WorldWideScience

Sample records for assessing radiation dose

  1. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  2. Biological indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    After an introductory report on the present level of practical experience in using biological indicator systems to identify and assess doses from radiation exposures, the state of the art in the field of biochemical, cytological and immunological indicators was presented as a basis for discussions in working groups. With reference to the type of radiation - gamma radiation, electrons, neutrons - the question was examined how and to which extent body doses could be evaluated on the basis of results from biological indicator systems. The indicator systems were examined and evaluated in working groups under the aspects of practical use, validity of results and demand of research according to uniform criteria. These were, among others, dose effect relationship, detection limit, reproducibility and specificity, interference factors, stress and reasonable inconvenience of the examined person, earliest possible availability of results and the maximum time needed to identify a biological effect after radiation exposure, as well as the possible maximum number of persons examined from a population group of radiation exposed individuals. The results of the working groups discussions were compiled and summarized in recommendations. (orig./MG)

  3. Wound trauma alters ionizing radiation dose assessment

    Directory of Open Access Journals (Sweden)

    Kiang Juliann G

    2012-06-01

    Full Text Available Abstract Background Wounding following whole-body γ-irradiation (radiation combined injury, RCI increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. Results In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs, changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 – 10 d after RCI included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI included poor survival and wound healing. Conclusion Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined

  4. Radiation dose assessment for building material

    International Nuclear Information System (INIS)

    A mathematical model for radiation dose assessment for building materials based on attenuation and build up for gamma rays of the natural emitters was studied in this work. This was done by calculate the air absorbed dose from elemental volume and integrate over the total wall volume, which uniformed density and activity concentration. The used form of the build-up is a mixing of exponential and linear form for Berger model [1]. To convert absorbed dose to effective dose for all natural emitter (include 137Cs in case of fallout), the dose rate conversion factors which were reported in UNSCEAR (1993) Report [2] and U. S. NCRP (1987) [3] was used. These factors are 0.7 Sv/Gy for adult and 0.8 Sv/Gy for children. A computer program for calculating the absorbed and the annual effective dose was prepared in MATLAB language. The program is applicable for wall or room building materials when walls consist of one or two layers. The obtained results were compared with published studies. (author)

  5. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC-INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC-DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  6. Assessment of radiation dose awareness among pediatricians

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada); Haidar, Salwa [Mubarak Al-Kabeer Hospital, Department of Radiology, Salmiya (Kuwait); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada)

    2006-08-15

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  7. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  8. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  9. Internal dose assessment in radiation accidents

    International Nuclear Information System (INIS)

    Although numerous models have been developed for occupational and medical internal dosimetry, they may not be applicable to an accident situation. Published dose coefficients relate effective dose to intake, but if acute deterministic effects are possible, effective dose is not a useful parameter. Consequently, dose rates to the organs of interest need to be computed from first principles. Standard bioassay methods may be used to assess body contents, but, again, the standard models for bioassay interpretation may not be applicable because of the circumstances of the accident and the prompt initiation of decorporation therapy. Examples of modifications to the standard methodologies include adjustment of biological half-times under therapy, such as in the Goiania accident, and the same effect, complicated by continued input from contaminated wounds, in the Hanford 241Am accident. (author)

  10. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine. Internal dose models and methods have been in use for many years, are well established and can give radiation doses to stylized models representing reference individuals. Kinetic analyses need to be carefully planned, and dose conversion factors should be chosen that are most similar to the subject in question and that can then be tailored to be more patient specific. Such calculations, however, are currently not relevant in patient management in internal emitter therapy, as they are not sufficiently accurate or detailed to guide clinical decision making. Great strides are being made at many centres regarding the use of patient image data to construct individualized voxel based models for more detailed and patient specific dose calculations.These recent advances make it likely that the relevance will soon change to be more similar to that of external beam treatment planning. (author)

  11. Radiation dose assessments for materials with elevated natural radioactivity

    International Nuclear Information System (INIS)

    The report provides practical information needed for evaluating the radiation dose to the general public and workers caused by materials containing elevated levels of natural radionuclides. The report presents criteria, exposure scenarios and calculations used to assess dose with respect to the safety requirements set for construction materials in accordance with the Finnish Radiation Act. A method for calculating external gamma exposure from building materials is presented in detail. The results for most typical cases are given as specific dose rates in table form to enable doses to be assessed without computer calculation. A number of such dose assessments is presented, as is the corresponding computer code. Practical investigation levels for the radioactivity of materials are defined. (23 refs.)

  12. Integrated Worker Radiation Dose Assessment for the K Basins

    International Nuclear Information System (INIS)

    This report documents an assessment of the radiation dose workers at the K Basins are expected to receive in the process of removing spent nuclear fuel from the storage basins. The K Basins (K East and K West) are located in the Hanford 100K Area

  13. Methodology for assessing doses and radiation impact on marine organisms

    International Nuclear Information System (INIS)

    Environmental protection is one of the key issues in the prospective policy and strategy of radiation protection. In this context, numerous efforts have been made for developing the framework for the protection of non-human species from ionizing radiation, especially in European countries and Unite States. The present report summarizes knowledge so far attained on the assessment of doses and radiation impact on marine organisms. Special attention was directed to the methodology for calculating absorbed doses of marine organisms, based on which a case study was also carried out for estimating absorbed dose rate of several species of marine organisms inhabiting in the coastal sea off Rokkasho-Mura, Aomori Prefecture where a spent nuclear fuel reprocessing plant came into operation. (author)

  14. The assessment of personal dose due to external radiation

    International Nuclear Information System (INIS)

    The fundamental basis of thermoluminescent dosimetry (TLD) is discussed and a number of considerations in the measurement of thermoluminescence described, with particular reference to CaSO4:Dy. The steps taken to convert a thermoluminescence measurement to an exposure and then an absorbed dose are outlined. The calculation of effective dose equivalents due to external exposure to γ-radiation in a number of situations commonly encountered in a uranium mine is discussed. Factors which may affect the accuracy of external dose assessments are described

  15. Assessment and recording of radiation doses to workers

    International Nuclear Information System (INIS)

    The assessment and recording of the radiation exposure of workers in activities involving radiation risks are required for demonstrating compliance with institutional dose limitations and for a number of other complementary purposes. A significant proportion of the labor force involved in radiation work is currently represented by those specialised workers who operate as itinerant contractors for different nuclear installations and in different countries. In order to ensure that the exposure of these workers is adequately and consistently controlled and kept within acceptable limits, there is a need for the criteria and methods for dose assessment and recording to be harmonised throughout the different countries. An attempt in that direction has been made in this report, which has been prepared by a group of experts convened by the Committee on Radiation Protection and Public Health of the OECD Nuclear Energy Agency. Its primary purpose is to describe recommended technical procedures for an unified approach to the assessment and recording of worker doses. The report is published under the responsibility of the Secretary-General of the OECD, and does not commit Member governments

  16. Biological dose assessment of 15 victims in Haerbin radiation accident

    International Nuclear Information System (INIS)

    Full text: a) On July 5 and 8, 2005, Two patients with bone marrow suppression were successively hospitalized by the First Affiliated Hospital of Haerbin Medical University. Examination results showed that the patients seemed to get suspicious radiation disease. On July 13, 2005, a radioactive source was found in the patients' dwelling. The radiation source is Iridium-192 with 0.5 Ci(1.85 x 1010Bq) radioactivity. The radiation source is a metal bar which is a kind of radioactive industrial detection source for welding. The source is currently stored in the urban radioactive waste storehouse of Heilongjiang province. After finding the radioactive source on July 13, The Haerbin municipal government initiated an emergency response plan and developed medical rescue, radioactive source examination and case detection through organizing ministries involving health, environmental protection and public security. After receiving a report at 17:00 on July 14, 2005, Chinese Ministry of Health immediately sent experts to the spot for investigation, dose estimation and direction of patients' rescue. Health authority carried out physical examination twice on 113 residents within 30 meters to the source, among which 4 got radiation sickness, 5 showed abnormal hemotogram, and others showed no abnormal response. Of 4 patients with radiation sickness, one 81 year old patient has died of severe bone marrow form of sub acute radiation sickness coupled with lung infection and prostrate apparatus at 13:00 on Oct., 20. Two children have been treated in Beitaiping Road Hospital in Beijing, another patient has been treated in local hospital. b) Biological dosimetry using conventional chromosome aberration analysis in human peripheral blood lymphocytes has been shown as a reliable and useful tool in medical management of radiation accident victims. Peripheral blood lymphocytes of the victims were cultured using conventional culture medium with colchicine added at the beginning. Chromosome

  17. Cone beam computed tomography radiation dose and image quality assessments.

    Science.gov (United States)

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  18. Source term calculations for assessing radiation dose to equipment

    International Nuclear Information System (INIS)

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, ''Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs

  19. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    International Nuclear Information System (INIS)

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  20. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    Directory of Open Access Journals (Sweden)

    Sudha Rana

    2010-01-01

    Full Text Available Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation.

  1. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  2. Radiation fields and dose assessments in Korean nuclear power plants.

    Science.gov (United States)

    Kim, Hee Geun; Kong, Tae Young; Jeong, Woo Tae; Kim, Seok Tae

    2011-07-01

    In the primary systems of nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water chemistry conditions. In particular, (3)H, (14)C, (58)Co, (60)Co, (137)Cs, and (131)I are important or potential radionuclides with respect to dose assessment for workers and the management of radioactive effluents or dose assessment for the public. In this paper, the dominant contributors to the dose for workers and the public were reviewed and the process of dose assessment attributable to those contributors was investigated. Furthermore, an analysis was carried out on some examples of dose to workers during NPP operation. PMID:21498858

  3. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    Science.gov (United States)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  4. Radiation dose assessment of musa acuminata - triploid (AAA)

    International Nuclear Information System (INIS)

    Bananas are radioactive due to the presence of the radioisotope-40K. This imposes a possible health risk to the general public. This study intended to assess the annual equivalent dosages and the annual effective dosage committed by the body. This seeks to benefit the general public, students and researchers, and entrepreneurs. Using atomic absorption spectrophotometry, lakatan banana (Musa acuminata-triploid (AAA), the most purchased variety cultivated in Barangay Adlawon, Cebu City, Philippines, was found to contain 0.53 g of total potassium for every 100 g of its fresh fruit wherein 6.2 x 10-5 g of which is potassium-40. Based on its 40K content banana was calculated to have a radioactivity of 16 Bq/100 g. it was found out that the body is exposed to radiation dosages ranging from 2.8 x 10-3 rem annually by eating 100 g of lakatan bananas everyday. Conversely, it is equivalent to the annual effective dosage of 0.0043 rem; the amount at which the body of an individual is uniformly exposed. However, no or extremely minute health risk was determined by just eating bananas. In fact, to exceed the radiation dose limits set by the International Commission on Radiation Protection, an individual may eat 116 kg of lakatan bananas everyday for a year. Fertilizers may be the major source of the radioisotope - 40K and assimilated by the plants. (author)

  5. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  6. Assessment of radiation dose in digital storage phosphor radiography

    International Nuclear Information System (INIS)

    This paper reports on digital storage phosphor radiography that is able to produce images of constant optical density over a wide range of exposure dose by adjusting reading sensitivity. Since overexposed images are not as-readily recognized as with the conventional film-screen technique, a method capable of determining radiation dose is necessary to detect overexposures (due to, e.g., handling errors or technical defects). A formula was designed that calculates the radiation dose in the film plane from image sensitivity (S-factor), latitude (L-factor), and average gray value over the region of interest. To verify the formula, 106 measurements with variation of dose, L-factor, S-factor, and the readout algorithm were made with the Digiscan storage phosphor system (Siemens)

  7. Radiation dose from Chernobyl forests: assessment using the 'forestpath' model

    International Nuclear Information System (INIS)

    Contaminated forests can contribute significantly to human radiation dose for a few decades after initial contamination. Exposure occurs through harvesting the trees, manufacture and use of forest products for construction materials and paper production, and the consumption of food harvested from forests. Certain groups of the population, such as wild animal hunters and harvesters of berries, herbs and mushrooms, can have particularly large intakes of radionuclides from natural food products. Forestry workers have been found to receive radiation doses several times higher than other groups in the same area. The generic radionuclide cycling model 'forestpath' is being applied to evaluate the human radiation dose and risks to population groups resulting from living and working near the contaminated forests. The model enables calculations to be made to predict the internal and external radiation doses at specific times following the accident. The model can be easily adjusted for dose calculations from other contamination scenarios (such as radionuclide deposition at a low and constant rate as well as complex deposition patterns). Experimental data collected in the forests of Southern Belarus are presented. These data, together with the results of epidemiological studies, are used for model calibration and validation

  8. Epistemological problems in assessing cancer risks at low radiation doses

    International Nuclear Information System (INIS)

    Historically, biology has not been subjected to any epistemological analysis as has been the case with mathematics and physics. Our knowledge of the effects in biological systems of various stimuli proves to be dualistic in a complementary (although not mutually exclusive) way, which bears resemblance to the knowledge of phenomena in quantum physics. The dualistic limbs of biological knowledge are the action of stimuli and the response of the exposed, biological system. With regard to radiogenic cancer, this corresponds to the action of the ionizations and the response of the exposed mammal to that action, respectively. The following conclusions can be drawn from the present analysis: Predictions as to radiogenic cancer seem often if not always to have neglected the response variability (variations in radiosensitivity) in individuals or among individuals in populations, i.e. the predictions have been based exclusively on radiation doses and exposure conditions. The exposed individual or population, however, must be considered an open statistical system, i.e. a system in which predictions as to the effect of an agent are only conditionally possible. The knowledge is inverse to the size of the dose or concentration of the active agent. On epistemological grounds, we can not gain knowledge about the carcinogenic capacity of very low (non-dominant) radiation doses. Based on the same principle, we can not predict cancer risks at very low (non-dominant) radiation doses merely on the basis of models, or otherwise interpolated or extrapolated high-dose effects, observed under special exposure conditions

  9. MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP).

    Science.gov (United States)

    Ngwa, Wilfred; Korideck, Houari; Chin, Lee M; Makrigiorgos, G Mike; Berbeco, Ross I

    2011-12-01

    The Small Animal Radiation Research Platform (SARRP) is a novel isocentric irradiation system that enables state-of-the-art image-guided radiotherapy research to be performed with animal models. This paper reports the results obtained from investigations assessing the radiation dose delivered by the SARRP to different anatomical target volumes in mice. Surgically implanted metal oxide semiconductor field effect transistors (MOSFET) dosimeters were employed for the dose assessment. The results reveal differences between the calculated and measured dose of -3.5 to 0.5%, -5.2 to -0.7%, -3.9 to 0.5%, -5.9 to 2.5%, -5.5 to 0.5%, and -4.3 to 0% for the left kidney, liver, pancreas, prostate, left lung, and brain, respectively. Overall, the findings show less than 6% difference between the delivered and calculated dose, without tissue heterogeneity corrections. These results provide a useful assessment of the need for tissue heterogeneity corrections in SARRP dose calculations for clinically relevant tumor model sites. PMID:21962005

  10. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    International Nuclear Information System (INIS)

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  11. Improvements in extremity dose assessment in ionizing radiation medical applications

    International Nuclear Information System (INIS)

    Full text: Whole-body personal dosimetry is well established for the individual monitoring of radiation workers. Legal dosimetry is usually based on TL or film passive dosimeters worn on the trunk and evaluated by an authorised dosimetric service. However, although extremity and skin dosimetry is required by law for any practice where extremities or skin are the critical organs, the development of extremity dosemetry has not been as well established. Only a few European dosimetry services offer this service. Moreover, there is hardly any recommendation on the most suitable place for wearing this type of dosemeter. The present paper aims at testing the INTE-UPC ring dosemeter based on MCPNs and TLD-100 detectors on some users from the field of medicine, namely manual brachytherapy operators, nuclear medicine technologists from a radiopharmaceutical unit, personnel at a cyclotron facility with the corresponding FDG synthesis cells, radiographers and surgeons participating in interventional radiology. The staff were chosen due to the fact that they had a significantly high risk of exposure to their hands. According to previous results, MCPNs TL thin material is used in the radiology measurements, whereas TLD100 is preferred for the other applications. Prior to use, the dosemeters were tested for waterproof and cold sterilisation sensitivity. Preliminary results confirm the need to implement extremity dosimetry in the above- mentioned jobs, where finger dose can be of the order of 40 times the whole body dose and 3 times the wrist dose. Selection of an appropriate dosemeter can mean changes in the classification of the worker as category A or B. The study shows good correlation between workload and integrated dose, and small differences between experienced workers' dose. As a conclusion, some guidelines for radiation protection optimization are presented. (author)

  12. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    International Nuclear Information System (INIS)

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology

  13. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  14. Dosimetry experiences and lessons learned for radiation dose assessment in Korean nuclear power plants.

    Science.gov (United States)

    Choi, Jong Rak; Kim, Hee Geun; Kong, Tae Young; Son, Jung Kwon

    2013-07-01

    Since the first Korean nuclear power plant (NPP), Kori 1, commenced operation in 1978, a total of 21 NPPs had been put into operation in Korea by the end of 2011. Radiation doses of NPP workers have been periodically evaluated and controlled within the prescribed dose limit. Radiation dose assessment is carried out monthly by reading personal dosemeters for external radiation exposure, which have traceability in compliance with strict technical guidelines. In the case of the internal radiation exposure, workers who have access to the possible area of polluted air are also evaluated for their internal dose after maintenance task. In this article, the overall situation and experience for the assessment and distribution of radiation doses in Korean NPPs is described. PMID:23204558

  15. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance

    International Nuclear Information System (INIS)

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8–0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2–3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal

  16. Epistemological limits for risk assessments at low radiation doses

    International Nuclear Information System (INIS)

    The author discusses the epistemological question of whether there are real limits to knowledge in radio biology and suggests that effects at low doses are one such area. Topics raised are dominant and non-dominant doses, interpolated risks from observed effects at high doses and other epidemiological data; the discussion is illustrated by examples from the Swedish experience. (UK)

  17. Establishment of exposure dose assessment laboratory in National Radiation Emergency Medical Center (NREMC)

    International Nuclear Information System (INIS)

    As unclear industry grown, 432 of the nuclear power plants are operating and 52 of NPPs are under construction currently. Increasing use of radiation or radioisotopes in the field of industry, medical purpose and research such as non-destructive examination, computed tomography and x-ray, etc. constantly. With use of nuclear or radiation has incidence possibility for example the Fukushima NPP incident, the Goiania accident and the Chernobyl Nuclear accident. Also the risk of terror by radioactive material such as Radiological Dispersal Device(RDD) etc. In Korea, since the 'Law on protection of nuclear facilities and countermeasure for radioactive preparedness was enacted in 2003, the Korean institute of Radiological and Medical Sciences(KIRAMS) was established for the radiation emergency medical response in radiological disaster due to nuclear accident, radioactive terror and so on. Especially National Radiation Emergency Medical Center(NREMC) has the duty that is protect citizens from nuclear, radiological accidents or radiological terrors through the emergency medical preparedness. The NREMC was established by the 39-article law on physical protection of nuclear material and facilities and measures for radiological emergencies. Dose assessment or contamination survey should be performed which provide the radiological information for medical response. For this reason, the NREMC establish and re-organized dose assessment system based on the existing dose assessment system of the NREMC recently. The exposure dose could be measured by physical and biological method. With these two methods, we can have conservative dose assessment result. Therefore the NREMC established the exposure dose assessment laboratory which was re-organized laboratory space and introduced specialized equipment for dose assessment. This paper will report the establishment and operation of exposure dose assessment laboratory for radiological emergency response and discuss how to enhance

  18. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers

    OpenAIRE

    Paolicchi, F.; Miniati, F.; Bastiani, L; Faggioni, L; Ciaramella, A.; Creonti, I.; Sottocornola, C.; Dionisi, C.; Caramella, D.

    2015-01-01

    Objectives To evaluate radiation protection basic knowledge and dose assessment for radiological procedures among Italian radiographers Methods A validated questionnaire was distributed to 780 participants with balanced demographic characteristics and geographic distribution. Results Only 12.1 % of participants attended radiation protection courses on a regular basis. Despite 90 % of radiographers stating to have sufficient awareness of radiation protection issues, most of them underestimated...

  19. Personal radiation monitoring and assessment of doses received by radiation workers (1991)

    International Nuclear Information System (INIS)

    The Australian Radiation Laboratory has operated a Personal Radiation Monitoring Service since the early 1930's so that people working with radiation can determine the radiation doses that they receive due to their occupation. Since late 1986, all persons monitored by the Service have been registered on a data base which maintains records of the doses received by each individual wearer. Ultimately, this data base will become a National Register of the doses received within Australia. At present, the Service regularly monitors approximately 20,000 persons, which is roughly 70 percent of those monitored in Australia, and maintains dose histories of over 35,000 people. The skin dose for occupationally exposed workers can be measured by using one of the four types of monitor issued by the Service: 1. Thermoluminescent Dosemeter (TLD monitor) 2. Finger TLD 3. Neutron Monitor 4. Special TLD. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 4 figs

  20. Improvements in extremity dose assessment for ionising radiation medical applications

    International Nuclear Information System (INIS)

    This study aims at testing the INTE ring dosemeter based on MCP-Ns and TLD-100 detectors on users from the field of medical applications, namely radio-pharmacists, personnel at a cyclotron facility with corresponding FDG synthesis cells, interventional radiology technologists and radiologists. These users were chosen due to the fact that they have a significantly high risk of exposure to their hands. Following previous results, MCP-Ns TL thin material was used for radiology measurements, whereas TLD-100 was preferred for other applications. The dosemeters were tested to make sure that they were waterproof and that they could be sterilised properly prior to use. Results confirm the need to implement finger dosimetry, mainly for interventional radiologists as finger dose can be >50 times higher than whole-body dose and 3 times higher than wrist dose. (authors)

  1. Dose assessment and radioprotective medical evaluation of prenatal radiation exposures to diagnostic X-rays

    International Nuclear Information System (INIS)

    The 2nd to 15th weeks after conception are assessed to be the critical time period for the induction of teratogenic radiation damage. In the GDR, women having incurred fetal doses in excess of 100 mGy are recommended to interrupt pregnancy. Of 275 patients advised in the National Board for Atomic Safety and Radiation Protection between 1978 and 1988, approximately 90% were found to have received fetal doses below 20 mGy. Only 4 women had been exposed to doses above 100 mGy. Exposure data were given in the form of tables, and discussed. (author)

  2. Monitoring and assessment of individual doses of occupationally exposed workers due to external radiation

    International Nuclear Information System (INIS)

    Exposure to external radiation occurs in many occupations. Any exposure to ionizing radiation has the tendency to change the biochemical make-up of the human body which may result in biological health effects of ionizing radiation. This study reviews the monitoring and assessment of external radiation doses in industrial radiography using thermoluminescence and direct reading dosimeters. Poor handling procedures such as inadequate engineering control of equipment, safety culture, management, and inadequate assessment and monitoring of doses are the causes of most of the reported cases of exposure to external radiation in industrial radiography. Occupational exposure data in industrial radiography taken from UNSCEAR report 2008 was discussed and recommendations were made to regulatory authorities, operating organizations and radiographers. (au)

  3. Monitoring and assessment of individual doses of occupationally exposed workers due to external radiation

    International Nuclear Information System (INIS)

    Exposure to external radiation occurs in many occupations. Any exposure to ionizing radiation has the tendency to change the biochemical make-up of the human body which may result in biological health effects of ionizing radiation. This study reviews the monitoring and assessment of external radiation doses in industrial radiography using thermoluminescence and direct reading dosimeters. Poor handling procedures such as inadequate engineering control of equipment, safety culture, management, and inadequate assessment and monitoring of doses are the causes of most of the reported cases of exposure to external radiation in industrial radiography. Occupational exposure data in industrial radiography from UNSCEAR report 2008 was discussed and recommendations were made to regulatory authorities, operating organizations and radiographers. (au)

  4. Personal radiation monitoring and assessment of doses received by radiation workers (1996)

    International Nuclear Information System (INIS)

    Since late 1986, all persons monitored by the Australian Radiation Laboratory have been registered on a data base which maintains records of the doses received by each individual wearer. At present, the Service regularly monitors approximately 30,000 persons, which is roughly 90 percent of those monitored in Australia, and maintains dose histories of over 75,000 people. The skin dose for occupationally exposed workers can be measured by using one of the five types of monitor issued by the Service: Thermoluminescent Dosemeter (TLD monitor), Finger TLD 3, Neutron Monitor, Special TLD and Environmental monitor. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 5 figs

  5. Personal radiation monitoring and assessment of doses received by radiation workers (1996)

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N.D.

    1996-12-01

    Since late 1986, all persons monitored by the Australian Radiation Laboratory have been registered on a data base which maintains records of the doses received by each individual wearer. At present, the Service regularly monitors approximately 30,000 persons, which is roughly 90 percent of those monitored in Australia, and maintains dose histories of over 75,000 people. The skin dose for occupationally exposed workers can be measured by using one of the five types of monitor issued by the Service: Thermoluminescent Dosemeter (TLD monitor), Finger TLD 3, Neutron Monitor, Special TLD and Environmental monitor. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 5 figs.

  6. The Thule accident: Assessment of radiation doses from terrestrial radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ulbak, K. (National Institute of Radiation Protection, Herlev (Denmark))

    2011-12-15

    Risoe DTU has carried out research on the terrestrial contamination in the Thule area after the radioactive contents of four nuclear weapons were dispersed following the crash of an American B-52 bomber in 1968. The results of Risoe DTU's studies are described in the report Thule-2007 - Investigation of radioactive pollution on land, which covers all measurements that were carried out on land in Thule in the years 2003, 2006, 2007 and 2008. The present report uses Risoe DTU's report as a basis for assessing radiation doses and consequently the risk for individuals as a result of terrestrial radioactive contamination in the Thule area. The assessment of radiation doses involves a number of conservative assumptions, estimates, and measurements, all of which are subject to considerable uncertainty. In some cases, models have been used based on experiences from other contaminated areas elsewhere in the world, which are subject to climatic and other conditions that diverge from those in the Thule area. The calculated doses are thus associated with considerable uncertainty, which must be taken into account when the results are used for comparison and when the risks of staying in the Thule area are assessed. It has therefore been chosen to provide the assessed radiation doses in the form of indicative orders of magnitude, which are applicable to everyone who might stay in the area, across various age groups. If the estimated doses in this report are combined with the National Institute of Radiation Protection's recommended reference level for contamination as a result of the Thule Accident of 1 mSv/year, the assessed magnitudes of radiation doses for inhalation and ingestion as exposure pathways are many orders of magnitude below the reference level (10,000-10 million times smaller). The wound contamination exposure pathway has a magnitude of radiation dose that is smaller than the reference level by a factor of 10-1000, and it should be recalled that the

  7. Radiation dose assessment from ingestion pathway in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Majid, S.; Abdul-Fattah, A.R.A.F.; Abulfaraj, W.H. (King Abdulaziz Univ., Jeddah (Saudi Arabia))

    1992-01-01

    Levels of radioactivities in foodstuffs in the local market have been measured for the period from November 1987 until end of June 1988. Out of the 674 samples analyzed there were 83 milk powder, 85 infant milk powder, 54 infant cereals, 89 meat, 16 lentils, 14 wheat, and 26 macaroni samples. The average radioactivity concentration of {sup 137}Cs and {sup 134}Cs, in these samples in Bq/kg were 19, 13, 18, 6, 10, 25 and 13 respectively. The rest adults and infant foodstuffs had negligible radioactivity levels. The calculated annual doses from ingestion pathway due to {sup 137}Cs and {sup 134}Cs for adults were 3.13 {times} 10{sup {minus}5} Sv and 2.1 {times} 10{sup {minus}5} Sv while for one year old infant they were 12 {times} 10{sup {minus}5} Sv and 8 {times} 10{sup {minus}5} Sv respectively. The estimated accumulated dose for 50 years from {sup 90}Sr due to one year food ingestion for adults and one year old infants were 3.76 {times} 3.76 {times} 10{sup {minus}5} Sv and 5.2 {times} 10{sup {minus}5} Sv respectively.

  8. Radionuclides in Animal Feed (Poultry) 'Assessment of Radiation Dose'

    International Nuclear Information System (INIS)

    In this work a comprehensive study has been carried out for the determination of presents evaluation of effective dose due to consumption of chicken fed by fodders collected from four major Sudanese companies (Hader, Koudjs, Wifi and Preconex SPN.V). The concentrations of radionuclides in the thirty two (32) feed samples have been determined by gamma spectrometry using NaI(Tl) detector. Radionuclides observed were: Pb-212 (daughter of Th-238), Pb-214, Bi-214 (daughters of U-238), Cs-137 and K-40 concentration. In additives the activity concentration of these radionuclides has found in the following ranges: 0.81 - 22.06 Bq/kg, 0.59 - 32.07 Bq/kg, 0.64 - 15.77 Bq/kg, 0.01 - 2.02 Bq/kg and 33.58 - 204.61 Bq/kg respectively. In feed concentrates activity concentration ranges has: 0.73 - 13.79 Bq/kg, 0.33 - 20.04 Bq/kg, 0.01 - 1.67 Bq/kg, 0.01 - 0.28 Bq/kg, 26.86 - 99.21 Bq/kg respectively. In fodders the activity concentration ranges has: 1.25 - 1.52 Bq/kg, 0.12 - 1.24 Bq/kg, 0.51 - 1.25 Bq/kg, 0.01 - 0.61 Bq/kg, 11.94 - 127.88 Bq/kg respectively. The 'animal product' activity concentration ranges has: 0.31 - 1.65 Bq/kg, 0.22 - 1.11 Bq/kg, 0.26 - 1.07 Bq/kg, 0.03 - 0.51 Bq/kg, 14.07 - 79.93 Bq/kg respectively. High concentrations (233.3 Bq/Kg) has typically found in toxo(additive); the lowest concentration (27.9 Bq/Kg ) has found in concentrate for layers and animal product. The total average effective dose due to the different feed-stuff has estimated and found to be 5.89x10-6±3.11x10-6mSv/y and 13.9 x 10-7 ± 7.24 x 10-7mSv/y for age categories 7-12 y and >17 y respectively. If compared with the limits - Radioactivity Levels Permitted in foodstuffs Part 1 the Saudi Standards, Metrology and quality (300 Bq/Kg) and ICRP,FAO organization (5 mSv/y) - these values are very low. Document available in abstract form only. (authors)

  9. Eye lens radiation exposure to interventional cardiologists: A retrospective assessment of cumulative doses

    International Nuclear Information System (INIS)

    Radiation dose to the eye lens is a crucial issue for interventional cardiologists (ICs) who are exposed during the procedures they perform. This paper presents a retrospective assessment of the cumulative eye lens doses of ICs enrolled in the O'CLOC study for Occupational Cataracts and Lens Opacities in interventional Cardiology. Information on the workload in the catheterisation laboratory, radiation protection equipment, eye lens dose per procedure and dose reduction factors associated with eye-protective equipment were considered. For the 129 ICs at an average age of 51 who had worked for an average period of 22 years, the estimated cumulative eye lens dose ranged from 25 mSv to more than 1600 mSv; the mean + SD was 423+359 mSv. After several years of practice, without eye protection, ICs may exceed the new ICRP lifetime eye dose threshold of 500 mSv and be at high risk of developing early radiation-induced cataracts. Radiation protection equipment can reduce these doses and should be used routinely. (authors)

  10. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    NARCIS (Netherlands)

    Xie, Tianwu; Lee, Choonsik; Bolch, Wesley E.; Zaidi, Habib

    2015-01-01

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those

  11. Assessment of radiation dose commitment in Europe due to the Chernobyl accident

    International Nuclear Information System (INIS)

    The meeting in Bilthoven was held to make a preliminary assessment of the radiation dose commitment in Europe and to compare meteorological simulation models. Today, one year after the accident at Chernobyl, a much better data base and more precise dose estimates are available. Yet we are still publishing this report as we feel that it is of interest to compare the first dose assessments (external irradiation, inhalation, ingestion) with later ones to get an idea of the reliability of early dose predictions. Consequently the figures in the report reflect the state of knowledge in June 1986. Since last summer data from many extensive measuring programmes have been available to compile maps showing the local dose rates for most European countries. These now may be compared with the early meteorological calculations. This comparison should help scientists to improve their prognostic statements after widespread accidental releases. (orig./HP)

  12. RADIATION HYGIENIC MONITORING AND ASSESSMENT OF POPULATION DOSES IN RADIOACTIVELY CONTAMINATED AREAS OF TULA REGION

    Directory of Open Access Journals (Sweden)

    T. M. Chichura

    2016-01-01

    Full Text Available The goal. The analyses of radiation hygienic monitoring conducted in Tula region territories affected by the Chernobyl NPP accident regarding cesium-137 and strontium- 90 in the local foodstuffs and the analyses of populational annual effective dose. The materials and methods. The survey was conducted in Tula Region since 1997 to 2015. Over that period, more than fifty thousand samples of the main foodstuffs from the post-Chernobyl contaminated area were analyzed. Simultaneously with that, the external gamma - radiation dose rate was measured in the fixed control points. The dynamics of cesium -137 and strontium-90 content in foodstuffs were assessed along with the maximum values of the mean annual effective doses to the population and the contribution of the collective dose from medical exposures into the structure of the annual effective collective dose to the population. The results. The amount of cesium-137 and strontium -90 in the local foodstuffs was identified. The external gamma- radiation dose rate values were found to be stable and not exceeding the natural fluctuations range typical for the middle latitudes of Russia’s European territory. The maximum mean annual effective dose to the population reflects the stable radiation situation and does not exceed the permissible value of 1 mSv. The contribution of the collective dose from medical exposures of the population has been continuously reducing as well as the average individual dose to the population per one medical treatment under the annual increase of the medical treatments quantities. The conclusion. There is no exceedance of the admissible levels of cesium-137 and strontium- 90 content in the local foodstuffs. The mean annual effective dose to the population has decreased which makes it possible to transfer the settlements affected by the Chernobyl NPP accident to normal life style. This is covered by the draft concept of the settlements’ transfer to normal life style.

  13. Assessment of the occupational radiation exposure doses to workers at INMOL Pakistan (2007-11)

    International Nuclear Information System (INIS)

    The assessment of occupationally exposed medical radiation workers at the Institute of Nuclear Medicine and Oncology (INMOL) (Pakistan)) has been performed. The whole-body radiation exposure doses of 120 workers in nuclear medicine (NM), radiotherapy (RT) and diagnostic radiology (DR) were measured by using the film badge dosimetry technique for the time interval (2007-11) and their results presented. The annual average effective doses in NM, RT and DR were found to be well below the permissible annual limit of 20 mSv (averaged over a period of 5 consecutive y). The declining trend observed in the annual average dose values during the time interval (2007-11) is an indication of ameliorated radiation protection practices at INMOL (Pakistan)). (authors)

  14. Electronic dose conversion technique using a NaI(Tl) detector for assessment of exposure dose rate from environmental radiation

    International Nuclear Information System (INIS)

    An electronic dose conversion technique to assess the exposure dose rate due to environmental radiation especially from terrestrial sources was developed. For a 2 x 2 inch cylindrical NaI(Tl) scintillation detector, pulse-height spectra were obtained for gamma-rays of energy up to 3 MeV by Monte Carlo simulation. Based on the simulation results and the experimentally fitted energy resolution, dose conversion factors were calculated by a numerical decomposition method. These calculated dose conversion factors were, then, electronically implemented to a developed dose conversion unit (DCU) which is a microprocessor-controlled single channel analyzer (SCA) with variable discrimination levels. The simulated spectra were confirmed by measurement of several monoenergetic gamma spectra with a multichannel analyzer (MCA). The converted exposure dose rates from the implemented dose conversion algorithm in the DCU were also evaluated for a field test in the vicinity of the nuclear power plant at Kori as well as for several standard sources, and the results were in good agreement with separate measurement by a high pressure ionization chamber (HPIC) within a 6.4% deviation

  15. Radiation dose in vertebroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.; Abdo, G.; Martin, J.B.; Viera, J.M.; Ruefenacht, D.A. [Neuroradiology DRRI, Geneva University Hospital, Rue Micheli-du-Crest 24, 1211, Geneva 14 (Switzerland)

    2004-03-01

    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256 mGy outside and 0.01-0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5 mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurements. (orig.)

  16. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment

    International Nuclear Information System (INIS)

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with 60Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  17. EPR-assessment of soils radiation doses for Semipalatinsk test site's north-east trace

    International Nuclear Information System (INIS)

    The dose loads are an important characteristics of potential damage assessment for health of population suffered from nuclear incidents. Technique of retrospective dosimetry allows to evaluate of these loads, if to find in the soils samples the radiation detector - for example, some mineral - in which in the locality conditions the radiation defects are accumulating and keeping and giving the EPR signal. In the paper the results of searching of such detector to Semipalatinsk test site soils samples are expounded.The samples were taken along the north-east trace of radioactive cloud (step ∼2 km) on the distance 0.7-112 km from the air thermonuclear explosion epicenter. Te EPR performances were studied on the ESP 300E spectrometer of Brucker company (Germany). The tested methodic is perspective for determination of dose loads of soils with integral irradiation dose does not exceeds 10-15 kGy

  18. Radiation dose assessment in nuclear plants through virtual simulations using a game engine

    International Nuclear Information System (INIS)

    Full text: This paper reports an R and D which has the purpose of performing dose assessment of workers in nuclear plants, through virtual simulations using a game engine. The main objective of this R and D is to support the planning of operational and maintenance routines in nuclear plants, aiming to reduce the dose received by workers. Game engine is the core of a computer game, that is usually made independent of both the scenarios and the original applications, and thus can be adapted for any other purposes, including scientific or technological ones. Computer games have experienced a great development in the last years, regarding computer graphics, 3D image rendering and the representation of the physics needed for the virtual simulations, such as gravity effect and collision among virtual components within the games. Thus, researchers do not need to develop an entire platform for virtual simulations, what would be a hard work itself, but they can rather take advantage of such well developed platforms, adapting them for their own applications. The game engine used in this R and D is part of a computer game widely used, Unreal, that has its source code partially open, and can be pursued for low cost. A nuclear plant in our Institution, Argonauta research reactor, has been virtually modeled in 3D, and trainees can navigate virtually through it, with realistic walking velocity, and experiencing collision. The modified game engine computes and displays in real-time the dose received by a virtual person, the avatar, as it walks through the plant, from the radiation dose rate distribution assigned to the virtual environment. In the beginning of this R and D, radiation dose rate measurements were previously collected by the radiological protection service, and input off-line to the game engine. Currently, on-line measurements can be also input to it, by taking advantage of the game's networking capabilities. A real radiation monitor has been used to collect real

  19. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    International Nuclear Information System (INIS)

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, 201Tl produces the highest absorbed dose whereas 82Rb and 15O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of 82Rb is 48% and 77% lower than that of 99mTc-tetrofosmin (rest), respectively. Conclusions: 82Rb results in lower effective dose in adults compared to 99mTc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice

  20. Assessment of radiation dose in nuclear cardiovascular imaging using realistic computational models

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Bolch, Wesley E. [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2015-06-15

    Purpose: Nuclear cardiology plays an important role in clinical assessment and has enormous impact on the management of a variety of cardiovascular diseases. Pediatric patients at different age groups are exposed to a spectrum of radiation dose levels and associated cancer risks different from those of adults in diagnostic nuclear medicine procedures. Therefore, comprehensive radiation dosimetry evaluations for commonly used myocardial perfusion imaging (MPI) and viability radiotracers in target population (children and adults) at different age groups are highly desired. Methods: Using Monte Carlo calculations and biological effects of ionizing radiation VII model, we calculate the S-values for a number of radionuclides (Tl-201, Tc-99m, I-123, C-11, N-13, O-15, F-18, and Rb-82) and estimate the absorbed dose and effective dose for 12 MPI radiotracers in computational models including the newborn, 1-, 5-, 10-, 15-yr-old, and adult male and female computational phantoms. Results: For most organs, {sup 201}Tl produces the highest absorbed dose whereas {sup 82}Rb and {sup 15}O-water produce the lowest absorbed dose. For the newborn baby and adult patient, the effective dose of {sup 82}Rb is 48% and 77% lower than that of {sup 99m}Tc-tetrofosmin (rest), respectively. Conclusions: {sup 82}Rb results in lower effective dose in adults compared to {sup 99m}Tc-labeled tracers. However, this advantage is less apparent in children. The produced dosimetric databases for various radiotracers used in cardiovascular imaging, using new generation of computational models, can be used for risk-benefit assessment of a spectrum of patient population in clinical nuclear cardiology practice.

