the Aviation Radiation Dose

    Science.gov (United States)

    Hwang, Junga; Yoon, Kyoung-Won; Jo, Gyeongbok; Noh, Sung-Jun

    2016-12-01

    The space radiation dose over air routes including polar routes should be carefully considered, especially when space weather shows sudden disturbances such as coronal mass ejections (CMEs), flares, and accompanying solar energetic particle events. We recently established a heliocentric potential (HCP) prediction model for real-time operation of the CARI-6 and CARI-6M programs. Specifically, the HCP value is used as a critical input value in the CARI-6/6M programs, which estimate the aviation route dose based on the effective dose rate. The CARI-6/6M approach is the most widely used technique, and the programs can be obtained from the U.S. Federal Aviation Administration (FAA). However, HCP values are given at a one month delay on the FAA official webpage, which makes it difficult to obtain real-time information on the aviation route dose. In order to overcome this critical limitation regarding the time delay for space weather customers, we developed a HCP prediction model based on sunspot number variations (Hwang et al. 2015). In this paper, we focus on improvements to our HCP prediction model and update it with neutron monitoring data. We found that the most accurate method to derive the HCP value involves (1) real-time daily sunspot assessments, (2) predictions of the daily HCP by our prediction algorithm, and (3) calculations of the resultant daily effective dose rate. Additionally, we also derived the HCP prediction algorithm in this paper by using ground neutron counts. With the compensation stemming from the use of ground neutron count data, the newly developed HCP prediction model was improved.

  16. Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Haesung; Kim, Myung-Joon; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Seoul (Korea, Republic of); Yoon, Choon-Sik [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Choi, Jiin [Yonsei University College of Medicine, Biostatistics Collaboration Unit, Seoul (Korea, Republic of)

    2015-03-01

    New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique. (orig.)

  17. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  18. Implications of Intercellular Signaling for Radiation Therapy: A Theoretical Dose-Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2013-12-01

    Purpose: Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy. Methods and Materials: Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose–volume histograms and mean doses were evaluated by converting these survival levels into “signaling-adjusted doses” for comparison. Results: Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions: Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro

  19. Natural background radiation and estimation of gonadal dose rate of population of Chittagong region

    Energy Technology Data Exchange (ETDEWEB)

    Mostofa, M.N.; Ahmed, J.U. (Chittagong Univ. (Bangladesh). Dept. of Physics); Ahmed, R.; Ishaque, A.M. (Nuclear Medicine Center, Chittagong (Bangladesh)); Ahmed, K. (Institute of Nuclear Medicine, Dacca (Bangladesh))

    1981-07-01

    A survey was made on the background radiation to estimate the gonadal dose rate in the district of Chittagong from the year 1978 to 80. This was done with the help of a calibrated Nuclear Chicago transistorized survey meter. The measurements were made in different types of dwellings and occupational buildings constructed with wood, straw/bamboo, tin/bamboo, tin/brick and single and multistoried buildings of brick and concrete. For measurement of outdoor radiation the investigating areas taken were the roads, fields and the Karnafuly river. The variation in the population dose rate as well as gonadal dose rate were observed in different types of dwellings and occupational buildings including outdoors. The average population dose rate including cosmic ray intensity was found to be 172.41+-8.61 mrad/year. Thus, the annual gonadal dose rate due to gamma radiation was found to be 137.92+-6.89 mrad/year.

  20. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.