  1. Improvement and testing of radiation source models in DecDose for public dose assessments during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Radiation source models in a code called DecDose were improved in this study. DecDose had been developed for assessing public and worker exposure doses during the decommissioning of nuclear facilities. A segmentation model evaluating the length, volume, and surface area of kerfs in the object to be dismantled was improved to deal with seven shapes of objects simulating most of the components and the structures in nuclear facilities, while the previous model could treat only two of them. Models for the evaluation of the external dose by direct and skyshine radiation were also improved to deal with the distribution of waste containers temporarily placed in the building and the quantity of radionuclides stored in the individual container. Good agreement was observed between actual and calculated kerf volumes in cutting the reactor pressure vessel, the waste collector tank, and the channel box of the Japan Power Demonstration Reactor (JPDR). It is an indication of the validity of the model improved in this study. On the other hand, some discrepancies were observed between actual and calculated quantities of radionuclides discharged into the ocean during the JPDR dismantling project, indicating the necessity of further validation of the model. (author)

  2. Pilot website to support international collaboration for dose assessments in a radiation emergency

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, G.K., E-mail: Gordon.Livingston@orise.orau.gov [Oak Ridge Associated Universities, REAC/TS, Radiation Emergency Medicine (REM), P.O. Box 117, Oak Ridge, TN 37831 (United States); Wilkins, R.C., E-mail: Ruth.Wilkins@hc-sc.gc.ca [Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, ON K1A 1C1 (Canada); Ainsbury, E.A., E-mail: liz.ainsbury@hpa.org.uk [Health Protection Agency, Radiation Protection Division, Chilton, Didcot, Oxfordshire OX11 0RQ (United Kingdom)

    2011-09-15

    Nuclear terrorism has emerged as a significant threat which could require timely medical interventions to reduce potential radiation casualties. Early dose assessments are critical since optimal care depends on knowing a victim's radiation dose. The dicentric chromosome aberration assay is considered the 'gold standard' to estimate the radiation dose because the yield of dicentrics correlates positively with the absorbed dose. Dicentrics have a low background frequency, are independent of age and gender and are relatively easy to identify. This diagnostic test for radiation exposure, however, is labor intensive and any single or small group of laboratories could easily be overwhelmed by a mass casualty event. One solution to this potential problem is to link the global WHO BioDoseNet members via the Internet so multiple laboratories could work cooperatively to screen specimens for dicentric chromosomes and generate timely dose estimates. Inter-laboratory comparison studies have shown that analysis of electronic chromosome images viewed on the computer monitor produces scoring accuracy equivalent to viewing live images in the microscope. This functional equivalence was demonstrated during a comparative study involving five laboratories constructing {sup 60}Co gamma ray calibration curves and was further confirmed when comparing results of blind dose estimates submitted by each laboratory. It has been further validated in two recent WHO BioDoseNet trial exercises where 20 metaphase images were shared by e-mail and 50 images were shared on a test website created for this purpose. The Internet-based exercise demonstrated a high level of concordance among 20 expert scorers who evaluated the same 50 metaphase spreads selected to exhibit no, low, moderate and severe radiation damage. Nineteen of 20 scorers produced dicentric equivalent counts within the 95% confidence limits of the mean. The Chi-squared test showed strong evidence of homogeneity in the data

  3. The use of caffeine to assess high dose exposures to ionising radiation by dicentric analysis

    International Nuclear Information System (INIS)

    Dicentric analysis is considered as a 'gold standard' method for biological dosimetry. However, due to the radiation-induced mitotic delay or inability to reach mitosis of heavily damaged cells, the analysis of dicentrics is restricted to doses up to 4-5 Gy. For higher doses, the analysis by premature chromosome condensation technique has been proposed. Here, it is presented a preliminary study is presented in which an alternative method to analyse dicentrics after high dose exposures to ionising radiation (IR) is evaluated. The method is based on the effect of caffeine in preventing the G2/M checkpoint allowing damaged cells to reach mitosis. The results obtained indicate that the co-treatment with Colcemide and caffeine increases significantly increases the mitotic index, and hence allows a more feasible analysis of dicentrics. Moreover in the dose range analysed, from 0 to 15 Gy, the dicentric cell distribution followed the Poisson distribution, and a simulated partial-body exposure has been clearly detected. Overall, the results presented here suggest that caffeine has a great potential to be used for dose-assessment after high dose exposure to IR. (authors)

  4. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Matthew A. Coleman Ph.D.; Narayani Ramakrishnan, Ph.D.; Sally A. Amundson; James D. Tucker, Ph.D.; Stephen D. Dertinger, Ph.D.; Natalia I. Ossetrova, Ph.D.; Tao Chen

    2009-11-16

    Exposure to ionizing radiation produces few immediate outwardly-visible clinical signs, yet, depending on dose, can severely damage vital physiological functions within days to weeks and produce long-lasting health consequences among survivors. In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate the worried but unharmed from those individuals who must receive medical attention. Physical, clinical and biological dosimetry are usually combined for the best dose assessment. However, because of the practical limits of physical and clinical dosimetry, many attempts have been made to develop a dosimetry system based on changes in biological parameters, including techniques for hematology, biochemistry, immunology, cytogenetics, etc. Lymphocyte counts and chromosome aberrations analyses are among the methods that have been routinely used for estimating radiation dose. However, these assays require several days to a week to be completed and therefore cannot be used to obtain a fast estimate of the dose during the first few days after exposure when the information would be most critical for identifying victims of radiation accidents who could benefit the most by medical intervention. The steadily increasing sophistication in our understanding of the early biochemical responses of irradiated cells and tissues provides the opportunity for developing mechanism-based biosignatures of exposure. Compelling breakthroughs have been made in the technologies for genome-scale analysis of cellular transcriptional and proteomic profiles. There have also been major strides in the mechanistic understanding of the early events in DNA damage and radiation damage products, as well as in the cellular pathways that lead to radiation injury. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation protein machines are modified and activated, and large

  5. Occupational radiation dose of staff and workplace assessment at service des radioimmunodosages in Benin

    International Nuclear Information System (INIS)

    Occupational radiation dose of staff handling 125 I and workplace assessment in nuclear medicine unit at Service des Radioimmunodosages (SeRiD) in Benin have been undertaken to determine levels of radiation safety. Firstly, three permanent workers and two students were provided with finger ring thermoluminescent dosimeters (TLD) to wear at index finger base of both hands. Ring dosimeters were used for four month in two sequences of two months and were evaluated with HARSHAW 4500. Secondly, three permanent workers and three students were provided with TLD badge to wear at the chest level for skin and deep dose measurement. TLD badges were used for six months in six sequences of one month. The exposed TLDs were evaluated with HARSHAW 6600. Ambient equivalent dose rate (μSv/h) was measured using microsieverts model dose rate meter. Sixteen control points closed to the source or situated where staff are exposed to ionizing radiation were chosen. Fixed and removable contamination were surveyed at six and three controlled points respectively. Results from the study showed that permanent workers highest index finger base average equivalent dose was 142.75± 89.54μSv/2months, while that of students was 34.69 ± 29.23 µSv/2months. The maximum annual skin dose of Permanent workers represent 0.46% of dose limit (500mSv/yr), while that of the student represent 0.37%of dose limit (150mSv/yr). Average ambient equivalent dose rate from radiation survey was lower than 20μSv/h. It was noted that the freezer door plays an inportant role in shielding. The result in waste disposal room confirm the decay in storage of radioactive waste principle. Data on removable and fixed contamination value was below the limits of 0.33 dps/100cm2 and 8.33dps/100cm2 respectively. The study indicated that SeRiD staff are not exposed to ionizing radiation at work in safe working environment. (au)

  6. A cost-effective technique for integrating personal radiation dose assessment with personal gravimetric sampling

    International Nuclear Information System (INIS)

    During recent years there has been an increasing awareness internationally of radiation levels in the mining and milling of radioactive ores, including those from non-uranium mines. A major aspect of radiation control is concerned with the measurement of radiation levels and the assessment of radiation doses incurred by individual workers. Current techniques available internationally for personnel monitoring of radiation exposures are expensive and there is a particular need to reduce the cost of personal radiation monitoring in South African gold mines because of the large labour force employed. In this regard the obvious benefits of integrating personal radiation monitoring with existing personal monitoring systems already in place in South African gold mines should be exploited. A system which can be utilized for this purpose is personal gravimetric sampling. A new cost-effective technique for personal radiation monitoring, which can be fully integrated with the personal gravimetric sampling strategy being implemented on mines, has been developed in South Africa. The basic principles of this technique and its potential in South African mines are described. 9 refs., 7 figs

  7. Blast overpressure and fallout radiation dose models for casualty assessment and other purposes. Rev. ed.

    International Nuclear Information System (INIS)

    The determination of blast overpressures and fallout radiation doses at points on a sufficiently fine grid, for any part or for the whole of the UK, and for any postulated attack, is an essential element in the systematic assessment of casualties, the estimation of numbers of homeless, and the evaluation of life-saving measures generally. Models are described which provide the required blast and dose values and which are intended to supersede existing models which were introduced in 1971. The factors which affect blast and, more particularly, dose values are discussed, and the way in which various factors are modelled is described. The models are incorporated into separate computer programs which are described, the outputs of which are stored on magnetic tape for subsequent use as required. (author)

  8. Radioactivity in food and the environment: calculations of UK radiation doses using integrated assessment methods

    International Nuclear Information System (INIS)

    A new method for estimating radiation doses to UK critical groups is proposed for discussion. Amongst others, the Food Standards Agency (FSA) and the Scottish Environment Protection Agency (SEPA) undertake surveillance of UK food and the environment as a check on the effect of discharges of radioactive wastes. Discharges in gaseous and liquid form are made under authorisation by the Environment Agency and SEPA under powers in the Radioactive Substance Act. Results of surveillance by the FSA and SEPA are published in the Radioactivity in Food and the Environment (RIFE) report series. In these reports, doses to critical groups are normally estimated separately for gaseous and liquid discharge pathways. Simple summation of these doses would tend to overestimate doses actually received. Three different methods of combining the effects of both types of discharge in an integrated assessment are considered and ranked according to their ease of application, transparency, scientific rigour and presentational issues. A single integrated assessment method is then chosen for further study. Doses are calculated for surveillance data for the calendar year 2000 and compared with those from the existing RIFE method

  9. Low chronic radiation doses

    International Nuclear Information System (INIS)

    In the context of the Chernobyl and Fukushima accidents where large territories have been contaminated durably and as consequence where local populations are submitted to chronic low radiation doses, IRSN (French institute for radiation protection and nuclear safety) has led various studies to assess the impact of chronic low doses. Studies about the effects of uranium on marine life show that the impact is strongly dependent on the initial state of the individual (zebra Danio rerio fish). The studies about the impact of chronic low doses due to cesium and strontium contamination show different bio-accumulations: 137Cs is found in the animal's whole body with higher concentrations in muscles and kidneys while 90Sr is found almost exclusively in bones and it accumulates more in female mice than in males. The study dedicated to the sanitary impact of chronic low doses on the workers of the nuclear industry shows a higher risk for developing a leukemia, a pleural cancer or a melanoma but no correlation appears between doses and the appearance of the pleural cancer or the melanoma. (A.C.)

  10. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  11. Registration of radiation doses

    International Nuclear Information System (INIS)

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  12. Assessment of radiation doses to the population in the environment of a nuclear power plant

    International Nuclear Information System (INIS)

    This guide sets forth the principles to be followed in the assessment of the radiation exposure of the surrounding population of a nuclear power plant. The requirements of this guide apply to transient and safety analyses conducted in accordance with Guide YVL 2.2; to analyses assessing exposure from releases during normal operation; and to analyses in connection with emergency preparedness. In addition, they may be applied to other analyses for the operation of a nuclear power plant. This guide may be applied to other nuclear facilities as well. Guide YVL 7.3 deals with evaluation of the dispersion of radioactive substances in relation to radiation dose assessment. According to Recommendation 91/4/Euratom issued by the Commission of the European Communities on the application of Article 37 of the EURATOM Treaty, the member states shall provide the Commission with information about the environmental impacts of the use of nuclear energy. If need be, the Radiation and Nuclear Safety Authority will instruct separately on the application of the Recommendation. The licensee may use a simplified model that deviates from the detailed requirements of this guide. It shall then be justifiably demonstrated that the model is conservative

  13. Real-time dose assessment and visualization of radiation field for EAST tokamak

    International Nuclear Information System (INIS)

    The Experimental Advanced Superconducting Tokamak (EAST) device began operation in 2006. A radiation protection work has been paid more and more attention with discharge pulse length increase. A system named radiation virtual simulation for dosimetry (RVIS) using virtual reality (VR) technology has been developed to improve the efficiency of maintenance work, and decrease the radiation exposure of maintenance personnel. The RVIS can be used to evaluate workload in radiation environments, optimize the maintenance plan and visualize three-dimensional (3D) dose rate distribution. The original 3D dose rate distribution in shielded hall was calculated rapidly to use as a basis for dose evaluation and 3D dose field visualization. The RVIS improves on the original work to give more effective dose evaluation and dynamic visualization of the dose field during EAST experiment campaigns.

  14. Relationship between dose and risk, and assessment of carcinogenic risks associated with low doses of ionizing radiation

    International Nuclear Information System (INIS)

    This report raises doubts on the validity of using LNT (linear no-threshold) relationship for evaluating the carcinogenic risk of low doses (< 100 mSv) and even more for very low doses (< 10 mSv). The LNT concept can be a useful pragmatic tool for assessing rules in radioprotection for doses above 10 mSv; however since it is not based on biological concepts of our current knowledge, it should not be used without precaution for assessing by extrapolation the risks associated with low and even more so, with very low doses (< 10 mSv), especially for benefit-risk assessments imposed on radiologists by the European directive 97-43. The biological mechanisms are different for doses lower than a few dozen mSv and for higher doses. The eventual risks in the dose range of radiological examinations (0.1 to 5 mSv, up to 20 mSv for some examinations) must be estimated taking into account radiobiological and experimental data. An empirical relationship which has been just validated for doses higher than 200 mSv may lead to an overestimation of risks (associated with doses one hundred fold lower), and this overestimation could discourage patients from undergoing useful examinations and introduce a bias in radioprotection measures against very low doses (< 10 mSv). Decision makers confronted with problems of radioactive waste or risk of contamination, should re-examine the methodology used for the evaluation of risks associated with very low doses and with doses delivered at a very low dose rate. This report confirms the inappropriateness of the collective dose concept to evaluate population irradiation risks

  15. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author)

  16. CT outperforms radiographs at a comparable radiation dose in the assessment for spondylolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fadell, Michael F.; Stewart, Jaime R.; Harned, Roger K.; Ingram, James D.; Miller, Angie L.; Strain, John D.; Weinman, Jason P. [Children' s Hospital Colorado, Department of Radiology, Aurora, CO (United States); University of Colorado Hospital, Department of Radiology, Aurora, CO (United States); Gralla, Jane [University of Colorado Denver, Department of Pediatrics, Aurora, CO (United States); Bercha, Istiaq [Children' s Hospital Colorado, Department of Radiology, Aurora, CO (United States)

    2015-07-15

    Lumbar spondylolysis, a unilateral or bilateral fracture at pars interarticularis, is a common cause of low back pain in children. The initial imaging study in the diagnosis of lumbar spondylolysis has historically been lumbar spine radiographs; however, radiographs can be equivocal or false-negative. Definitive diagnosis can be achieved with computed tomography (CT), but its use has been limited due to the dose of ionizing radiation to the patient. By limiting the z-axis coverage to the relevant anatomy and optimizing the CT protocol, we are able to provide a definitive diagnosis of fractures of the pars interarticularis at comparable or lower radiation dose than commonly performed lumbar spine radiographs. As there is no gold standard for the diagnosis of spondylolysis besides surgery, we compared interobserver agreement and degree of confidence to determine which modality is preferable. Sixty-two patients with low back pain ages 5-18 years were assessed for the presence of spondylolysis. Forty-seven patients were evaluated by radiography and 15 patients were evaluated by limited field-of-view CT. Both radiographic and CT examinations were assessed anonymously in random order for the presence or absence of spondylolysis by six raters. Agreement was assessed among raters using a Fleiss Kappa statistic for multiple raters. CT provided a significantly higher level of agreement among raters than radiographs (P < 0.001). The overall Kappa for rater agreement with radiographs was 0.24, 0.34 and 0.40 for 2, 3 or 4 views, respectively, and 0.88 with CT. Interobserver agreement is significantly greater using limited z-axis coverage CT when compared with radiographs. Radiologist confidence improved significantly with CT compared to radiographs regardless of the number of views. (orig.)

  17. Radiation Dose Assessments of Solar Particle Events with Spectral Representation at High Energies for the Improvement of Radiation Protection

    Science.gov (United States)

    Kim, Myung-Hee; Atwell, William; Tylka, Allan J.; Dietrich, William F.; Cucinotta, Francis A.

    2010-01-01

    For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to approx.100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from approx.10 MeV to approx.10 GeV in major SPEs (Tylka & Dietrich 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  18. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bahruddin, N. A.; Ang, W. C.; Salehhon, N.

    2016-03-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p risks of radiation and CT optimization techniques.

  19. Assessment of scattered dose contribution to healthy tissue in radiation therapy using water phantom

    International Nuclear Information System (INIS)

    In cancer therapy using gamma radiation one of the limiting factors in dose delivery is the safety of the healthy tissues and organs around the cancerous mass. Better collimation and dose fractionation are employed to achieve this. In the present paper results of scattered dose to healthy tissues around the incident beam cross-section or beam boundaries have been estimated using IAEA standard water phantom and Co-60 incident radiation. It has been observed that scattered dose to healthy tissues increases linearly from 4% to 7% of the incident dose of 185 c Gy to 200 c Gy at the centre of the beam, at 5 cm depth in water, as we increase the incident beam field size from 5 cm x 5 cm to 10 cm x 10 cm. Also the maximum unwanted scattered dose for any field size remains closer to the incident beam boundaries. (author)

  20. Mammography radiation dose: Initial results from Serbia based on mean glandular dose assessment for phantoms and patients

    International Nuclear Information System (INIS)

    The primary objective of this study is to investigate the actual mammography dose levels in Serbia and establish a baseline dose database for the future screening programme. The mean glandular dose (MGD) was assessed for standard size breast substituted by 45 mm polymethyl methacrylate (PMMA) phantom and imaged under typical clinical conditions at 30 screen film mammography facilities. Average MGD was (1.9 ± 1.0) mGy, with a range of 0.12-5.2 mGy. These results were used for the calculation of the initial diagnostic reference levels in mammography in Serbia, which was set to 2.1 mGy for a standard breast. At some facilities, high doses were observed and the assessed MGD was supplemented by a patient dose survey. MGD was measured for 53 women having a diagnostic mammography in cranio-caudal (CC) and medio-lateral oblique (MLO) projections at the largest mammography facilities in Serbia. The parameters recorded were: age, compressed breast thickness, tube potential (in kV), tube loading (in mAs) and the MLO projection angle. The average MGD per image was 2.8 mGy for the CC projection and 4.3 mGy for the MLO projection. Dose to breast was compared with dose for PMMA phantoms of various sizes, assessed at the same facilities. The results have indicated that phantom dose values can assist in setting optimisation activities in mammography. Both phantom and patient dose values indicated unnecessary high doses in facilities with an extremely high mammography workload. For these facilities, urgent dose-reduction measures and follow-up actions were recommended. (authors)

  1. Radiation doses to Finns

    International Nuclear Information System (INIS)

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  2. Epidemiological surveys on the effects of low-level radiation dose: a comparative assessment. V. E

    International Nuclear Information System (INIS)

    These tables present data on the effects of low-level radiation dose for the following effects:- pre-conception irradiation and Down's Syndrome, pre-conception irradiation and reproductive damage, surveys of effect in relation to the source of radiation, distribution by maternal preconception exposure of the 7 most common major congenital abnormalities in the Japanese, pre-conception irradiation and childhood malignancies, parental gonadal dose at Hiroshima and Nagasaki in relation to leukemia, sex chromosome aneuploids in children of A-bomb survivors, untoward pregnancy outcomes by parental gonad dose, pre-conception irradiation and chromosomal abnormalities, and intra-uterine irradiation and intelligence. (author)

  3. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  4. Assessment of population absorbed dose from external penetrating radiation in Beijing

    International Nuclear Information System (INIS)

    Gonad mean annual absorbed dose from external penetrating radiation for Beijing residents is 73.4 mrad/y of which the annual absorbed dose from cosmic ray is 27.1 mrad/y and that from natural radioactivity in building materials is 37.6 mrad/y. The construction of buildings and roads makes the annual absorbed dose change. The construction of buildings brings about an increase of 19.7 per cent in the annual absorbed dose. The construction of roads results in a reduction of 2.4%

  5. Assessment of fetal radiation dose to patients and staff in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Osei, E.K

    2000-07-01

    A major source of uncertainty in the estimation of fetal absorbed radiation dose is the influence of fetal size and position as these change with gestational age. Consequently, dose to the fetus is related to gestational age. Most studies of fetal dose estimation during pregnancy assume that the uterus dose is equal to fetal dose. These dose estimates do not take account of gestational age and individual fetal depth, factors which are significant when calculating dose. To establish both positional and size data for estimation of fetal absorbed dose from radiological examinations, the depths from the mother's anterior surface to the mid-line of the fetal head and abdomen were measured from ultrasound scans in 215 pregnant women. Depths were measured along a ray path projected in the anterior-posterior direction from the mother's abdomen. The fetal size was estimated from measurements of the fetal abdominal and head circumference, femur length and the biparietal diameter. The effects of fetal presentation, maternal bladder volume, placenta location, gestational age and maternal AP thickness on fetal depth and size were analysed. A Monte Carlo (MC) model was developed, and used to derive factors for converting dose-area product and free-in-air entrance surface dose from medical exposure of a pregnant patient to absorbed dose to the uterus/embryo, and for converting uterus dose to fetal dose in the later stages of pregnancy. Also presented are factors for converting thermoluminescence dosimeter reading from occupational exposure of a pregnant worker to equivalent dose to the fetus. The MC model was verified experimentally by direct measurement of uterus depth dose in a female Rando phantom, and also by comparison with other experimental work and MC results in the literature. The application of the various conversion factors is demonstrated by a review of the dose estimation process in 50 cases of fetal irradiation from medical exposures. (author)

  6. Assessment of fetal radiation dose to patients and staff in diagnostic radiology

    International Nuclear Information System (INIS)

    A major source of uncertainty in the estimation of fetal absorbed radiation dose is the influence of fetal size and position as these change with gestational age. Consequently, dose to the fetus is related to gestational age. Most studies of fetal dose estimation during pregnancy assume that the uterus dose is equal to fetal dose. These dose estimates do not take account of gestational age and individual fetal depth, factors which are significant when calculating dose. To establish both positional and size data for estimation of fetal absorbed dose from radiological examinations, the depths from the mother's anterior surface to the mid-line of the fetal head and abdomen were measured from ultrasound scans in 215 pregnant women. Depths were measured along a ray path projected in the anterior-posterior direction from the mother's abdomen. The fetal size was estimated from measurements of the fetal abdominal and head circumference, femur length and the biparietal diameter. The effects of fetal presentation, maternal bladder volume, placenta location, gestational age and maternal AP thickness on fetal depth and size were analysed. A Monte Carlo (MC) model was developed, and used to derive factors for converting dose-area product and free-in-air entrance surface dose from medical exposure of a pregnant patient to absorbed dose to the uterus/embryo, and for converting uterus dose to fetal dose in the later stages of pregnancy. Also presented are factors for converting thermoluminescence dosimeter reading from occupational exposure of a pregnant worker to equivalent dose to the fetus. The MC model was verified experimentally by direct measurement of uterus depth dose in a female Rando phantom, and also by comparison with other experimental work and MC results in the literature. The application of the various conversion factors is demonstrated by a review of the dose estimation process in 50 cases of fetal irradiation from medical exposures. (author)

  7. Assessment of radiological parameters and radiation dose received by the miners in Jaduguda uranium mine, India

    International Nuclear Information System (INIS)

    Highlights: • Radiological parameters and radiation dose received by the miners were measured. • Geometric mean of radon concentration in the mine was found to be 436.44 Bq m−3. • The dose contributed by 222Rn progeny was higher than gamma and long-lived alpha. • Radiation dose contributed by the long-lived alpha activity was negligible. • Total effective dose received by miners was well below the dose limit of 20 mSv y−1. - Abstract: Monitoring of radiological parameters in underground uranium mines is essential to maintain the radiation levels within safe limits. In this study, the radiological parameters such as external gamma emitted from ore body, long-lived alpha activity associated with ore dust and radon concentration in an operating underground uranium mine located at Jaduguda, India were measured using different equipments such as micro-R radiation survey meter, personal air sampler and scintillation cell. The geometric mean values of external gamma radiation level, long-lived alpha activity, radon activity concentration and equilibrium equivalent radon (EER) concentration were found to be 2.39 μGy h−1, 16.84 mBq m−3, 872.89 Bq m−3 and 436.44 Bq m−3 respectively with their geometric standard deviations of 1.56, 3.21, 1.58 and 1.58. The total radiation dose received by the miners estimated from the radiological parameters was found to be well below the prescribed limit of 20 mSv y−1 recommended by International Commission on Radiation Protection (ICRP), and hence, it may not pose significant health hazards to the Jaduguda miners

  8. Assessment of Environmental Gamma Radiation Dose Rate in Ardabil and Sarein in 2009

    Directory of Open Access Journals (Sweden)

    M Alighadri

    2011-10-01

    Full Text Available Background and Objectives: Gamma rays, the most energetic photons within the any other wave in the electromagnetic spectrum, pose enough energy to form charged particles and adversely affect human health. Provided that the external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined, environmental gamma dose rate and corresponding annual effective dose were determined in the cities of Ardabil and Sar Ein.Materials and Methods: Outdoor environmental gamma dose rates were measured using an Ion Chamber Survey Meter in 48 selected locations (one in city center and the remaining in cardinal and ordinal directions in Ardabil and Sar Ein. Ten more locations were monitored along the hot springs effluent in Sar Ein. Measurements of gamma radiation dose rate were performed at 20 and 100 cm above the ground for a period of one hour.Results: Average outdoor environmental gamma dose rate were determined as 265, 219, and 208  for Ardabil, Sar Ein, and along the hot spring effluent, respectively. The annual affective dose for Ardabil and Sar Ein residents were estimated to be 1.45 and 1.39 mSv, respectively.Conclusion: Calculated annual effective dose of 1.49 and 1.35 are appreciably higher than the population weighted average exposure to environmental gamma radiation worldwide and that analysis of soil content to different radionuclide is suggested.

  9. Revised series of stylized anthropometric phantoms for internal and external radiation dose assessment

    Science.gov (United States)

    Han, Eunyoung

    At present, the dosimetry systems of both the International Commission on Radiological Protection, and the Society of Nuclear Medicine's Medical Internal Radiation Dose Committee utilize a series of stylized or mathematical anthropometric models of patient anatomy developed in 1987 at the Oak Ridge National Laboratory (ORNL). In this study, substantial revisions to the ORNL phantom series are reported with tissue compositions, tissue densities, and organ masses adjusted to match their most recent values in the literature. In addition, both the ICRP and MIRD systems of internal dosimetry implicitly consider that electron and beta-particle energy emitted within the source organs of the patient are fully deposited within these organs. With the development of the revised ORNL phantom series, three additional applications were explored as part of this dissertation research. First, the phantoms were used in combination to assess external radiation exposures to family members caring or interacting with patients released from the hospital following radionuclide therapy with I-131. Values of family member effective dose are then compared to values obtained using NRC guidance and based on a simple point-source methodology which ignores the effects of photon attenuation and scatter within both the source individual (patient) and the target individual (family member). Second, the anatomical structures of the extrathoracic airways and thoracic airways (exclusive of the lungs themselves) have been included in the entire revised ORNL phantom series of pediatric individuals. Values of cross-region photon dose are explored for use in radioactive aerosol inhalation exposures to members of the general public, and comparisons are made to values given by the ICRP in which surrogate organ assignments were made in the absence of explicit models of these airways. Finally, the revised ORNL phantoms of the adult male and adult female are used to determine internal photon exposures to

  10. Assessment of dose to the expected overexposed radiation workers in Malaysia using dicentric technique from 2005 - 2006

    International Nuclear Information System (INIS)

    Malaysian Nuclear Agency is recognized by the Atomic Energy Licensing Board (AELB) as a National Biodosimetry Laboratory for performing the chromosome aberration tests in Malaysia. The test is to be done for radiation workers who received doses of more than the annual dose limit of 50 mSv or losses of film badge. This paper aims at presenting results of assessment of dose to the expected overexposed radiation workers in Malaysia using dicentric technique from year 2005 to 2006. Between that period of time, 20 blood samples (loss of film badge: 5 samples, overexposed: 13 samples and follow-up cases: 2 samples) were received from the AELB and the assessment of chromosome aberration were performed. The information on whole body exposure (WBE) was also received together with the samples for overexposed worker. We used the gold standard technique, which is the dicentric assay to analyze the blood samples. The technique is described in the IAEA Technical Report Series No. 405. The results were then analyzed and compared with the respective WBE for the overexposed worker. We found that no doses were observed for workers who loss their film badges and for follow-up cases. 30.8% of the overexposed workers show doses of more than 50 mSv. However, 69.2% shows doses lower than the annual limit. Variation of results may be due to delayed blood sampling from the workers. This technique is especially useful for immediate assessment of radiation exposure. (Author)

  11. Measurement and simulation of the radiation environment in the lower atmosphere for dose assessment

    International Nuclear Information System (INIS)

    Flying personnel is occupationally exposed to rather high radiation levels due to secondary cosmic radiation. Therefore, the radiation environment induced in the lower atmosphere by galactic and solar cosmic radiation was characterized by means of particle transport calculations using GEANT4. These calculations were validated with continuous measurements of the energy spectra of secondary neutrons with Bonner sphere spectrometers at the Zugspitze mountain and near the North Pole. The response of these instruments was determined with GEANT4 and for the first time experimentally verified at high neutron energies (244 and 387 MeV). Route doses for aircrews along typical long-haul flights were determined for galactic and solar cosmic radiation using most recent data on the magnetospheric field and primary cosmic radiation.

  12. Do we need a new cost/benefit assessment for low radiation doses?

    International Nuclear Information System (INIS)

    Current cost/benefit estimates related to radiation protection, e.g. regarding the consequences of population exposures after accidents, decommissioning and waste management programs, etc., are based on the linear-no-threshold hypothesis and the related collective dose concept, as recommended in ICRP 60, the Basic Safety Standards (BSS), and EU directives. However, the extrapolation from very high to very low doses is increasingly questioned by radiation scientists for fundamental radiobiological reasons, as well as by epidemiological studies with exposed populations. Moreover, if also applied to natural radiation (e.g. in mining or high natural radiation areas, or radon in buildings), the resulting high costs justify, for ethical as well as socio-economical reasons, a careful analysis of the actual benefits of such measures, to be compared with demonstrable health detriments and the cost/benefit ratio in other public health and risk reduction programs in modern industrial societies. Some aspects of these problems will be discussed briefly, and summarized in questions addressed to the advisory bodies on whose recommendations current regulations are based. As a first step, abolishment of the use of the collective dose concept below about 100 mSv total of ''artificial'' radiation per person of the public, and below 50 mSv p.a. for radiation workers, appears advisable. (author)

  13. Assessment of internal doses

    CERN Document Server

    Rahola, T; Falk, R; Isaksson, M; Skuterud, L

    2002-01-01

    There is a definite need for training in dose calculation. Our first course was successful and was followed by a second, both courses were fully booked. An example of new tools for software products for bioassay analysis and internal dose assessment is the Integrated Modules for Bioassay Analysis (IMBA) were demonstrated at the second course. This suite of quality assured code modules have been adopted in the UK as the standard for regulatory assessment purposes. The intercomparison measurements are an important part of the Quality Assurance work. In what is known as the sup O utside workers ' directive it is stated that the internal dose measurements shall be included in the European Unions supervision system for radiation protection. The emergency preparedness regarding internal contamination was much improved by the training with and calibration of handheld instruments from participants' laboratories. More improvement will be gained with the handbook giving practical instructions on what to do in case of e...

  14. ISCORS ASSESSMENT OF RADIOACTIVITY IN SEWAGE SLUDGE: MODELING TO ASSESS RADIATION DOSES

    Science.gov (United States)

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tran...

  15. Fluoroscopically Guided Percutaneous Vertebroplasty: Assessment of Radiation Doses and Implementation of Procedural Routines to Reduce Operator Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wrangel, A. von; Cederblad, Aa. (Dept. of Medical Physics and Biomedical Engineering, Sahlgrenska Univ. Hospital, Goeteborg (Sweden)); Rodriguez-Catarino, M. (Dept. of Radiology, Sahlgrenska Univ. Hospital, Goeteborg (Sweden))

    2009-06-15

    Background: Percutaneous vertebroplasty (PVP) is a fluoroscopically guided procedure for the treatment of painful vertebral compression fractures and metastases. Routine legal personal dosimetry repeatedly showed dosimeter doses exceeding 1 mSv/month for the only radiologist performing PVP at our hospital. Based on the nature of the procedure, this raised concern about potentially high doses to the eyes and fingers. Purpose: To assess radiation doses to the operator, and to evaluate possibilities for dose reduction. Material and Methods: Measurements of scattered radiation in simulated thoracic and lumbar PVP procedures were performed using two anatomical phantoms - thorax and lower trunk - and a radiation survey meter. The standard position of the operator was determined as being 50 cm from the irradiated area of the phantom. The protection ability of lead-free gloves was evaluated during the simulations. Operator doses to fingers and eyes during 10 clinical PVP procedures performed by a single operator were measured, and the annual dose was calculated. Routine personal dosimetry was performed using thermoluminescent dosimeter (TLD) badges beneath the lead apron, and doses to fingers and eyes were measured with small TLD tablets. Results: During simulations, the measured operator dose rate arising from lateral fluoroscopy at the thorax and lumbar level was reduced by a factor of 4-5 when the X-ray tube was moved from the operator's side of the patient to the opposite side. Wearing protective gloves reduced radiation dose to the hands by 30-40%. The mean doses arising from the 10 clinical PVP procedures to the right and left hands, using protection gloves, were 2.0 mSv and 4.8 mSv, respectively. The mean dose to the eyes was 0.23 mSv. The mean effective dose to the patients was 12 mSv. Conclusion: Placing the X-ray tube on the side of the patient opposite to the operator and the use of radiation protection gloves significantly reduces radiation exposure to the

  16. Are atomic-bomb dose-response data from ABCC/RERF reasonable for assessment of radiation risk?

    International Nuclear Information System (INIS)

    Ever since ABCC was established in 1948, the Unified Program, conceived in 1955 and a fixed population sample (Life Span Study extended) was selected from the A-Bomb survivors Supplementary Schedules of 1950 National Census, originally consisted of approximately 110,000 persons in Hiroshima and Nagasaki. Since 1958, the AHS, a fixed sub-sample of LSS-extend sample, originally consisting of nearly 20,000 persons, has been followed for long-term clinical examinations for any late ionizing radiation effects of the A-bombs. AHS participants are thus provided complete physical examinations and laboratory tests during their biennial ''cycle'' visits to the ABCC/RERF clinics. The AHS sample includes persons NIC as the control groups. On the basis of the survey of the fixed population sample, ABCC/RERF have published many papers upto the present. Those data became the basis for reports of ICRP (1979, 1990), UNSCEAR (1977, 1933), and BEIR (1990). The author would like to raise a question whether the use of ABCC/RERF data was reasonable or not. Based on the cancer incidence in Hiroshima and Nagasaki A-bomb survivors, LNT model that radiation risk is always proportional to dose, no matter how small, was adopted by ICRP, UNSCEAR, and BEIR for the assessment of risk at low doses and for recommendation of dose limits. RERF reported the cancer incidence in A-bomb survivors, 1958-1987 (1994). A linear dose-response relationship was expressed for all solid cancers. In the ABCC/RERF study, however, abscissa of dose-response curves is done from A-bomb with no consideration of dose-rate in spite that the dose-rate is a great factor for the incidence. Incidence is affected not only with radiation dose but also with radiation dose-rate both of which are in inverse proportion to distance from the A-bomb explosion center. The patients were exposed to the radiation at the different dose-rate depending on the distance. Real animal experimental data from HTO administration by Yamamoto et al

  17. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bahruddin, N. A.; Ang, W. C.; Salehhon, N.

    2016-03-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques.

  18. DNA damage-related gene expression as biomarkers to assess low dose radiation exposure

    International Nuclear Information System (INIS)

    Complete text of publication follows. According to the UNSCEAR, the natural rays from the Sun and the Earth transmit about 2,4 mSv to each individual every year. Human activities expose us to an additional radiation dose (1,2 mSv/year), especially the techniques used in non-invasive medical imaging (radiography, CT scanners). Ionizing radiation can induce a large spectrum of DNA lesions, but under optimal DNA repair conditions, the principal residual lesions of importance are misrepaired doublestrand breaks. Predictive markers of intrinsic radio sensitivity in healthy individuals are needed in monitoring their occupational or environmental radiation exposure and may predict a patient's response to radiotherapy. Radiation protection requires a thorough understanding of low dose ionizing radiation. Currently extrapolation from high doses is necessary to estimate the effects of low doses. Furthermore, it is critically important to have an appreciation of the variation in individual responses to radiation among the human population. Present estimates of the risks from radiation exposure are based largely on the 'average' individual in an exposed population. However, clinical observations of adverse reactions to radiotherapy indicate large variations in individual radio sensitivity. Quantification of risk requires the identification of new parameters taking into account these differences in radiation responses. Therefore, a detailed knowledge of the mechanisms by which radiation induces cancer is essential. It is necessary to understand the various steps involved in the multistage process of radiation-induced tumor genesis and to answer the following specific question: Is there a link between radio sensitivity of individuals (short term) and susceptibility to cancer (late after exposure)? Appearance of mutations consist one of more prominent consequence of the radiation action. The aim of our study consisted in the restriction fragment's length polymorphism (RFLP

  19. Assessment of dose contribution to population exposure from the radiation sources in the alienated Chernobyl zone

    International Nuclear Information System (INIS)

    The main dose load of Ukrainian population is caused by radionuclide-contamination of country territories, located outside the alienated zone, following Chernobyl accident. Besides, much attention could be devoted to the contribution of dose load on population, received from the radioactivity sources that were transferred out from the zone after accident. Present research and analysis of the available documents reflecting the transfer of radioactivity from the alienated zone, provided the estimates of dose load on population, resulting from transfer of the radioactivity sources via following channels: (1) direct surface flow; (2) underground waters; (3) wind-powdered route; (4) transfer with hydrobionts; (5) transfer during irrigation; (6) biogenic route; (7) transport routes and (8) route during wood transportation. Dynamics of radiation transfer through each channel was also studied for the post-accident period. Specific gravity of radioactivity transfer is determined in relation to dose load on Ukrainian population in different regions, in particular, in Dnipro river basin. The perspectives of radioactivity transfer via each of studied channels and its role in dose load on population were also analyzed. On the basis of present results the recommendations on possible arrangements are working out that aimed to reduce the dose contribution in population exposure by radioactivity source transfer from the alienated zone via channels that stipulate the largest dose loads and collective doses

  20. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility

    International Nuclear Information System (INIS)

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  1. Assessing local patients' knowledge and awareness of radiation dose and risks associated with medical imaging: a questionnaire study

    International Nuclear Information System (INIS)

    To assess the awareness of radiation dose and associated risks caused by radiological procedures among local patients. All subjects were recruited by randomly sampling the patients receiving radiological examinations. These subjects were stratified on age, sex and education. The questionnaire was in Chinese and consisted of 28 questions mostly in multiple choice/true-or-false format, divided into three sections examining demographic data, radiation knowledge/awareness and expectations. A total of 173 questionnaires were returned (83 females and 84 females; mean age of 53). Of these, 32.6% had attended college, 32.6% had completed matriculation and 24.4% secondary school. Most subjects underwent CT (75), MRI (70) and PET-CT (18). Education significantly affected the radiation knowledge (P=0.013). 60.7% and 32.7% were not aware of the radiation-free nature of MRI and USG, respectively. Respectively, 45.4% and 43.5% were of the misconception that Barium enema and Barium swallow studies do not involve radiation. Moreover, 77.6% and 87.9% were aware of the radiation-laden nature of CT and plain X-rays, respectively. Furthermore, 34% and 50%, respectively, think that they are not exposed to radiation at home and on a plane. Regarding the fatal cancer risk from CT, 17.8% chose the correct answer and 62% underestimated the risk. 32.2% correctly estimated the equivalent dose of CT in terms of number of conventional X-rays and 43.2% underestimated the dose. Most (98.2%) were told of the indication, and 42.7% were told the associated radiation dose. Patient radiation awareness is unsatisfactory. There is need to increase patient radiation awareness, and to provide them with the necessary information.

  2. Radiation biology of low doses

    International Nuclear Information System (INIS)

    Present risk assessments and standards in radiation protection are based on the so-called linear no-threshold (LNT) dose - effect hypothesis, i.e., on a linear, proportional relationship between radiation doses and their effects on biological systems. This concept presupposes that any dose, irrespective of its level and time of occurrence, carries the same risk coefficient and, moreover, that no individual biological effects are taken into account. This contribution presents studies of low energy transfer (LET) radiation which deal with the risk of cancer to individual cells. According to the LNT hypothesis, the relationship for the occurrence of these potential effects should be constant over the dose range: successful repair, cell death, mutation with potential carcinogenesis. The results of the studies presented here indicate more differentiated effects as a function of dose application as far as damage to cellular DNA by ionizing radiation is concerned. At the same overall dose level, multiple exposures to low doses sometimes give rise to much smaller effects than those arising from one single exposure to the total dose. These adaptive effects of cells are known from other studies. The results of the study allow the conclusion to be drawn that non-linear relationships must be assumed to exist for the LET radiation considered. Correspondingly, the linear no-threshold hypothesis model should at least be reconsidered with respect to the low dose range in the light of recent biological findings. The inclusion of other topical research findings also could give rise to a new, revised, risk-oriented approach in radiological protection. (orig.)

  3. UAE national occupational and environmental dose assessment

    International Nuclear Information System (INIS)

    Radiation safety guidelines and federal regulations require that radiation workers should be monitored in order to maintain the exposure as low as reasonably achievable. Due to the peaceful applications of ionizing radiation in different fields in UAE, there are certain risks which can be restricted and controlled through successful implementation such as occupational and environmental dose assessment. External and internal dose assessment for radiation workers needs to establish monitoring programmes with appropriate dosimetry to be used for individual, workplace and environmental monitoring. Radiation protection department implement the TLD system for external dose assessment and gamma spectrometer for internal dose assessment. Results of applications of both external and internal dose assessment are present. (author)

  4. Assessment of radiation dose for surrounding organs and persons approaching implanted patients upon brachytherapy of prostate cancer with Iridium-192

    International Nuclear Information System (INIS)

    To assess a proper dose for radiation therapy fitting the typical physical characteristics of male Korean bodies, a mathematical phantom was prepared based on standard Korean male measurements. Upon brachytherapy of prostate cancer by implanting 192Ir into the prostate gland (the source organ), the absorbed dose of the prostate gland and surrounding organs and the expected dose of people within the vicinity were assessed. 192Ir, which has been the radionuclide of choice for prostate cancer brachytherapy, was selected for the simulation. It was assumed that 1 Ci of initial radioactivity would be administered. As a result, 1.28 E-02 Gy/Ci was exhibited in the prostate gland of the source organ, and the dose to which persons within the vicinity were exposed was exhibited to be 9.19 E-06 Sv at a distance of 30 cm from the front. (authors)

  5. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  6. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Nagle, Scott K. [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Robinson, Terry E. [Department of Pediatrics, Stanford School of Medicine, 770 Welch Road, Palo Alto, California 94304 (United States)

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  7. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    International Nuclear Information System (INIS)

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (VeoTM, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  8. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  9. Introduction to the Australian study of low dose radiation assessing the effects of CT scans in childhood

    International Nuclear Information System (INIS)

    Full text: This project is assessing the effects of low dose radiation in a cohort of young Australians exposed to CT scans and other forms of medical irradiation. De-identified records of Medicare funded services (including CT scans, other radiological and nuclear medicine procedures) allow dose estimates for diagnostic medical radiation for I 1.4 million individuals aged 0-19 years in the period 1985-2005. For example, the data set details 907,905 CT services for 662,479 persons, and over 24 million other radiological and nuclear medicine services. Medical physicists are determining a dose matrix for organ dose and effective dose based on age of individual at scan, year of scan, gender and type of scan. The Australian Institute of Health and Welfare (AIHW) has made probability-based linkages between the cohort and the national records of cancer registrations and deaths; these outcomes are being linked to the exposure records and to the estimated radiation doses for all individuals in the cohort. Epidemiological models will be fitted to estimate effects on cancer incidence due to age, gender and length of follow-up, as well as any effects due to radiation exposures and dose, age at exposure, and confounding variables such as socioeconomic status. Australia is in a unique position with well documented records of medical irradiation funded through the universal Medicare system. Data integration for the cohort of young Australians exposed from 1985 to 2005 is virtually complete. The most challenging future task is to implement the best methodologies for calculation of individual doses.

  10. Assessment of terrestrial gamma radiation doses for some Egyptian granite samples

    International Nuclear Information System (INIS)

    External exposures of population to ionising radiation due to naturally occurring radionuclides in sixty-three granite samples from three different locations in south eastern desert of Egypt were considered in this article. Average outdoor gamma dose rates in air were 190, 290 and 330 nGy h-1 for Elba, Qash Amir and Hamra Dome granites, respectively. The corresponding doses in indoor air are 270, 400 and 470 nGy h-1, respectively. These average values give rise to annual effective dose (outdoor, indoor and in total) 0.24, 1.4 and 1.6 mSv for Elba granite. For Qash Amir and Hamra Dome granites the corresponding values were 0.35, 2 and 2.3 mSv and 0.41, 2.3 and 2.7 mSv, respectively. (authors)

  11. Preliminary radiation dose assessment for the Palmerton ore storage site, Palmerton, Pennsylvania

    International Nuclear Information System (INIS)

    Potential maximum radiation doses rates were calculated for the Palmerton ore storage site in Palmerton, Pennsylvania. The RESRAD computer code, which implements the methodology described in the US Department of Energy's manual for establishing residual radioactive material guidelines, was used in this evaluation. Four potential scenarios were considered for the Palmerton ore storage site. Two scenarios were developed on the basis of industrial use of the site, and two were developed on the basis of residential use of the site. The scenarios also vary with regard to time spent at the site, sources of food consumed, and source terms. The RESRAD code was used to analyze potential radiation doses from three exposure pathways. The results indicate that the basic dose limit of 100 mrem/yr would not be exceeded in Scenarios A (industrial use, hot spot), B (industrial use, homogenous contamination), and C (residential use, homogenous contamination), but would be exceeded in Scenario D (residential use, hot spot). The potential maximum dose rates for Scenarios A, B, C, and D are 1.0 mrem/yr, 0.66 mrem/yr, and 360 mrem/yr, respectively. 3 refs., 3 tabs

  12. Assessment of natural radionuclide levels in Pakistan foodstuffs and associated radiation doses

    International Nuclear Information System (INIS)

    Full text: A comprehensive study has been carried out for the assessment of the contents of natural radionuclides (40K, 238U, 226Ra, 228Ra, 232Th, and 210Pb) and related radiation doses in Pakistani food items (fruits, seasonal vegetables, beef, mutton, poultry meat and eggs) and drinks samples (milk, tap water and soft drinks) using high resolution gamma spectrometry. For detection analysis and data acquisition a high purity germanium (HPGe) detector was used. All the food items and drink samples showed detectable 40K activity, however, most of the other natural radionuclides in solid food were found to have contents below the minimum detectable activity (MDA). The range of 40K activity was found to be 9.2 to 110.5 Bq kg-1 for solid food and drink samples. The cumulative average value of 226Ra activity was found to be 1.2 Bq kg-1 in all the leafy/seasonal vegetables and fruit samples including turnip, potatoes, tomatoes, onion, brinjal, spinach, cauliflower, pumpkin, carrot, radish, cabbage, peas, cucumber, ladyfinger, beat, pepper, apple, banana, melon, mango etc. and 0.35 Bq kg-1 in beef, mutton, poultry meat and egg samples. In all water based drink samples the measured values of the mean activity of 238U, 226Ra, 228Ra, 232Th, and 210Pb were 0.22, 0.015, 0.026, 0.018 and 0.19 Bq kg-1 respectively. The annual effective dose due to the ingestion of these radionuclides was estimated to be 0.5 mSvy-1 from solid food and 0.3 mSvy-1 from drinks. These values are quite below than the upper limit of 1 mSv as specified by ICRP recommendations. The contribution from these radionuclides does not pose any significant radiological health problem to the general public. This study also provides baseline values and general background of the natural gamma emitting radionuclides in Pakistani foodstuffs. (author)

  13. Assessment of medical staff radiation doses received in some interventional examination

    International Nuclear Information System (INIS)

    The aim of this work is to suggest a simple method for the estimation of cardiologist extremity doses. The extremity and effective doses The extremity and effective doses of nine cardiologists working at five different angiographic units were measured for 157 interventional examinations. Simultaneous measurement of patient doses were also carried out using a DAP meter separately for each projection. Fluoroscopy time (Tfl), number of radiographic frames (N) were recorded on-line during these measurements. A Rando phantom was exposed at similar projections with patient studies and one minute of fluoroscopic exposure (D150nTfln) and one frame of radiographic exposure (D150nNn) were determined for each projection. Scatter radiations from these exposures were also measured at 50, 100 and 150 cm above the floor level at the cardiologist positions for the estimation of legs, wrists and thyroid (or eye) doses. Weighting of projections were determined for the patient group of each cardiologist using the recorded values of Tfl and Nrf. Extremity doses, Dx were calculated with the following formula: D150=ΣnD150nTfln(Tfln)+ΣnD150nNn(Nn), n=4, 5, 6, 7, 10. n gives the projection numbert and x is the distance from the floor level. Measured and calculated extremity doses for each cardiologist were in good agreement. The calculated doses for 50cm and 100cm were found within the measured values of left and right legs and wrists. The use of dominant projection data alone still provided comparable results

  14. Evaluation of doses from radiodiagnostic procedures performed in veterinary medicine and assessing of the doses of secondary radiation in the medical staff and animal owners

    International Nuclear Information System (INIS)

    The primary goal in veterinary radiography is to produce radiographs of diagnostic quality on the first attempt. This goal serves three purposes: (1) to decrease radiation exposure to the patient and veterinary personnel; (2) to decrease the cost of the study for the client; and (3) to produce diagnostic data for rapid interpretation and treatment of the patient. This work aimed to determine the doses in dogs submitted to chest and abdomen X rays using the technique of thermoluminescence (TL) dosimetry. The radiation doses were assessed using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO4:Dy) and lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti). The obtained results indicate that is extremely important the assessment of radiation doses involved in veterinary diagnostic radiology procedures, to evaluate the delivered doses to the animals, to be used as a parameter in the individual monitoring of pet's owners, who assist the animal positioning, and to protect occupationally exposed workers at the Veterinary Radiology Clinics. (author)

  15. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    Science.gov (United States)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  16. Field study of Ra accumulation in trout with assessment of radiation dose to man

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the concentrations of 226Ra in edible fish from surface ponds near an open pit U mine. Because one reclamation plan for the U mine proposed formation of an artificial lake in the open pit, potential radiation dose to man from ingestion of fish needed to be investigated. Trout were collected from four existing ponds which varied in mean 226Ra concentration from 12-33 pCi/l and in Ca concentration from 30-330 mg Ca/l. Radium and Ca accumulation in trout flesh, skin, fins and bone were measured. Geometric mean concentrations of 226Ra in trout flesh from four ponds ranged from 6.3-30 pCi/kg wet weight. The distribution of Ra in the trout body was similar to that of Ca. The calculated dose equivalent commitment to human endosteal tissue range from 0.2-2 mrem per fish consumed, depending on the assumed dietary and environmental parameters. Neglecting the consumption of trout skin underestimated the ingestion dose from 226Ra by a factor of 5-10. Estimated annual dose equivalent rates to human endosteal tissue ranged from 1.0-83 mrem/yr for an individual who consumed one fish per week for a 50-yr period. The dose to man from ingestion of 226Ra in fish would not likely preclude the establishment of a recreational lake at this site

  17. Assessment of primordial radionuclides in Pakistani red bricks and associated radiation doses

    International Nuclear Information System (INIS)

    Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West Frontier Province of Pakistan. For the detection, analysis and data acquisition, a high purity germanium detector was used. Associated external doses were calculated using a Monte Carlo neutron photon transport code. A theoretical model to determine the gamma dose rate at 1 m height from the floor, made of bricks, was employed for the calculation of mass attenuation coefficient and self-absorption in the floor for the gamma energies of these radionuclides and their progeny. Monte Carlo simulation shows that in this study the floor, having more than an effective thickness of 15 cm, contributes very little to the external gamma dose rate. The values of the external dose rate and annual effective dose are found to be much lower than the world average as well as from other countries of the world. (authors)

  18. Assessment of Primordial Radionuclides in Pakistani Red Bricks and Associated Radiation Doses

    International Nuclear Information System (INIS)

    Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West Frontier Province of Pakistan. For the detection, analysis and data acquisition, a high purity germanium detector was used. Associated external doses were calculated using a Monte Carlo neutron photon transport code. A theoretical model to determine the gamma dose rate at 1 m height from the floor, made of bricks, was employed for the calculation of mass attenuation coefficient and self-absorption in the floor for the gamma energies of these radionuclides and their progeny. Monte Carlo simulation shows that in this study the floor, having more than an effective thickness of 15 cm, contributes very little to the external gamma dose rate. The values of the external dose rate and annual effective dose are found to be much lower than the world average as well as from other countries of the world. (geophysics, astronomy, and astrophysics)

  19. GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS: Assessment of Primordial Radionuclides in Pakistani Red Bricks and Associated Radiation Doses

    Science.gov (United States)

    Khan, K.; Jabbar, A.; Akhter, P.; Tufail, M.; Khan M., H.

    2010-03-01

    Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West Frontier Province of Pakistan. For the detection, analysis and data acquisition, a high purity germanium detector was used. Associated external doses were calculated using a Monte Carlo neutron photon transport code. A theoretical model to determine the gamma dose rate at 1 m height from the floor, made of bricks, was employed for the calculation of mass attenuation coefficient and self-absorption in the floor for the gamma energies of these radionuclides and their progeny. Monte Carlo simulation shows that in this study the floor, having more than an effective thickness of 15 cm, contributes very little to the external gamma dose rate. The values of the external dose rate and annual effective dose are found to be much lower than the world average as well as from other countries of the world.

  20. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  1. Evaluation of the Comet Assay for Assessing the Dose-Response Relationship of DNA Damage Induced by Ionizing Radiation

    OpenAIRE

    Qiang Liu; Bing Wang; Takanori Katsube; Sai Jun Fan; Fei-Yue Fan; Hui Zhao; Xu Su; Jian Xiang Liu; Jia Cao; Li Qing Du; Chang Xu; Yan Wang

    2013-01-01

    Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001). A time-response relationship was also found within 72 h after irradiation (p < 0.001). The curves for DNA double-strand bre...

  2. The assessment of the natural radiation dose committed to the Hong Kong people

    International Nuclear Information System (INIS)

    The natural radionuclide (238U, 226Ra, 232Th and 40K) contents of soil samples at various locations in Hong Kong, building materials commonly used in Hong Kong and construction materials for roads have been determined by low background gamma-ray spectroscopy using an n-type high purity germanium detector. From the measured radionuclide contents, estimations have been made of the absorbed gamma dose rate in air and the indoor radon concentration in Hong Kong. Both are in good agreement with in-situ measurements. Finally, calculations have been made of the annual individual effective dose equivalent contributed by all kinds of natural background radiations. The total value is 3.2 mSv which is about 60% higher than the global average. Of this total value, 80% comes from the radiation from building materials. The present work suggests that building materials are the primary source of natural background radiation in Hong Kong. Therefore, more extensive studies and perhaps limitation of the radionuclide concentration of building materials in the near future seems necessary. (author)

  3. Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    In this work, we aim to experimentally assess increments of dose due to nanoparticle-radiation interactions via electron spin resonance (ESR) dosimetry performed with a biological-equivalent sensitive material.We employed 2-Methyl-Alanine (2MA) in powder form to compose the radiation sensitive medium embedding gold nanoparticles (AuNPs) 5 nm in diameter. Dosimeters manufactured with 0.1% w/w of AuNPs or no nanoparticles were irradiated with clinically utilized 250 kVp orthovoltage or 6 MV linac x-rays in dosimetric conditions. Amplitude peak-to-peak (App) at the central ESR spectral line was used for dosimetry. Dose-response curves were obtained for samples with or without nanoparticles and each energy beam. Dose increments due to nanoparticles were analyzed in terms of absolute dose enhancements (DEs), calculated as App ratios for each dose/beam condition, or relative dose enhancement factors (DEFs) calculated as the slopes of the dose-response curves.Dose enhancements were observed to present an amplified behavior for small doses (between 0.1–0.5 Gy), with this effect being more prominent with the kV beam. For doses between 0.5–5 Gy, dose-independent trends were observed for both beams, stable around (2.1   ±   0.7) and (1.3   ±   0.4) for kV and MV beams, respectively. We found DEFs of (1.62   ±   0.04) or (1.27   ±   0.03) for the same beams. Additionally, we measured no interference between AuNPs and the ESR apparatus, including the excitation microwaves, the magnetic fields and the paramagnetic radicals.2MA was demonstrated to be a feasible paramagnetic radiation-sensitive material for dosimetry in the presence of AuNPs, and ESR dosimetry a powerful experimental method for further verifications of increments in nanoparticle-mediated doses of biological interest. Ultimately, gold nanoparticles can cause significant and detectable dose enhancements in biological-like samples irradiated at both

  4. Risk assessment of intake of foods and soil, and air radiation dose after Fukushima Daiichi nuclear disaster

    International Nuclear Information System (INIS)

    Risk assessment of soil contaminated with radionuclides, due to the accident of Fukushima nuclear power plant after the earthquake on March 11, 2011, was carried out by considering consumption of the contaminated food. The exposure routes were set as food intake, ingestion and inhalation of soil particles, and external radiation from the ground. As a result, exposures by ingestion, and inhalation of soil particles were negligible, and exposure by food intake and external exposure from the ground were comparatively large. This study shows air dose by the accident should be under 0.2 μSv/hour in order to control the radiation dose with consumption of food under 1 μSv/year. (author)

  5. Low-cost teleoperator-controlled vehicle for damage assessment and radiation dose measurement

    International Nuclear Information System (INIS)

    A low-cost, disposable, radio-controlled, remote-reading, ionizing radiation and surveillance teleoperator re-entry vehicle has been built. The vehicle carries equipment, measures radiation levels, and evaluates building conditions. The basic vehicle, radio control with amplifiers, telemetry, elevator, and video camera with monitor cost less than $2500. Velcro-mounted alpha, beta-gamma, and neutron sensing equipment is used in the present system. Many types of health physics radiation measuring equipment may be substituted on the vehicle. The system includes a black-and-white video camera to observe the environment surrounding the vehicle. The camera is mounted on a vertical elevator extendible to 11 feet above the floor. The present vehicle uses a video camera with an umbilical cord between the vehicle and the operators. Preferred operation would eliminate the umbilical. Video monitoring equipment is part of the operator control system. Power for the vehicle equipment is carried on board and supplied by sealed lead-acid batteries. Radios are powered by 9-V alkaline batteries. The radio control receiver, servo drivers, high-power amplifier and 49-MHz FM transceivers were irradiated at moderate rates with neutron and gamma doses to 3000 Rem and 300 Rem, respectively, to ensure system operation

  6. Effects of radiation scatter exposure on electrometer dose assessment in orthovoltage radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Butson, Martin J., E-mail: martin.butson@sesiahs.health.nsw.gov.a [City University of Hong Kong, Dept. of Physics and Materials Science, Kowloon Tong (Hong Kong); Illawarra Cancer Care Centre, Department of Medical Physics, Crown St, Wollongong, N.S.W 2500 (Australia); Illawarra Health and Medical Research Institute and the Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave Gwynneville, N.S.W (Australia); Yu, Peter K.N.; Cheung, Tsang [City University of Hong Kong, Dept. of Physics and Materials Science, Kowloon Tong (Hong Kong); Oborn, B.M. [Illawarra Cancer Care Centre, Department of Medical Physics, Crown St, Wollongong, N.S.W 2500 (Australia); Illawarra Health and Medical Research Institute and the Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave Gwynneville, N.S.W (Australia)

    2011-04-15

    During orthovoltage x-ray radiotherapy dosimetry, normal practice requires the use of a standard ionisation chamber and dedicated electrometer for dosimetry. In ideal conditions, the electrometer is positioned outside the treatment room to eliminate any effects from scatter radiation on dose measurement. However in some older designed rooms, there is no access portal for the chamber cable to run to an 'outside' position for the electrometer. As such the electrometer is positioned within the treatment room. This work quantifies the effects on measured charge when this occurs. Results have shown that with the electrometer positioned next to a solid water dosimetry stack and using a large 15 x 15 cm field at 250 kVp x-ray beam energy, charge results can deviate by up to {+-}17.2% depending on the polarity applied to the chamber compared to readings when the electrometer is outside the treatment room. It is assumed to be due to scatter radiation producing electrons in the amplifying circuit of the electrometer. Results are also shown when the electrometer is shielded by a 4 mm thick lead casing whilst inside the room which removes the scattering effect, providing the best case scenario when the electrometer must remain in the treatment room. Whilst it is well known that an electrometer should not be irradiated (even to scattered radiation), often small kilovoltage or orthovoltage rooms do not have a portal access for an electrometer to go outside. As such it would be recommended for a lead shield to be placed around the electrometer during irradiation if this was to occur to minimize dosimetric inaccuracies which may occur due to scattered radiation effects.

  7. Effects of radiation scatter exposure on electrometer dose assessment in orthovoltage radiotherapy

    International Nuclear Information System (INIS)

    During orthovoltage x-ray radiotherapy dosimetry, normal practice requires the use of a standard ionisation chamber and dedicated electrometer for dosimetry. In ideal conditions, the electrometer is positioned outside the treatment room to eliminate any effects from scatter radiation on dose measurement. However in some older designed rooms, there is no access portal for the chamber cable to run to an 'outside' position for the electrometer. As such the electrometer is positioned within the treatment room. This work quantifies the effects on measured charge when this occurs. Results have shown that with the electrometer positioned next to a solid water dosimetry stack and using a large 15 x 15 cm field at 250 kVp x-ray beam energy, charge results can deviate by up to ±17.2% depending on the polarity applied to the chamber compared to readings when the electrometer is outside the treatment room. It is assumed to be due to scatter radiation producing electrons in the amplifying circuit of the electrometer. Results are also shown when the electrometer is shielded by a 4 mm thick lead casing whilst inside the room which removes the scattering effect, providing the best case scenario when the electrometer must remain in the treatment room. Whilst it is well known that an electrometer should not be irradiated (even to scattered radiation), often small kilovoltage or orthovoltage rooms do not have a portal access for an electrometer to go outside. As such it would be recommended for a lead shield to be placed around the electrometer during irradiation if this was to occur to minimize dosimetric inaccuracies which may occur due to scattered radiation effects.

  8. Cytogenetic analysis for radiation dose assessment in the medical nuclear workers

    International Nuclear Information System (INIS)

    Radionuclide is used in medicine for laboratory research, laboratory testing for enzymes, hormones, medicines in vitro and in vivo in nuclear medicine (NM) for the diagnosis and treatment of diseases. Commissioners, who performed the application radionuclide (RN), are nuclear medicine specialists, senior medical and radiological technicians, nurses and laboratory technicians. They are daily exposed to ionizing irradiations, from outside sources, as well as inside if they were to contamination. Medical nuclear workers (MNW) are exposed to ionizing irradiation, working with radio nuclides. MNW are periodically reviewed for contamination verified. Cytogenetic analysis of peripheral-blood lymphocytes (Ly) is the most sensitive tests for detecting a clinical biologic response to ionizing radiation. The frequency of chromosomal aberrations (f ca) in peripheral circulating lymphocytes (Ly) correlates with the dose received. (author)

  9. Radiation Dose Assessment in Installation Operating Mineralized Heavy Sand in Madagascar

    International Nuclear Information System (INIS)

    Among the major sectors affected by NORMs industries are the manufacturing of titanium dioxide pigment (TiO2). Mineral sands operated by Rio Tinto QMM (Quit Madagascar Mineral) contain Ilmenite and heavy minerals such as monazite and zircon. The extraction process of the Ilmenite takes place exclusively by physical separations. The process begins with the enrichment of heavy sand ore by gravity spiral, followed by separation by electrostatic and magnetic fields. Radioactivity in the sand gradually increases as the ore beneficiation process advance. It reached the maximum residue with magnetic, which are composed mainly of residues RER. The results show that the process of extraction of Ilmenite greatly increases the concentration of radionuclide in products with higher levels of the original soil and these products can be considered as radioactive materials and radiation protection measures are necessary. The gamma dose rate emitted by products depends not only on the concentration of the radionuclide, but also on their quantity. The accumulation of products in one place can increase the gamma dose rate in this place. Although no particular product is stored inside the plant, debris can accumulate on the floor. This area is classified as a controlled area. (author)

  10. Assessment of image quality and radiation dose on a modern flat panel angiography system

    International Nuclear Information System (INIS)

    Full text: Angiographic procedures are often associated with high patient and staff dose that can be reduced without image quality deterioration. This work is on assessment of image quality and patient doses on a modern flat panel angiography unit. Because of the limited number of digital systems in Bulgaria, quality control protocol for testing these units does not exist currently and this work is aimed to develop and test the methodology. Methods and materials. A GE Innova 4100 Flat Panel Detector angiography unit was examined. Low and high contrast resolutions were assessed using FL18 test object placed at the isocentre between the sheets of a PMMA phantom with total thickness varying from 16 to 30 cm for FOV of 16 to 40 cm at pulsed fluoro mode of 30 frames/s. The image detector was set up at 5 cm above the 30 cm PMAA phantom. The Entrance Surface Dose Rate was measured by Mult-O-Meter dosimeter (Unfors, Sweden). The Incident Dose rate and Dose Area Product were measured with Diamentor M4-KDK (PTW, Germany) for the same FOVs and phantom thicknesses. The quality of images at acquisition mode was examined also using DIGI 13 test object (Wellhofer, Germany). The homogeneity, dynamic range, alignment, high contrast spatial resolution and low contrast resolution and signal-to-noise ratio were measured. The digital subtraction angiography image quality was examined using RoVi-8 test tool (Wellhofer, Germany). Results and discussion. The Entrance Surface Dose Rate measured for 20 cm PMAA and the 40 cm FOV, 30 frames/s was 11,29 mGy.min-1 and 5,58 mGy.min-1 for the 'normal' and 'low' mode, respectively. The dosimetric results obtained via both dosimeters are used for calculation of calibration coefficients for the DAP and ESD values shown by the system on the display monitor at the control console. The low contrast sensitivity varies from 1,6% to 6,6% depending on the thickness of PMAA phantom and FOV, as the limiting spatial resolution is changing from 2,24 to 1,12 lp

  11. Assessment of radiation dose due to the accidental release of radionuclides from a DCLL reactor

    International Nuclear Information System (INIS)

    Highlights: ► Accidental release of radionuclides from a Dual-Coolant He/Pb15.7Li breeding blanket is studied. ► Activation analysis with ACAB code determines the main contributors to the environmental consequences of the accident. ► Atmospheric dispersion (in conditions D and F) is assessed with Hotspot code for the relevant radionuclides. ► The actual quantity of each radionuclide produced in 1 kg of LiPb is used in the dispersion model. ► The amount of LiPb releasable fulfilling the dose limit requirements is calculated. -- Abstract: A conceptual design for a DEMO fusion reactor based on a dual coolant He/Pb15.7Li breeding blanket (DCLL) is being developed within the Spanish Breeding Blanket Technology Programme: TECNOFUS. The production of tritium and activation products of LiPb might be a concern from the radiological safety point of view. Thus, in this contribution, an accidental release in atmosphere of radionuclides from LiPb breeder has been studied. Activation calculations have been performed with ACAB code assuming an irradiation scenario of 5 FPY for the maximum neutron fluence rate in the equatorial breeding zone. The results in terms of specific activity, surface gamma dose rate and committed effective dose (CED) due to inhalation at different times have been used to chose the potentially more hazardous radionuclides. Dispersion of the selected radionuclides has been modeled with HOTSPOT code using the Gaussian plume model and two different atmospheric conditions. Offsite dose (for external irradiation and inhalation) due to an accidental release of 1 kg of activated LiPb has been calculated after 5 FPY of irradiation (shutdown) using HOTSPOT atmospheric dispersion in class D weather conditions. According to the results, fulfilling the dose requirement for no evacuation would permit to release up to 40 kg of activated LiPb, without taking into account the possible isotopic purification and detritiation systems. This value can be compared

  12. Assessment of radiation dose due to the accidental release of radionuclides from a DCLL reactor

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Gómez-Ros, J.M. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Sanz, J. [Departamento de Ingeniería Energética, UNED, C/Juan del Rosal 12, 28040 Madrid (Spain); Mota, F. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain)

    2013-10-15

    Highlights: ► Accidental release of radionuclides from a Dual-Coolant He/Pb15.7Li breeding blanket is studied. ► Activation analysis with ACAB code determines the main contributors to the environmental consequences of the accident. ► Atmospheric dispersion (in conditions D and F) is assessed with Hotspot code for the relevant radionuclides. ► The actual quantity of each radionuclide produced in 1 kg of LiPb is used in the dispersion model. ► The amount of LiPb releasable fulfilling the dose limit requirements is calculated. -- Abstract: A conceptual design for a DEMO fusion reactor based on a dual coolant He/Pb15.7Li breeding blanket (DCLL) is being developed within the Spanish Breeding Blanket Technology Programme: TECNO{sub F}US. The production of tritium and activation products of LiPb might be a concern from the radiological safety point of view. Thus, in this contribution, an accidental release in atmosphere of radionuclides from LiPb breeder has been studied. Activation calculations have been performed with ACAB code assuming an irradiation scenario of 5 FPY for the maximum neutron fluence rate in the equatorial breeding zone. The results in terms of specific activity, surface gamma dose rate and committed effective dose (CED) due to inhalation at different times have been used to chose the potentially more hazardous radionuclides. Dispersion of the selected radionuclides has been modeled with HOTSPOT code using the Gaussian plume model and two different atmospheric conditions. Offsite dose (for external irradiation and inhalation) due to an accidental release of 1 kg of activated LiPb has been calculated after 5 FPY of irradiation (shutdown) using HOTSPOT atmospheric dispersion in class D weather conditions. According to the results, fulfilling the dose requirement for no evacuation would permit to release up to 40 kg of activated LiPb, without taking into account the possible isotopic purification and detritiation systems. This value can be

  13. Evaluation of the Comet Assay for Assessing the Dose-Response Relationship of DNA Damage Induced by Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2013-11-01

    Full Text Available Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001. A time-response relationship was also found within 72 h after irradiation (p < 0.001. The curves for DNA double-strand breaks and DNA repair in vitro of human lymphocytes presented a nice model, and a smooth, three-dimensional plane model was obtained when the two curves were combined.

  14. Assessment of individual dose equivalents Hp(0.07 of medical staff occupationally exposed to ionizing radiation in 2012

    Directory of Open Access Journals (Sweden)

    Sylwia Papierz

    2014-04-01

    Full Text Available Background: The paper presents the Nofer Institutes of Occupational Medicine in Łódź's results of the assessment of individual dose equivalents Hp(0.07 of medical staff exposed to X-rays in Poland in 2012. In addition, the collected data was analysed in terms of types of medical units performing medical procedures and the categorization of personnel. Material and Methods: Dosimetric service was provided for medical staff of interventional radiology departments occupationally exposed to ionizing radiation in terms of individual dose equivalents Hp(0.07. In 2012, personal dosimetry Hp(0.07 determinations were performed by the Nofer Institute of Occupational Medicine in Łódź and covered 2044 employees from 174 health facilities. The determinations were performed using thermoluminescence dosimetry according to the procedure accredited by the Polish Centre for Accreditation (document number AB 327. The measurements were performed using ring-dosimeters in the periods of 1 or 2 months. Results: Mean annual individual dose equivalent Hp(0.07 in 2012 was equal to 3.3 mSv (annual limit for Hp(0.07 is 500 mSv. The average value of annual individual dose equivalent Hp(0.07 decreased comparing to the previous year. In 2012, no single case of exceeding the annual limit for Hp(0.07 was reported. Data stored in the file indicates that more than 96% of all of the annual doses did not exceed the level of 10 mSv. Conclusions: The analysis of data on occupational exposure to ionizing radiation confirms a stable level of exposure and satisfactory radiological protection in interventional radiology facilities monitored by the Nofer Institute of Occupational Medicine in Łódź in Poland in 2012. Med Pr 2014;65(2:167–171

  15. Development of a Method to Assess the Radiation Dose due to Internal Exposure to Short-lived Radioactive Materials

    International Nuclear Information System (INIS)

    Work with radioactive materials requires monitoring of the employees' exposure to ionizing radiation. Employees may be exposed to radiation from internal and/or external exposure. Control of external exposure is mostly conducted through personal radiation dosimeters provided to employees. Control of internal exposure can be performed by measuring the concentration of radioactive substances excreted in urine or through whole-body counting in which the entire body or target organs are scanned with a sensitive detector system (1). According to the regulations in Israel an employee that may be internally exposed must undergo an exposure control at least once every three months. The idea lying behind the control of internal exposure by urine testing is that if radioactive material has penetrated into the employee body, it can be detected even if the test is performed once every three months. A model was fitted for each element describing its dispersion in the body and its excretion therefrom (2). By means of this model, one can estimate the activity that entered the body and calculate the resulting radiation dose to which the worker was exposed. There is a problem to implement this method when it comes to short-lived radioactive materials, for which it is very likely that the material that penetrated into the body has decayed and cannot be detected by testing once every three months. As a result, workers with short-lived radioactive materials are presently not monitored for internal exposure, in contradiction to the requirements of the Safety at Work Regulations. The purpose of the study is to develop an alternative method to assess the amount of radioactive material absorbed in the body and the resulting radiation dose due to internal exposure of workers to short-lived radioactive materials

  16. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  17. Radiation dose-rate resistivity degradation in ceramic insulators and assessment of the consequences in fusion reactor applications

    International Nuclear Information System (INIS)

    Under neutron and/or gamma absorbed dose-rates typical of fusion reactor conditions, common ceramic insulators such as Al2O3, MgO, MgAl2O3, etc., exhibit a significant instantaneous decrease in their dc resistivity. Ceramic insulators in lightly shielded normal-conducting magnets, direct convertors and first wall applications are shown to be the most affected. Depending on conductor design, magnet location, absorbed dose-rate and applied voltages, it is demonstrated that the resulting leakage currents in the ceramic material are potentially capable of producing significant Joule heating rates which may lead to thermal runaway and subsequent insulator destruction. The theoretical background for this effect is presented and the rather sparse experimental data base reviewed. Recommendations are given for computing worst case radiation-induced conductivity increases as a function of absorbed dose rate. The possible ameliorating influences of long term fluence damage are then discussed. The practical consequences of ceramic resistivity degradation are quantitatively assessed by consideration of resulting leakage current Joule heating in the extruded conductor of a typical normal-conducting magnet. Relationships are derived to compute dose-rate-dependent leakage currents and Joule heating rates as a function of several magnet parameters

  18. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Nilseia Aparecida Barbosa

    2014-08-01

    heterogeneous eye model, indicating that the homogeneous water eye model is a reasonable one. The determined isodose curves give a good visualization of dose distributions inside the eye structures, pointing out their most exposed volume....................................................Cite this article as:Barbosa NA, da Rosa LAR, de Menezes AF, Reis JP, Facure A, Braz D. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code. Int J Cancer Ther Oncol 2014; 2(3:02038. DOI: 10.14319/ijcto.0203.8

  19. Occupational exposure assessment and radiation dose estimation of vegetable-plant farmers to 222Rn in greenhouses of Shouguang county, China

    International Nuclear Information System (INIS)

    This study aims to: assess exposure levels of radon and explore seasonal variations of radon concentrations in greenhouses in Shouguang county. Estimate annual radon radiation dose level for vegetable-plant farmers working in greenhouses. During detection period, the annual mean radon concentration was approximately 286 Bq m-3. The annual radon radiation dose of farmers is 3.3 mSv a-1. Both obvious seasonal variations in average radon concentrations and radon radiation dose in greenhouses are observed. Both levels are much higher in winter and spring than in summer and autumn. (author)

  20. Orthovoltage radiation of normal canine nasal passages: assessment of depth dose

    International Nuclear Information System (INIS)

    Frozen heads of 9 clinically normal dogs were irradiated with orthovoltage x-rays. Surface doses and nasal cavity depth doses were measured, and the percentage of surface dose (depth dose) was calculated at random depths from the dorsal cutaneous surface in transverse planes through the medial and lateral canthi. Depth dose of 2 orthovoltage x-ray beams having half-value layers of 1.5 mm of Cu (96 keV) and 2.6 mm of Cu (134 keV) were compared with and found to resemble that reported in depth dose tables based on soft tissue equivalent material. Any differences (identified graphically) in depth dose, compared with that described using a uniform (soft tissue equivalent) phantom, were explained by the variations in tissue composition and the presence of air within the normal nasal and paranasal cavities

  1. Enjebi Island dose assessment

    International Nuclear Information System (INIS)

    We have updeated the radiological dose assessment for Enjebi Island at Enewetak Atoll using data derived from analysis of food crops grown on Enjebi. This is a much more precise assessment of potential doses to people resettling Enjebi Island than the 1980 assessment in which there were no data available from food crops on Enjebi. Details of the methods and data used to evaluate each exposure pathway are presented. The terrestrial food chain is the most significant potential exposure pathway and 137Cs is the radionuclide responsible for most of the estimated dose over the next 50 y. The doses are calculated assuming a resettlement date of 1990. The average wholebody maximum annual estimated dose equivalent derived using our diet model is 166 mremy;the effective dose equivalent is 169 mremy. The estimated 30-, 50-, and 70-y integral whole-body dose equivalents are 3.5 rem, 5.1 rem, and 6.2 rem, respectively. Bone-marrow dose equivalents are only slightly higher than the whole-body estimates in each case. The bone-surface cells (endosteal cells) receive the highest dose, but they are a less sensitive cell population and are less sensitive to fatal cancer induction than whole body and bone marrow. The effective dose equivalents for 30, 50, and 70 y are 3.6 rem, 5.3 rem, and 6.6 rem, respectively. 79 refs., 17 figs., 24 tabs

  2. Assessment of radiation doses due to the exposure of radon, thoron and their progeny in Almora district of Kumaun Himalaya

    International Nuclear Information System (INIS)

    The inhalation of radon and its daughter product in dwellings is the most important source of radiation exposure to the general population. The health effects due to the exposure of radon are caused primarily by damage due to alpha-particles. The radon progeny combines with the air borne particles such as dust and smoke and forms a radioactive aerosols which readily deposit in the airways of the lung. While lodged there, the progeny emit ionizing radiation in the form of alpha particles, which can damage the cells lining the airways. In present study for the assessment of radiation doses we have carried out an extensive survey of radon, thoron and their progeny in Almora district of Kumaun Himalaya. For the measurement of radon and thoron concentration we have used pinhole dosimetry technique while their progeny concentration were measured using direct radon and thoron progeny sensors. Simultaneously we have also measured the gamma radiation level in the study area using pocket survey meter. During this survey we have also identified some high background area in this region. (author)

  3. Assessment of uncertainties in radiation-induced cancer risk predictions at clinically relevant doses

    International Nuclear Information System (INIS)

    Purpose: Theoretical dose–response models offer the possibility to assess second cancer induction risks after external beam therapy. The parameters used in these models are determined with limited data from epidemiological studies. Risk estimations are thus associated with considerable uncertainties. This study aims at illustrating uncertainties when predicting the risk for organ-specific second cancers in the primary radiation field illustrated by choosing selected treatment plans for brain cancer patients. Methods: A widely used risk model was considered in this study. The uncertainties of the model parameters were estimated with reported data of second cancer incidences for various organs. Standard error propagation was then subsequently applied to assess the uncertainty in the risk model. Next, second cancer risks of five pediatric patients treated for cancer in the head and neck regions were calculated. For each case, treatment plans for proton and photon therapy were designed to estimate the uncertainties (a) in the lifetime attributable risk (LAR) for a given treatment modality and (b) when comparing risks of two different treatment modalities. Results: Uncertainties in excess of 100% of the risk were found for almost all organs considered. When applied to treatment plans, the calculated LAR values have uncertainties of the same magnitude. A comparison between cancer risks of different treatment modalities, however, does allow statistically significant conclusions. In the studied cases, the patient averaged LAR ratio of proton and photon treatments was 0.35, 0.56, and 0.59 for brain carcinoma, brain sarcoma, and bone sarcoma, respectively. Their corresponding uncertainties were estimated to be potentially below 5%, depending on uncertainties in dosimetry. Conclusions: The uncertainty in the dose–response curve in cancer risk models makes it currently impractical to predict the risk for an individual external beam treatment. On the other hand, the ratio

  4. Assessment of uncertainties in radiation-induced cancer risk predictions at clinically relevant doses

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69117 (Germany); Moteabbed, M.; Paganetti, H., E-mail: hpaganetti@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-01-15

    Purpose: Theoretical dose–response models offer the possibility to assess second cancer induction risks after external beam therapy. The parameters used in these models are determined with limited data from epidemiological studies. Risk estimations are thus associated with considerable uncertainties. This study aims at illustrating uncertainties when predicting the risk for organ-specific second cancers in the primary radiation field illustrated by choosing selected treatment plans for brain cancer patients. Methods: A widely used risk model was considered in this study. The uncertainties of the model parameters were estimated with reported data of second cancer incidences for various organs. Standard error propagation was then subsequently applied to assess the uncertainty in the risk model. Next, second cancer risks of five pediatric patients treated for cancer in the head and neck regions were calculated. For each case, treatment plans for proton and photon therapy were designed to estimate the uncertainties (a) in the lifetime attributable risk (LAR) for a given treatment modality and (b) when comparing risks of two different treatment modalities. Results: Uncertainties in excess of 100% of the risk were found for almost all organs considered. When applied to treatment plans, the calculated LAR values have uncertainties of the same magnitude. A comparison between cancer risks of different treatment modalities, however, does allow statistically significant conclusions. In the studied cases, the patient averaged LAR ratio of proton and photon treatments was 0.35, 0.56, and 0.59 for brain carcinoma, brain sarcoma, and bone sarcoma, respectively. Their corresponding uncertainties were estimated to be potentially below 5%, depending on uncertainties in dosimetry. Conclusions: The uncertainty in the dose–response curve in cancer risk models makes it currently impractical to predict the risk for an individual external beam treatment. On the other hand, the ratio

  5. Assessment of dose reconstruction errors in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Dose reconstruction can be used to improve the accuracy of dose evaluation throughout a treatment course. Its working mechanism is based on deformable image registration (DIR). The purpose of this paper is to develop a method to estimate the dose reconstruction error associated with the inaccuracy of DIR algorithms. To reach this goal, we quantified dominant errors in DIR in terms of unbalanced energy (UE), which were compared with the standard displacement error (SDE). Their high similarity, characterized by Pearson correlation coefficient, was verified through nine 'demons' registration instances performed within simulated reference frames. Based on the similarity, the dose-warping discrepancy at each voxel was defined as a line integral of the dose gradient within the voxel's neighborhood whose boundary was determined by the voxel's UE value. From this definition, the dose reconstruction error was then calculated at each voxel on nine prostate computed tomography images, obtained from a patient treatment course. The average of the Pearson correlation coefficients between UE and SDE over the simulated registration instances was above 70%. The mean value of the dose reconstruction errors in a target volume was calculated for each of nine treatment fractions. The averaged percentage of these mean values with respect to the prescribed dose on the target volume was 1.68%. These results are consistent with contour-based mean dose error evaluations. This paper has established a relation between a registration error and its induced dose reconstruction discrepancy. It allows an automatic validation method to be developed to estimate the dose accumulation error at each voxel in clinical settings

  6. Measurement of natural radioactivity and dose rate assessment of terrestrial gamma radiation in the soil of southern Punjab, Pakistan

    International Nuclear Information System (INIS)

    Activity concentrations of 226Ra, 232Th, 40K and 137Cs in soil samples collected from the most populous area of southern Punjab of Pakistan have been measured by gamma-ray spectrometry. The measured activity concentrations for these radionuclides are compared with the reported data from different other countries and it is found that measured activity concentrations are comparable with the worldwide measured average values reported by the UNSCEAR. Subsequently assessed radiological effects show that the mean radium equivalent activity (Raeq) is 96.7 ± 15.2 Bq kg-1 and air absorbed dose rate (D) is 46.1 ± 7.3 nGy h-1. The values of internal and external radiation hazard indices are found to be less than unity. The annual effective radiation dose is calculated to be 0.28 ± 0.05 mSv, which is well below the limit of 1.0 mSv y-1 recommended by the International Commission on Radiological Protection, for the general public. (authors)

  7. Assessment of radiation doses from residential smoke detectors that contain americium-241

    International Nuclear Information System (INIS)

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 μCi) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 μrem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 μSv (0.0006 to 8 mrem) to total body and from 0.06 to 800 μSv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated

  8. Measurements of the Chernobyl accident fallout in Israel and the assessment of the radiation doses to the population

    International Nuclear Information System (INIS)

    Israel is located approximately 2000 km southeast of Chernobyl. The fallout from the accident in Chernobyl reactor no. 4 on April 26, 1986 arrived in Israel on the night of May 2nd. Following the accident, studies of the radiological effects were initiated by many countries some of them many thousands of kilometers away. These studies can be characterized by three periods: a) First months following the accident - Measurements were taken to assess the immediate impact and to propose countermeasures that would reduce doses incurred by the population. b) First years following the accidents - Measurements were taken to validate that radioecological effects are well below any regulatory limits, from both the fallout radioactivity in the country and import of food coming from other affected areas. c) The last years (e.g. 1990-1995) - Measurements were taken within the regular program of environmental radioactivity surveillance. In this paper we have compiled the results of the studies in Israel which have followed the three phases mentioned above. Assessment of the accumulated potential radiation doses to the population in Israel was made based on the results of those measurements covered in the three phases, considering the various possible pathways

  9. Radiation doses from residual radioactivity

    International Nuclear Information System (INIS)

    In this chapter available data and calculations for assessing the exposure of survivors of the Hiroshima and Nagasaki bombs and persons who entered the cities after the bombings have been presented. It appears that it is possible to produce firm estimates only for external radiation and, while the internal contribution for long-lived fission products appears small, there is no way to evaluate potential exposures to the short-lived fission products. The radiation exposure in the most highly contaminated fallout area of a few hectares at Nishiyama, Nagasaki, is estimated as 20 to 40 R when integrated from one hour to infinity using a decay exponent of -1.2. For the Hiroshima Koi-Takasu area, the corresponding exposure is estimated as 1 to 3 R. The falloff with distance for Nagasaki is not steep and an exposure of one-fifth of the maximum is spread over an area of perhaps 1000 ha. With the assumption stated above, the potential maximum exposures to external radiation from induced radioactivity at the hypocenter is estimated to be about 80 R fir Hiroshima and 30 to 40 R for Nagasaki with the assumptions stated above. These exposures fall off with both time and distance. The cumulative exposure would be about one-third as large after a day and only a few percent after a week. The falloff with distance is less striking, but can be estimated from the areas listed or from the curves shown in Gritzner and Woolson. Unlike the fallout, which exposed individuals in their living areas, exposures to induced activity came from reentry of individuals into the area around the hypocenter. As an example, an individual entering the Hiroshima hypocenter area after one day and working 10 or 20 hours a day for a week would have been exposed to about 10 R. If the person had been working at a distance of 500 m, the exposure would have been about 1 R and, at 1000 m, about 20 mR. The exposure described apply to the specified areas in the two cities. Application of these values to individuals

  10. Sodium in man and the assessment of radiation dose after criticality accidents

    International Nuclear Information System (INIS)

    Recent observations of human sodium content, using isotope dilution methods and neutron activation analysis, suggest that ICRP Reference Man is a misleading guide, and show that reasonable predictions of body sodium content can be made from body weight, height and age, or weight alone. Mean sodium in average man is about 1.04 g per kg and in average woman about 0.98 g per kg in British and N. American populations. Within each sex, mean tissue concentration is inversely related to body weight. Review of dosimetry for the criticality accident at Y-12 Oak Ridge shows dose estimates should be increased by about 10% because whole blood, not plasma values of 24Na were relied on. Taking account of body build reduces the range of dose amongst the four most heavily irradiated subjects. Absorbed doses reported for subjects exposed at the criticality accident at Vinca, Yugoslavia, need to be increased by about 30%, because of gross over-estimates of body sodium content. The more severe clinical picture at Vinca is now more easily understood in terms of dose differences. Other uncertainties in dosimetry at Y-12 and Vinca are unaltered. (U.K.)

  11. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  12. Is the Linear No-Threshold Dose-Response Paradigm Still Necessary for the Assessment of Health Effects of Low Dose Radiation?

    Science.gov (United States)

    Seong, Ki Moon; Seo, Songwon; Lee, Dalnim; Kim, Min-Jeong; Lee, Seung-Sook; Park, Sunhoo; Jin, Young Woo

    2016-02-01

    Inevitable human exposure to ionizing radiation from man-made sources has been increased with the proceeding of human civilization and consequently public concerns focus on the possible risk to human health. Moreover, Fukushima nuclear power plant accidents after the 2011 East-Japan earthquake and tsunami has brought the great fear and anxiety for the exposure of radiation at low levels, even much lower levels similar to natural background. Health effects of low dose radiation less than 100 mSv have been debated whether they are beneficial or detrimental because sample sizes were not large enough to allow epidemiological detection of excess effects and there was lack of consistency among the available experimental data. We have reviewed an extensive literature on the low dose radiation effects in both radiation biology and epidemiology, and highlighted some of the controversies therein. This article could provide a reasonable view of utilizing radiation for human life and responding to the public questions about radiation risk. In addition, it suggests the necessity of integrated studies of radiobiology and epidemiology at the national level in order to collect more systematic and profound information about health effects of low dose radiation. PMID:26908982

  13. Dose assessment by quantification of chromosome aberrations and micronuclei in peripheral blood lymphocytes from patients exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Barbosa, Isvania; Pereira-MagnataI, Simey; Amaral, Ademir [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia - GERAR; Sotero, Graca [Fundacao de Hematologia e Hemoterapia, Recife, PE (Brazil); Melo, Homero Cavalcanti [Hospital do Cancer, Recife, PE (Brazil). Centro de Radioterapia de Pernambuco]. E-mail: isvania@uol.com.br

    2005-07-15

    Scoring of unstable chromosome aberrations (dicentrics, rings and fragments) and micronuclei in circulating lymphocytes are the most extensively studied biological means for estimating individual exposure to ionizing radiation (IR), which can be used as complementary methods to physical dosimetry or when the latter cannot be performed. In this work, the quantification of the frequencies of chromosome aberrations and micronuclei were carried out based on cytogenetic analyses of peripheral blood samples from 5 patients with cervical uterine cancer following radiotherapy in order to evaluate the absorbed dose as a result of partial-body exposure to 60Co source. Blood samples were collected from each patient in three phases of the treatment: before irradiation, 24 h after receiving 0.08 Gy and 1.8 Gy, respectively. The results presented in this report emphasize biological dosimetry, employing the quantification of chromosome aberrations and micronuclei in lymphocytes from peripheral blood, as an important methodology of dose assessment for either whole or partial-body exposure to IR.

  14. Dose monitoring using the DICOM structured report: assessment of the relationship between cumulative radiation exposure and BMI in abdominal CT

    International Nuclear Information System (INIS)

    Aim: To perform a systematic, large-scale analysis using the Digital Imaging and Communication in Medicine structured report (DICOM-SR) to assess the relationship between body mass index (BMI) and radiation exposure in abdominal CT. Materials and methods: A retrospective analysis of DICOM-SR of 3121 abdominal CT examinations between April 2013 and March 2014 was performed. All examinations were conducted using a 128 row CT system. Patients (mean age 61 ± 15 years) were divided into five groups according to their BMI: group A <20 kg/m2 (underweight), group B 20–25 kg/m2 (normal weight), group C 25–30 kg/m2 (overweight), group D 30–35 kg/m2 (obese), and group E > 35 kg/m2 (extremely obese). CT dose index (CTDIvol) and dose–length product (DLP) were compared between all groups and matched to national diagnostic reference values. Results: The mean CTDIvol and DLP were 5.4 ± 2.9 mGy and 243 ± 153 mGy·cm in group A, 6 ± 3.6 mGy and 264 ± 179 mGy• cm in group B, 7 ± 3.6 mGy and 320 ± 180 mGy• cm in group C, 8.1 ± 5.2 mGy and 375 ± 306 mGy• cm in group D, and 10 ± 8 mGy and 476 ± 403 mGy• cm in group E, respectively. Except for group A versus group B, CTDIvol and DLP differed significantly between all groups (p<0.05). Significantly more CTDIvol values exceeded national diagnostic reference values in groups D and E (2.1% and 6.3%) compared to group B (0.5%, p<0.05). Conclusion: DICOM-SR is a comprehensive, fast, and reproducible way to analyse dose-related data at CT. It allows for automated evaluation of radiation dose in a large study population. Dose exposition is related to the patient's BMI and is increased by up to 96% for extremely obese patients undergoing abdominal CT. - Highlights: • DICOM-SR was used to implement automatic CT-dose monitoring. • DICOM-SR allowed for a fast and comprehensive analysis of CT dose data. • Radiation exposure for abdominal CT was increased by up to 96% for extremely

  15. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  16. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    Three slide sets which can be used in lectures about radiation protection have been published by NRPB. Each consists of 20 slides with captions, and are available at a price of Pound 25 + VAT per set (UK), Pound 25 (Europe) or Pound 35 (rest of world). The slide sets are based on publications in the NRPB ''At-a-Glance'' series of broadsheets, which use illustrations as the main source of information, supported by captions; the series generally avoids the jargon of radiation protection, although each leaflet is based on scientific studies. Slide Set Number 1, ''Radiation Doses - Maps and Magnitudes'' based on the broadsheet of the same name shows visually the main sources of radiation exposure, natural and man-made, with emphasis on the range of doses as well as the averages. The enormous variation in doses across the country is clearly set out. (author)

  17. Application of the ROC method to assessment of image quality issues in mammography. Part 2. Comparative evaluation of image quality and radiation dose to thick body sections

    International Nuclear Information System (INIS)

    For the experimental comparative assessment reported, the following radiation qualities were compared for radiation dose applied and image quality: molydenum anode, 30mum molybdenum filter, X-ray tube potential differences of 26-32 kV; molybdenum anode, 25 mum rhodium filter, X-ray tube potential differences of 26-32 kV; tungsten anode, 50 mum rhodium filter, X-ray tube potential differences of 26-32 kV. The results show that in the differentiated assessment according to the various radiation qualities, significant deviations in imaging quality of the different detail types are possible. (orig./CB)

  18. internal radiation dose assessment due to ionizing radio contaminants in some local foodstuffs

    International Nuclear Information System (INIS)

    Over the last 30 years, radioactivity has been monitored in foodstuffs in Egypt. The present work deals with the radioactivity monitored during two years (1990 - 1992) at eight major Egyptian governorates. Sampled food items were selected to cover most foodstuffs eaten by egyptian population according to their habits. The daily food consumption by egyptian population and the constituents of such consumption were estimated according to published international data and knowledge of the different feeding habits of the egyptians. About 1200 samples were collected from the markets of the main city of each governorate and prepared for counting according to the egyptian kitchen habits. The counting systems used in determination and indentification of radionuclides were : a 3 inch HPGe detector attached to 800 channel MCA and PC and a 3 inch phoswich detector attached to an anticoincidence circuit for low beta / gamma counting. The gamma spectroscopy system was calibrated using isotopic solution mixture while the low beta counting system was calibrated using H CI. Counting time for the first system was 20 - 72 hours and for the second system was half to one hour. The main radionuclides identified in foodstuffs were Cs - 137 and K - 40 . The radioactivity concentration of Cs - 137 was found to be in the range between 1.0 Bq / Kg for macaroni and 3.5 Bq / Kg for nile beans. The K - 40 concentration range between 19 Bq / Kg for macaroni to 363 Bq / Kg for nile beans. The population weighted values in case of Cs - 137 was found as 3.56 Bq /d and for K - 40 was 188 Bq /d. The resulted effective dose due to food intake was found be 16 . 4 U Sv /a for Cs-137 and 354 μSv / a for K -40 . This value for Cs - 137 is found in the exemption limit while that of K -40 is twice the published value. This may depend on the egyptian feeding habit which depends mainly on wheat (bread) and nile beans which are very rich in potassium.The resulted collective dose was found to be : 21323 person

  19. Radiological assessment of NORM industries in Ireland-radiation doses to workers and members of the public

    International Nuclear Information System (INIS)

    only those industries with potential NORM issues were first published by the European Commission in 1997 and were followed by more specific guidance documents covering particular aspects of NORM: building materials, remediation of contaminated sites, NORM effluents and discharges, waste types produced by industries dealing with special metal and ceramics and NORM waste management and treatment options. Countries located outside Europe may follow and/or implement the International Atomic Energy Agency (IAEA) Safety Standards requirements. As far as the identification of work activities involving NORM is concerned, the IAEA has equally produced a number of important and very helpful documents in the recent years, complementary to those published by the EC which capture the essential aspects of the approach advocated by the IAEA to identify NORM industries. Four large industries operating in Ireland and dealing with NORM were prioritised and investigated to determine the level of radiation to which workers and members of the public were exposed as a result of their work practices: the peat-fired power production, the coal-fired power production, the extraction of natural gas and the bauxite refining for the production of alumina. In each case, a thorough examination of the industrial process has been carried out to identify the potential radiation exposure situations arising from the occurrance of NORM at the different stages of the respective process. At the core of our assessment methodology, the following aspects were targeted. The potential for enhancement of radionuclide concentrations above their natural levels in products, by-products, residues and waste. Their availability to be released into the biosphere, due to physicochemical changes during processing or due to the method used to manage the residues and the waste produced. Occupational radiation doses were estimated based on field measurements and analysis of samples collected onsite. For particular scenarios

  20. Assessing radiation doses to the public from radionuclides in timber and wood products

    International Nuclear Information System (INIS)

    In the event of a nuclear accident involving the release of radionuclides to the biosphere the radioactive contamination of forests can become a significant potential source of public radiation exposure. Two of these accidents - the Kyshtim accident, Urals, USSR (now Russian Federation) in 1957 and the Chernobyl accident, USSR (now Ukraine), in 1986 - resulted in significant contamination of thousands of square kilometres of forested areas with mixtures of radionuclides including long lived fission products such as 137Cs and 90Sr. Measurements and modelling of forest ecosystems after both accidents have shown that, following initial contamination, the activity concentration of long lived radionuclides in wood gradually increases over one to two decades and then slowly decreases in the subsequent period. The longevity of the contamination is due to the slow migration and persistent bioavailability of radionuclides in the forest soil profile, which results in long term transfer into wood through the root system of the trees. Another source of contamination is from global radioactive fallout after nuclear weapons tests, but the level of contamination is much lower than that from, for example, the Chernobyl accident. For instance, the level of 137Cs in wood in Sweden is about 2-5 Bq kg-1 from global fallout. Global values are very similar to the Swedish levels. In contrast, the level of 137Cs in Swedish wood due to Chernobyl is around 50 Bq kg-1. Levels in wood from some contaminated areas located in countries of the Former Soviet Union (FSU) are about one to two orders of magnitude higher than this. The data on 137Cs soil contamination within European territories, originating mainly from the Chernobyl accident, illustrate the scale of the problem. For comparison, residual 137Cs soil deposition in Europe from global radioactive fallout was in the range 1-4 kBq m-2. There is concern in several countries about the potential radiation exposure of people from radionuclides

  1. Radionuclides in Animal Feed (Poultry) 'Assessment of Radiation Dose'

    Energy Technology Data Exchange (ETDEWEB)

    Algadi, S.; Salih, I. [Radiation Safety Institute (Sudan)

    2014-07-01

    In this work a comprehensive study has been carried out for the determination of presents evaluation of effective dose due to consumption of chicken fed by fodders collected from four major Sudanese companies (Hader, Koudjs, Wifi and Preconex SPN.V). The concentrations of radionuclides in the thirty two (32) feed samples have been determined by gamma spectrometry using NaI(Tl) detector. Radionuclides observed were: Pb-212 (daughter of Th-238), Pb-214, Bi-214 (daughters of U-238), Cs-137 and K-40 concentration. In additives the activity concentration of these radionuclides has found in the following ranges: 0.81 - 22.06 Bq/kg, 0.59 - 32.07 Bq/kg, 0.64 - 15.77 Bq/kg, 0.01 - 2.02 Bq/kg and 33.58 - 204.61 Bq/kg respectively. In feed concentrates activity concentration ranges has: 0.73 - 13.79 Bq/kg, 0.33 - 20.04 Bq/kg, 0.01 - 1.67 Bq/kg, 0.01 - 0.28 Bq/kg, 26.86 - 99.21 Bq/kg respectively. In fodders the activity concentration ranges has: 1.25 - 1.52 Bq/kg, 0.12 - 1.24 Bq/kg, 0.51 - 1.25 Bq/kg, 0.01 - 0.61 Bq/kg, 11.94 - 127.88 Bq/kg respectively. The 'animal product' activity concentration ranges has: 0.31 - 1.65 Bq/kg, 0.22 - 1.11 Bq/kg, 0.26 - 1.07 Bq/kg, 0.03 - 0.51 Bq/kg, 14.07 - 79.93 Bq/kg respectively. High concentrations (233.3 Bq/Kg) has typically found in toxo(additive); the lowest concentration (27.9 Bq/Kg ) has found in concentrate for layers and animal product. The total average effective dose due to the different feed-stuff has estimated and found to be 5.89x10{sup -6}±3.11x10{sup -6}mSv/y and 13.9 x 10{sup -7} ± 7.24 x 10{sup -7}mSv/y for age categories 7-12 y and >17 y respectively. If compared with the limits - Radioactivity Levels Permitted in foodstuffs Part 1 the Saudi Standards, Metrology and quality (300 Bq/Kg) and ICRP,FAO organization (5 mSv/y) - these values are very low. Document available in abstract form only. (authors)

  2. Detection and assessment of genetic effects of low and very low doses of ionizing radiations using the a1+/a1 a2+/a2 system of Tobacco

    International Nuclear Information System (INIS)

    The main problem related to the detection and assessment of biological and genetic effects of low and very low doses of ionizing radiations concerns the statistical confidence. The a1+/a1 a2+/a2 system of Tobacco (Nicotania tabacum L. variety xanthi) is particularly well suited for evaluating genetic effects in this radiobiological field. (author). 7 refs., 1 tab

  3. EDITORIAL Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment

    Science.gov (United States)

    Newhauser, Wayne

    2010-07-01

    from the symposium are interrelated and focus on dose and risk assessments related to radiation exposures from advanced radiation therapies. These research topics have become increasingly complex and require the combined expertise of researchers with highly specialized and diverse investigational skills. Innovative multidisciplinary teams will be needed to achieve breakthroughs and, ultimately, to translate the research into clinical practice (Disis and Slattery 2010). The symposium's scientific goals included fostering and promoting such multidisciplinary teams, which will work to solve these complex problems and thereby improve cancer outcomes. To help clarify how the 13 articles each contribute to the goal of improving cancer outcomes, a brief digression is necessary. The proportion of patients surviving their cancers for five years or more is large and increasing (Jemal et al 2009). Unfortunately, in survivors who received radiation therapy, the prevalence of radiogenic late effects is likewise large and increasing (cf Altekruse et al 2010, Meadows et al 2009, Hudson et al 2009, Friedman et al 2010), with the potential to become a public health issue of considerable scale (Travis 2006). A multitude of late effects are associated with radiation exposure, including the development of second cancers, cardiac toxicity, cognitive deficits, and musculoskeletal growth abnormalities in children. In modern radiation therapy, much effort is devoted to developing personalized treatments that control the tumor while minimizing acute toxicities to surrounding healthy tissues; comparatively less attention has been paid to minimizing late effects (Durante and Loeffler 2010). In recent years, however, there has been an encouraging increase in research activities seeking to quantify radiation exposures (Stovall et al 2006) and the associated risks of late effects from modern external-beam therapies (Xu et al 2008). In this issue, Zhang et al (2010) report on Monte Carlo and

  4. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  5. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  6. Mammography and radiation dose

    International Nuclear Information System (INIS)

    The physical aspects of mammography have been investigated by a commissioned group of physicists at six centers in the United States. Continuous monitoring of the various centers has established sound reproducible data. The 1976 evaluation of 63 systems used in 29 screening centers indicated an average dose to the skin of 2.2 rads per exposure. With high resolution mammography in 2000 asymptomatic women over 35 years of age in a screening program at Emory University, 19 cancers were demonstrated; only one was palpable after localization by mammography, the only one with an axillary lymph node metastasis. Each study required an average of less than 1.5 rads to the fibroglandular tissue of the breasts. Mammography is most useful in the 35 to 50 year age group but should not be denied to younger symptomatic or asymptomatic women

  7. EDITORIAL Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment

    Science.gov (United States)

    Newhauser, Wayne

    2010-07-01

    from the symposium are interrelated and focus on dose and risk assessments related to radiati

  8. Assessment of the image contrast improvement and dose reduction in mammography with synchrotron radiation compared to standard units

    CERN Document Server

    Moeckli, R; Fiedler, S; Pachoud, M; Hessler, C; Meuli, R; Valley, J F

    2001-01-01

    An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard units. It was performed systematically in the energy range of interest for mammography through the evaluation of the contrast and the measurement of the mean glandular dose. Synchrotron radiation measurements were performed at the ESRF and a slit was placed between the test object and the screen-film system in order to reduce scatter. The conventional films were obtained on mammography units with an anti-scatter grid. In a recent paper, it was shown that the use of synchrotron radiation leads to a noticeable improvement of the image quality-dose relationship (Moeckli et al. Phys. Med. Biol. 45(12)3509). The reason of that enhancement is partly due to the monochromaticity of the synchrotron beam and partly due to the use of a slit instead of a grid. The dose reduction with synchrotron radiation can be attributed to a better X-ray total transmission of the slit and the contra...

  9. Assessment of natural radionuclide levels in Pakistani foodstuffs and associated radiation doses

    International Nuclear Information System (INIS)

    A comprehensive study for the assessment of natural radionuclides (40K, 238U, 226Ra, 228Ra, and 232Th) in Pakistani food items (fruits, seasonal vegetables, beef, mutton, poultry meat and eggs) and drinks samples (milk, tap water and soft drinks) was carried out in Pakistan using HPGe based high resolution gamma spectrometry. All the food items and drink samples showed detectable 40K activity, however, most of the other natural radionuclides in solid food were found to have contents below the minimum detectable activity (MDA). The range of 40K activity was found to be 0.02 to 110.5 Bq kg-1 for solid food and drink samples. The cumulative average value of 238U, 226Ra, 228Ra and 232Th were found to be 0.07, 0.03, 0.06 and 0.06 Bq kg-1 in fruits, vegetables, meat and egg samples respectively. In all milk and water based drinks the respective measured values of the mean activity of 238U, 226Ra, 228Ra and 232Th were 0.16, 0.06, 0.07 and 0.05 Bq kg-1. The annual ingestion/intakes of 40K 238U, 226Ra, 228Ra and 232Th were found to be only 0.06%, 0.007%, 0.02%, 0.03% and 0.05% of the Annual Limits on Intakes (ALIs) of these radionuclides as specified by IAEA, which shows that their contribution in Pakistani diet does not pose any significant radiological health problem. (author)

  10. Occupational radiation doses to personnel

    International Nuclear Information System (INIS)

    Results are presented of 2-year measurements of personnel doses performed according to the program of Personel Dosimetry Centre of Leningrad Scientific Research Institute of Radiation Hygiene. Investigations were carried out in 7 regions of the USSR. Thermoluminescent ''Harshow 2000 D'' dosemeter and lithium fluoride detector were used. Mean dose for all occupational groups (defectoscopists, personnel of radioactive waste disposal, medical radiologists) is found to be not exceeding 10% of maximum permissible dose. It is concluded that working conditions of personnel tested meet the requirements of RPG-76 and sanitary rules BSR-72/80

  11. Evaluation of radiation doses delivered in different chest CT protocols

    OpenAIRE

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    Summary Background There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDIVOL) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to ...

  12. Utirik Atoll Dose Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  13. Optimizing patient radiation dose in intervention procedures

    International Nuclear Information System (INIS)

    Although numerous patients derive great benefit from interventional procedures, a serious disadvantage associated with interventional procedures is patient radiation dose. Therefore, interventionalists should be aware of how to reduce the radiation dose to their patients. Currently, no conclusive method for reducing radiation dose is available for interventional procedures; hence, it is necessary to combine various methods. In addition, in order to reduce the radiation injury risk in interventional procedures, evaluation of patient radiation dose is essential. Generally, the tradeoff for a decrease in radiation dose is a loss in image performance. Therefore, optimization of radiation dose and image performance is important in interventional procedures

  14. Assessment of vaccination with schistosomules attenuated by using different doses of γ-radiation on experimental schistosomiasis mansoni

    International Nuclear Information System (INIS)

    Current strategies for the control of schistosomiasis are based primarily on chemotherapy but successful vaccination against infection has been also demonstrated in several host parasite models.The present study was designed to asses the immunogenic effects of the vaccination with autogenic targets in the form of schistosomula attenuated by different doses of γ-radiation (15, 20, 25 kilo rad) in mice challenged with S. mansoni cercariae as regard parasitological, histological, biochemical and immunological aspects.

  15. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Deva Jayanthi, D., E-mail: d.devajayanthi@gmail.co [Department of Physics, Women' s Christian College, Nagercoil 629001 (India); Maniyan, C.G. [Environmental Assessment Division, BARC, Mumbai 400085 (India); Perumal, S. [Department of Physics and Research Centre, S.T.Hindu College, Nagercoil 629002 (India)

    2011-07-15

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv. -- Highlights: {yields} The effective dose received by the villages of Natural High Background Area (NHBRA) such as Enayam, Midalam and Mel Midalam is high when compared with other study areas. {yields} The high dose indicates higher concentration of radioactive nuclides like Thorium and Uranium in the soil. {yields} As radiation is harmful to human life, the external and internal doses can be reduced by removing the monazite content present in the soil by mineral separation. {yields} Contribution from vegetables, fruits, fish and other non vegetarian items are also being examined. {yields} These results along with other socio-economic factors can throw considerable light on the epidemiological impacts due to low levels of chronic exposure.

  16. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    International Nuclear Information System (INIS)

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv. -- Highlights: → The effective dose received by the villages of Natural High Background Area (NHBRA) such as Enayam, Midalam and Mel Midalam is high when compared with other study areas. → The high dose indicates higher concentration of radioactive nuclides like Thorium and Uranium in the soil. → As radiation is harmful to human life, the external and internal doses can be reduced by removing the monazite content present in the soil by mineral separation. → Contribution from vegetables, fruits, fish and other non vegetarian items are also being examined. → These results along with other socio-economic factors can throw considerable light on the epidemiological impacts due to low levels of chronic exposure.

  17. Advances in environmental radiation protection: re-thinking animal-environment interaction modelling for wildlife dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Beresford, Nicholas A. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Centre for Ecology and Hydrology, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm (Sweden); Gashchak, Sergey [Chornobyl Centre for Nuclear Safety, Radioactive Waste and Radioecology, 07100 Slavutych (Ukraine); Hinton, Thomas G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Centre de Cadarache, 13115 Saint Paul-lez-Durance (France)

    2014-07-01

    Current wildlife dose assessment models adopt simplistic approaches to the representation of animal-environment interaction. The simplest approaches are to assume either that environmental media (e.g. soil, sediment or water) are uniformly contaminated or relating organism exposure to activity concentrations in media collected at the point of sampling of the animal. The external exposure of a reference organism is then estimated by defining the geometric relationship between the organism and the medium. For example, a reference organism within the soil would have a 4p exposure geometry and a reference organism on the soil would have a 2p exposure geometry. At best, the current modelling approaches recognise differences in media activity concentrations by calculating exposure for different areas of contamination and then estimating the fraction of time that an organism spends in each area. In other fields of pollution ecology, for example wildlife risk assessment for chemical pollution, more advanced approaches are being implemented to model animal-environment interaction and estimate exposure. These approaches include individual-based movement modelling and random walk modelling and a variety of software tools have been developed to facilitate the implementation of these models. Although there are more advanced animal-environment interaction modelling approaches that are available, it is questionable whether these should be adopted for use in environmental radiation protection. Would their adoption significantly reduce uncertainty within the assessment process and, if so, by how much? These questions are being addressed within the new TREE (TRansfer - Exposure - Effects) research programme funded by the United Kingdom Natural Environment Research Council (NERC) and within Working Group (WG) 8 of the International Atomic Energy Agency's MODARIA programme. MODARIA WG8 is reviewing some of the alternative approaches that have been developed for animal

  18. Advances in environmental radiation protection: re-thinking animal-environment interaction modelling for wildlife dose assessment

    International Nuclear Information System (INIS)

    Current wildlife dose assessment models adopt simplistic approaches to the representation of animal-environment interaction. The simplest approaches are to assume either that environmental media (e.g. soil, sediment or water) are uniformly contaminated or relating organism exposure to activity concentrations in media collected at the point of sampling of the animal. The external exposure of a reference organism is then estimated by defining the geometric relationship between the organism and the medium. For example, a reference organism within the soil would have a 4p exposure geometry and a reference organism on the soil would have a 2p exposure geometry. At best, the current modelling approaches recognise differences in media activity concentrations by calculating exposure for different areas of contamination and then estimating the fraction of time that an organism spends in each area. In other fields of pollution ecology, for example wildlife risk assessment for chemical pollution, more advanced approaches are being implemented to model animal-environment interaction and estimate exposure. These approaches include individual-based movement modelling and random walk modelling and a variety of software tools have been developed to facilitate the implementation of these models. Although there are more advanced animal-environment interaction modelling approaches that are available, it is questionable whether these should be adopted for use in environmental radiation protection. Would their adoption significantly reduce uncertainty within the assessment process and, if so, by how much? These questions are being addressed within the new TREE (TRansfer - Exposure - Effects) research programme funded by the United Kingdom Natural Environment Research Council (NERC) and within Working Group (WG) 8 of the International Atomic Energy Agency's MODARIA programme. MODARIA WG8 is reviewing some of the alternative approaches that have been developed for animal

  19. Natural radiation dose to Gammarus

    International Nuclear Information System (INIS)

    The natural radiation dose rate to whole body and components of the Gammarus species (i.e., G. Tigrinus, G. Fasciatus and G. Daiberi) that occurs in the Hudson River is evaluated and the results compared with the upper limits of dose rates from man made sources to the whole body of the organisms. Methods were developed to study the distribution of alpha emitters from 226Ra plus daughter products in Gammarus using autoradiographic techniques, taking into account the amount of radon that escapes from the organisms. This methodology may be adapted to study the distribution of alpha emitters in contaminated tissues of plants and animals

  20. Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters.

    Science.gov (United States)

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-12-01

    The objective of this study was to assess and compare the organ and effective doses in the knee area resulting from different commercially available multislice computed tomography devices (MSCT), one cone beam computed tomography device (CBCT) and one conventional X-ray radiography device using MOSFET dosemeters and an anthropomorphic RANDO knee phantom. Measurements of the MSCT devices resulted in effective doses ranging between 27 and 48 µSv. The CBCT measurements resulted in an effective dose of 12.6 µSv. The effective doses attained using the conventional radiography device were 1.8 µSv for lateral and 1.2 µSv for anterior-posterior projections. The effective dose resulting from conventional radiography was considerably lower than those recorded for the CBCT and MSCT devices. The MSCT effective dose results were two to four times higher than those measured on the CBCT device. This study demonstrates that CBCT can be regarded as a potential low-dose 3D imaging technique for knee examinations. PMID:23825221

  1. Retirement memorial lecture. Review of studies on assessment of radiation exposed dose-exposure dose estimation in Hiroshima, Nagasaki, Semipalatinsk, Chernobyl and Fukushima

    International Nuclear Information System (INIS)

    Described are following author's experiences about studies of dosimetry performed in such fields as in the title and concomitant thoughts of the health effect of radiation. The author expresses the degree of radiation risk, when simplified, with the equation, health effect/dose. The effect is either deterministic like alopecia/leucopenia or stochastic like carcinogenesis. DS02 (Dosimetry System 2002) leading to about 10% increase of the risk in the equation above is established with investigation of 120 thousands exposed people by Japanese and American reassessment study of A-bomb radiation in Hiroshima and Nagasaki, where neutron dose has been problematic but solved. Exposed dose 4000 mGy of Dolon village 110 km afar from the Semipalatinsk nuclear test site has been said to be the highest among its nearest regions. However, the external exposure dose is estimated to be 400 mGy by dosimetry of bricks and other materials and factors concerned in radiation spread like soil Cs-137, Pu-239/240 against the reported dose above by old Soviet Union. Radioactive contamination in wide areas and in local spots is observed following the hydrogen explosions (Mar. 12-15, 2011) in Fukushima Daiichi Nuclear Power Plant and decontamination is in progress with a measure of Cs-137. As for Chernobyl and Fukushima accidents, following respective matters are different: the number of evacuated people of 400 thousands vs 85 thousands; 145 thousands people involved in contaminated area of >37 kBq/km2 vs 8 thousands in >30 thousands kBq/km2; areas subjected to forced evacuation of 13 thousands km2 vs areas to planned evacuation of 8 hundreds km2; and released radioactivity of 5200 thousands TBq vs 770 thousands TBq. In Fukushima, there are additional problems of contamination of sea and of waste of the Plant rubbles. The author thinks that all of information and standard criteria about contamination should be more easily disclosed to public for their self judgment and decision. (T.T.)

  2. Dose. Detriment. Limit assessment; Dosis. Schadensmass. Grenzwertsetzung

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, J. [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz (IMPS)

    2015-07-01

    One goal of radiation protection is the limitation of stochastic effects due to radiation exposure. The probability of occurrence of a radiation induced stochastic effect, however, is only one of several other parameters which determine the radiation detriment. Though the ICRP-concept of detriment is a quantitative definition, the kind of detriment weighting includes somewhat subjective elements. In this sense, the detriment-concept of ICRP represents already at the stage of effective dose a kind of assessment. Thus, by comparing radiation protection standards and concepts interconvertible or with those of environment or occupational protection one should be aware of the possibly different principles of detriment assessment.

  3. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas

    International Nuclear Information System (INIS)

    To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs. Five patients (median age, 4 years; range, 2–11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System. Two patients received 36 Gy, two received 21.6 Gy, and one received 41.4 Gy of radiation. The volume structures of these patients were used for simulations of CRT and IMRT treatment. Dose–volume analyses of liver, stomach, colon, small intestine, pancreas, and bone were performed for the simulations. Secondary cancer risks in these organs were calculated using the organ equivalent dose (OED) model, which took into account the rates of cell killing, repopulation, and the neutron dose from the treatment machine. In all evaluated organs, the mean dose in PBT was 20–80% of that in CRT. IMRT also showed lower mean doses than CRT for two organs (20% and 65%), but higher mean doses for the other four organs (110–120%). The risk of secondary cancer in PBT was 24–83% of that in CRT for five organs, but 121% of that in CRT for pancreas. The risk of secondary cancer in IMRT was equal to or higher than CRT for four organs (range 100–124%). Low radiation doses in normal organs are more frequently observed in PBT than in IMRT. Assessments of secondary cancer risk showed that PBT reduces the risk of secondary cancer in most organs, whereas IMRT is associated with a higher risk than CRT

  4. Monitoring data related to the Chernobyl accident as measured in Israel during May-July 1986 and the assessment of the radiation doses to the population

    International Nuclear Information System (INIS)

    Environmental monitoring was undertaken on April 30 1986, to follow the effects of the Chernobyl accident on the quality of the environment in Israel. Measurements of air radioactive contamination were continuously taken to the end of July when air radioactive declined to values below 0.01 Bq/m3. Along air measurements, radioactive contamination of ground, rain and drinking water, grass, vegetation and food items such as vegetables, fruits, milk, meat etc. were taken as well. Assessment of the accumulated radiation doses due to the Chernobyl accident was conducted. The effective dose equivalent is estimated to be 46 μSv (4.6 mrem)

  5. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell

    International Nuclear Information System (INIS)

    The impact of low-dose ionizing radiation on the electrical signalling pattern and membrane properties of the characea Nitellopsis obtusa was examined using conventional glass-microelectrode and voltage-clamp techniques. The giant cell was exposed to a ubiquitous radionuclide of high biological importance – tritium – for low-dose irradiation. Tritium was applied as tritiated water with an activity concentration of 15 kBq L−1 (an external dose rate that is approximately 0.05 μGy h−1 above the background radiation level); experiments indicated that this was the lowest effective concentration. Investigating the dynamics of electrical excitation of the plasma membrane (action potential) showed that exposing Characeae to tritium for half an hour prolonged the repolarization phase of the action potential by approximately 35%: the repolarization rate decreased from 39.2 ± 3.1 mV s−1 to 25.5 ± 1,8 mV s−1 due to tritium. Voltage-clamp measurements showed that the tritium exposure decreased the Cl– efflux and Ca2+ influx involved in generating an action potential by approximately 27% (Δ = 12.4 ± 1.1 μA cm−2) and 64% (Δ = −5.3 ± 0.4 μA cm−2), respectively. The measured alterations in the action potential dynamics and in the chloride and calcium ion transport due to the exogenous low-dose tritium exposure provide the basis for predicting possible further impairments of plasma membrane regulatory functions, which subsequently disturb essential physiological processes of the plant cell. - Highlights: • We show some cellular details of the impact of low-dose ionizing radiation on biota. • Giant green algae cells provides a useful tool for studying HTO toxicity to a single plant cell. • Rapid real-time electrophysiological methods allowed to determine low dose tritium effect on transmembrane ion fluxes. • Pattern of charophyte cell membrane electrical excitation encodes tritium-caused alteration in cell homeostasis

  6. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment; Quantificacao de micronucleos em linfocitos de pacientes expostas a radiacao gama para a avaliacao da dose absorvida

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-15

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with {sup 60}Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  7. Biology responses to low dose radiation

    International Nuclear Information System (INIS)

    Biology responses to low dose radiation is the most important problem of medical radiation and radiation protection. The especial mechanism of low dose or low dose rate induced cell responses, has been found independent with linear no-threshold model. This article emphasize to introduce low dose or low dose rate induced biology responses of adaptive response, by-effect, super-sensitivity and genomic instability. (authors)

  8. Modelling of Biota Dose Effects. Report of Working Group 6 Biota Dose Effects Modelling of EMRAS II Topical Heading Reference Approaches for Biota Dose Assessment. Environmental Modelling for RAdiation Safety (EMRAS II) Programme

    International Nuclear Information System (INIS)

    Environmental assessment models are used for evaluating the radiological impact of actual and potential releases of radionuclides to the environment. They are essential tools for use in the regulatory control of routine discharges to the environment and in planning the measures to be taken in the event of accidental releases. They are also used for predicting the impact of releases which may occur far into the future, for example, from underground radioactive waste repositories. It is important to verify, to the extent possible, the reliability of the predictions of such models by a comparison with measured values in the environment or with the predictions of other models. The IAEA has been organizing programmes on international model testing since the 1980s. These programmes have contributed to a general improvement in models, in the transfer of data and in the capabilities of modellers in Member States. IAEA publications on this subject over the past three decades demonstrate the comprehensive nature of the programmes and record the associated advances which have been made. From 2009 to 2011, the IAEA organized a project entitled Environmental Modelling for RAdiation Safety (EMRAS II), which concentrated on the improvement of environmental transfer models and the development of reference approaches to estimate the radiological impacts on humans, as well as on flora and fauna, arising from radionuclides in the environment. Different aspects were addressed by nine working groups covering three themes: reference approaches for human dose assessment, reference approaches for biota dose assessment and approaches for addressing emergency situations. This publication describes the work of the Biota Effects Modelling Working Group

  9. Assessment of variability of radiation doses emanating from emission of airborne radioactive substances during normal operation of nuclear facilities

    International Nuclear Information System (INIS)

    Mathematical methods are compiled and developed that help to determine statistical characteristics of parameters used in radioecological models. The analytic method of approximation may replace the Monte-Carlo method to assess mean value and standard deviation of radiation exposure in accordance with the statement reliability that can be achieved for radioecological models. It provides the advantage of less calculations, plus the advantage that only mean values and standard deviations of the model parameters need to be known. It also allows easy estimation of the influence of single model parameters on radiation exposure variability. The logarithmic Gaussian distribution is an appropriate approximative function for the probability distribution of radiation exposure. This is tone for radioecological models of various structures and also for different statistical characteristics of the parameters. 99% of the fractiles of the numerically calculated probability distributions are by less than a factor of 10 above the respective values anticipated for probability distributions. (orig./HP)

  10. RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  11. Radiation Dose Assessment For The Biota Of Terrestrial Ecosystems In The Shoreline Zone Of The Chernobyl Nuclear Power Plant Cooling Pond

    International Nuclear Information System (INIS)

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from 90Sr and 137Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  12. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed

  13. Dose assessment and environmental monitoring to demonstrate compliance with the U.S. Environmental Protection Agency's environmental radiation standards for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    The U.S. Environmental Protection Agency issued regulations in 1977 setting forth environmental radiation protection standards for uranium fuel cycle facilities. The regulations require that radioactivity in planned effluent releases from uranium fuel cycle facilities (radon and its daughters excepted) be limited so that no member of the public receives an annual dose equivalent of more than 25 mrem to the whole body, 75 mrem to the thyroid, or 25 mrem to any other organ. The Nuclear Regulatory Commission (NRC) is responsible for assuring that licensees' uranium fuel cycle facilities meet these requirements. Since issuing environmental radiation protection standards, NRC developed a method for radiological assessment to demonstrate compliance with standards covering uranium mills, UF6 conversion, and fuel fabrication facilities. Generally, this includes models for atmospheric transport, pathway analysis, and dose assessment. For certain unique facilities, the models may not be adequate to demonstrate compliance without using a supplemental environmental monitoring program, i.e., actual measurement of radionuclide concentration, particle size distribution, and solubility of particulates in air. We will discuss the dose assessment models; their inadequacies to demonstrate compliance for certain unique facilities; and the ways environmental monitoring can be used to provide reasonable assurance that standards are met. Design criteria for a cost-effective monitoring program will be discussed

  14. Radiation dose and subsequent risk for stomach cancer in long-term survivors of cervical cancer

    DEFF Research Database (Denmark)

    Kleinerman, Ruth A; Smith, Susan A; Holowaty, Eric;

    2013-01-01

    To assess the dose-response relationship for stomach cancer after radiation therapy for cervical cancer.......To assess the dose-response relationship for stomach cancer after radiation therapy for cervical cancer....

  15. Radiation doses from contaminant aerosol deposition to the human body

    International Nuclear Information System (INIS)

    Nearly all assessments of radiation doses received following accidental airborne releases have focused on the contributions originating from the plume and from ground deposition. Very little thought has however been given to doses received from deposition directly onto humans. The results of recent experimental investigations of aerosol deposition to and clearance from human skin and clothing have been used to model the doses potentially received in an accident situation. It was found that both the skin dose from β-emitters and the whole body dose from γ-emitters may be significant compared with doses received through other pathways, such as external radiation from the environment. (au)

  16. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  17. Agriculture-related radiation dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  18. Thermoluminescent dosimetry and assessment of personal dose

    International Nuclear Information System (INIS)

    Thermoluminescence is discussed in terms of the energy band structure of a crystalline solid and the trapping of charge carriers by point defects. Some general properties of thermoluminescent materials used for dosimetry are outlined, with thermoluminescence of CaSO4:Dy being described in detail. The energy response function and the modification of the energy response of a dosimeter by shielding are discussed. The final section covers the connection between exposure, as recorded by a TLD badge, and the absorbed dose to various organs from gamma radiation in a uranium mine; the conversion from absorbed dose to dose equivalent; and uncertainties in assessment of dose equivalent

  19. Assessment of natural and artificial radiation dose in the city urban area of Goiania, Goias, Brazil: results of Campinas - Centro and Sul regions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Nivaldo C.; Dias, Danila C.S.; Guerrero, Eder T.Z.; Alberti, Heber L.C., E-mail: ncsilva@cnen.gov.br, E-mail: edertzg@cnen.gov.br, E-mail: heber@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Santos, Eliane E.; Pimenta, Lucinei R.; Costa, Heliana F., E-mail: esantos@cnen.gov.br, E-mail: lucinei@cnen.gov.br, E-mail: heliana@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadia de Goias, GO (Brazil)

    2011-07-01

    An assessment of external gamma dose was carried out in some urban areas in the city of Goiania - GO - Brazil, allowing to infer the contribution of this component to the average annual effective dose value for the population leaving in that region. The measurements were done using a vehicle with a mobile radioactivity measurement system, Thermo-Eberline FHT 1376, consisting of plastic scintillation detector and a Global Position System (GPS), which is able to collect gamma dose rate as well as the local spatial coordinates. These data, associated with those from national census, provided by Brazilian Institute of Geography and Statistic, were analyzed using the ArcGIS software, a well known Geographical Information System - GIS. As the main result, radiometric maps were produced, illustrating how effective dose values are distributed within the selected areas and also correlating the collective dose values for these populations. Around 57,000 geo referenced effective dose values were measured in the so-called Campinas-Centro and Sul Regions, which are two of the seven regions Goiania is divided in for administrative purposes. The dose rates ranging from 10.4 to 192.7 nSv/h with an average of 22.4 nSv/h, which means 0.20 mSv/year as the annual effective dose. This values are lower than the worldwide average effective dose value of 0.46 mSv/year for outdoor exposures from terrestrial radiation sources) and lower than the previous average values found in Brazil for the regions of Pocos de Caldas, Guarapari, Andradas and Caldas. Actually, the average value is comparable with those observed in the Ribeirao Preto - SP - Brazil City. (author)

  20. Biological effect of low dose radiation

    International Nuclear Information System (INIS)

    This document describes the recent findings in studies of low dose radiation effect with those by authors' group. The low dose radiation must be considered in assessment of radiation effects because it induces the biological influence unexpected hitherto; i.e., the bystander effect and genetic instability. The former is a non-targeted effect that non-irradiated cells undergo the influence of directly irradiated cells nearby, which involves cell death, chromosome aberration, micronucleus formation, mutation and carcinogenesis through cellular gap junction and/or by signal factors released. Authors' group has found the radical(s) possessing as long life time as >20 hr released from the targeted cells, a possible mediator of the effect; the generation of aneuploid cells as an early carcinogenetic change; and at dose level <10 Gy, activation of MAPK signal pathway leading to relaxation of chromatin structure. The genetic instability means the loss of stability where replication and conservation of genome are normally maintained, and is also a cause of the late radiation effect. The group has revealed that active oxygen molecules can affect the late effect like delayed cell death, giant cell formation and chromosome aberration, all of which lead to the instability, and is investigating the hypothesis that the telomere instability resulted from the abnormal post-exposure interaction with its nuclear membrane or between chromatin and nuclear matrix, is enhanced by structural distortion of nuclear genes. As well, shown is the possible suppression of carcinogenesis by p53. The group, to elucidate the mechanism underlying the low dose radiation effect, is conducting their studies in consideration of the sequential bases of physical, chemical and biological processes. (R.T.)

  1. Low-dose radiation epidemiology studies: status and issues.

    Science.gov (United States)

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes. PMID:19820457

  2. Determination of the dose of gamma radiation sterilization for assessment of biological parameters of male Ceratitis capitada (Diptera: Tephritidae), tsl - Vienna 8 strain

    International Nuclear Information System (INIS)

    The Vienna-8, tsl (temperature sensitive lethal) strain of Ceratitis capitata, by presenting mutations that facilitate the mass rearing and release only of sterile males in the field, has been used in (Sterile Insect Technique) programmes. The objective of this study was to determine the radiation dose that provides the highest level of sterility for Vienna-8, tsl males assessing their biological parameters that indicate the quality of sterile males to be released. Brown pupae (males) of the tsl strain were obtained from the mass rearing of the Food Irradiation and Radio entomology laboratory of CENA/USP, and they were irradiated (with gamma radiation - 60Co) 24 hours before the emergence at rates of 0, 30, 60, 90 and 120 Gy. The determination of the sterilizing dose was based on fertility of sexually mature females of the bisexual strain and not irradiated, mated with males of different treatments. Eggs were collected daily during 6 days, were counted and it was possible to estimate fecundity, and assess the hatching rate. The emergence and flight ability were determined by following the protocol of quality control manual for FAO/IAEA/USDA (2003). To assess the longevity under nutritional stress, the insects were kept a period of 48 h after emergence in the absence of water and food, and after this period, mortality was recorded. The size of the testes (left and right) was obtained by dissecting irradiated and non-irradiated males at the eighth day of life, and measure the testes in an ocular micrometer, considering the maximum length and width of each sample. To determine the sperm number was necessary to dissect the males and break their testicles. No difference was observed in emergence rate, flight ability and longevity of irradiated and non-irradiated males, nor in the fecundity of females mated with males of different treatments. The sterilizing dose that resulted in lower fertility of females was 120 Gy, with 1.5% hatching. Considering the parameters of

  3. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  4. Evaluation of doses from radiodiagnostic procedures performed in veterinary medicine and assessing of the doses of secondary radiation in the medical staff and animal owners; Avaliacao das doses resultantes de procedimentos radiodiagnosticos realizados em medicina veterinaria e avaliacao das doses secundarias de radiacao espalhada no corpo clinico e nos proprietarios dos animais

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Glauco Rogerio

    2012-07-01

    The primary goal in veterinary radiography is to produce radiographs of diagnostic quality on the first attempt. This goal serves three purposes: (1) to decrease radiation exposure to the patient and veterinary personnel; (2) to decrease the cost of the study for the client; and (3) to produce diagnostic data for rapid interpretation and treatment of the patient. This work aimed to determine the doses in dogs submitted to chest and abdomen X rays using the technique of thermoluminescence (TL) dosimetry. The radiation doses were assessed using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) and lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti). The obtained results indicate that is extremely important the assessment of radiation doses involved in veterinary diagnostic radiology procedures, to evaluate the delivered doses to the animals, to be used as a parameter in the individual monitoring of pet's owners, who assist the animal positioning, and to protect occupationally exposed workers at the Veterinary Radiology Clinics. (author)

  5. Effect of low doses of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Tomato dry seeds of the hybrid 'Gladiador' Fl were exposed to low doses of gamma radiation from 60Co source at 0. 509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments of different radiation doses were applied as follows: 0 (control); 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  6. A new approach to radiopharmaceutical dose assessment

    International Nuclear Information System (INIS)

    Dosimetry for bone-seeking radiopharmaceuticals relies on an accurate measurement of the activity administered, a model for uptake of the pharmaceutical, and calculations of the dose to the target organ. The authors report here a new approach to experimental assessment of the radiation dose to bone using electron paramagnetic resonance (EPR) spectrometry. Ionizing radiations interact with mineralized bone tissue (hydroxyapatite) to produce dose-dependent concentrations of long-lived paramagnetic centers. They have successfully applied the EPR technique to bone tissues of an animal treated with a radiopharmaceutical to demonstrate its sensitivity towards radiation-induced centers in the mineralized tissue. Although the EPR bone dosimetry method is invasive, it does offer the first experimental technique for measuring and mapping the tissue response to the administered radioactivity

  7. Multicenter study assessing ophthalmologist's knowledge towards radiation dose when prescribing CT scans for pediatric patients: A Saudi Arabian perspective

    Directory of Open Access Journals (Sweden)

    Hussain Almohiy

    2016-01-01

    Conclusion: Knowledge of Ophthalmologists towards the risk of radiation exposure in pediatric CT is poor and suggest a propensity of misappropriate radiation use and under-utilization of alternative radiation-free methods. Structured education sessions and deliberation of the radiation dangers with patients are recommended.

  8. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    Science.gov (United States)

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  9. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Radiation Protection and Measurements; NCRP Report 124; 1996. United Nations Scientific Committee on the Effects of Atomic Radiation. ... ionizing radiation, Vol. 1: Sources. New York, NY: United Nations Publishing; 2000. Russell JR, Stabin MG, Sparks RB, ...

  10. Radioactivity measurements in the vicinity of the mine waste heap at Crossen and radiation dose assessment; Radioaktivitaetsmessungen in der Umgebung der Bergehalde Crossen und Abschaetzung der Strahlenexposition

    Energy Technology Data Exchange (ETDEWEB)

    Kulzer, R.

    1998-09-01

    The radiation dose to the population living in the vicinity of the mine waste heap is assessed. The measurements carried out were to verify the dose relevance of ambient radioactivity on site, in particular the ingestion and inhalation pathways and the external exposure pathways. The nuclide Pb-210 was used as an indicator because of its large dose factor for assessment of ingestion and its airborne dispersion as an Rn-222 daughter product. The waste heap material releases large quantities of this nuclide. Ingestion of radioactivity from the waste heap may be caused by wind-borne erosion and activity deposition on plants in the area. Thererfore, the specific activities of Pb-210 and Ra-226 have been measured in soil and plant specimens sampled at various distances from the waste heap. (orig./CB) [Deutsch] Die Strahlenexposition der in der Naehe einer Bergehalde lebenden Bevoelkerung wird bestimmt. Zu diesem Zweck wurden Messungen realisiert, die den Ingestions- und Inhalationspfad sowie die externe Exposition fuer die vorgefundene Situation auf ihre Dosisrelevanz ueberpruefen sollten. Hierzu diente das Nuklid Pb-210 mit seinem grossen Dosisfaktor fuer die Ingestion und seiner besonderen Verbreitungsmoeglichkeit ueber die Luft als Tochter von Rn-222. Dieses wird aus dem Haldenmaterial in grossen Mengen freigesetzt. Haldenmaterial kann ueber den Ingestionspfad in den menschlichen Koerper aufgenommen werden, wenn es durch Winderosion auf Pflanzenoberflaechen in der Umgebung abgelagert wird.Deshalb wurden die spezifischen Aktivitaeten an Pb-210 und Ra-226 von Boden- und Pflanzenproben in verschiedenen Entfernungen zur Halde bestimmt.

  11. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    Science.gov (United States)

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  12. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  13. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  14. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  15. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  16. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  17. SU-E-I-89: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Pediatric Anthropomorphic and ACR Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, U; Erdi, Y; Wang, W [Memorial Sloan Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: To assess the impact of General Electrics automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of a pediatric anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, 80 mA, 0.7s rotation time. Image quality was assessed by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: For the baseline protocol, CNR was found to decrease from 0.460 ± 0.182 to 0.420 ± 0.057 when kVa was activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.620 ± 0.040. The liver dose decreased by 30% with kVa activation. Conclusion: Application of kVa reduces the liver dose up to 30%. However, reduction in image quality for abdominal scans occurs when using the automated tube voltage selection feature at the baseline protocol. As demonstrated by the CNR and NPS analysis, the texture and magnitude of the noise in reconstructed images at ASiR 40% was found to be the same as our baseline images. We have demonstrated that 30% dose reduction is possible when using 40% ASiR with kVa in pediatric patients.

  18. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  19. TH-C-18A-06: Combined CT Image Quality and Radiation Dose Monitoring Program Based On Patient Data to Assess Consistency of Clinical Imaging Across Scanner Models

    International Nuclear Information System (INIS)

    Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using optical character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image

  20. Radiation dose assessment for 137Cs from fish in the Aegean Sea before and after the Chernobyl accident

    International Nuclear Information System (INIS)

    The effective doses in fish from the Aegean Sea were calculated for the nuclide 137Cs covering the period 1975-1982. The effective dose varies between 3x10-5 and 10x10-5 mSv y-1 for adults and 14x10-5 to 56x10-5 y-1 for children, while the cumulative effective dose for the period 1975-1982 equals to 40.86x10-5 and 229.57x10-5 for adults and children of 10 y old, resp. When compared to doses derived from the Chernobyl accident (May 1986) it was found that the additional dose incurred by Greek individuals in May 1986 was approximately equal to the cumulative dose of 8 y contribution period (1975-1982) for adults and to a year's contribution for children of 10 y old. (author) 9 refs.; 3 figs

  1. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  2. Radiation Dose Reduction of Chest CT with Iterative Reconstruction in Image Space - Part II: Assessment of Radiologists' Preferences Using Dual Source CT

    International Nuclear Information System (INIS)

    To evaluate the impact of radiation dose and reconstruction algorithms on radiologists' preferences, and whether an iterative reconstruction in image space (IRIS) can be used for dose reduction in chest CT. Standard dose chest CT (SDCT) in 50 patients and low dose chest CT (LDCT) in another 50 patients were performed, using a dual-source CT, with 120 kVp and same reference mAs (50 mAs for SDCT and 25 mAs for LDCT) employed to both tubes by modifying the dual-energy scan mode. Full-dose data were obtained by combining the data from both tubes and half-dose data were separated from one tube. These were reconstructed by using a filtered back projection (FBP) and IRIS: full-dose FBP (F-FBP); full-dose IRIS (F-IRIS); half-dose FBP (H-FBP) and half-dose IRIS (H-IRIS). Ten H-IRIS/F-IRIS, 10 H-FBP/H-IRIS, 40 F-FBP/F-IRIS and 40 F-FBP/H-IRIS pairs of each SDCT and LDCT were randomized. The preference for clinical usage was determined by two radiologists with a 5-point-scale system for the followings: noise, contrast, and sharpness of mediastinum and lung. Radiologists preferred IRIS over FBP images in the same radiation dose for the evaluation of the lungs in both SDCT (p = 0.035) and LDCT (p < 0.001). When comparing between H-IRIS and F-IRIS, decreased radiation resulted in decreased preference. Observers preferred H-IRIS over F-FBP for the lungs in both SDCT and LDCT, even with reduced radiation dose by half in IRIS image (p < 0.05). Radiologists' preference may be influenced by both radiation dose and reconstruction algorithm. According to our preliminary results, dose reduction at 50% with IRIS may be feasible for lung parenchymal evaluation.

  3. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  4. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  5. Radiation Doses Received by the Irish Population 2014

    International Nuclear Information System (INIS)

    People are constantly exposed to a variety of sources of both natural and artificial radioactivity. The radiation dose received by the population from such sources is periodically estimated by the Radiological Protection Institute of Ireland RPII. This report is an update of a population dose assessment undertaken in 2008 and includes the most recent data available on the principal radiation exposure pathways. Wherever possible the collective dose and the resulting average annual dose to an individual living in Ireland, based on the most recently published figure for the population of Ireland, have been calculated for each of the pathways of exposure

  6. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications. [Radiation dose rates from shielded spent fuels and high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.

  7. Near Real-Time Assessment of Anatomic and Dosimetric Variations for Head and Neck Radiation Therapy via Graphics Processing Unit–based Dose Deformation Framework

    Energy Technology Data Exchange (ETDEWEB)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Santhanam, Anand; Neylon, John; Min, Yugang; Armstrong, Tess; Sheng, Ke [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Staton, Robert J.; Pukala, Jason [Department of Radiation Oncology, UF Health Cancer Center - Orlando Health, Orlando, Florida (United States); Pham, Andrew; Low, Daniel A.; Lee, Steve P. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Steinberg, Michael; Manon, Rafael [Department of Radiation Oncology, UF Health Cancer Center - Orlando Health, Orlando, Florida (United States); Chen, Allen M.; Kupelian, Patrick [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States)

    2015-06-01

    Purpose: The purpose of this study was to systematically monitor anatomic variations and their dosimetric consequences during intensity modulated radiation therapy (IMRT) for head and neck (H&N) cancer by using a graphics processing unit (GPU)-based deformable image registration (DIR) framework. Methods and Materials: Eleven IMRT H&N patients undergoing IMRT with daily megavoltage computed tomography (CT) and weekly kilovoltage CT (kVCT) scans were included in this analysis. Pretreatment kVCTs were automatically registered with their corresponding planning CTs through a GPU-based DIR framework. The deformation of each contoured structure in the H&N region was computed to account for nonrigid change in the patient setup. The Jacobian determinant of the planning target volumes and the surrounding critical structures were used to quantify anatomical volume changes. The actual delivered dose was calculated accounting for the organ deformation. The dose distribution uncertainties due to registration errors were estimated using a landmark-based gamma evaluation. Results: Dramatic interfractional anatomic changes were observed. During the treatment course of 6 to 7 weeks, the parotid gland volumes changed up to 34.7%, and the center-of-mass displacement of the 2 parotid glands varied in the range of 0.9 to 8.8 mm. For the primary treatment volume, the cumulative minimum and mean and equivalent uniform doses assessed by the weekly kVCTs were lower than the planned doses by up to 14.9% (P=.14), 2% (P=.39), and 7.3% (P=.05), respectively. The cumulative mean doses were significantly higher than the planned dose for the left parotid (P=.03) and right parotid glands (P=.006). The computation including DIR and dose accumulation was ultrafast (∼45 seconds) with registration accuracy at the subvoxel level. Conclusions: A systematic analysis of anatomic variations in the H&N region and their dosimetric consequences is critical in improving treatment efficacy. Nearly real

  8. Near Real-Time Assessment of Anatomic and Dosimetric Variations for Head and Neck Radiation Therapy via Graphics Processing Unit–based Dose Deformation Framework

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to systematically monitor anatomic variations and their dosimetric consequences during intensity modulated radiation therapy (IMRT) for head and neck (H&N) cancer by using a graphics processing unit (GPU)-based deformable image registration (DIR) framework. Methods and Materials: Eleven IMRT H&N patients undergoing IMRT with daily megavoltage computed tomography (CT) and weekly kilovoltage CT (kVCT) scans were included in this analysis. Pretreatment kVCTs were automatically registered with their corresponding planning CTs through a GPU-based DIR framework. The deformation of each contoured structure in the H&N region was computed to account for nonrigid change in the patient setup. The Jacobian determinant of the planning target volumes and the surrounding critical structures were used to quantify anatomical volume changes. The actual delivered dose was calculated accounting for the organ deformation. The dose distribution uncertainties due to registration errors were estimated using a landmark-based gamma evaluation. Results: Dramatic interfractional anatomic changes were observed. During the treatment course of 6 to 7 weeks, the parotid gland volumes changed up to 34.7%, and the center-of-mass displacement of the 2 parotid glands varied in the range of 0.9 to 8.8 mm. For the primary treatment volume, the cumulative minimum and mean and equivalent uniform doses assessed by the weekly kVCTs were lower than the planned doses by up to 14.9% (P=.14), 2% (P=.39), and 7.3% (P=.05), respectively. The cumulative mean doses were significantly higher than the planned dose for the left parotid (P=.03) and right parotid glands (P=.006). The computation including DIR and dose accumulation was ultrafast (∼45 seconds) with registration accuracy at the subvoxel level. Conclusions: A systematic analysis of anatomic variations in the H&N region and their dosimetric consequences is critical in improving treatment efficacy. Nearly real

  9. Assessment of effectiveness of geologic isolation systems. ARRRG and FOOD: computer programs for calculating radiation dose to man from radionuclides in the environment

    International Nuclear Information System (INIS)

    The computer programs ARRRG and FOOD were written to facilitate the calculation of internal radiation doses to man from the radionuclides in the environment and external radiation doses from radionuclides in the environment. Using ARRRG, radiation doses to man may be calculated for radionuclides released to bodies of water from which people might obtain fish, other aquatic foods, or drinking water, and in which they might fish, swim or boat. With the FOOD program, radiation doses to man may be calculated from deposition on farm or garden soil and crops during either an atmospheric or water release of radionuclides. Deposition may be either directly from the air or from irrigation water. Fifteen crop or animal product pathways may be chosen. ARRAG and FOOD doses may be calculated for either a maximum-exposed individual or for a population group. Doses calculated are a one-year dose and a committed dose from one year of exposure. The exposure is usually considered as chronic; however, equations are included to calculate dose and dose commitment from acute (one-time) exposure. The equations for calculating internal dose and dose commitment are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and Maximum Permissible Concentration (MPC) of each radionuclide. The radiation doses from external exposure to contaminated farm fields or shorelines are calculated assuming an infinite flat plane source of radionuclides. A factor of two is included for surface roughness. A modifying factor to compensate for finite extent is included in the shoreline calculations

  10. Assessment of effectiveness of geologic isolation systems. ARRRG and FOOD: computer programs for calculating radiation dose to man from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Roswell, R.L.; Kennedy, W.E. Jr.; Strenge, D.L.

    1980-06-01

    The computer programs ARRRG and FOOD were written to facilitate the calculation of internal radiation doses to man from the radionuclides in the environment and external radiation doses from radionuclides in the environment. Using ARRRG, radiation doses to man may be calculated for radionuclides released to bodies of water from which people might obtain fish, other aquatic foods, or drinking water, and in which they might fish, swim or boat. With the FOOD program, radiation doses to man may be calculated from deposition on farm or garden soil and crops during either an atmospheric or water release of radionuclides. Deposition may be either directly from the air or from irrigation water. Fifteen crop or animal product pathways may be chosen. ARRAG and FOOD doses may be calculated for either a maximum-exposed individual or for a population group. Doses calculated are a one-year dose and a committed dose from one year of exposure. The exposure is usually considered as chronic; however, equations are included to calculate dose and dose commitment from acute (one-time) exposure. The equations for calculating internal dose and dose commitment are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and Maximum Permissible Concentration (MPC) of each radionuclide. The radiation doses from external exposure to contaminated farm fields or shorelines are calculated assuming an infinite flat plane source of radionuclides. A factor of two is included for surface roughness. A modifying factor to compensate for finite extent is included in the shoreline calculations.

  11. Irradiation dose assessment in persons exposed to ionizing radiation through extrapolation of data from clinic-chemical changes in irradiated laboratory animals

    International Nuclear Information System (INIS)

    An attempt is made to determine the dose within 24,48 and 72 hours of eventual exposure of healthy individuals to ionizing radiation through extrapolation of data retrieved from rats exposed to irradiation with 1, 3, 6 and 9 Gy X-rays. Seven clinic-chemical parameters are used: urea in the urine, taurine in the urine, urea in the serum, serum alkaline phosphatase, total serum lipids, sialic acid and thromboxane in the serum. A special formula is worked out and used for extrapolation of the experimental data, retrieved from irradiated rats, with due consideration to differences in the intensity of metabolic processes and species' radiosensitivity of rats and humans. The values of the aforementioned parameters that could be obtained upon eventual exposure of persons to ionizing irradiation are determined through computerization of the experimental data. It is believed that an accessible model for radiation dose assessment in the first three days after accidental exposure of human beings to ionizing irradiation is created. 5 refs., 4 figs. (author)

  12. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    the effects of radiation can be used to improve the assessment of low dose radiation risk. In this article, the mechanisms of targeted and non-targeted responses, and interrelation between the phenomena on cellular injury after exposure to low doses of radiation as they relate to low dose radiation effects will be reviewed.

  13. Occupational radiation doses during interventional procedures

    Science.gov (United States)

    Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.

    2016-03-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.

  14. External radiation exposure of residents living close to the Mayak facility: main sources, dose estimates, and comparison with earlier assessments.

    Science.gov (United States)

    Mokrov, Yury G

    2004-07-01

    In 1951 and 1952 specialists from the Mayak production association investigated the radiological situation in the area of the Metlinski reservoir that was located 5-7 km from the site of liquid radioactive waste (LRW) discharge. Based on their measurements of both the specific radioactivity in the water and the dose-rate above the water surface, the gamma-field above the water surface in 1951 was demonstrated to be mainly due to (95)Zr+(95)Nb. The dose-rate at the shore of the reservoir was calculated for the period 1949-1951. In November and December 1951, the gamma-field at the shore was mainly due to (140)Ba+(140)La. For the period 1949-1951, the external exposure of the Metlino population due to the decay of these radionuclides was about 200 R (2 Sv), most of the dose having been produced in 1951. The contribution of (137)Cs to external doses did at that time probably not exceed a fraction of several percent. This finding is in contradiction to the assumptions made in the most recent TRDS-2000 system that was developed to reconstruct the doses to the residents of the Techa river. The results presented here demonstrate that the reconstruction of external doses received by the Metlino population as well as by the Techa river residents can be improved for the most critical period between 1949 and 1954. PMID:15221313

  15. Program for rapid dose assessment in criticality accident, RADAPAS

    International Nuclear Information System (INIS)

    In a criticality accident, a person near fissile material can receive extremely high dose which can cause acute health effect. For such a case, medical treatment should be carried out for the exposed person, according to severity of the exposure. Then, radiation dose should be rapidly assessed soon after an outbreak of an accident. Dose assessment based upon the quantity of induced 24Na in human body through neutron exposure is expected as one of useful dosimetry techniques in a criticality accident. A dose assessment program, called RADAPAS (RApid Dose Assessment Program from Activated Sodium in Criticality Accidents), was therefore developed to assess rapidly radiation dose to exposed persons from activity of induced 24Na. RADAPAS consists of two parts; one is a database part and the other is a part for execution of dose calculation. The database contains data compendiums of energy spectra and dose conversion coefficients from specific activity of 24Na induced in human body, which had been derived in a previous analysis using Monte Carlo calculation code. Information for criticality configuration or characteristics of radiation in the accident field is to be interactively given with interface displays in the dose calculation. RADAPAS can rapidly derive radiation dose to the exposed person from the given information and measured 24Na specific activity by using the conversion coefficient in database. This report describes data for dose conversions and dose calculation in RADAPAS and explains how to use the program. (author)

  16. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the...... radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  17. Dose assurance in radiation processing plants

    International Nuclear Information System (INIS)

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing. (author)

  18. Dose assurance in radiation processing plants

    Science.gov (United States)

    Miller, A.; Chadwick, K. H.; Nam, J. W.

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.

  19. Radiation doses to personnel during common angiographic procedures involving DSA

    International Nuclear Information System (INIS)

    In this study, the radiation doses received by the staff are monitored during common angiographic procedures involving digital subtraction angiography (DSA). Doses are assessed by direct measurement using lithium fluoride thermoluminescent dosemeters (TLDs). The entrance surface dose (mGy) at the different locations on each of the staff for the three different procedures are given. As the result, on the whole, the main operator, who is standing closest to the x-ray tube and patient, receive the highest dose while the radiographer receives the lowest dose

  20. Radiation Doses from Computed tomography in Iraq

    International Nuclear Information System (INIS)

    Radiation doses to Patient during CT scanner and the radiological risk are significant. Patient dose survey has been conducted to investigate the Iraq patient radiation doses received in CT scanners in order to established reference dose levels. These doses are Entrance Surface Dose (ESD),computed tomography dose index(CTDI)), and dose length product (DLP). Two CT scanner were investigated in this study were, Siemens Somatom Plus 4, located in at medical city of Baghdad, and Philips, Optimus located in privet hospital at Baghdad. ESD were measured by TLD and Dosimax ionization chamber for head, chest, and abdomen for both sex and different weights. The TLD results were higher than that measured with Dosimax due to scattered radiation .The scattering factor which is the ratio between dose measured by TLD and that measured by ionization chamber range between (1.14-1.34) compare to international measurement which is range between (1.1-1.5).The (ESD) measured by the two methods were agree well after the subtraction of scattering dose, and have compered with original research. Dose profile were measured using array of TLD chips shows that its full width at half maximum is(7.99 mm) approximately equal the slice thickness(8 mm). Our results compare with reference level at U.K, European Guidelines and

  1. SU-E-I-81: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Adult Anthropomorphic and ACR Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, U; Erdi, Y; Wang, W [Memorial Sloan Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: To assess the impact of General Electrics (GE) automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of an adult anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, Auto mA (180 to 380 mA), noise index (NI) = 14, adaptive iterative statistical reconstruction (ASiR) of 20%, 0.8s rotation time. Image quality was evaluated by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: The CNR for the adult male was found to decrease from CNR = 0.912 ± 0.045 for the baseline protocol without kVa to a CNR = 0.756 ± 0.049 with kVa activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.903 ± 0.023. The difference in the central liver dose with and without kVa was found to be 0.07%. Conclusion: Dose reduction was insignificant in the adult phantom. As determined by NPS analysis, ASiR of 40% produced images with similar noise texture to the baseline protocol. However, the CNR at ASiR of 40% with kVa fails to meet the current ACR CNR passing requirement of 1.0.

  2. The embryogenesis of dose assessment at Hanford

    International Nuclear Information System (INIS)

    Several significant events occurred between 1955 and 1960 that resulted in major changes in environmental monitoring at Hanford and in the initiation of comprehensive dose assessments. These included: (1) specification of dose limits for nonoccupational exposure (including internal emitters); (2) a national and international awakening to the need for managing the disposal of radioactive wastes; (3) identification of the most important radionuclides and their sources of exposure; (4) data that quantified the transfer coefficients of nuclides along environmental pathways; and (5) development of greatly improved radiation detection instrumentation. In response to a growing need, the Hanford Laboratories formed the Environmental Studies and Evaluation component. This group revamped the monitoring and sampling programs so that analytical results contributed directly to dose estimation. Special studies were conducted to ascertain local dietary and recreational habits that affected dose calculations and to calibrate the models. These studies involved extensive contact with the public and governmental agencies, which elicited a positive reaction

  3. Radiation Dose and Risk Assessments from Polonium-210 in Green Mussels (Perna viridis) and Seafood Consumers Living nearby the Industrial Area in Chonburi Province, Thailand

    International Nuclear Information System (INIS)

    Marine environmental samples including seawater (filtered and unfiltered), suspended particles, and green mussels (Perna viridis) were collected from Sriracha and Angsira areas located in Chonburi province in order to determine Po-210 radioactivity. The former was chosen because it is generally believed that this area has been contaminated by one of the largest industrial estates in Thailand and others human-activities (non-nuclear activities) nearby such as oil refineries and Coal Power Plants. Discharges, ashes, and wastes released from these activities may result in an increase of Po-210 concentration in marine environment when compared to other areas. The later was designated to serve as a control site in this study since this area is unlikely to be impacted by industrial activities. Our results revealed that, in the filtered seawater, averaged values of Po-210 level were 0.26 + 0.14 mBq/L (Sriracha) and 0.56 + 0.42 mBq/L (Angsira) and, in the unfiltered seawater, means of Po-210 radioactivity were 2.37 + 0.32 mBq/L (Sriracha) and 4.20 + 2.78 mBq/L (Angsira). Furthermore, the suspended particles contained Po-210 concentrations with averaged values of 14.11 + 8.87 Bq/kg dw (Sriracha) and 102.21 + 51.49 Bq/kg dw (Angsira) while averaged Po-210 levels of 35.74 + 17.53 Bq/kg dw (Sriracha) and 71.12 + 62.88 Bq/kg dw (Angsira) were found in the green mussels examined. The present finding indicates that there is no radiological impact caused by those human activities to the marine environment at Sriracha. Radiation dose assessment was also performed in both the green mussels and human who consume green mussels. The results show that the green mussels farmed at Sriracha and Angsira received averaged radiation dose rates from Po-210 at 0.0007 and 0.0015 mGy/d, respectively. In addition, our results reveal that populations living in Chonburi province and ingesting the green mussels from these 2 locations received radiation dose rates from Po-210 at the means of 44.25 and

  4. Radiation Dose and Risk Assessments from Polonium-210 in Green Mussels (Perna viridis) and Seafood Consumers Living nearby the Industrial Area in Chonburi Province, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Tumnoi, Y.; Phaopeng, N. [Office of Atoms for Peace - OAP (Thailand)

    2014-07-01

    Marine environmental samples including seawater (filtered and unfiltered), suspended particles, and green mussels (Perna viridis) were collected from Sriracha and Angsira areas located in Chonburi province in order to determine Po-210 radioactivity. The former was chosen because it is generally believed that this area has been contaminated by one of the largest industrial estates in Thailand and others human-activities (non-nuclear activities) nearby such as oil refineries and Coal Power Plants. Discharges, ashes, and wastes released from these activities may result in an increase of Po-210 concentration in marine environment when compared to other areas. The later was designated to serve as a control site in this study since this area is unlikely to be impacted by industrial activities. Our results revealed that, in the filtered seawater, averaged values of Po-210 level were 0.26 + 0.14 mBq/L (Sriracha) and 0.56 + 0.42 mBq/L (Angsira) and, in the unfiltered seawater, means of Po-210 radioactivity were 2.37 + 0.32 mBq/L (Sriracha) and 4.20 + 2.78 mBq/L (Angsira). Furthermore, the suspended particles contained Po-210 concentrations with averaged values of 14.11 + 8.87 Bq/kg dw (Sriracha) and 102.21 + 51.49 Bq/kg dw (Angsira) while averaged Po-210 levels of 35.74 + 17.53 Bq/kg dw (Sriracha) and 71.12 + 62.88 Bq/kg dw (Angsira) were found in the green mussels examined. The present finding indicates that there is no radiological impact caused by those human activities to the marine environment at Sriracha. Radiation dose assessment was also performed in both the green mussels and human who consume green mussels. The results show that the green mussels farmed at Sriracha and Angsira received averaged radiation dose rates from Po-210 at 0.0007 and 0.0015 mGy/d, respectively. In addition, our results reveal that populations living in Chonburi province and ingesting the green mussels from these 2 locations received radiation dose rates from Po-210 at the means of 44.25 and

  5. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  6. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  7. Radiation dose in digital subtraction angiography

    International Nuclear Information System (INIS)

    A phantom study using thermoluminescence dosimeter was undertaken to compare radiation doses from five different imaging systems used in digital subtraction angiography (DSA). Red bone marrow and maximum skin doses were generally high. Depending upon the system, the maximum skin dose ranged from 202 to 53 mGy. Based on these results, the maximum skin dose was obtained in the clinical setting. The average dose in patients was 175 mGy for arterial DSA and 250 mGy for intravenous DSA. For radiologists, radiation doses to the lens, fingers of the right hand, and thyroid gland were 0.34, 0.27, and 0.4 mGy, respectively, in the case of mannual injection of contrast media; and undetectable, 0.029, and 0.0143 mGy, respectively, in the case of automatic injection. (Namekawa, K.)

  8. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...

  9. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  10. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    A NRPB leaflet in the 'At-a-Glance' Series presents information on the numerous sources and magnitude of exposure of man to radiation. These include the medical use of radiation, radioactive discharges to the environment, cosmic rays, gamma rays from the ground and buildings, radon gas and food and drink. A Pie chart represents the percentage contribution of each of those sources. Finally, the terms becquerel, microsievert and millisievert are explained. (U.K.)

  11. Assessment of radiation dose caused by radioactive gaseous effluent released from nuclear power plant Ninh Thuan 1 under scenario of normal operation

    International Nuclear Information System (INIS)

    Based on guides RG 1.109, RG 1.111 published by United States Nuclear Regulatory Commission (USNRC) our research concentrates in assessing radiation doses caused by radioactive substances released from the nuclear power plant (NPP) Ninh Thuan 1 under the scenario of normal operation using software package NRCDose72 provided by the USNRC. The database including the released radioactive nuclides, meteorology, terrain, population and agricultural production activities have been collected and processed to build the input data for the model calculation. The wind rose distribution obtained from the meteorological data in a five-year period from 2009-2013 showed that the radioactive nuclides released to environment spread in two main wind directions which are North East and South West. The X/Q (s/m3) and D/Q (s/m2) qualities which are, respectively, the ratio of activity concentration to release rate and that of deposition density of radioactive nuclides to release rate were calculated within an area of 80 km radius from the NPP site using XOQDOQ. Population doses were calculated using GASPAR. The XOQDOQ and GASPAR are two specific softwares in NRCDose72 package. (author)

  12. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  13. Radiation Doses from some Egyptian industrial products

    International Nuclear Information System (INIS)

    The annual dose equivalent from exposures to radionuclides contained in some industrial ores and their waste products, were estimated using collective data from these industrial materials. This study takes in consideration industrial ores and their waste products. The materials studied were iron and steel products, cement manufacture, phosphate fertilizers, phosphoric acid production as well as ores used in ceramic production and waste. An integrated method was used in mathematical assumption form for the purpose of calculating the radiation dose equivalent. The calculated values of the annual radiation doses for workers were found to be significant. These results are discussed in the light of international exposure limits for workers

  14. Radiation dose from cigarette tobacco

    International Nuclear Information System (INIS)

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and or man-made radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μ Sv y-1 (average 79.7 μ Sv y-1), while for 228Ra from 19.3 to 116.0 μ Sv y-1 (average 67.1 μ Sv y-1) and for 210Pb from 47.0 to 134.9 μ Sv y-1 (average 104.7 μ Sv y-1), that is the same order of magnitude for each radionuclide. The sum of the effective doses of the three natural radionuclides varied from 151.9 to 401.3 μ Sv y-1 (average 251.5 μ Sv y-1). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y-1 (average 199.3 nSv y-1). (authors)

  15. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  16. Radioactivity of cigarettes and the importance of (210)Po and thorium isotopes for radiation dose assessment due to smoking.

    Science.gov (United States)

    Kubalek, Davor; Serša, Gregor; Štrok, Marko; Benedik, Ljudmila; Jeran, Zvonka

    2016-05-01

    Tobacco and tobacco smoke are very complex mixtures. In addition to various chemical and organic compounds they also contain natural radioactive elements (radionuclides). In this work, the natural radionuclide activity concentrations ((234)U, (238)U, (228)Th, (230)Th, (232)Th, (226)Ra, (210)Pb and (210)Po) of nine different cigarette samples available on the Slovenian market are reported. In addition to (210)Po, the transfer of thorium isotopes from a cigarette to a smoker's body and lungs have been determined for the first time. Cigarette smoke and exhaled air from smokers' lungs were collected from volunteer smokers (C-4 brand) to determinate what quantity of (210)Po and thorium isotopes is transferred from the tobacco to the smoker's lungs. Cigarette ash and smoked filters were also collected and analysed. Among the determined isotopes, (210)Pb and (210)Po showed the highest activity concentrations. During the smoking of one cigarette approximately 22% of (210)Po (and presumably its predecessor (210)Pb), 0.6% of (228)Th, 24% of (230)Th, and 31% of (232)Th are transferred from the cigarette and retained in the smoker's body. The estimated annual effective dose for smokers is 61 μSv/year from (210)Po; 9 μSv/year from (210)Pb; 6 μSv/year from (228)Th; 47 μSv/year from (230)Th, and 37 μSv/year from (232)Th. These results show the importance of thorium isotopes in contributing to the annual effective dose for smoking. PMID:26942842

  17. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  18. Occupational radiation doses in interventional radiology: Simulations

    International Nuclear Information System (INIS)

    In interventional radiology, occupational radiation doses can be high. Therefore, many authors have established conversion coefficients from the dose-area product data or from the personal dosemeter reading to the effective dose of the radiologist. These conversion coefficients are studied also in this work, with an emphasis on sensitivity of the results to changes in exposure conditions. Comparison to earlier works indicates that, for the exposure conditions examined in this work, all previous models discussed in this work overestimate the effective dose of the radiologist when a lead apron and a thyroid shield are used. Without the thyroid shield, underestimation may occur with some models. (authors)

  19. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  20. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the radiat...... radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing.......Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed at the...

  1. Assessing exposure to radiation

    International Nuclear Information System (INIS)

    Since the founding of Lawrence Livermore National Laboratory, we have been world leaders in evaluating the risks associated with radiation. Ultrasensitive tools allow us not only to measure radionuclides present in the body but also to reconstruct the radiation dose from past nuclear events and to project the levels of radiation that will still be present in the body for 50 years after the initial intake. A variety of laboratory procedures, including some developed here, give us detailed information on the effects of radiation at the cellular level. Even today, we are re-evaluating the neutron dose resulting from the bombing at Hiroshima. Our dose reconstruction and projection capabilities have also been applied to studies of Nagasaki, Chernobyl, the Mayak industrial complex in the former Soviet Union, the Nevada Test Site, Bikini Atoll, and other sites. We are evaluating the information being collected on individuals currently working with radioactive material at Livermore and elsewhere as well as previously collected data on workers that extends back to the Manhattan Project

  2. Low radiation doses and antinuclear lobby

    International Nuclear Information System (INIS)

    The probability of mutations or diseases resulting from other than radiation causes is negatively dependent on radiation. Thus, for instance, the incidence of cancer, is demonstrably lower in areas with a higher radiation background. The hypothesis is expressed that there exist repair mechanisms for DNA damage which will repair the damage, and will give priority to those genes which are currently active. Survival and stochastic processes are not dependent on the overall repair of DNA but on the repair of critical function genes. New discoveries shed a different light on views of the linear dependence of radiation damage on the low level doses. (M.D.)

  3. Radiation doses from computed tomography in Australia

    International Nuclear Information System (INIS)

    Recent surveys in various countries have shown that computed tomography (CT) is a significant and growing contributor to the radiation dose from diagnostic radiology. Australia, with 332 CT scanners (18 per million people), is well endowed with CT equipment compared to European countries (6 to 13 per million people). Only Japan, with 8500 units (78 per million people), has a significantly higher proportion of CT scanners. In view of this, a survey of CT facilities, frequency of examinations, techniques and patient doses has been performed in Australia. It is estimated that there are 1 million CT examinations in Australia each year, resulting in a collective effective dose of 7000 Sv and a per caput dose of 0.39 mSv. This per caput dose is much larger than found in earlier studies in the UK and New Zealand but is less than 0.48 mSv in Japan. Using the ICRP risk factors, radiation doses from CT could be inducing about 280 fatal cancers per year in Australia. CT is therefore a significant, if not the major, single contributor to radiation doses and possible risk from diagnostic radiology. (authors)

  4. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  5. Radiation doses in interventional radiology procedures

    International Nuclear Information System (INIS)

    Objective: To investigate the radiation doses for the patients undergoing interventional radiology and to analyze the dose - influencing factors. Methods: The clinical data of 461 patients undergoing interventional radiology, including cerebral angiography (CEA), cerebral aneurysm embolism (CAE), superselective hepatic arterial chemoembolization (SHAG), coronary angiography (COA), percutaneous intracoronary stent implantation (PISI), cardiac radiofrequency catheter ablation (RFCA), and permanent cardiac pacemaker implantation (PCPI) were collected to observe the cumulative air kerma (CAK), dose area product (DAP), and fluoroscopy time, and effective dose was estimated using the conversion factors. Results: The effective doses for CEA, CAE, SHAG, COA, PISI, RFCA, and PCPI were (0.33 ±0.20), (0.49 ±0.35), (6.92 ±4.19),(0.76 ±0.91), (2.35 ± 1.47), (0.50 ±0.74), and (0.67 ±0.70) Sv,respectively. In 126 of the 416 patients (26%), the effective doses were greater than 1 Sv, and the effective doses of 10 person-times were greater than 10 Sv, all of which were observed in the patients undergoing SHAG. The CAK values for CEA, CAE, SHAG, COA, PISI, RFCA, and PCPI were (0.55 ±0.43), (1.34 ± 1.11), (0.95 ±0.57), (0.32 ±0.31), (0.91 ±0.33), (0.16 ±0.22), and (0.15 ±0.14) Gy, respectively. The CAK values were greater than 1 Gy in 59 of the 461 patients (12.8%), greater than 2 Gy in 11 cases (2.4%), and greater than 3 Gy in 1 CEA cases and 1 CEA case, respectively. Conclusions: There is a wide variation range in radiation dose for different procedures. As most interventional radiology procedure can result in clinically significant radiation dose to the patient, stricter dose control should be carried out. (authors)

  6. Patient perspectives on radiation dose.

    Science.gov (United States)

    Graff, Joyce

    2014-03-01

    People with genetic cancer syndromes have a special interest in imaging. They also have special risk factors with respect to radiation. They need to utilize the potential of imaging while keeping in mind concerns about cumulative radiation exposure. Before imaging, early detection of problems was limited. With imaging, issues can be identified when they are small and a good plan of action can be developed early. Operations can be planned and metastatic cancer avoided. The positive contribution of imaging to the care of these patients can be profound. However, this additional surveillance is not without cost. An average patient with 1 of these syndromes will undergo 100 or more scans in their lifetime. Imaging professionals should be able to describe the risks and benefits of each scan in terms that the patient and the ordering physician can understand to make smart decisions about the ordering of scans. Why CT versus MRI? When are x-ray or ultrasound appropriate, and when are they not? What are the costs and the medical risks for the patient? What value does this picture add for the physician? Is there a way to answer the medical question with a test other than a scan? Medicine is a team sport, and the patient is an integral member of the team. PMID:24589397

  7. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  8. Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes

    International Nuclear Information System (INIS)

    Hepatic radiation toxicity restricts irradiation of liver malignancies. Better knowledge of hepatic tolerance dose is favourable to gain higher safety and to optimize radiation regimes in radiotherapy of the liver. In this study we sought to determine the hepatic tolerance dose to small volume single fraction high dose rate irradiation. 23 liver metastases were treated by CT-guided interstitial brachytherapy. MRI was performed 3 days, 6, 12 and 24 weeks after therapy. MR-sequences were conducted with T1-w GRE enhanced by hepatocyte-targeted Gd-EOB-DTPA. All MRI data sets were merged with 3D-dosimetry data. The reviewer indicated the border of hypointensity on T1-w images (loss of hepatocyte function) or hyperintensity on T2-w images (edema). Based on the volume data, a dose-volume-histogram was calculated. We estimated the threshold dose for edema or function loss as the D90, i.e. the dose achieved in at least 90% of the pseudolesion volume. At six weeks post brachytherapy, the hepatocyte function loss reached its maximum extending to the former 9.4Gy isosurface in median (i.e., ≥9.4Gy dose exposure led to hepatocyte dysfunction). After 12 and 24 weeks, the dysfunctional volume had decreased significantly to a median of 11.4Gy and 14Gy isosurface, respectively, as a result of repair mechanisms. Development of edema was maximal at six weeks post brachytherapy (9.2Gy isosurface in median), and regeneration led to a decrease of the isosurface to a median of 11.3Gy between 6 and 12 weeks. The dose exposure leading to hepatocyte dysfunction was not significantly different from the dose provoking edema. Hepatic injury peaked 6 weeks after small volume irradiation. Ongoing repair was observed up to 6 months. Individual dose sensitivity may differ as demonstrated by a relatively high standard deviation of threshold values in our own as well as all other published data

  9. Radiological dose assessment for vault storage concepts

    Energy Technology Data Exchange (ETDEWEB)

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  10. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  11. Dose assessments for SFR 1

    International Nuclear Information System (INIS)

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  12. Imaging of Radiation Dose for Stereotactic Radiosurgery.

    Science.gov (United States)

    Guan, Timothy Y; Almond, Peter R; Park, Hwan C; Lindberg, Robert D; Shields, Christopher B

    2015-01-01

    The distributions of radiation dose for stereotactic radiosurgery, using a modified linear accelerator (Philips SL-25 and SRS-200), have been studied by using three different dosimeters: (1) ferrous-agarose-xylenol orange (FAX) gels, (2) TLD, and (3) thick-emulsion GafChromic dye film. These dosimeters were loaded into a small volume of defect in a phantom head. A regular linac stereotactic radiosurgery treatment was then given to the phantom head for each type of dosimeter. The measured radiation dose and its distributions were found to be in good agreement with those calculated by the treatment planning computer. PMID:27421869

  13. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  14. High dose dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Radiation processing today offers various advantages in the field of sterilization of medical and pharmaceutical products, food preservation, treatment of chemical materials and a variety of other products widely used in modern society, all of which are of direct relevance to health and welfare. The safety and economic importance of radiation processing is clearly recognized. It is understood that reliable dosimetry is a key parameter for quality assurance of radiation processing and irradiated products. Furthermore, the standardization of dosimetry can provide a justification for the regulatory approval of irradiated products and form the basis of international clearance for free trade. After the initiation of the Agency's high dose standardization programme (1977), the first IAEA Symposium on High Dose Dosimetry was organized in 1984. As a result, concern as to the necessity of reliable dosimetry has greatly escalated not only in the scientific community but also in the radiation processing industry. The second International Symposium on High Dose Dosimetry for Radiation Processing was held in Vienna from 5 to 9 November, 1990, with a view to providing an international forum for the exchange of technical information on up to date developments in this particular field. The scientific programme held promises for an authoritative account of the status of high dose dosimetry throughout the world in 1990. Forty-one papers presented at the meeting discussed the development of new techniques, the improvement of reference and routine dosimetry systems, and the quality control and assurance of dosimetry. Refs, figs and tabs

  15. Radiation Leukemogenesis at Low Dose Rates

    International Nuclear Information System (INIS)

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures

  16. Radiation Leukemogenesis at Low Dose Rates

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  17. Photoelectron emission as a tool to assess dose of electron radiation received by ZrO2:PbS films

    International Nuclear Information System (INIS)

    PbS nano dots embedded in ZrO2 thin film matrix (ZrO2:PbS films) were studied for application in nanodosimetry of electron radiation used in radiation therapy. ZrO2:PbS films were irradiated with 9 MeV electron radiation with doses 3, 7 and 10 Gy using medical linear accelerator. Detection of the dosimetric signal was made by measuring and comparing photoelectron emission current from ZrO2:PbS films before and after irradiation. It was found that electron radiation decreased intensity of photoemission current from the films. Derivatives of the photoemission spectra were calculated and maximums at photon energies 5.65 and 5.75 eV were observed. Amplitude of these maximums decreased after irradiation with electrons. Good linear correlation was found between the relative decrease of the intensity of these maximums and dose of electron radiation. Observed changes in photoemission spectra from ZrO2:PbS films under influence of electron radiation suggested that the films may be considered to be effective material for electron radiation dosimetry. Photoelectron emission is a tool that allows to read the signal from such dosimeter. (authors)

  18. Variations of the hypoxic fraction in the SCC VII tumors after single dose and during fractionated radiation therapy: Assessment without anesthesia or physical restraint of mice

    International Nuclear Information System (INIS)

    Variations of the hypoxic fraction (HF) after single dose (13 Gy or 4 Gy) and during fractionated (5 fractions of 4 Gy, 1 or 2 fractions per day) radiation therapy were studied in SCC VII tumors implanted subcutaneously in the hind legs of C3H/He/Jms mice using the paired survival curve method. Whole-body irradiation was delivered to tumor-bearing mice without anesthesia or physical restraint, because both are known to increase the HF artificially. The HF decreased after a single 13 Gy dose in a biphasic fashion: extremely rapidly within 1 hr and comparatively slowly during the following 12-72 hr. On the other hand, nearly no fall of HF was observed in 24 hr following a single 4 Gy dose. Also, reoxygenation was found to occur more rapidly in the interfraction period as the number of fractions of 4 Gy increased irrespective of differences of interfraction time. However, the HF just before each radiation fraction was significantly higher than the pretreatment level for both fractionated regimens. Thus, the reoxygenation patterns observed after single low and high doses of irradiation were different from each other, and reoxygenation in each interfraction period did not always proceed in a similar manner to that after single low dose irradiation. Reoxygenation was facilitated as fractionated radiation therapy proceeded, but it was not sufficient for the HF to remain at a level comparable to that before irradiation

  19. Variations of the hypoxic fraction in the SCC VII tumors after single dose and during fractionated radiation therapy: Assessment without anesthesia or physical restraint of mice

    Energy Technology Data Exchange (ETDEWEB)

    Kitakabu, Y.; Shibamoto, Y.; Sasai, K.; Ono, K.; Abe, M. (Kyoto Univ. (Japan))

    1991-04-01

    Variations of the hypoxic fraction (HF) after single dose (13 Gy or 4 Gy) and during fractionated (5 fractions of 4 Gy, 1 or 2 fractions per day) radiation therapy were studied in SCC VII tumors implanted subcutaneously in the hind legs of C3H/He/Jms mice using the paired survival curve method. Whole-body irradiation was delivered to tumor-bearing mice without anesthesia or physical restraint, because both are known to increase the HF artificially. The HF decreased after a single 13 Gy dose in a biphasic fashion: extremely rapidly within 1 hr and comparatively slowly during the following 12-72 hr. On the other hand, nearly no fall of HF was observed in 24 hr following a single 4 Gy dose. Also, reoxygenation was found to occur more rapidly in the interfraction period as the number of fractions of 4 Gy increased irrespective of differences of interfraction time. However, the HF just before each radiation fraction was significantly higher than the pretreatment level for both fractionated regimens. Thus, the reoxygenation patterns observed after single low and high doses of irradiation were different from each other, and reoxygenation in each interfraction period did not always proceed in a similar manner to that after single low dose irradiation. Reoxygenation was facilitated as fractionated radiation therapy proceeded, but it was not sufficient for the HF to remain at a level comparable to that before irradiation.

  20. Megagray Dosimetry (or Monitoring of Very Large Radiation Doses)

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Uribe, R.M.; Miller, Arne

    A number of suitably calibrated plastic and dyed films and solid-state systems can provide mapping of very intense radiation fields with high spatial resolution and reasonable limits of uncertainty of absorbed dose assessment. Although most systems of this type suffer from rate dependence and...

  1. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    OpenAIRE

    Ware, J.H.; Sanzari, J.; Avery, S.; Sayers, C; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A R

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals...

  2. Radiation dose optimization in CT planning of corrective scoliosis surgery. A phantom study.

    OpenAIRE

    Abul-Kasim, Kasim; Gunnarsson, Mikael; Maly, Pavel; Ohlin, Acke; Sundgren, Pia

    2008-01-01

    The aim of the study was to explore the possibility of obtaining a helical CT scan of a long segment of vertebral column, optimally reduce the radiation dose, compare the radiation dose of the low dose helical CT with that of some of the CT protocols used in clinical practice and finally assess the impact of such a dose reduction on the image quality. A chest phantom was examined with a 16-slice CT scanner. Six scans were performed with different radiation doses. The lowest radiation dose whi...

  3. Radiation-induced cancer from low doses of ionizing radiation: risk analysis using the cell dose concept

    International Nuclear Information System (INIS)

    High doses of ionizing radiations are known to bear the risk of cancer to the exposed individual. In order to appreciate potential carcinogenesis from low doses also, the action of ionizing radiation in the human body has to be considered in holistic approach: energy depositions to individual cells trigger effects within a hierachical structure of interacting levels of biological systems, consisting consecutively of atoms, molecules, cells and organ tissue. The present paper describes the cell dose concept which is an essential factor in assessing the risk due to the ionizing radiation to the cells and tissues. Low dose of ionizing radiation induces adaptive response in individual cells which could be linked to the action of molecular radicals. Enzyme activities in bone marrow cells and bilayer lipid membranes and radicals are directly related to radiation effects. Temporary improvements of the detoxification of molecular radicals also improve the cellular defence. The risk analysis calls for more attention as it is important for radiation protection and other beneficial effects due to low doses of irradiation. (author). 18 refs

  4. Assessment of risk from radiation sources

    International Nuclear Information System (INIS)

    Assessment of risk from exposure to ionizing radiations from man-made radiation sources and nuclear installations has to be viewed from three aspects, namely, dose-effect relationship (genetic and somatic) for humans, calculation of doses or dose-commitments to population groups, assessment of risk to radiation workers and the population at large from the current levels of exposure from nuclear industry and comparison of risk estimates with other industries in a modern society. These aspects are discussed in brief. On the basis of available data, it is shown that estimated incidence of genetic diseases and cancers due to exposure of population to radiation from nuclear industry is negligible in comparison with their natural incidence, and radiation risks to the workers in nuclear industry are much lower than the risks in other occupations. (M.G.B.)

  5. A Real Time Dose Assessment System

    International Nuclear Information System (INIS)

    The construction of the second Egyptian Research Reactor ETRR-2 at Anshas area in the same site as the first Egyptian Research Reactor ETRR-1 together with all the other nuclear Laboratories and installations necessitates the presence of a real time dose assessment system (RTDAS). The RTDAS as a part of an overall decision making aid, will help the emergency response manager to consolidate decisions regarding the required management of an off-site emergency. The present work describes a proposed dose assessment system based on a Geographical Information System (GIS). The system consists of Hardware and Software parts. The Hardware includes radiation-monitoring equipment connected to a central computer. The real time model is designed for operational use so it can provide decisions makers with information about the probable future consequences of an accidental release of radioactivity almost immediately of few minutes of receipt of the appropriate information. The output information from the model can be presented in terms of dose estimates for population at risk and can be displayed either as tabulated data or as dose contours superimposed upon a map of the area

  6. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen normaalikaeytoen, kaeyttoehaeirioeiden ja onnettomuustilanteiden aiheuttamien saeteilyannosten arviointi

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M. [VTT Energy, Espoo (Finland)

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  7. Space radiation absorbed dose distribution in a human phantom.

    Science.gov (United States)

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  8. Space radiation absorbed dose distribution in a human phantom

    Science.gov (United States)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  9. Risk assessment of radiation carcinogenesis

    International Nuclear Information System (INIS)

    This commentary describes the radiation cancer risk assessed by international organizations other than ICRP, assessed for radon and for internal exposure, in the series from the aspect of radiation protection of explaining the assessments done until ICRP Pub. 103. Statistic significant increase of cancer formation is proved at higher doses than 100-200 mSv. At lower doses, with use of mathematical model, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported the death probability due to the excess lifetime risk (ELR) at 100 mSv of 0.36-0.77% for solid tumors and 0.03-0.05% for leukemia, and NRC in US, the risk of exposure-induced prevalence and death (REID) per 100 thousands persons of 800 (male)/1,310 (female) and 410/610, respectively. Both are essentially based on findings in A-bomb survivors. The assessment for Rn is described here not on dose. UK and US analyses of pooled raw data in case control studies revealed the significant increase of lung cancer formation at as low level as 100 Bq Rn/m3. Their analyses also showed the significance of smoking, which had been realized as a confounding factor in risk analysis of Rn for uranium miners. The death probability until the age of 85 y was found to be 1.2 x 10-4 in non-smokers and 24 x 10-4 in smokers/ Working Level Month (WLM). Increased thyroid cancer incidence has been known in Chernobyl Accident, which is realized as a result of internal exposure of radioiodine; however, the relationship between the internal dose to thyroid and its cancer prevalence resembles that in the case of external exposure. There is no certain evidence against the concept that risk of internal exposure is similar to and/or lower than, the external one although assessment of the internal exposure risk accompanies uncertainty depending on the used model and ingested dose. International Commission on Radiological Protection (ICRP) recommendations hitherto have been important and precious despite

  10. Assessment of ambient dose equivalent rate performance of an automatic survey meter as an instrument to quantify the presence of radiation in soils

    CERN Document Server

    Yoshimura, E M; Okuno, E

    2002-01-01

    Those who work in radiation protection are faced with various quantities that were created to account for the effects of ionizing radiation in the human body. As far as the experimental point of view is concerned, each available equipment is planned to measure a distinct quantity, for a specific radiation protection application, and it is not always clear which one it is. This paper shows a series of tests, planned and applied to a portable gamma ray spectrometer, in order to assure that the monitoring low dose levels of radiation with it is reliable. The equipment is fully automated and does not allow modifications of the conversion factors from counts to ambient dose equivalent. It is therefore necessary to assure that the values provided by the equipment are correct and refer to the actual situation one expects to find in practice. The system is based on an NaI(Tl) scintillation detector, mounted with its electronics in a portable case, suitable for field measurements. It measures ambient dose equivalent r...

  11. Patient radiation doses from neuroradiology procedures

    International Nuclear Information System (INIS)

    Following the presentation of radiation-induced deterministic effects by some patients undergoing neuroradiological procedures during successive sessions, such as temporary epilation, in the 'Hospital Universitario de Canarias', measurements were made of dose to patients. The maximum dose-area product measured by ionization chamber during these procedures was 39617 cGy.cm2 in a diagnostic of aneurysm and the maximum dose to the skin measured by thermoluminescent dosemeters (TLDs) was 462.53 mGy. This can justify certain deterministic effects but it is unlikely that the patients will suffer serious effects from this skin dose. Also, measurements were made of effective dose about two usual procedures, embolisation of tumour und embolisation of aneurysm. These procedures were reproduced with an anthropomorphic phantom Rando and doses were measured with TLDs. Effective doses obtained were 3.79 mSv and 4.11 mSv, respectively. The effective dose valued by the program EFFDOSE was less than values measured with TLDs. (author)

  12. Simple dose verification system for radiotherapy radiation

    International Nuclear Information System (INIS)

    The aim of this paper is to investigate an accurate and convenient quality assurance programme that should be included in the dosimetry system of the radiotherapy level radiation. We designed a mailed solid phantom and used TLD-100 chips and a Rexon UL320 reader for the purpose of dosimetry quality assurance in Taiwanese radiotherapy centers. After being assembled, the solid polystyrene phantom weighted only 375 g which was suitable for mailing. The Monte Carlo BEAMnrc code was applied in calculations of the dose conversion factor of water and polystyrene phantom: the dose conversion factor measurements were obtained by switching the TLDs at the same calibration depth of water and the solid phantom to measure the absorbed dose and verify the accuracy of the theoretical calculation results. The experimental results showed that the dose conversion factors from TLD measurements and the calculation values from the BEAMnrc were in good agreement with a difference within 0.5%. Ten radiotherapy centers were instructed to deliver to the TLDs on central beam axis absorbed dose of 2 Gy. The measured doses were compared with the planned ones. A total of 21 beams were checked. The dose verification differences under reference conditions for 60Co, high energy X-rays of 6, 10 and 15 MV were truly within 4% and that proved the feasibility of applying the method suggested in this work in radiotherapy dose verification

  13. Radiation dose to the eye lens

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; D. Nielsen, Kamilla;

    2015-01-01

    field in oncology patients undergoing eyes-to-thighs PET/CT must always include the base of the scull according to department guidelines. The eye lens is sensitive to radiation exposure and if possible it should be avoided to scan the eye. If the patient’s head is kipped backwards during the scan one...... might avoid including the eye in the CT scan without losing sufficient visualization of the scull base. The aim of this study was to evaluate the possibility of decreasing the radiation dose to the eye lens, simply by changing the head position, when doing the PET/CT scan from the base of the scull...... the skull base. Conclusion: These results indicate that it is possible to reduce the radiation dose to the eye lens without loss of diagnostic information in the scan by optimizing positioning of the head....

  14. Mammography Radiation Dose and Image Quality

    International Nuclear Information System (INIS)

    The early detection of breast cancer is technologically very challenging for radiography. At present screen-film mammography is the favoured method for early detection of breast cancer. In the United States, screening is under way and a large number of asymptomatic women are being exposed to radiation for the purpose of detecting early occult cancer. The prognosis for this disease is greatly improved if the cancer can be found before it reaches the size of 1 cm. Because of the widespread use of this imaging technology, much attention has been paid to its optimisation in terms of patient radiation dose, required image quality and quality control. Mammography in the USA is regulated by the Federal Government through mandatory facility certification including annual inspections and a specified quality control programme. However, there is still a wide range of radiation dose delivered to achieve a given film optical density and level of image quality. (author)

  15. Dose assessment for the fetus considering scattered and secondary radiation from photon and proton therapy when treating a brain tumor of the mother

    Science.gov (United States)

    Geng, Changran; Moteabbed, Maryam; Seco, Joao; Gao, Yiming; Xu, X. George; Ramos-Méndez, José; Faddegon, Bruce; Paganetti, Harald

    2016-01-01

    The goal of this work was to determine the scattered photon dose and secondary neutron dose and resulting risk for the sensitive fetus from photon and proton radiotherapy when treating a brain tumor during pregnancy. Anthropomorphic pregnancy phantoms with three stages (3-, 6-, 9-month) based on ICRP reference parameters were implemented in Monte Carlo platform TOPAS, to evaluate the scattered dose and secondary neutron dose and dose equivalent. To evaluate the dose equivalent, dose averaged quality factors were considered for neutrons. This study compared three treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS) and 6-MV 3D conformal photon therapy. The results show that, for 3D conformal photon therapy, the scattered photon dose equivalent to the fetal body increases from 0.011 to 0.030 mSv per treatment Gy with increasing stage of gestation. For PBS, the neutron dose equivalent to the fetal body was significantly lower, i.e. increasing from 1.5  ×  10-3 to 2.5  ×  10-3 mSv per treatment Gy with increasing stage of gestation. For PPT, the neutron dose equivalent of the fetus decreases from 0.17 to 0.13 mSv per treatment Gy with the growing fetus. The ratios of dose equivalents to the fetus for a 52.2 Gy(RBE) course of radiation therapy to a typical CT scan of the mother’s head ranged from 3.4-4.4 for PBS, 30-41 for 3D conformal photon therapy and 180-500 for PPT, respectively. The attained dose to a fetus from the three modalities is far lower than the thresholds of malformation, severe mental retardation and lethal death. The childhood cancer excessive absolute risk was estimated using a linear no-threshold dose-response relationship. The risk would be 1.0 (95% CI: 0.6, 1.6) and 0.1 (95% CI:  -0.01, 0.52) in 105 for the 9-month fetus for PBS with a prescribed dose of 52.2 Gy(RBE). The increased risks for PPT and photon therapy are about two and one orders of magnitude larger than that for PBS

  16. Systematic review on physician's knowledge about radiation doses and radiation risks of computed tomography

    International Nuclear Information System (INIS)

    Background: The frequent use of computed tomography is a major cause of the increasing medical radiation exposure of the general population. Consequently, dose reduction and radiation protection is a topic of scientific and public concern. Aim: We evaluated the available literature on physicians' knowledge regarding radiation dosages and risks due to computed tomography. Methods: A systematic review in accordance with the Cochrane and PRISMA statements was performed using eight databases. 3091 references were found. Only primary studies assessing physicians' knowledge about computed tomography were included. Results: 14 relevant articles were identified, all focussing on dose estimations for CT. Overall, the surveys showed moderate to low knowledge among physicians concerning radiation doses and the involved health risks. However, the surveys varied considerably in conduct and quality. For some countries, more than one survey was available. There was no general trend in knowledge in any country except a slight improvement of knowledge on health risks and radiation doses in two consecutive local German surveys. Conclusions: Knowledge gaps concerning radiation doses and associated health risks among physicians are evident from published research. However, knowledge on radiation doses cannot be interpreted as reliable indicator for good medical practice.

  17. Italian intercomparison exercise on internal dose assessment

    International Nuclear Information System (INIS)

    In 2001, the Radiation Protection Institute of ENEA promoted an Italian intercomparison exercise on internal dose assessment addressed to the qualified experts in radiation protection, following the coming into force in Italian law of the EURATOM 96/29 Directive. Five case studies of occupational exposure related to the Italian situation are used. The considered radioisotopes are: 60Co, 89Sr, 125I, 131I, and 222Rn + NORM (238U-235U-232Th). Data related to WBC, thyroid and urine excretion measurements, as well as radionuclide air concentration in the workplace are provided to the participants. The results related to medical, industrial and Rn occupational exposure are well represented as means of log-normal distributions with values of the geometric standard deviation less than 2. A wider spread of results is present for the evaluation of occupational exposure to NORM. (author)

  18. X-γ Radiation Dose Survey for HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    SONGXiariying; LIXu; YANGJinwei

    2003-01-01

    X-γ radiation belong to the ionizing radiation. Ionizing radiation sinks to energy in organism but produce a disservice to the organism. Just as medicine, the disservice of the radiation towards Organism is decided by to accept radiation quantify, the radiation quantify was named dose. Radiation protection's basic missions is to want to result the dose to fix quantify. In this survey the dose at workplace and its surroundings environments of HL-2A device was measured and the assessment was given out.

  19. Problems of dose rate in radiation protection regulation

    International Nuclear Information System (INIS)

    Some modern problems of Radiation Safety Standards are discussed. It is known that Standards are based on the Linear-Non-Threshold Concept (LNTC) of radiation risk, which is now called by many experts as conservative. It is thought it is necessary to include in the Standards such factor as dose rate or duration of irradiation. Some model of effects of radiation exposure with taking into account the reparation of cell damage is presented. The practical method for assessment of effects of duration of irradiation on detriments is proposed.(author)

  20. Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials

    International Nuclear Information System (INIS)

    Synchrotron radiation is an innovative tool for the treatment of brain tumors. In the stereotactic synchrotron radiation therapy (SSRT) technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high atomic number (Z) element and it is irradiated in stereotactic conditions from several entrance angles. The aim of this work was to assess dosimetric properties of the SSRT for preparing clinical trials at the European Synchrotron Radiation Facility (ESRF). To estimate the possible risks, the doses received by the tumor and healthy tissues in the future clinical conditions have been calculated by using Monte Carlo simulations (PENELOPE code). The dose enhancement factors have been determined for different iodine concentrations in the tumor, several tumor positions, tumor sizes, and different beam sizes. A scheme for the dose escalation in the various phases of the clinical trials has been proposed. The biological equivalent doses and the normalized total doses received by the skull have been calculated in order to assure that the tolerance values are not reached.

  1. Experimental verification of radiation dose in mixed neutron/gamma radiation fields

    International Nuclear Information System (INIS)

    The TRIGA research reactor at Jozef Stefan Institute is used for irradiation of various samples. The Monte Carlo code for transport of neutrons and photons, MCNP, was used to calculate dose rates in irradiation channels in the operating TRIGA research reactor. Several measurements of dose rates in individual irradiation channels were performed with CaF2 and LiF TLDs. The calculated dose rates significantly differ from the measured ones especially for the neutron dose rate. The second experimental method used was tooth enamel dosimetry. Results indicate that human teeth are suitable for radiation dose assessment in mixed neutron/gamma radiation fields with dose rates of several Gy per second. (author)

  2. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections

  3. Radiation dose to physicians’ eye lens during interventional radiology

    Science.gov (United States)

    Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.

    2016-03-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.

  4. Internal 40K radiation dose to Indians

    International Nuclear Information System (INIS)

    A group of 350 Indians from both sexes (7-65 years) representing different regions of India was studied for internal 40K radiation dose from the naturally occurring body 40K, which was measured in the National Institute of Nutrition (NIN) whole-body counter. Although the 40K radioactivity reached a peak value by 18 years in female (2,412 Bq) and by 20 years in male (3,058 Bq) and then varied inversely with age in both sexes, the radiation dose did not show such a trend. Boys and girls of 11 years had annual effective dose of nearly 185 mSv, which decreased during adolescence (165 mSv), increased to 175 mSv by 18-20 years in adults and decreased progressively on further ageing to 99 mSv in males and 69 mSv in females at 65 years. The observed annual effective dose (175 mSv) of the young adults was close to that of the ICRP Reference Man (176 mSv) and Indian Reference Man (175 mSv). With a mean specific activity of 55 Bq/kg for the subjects and a conversion coefficient close to 3 mSv per annum per Bq/kg, the average annual effective dose from the internal 40K turned out to be 165 mSv for Indians. (author)

  5. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  6. Dose assessment from radon in tourist caves

    International Nuclear Information System (INIS)

    Indoor radon measurements in tourist caves have traditionally being used in the studies of conservation of existent prehistoric artistic manifestations inside cavities. This kind of measurements can provide the grade, and partly the dynamics, of ventilation and renovation of the air of the caves. On the other hand, since 2001, Spanish law incorporated EURATOM basic standards for radiological protection, which include a request at the EC Member States to determine the working places on which exposure to natural radiation is significant. On Title VII (BOE 178/2001) radiation coming from natural sources has analogous role than radiation emitted from artificial ones used to. Because of the low ventilation rates existing at tourist caves, indoor radon concentration can be significantly high. In developed caves in which guides provide tours for the general public great care is needed for taking remedial actions concerning radon, because in some circumstances forced ventilation may alter the humidity inside the cave affecting some of the formations or paintings that attract tourists. Tourist guides can work about 1900 hours per year, so the only option to protect them and other cave workers from radon exposure is to apply an appropriate system of radiation protection mainly based on limitation of exposure by restricting the amount of time spent in the cave. From a previous radon measurement campaign carried out in caves at the region of Cantabria (Spain), those with higher concentration values were selected for a new survey. In this study more detailed radon measurements were performed in order to get more detailed information about monthly concentration variations, as well to determine the dose received by people working there. In dose assessment, specific characteristics of the cave concerning the behaviour of radon and its decay products are of main importance. Factors like unattached progeny fraction (fp), equilibrium factor (F) and particle concentration (Z) are

  7. SU-E-P-57: Radiation Doses Assessment to Paediatric Patients for Some Digital Diagnostic Radiology Examination in Emergency Department in Qatar

    International Nuclear Information System (INIS)

    Purpose: The aim of this study was to evaluate radiation doses to pediatric patients undergoing standard radiographic examinations using Direct Digital Radiography (DDR) in Paediatric emergency center of Hamad General Hospital (HGH) in state of Qatar and compared with regional and international Dose Reference Levels (DRLs). Methods: Entrance Skin Dose (ESD) was measured for 2739 patients for two common X-ray examinations namely: Chest AP/PA, Abdomen. Exposure factors such as kV, mAs and Focal to Skin Distance (FSD) were recorded for each patient. Tube Output was measured for a range of selected kV values. ESD for each individual patient was calculated using the tube output and the technical exposure factors for each examination. The ESD values were compared with the some international Dose Reference Levels (DRL) for all types of examinations. Results: The most performed procedure during the time of this study was chest PA/PA (85%). The mean ESD values obtained from AP chest, PA chest and AP abdomen ranged 91–120, 80–84 and 209 – 659 µGy per radiograph for different age’s groups respectively. Two protocols have been used for chest AP and PA using different radiological parameters, and the different of ESD values for chest PA and were 41% for 1 years old child, 57% for 5 years old for chest AP. Conclusion: The mean ESD were compared with those found in literature and were found to be comparable. The radiation dose can be reduced more for Chest AP and PA examination by optimization of each investigation and hence more studies are required for this task. The results presented will serve as a baseline data needed for deriving local reference doses for pediatric X-ray examinations in this local department and hence it can be applied in the whole Qatar

  8. SU-E-P-57: Radiation Doses Assessment to Paediatric Patients for Some Digital Diagnostic Radiology Examination in Emergency Department in Qatar

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, I; Aly, A; Al Naemi, H [Hamad Medical Corporation, Doha (Qatar)

    2015-06-15

    Purpose: The aim of this study was to evaluate radiation doses to pediatric patients undergoing standard radiographic examinations using Direct Digital Radiography (DDR) in Paediatric emergency center of Hamad General Hospital (HGH) in state of Qatar and compared with regional and international Dose Reference Levels (DRLs). Methods: Entrance Skin Dose (ESD) was measured for 2739 patients for two common X-ray examinations namely: Chest AP/PA, Abdomen. Exposure factors such as kV, mAs and Focal to Skin Distance (FSD) were recorded for each patient. Tube Output was measured for a range of selected kV values. ESD for each individual patient was calculated using the tube output and the technical exposure factors for each examination. The ESD values were compared with the some international Dose Reference Levels (DRL) for all types of examinations. Results: The most performed procedure during the time of this study was chest PA/PA (85%). The mean ESD values obtained from AP chest, PA chest and AP abdomen ranged 91–120, 80–84 and 209 – 659 µGy per radiograph for different age’s groups respectively. Two protocols have been used for chest AP and PA using different radiological parameters, and the different of ESD values for chest PA and were 41% for 1 years old child, 57% for 5 years old for chest AP. Conclusion: The mean ESD were compared with those found in literature and were found to be comparable. The radiation dose can be reduced more for Chest AP and PA examination by optimization of each investigation and hence more studies are required for this task. The results presented will serve as a baseline data needed for deriving local reference doses for pediatric X-ray examinations in this local department and hence it can be applied in the whole Qatar.

  9. Radiotherapy of abdomen with precise renal assessment with SPECT/CT imaging (RAPRASI): design and methodology of a prospective trial to improve the understanding of kidney radiation dose response

    International Nuclear Information System (INIS)

    The kidneys are a principal dose-limiting organ in radiotherapy for upper abdominal cancers. The current understanding of kidney radiation dose response is rudimentary. More precise dose-volume response models that allow direct correlation of delivered radiation dose with spatio-temporal changes in kidney function may improve radiotherapy treatment planning for upper-abdominal tumours. Our current understanding of kidney dose response and tolerance is limited and this is hindering efforts to introduce advanced radiotherapy techniques for upper-abdominal cancers, such as intensity-modulated radiotherapy (IMRT). The aim of this study is to utilise radiotherapy and combined anatomical/functional imaging data to allow direct correlation of radiation dose with spatio-temporal changes in kidney function. The data can then be used to develop a more precise dose-volume response model which has the potential to optimise and individualise upper abdominal radiotherapy plans. The Radiotherapy of Abdomen with Precise Renal Assessment with SPECT/CT Imaging (RAPRASI) is an observational clinical research study with participating sites at Sir Charles Gairdner Hospital (SCGH) in Perth, Australia and the Peter MacCallum Cancer Centre (PMCC) in Melbourne, Australia. Eligible patients are those with upper gastrointestinal cancer, without metastatic disease, undergoing conformal radiotherapy that will involve incidental radiation to one or both kidneys. For each patient, total kidney function is being assessed before commencement of radiotherapy treatment and then at 4, 12, 26, 52 and 78 weeks after the first radiotherapy fraction, using two procedures: a Glomerular Filtration Rate (GFR) measurement using the 51Cr-ethylenediamine tetra-acetic acid (EDTA) clearance; and a regional kidney perfusion measurement assessing renal uptake of 99mTc-dimercaptosuccinic acid (DMSA), imaged with a Single Photon Emission Computed Tomography / Computed Tomography (SPECT/CT) system. The CT component

  10. One year follow-up reveals no difference in quality of life between high dose and conventional dose radiation: a quality of life assessment of RTOG 94-05

    International Nuclear Information System (INIS)

    Purpose: This study evaluated and compared the quality of life (QOL) outcomes for patients with esophageal cancer receiving combined modality therapy (CMT) with conventional dose radiation (RT) vs. high dose RT as used in RTOG study 94-05. Materials and Methods: Between June 12, 1995 and July 1, 1999, 236 patients with cT1-4NxM0 esophageal cancers were randomized on RTOG 94-05 to conventional dose (CD) CMT: 50.4 Gy RT + concurrent 5-FU and cisplatin administered on weeks 1 and 5 and repeated 4 weeks post RT vs. high dose (HD) CMT: 64.8 Gy RT + the same chemotherapy. QOL was assessed using the Functional Assessment of Cancer Therapy (FACT) - Head and Neck (version 2). This questionnaire was administered to patients pre-treatment, post-treatment, at 8 months from the start of CMT, at 1 year and at 6-month intervals to year 5. Results: Of 209 eligible protocol patients, 169 (81%) participated in the pre-treatment QOL component of RTOG 94-05 (83 in the HD arm and 86 in the CD arm). The principle reason for non-participation was institutional error. The distribution of pre-treatment characteristics by participation in QOL assessment was similar in both treatment arms. African-Americans, patients with ≥ 10% weight loss, and patients with low performance status were significantly less likely to complete QOL forms (p=0.04, p=0.01 and p=0.004 respectively). Baseline QOL parameters were similar in the two treatment arms. Pulmonary symptoms were the most significant pre-treatment dysfunction reported. Female gender and ≥10% pre-treatment weight loss correlated with pre-treatment total QOL scores. Women reported lower overall QOL as well as worse physical and emotional well-being in the HD arm as compared to the CD arm (p=0.07, p=0.01 and p=0.03 respectively). Patients with ≥10% weight loss reported decreased QOL in nearly all domains in both treatment groups, although more pronounced in the 64.8 Gy arm. Treatment arm assignment, age, performance status, tumor size and

  11. TH-E-BRF-03: A Multivariate Interaction Model for Assessment of Hippocampal Vascular Dose-Response and Early Prediction of Radiation-Induced Neurocognitive Dysfunction

    International Nuclear Information System (INIS)

    Purpose: Vascular injury could be a cause of hippocampal dysfunction leading to late neurocognitive decline in patients receiving brain radiotherapy (RT). Hence, our aim was to develop a multivariate interaction model for characterization of hippocampal vascular dose-response and early prediction of radiation-induced late neurocognitive impairments. Methods: 27 patients (17 males and 10 females, age 31–80 years) were enrolled in an IRB-approved prospective longitudinal study. All patients were diagnosed with a low-grade glioma or benign tumor and treated by 3-D conformal or intensity-modulated RT with a median dose of 54 Gy (50.4–59.4 Gy in 1.8− Gy fractions). Six DCE-MRI scans were performed from pre-RT to 18 months post-RT. DCE data were fitted to the modified Toft model to obtain the transfer constant of gadolinium influx from the intravascular space into the extravascular extracellular space, Ktrans, and the fraction of blood plasma volume, Vp. The hippocampus vascular property alterations after starting RT were characterized by changes in the hippocampal mean values of, μh(Ktrans)τ and μh(Vp)τ. The dose-response, Δμh(Ktrans/Vp)pre->τ, was modeled using a multivariate linear regression considering integrations of doses with age, sex, hippocampal laterality and presence of tumor/edema near a hippocampus. Finally, the early vascular dose-response in hippocampus was correlated with neurocognitive decline 6 and 18 months post-RT. Results: The μh(Ktrans) increased significantly from pre-RT to 1 month post-RT (p<0.0004). The multivariate model showed that the dose effect on Δμh(Ktrans)pre->1M post-RT was interacted with sex (p<0.0007) and age (p<0.00004), with the dose-response more pronounced in older females. Also, the vascular dose-response in the left hippocampus of females was significantly correlated with memory function decline at 6 (r = − 0.95, p<0.0006) and 18 (r = −0.88, p<0.02) months post-RT. Conclusion: The hippocampal vascular

  12. TH-E-BRF-03: A Multivariate Interaction Model for Assessment of Hippocampal Vascular Dose-Response and Early Prediction of Radiation-Induced Neurocognitive Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Farjam, R; Pramanik, P; Srinivasan, A; Chapman, C; Tsien, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States)

    2014-06-15

    Purpose: Vascular injury could be a cause of hippocampal dysfunction leading to late neurocognitive decline in patients receiving brain radiotherapy (RT). Hence, our aim was to develop a multivariate interaction model for characterization of hippocampal vascular dose-response and early prediction of radiation-induced late neurocognitive impairments. Methods: 27 patients (17 males and 10 females, age 31–80 years) were enrolled in an IRB-approved prospective longitudinal study. All patients were diagnosed with a low-grade glioma or benign tumor and treated by 3-D conformal or intensity-modulated RT with a median dose of 54 Gy (50.4–59.4 Gy in 1.8− Gy fractions). Six DCE-MRI scans were performed from pre-RT to 18 months post-RT. DCE data were fitted to the modified Toft model to obtain the transfer constant of gadolinium influx from the intravascular space into the extravascular extracellular space, Ktrans, and the fraction of blood plasma volume, Vp. The hippocampus vascular property alterations after starting RT were characterized by changes in the hippocampal mean values of, μh(Ktrans)τ and μh(Vp)τ. The dose-response, Δμh(Ktrans/Vp)pre->τ, was modeled using a multivariate linear regression considering integrations of doses with age, sex, hippocampal laterality and presence of tumor/edema near a hippocampus. Finally, the early vascular dose-response in hippocampus was correlated with neurocognitive decline 6 and 18 months post-RT. Results: The μh(Ktrans) increased significantly from pre-RT to 1 month post-RT (p<0.0004). The multivariate model showed that the dose effect on Δμh(Ktrans)pre->1M post-RT was interacted with sex (p<0.0007) and age (p<0.00004), with the dose-response more pronounced in older females. Also, the vascular dose-response in the left hippocampus of females was significantly correlated with memory function decline at 6 (r = − 0.95, p<0.0006) and 18 (r = −0.88, p<0.02) months post-RT. Conclusion: The hippocampal vascular

  13. Assessments of Coronary Artery Visibility and Radiation Dose in Infants with Congenital Heart Disease on Cardiac 128-slice CT and on Cardiac 64-slice CT.

    Science.gov (United States)

    Cui, Y; Huang, M; Zheng, J; Li, J; Liu, H; Liang, C

    2016-01-01

    The aim of this study was to compare the coronary artery visibility and radiation dose in infants with CHD on cardiac 128-slice CT and on cardiac 64-slice CT. The images of 200 patients were analyzed in this study, 100 patients were selected randomly from a group of 789 infants (ECG-triggered axial scan, and 100 were selected randomly from 911 infants with CHD undergoing 64-slice CT retrospective ECG-gated spiral scan. The visibility of coronary artery segments was graded on a four-point scale. The coronary arteries were considered to be detected or visible when grade was 2 or higher. The visibility of the coronary artery segments and the radiation dose was compared between the two groups. Except for the rate of LM (96 vs. 99%), the detection rates of the total, LAD, LCX, RCA, and the proximal segment of the RCA in the 256-slice CT group were significantly higher than those in the 64-slice CT group (51.7, 53.33, 33.67, 53.33, and 99 vs. 34.8, 34.33, 18, 30.67, and 75%, respectively). The counts of visibility score (4/3/2/1) for the LM and the proximal segment of the RCA were 62/22/12/4 and 56/20/17/7, respectively, in the 128-slice CT group and 17/42/30/1 and 9/30/38/25, respectively, in the 64-slice CT group. There were significant differences, especially for score 4 and 3, between the two groups. The radiation dose in the 128-slice CT group was significantly decreased than those in the 64-slice CT group (CTDIvol 1.88 ± 0.51 vs. 5.61 ± 0.63 mGy; SSDE 4.48 ± 1.15 vs. 13.97 ± 1.52 mGy; effective radiation dose 1.36 ± 0.44 vs. 4.06 ± 0.7 mSv). With reduced radiation dose, the visibility of the coronary artery in infants with CHD via prospective ECG-triggered mode on a 128-slice CT is superior to that of the 64-slice CT using retrospective ECG-gated spiral mode. PMID:26271472

  14. Radiation doses to neonates and issues of radiation protection in a special care baby unit

    International Nuclear Information System (INIS)

    Radiographs are most commonly taken in the neonatal period to assist in the diagnosis and management of respiratory difficulties. Frequent accurate radiographic assessment is required and a knowledge of the radiation dose is necessary to make the justification of such exposures. A survey of radiation doses to neonates from diagnostic X-ray examinations (chest and abdomen) has been carried out in the special care baby unit (SCBU) of the Royal Free Hospital. Entrance surface dose (ESD) was calculated from Quality Control measurements on the X-ray set itself. Direct measurement of radiation doses was also performed using highly sensitive thermoluminescence dosimeters (LiF:Mg,Cu,P), calibrated and tested for consistency in sensitivity. The mean ESD per radiograph was calculated to be 36μGy (with a standard deviation of 6μGy), averaged over 95 X-ray examinations. The ESD's as derived from the TLD crystals, ranged from 18μGy to 60μGy. The mean energy imparted (EI) and the mean whole body dose per radiograph were estimated to be 14μJ and 10μGy respectively. Assuming that neonates and foetuses are equally susceptible to carcinogenic effects of radiation (it involves an overestimation of risk), the radiation risk of childhood cancer from a single radiograph was estimated to be of the order (0.3-1.3)x10-6. Radiation doses compared favourably with the reference value of 80μGy ESD published by CEC in 1996. (author)

  15. Ionizing radiation: effects of low doses

    International Nuclear Information System (INIS)

    This article deals with the important and delicate subject posed by the study of the action on Man's health of low doses of ionizing radiation. A number of fundamental notions whose knowledge is indispensable in order to avoid doubtful meanings or misunderstandings are noted in this article. Following the reminder of these notions, the characteristics of the various types of pathological effects of radiation are indicated, as well as how it is possible for effects which are named ''aleatory'' to be evaluated with care so as to limit risks at low doses. The reader will easily understand that this article has to be somewhat didactic - it seemed best to proceed by well defined stages and to clearly specify numerous concepts whose meanings are not always clearly defined when such problems are treated

  16. Prenatal radiation exposure. Dose calculation; Praenatale Strahlenexposition. Dosisermittlung

    Energy Technology Data Exchange (ETDEWEB)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Diagnostic and Interventional Radiology; Roeser, A. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Radiotherapy and Radio-Oncology

    2015-05-15

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  17. A review of occupational dose assessment uncertainties and approaches

    International Nuclear Information System (INIS)

    The Radiological Protection Practitioner (RPP) will spend a considerable proportion of his time predicting or assessing retrospective radiation exposures to occupational personnel for different purposes. The assessments can be for a variety of purposes, such as to predict doses for occupational dose control, or project design purposes or to make retrospective estimates for the dose record, or account for dosemeters which have been lost or damaged. There are other less frequent occasions when dose assessment will be required such as to support legal cases and compensation claims and to provide the detailed dose information for epidemiological studies. It is important that the level of detail, justification and supporting evidence in the dose assessment is suitable for the requirements. So for instance, day to day operational dose assessments often rely mainly on the knowledge of the RPP in discussion with operators whilst at the other end of the spectrum a historical dose assessment for a legal case will require substantial research and supporting evidence for the estimate to withstand forensic challenge. The robustness of the assessment will depend on many factors including a knowledge of the work activities, the radiation dose uptake and field characteristics; all of which are affected by factors such as the time elapsed, the memory of operators and the dosemeters employed. This paper reviews the various options and uncertainties in dose assessments ranging from use of personal dosimetry results to the development of upper bound assessments. The level of assessment, the extent of research and the evidence adduced should then be appropriate to the end use of the estimate. (Author)

  18. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  19. Stimulating effects of low doses of radiation

    International Nuclear Information System (INIS)

    Different ionizing radiations cause biochemical and biophysical changes in the cells of the genotypes according to the application of the doses applied to different organs of the plants, and the manner of their application (acute, chronic, or acute and chronic). The sensitivity of different genotypes, and their tissues, depends on the stage at which their tissues were irradiated as well as on the environmental conditions under which the irradiation was made. Relatively strong doses usually cause some genetic changes in the somatic and generative cells. Small doses can, in some genotypes, stimulate the growth of some tissues to some extent. The stimulating effect on the growth of seedlings of the M2 generation, developed from acute seed irradiation of some genotypes of wheat, barley, and inbred lines of maize and their hybrids is described here. 3 refs, 5 tabs

  20. Genes activated by low dose radiation

    International Nuclear Information System (INIS)

    Gene expression profiles were examined in the mouse kidney and testis in order to investigate the molecular mechanisms of the life span-shortening effect of low dose-rate radiation. C57BL/6J male mice (7-8 wks old) were irradiated by cesium-137 gamma-rays for 485 days at rates of 0, 32, 650 and 13,000 nGy/min and organs were excised out. Gene expression was analyzed with cDNA microarray Illumina Sentrix Mouse-6. In the kidney, 4 genes concerning mitochondrial respiration (oxidative phosphorylation) were found to be up-regulated at the middle and high dose rates (expression level changed in >1.6 folds by irradiation). Significantly modulated genes were in 16 clusters, which exerted elevated expression level dose rate-dependently and found to be categorized in cytoplasm/mitochondria/energy pathways by the database ''Gene Ontology''. In the testis, gene expression pattern was different from that in kidney. Clustering analysis and database revealed that up-regulated genes belonged to ''DNA repair'', ''response to DNA damage'', DNA replication'' and ''Mitotic cell cycles''. Thus low dose radiation can cause the cellular oxidative stress by elevated respiratory activity in the kidney, and a type of emergent biological response in the testis. (R.T.)

  1. The effects of small doses of radiation

    International Nuclear Information System (INIS)

    The following topics were discussed in outline at a two day conference organized by I.B.C. Technical Services Ltd, February 1989, in London: radiation carcinogenesis mechanisms, environmental exposure, occupational exposure trends and comparisons, ICRP risk assessment and use of data including that of A-Bomb survivors, the ankylosing spondylitis study, UKAEA and AWE mortality studies, Sellafield, leukemia clusters and radiation hormesis. (UK)

  2. Assessment of internal doses in emergency situations

    International Nuclear Information System (INIS)

    The need for assessing internal radiation doses in emergency situations was demonstrated after accidents in Brazil, Ukraine and other countries. Lately more and more concern has been expressed regarding malevolent use of radiation and radioactive materials. The scenarios for such use are more difficult to predict than for nuclear power plant or weapons accidents. Much of the results of the work done in the IRADES project can be adopted for use in various accidental situations involving radionuclides that are not addressed in this report. If an emergency situation occurs in only one or a few of the Nordic countries, experts from the other countries could be called upon to assist in monitoring. A big advantage is then our common platform. In the Nordic countries much work has been put down on quality assurance of measurements and on training of dose assessment calculations. Attention to this was addressed at the internal dosimetry course in October 2005. Nordic emergency preparedness exercises have so far not included training of direct measurements of people in the early phase of an emergency. The aim of the IRADES project was to improve the preparedness especially for thyroid measurements. The modest financial support did not enable the participants to make big efforts but certainly acted as a much appreciated reminder of the importance of being prepared also to handle situations with malevolent use of radioactive materials. It was left to each country to decide to which extent to improve the practical skills. There is still a need for detailed national implementation plans. Measurement strategies need to be developed in each country separately taking into account national regulations, local circumstances and resources. End users of the IRADES report are the radiation protection authorities. (au)

  3. Dose response curves for effects of low-level radiation

    International Nuclear Information System (INIS)

    The linear dose-response model used by international committees to assess the genetic and carcinogenic hazards of low-level radiation appears to be the most reasonable interpretation of the available scientific data that are relevant to this topic. There are, of course, reasons to believe that this model may overestimate radiation hazards in certain instances, a fact acknowledged in recent reports of these committees. The linear model is now also being utilized to estimate the potential carcinogenic hazards of other agents such as asbestos and polycyclic aromatic hydrocarbons. This model implies that there is no safe dose for any of these agents and that potential health hazards will increase in direct proportion to total accumulated dose. The practical implication is the recommendation that all exposures should be kept 'as low as reasonably achievable, economic and social factors being taken into account'. (auth)

  4. Low radiation doses - Book of presentations (slides)

    International Nuclear Information System (INIS)

    This document brings together all the available presentations (slides) of the conference on low radiation doses organised by the 'research and health' department of the French society of radiation protection (SFRP). Ten presentations are available and deal with he following topics: 1 - Cyto-toxicity, geno-toxicity: comparative approach between ionizing radiations and other geno-toxic agents (F. Nesslany, Institut Pasteur, Lille); Succession of events occurring after a radio-induced DNA damage (D. Averbeck, IRSN/CEA); Importance of stem cells in the response to ionizing radiations (J. Lebeau, CEA); Relation between energy deposition at the sub-cell scale and early biological effects (C. Villagrasa, IRSN); Natural history of breast cancer: predisposition, susceptibility with respect to irradiation (S. Rivera, IGR); Pediatrics scanner study and the EPI-CT project (M.O Bernier, IRSN); What future for an irradiated cell: survival or apoptosis? (E. Sage, Institut Curie); Differential effect of a 137Cs chronic contamination on the different steps of the atheromatous pathology (T. Ebrahimian, IRSN); Variability of the individual radiosensitivity (S. Chevillard, CEA); What definitions for individual sensitivity? (A. Schmidt, CEA); Low doses: some philosophical remarks (A. Grinbaum, CEA)

  5. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan [Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States) and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose

  6. ESR radiation dose evaluation on radiation exposure accident in England

    International Nuclear Information System (INIS)

    A technician of nondestructive inspection in England died because of radiation injury even though his exposure record with film badge indicated only 104 mSv of the lifelong exposure dose. After the request of the National Radiation Protection Board of Great Britain, the author conducted measurement of the exposure dose with ESR dosimetry. ESR spectra were measured on tooth enamel and bones of the finger and the upper arm taken from the dead technician. The exposure dose is obtained from the enhancement of the ESR signal intensity of CO2- after international irradiation. 14 and 12 Gy for tooth enamel, 7.2 and 4.2 Gy for the bones of the finger and the upper arm respectively. The bone samples may show smaller dose due to metabolism in the body. The technician is assumed to be exposed about 10 mSv at the fingers and the arms for each time on the inspection of pipings for more than 10 years. He used to wear the film badge on his waist. The author stresses the importance of preservation of extracted tooth as a exposure record for radiation workers. (T.H.)

  7. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  8. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  9. Effective dose of A-bomb radiation in Hiroshima and Nagasaki as assessed by chromosomal effectiveness of spectrum energy photons and neutrons.

    Science.gov (United States)

    Sasaki, M S; Endo, S; Ejima, Y; Saito, I; Okamura, K; Oka, Y; Hoshi, M

    2006-07-01

    The effective dose of combined spectrum energy neutrons and high energy spectrum gamma-rays in A-bomb survivors in Hiroshima and Nagasaki has long been a matter of discussion. The reason is largely due to the paucity of biological data for high energy photons, particularly for those with an energy of tens of MeV. To circumvent this problem, a mathematical formalism was developed for the photon energy dependency of chromosomal effectiveness by reviewing a large number of data sets published in the literature on dicentric chromosome formation in human lymphocytes. The chromosomal effectiveness was expressed by a simple multiparametric function of photon energy, which made it possible to estimate the effective dose of spectrum energy photons and differential evaluation in the field of mixed neutron and gamma-ray exposure with an internal reference radiation. The effective dose of reactor-produced spectrum energy neutrons was insensitive to the fine structure of the energy distribution and was accessible by a generalized formula applicable to the A-bomb neutrons. Energy spectra of all sources of A-bomb gamma-rays at different tissue depths were simulated by a Monte Carlo calculation applied on an ICRU sphere. Using kerma-weighted chromosomal effectiveness of A-bomb spectrum energy photons, the effective dose of A-bomb neutrons was determined, where the relative biological effectiveness (RBE) of neutrons was expressed by a dose-dependent variable RBE, RBE(gamma, D (n)), against A-bomb gamma-rays as an internal reference radiation. When the newly estimated variable RBE(gamma, D (n)) was applied to the chromosome data of A-bomb survivors in Hiroshima and Nagasaki, the city difference was completely eliminated. The revised effective dose was about 35% larger in Hiroshima, 19% larger in Nagasaki and 26% larger for the combined cohort compared with that based on a constant RBE of 10. Since the differences are significantly large, the proposed effective dose might have an

  10. The dose-area product and assessment of the occupational dose in interventional radiology

    International Nuclear Information System (INIS)

    This study used dose-area product (DAP) data to determine the relationship between the dose received by radiologists and the DAP. The working conditions were simulated by phantom measurements. The doses of scattered radiation were measured using various scattering angles, distances and tube voltages. The calculated doses of scattered radiation were compared with the measured doses of scattered radiation. To test the validity of using such data for assessing occupational doses, the scatter dose on the radiologist or cardiologist was calculated from the DAP using the measured scatter factors. The dose to the lenses of the eyes may exceed the annual limit, and may therefore restrict the number of interventional procedures. A relation between the DAP and the occupational dose is difficult to establish, especially because staff doses are associated with the use of protective devices, positions of projections with respect to the patient, and working methods. However, the DAP may provide a good reference value for the dosimetric monitoring of staff. (author)

  11. A comparison of in-air and in-water calibration of a dosimetry system used for radiation dose assessment in cancer therapy

    Directory of Open Access Journals (Sweden)

    Arshed Waheed

    2010-01-01

    Full Text Available An accurate calibration of the therapy level radiation dosimetry system has a pivotal role in the accuracy of dose delivery to cancer patients. The two methods used for obtaining a tissue equivalent calibration of the system: air kerma calibration and its conversion to a tissue equivalent value (absorbed dose to water and direct calibration of the system in a water phantom, have been compared for identical irradiation geometry. It was found that the deviation between the two methods remained within a range of 0% to ±1.7% for the PTW UNIDOS dosimetry system. This means that although the recommended method is in-water calibration, under exceptional circumstances, in-air calibration may be used as well.

  12. Estimation of radiation dose received by the victims in a Chinese radiation accident

    International Nuclear Information System (INIS)

    In April 1999, a radiation accident happened in Henan province, China. In this accident, A 60 Co ex-service therapy radiation source was purchased by a waster purchase company, then some persons break the lead pot and taken out the stainless steel drawer with the radiation source, then sell the drawer to another small company, and the buyer reserved the drawer in his bed room until all of his family members shoot their cookies. During the event, seven persons received overdose exposure, the dose rang is about 1.0 - 6.0Gy, especially, all of the buyer family members meet with bad radiation damage. In order to assess the accident consequences and cure the patients of the bad radiation damage, it is necessary to estimate the doses of the Victims in the accident. In the dose reconstruction of the accident victims, we adopted biologic dose method, experiment-simulating method with an anthropomorphic phantom, and theory simulating method with Monte Carlo to estimate the doses of the victims. In this paper, the frame of the accident and the Monte Carlo method in our work will be described, the main dose results of the three methods mentioned above will be reported and a comparison analysis will be presented

  13. Secondary radiation dose during high-energy total body irradiation

    International Nuclear Information System (INIS)

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: 56Mn in the stainless steel and 187W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.)

  14. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Toshihiko, E-mail: tiuchi@chiba-cc.jp [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hatano, Kazuo [Division of Radiation Oncology, Tokyo Bay Advanced Imaging and Radiation Oncology Clinic, Makuhari, Chiba (Japan); Uchino, Yoshio [Division of Nuclear Medicine, Chiba Ryogo Center, Chiba (Japan); Itami, Makiko [Division of Surgical Pathology, Chiba Cancer Center, Chiba (Japan); Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hara, Ryusuke [Division of Radiation Oncology, Chiba Cancer Center, Chiba (Japan)

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  15. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    Science.gov (United States)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  16. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  17. Assessment of patient dose in diagnostic radiology: A new dose concept for the lymphatic tissue

    International Nuclear Information System (INIS)

    Diagnostic radiography is a leading cause of man-made radiation exposure to the population. Individual risk assessment and analytic epidemiologic studies likewise require retrospective assessment of lifelong exposure from medical sources. Typical schemes attempt to determine accumulated doses of specific 'critical organs'. The organ dose to the red bone marrow is relevant in studies of diseases like leukemias and malignant lymphomas and there are comprehensive data bases to determine the red bone marrow organ dose of typical radiologic examinations. On the other hand a considerable proportion of the non-Hodgkin's lymphomas are assumed to develop outside the bone marrow compartment. For these a new dose concept for the lymphatic tissue was derived. Tables with conversion factors for typical examinations in diagnostic radiology (conventional radiography, functional radiography with contrast media and computed tomography) are provided that allow the calculation of the doses of the lymphatic tissue from doses of the red bone marrow. (author)

  18. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  19. Dose assessments in nuclear power plant siting

    International Nuclear Information System (INIS)

    This document is mainly intended to provide information on dose estimations and assessments for the purpose of nuclear power plant (NPP) siting. It is not aimed at giving radiation protection guidance, criteria or procedures to be applied during the process of NPP siting nor even to provide recommendations on this subject matter. The document may however be of help for implementing some of the Nuclear Safety Standards (NUSS) documents on siting. The document was prepared before April 26, 1986, when a severe accident at the Unit 4 of Chernobyl NPP in the USSR had occurred. It should be emphasized that this document does not bridge the gap which exists in the NUSS programme as far as radiation protection guidance for the specific case of siting of NPP is concerned. The Agency will continue to work on this subject with the aim to prepare a safety series document on radiation protection requirements for NPP siting. This document could serve as a working document for this purpose. Refs, figs and tabs

  20. Preliminary dose assessment of the Chernobyl accident

    International Nuclear Information System (INIS)

    From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive 131I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of 131I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 106 person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 107 person-rem (2 x 105 Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs

  1. Population dose assessment: characteristics of PC CREAM

    International Nuclear Information System (INIS)

    This paper presents the main features of the PC CREAM, a program for performing radiological impact assessments due to radioactive discharges into the environment during the operation of radioactive and nuclear facilities. PC CREAM is a suite of six programs that can be used to estimate individual and collective radiation doses. The methodology of PC CREAM is based on updated environmental and dosimetric models, including ICRP 60 recommendations. The models include several exposure pathways and the input files are easy to access. The ergonomics of the program improves the user interaction and makes easier the input of local data. This program is useful for performing sensitivity analysis, siting studies and validation of model comparing the activity concentration output data with environmental monitoring data. The methodology of each module is described as well as the output data. (author)

  2. Therapeutic effects of low radiation doses

    International Nuclear Information System (INIS)

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses, yet few of these studies meet the required standard. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high. Since no adequate experimental studies have been performed nothing is known about the mechanisms of these therapeutic radiation

  3. Radiation doses from mammography in Australia

    International Nuclear Information System (INIS)

    During 1989-90 the Australian Radiation Laboratory conducted a postal survey of at least 90% of the mammographic facilities in Australia. The primary aim of the survey was to measure the mean glandular dose (MGD) and the X-ray beam half value layer (HVL) for a typical mammograph. The MGD and HVL were measured with a specially designed tissue equivalent monitor. In all, 258 mammographic centres were surveyed. It was found that for centres using film-screen imaging, the average mean glandular dose was 1.83 mGy for centres using grids and 0.84 mGy for centres not using grids. In addition to the MGD and HVL, comprehensive statistical information was collected and data is presented on the types of equipment and techniques used, the number and age of patients and demographic distribution of centres. Results indicate that the use of a grid is the major factor determining dose and several other factors appear to have minor effects. In view of the distribution of MGD, it is recommended that the mean glandular dose per image, for a 5 cm compressed breast thickness, should not exceed 2.0 mGy when a grid is used and 1.0 mGy without a grid. 63 refs., 11 tabs., 15 figs

  4. About some aspects of absorbed and effective ionizing radiation dose computation of population under external and internal radiation influence

    International Nuclear Information System (INIS)

    The purpose of the investigation is to develop methods of dose assessment, absorbed by individual human organs, or effective dose of population, as well as to study factors effecting on uncertainties in their computation. The dose assessment for the Thyroid or other organ is based on retrospective information obtained from radioecological monitoring and according to the information about radioactive fallout's on the surface after each nuclear test, as well as the information about concrete living conditions of local population. The main parameter in proposed algorithms is gamma-radiation dose rate at open area, which is a result of direct measurements. When assessing internal radiation dose, in the course of inhalation, the whole period of local fallout's is taken into consideration. The developed method allows obtaining a systematic information describing irradiation of people by means of the radioactive traces, as well as tabulated information for model computations of internal and external radiation dose

  5. Annual dose distribution of Nuclear Malaysia radiation workers for monitoring period from year 2003 to 2007

    International Nuclear Information System (INIS)

    Estimation of radiation dose (external exposure) received by Nuklear Malaysia's radiation workers are measured by using personal dosimetry device which are provided by SSDL-Nuklear Malaysia. Dose assessment report for monitoring period from year 2003 - 2007 shows that almost all radiation workers received annual doses less than 20 mSv, only in very small percentage of radiation workers received annual doses between 20.1 to 50 mSv and none of the workers received doses higher than 50 mSv/year. Exposure dose below 20 mSv/year (the new annual dose limit to be used in Malaysia soon) could be fully achieved by improving the compliance with the safety regulations and enhancing the awareness about radiation safety among the workers. (Author)

  6. To understand the radiation dose in color

    International Nuclear Information System (INIS)

    Radiation is particles or electromagnetic waves having high energy, causing health damage to the human body, but cannot be perceived by the five senses of human. For enabling the visual sensing of radiation, the research and development of the functional dye material that changes from colorless body to colored body through irradiation is being promoted. This paper introduces the phenoxazine-based color former of solution type using the color former that changes color to blue through irradiation. The authors examined two types of phenoxazine-based color formers protected with alkyl oxycarbonyl group (-COOR), and mono-alkyl carbamoyl group (CONHR). Phenoxazine-based color former in acetonitrile solvent was revealed to be able to visually confirm the gamma irradiation dose of 10 Gy, but there is a problem of low temporal stability of the solution. (A.O.)

  7. Dose evaluation for external exposure in radiation accidents

    International Nuclear Information System (INIS)

    Abnormal exposures including emergency and accidental are categorized into external exposure and internal contamination, although both of these may be associated with external contamination. From a point of view of lifesaving in the abnormal exposures, it is primarily important to evaluate radiation dose of exposed persons as soon as possible. This report reviews the status of early dosimetry in the accidental exposures and discusses the optimum methodology of the early dose determination for external exposures in abnormal exposures. Personal monitors generally give an indication of dose to an exposed person only at a single part of the body. The data obtained from the personal monitors should be interpreted with care and in the light of information about the circumstances of exposure. In most cases, the records of environmental monitors or the survey with area monitors provide valuable information on the radiation fields. In the some cases, the reconstruction of the abnormal exposure is required for the dose evaluation by means of phantom experiments. In the case of neutron exposures, activation products in the body or its components or personnel possession can be useful for the early dosimetry. If the dose received by the whole body is evaluated as being very high, clinical observations and biological investigations may be more important guide to initial medical treatment than the early dosimetry. For the dose evaluation of general public, depending on the size of abnormal exposure, information that could be valuable in the assessment of abnormal exposures will come from the early dose estimates with environmental monitors and radiation survey meters. (author)

  8. Radiation Risk Associated with Low Doses of Ionizing Radiation: Irrational Fear or Real Danger

    International Nuclear Information System (INIS)

    The established worldwide practice of protecting people from radiation based on the assessments of radiation risk received in the researches carried out earlier costs hundreds of billions of dollars a year to implement. In the opinion of the well-known experts, the maintenance of the existing radiation protection regulations or moreover acceptance of more tough regulations can influence the development of nuclear power engineering. The accepted practice of assessment of human health risk from radiation may also significantly affect our perception of threats of radiation terrorism. In this work, the critical analysis of publications on the assessment of the effects of small doses of radiation on human health is carried out. In our analysis, we especially emphasize the data on cancer mortality among survivors of the atomic bombing of Hiroshima and Nagasaki who received instantaneous radiation doses of less than 200 mSv including the data on leukemia and solid cancer, as well as epidemiological studies in the regions of India and China with high level of natural radiation. Since the investigations of radiation risk is a base for formulating modern radiation protection regulations, their reliability and validity are of great importance. As follows from the analysis, the subsequent, during three decades, toughening of radiation protection regulations has already led to exceedingly prohibitive standards and impractical recommendations the science-based validity of which can cause serious doubts. Now, a number of world-wide known scientists and authoritative international organizations call for revision of these standards and of the radiation safety concept itself. (author)

  9. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  10. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    International Nuclear Information System (INIS)

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application

  11. FUEL HANDLING FACILITY WORKER DOSE ASSESSMENT

    International Nuclear Information System (INIS)

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the Fuel Handling Facility (FHF) of the Monitored Geological Repository (MGR). The FHF is a surface facility supporting waste handling operations i.e. receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results are also limited to normal operations only. Results of this calculation will be used to support the FHF design and License Application

  12. Howard Hughes Medical Institute dose assessment survey

    International Nuclear Information System (INIS)

    Biomedical science researchers often express frustration that health physics practices vary widely between individual institutions. A survey examining both internal and external dose assessment practices was devised and mailed to fifty institutions supporting biomedical science research. The results indicate that health physics dose assessment practices and policies are highly variable. Factors which may contribute to the degree of variation are discussed. 2 tabs

  13. Solid tumor risks after high doses of ionizing radiation

    OpenAIRE

    Sachs, Rainer K; Brenner, David J.

    2005-01-01

    There is increasing concern regarding radiation-related second-cancer risks in long-term radiotherapy survivors and a corresponding need to be able to predict cancer risks at high radiation doses. Although cancer risks at moderately low radiation doses are reasonably understood from atomic bomb survivor studies, there is much more uncertainty at the high doses used in radiotherapy. It has generally been assumed that cancer induction decreases rapidly at high doses due to cell killing. However...

  14. PRDC - A software package for personnel radiation dose calculation

    International Nuclear Information System (INIS)

    To determine effective dose, we usually need to use a very complicated human body model and a sophisticated computer code to transport radiations in the body model and surrounding medium, which is not very easy to practicing health physicists in the field. This study develops and tests a software package, called PRDC (Personnel Radiation Dose Calculation), which calculates effective dose and radiation doses to various organs/tissues and personal dosemeters based on a series of interpolations. (authors)

  15. Assessment of radiation dose from 210Pb and 210Po due to chewing tobacco leaves and smoking cigarettes - an Indian scenario

    International Nuclear Information System (INIS)

    The study of 210Pb and 210Po content in tobacco and its products is essential because of their elevated concentrations. The cumulative alpha-radiation dose delivered to humans from inhaled 210Po in cigarette smoke becomes significant. 210Pb is another element of interest since it is the precursor to 210Po in the radioactive decay chain of 238U. Further, in India the ingestion dose due to these radionuclides becomes significant because of chewing tobacco leaves. In the present study, the concentrations of these two radionuclides were determined in dried tobacco leaves and some branded cigarettes. 210Pb was determined by counting the beta activity of 210Bi with a low background beta counter after radiochemical separation and precipitation. 210Po was determined by alpha counter after radiochemical separation and deposition of polonium on silver disc. 210Pb and 210Po concentrations in dry tobacco leaves ranged from 6.0 to 30.5 mBq/g (mean 15.8 mBq/g) and 5.6 to 29.3 mBq/g (mean 12.7 mBq/g). The average annual committed effective dose for the tobacco chewers (10 g/day) was estimated to be 95.5 μSv/y (39.9 μSv/y from 210Pb and 55.6 μSv/y from 210Po). 210Pb and 210Po concentrations in branded cigarettes ranged from 11.0 to 18.4 mBq/cigarette (mean 41.2 mBq/cigarette) and 10.5 to 16.6 mBq/cigarette (mean 13.1 mBq/cigarette). The average annual committed effective dose for the smokers (20 cigarettes per day) was estimated to be 149.8 μSv/y (39.8 μSv/y from 210Pb and 110.0 μSv/y from 210Po). (author)

  16. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  17. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  18. SU-E-J-269: Assessing the Precision of Dose Delivery in CBCT-Guided Stereotactic Body Radiation Therapy for Lung and Soft Tissue Metastatic Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Parsai, S; Dalhart, A; Chen, C; Parsai, E; Pearson, D; Sperling, N; Reddy, K [University of Toledo Medical Center, Toledo, OH (United States)

    2014-06-01

    Purpose: Ensuring reproducibility of target localization is critical to accurate stereotactic body radiation treatment (SBRT) for lung and soft tissue metastatic lesions. To characterize interfraction variability in set-up and evaluate PTV margins utilized for SBRT, daily CBCTs were used to calculate delivered target and OAR doses compared to those expected from planning. Methods: CBCT images obtained prior to each fraction of SBRT for a lung and thyroid metastatic lesion were evaluated. The target CTV/ITV and OARs on each of 8 CBCT data sets were contoured. Using MIM fusion software and Pinnacle{sup 3} RTP system, delivered dose distribution was reconstructed on each CBCT, utilizing translational shifts performed prior to treatment. Actual delivered vs. expected doses received by target CTV/ITV and adjacent critical structures were compared to characterize accuracy of pre-treatment translational shifts and PTV margins. Results: The planned CTV/ITV D95% and V100% were 4595cGy and 91.47% for the lung lesion, and 3010cGy and 96.34% for the thyroid lesion. Based on CBCT analysis, actual mean D95% and V100% for lung ITV were 4542±344.4cGy and 91.54±3.45%; actual mean D95% and V100% for thyroid metastasis CTV were 3005±25.98cGy and 95.20±2.522%. For the lung lesion, ipsilateral lung V20, heart V32 (cc) and spinal cord (.03 cc) max were 110.15cc, 3.33cc, and 1680cGy vs. 110.27±14.79cc, 6.74±3.76cc, and 1711±46.56cGy for planned vs. delivered doses, respectively. For the thyroid metastatic lesion, esophagus V18, trachea (.03 cc) max, and spinal cord (.03 cc) max were 0.35cc, 2555cGy, and 850cGy vs. 0.16±0.13cc, 2147±367cGy, and 838±45cGy for planned vs. delivered treatments, respectively. Conclusion: Minimal variability in SBRT target lesion dose delivered based on pre-treatment CBCT-based translational shifts suggests tighter PTV margins may be considered to further decrease dose to surrounding critical structures. Guidelines for optimal target alignment during

  19. Radiation dose in cardiac CT angiography: Protocols and image quality

    International Nuclear Information System (INIS)

    This paper aims to evaluate the radiation dose exposure of patients submitted to cardiac computed tomography angiography. The effective dose was obtained from the product of dose-length product values and the conversion factor established in the European Working Group for Guidelines on Quality Criteria in CT. The image noise and contrast-and signal-to-noise ratios were obtained for all images. Sixty-four- and 256-slice CT angiographies were used in 211 (68.5 %) and 97 (31.5 %) patients, respectively. The calculated mean effective dose with prospective CT angiography was 6.0±1.0 mSv and the retrospective mode was 8.4±1.2 mSv. The mean image noise values were 38.5±9.5 and 21.4±5.3 for prospective and retrospective modes, respectively. It was observed that the image noise increased by 44.4 % using a prospective mode. Prospective CT angiography reduces radiation dose by ∼29 % compared with the retrospective mode, while maintaining diagnostic image quality and the ability to assess obstructions in patients. (authors)

  20. Design of radiation dose tumor response assays

    International Nuclear Information System (INIS)

    The efficient utilization of animals in a radiation dose response assay for tumor control requires a definition of the goal, e.g., TCD50 or slope. A series of computer modelled ''experiments'' have been performed for each of a number of allocations of dose levels (DL) and number of animals/DL. The authors stipulated that the assumed TCD50 was .85 of true value; assumed slope was correct. They stipulated a binominal distribution of observed tumor control results at each dose level. A pilot assay used 6 tumors at 7 DL (from TCD1-TCD97). The second assay used 30 tumors assigned to 2,3,5 or 9 DL and to selected tumor control probabilities (TCP derived from the pilot run. Results from 100 test runs were combined with the pilot run for each of the combination of DL and TCP values. Logit regression lines were fitted through these ''data'' and the 95% CL around the TCD50 and the TCD37 values and the variances of the slopes were computed. These experiments were repeated using the method suggested by Porter (1980). Results show that a different strategy is needed depending upon the goal, viz. TCD50 or TCD37 vs slope. The differences between the two approaches are discussed

  1. The 20th L H Gray Conference - Radiation Cancer Analysis and Low Dose Risk Assessment: New Developments and Perspectives (Ede, the Netherlands, February 2002)

    International Nuclear Information System (INIS)

    There are few international venues where scientists in vastly different fields working on a common problem, or on a number of closely related problems, can get together in an intimate setting to present the results of their research and to discuss their approaches and views in a collegial atmosphere, and without the trappings of a huge convention with its conflicting parallel sessions and distracting events. Over the years, the L H Gray Conferences have provided an ideal setting for such intimate gatherings. This year the 20th L H Gray Conference, held in Ede, the Netherlands, was no exception. Convened for the first time outside the United Kingdom and hosted by the Dutch National Institute for Public Health and the Environment (RIVM). Paramount in all the participants' minds was the emerging information from molecular radiation biology on the recently recognised 'new' processes such as genomic instability, bystander effects, hypersensitivity, and the adaptive response. A novel aspect this year was the introduction of the opportunity, both at the beginning and at the end of the meeting, to participate in a 'vote' on controversial subjects by answering electronically such questions as: 'does radiation hormesis occur at low doses?' and 'should an age-dependence of radiological risk be incorporated into recommendations for radiation protectionThere appears to be no evidence for radiation-induced genomic instability, at least in this tumour. If this model holds for other tumour types, it would suggest that there is no 'radiation fingerprint' and that no special mechanism lies behind radiation-induced cancer. The major social event of the meeting was an afternoon devoted to a delightful excursion to the renowned Kroeller-Mueller Museum in the nearby national park (De Hoge Veluwe). Our Dutch hosts were even able to order up some sunshine for the day. After an afternoon of strolling through the museum and surrounding park, we were bussed to a hotel on the precipitous

  2. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose to a

  3. Radiation dose reduction by chemical decontamination

    International Nuclear Information System (INIS)

    The paper deals with the role of chemical decontamination for reducing radiation exposure during major maintenance activities like in-service inspection of coolant channels and EMCCR works on the Primary Heat Transport System and associated components. In order to achieve the man rem reduction, MAPS has successfully carried out six decontamination campaigns of PHT system, three for MAPS-1 and three for MAPS-2. The complexing agent EDTA used in the first four DCDs was changed over to Nitrilo Tri-Acetic acid (NTA) in the subsequent two DCDs and the beneficial effects of the same on dose reduction are detailed. With the use of Nitrilo Tri-Acetic acid (NTA) as complexing agent, the need to add during the process to augment the loss due to IX pickup and radiation decomposition was avoided as NTA displayed better radiation stability and was not getting picked up in the cation IX. Good decontamination factors were observed in the monel with NTA, as copper and nickel complexes of NTA had lower stability constants than that with EDTA. An overview of all these decontaminations along with the brief description of the process and benefits in terms of dose reduction is described. Further, the chemical decontamination procedures adopted for minimising the loose and the fixed contamination on the seal plugs of the 306 coolant channels of Unit-2 during EMCCR works is also presented. The pressure tubes are rolled into the end fittings which have got seal plugs to prevent the PHT water coming out of the system. The 612 seal plugs made of stainless steel were decontaminated using ∼ 10% diammonium hydrogen citrate maintaining a temperature of 70 to 80 deg C. All the 612 seal plugs were successfully decontaminated in 41 batches. The process details and results obtained are reviewed. (author)

  4. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  5. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  6. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    Science.gov (United States)

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  7. Estimation of Radiation Dose for a Sitting Phantom Using PIMAL

    International Nuclear Information System (INIS)

    To assess the radiation dose in different configurations when needed (e.g., occupational exposure or public exposure in a radiologically significant event), the mathematical phantom has recently been revised to enable freely moving abilities for arms and legs. The revised phantom is called PIMAL: Phantom with Moving Arms and Legs. Additionally, a graphical user interface has been developed to assist the analyst with input preparation and output manipulation. To investigate the impact of the phantom configuration on the estimated organ doses, PIMAL has been used in a different posture than the standard vertical-upright position. In this paper, the estimated organ and effective dose values for a representative posture, the phantom in a sitting position, compared with those for the phantom in standing position, are presented

  8. Doses in radiation accidents investigated by chromosome aberration analysis

    International Nuclear Information System (INIS)

    The results are reviewed from investigations during 1980 into 68 cases of suspected overexposure to radiation. Of these, 37 were associated with industrial radiography, 11 with one or other of the major nuclear organisations and 20 with an institution of research, education or health. 55 of the dose estimates were in the range 0.0 - 0.09 Gy (0 - 9 rad) 5 in the range 0.1 - 0.29 Gy (10 - 29 rad) and for various reasons in 8 cases no biological assessment of dose was possible. The dose estimate for the case with the highest confirmed overexposure was 0.22 Gy (22 rads). The chromosome data are compared with information obtained from physical dosimetry and a brief summary is given of the circumstances of each case. (author)

  9. Consideration of Radiation Dose Terms of the Korea Nuclear Safety Act for Evaluation of Dose Limit of Radiation Workers

    International Nuclear Information System (INIS)

    'Peepok-bangsaseolyang' is a term defined as the sum of the radiation doses exposed externally and internally according to Subparagraph 19 of Article 2 of the Korea Nuclear Safety Act (KNSA). Table 1 of Enforcement Decree of the KNSA provides effective dose limit and equivalent dose limit for radiation workers. Dose limit is the upper limit of Peepok-bangsaseolyang according to Subparagraph 5 of Article 2 of Enforcement Decree of the KNSA. Notice of Korea Nuclear Safety and Security (KNSSC) No.2012-29 defines effective dose and equivalent dose. To utilize these requirements for dose limit of radiation workers, a simple diagram of all kind of radiation doses described in the KNSA, called 'dose pedigree of Peepok-bangsaseolyang' has been developed. This dose pedigree of Peepok-bangsaseolyang is described herein, and, in order to be available more effectively in our regulatory system, some suggestions are presented

  10. Molecular mechanism of adaptive response to low dose radiation

    International Nuclear Information System (INIS)

    Adaptive response is a term used to describe the ability of a low, priming dose of ionizing radiation to modify the effects of a subsequent higher, challenge dose. Molecular mechanism of adaptive response to low dose radiation is involved in signal transduction pathway, reactive oxygen species, DNA damage repair

  11. Radiation dose determination by using powder Seydisehir alumina

    International Nuclear Information System (INIS)

    Thermoluminescence dosimeters (TLDs) is a passive dose measurement method used for the supervision, quality control and calibration during radiation dose measurements. Nowadays TLDs, including alumina, are largely used and investigated due to high sensitivity, physical and chemical stability, and re-usefulness. In this work, powder form of Seydisehir alumina is used as a thermoluminescence material and α and β radiation doses were measured.

  12. Effects of Low Dose Radiation on Mammals 1

    OpenAIRE

    Okumura, Yutaka; Mine, Mariko; Kishikawa, Masao

    1991-01-01

    Radiation has been applied widely to clinics, researches and industries nowadays. Irradiation by atomic bomb produced many victims in Hiroshima and Nagasaki. Radiation effects on animals and human belings have been reported extensively, especially at a dose range of high amount of radiation. As radiation effects at low dose have not been well studied, it is believed that even a small amount of radiation produces hazardous effects. However, it might not be true. Beneficial effects of a low dos...

  13. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    International Nuclear Information System (INIS)

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panel digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose

  14. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, M [Johns Hopkins Univ, Baltimore, MD (United States); Gingold, E [Thomas Jefferson University, Philadelphia, PA (United States); Jones, A [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panel digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.

  15. Stable chromosome aberrations in the reconstruction of radiation doses

    International Nuclear Information System (INIS)

    Chromosome-type aberrations, such as dicentric and translocation chromosomes, are biomarkers of exposure to ionizing radiation. So far, analysis of dicentric chromosomes in peripheral blood lymphocytes has been the only method routinely used in biological dose assessment. During division of T cell precursors, proliferative death of cells containing dicentric chromosomes reduces the number of such lymphocytes in peripheral blood. Dicentrics are thus suitable for dose calculations during a reasonably short period after exposure to radiation. Unlike dicentrics, translocations persist in cell division and enable dose estimation over long time periods following exposure. A recent development in molecular biology, the FISH (fluorescence in situ hybridization) chromosome-painting technique, has opened the possibility for accurate recognition of translocations and thus retrospective determination of dose. The purpose of the present study was to evaluate the applicability of translocation analysis by means of FISH chromosome painting for retrospective dosimetry. In the construction of acute dose-effect curves for 60Co g-ray-induced chromosomal aberrations using FISH chromosome painting, translocations showed a linear-quadratic relationship to dose, similar to that seen in dicentrics. Donor-dependent translocation frequencies at control level and at low doses were observed. The linear part of the calibration curve for two way translocations, i.e. both translocation chromosomes present, proved to be more reliable than the comparable low-dose response for total translocations, which include both two- and one-way translocations. The results indicate that the linear part of the curve requires precise determination, particularly since application of the technique will probably cover mainly chronically exposed subjects. An opportunity to gain direct information on translocation persistence over time was opened by obtaining repeated samples from subjects accidentally exposed to

  16. Predicted effects of countermeasures on radiation doses from contaminated food

    International Nuclear Information System (INIS)

    Quantitative assessments of the effects on radiation-dose reductions from nine typical countermeasures against accidental fod contamination have been carried out with dynamic radioecological models. The foodstuffs are assumed to be contaminated with iodine-131, caesium-134 and caesium-137 after a release of radioactive materials from the Ringhals nuclear power station in Sweden resulting from a hypothetical core melt accident. The release of activity of these radionuclides is assumed at 0.07% of the core inventory of the unit 1 reactor (1600 TBq of I-131, 220 TBq of Cs-134 and 190 TBq of Cs-137). Radiation doses are estimated for the 55,000 affected inhabitants along the south-eastern coast of Sweden eating locally produced foodstuffs. The average effective dose equivalent to an individual in the critical group is predicted to be 2.9 mSv from food consumption contaminated with I-131. An accident occurring during winter is estimated to cause average individual doses of 0.32 mSv from Cs-134 and 0.47 mSv from Cs-137, and 9.4 mSv and 6.8 mSv from Cs-134 and Cs-137, respectively, for an accident occurring during summer. Doses from the intake of radioiodine may be reduced by up to a factor of 60 by rejecting contaminated food for 30 days. For the doses from radiocaesium, the largest effect is found form deep ploughing which may reduce the dose by up to a factor of 80. (au) (12 tabs., 6 ills., 19 refs.)

  17. Improvement of quantification of somatic radiation risks at low doses

    International Nuclear Information System (INIS)

    In this research contract several selected topics of basic relevancy for assessment models of radiological consequences of hypothetical reactor accidents have been considered. The investigations focussed on the following areas: 1) Age dependent dose conversion factors for members of the public and their variability for radioisotopes of iodine, strontium, and caesium, - improvement of the accuracy of dose calculations for external gamma irradiation from cloud- and ground-shine; 2) analysis of data and models relevant for the assessment of exposure-time-effect relationships for lethal somatic late effects of lung and breast cancer and of leukemia; 3) analysis of various health status indices (e.g. ''loss of healthy life span'') with respect to their usefulness in addition to incidence, mortality, etc. for the evaluation of the magnitude of a health detriment due to a previous radiation exposure. (orig./HP)

  18. Low radiation dose effects - is it a myth or reality?

    International Nuclear Information System (INIS)

    The effects of low-level radiation are very difficult to observe and highly controversial. The radiation doses that result from chronic exposures but does not manifest in deterministic effects could be categorised as low radiation doses. These doses result in only potential stochastic effects which are probabilistic in nature. On the other hand, high radiation doses result in both deterministic effects and stochastic effects. Stochastic effects from higher doses are extrapolated linearly to the low doses on the basis of a hypothesis that the dose response curve is linear at all doses. This is what is termed as 'Linear No Threshold (LNT)' hypothesis. Based on this hypothesis, all regulatory agencies stipulate regulatory limits for radiation workers and for members of public. Particularly, the optimisation principle of radiation protection 'as low as reasonably achievable (ALARA)' is insisted on by regulatory bodies resulting in the often asked question as to whether it is really evidence based hypothesis or fear based regulatory concern. Many studies of high background areas in India, Iran, Brazil, etc. have not resulted in proof of excess cancer risk at radiation doses encountered in these areas of high background. Studies on large population of radiation workers who have received higher radiation doses than stipulated in the earlier periods of radiation safety limits have also not shown any increase in cancer incidence ascribable to radiation dose. On the contrary studies have shown, documented by many reputed scientific journals, American Nuclear Society, World Nuclear Agency and BEIR Committee that at low radiation doses the dose response curve is not only nonlinear but also shows a threshold for any harmful effect. (author)

  19. Metrics, Dose, and Dose Concept: The Need for a Proper Dose Concept in the Risk Assessment of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Myrtill Simkó

    2014-04-01

    Full Text Available In order to calculate the dose for nanoparticles (NP, (i relevant information about the dose metrics and (ii a proper dose concept are crucial. Since the appropriate metrics for NP toxicity are yet to be elaborated, a general dose calculation model for nanomaterials is not available. Here we propose how to develop a dose assessment model for NP in analogy to the radiation protection dose calculation, introducing the so-called “deposited and the equivalent dose”. As a dose metric we propose the total deposited NP surface area (SA, which has been shown frequently to determine toxicological responses e.g. of lung tissue. The deposited NP dose is proportional to the total surface area of deposited NP per tissue mass, and takes into account primary and agglomerated NP. By using several weighting factors the equivalent dose additionally takes into account various physico-chemical properties of the NP which are influencing the biological responses. These weighting factors consider the specific surface area, the surface textures, the zeta-potential as a measure for surface charge, the particle morphology such as the shape and the length-to-diameter ratio (aspect ratio, the band gap energy levels of metal and metal oxide NP, and the particle dissolution rate. Furthermore, we discuss how these weighting factors influence the equivalent dose of the deposited NP.

  20. Response of pig skin to fractionated radiation doses

    International Nuclear Information System (INIS)

    The individual components of a fractionated course of irradiation treatment have been considered separately. Methods of accurate measurement of individual parameters has brought to light different interpretations of the observations. Reasons are given for the necessity of having a radiobiological model which has a direct relevance to the clinical situation. Results are reported for fractionated regimes of irradiation in which the dose has been varied above and below normal tissue tolerance which has been equated with clinical skin necrosis. The components of the acute skin reaction, erythema, pigmentation and desquamation have been analysed separately and their contribution as a method of measurement assessed. Initially, the range of numerical scores attributed to erythema did not reach the scores attributed to necrosis but we now believe that radiation damage expressed as erythema can move directly into necrosis without passing through desquamation. Desquamation, on the other hand, only became a useful parameter at higher dose levels; it has also been shown to be a component associated with skin breakdown. Pigmentation showed no dose response at the dose levels employed in our experiments and it is our belief that this is due to this system being fully saturated under these circumstances. Measurement of the late radiation reaction in the skin has been considered in detail and our results have been expressed by comparing the relative lengths of irradiated and control fields in the same pig. From these findings iso-effect graphs have been constructed and time and fractionation factors have been derived. (author)

  1. Alternative Physical Quality Parameters Influences Effectiveness of Lower Doses Ionizing Radiation

    Science.gov (United States)

    Yousif, Abubaker Ali; Bahari, Ismail Bin; Yasir, Muhamad Samudi

    2011-03-01

    It has been proved in many studied that the absorbed dose is not good physical quality parameter to quantify the radiation effects at lower doses. However relative biological effect (RBE) is still used as a major parameter of radiation effectiveness. Whereas linear energy transfer (LET) is inadequate physical parameter, therefore the weaknesses in using RBE-LET system for radiation protection have been investigated. Secondary data of V79 has reanalyzed to help complement the inadequacy current method in assessing cell inactivation at lower doses. Results of analysis show that the effectiveness of densely ionizing radiation is better quantified using mean free path (λ).

  2. Direct determination of internal radiation dose in human blood

    CERN Document Server

    Tanır, Ayse Güneş

    2014-01-01

    The purpose of this study is to measure the internal radiation dose using a human blood sample. In the literature, there is no process that allows the direct measurement of the internal radiation dose received by a person. The luminescence counts from a blood sample having a laboratory-injected radiation dose and the waste blood of the patient injected with a radiopharmaceutical for diagnostic purposes were both measured. The decay and dose-response curves were plotted for the different doses. The doses received by the different blood aliquots can be determined by interpolating the luminescence counts to the dose-response curve. This study shows that the dose received by a person can be measured directly, simply and retrospectively by using only a very small amount of blood sample. The results will have important ramifications for the medicine and healthcare fields in particular. This will also be very important in cases of suspicion of radiation poisoning, malpractice and so on.

  3. Risk of cancer subsequent to low-dose radiation

    International Nuclear Information System (INIS)

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident

  4. Ambient radioactivity levels and radiation doses. Annual report 2012

    International Nuclear Information System (INIS)

    The annual report 2012 on ambient radioactivity levels and radiation doses covers the following issues: Part A: General information: natural environmental radioactivity; artificial radioactivity in the environment; occupational radiation exposure; radiation exposures from medical applications; the handling of radioactive materials and sources of ionizing radiation; non-ionizing radiation. Part B: Current data and their evaluation: natural environmental radioactivity; artificial radioactivity in the environment; occupational radiation exposures; radiation exposures from medical applications; the handling of radioactive materials and sources of ionizing radiation; non-ionizing radiation. The report includes data on the stock of radioactive waste, radiation accidents and unusual events.

  5. Dose planning and dose delivery in radiation therapy

    International Nuclear Information System (INIS)

    A method has been developed for calibration of CT-numbers to volumetric electron density distributions using tissue substitutes of known elemental composition and experimentally determined electron density. This information have been used in a dose calculation method based on photon and electron interaction processes. The method utilizes a convolution integral between the photon fluence matrix and dose distribution kernels. Inhomogeneous media are accounted for using the theorems of Fano and O'Connor for scaling dose distribution kernels in proportion to electron density. For clinical application of a calculated dose plan, a method for prediction of accelerator output have been developed. The methods gives the number of monitor units that has to be given to obtain a certain absorbed dose to a point inside an irregular, inhomogeneous object. The method for verification of dose distributions outlined in this study makes it possible to exclude the treatment related variance contributions, making an objective evaluation of dose calculations with experiments feasible. The methods for electron density determination, dose calculation and prediction of accelerator output discussed in this study will all contribute to an increased accuracy in the mean absorbed dose to the target volume. However, a substantial gain in the accuracy for the spatial absorbed dose distribution will also follow, especially using CT for mapping of electron density together with the dose calculation algorithm. (au)

  6. Radiation Dose to Newborns in Neonatal Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2012-01-01

    Full Text Available Background: With the increase of X-ray use for medical diagnostic purposes, knowing the given doses is necessary in patients for comparison with reference levels. The concept of reference doses or diagnostic reference levels (DRLs has been developed as a practical aid in the optimization of patient protection in diagnostic radiology.Objectives: To assess the radiation doses to neonates from diagnostic radiography (chest and abdomen. This study has been carried out in the neonatal intensive care unit of a province in Iran.Patients and Methods: Entrance surface dose (ESD was measured directly with thermoluminescent dosimeters (TLDs. The population included 195 neonates admitted for a diagnostic radiography, in eight NICUs of different hospital types.Results: The mean ESD for chest and abdomen examinations were 76.3 µGy and 61.5 µGy, respectively. DRLs for neonate in NICUs of the province were 88 µGy for chest and 98 µGy for abdomen examinations that were slightly higher than other studies. Risk of death due to radiation cancer incidence of abdomens examination was equal to 1.88 × 10 -6 for male and 4.43 × 10 -6 for female. For chest X-ray, it was equal to 2.54 × 10 -6 for male and 1.17 × 10 -5 for female patients.Conclusion: DRLs for neonates in our province were slightly higher than values reported by other studies such as European national diagnostic reference levels and the NRPB reference dose. The main reason was related to using a high mAs and a low kVp applied in most departments and also a low focus film distance (FFD. Probably lack of collimation also affected some exams in the NICUs.Keywords:Intensive Care Units,Neonatal,Radiation Dosimetry

  7. Dose conversion factors for external photon radiation

    International Nuclear Information System (INIS)

    Dose conversion factors for radionuclides have been computed and tabulated for two situations: photon doses resulting from immersion in contaminated air, and exposure to a contaminated land surface. Computed dose conversion factors relates absorbed dose rate in human tissue to activity concentration. Tabulated dose conversion factors includes contributions from naturally occurring radionuclides as well as manmade radionuclides: activation products, fission products, actinides. (Auth.)

  8. Dose conversion factors for external photon radiation

    International Nuclear Information System (INIS)

    Dose conversion factors for radionuclides have been computed and tabulated for two situations: photon doses resulting from immersion in contaminated air, and exposure to a contaminated land surface. Computed dose conversion factors relates absorbed dose rate in human tissue to activity concentration. Tabulated dose conversion factors includes contributions from naturally occuring radionuclides as well as manmade radionuclides: activation products, fission products, actinides. (author)

  9. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  10. Current issues in carcinogenic effect of low-dose radiation

    International Nuclear Information System (INIS)

    A review of publications dealing with study of radiation sources and biological evaluation of increasing doses of people irradiation under occupational and usual living conditions is presented. The existing natural and artifial irradiation sources are considered. It is noted that all types of ionizing radiations are characterized by high carcinogenic efficiency and can induce benign and malignant tumors practically in all organs. Statistically reliable data in experimental and epidemiological investigations were recorded under the effect of large and mean doses. Minor radiation doses not responsible for visible functional and morphological changes in early periods can cause pathological changes in delayed periods. The data on carcinogenic effect of relatively small radiation doses are available

  11. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    This study intends to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (DHS) and (ii) Dynamic Cannula Screw (DCS) and to evaluate entrance surface Air kerma (ESAK) dose and organ doses and effective doses. Calibrated Thermoluminescence dosimeters (TLD-GR200A) were used. The mean patients’ doses were 0.46 mGy and 0.07 mGy for DHS and DCS procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean organ and effective dose for patients and staff were higher in DHS compared to DCS. Orthopedic surgeons were exposed to unnecessary radiation doses due to the lack of protection measures. The radiation dose per hip procedure is within the safety limit and less than the previous studies

  12. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  13. Mechanistic Basis for Nonlinear Dose-Response Relationships for Low-Dose Radiation-Induced Stochastic Effects

    OpenAIRE

    Scott, Bobby R.; Walker, Dale M.; Tesfaigzi, Yohannes; Schöllnberger, Helmut; Walker, Vernon

    2003-01-01

    The linear nonthreshold (LNT) model plays a central role in low-dose radiation risk assessment for humans. With the LNT model, any radiation exposure is assumed to increase one’s risk of cancer. Based on the LNT model, others have predicted tens of thousands of deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Here, we introduce a mechanism-based model for low-dose, radiation-induced, stochastic ...

  14. Radiation Dose to Newborns in Neonatal Intensive Care Units

    International Nuclear Information System (INIS)

    With the increase of X-ray use for medical diagnostic purposes, knowing the given doses is necessary in patients for comparison with reference levels. The concept of reference doses or diagnostic reference levels has been developed as a practical aid in the optimization of patient protection in diagnostic radiology. To assess the radiation doses to neonates from diagnostic radiography (chest and abdomen). This study has been carried out in the neonatal intensive care unit of a province in Iran. Entrance surface dose was measured directly with thermoluminescent dosimeters. The population included 195 neonates admitted for a diagnostic radiography, in eight NICUs of different hospital types. The mean entrance surface dose for chest and abdomen examinations were 76.3 μGy and 61.5 μGy, respectively. Diagnostic reference levels for neonate in NICUs of the province were 88 μGy for chest and 98 μGy for abdomen examinations that were slightly higher than other studies. Risk of death due to radiation cancer incidence of abdomens examination was equal to 1.88 × 10-6 for male and 4.43 × 10-6 for female. For chest X-ray, it was equal to 2.54 × 10-6 for male and 1.17 × 10-5 for female patients. Diagnostic reference levels for neonates in our province were slightly higher than values reported by other studies such as European national diagnostic reference levels and the NRPB reference dose. The main reason was related to using a high mAs and a low kVp applied in most departments and also a low focus film distance. Probably lack of collimation also affected some exams in the NICUs.

  15. Radiation dose evaluation in patients submitted to conventional radiological examinations

    International Nuclear Information System (INIS)

    This work presents the results of the evaluation of radiation dose delivered to the patients undergoing conventional radiological procedures. Based in the realized measurement some indicators are settled to quantitative appraisal of the radiological protection conditions offered to the population. Data assessment was done in the county of Curitiba, in Parana State, Brazil, from 12/95 to 04/96, in ten rooms of three different institutions, under 101 patients, adults with 70 ± 10 kg, during real examinations of chest PA, chest LAT and abdomen AP. (author)

  16. An updated dose assessment for Rongelap Island

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  17. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    CERN Document Server

    Dobrescu, Lidia

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase of the annual collective dose. High doses of radiation are cumulated from Computed Tomography investigations. An integrated system for radiation safety of the patients investigated by radiological imaging methods, based on smart cards and Public Key Infrastructure allow radiation absorbed dose data storage.

  18. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  19. Radiation induced micro-nuclei as an indicator of radiation dose in exposed human population

    International Nuclear Information System (INIS)

    Radiation is a proven DNA damager. Biological dosimetry is important tool for estimating radiation dose and associated risks in human population. Estimation of radiation-induced micronuclei is simple, rapid and reliable method of biological dosimetry. We have evaluated the effect of radiation dose and chemotherapeutic agents on number of micronuclei. Materials and Methods: Heparinized venous blood was taken from patients pre and post therapy and from 50 volunteers to assess the baseline micronuclei status by Fenech and Morley's method. The patients were treated with tele-cobalt as well as linear accelerator. The samples were kept at room temperature for 30-60 minutes to facilitate possible repair. Lymphocytes were then cultured in RPMI-1640 medium supplemented with 20% fetal calf serum and antibiotics. The cells were stimulated to undergo mitosis with PHA-M immediately after setting the cultures. CYT-B was added to each culture after 44 hours. The cells were processed and scored under microscope at1000x magnification and micronuclei identified as per Heddle (1973). Results: Doses <100 cGy showed increase in micronuclei frequency. Beyond 100 cGy the number of accentrics were seen more often. The in-vitro dose response curve with cisplatin showed an initial increase in micronuclei frequency up to 1 mg in 10 ml culture, this became a plateau afterwards. Two cycles of chemotherapy showed increased micronuclei frequency. The follow up evaluation showed general decline in micronuclei frequency after 6 months. Results can successfully be used to screen exposed human population

  20. Individual monitoring of external radiation - dose quantities and their relevance to radiation protection

    International Nuclear Information System (INIS)

    External exposures due to the use of ionising radiation are the major contributor to doses to radiation workers. X-and gamma rays from radiation sources and radiation generating equipment's from the main component of dose. This is because of their penetrating power and wider abundance due to their use in medical, industrial research and agriculture fields. Although in some cases, beta radiation and neutrons also form some significant component to dose, their overall contribution remains much lower

  1. Offsite radiation doses summarized from Hanford environmental monitoring reports for the years 1957-1984

    International Nuclear Information System (INIS)

    Since 1957, evaluations of offsite impacts from each year of operation have been summarized in publicly available, annual environmental reports. These evaluations included estimates of potential radiation exposure to members of the public, either in terms of percentages of the then permissible limits or in terms of radiation dose. The estimated potential radiation doses to maximally exposed individuals from each year of Hanford operations are summarized in a series of tables and figures. The applicable standard for radiation dose to an individual for whom the maximum exposure was estimated is also shown. Although the estimates address potential radiation doses to the public from each year of operations at Hanford between 1957 and 1984, their sum will not produce an accurate estimate of doses accumulated over this time period. The estimates were the best evaluations available at the time to assess potential dose from the current year of operation as well as from any radionuclides still present in the environment from previous years of operation. There was a constant striving for improved evaluation of the potential radiation doses received by members of the public, and as a result the methods and assumptions used to estimate doses were periodically modified to add new pathways of exposure and to increase the accuracy of the dose calculations. Three conclusions were reached from this review: radiation doses reported for the years 1957 through 1984 for the maximum individual did not exceed the applicable dose standards; radiation doses reported over the past 27 years are not additive because of the changing and inconsistent methods used; and results from environmental monitoring and the associated dose calculations reported over the 27 years from 1957 through 1984 do not suggest a significant dose contribution from the buildup in the environment of radioactive materials associated with Hanford operations

  2. Mesorad dose assessment model. Volume 1. Technical basis

    International Nuclear Information System (INIS)

    MESORAD is a dose assessment model for emergency response applications. Using release data for as many as 50 radionuclides, the model calculates: (1) external doses resulting from exposure to radiation emitted by radionuclides contained in elevated or deposited material; (2) internal dose commitment resulting from inhalation; and (3) total whole-body doses. External doses from airborne material are calculated using semi-infinite and finite cloud approximations. At each stage in model execution, the appropriate approximation is selected after considering the cloud dimensions. Atmospheric processes are represented in MESORAD by a combination of Lagrangian puff and Gaussian plume dispersion models, a source depletion (deposition velocity) dry deposition model, and a wet deposition model using washout coefficients based on precipitation rates

  3. Follow up on a workloaded interventional radiologist's occupational radiation doses - a study case

    International Nuclear Information System (INIS)

    During many interventional procedures, patients' radiation doses are high, affecting radiologist's radiation doses. We checked occupational doses of a workloaded interventional radiologist during seven years

  4. The principles of dose limitation in radiation protection: Dose limits and intervention reference levels

    International Nuclear Information System (INIS)

    The paper discusses the biological effects of ionizing radiation, the systems of dose limitations, and the quantification and acceptance of the risks involved in exposures amounting to the dose limit level and the intervention reference level. According to the concept of biological radiation effects, the dose limits and intervention reference levels do not mark the threshold between safety and danger; rather, they should be viewed as the lower limit of an unacceptable dose range, or a dose range below which interference in case of radiation accidents seems to be unnecessary. (HSCH)

  5. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  6. Stimulation of biological activities using low radiation doses

    International Nuclear Information System (INIS)

    Hormesis is the excitation, or stimulation, by low doses of any agent in any system; high doses inhibit but low doses stimulate. Don Luckey from the University of Florida identified the phenomenon of radiation hormesis, in 1982. After nearly ten years of data surveys and animal tests in many universities to examine the truth about radiation hormesis, we realized the scientific significance of the stimulating effects caused by low levels of radiation exposure. Stimulation with Ionizing radiation presented evidence of increased vigor in plants, bacteria, invertebrates and vertebrates. Most physiologic reactions in living cells are stimulated by low doses of ionizing radiation. This stimulating effect includes enzyme induction, photosynthesis, respiration and growth. Radiation stimulation to the immune system decreases infection and premature death in radiation exposed individuals. (author)

  7. External dose assessment in the Ukraine following the Chernobyl accident

    Science.gov (United States)

    Frazier, Remi Jordan Lesartre

    While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which

  8. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  9. Small Bowel Dose Tolerance for Stereotactic Body Radiation Therapy.

    Science.gov (United States)

    LaCouture, Tamara A; Xue, Jinyu; Subedi, Gopal; Xu, Qianyi; Lee, Justin T; Kubicek, Gregory; Asbell, Sucha O

    2016-04-01

    Inconsistencies permeate the literature regarding small bowel dose tolerance limits for stereotactic body radiation therapy (SBRT) treatments. In this review, we organized these diverse published limits with MD Anderson at Cooper data into a unified framework, constructing the dose-volume histogram (DVH) Risk Map, demonstrating low-risk and high-risk SBRT dose tolerance limits for small bowel. Statistical models of clinical data from 2 institutions were used to assess the safety spectrum of doses used in the exposure of the gastrointestinal tract in SBRT; 30% of the analyzed cases had vascular endothelial growth factor inhibitors (VEGFI) or other biological agents within 2 years before or after SBRT. For every dose tolerance limit in the DVH Risk Map, the probit dose-response model was used to estimate the risk level from our clinical data. Using the current literature, 21Gy to 5cc of small bowel in 3 fractions has low toxicity and is reasonably safe, with 6.5% estimated risk of grade 3 or higher complications, per Common Terminology Criteria for Adverse Events version 4.0. In the same fractionation for the same volume, if lower risk is required, 16.2Gy has an estimated risk of only 2.5%. Other volumes and fractionations are also reviewed; for all analyzed high-risk small bowel limits, the risk is 8.2% or less, and the low-risk limits have 4% or lower estimated risk. The results support current clinical practice, with some possibility for dose escalation. PMID:27000513

  10. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.;

    1977-01-01

    Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved in...... polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent of...... dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods of at...

  11. Radiation Dose Estimation Using Realistic Postures with PIMAL

    International Nuclear Information System (INIS)

    For correct radiation dose assessment, it is important to take the posture into account. A computational phantom with moving arms and legs was previously developed to address this need. Further, an accompanying graphical user interface (GUI), called PIMAL, was developed to enable dose estimation using realistic postures in a user-friendly manner such that the analyst's time could be substantially reduced. The importance of the posture for correct dose estimation has been demonstrated with a few case studies in earlier analyses. The previous version of PIMAL was somewhat limited in its features (i.e., it contained only a hermaphrodite phantom model and allowed only isotropic source definition). Currently GUI is being further enhanced by incorporating additional phantom models, improving the features, and increasing the user friendliness in general. This paper describes recent updates to the PIMAL software. In this summary recent updates to the PIMAL software, which aims to perform radiation transport simulations for phantom models in realistic postures in a user-friendly manner, are described. In future work additional phantom models, including hybrid phantom models, will be incorporated. In addition to further enhancements, a library of input files for the case studies that have been analyzed to date will be included in the PIMAL.

  12. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  13. Radiation doses in patients under full-mouth radiographic examination

    International Nuclear Information System (INIS)

    Radiation doses received by tissues of the head and neck as a result of a full-mouth radiographic examination are studied. Simulations are carried out by irradiating the head and neck section of an anthropomorphic phantom. The radiation doses are determined through the use of thermoluminescent dosimeters

  14. Eye dose assessment and management: overview.

    Science.gov (United States)

    Rehani, M M

    2015-07-01

    Some publications have shown that Hp(0.07) or even Hp(10) can be used as good operational quantities for X-rays in view of difficulties with Hp(3). With increasing awareness, there is tendency to use whatever dosimeter is available with correction factor to estimate eye lens dose. The best position for an eye lens dosimeter has been reported to be at the side of the head nearest to the radiation source, close to the eye. Recent studies have reported eye doses with cone beam CT (CBCT) both for patients and staff, and there are many papers reporting eye lens doses to staff in nuclear medicine. To minimise the dose to eyes, the user can take advantage of a feature of CBCT of projections acquired over an angular span of 180° plus cone angle of the X-ray tube and with tube under scan arcs. PMID:25813481

  15. Eye dose assessment and management: overview

    International Nuclear Information System (INIS)

    Some publications have shown that Hp(0.07) or even Hp(10) can be used as good operational quantities for X-rays in view of difficulties with Hp(3). With increasing awareness, there is tendency to use whatever dosimeter is available with correction factor to estimate eye lens dose. The best position for an eye lens dosimeter has been reported to be at the side of the head nearest to the radiation source, close to the eye. Recent studies have reported eye doses with cone beam CT (CBCT) both for patients and staff, and there are many papers reporting eye lens doses to staff in nuclear medicine. To minimise the dose to eyes, the user can take advantage of a feature of CBCT of projections acquired over an angular span of 1808 plus cone angle of the X-ray tube and with tube under scan arcs. (authors)

  16. Assessing dose rate distributions in VMAT plans

    Science.gov (United States)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  17. Competing risk theory and radiation risk assessment

    International Nuclear Information System (INIS)

    New statistical procedures are applied to estimate cumulative distribution functions (c.d.f.), force of mortality, and latent period for radiation-induced malignancies. It is demonstrated that correction for competing risks influences the shape of dose response curves, estimates of the latent period, and of the risk from ionizing radiations. The equivalence of the following concepts is demonstrated: force of mortality, hazard rate, and age or time specific incidence. This equivalence makes it possible to use procedures from reliability analysis and demography for radiation risk assessment. Two methods used by reliability analysts - hazard plotting and total time on test plots - are discussed in some detail and applied to characterize the hazard rate in radiation carcinogenesis. C.d.f.'s with increasing, decreasing, or constant hazard rate have different shapes and are shown to yield different dose-response curves for continuous irradiation. Absolute risk is shown to be a sound estimator only if the force of mortality is constant for the exposed and the control group. Dose-response relationships that use the absolute risk as a measure for the effect turn out to be special cases of dose-response relationships that measure the effect with cumulative incidence. (H.K.)

  18. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    Science.gov (United States)

    Lubis, L. E.; Badawy, M. K.

    2016-03-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care.

  19. Radiation risk evaluation and reference doses in interventional radiology

    International Nuclear Information System (INIS)

    In interventional radiology, there are two potential hazards to the patient. These are somatic risks and, for certain procedures, deterministic injuries. The task of radiation protection in interventional radiology is to minimise somatic risks and avoid deterministic injuries. Radiation protection tools and protocols must be developed to achieve these two objectives. Reference doses have been proposed as a method of identifying high dose centres and equipment. The role of reference doses in interventional radiology will be discussed. There are two approaches to reference doses in interventional radiology. These are the measurement of patient entrance skin dose or skin dose rate, or image intensifier input dose rate. Alternatively, dose area product or effective dose to the patient may be monitored. These two main approaches have their advantages and disadvantages. (author)

  20. Studies of health effects of low dose radiation and its application to medicare

    International Nuclear Information System (INIS)

    The articles contain following 7 topics of low dose radiation effects. Studies of Health Effects of Low dose Radiation and Its Application to Medicare'', describes the indication of Rn therapy and investigations of its usefulness mechanism mainly in Misasa Spa, Okayama Pref. ''Challenges for the Paradigm Shift (CRIEPI Studies)'', introduces studies against the paradigm that radiation dose is linearly and proportionally hazardous. ''Studies of High Background Radiation Area (CRIEPI Studies)'', describes global HBRA studies on chromosome affection and effect of smoking in HBRA. ''Is the Radiation Effect on Man Proportional to Dose? (CRIEPI Studies)'', describes studies of immature sperm irradiated at low dose against Linear-Non-threshold Theory (LNT) hypothesis. ''Induction of Radiation Resistance by Low Dose Radiation and Assessment of Its Effect in Models of Human Diseases (CRIEPI Studies)'', explains the adoptive response in radiation effect, suppression of carcinogenesis and immune regulation by previous low dose radiation in the mouse, and improvement of diabetes in the db/db mouse. ''Modulation of Biological Effects of Low Dose Radiation: Adoptive Response, Bystander Effect, Genetic Instability and Radiation Hormesis'', summarizes findings of each item. ''Cancer Treatment with Low dose Radiation to the Whole Body'', describes basic studies in the mouse tumor in relation to suppression of carcinogenesis and metastasis, immune activation and treatment, and successful clinical studies in patients with ovary, colon cancers and malignant lymphoma where survival has been significantly improved: a base of recent European Organization for Research and Treatment of Cancer (EORTC) clinical trials. The mechanism is essentially based on immune activation of patients to cure the disease. (R.T.)

  1. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  2. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  3. Evaluation of Patient Radiation Dose during Orthopedic Surgery

    International Nuclear Information System (INIS)

    The number of orthopedic procedures requiring the use of the fluoroscopic guidance has increased over the recent years. Consequently the patient exposed to un avoidable radiation doses. The aim of the current study was to evaluate patient radiation dose during these procedures.37 patients under went dynamic hip screw (DHS) and dynamic cannulated screw (DCS) were evaluated using calibrated Thermolumincent Dosimeters (TLDs), under carm fluoroscopic machines ,in three centers in Khartoum-Sudan. The mean Entrance Skin Dose (ESD) was 7.9 m Gy per procedure. The bone marrow and gonad organ exposed to significant doses. No correlation was found between ESD and Body Mass Index (BMI), or patient weight. Well correlation was found between kilo voltage applied and ESD. Orthopedic surgeries delivered lower radiation dose to patients than cardiac catheterization or hysterosalpingraphy (HSG) procedures. More study should be implemented to follow radiation dose before surgery and after surgery

  4. Assessments for High Dose Radionuclide Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Advances in the biotechnology of cell-specific targeting of cancer, and the increased number of clinical trials involving treatment of cancer patients with radiolabeled antibodies, peptides, and similar delivery vehicles have led to an increase in the number of high-dose radionuclide therapy procedures. Optimized radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose-limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be lungs, liver, intestinal tract, or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential time points using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organs tissues of concern, for the whole body, and sometimes for selected tumors. Patient-specific factors often require that dose estimates be customized for each patient. The Food and Drug Administration regulates the experimental use of investigational new drugs and requires reasonable calculation of radiation absorbed dose to the whole body and to critical organs using methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high-dose studies in the U.S. and elsewhere shows that (1) some studies are conducted with minimal dosimetry, (2) the marrow dose is difficult to establish and is subject to large uncertainties, and (3) despite the general availability of MIRD software, internal dosimetry methods are often inconsistent from one clinical center to another

  5. Assessments for high dose radionuclide therapy treatment planning

    International Nuclear Information System (INIS)

    Advances in the biotechnology of cell specific targeting of cancer and the increased number of clinical trials involving treatment of cancer patients with radiolabelled antibodies, peptides, and similar delivery vehicles have led to an increase in the number of high dose radionuclide therapy procedures. Optimised radionuclide therapy for cancer treatment is based on the concept of absorbed dose to the dose limiting normal organ or tissue. The limiting normal tissue is often the red marrow, but it may sometimes be the lungs, liver, intestinal tract, or kidneys. Appropriate treatment planning requires assessment of radiation dose to several internal organs and tissues, and usually involves biodistribution studies in the patient using a tracer amount of radionuclide bound to the targeting agent and imaged at sequential timepoints using a planar gamma camera. Time-activity curves are developed from the imaging data for the major organ tissues of concern, for the whole body and sometimes for selected tumours. Patient specific factors often require that dose estimates be customised for each patient. In the United States, the Food and Drug Administration regulates the experimental use of investigational new drugs and requires 'reasonable calculation of radiation absorbed dose to the whole body and to critical organs' using the methods prescribed by the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Review of high dose studies shows that some are conducted with minimal dosimetry, that the marrow dose is difficult to establish and is subject to large uncertainties. Despite the general availability of software, internal dosimetry methods often seem to be inconsistent from one clinical centre to another. (author)

  6. The researches of medical and environmental radiation protection dose

    OpenAIRE

    盧, 暁光

    2013-01-01

    Nowadays, with the development of modern radiation science, application of radiation exposure has been paid more and more attention in various fields. Although there are many benefits for human by the use of radiation in such as medical diagnose and treatment, utilization of nuclear power, more efforts should be made to radiation hazards and their control that are often neglected. The researches in this study were intended to meet the requirements with the center of radiation protection dose ...

  7. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    International Nuclear Information System (INIS)

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  8. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Physics, University of Western Australia, Perth, Western Australia (Australia); Foo, Kerwyn [Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria (Australia); Gulliford, Sarah L. [Joint Department of Physics, Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey (United Kingdom); Kennedy, Angel [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); Joseph, David J. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Denham, James W. [School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales (Australia)

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  9. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40K, 238U plus daughters and 232Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  10. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    International Nuclear Information System (INIS)

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering

  11. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  12. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  13. Ionizing radiation population doses at Sao Paulo city, Brazil: open-pit gamma dose measurement

    International Nuclear Information System (INIS)

    The effects of ionizing radiation to the human beings are well known for high and intermediate doses. As far as low level) radiation doses are concerned, there is no consensus. In order to get a better understanding of such effects it is necessary to assess the low doses with better accuracy. In this work, it was made an estimate of the annual ambient dose equivalent (H*(10)) to which the people are exposed in the city of Sao Paulo. Until now there are no data about it available in the literature. For the purpose of this evaluation, a map with various routes covering the largest and more representative area of the city was designed. The choice of points for data collection was made taking into account mainly the occupancy of the region. A portable gamma spectrometry system was used. It furnishes the rate of H*(10) and the measured gamma spectrum (in the range from 50 to 1670 keV) in the place of interest. The measurements were performed in a short time interval, since the gamma radiation arrives from a great extent of soil. Each measurement was done 1 m above the soil during 300 s. The rates of H*(10) varied from 33.1 to 152.3 nSv.h-1, net values, obtained after subtraction of the cosmic rays contribution. The standard deviation was 22 n Sv.h-1 for an average for the city of Sao Paulo of 96.1(24) nSv.h-1. In addition, average values of H*(10) rates for the city Health Divisions were calculated. Those values are not statistically equivalent and the whole set of data could not be treated as one, as the statistical Student test indicated a non homogeneity of the group of data. Hence it is necessary the accomplishment of a more detailed survey in order to verify the origin of the discrepancy. The mean value of H*(10) rate obtained for the city of Sao Paulo as converted to effective dose. in order to be compared with other places results It could be noticed that the annual average of effective dose for the city of Sao Paulo, 0.522(13) mSv, is superior to the world

  14. Low dose radiation and plant growth

    International Nuclear Information System (INIS)

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated

  15. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  16. Measurement of daily envvironmental radiation doses using hypersensitive thermoluminescence materials

    International Nuclear Information System (INIS)

    Lower detection limits below 1 μGy have been reported for the hypersensitive thermoluminescence phosphors such as LiF:Mg,P,Cu and α-Al2O3:C. Considering that usual daily environmental doses are in the range of 1-5 μGy, the CIEMAT Dosimetry Unit has designed an experiment to validate the real capability of these dosemeters to assess extremely low doses in two different environmental situations (indoor, outdoor). Three types of these phosphors (GR-200A from China, MCP-N from Poland, α-Al2O3:C from Russia) and one electronic dosemeter EPD from Siemens-Plessey have been studied. The experiment consisted of the determination of the integrated dose after exposure periods to environmental radiation ranging from one day to six months. These measurements were carried out with each one of the systems using a high pressure ionisation chamber as a reference instrument. The results demonstrate that the hypersensitive phosphors are capable of estimating these very low doses in agreement with the active detector. (Author)

  17. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    affected DEGs associated with cellular signaling and immune response; 70 mGy radiation affected cell cycle regulation and DNA damage repair, cellular energy production; and 280 mGy radiation affected pathways related to cell cycle regulation and DNA repair, mitochondrial dysfunction and immune functions. Twelve genes representative of key pathways found in this study were verified by qPCR. Potential common MoAs of low-dose gamma radiation may include induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation (OXPHOS). Although common MoAs were proposed, a number of DEGs and pathways were still found to be dose-specific, potentially indicating multiple mechanisms of action (MOAs) of low-dose gamma radiation in fish. In addition, plasma glucose displayed an apparent increase with increasing radiation doses, although the results were not significantly different from the control. These findings suggested that sublethal doses of gamma radiation may cause dose-dependent transcriptional changes in the liver of Atlantic salmon after short-term exposure. The current study predicted multiple MoA for gamma radiation and may aid future impact assessment of environmental radioactivity in fish.

  18. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    International Nuclear Information System (INIS)

    affected DEGs associated with cellular signaling and immune response; 70 mGy radiation affected cell cycle regulation and DNA damage repair, cellular energy production; and 280 mGy radiation affected pathways related to cell cycle regulation and DNA repair, mitochondrial dysfunction and immune functions. Twelve genes representative of key pathways found in this study were verified by qPCR. Potential common MoAs of low-dose gamma radiation may include induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation (OXPHOS). Although common MoAs were proposed, a number of DEGs and pathways were still found to be dose-specific, potentially indicating multiple mechanisms of action (MOAs) of low-dose gamma radiation in fish. In addition, plasma glucose displayed an apparent increase with increasing radiation doses, although the results were not significantly different from the control. These findings suggested that sublethal doses of gamma radiation may cause dose-dependent transcriptional changes in the liver of Atlantic salmon after short-term exposure. The current study predicted multiple MoA for gamma radiation and may aid future impact assessment of environmental radioactivity in fish

  19. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    International Nuclear Information System (INIS)

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow's milk are considerably less . Detailed

  20. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. The authors have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiations. 5 references, 3 tables

  1. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs

  2. Status of eye lens radiation dose monitoring in European hospitals

    OpenAIRE

    Carinou, Eleftheria; Ginjaume Egido, Mercè; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-01-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey hig...

  3. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm2 and 22.5 mSv for RFCA, and 32 Gycm2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  4. Retrospective assessment of exposure dose from the levels of serum glutamic oxaloacetic and pyruvic transaminases

    International Nuclear Information System (INIS)

    Development of a method for retrospective assessment of absorbed dose in humans by the activities of SGOT and SGPT. SGOT and SGPT were measured after Raitmann and Frenkel. The dose-effect curves were measured after Raitmann and Frenkel. The dose-effect curves were based on the results of examinations of 223 liquidators of the Chernobyl accident consequences directly after exposure to super-background ionizing radiation. A dose-effect relationship between SGOT and SGPT activities and the absorbed dose is observed for the dose range of 20-40 sGy. The absorbed dose is assessed from the proposed curves reflecting the correlation and the estimation formula

  5. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  6. Reduction of the radiation dose received by interventional cardiologists following training in radiation protection

    International Nuclear Information System (INIS)

    The University General Hospital of Alexandroupolis was established in 2003 to cover Eastern Macedonia and Thrace Districts of Northern Greece. The hospital has two interventional cardiology units and the occupational radiation exposure of the cardiologists was the highest of all specialties using ionising radiation. In order to aid in decreasing the radiation dose levels, a seminar was organised for all personnel working in interventional radiology field. After this, an important reduction of the radiation dose of the cardiologists was noted. Training in radiation protection is essential to reduce the radiation doses and consequently the deterministic and stochastic effects of ionising radiation of cardiologists working in interventional radiology. (authors)

  7. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    Science.gov (United States)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and

  8. Dose assessment in pediatric computerized tomography

    International Nuclear Information System (INIS)

    The objective of this work was the evaluation of radiation doses in paediatric computed tomography scans, considering the high doses usually involved and the absence of any previous evaluation in Brazil. Dose values were determined for skull and abdomen examinations, for different age ranges, by using the radiographic techniques routinely used in the clinical centers investigated. Measurements were done using pencil shape ionization chambers inserted in polymethylmethacrylate (PMMA) phantoms. These were compact phantoms of different diameters were specially designed and constructed for this work, which simulate different age ranges. Comparison of results with published values showed that doses were lower than the diagnostic reference levels established to adults exams by the European Commission. Nevertheless, doses in paediatric phantoms were higher than those obtained in adult phantoms. The paediatric dose values obtained in Hospitals A and B were lower than the reference level (DRL) adopted by SHIMPTON for different age ranges. In the range 0 - 0.5 year (neonatal), the values of DLP in Hospital B were 94 por cent superior to the DRL For the 10 years old children the values of CTDIw obtained were inferior in 89 por cent for skull and 83 por cent for abdomen examinations, compared to the values published by SHRIMPTON and WALL. Our measured CTDIw values were inferior to the values presented for SHRIMPTON and HUDA, for all the age ranges and types of examinations. It was observed that the normalized dose descriptors values in children in the neonatal range were always superior to the values of doses for the adult patient. In abdomen examinations, the difference was approximately 90% for the effective dose (E) and of 57%.for CTDIw . (author)

  9. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.; Pejtersen, K.; Pedersen, Walther Batsberg

    1977-01-01

    dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods of at...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and...

  10. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  11. Long-term radiation dose reduction plan of KHNP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saeng-Ki; Shin, Sang-Woon; Lim, Byoung-Chan [Korea Hydro and Nuclear Power Company, Seoul (Korea, Republic of)

    2002-07-01

    Annual radiation dose limit to radiation worker was substantially lowered in Korea by the adoption of 1990 recommendations of the International Commission on Radiation Protection (ICRP 60) in its legislation. On the other hand, radiation management environment in nuclear power plants is getting more worse because of the accumulation of radiation sources inside the system and the frequent need for maintenance according as the operation years of nuclear power plants increase. Therefore, Korea Hydro and Nuclear power Co., Ltd. (KHNP) has established a long-term 10 years' plan from 2001 to 2010 for the reduction of radiation dose to workers. The plan is aimed for the reduction of annual dose per unit averaged over 5 years from 0.9 man-Sv in 2001 to 0.75 man- Sv in 2010 by radiation source reduction, equipment/tool improvement or new equipment development for easy maintenance, and the improvement of administration and system.

  12. Estimation of radiation dose rate in new polypropylene strainer in primary heat transport system

    International Nuclear Information System (INIS)

    Heavy water is used in Primary Heat Transport system at Dhruva research reactor. It contains suspended and ionic impurities, therefore it is required to purify heavy water for removal of impurities and to maintain grade of heavy water. For enhancing performance of purification system testing of new polypropylene filters is planned for removal of suspended impurities at flow rate of 400 lit/min. Physical properties of polypropylene changes after exposure to radiation after radiation dose of 1.0E+05 Gy it becomes brittle. Calculations of beta and gamma radiation dose rate are based on the activity of radionuclides present in heavy water used as main coolant system. Assessment of service life of new filters is carried out by calculating the radiation dose rate to polypropylene filters during in service and radiation dose rate of existing removed stainless steel strainer. (author)

  13. 10 CFR 20.1004 - Units of radiation dose.

    Science.gov (United States)

    2010-01-01

    ... beta radiation 1 1 Alpha particles, multiple-charged particles, fission fragments and heavy particles... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions §...

  14. Assessment of genetically significant doses to the Sofia population from natural gamma background

    International Nuclear Information System (INIS)

    Genetically significant dose to the population of Sofia city was assessed within a program covering larger urban communities in the country. Measurements were made of gamma background exposure rates in the gonadal region. Gonad doses were estimated using a screening factor of 0.73. Based on statistical data for total number of inhabitants and number of people of reproductive age, and on the mean annual gonad doses derived, calculations were made of genetically significant dose to the Sofia population. Base-line data were thus provided for an assessment of extra radiation dose resulting from occupational radiation exposure. (author)

  15. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  16. Assessment of radiation doses to the para-aortic, pelvic, and inguinal lymph nodes delivered by image-guided adaptive brachytherapy in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Mohamed, Sandy M I; Aagaard, Torben; Fokdal, Lars U; Pedersen, Erik Morre; Lindegaard, Jacob C; Tanderup, Kari

    2015-01-01

    PURPOSE: This study evaluated the dose delivered to lymph nodes (LNs) by brachytherapy (BT) and the effect of BT image-guided optimization on the LN dose. METHODS AND MATERIALS: Twenty-five patients with locally advanced cervical cancer were retrospectively analyzed, 16 patients of them had LN...

  17. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Basic values and their symbols as well as units of physical dosimetry are given. The most important information about biological radiation effects is presented. Polish radiation protection standards are cited. (A.S.)

  18. Patient radiation doses for electron beam CT

    International Nuclear Information System (INIS)

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDIvol) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDIvol to an effective dose

  19. Recent research on the effects of low dose radiation: implications to radiation protection

    International Nuclear Information System (INIS)

    Radiation protection specialists unanimously agree that radiation at high dose levels can cause cancer. At low dose levels, the results are not conclusive. Specialists accept the Linear-No-Threshold (LNT) dose-effect relationship as a practical approach in radiation protection. That means that the dose-effect relation is linear without a threshold; any dose however small will have some deleterious effect. Application of LNT without appreciating that it is just a pragmatic concept leads to unreasonable fear about radiation. This adversely impact acceptance of nuclear power as a source of energy

  20. Low-dose radiation: a cause of breast cancer

    International Nuclear Information System (INIS)

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporal patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause

  1. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1/5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  2. Risk estimation of benzene-induced leukemia by radiation equivalent dose

    International Nuclear Information System (INIS)

    Based on the Hiroshima and Nagasaki epidemiological study, risk assessment system for radiation has been well developed and is practically applied to the international protection standards. Hence, defining the radiation equivalent dose for chemical agents could place in the order of their risk. As well as the radiation, benzene causes leukemia to humans. Therefore, we evaluated the radiation-equivalent dose for benzene based on chromosome aberration rates induced by its metabolites and low-dose rate radiation because chromosome aberration is thought to be closely related to the leukemogenesis. Using radiation risk coefficient, the leukemia risk caused by 1 mg/m3 benzene inhalation was estimated 5.5 - 7.3 x 10-8, which is underestimated compared to other studies based on human epidemiological researches. (author)

  3. Inhalation dose assessment for Maralinga and Emu

    International Nuclear Information System (INIS)

    Dose assessments for the inhalation of artificial radionuclides are presented for all types of contaminated areas at Maralinga and Emu. These enable Committed Effective Dose Equivalent (CEDE), to be estimated by scaling at any area of interest where activity concentrations are known. In the case of Aborigines, these dose are estimated assuming respirable dust loadings of 1 mg/m3 for adults and 1.5 mg/m3 for children and infants. Details of the calculations are presented in the appendix. The model of the respiratory system used in this assessment is that described in Interantional Commission on Radiological Protection (ICRP) Publication 30 (ICRP, 1979a). With the exception of Kuli, which is contaminated with uranium, at all other sites it is only the inhalation of plutonium and americium that contributes significantly to the dose, and of these 239Pu is the largest contributor. Therefore, considering the long half lives of the radionuclides concerned, it appears that the inhalation problems highlighted by this dose assessment will not diminish significantly within any reasonable period of time and hence management strategies must be developed to deal with such problems. 32 refs., 5 tabs., 1 fig

  4. How to understand the radiation effects of small dose - some critical comments on ICRP recommendations

    International Nuclear Information System (INIS)

    The widespread feeling of 'radiophobia' by the general public has its basis on the ICRP's 'linear no-threshold' hypothesis in dose-response relationship for low dose radiation from the standpoint of radiation protection. Although this common feeling served as a merit for constructing the 'safety culture' of society, it has now become a large obstacle for the development of peaceful uses of nuclear technology as a demerit. Recently many data have been accumulated for the radiation effects of low dose, both epidemiologically and experimentally. Although in general it is very difficult to obtain clear evidence of presence or absence of threshold, it seems to be true that the risk by radiation exposure at low level (the definition of which is below 0.2 Gy) is not so large as that of extrapolation from the high or medium dose range. In fact, many data suggest that some quite different mechanisms are working in low dose from high dose, such as 'adaptive response', and a new concept, 'radiation hormesis', has emerged, that the low level radiation is not only quite harmless but is rather necessary for living cells or beneficial for human health. In this paper, some critical comments on ICRP recommendations are given as a personal view by the author. These include: (1) a question of exact assessment of exposed dose by A-bomb survivors used for the epidemiological data, which are regarded to be the most authentic and important; (2) a brief summary of effects at the natural radiation level, including the high background area data; (3) the importance of dose rate effect, which reflects the living matter's repairability from radiation injury, and (4) the proposal of new paradigm by adopting the reasonable 'de minimis' level (below which there is no harm) both for low dose and at low dose rate. A simple mathematical analysis for representative data of dose rate effect was shown as an appendix

  5. Methemoglobin-Based Biological Dose Assessment for Human Blood.

    Science.gov (United States)

    Zhang, Xiao-Hong; Hu, Xiao-Dan; Zhao, Su-Ying; Xie, Li-Hua; Miao, Yu-Ji; Li, Qun; Min, Rui; Liu, Pei-Dang; Zhang, Hai-Qian

    2016-07-01

    Methemoglobin is an oxidative form of hemoglobin in erythrocytes. The authors' aim was to develop a new biological dosimeter based on a methemoglobin assay. Methemoglobin in peripheral blood (of females or males) that was exposed to a Co source (0.20 Gy min) was quantified using an enzyme-linked immunosorbent assay. The dose range was 0.5-8.0 Gy. In a time-course experiment, the time points 0, 0.02, 1, 2, 3, 7, 15, 21, and 30 d after 4-Gy irradiation of heparinized peripheral blood were used. Methemoglobin levels in a lysed erythrocyte pellet from the irradiated blood of females and males increased with the increasing dose. Methemoglobin levels in female blood irradiated with γ-doses more than 4 Gy were significantly higher than those in male samples at the same doses. Two dose-response relations were fitted to the straight line: one is with the correlation coefficient of 0.98 for females, and the other is with the correlation coefficient of 0.99 for males. The lower limit of dose assessment based on methemoglobin is about 1 Gy. Methemoglobin levels in blood as a result of auto-oxidation increase after 7-d storage at -20 °C. The upregulation of methemoglobin induced by γ-radiation persists for ∼3 d. The absorbed doses that were estimated using the two dose-response relations were close to the actual doses. The results suggest that methemoglobin can be used as a rapid and accurate biological dosimeter for early assessment of absorbed γ-dose in human blood. PMID:27218292

  6. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  7. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  8. Assessment of external dose indoors in Lithuania

    International Nuclear Information System (INIS)

    The aim of this paper was an assessment of external exposure indoors and its dependence on construction materials and indoor radon concentrations in Lithuanian living houses. Relationship of absorbed dose rate in air indoors and activity indexes of the most commonly used construction materials (wood, concrete and bricks) have been studied using results received in measurements done in >4700 rooms in 1995-2005. Possible connections of dose rate indoors with indoor radon concentrations are also discussed. Findings of this study helped to make an assessment of the mean value of effective dose of Lithuanian population due to external exposure indoors which is equal to 0.58 mSv y-1. The received data might also be used in improvement of quality of personal dosimetric measurements done in premises constructed of different construction materials. (authors)

  9. Human data and internal dose assessment

    International Nuclear Information System (INIS)

    Recent data on physical and anatomical and physiological or metabolic data regarding Japanese Reference Man is briefly reviewed. This includes reference values for masses of all organs and tissues proposed for a Japanese Reference male adult. Part of the data is used to assess alpha doses to bone tissues from naturally occurring 226Ra in bone of Japanese adult. (author)

  10. Radiation doses to rodents inhabiting a radioactive waste receiving area

    International Nuclear Information System (INIS)

    A study was conducted of the gamma ray doses to four species of native rodents inhabiting a low level radioactive liquid waste disposal area. Absorbed doses of radiation were measured with lithium fluoride thermoluminescent dosimeters that were implanted subcutaneously. The absorbed radiation doses and 137Cs body burdens were significantly higher for western harvest mice (Reithrodontomys megalotis) than for deer mice (Peromyscus maniculatus), pinon mice (P. truei) and the least chipmunk (Eutamias minimus), reflecting differences in mobility and habitat preferences of the respective species. The average dose received by harvest mice was 26 mrad/day, which was 26% of the highest gamma dose detected at the ground surface in the study plot, although the maximum dose received by individual mice was as high as 45% of the maximum dose rates in the plot. (author)

  11. Radiation doses to patients in haemodynamic procedures

    International Nuclear Information System (INIS)

    Interventional radio-cardiology gives high doses to patients due to high values of fluoroscopy times and large series of radiographic images. The main objective of the present work is the determination of de dose-area product (DAP) in patients of three different types of cardiology procedures with X-rays. The effective doses were estimated trough the organ doses values measured with thermoluminescent dosimeters (TLDs-100), suitable calibrated, placed in a phantom type Rando which was submitted to the same radiological conditions corresponding to the procedures made on patients. The values for the effective doses in the procedures CAD Seldinger was 6.20 mSv on average and 1.85mSv for pacemaker implants. (author)

  12. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  13. Low doses of radiation: epidemiological investigations

    International Nuclear Information System (INIS)

    Influence of small dozes of radiation was investigated with the help epidemiologic evidence. Correlation analysis, regression analysis and frequency analysis were used for investigating morbidity of various cancer illnesses. The pollution of the environment and the fallout of radionuclides in 1962 and 1986 years have an influence upon morbidity of cancer. Influence of small dozes of radiation on health of the population is multifactorial. Therefore depending on other adverse external conditions the influence of radiation in small dozes can be increased or is weakened. Such character of influence of radiation in small dozes proposes the differentiated approach at realization of preventive measures. Especially it concerns regions with favorable ecological conditions.

  14. A family of statistical distributions for modelling occupational radiation doses in low dose occupations

    International Nuclear Information System (INIS)

    New statistical distributions have been defined to describe occupational exposures to ionising radiation. These distributions are particularly useful in modelling occupations where most doses are low. The maximum likelihood method was used for parameter estimation and has been adapted to allow doses that are recorded as zero to be included in the calculations. The method can then be applied to estimate true doses from the complete set of recorded dose values when the a priori dose distribution and the dose measurement distributions have been derived previously. This application is important in epidemiological cohort studies where it can improve the accuracy of excess relative risk estimates. (authors)

  15. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  16. Internal dose assessment of 99mTc-HTOC

    International Nuclear Information System (INIS)

    Full text: Octreotide is a synthetic octapeptide analog of somatostatin. Its major effects inhibit the release of pituitary growth hormone and the endocrine secretions of the pancreas, stomach, and intestine. So it is recommended to control symptoms associated with neuroendocrine tumours. In therapy, it is necessary to estimate patient-specific absorbed dose, especially to dose-limiting risk organs and to the tumour tissue. Kinetic analyses need to be carefully planned, meanwhile absorbed fraction are most similar to the subject in question should be chosen. However, the result of dose assessment is not sufficiently accurate or detailed to guide clinical decision-making, and not well correlated with observed effects on patient's organs and tumours. In this study, 99mTc-HTOC is an excellent indicator that displays the distribution of 188Re- HTOC in patient's body. The kinetic information of 99mTc -HTOC in patient's body can be obtained by SPECT in 1,4 h after injection. The activity in patient's tumours and organs can be calculated by lined the time-activity curve. In the study, the data of 86 cases can be collected. Although the basic formula of dose assessment is based on that of the medical internal radiation dose committee (MIRD), the absorbed fractions have been adjusted to be more patient-specific by patient's CT image and other data. It make internal dose of patients more accurate by the method. (author)

  17. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    Directory of Open Access Journals (Sweden)

    Atsushi Komemushi

    2012-01-01

    Full Text Available Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution.

  18. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted beh