WorldWideScience

Sample records for assessing population genetic

  1. Genetic assessment of captive red panda (Ailurus fulgens) population.

    Science.gov (United States)

    Kumar, Arun; Rai, Upashna; Roka, Bhupen; Jha, Alankar K; Reddy, P Anuradha

    2016-01-01

    Red panda (Ailurus fulgens) is threatened across its range by detrimental human activities and rapid habitat changes necessitating captive breeding programs in various zoos globally to save this flagship species from extinction. One of the ultimate aims of ex situ conservation is reintroduction of endangered animals into their natural habitats while maintaining 90 % of the founder genetic diversity. Advances in molecular genetics and microsatellite genotyping techniques make it possible to accurately estimate genetic diversity of captive animals of unknown ancestry. Here we assess genetic diversity of the red panda population in Padmaja Naidu Himalayan Zoological Park, Darjeeling, which plays a pivotal role in ex situ conservation of red panda in India. We generated microsatellite genotypes of fifteen red pandas with a set of fourteen loci. This population is genetically diverse with 68 % observed heterozygosity (HO) and mean inbreeding (FIS) coefficient of 0.05. However population viability analysis reveals that this population has a very low survival probability (<2 %) and will rapidly loose its genetic diversity to 37 % mainly due to small population size and skewed male-biased sex ratio. Regular supplementation with a pair of adult individuals every five years will increase survival probability and genetic diversity to 99 and 61 % respectively and will also support future harvesting of individuals for reintroduction into the wild and exchange with other zoos.

  2. Genetic diversity in different populations of sloths assessed by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    N. MORAES

    Full Text Available In this study we analyzed a population of Bradypus torquatus with individuals originally distributed in different localities of Bahia, and two populations of B. variegatus with individuals from Bahia and São Paulo States. Using the DNA fingerprinting method, we assessed the genetic variability within and between populations. Analysis of the DNA profiles revealed genetic similarity indices ranging from 0.34 ± 0.07 to 0.87 ± 0.04. Similar low levels of genetic variability were found only in isolated mammalian populations or among related individuals. This study presents the first analyses of genetic diversity in sloth populations.

  3. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zong

    Full Text Available Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777. According to the coefficient of genetic differentiation (Fst = 0.1215, genetic variation within the populations (87.85% were remarkably higher than among populations (12.15%. The average gene flow (Nm = 1.8080 significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080 among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km among populations (r = 0.419, P = 0.005, suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic

  4. Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites

    DEFF Research Database (Denmark)

    Pham, Lan Doan; Do, Duy Ngoc; Binh, Nguyen Trong;

    2013-01-01

    geographic distances. Structure analysis indicated five homogeneous clusters. The Brahman, Lang Son, Ha Giang and U Dau Riu cattle were assigned to independent clusters while Nghe An, Thanh Hoa and Phu Yen cattle were grouped in a single cluster. We conclude that Vietnamese indigenous cattle have high levels...... of genetic diversity and distinct genetic structures. Based on these results, we recommend that for conservation homogenous populations (Nghe An, Thanh Hoa and Phu Yen) can be grouped to reduce costs and U Dau Riu, Lang Son and Ha Giang populations should be conserved separately to avoid loss of genetic...

  5. Assessing genetic diversity of wild populations of Japanese flounder using AFLP markers

    Institute of Scientific and Technical Information of China (English)

    XU Xiaofei; ZHANG Quanqi; WANG Zhigang; QI Jie; ZHANG Zhifeng; BAO Zhenmin; Heisuke Nakagawa

    2006-01-01

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate the genetic diversity of four wild geographical populations of Japanese flounder (Paralichthys olivaceus). A total of 775 loci (58.32% of which was polymorphic) in the range between 100 and 1 300 base pairs were detected from 110 individuals using seven primer combinations. The percentage of polymorphic loci detected by single primer combination for each population was calculated, ranging from 19.59% to 53.33%. Genetic similarities within and among the populations were calculated from the binary matrices of presence - absence. Phylogenetic tree of four populations was constructed by using the UPGMA method using PHYLIP Version 3.5. According to intrapopulation genetic similarities, CW population displayed the highest genetic diversity value and KY population had the lowest genetic diversity value.The distance between CW and CF populations was the farthest, which was possibly resulted from the farthest distance of Weihai of Shandong and Fujian of China compared with the geographical distance between other locations of populations. The subpopulation differentiation value ( Gst ) is 0.356 5, showing a certain extent of differentiation among the four geographical populations. AFLP technology was confirmed to be an effective tool to assess within- and among-population genetic diversity of Japanese flounder. The present survey provided significant insights for research in the Japanese flounder breeding program.

  6. Assessing Genetic Diversity Based on Gliadin Proteins in Aegilops cylindrica Populations from Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Toraj KHABIRI

    2013-02-01

    Full Text Available Wild wheat progenitors served as a valuable gene pool in breeding perspectives. In this respect, gliadins could be an important tool in assessing genetic variability as protein markers. Thus, genetic diversity of gliadin protein patterns in seventeen populations of Aegilops cylindrica collected from northwest of Iran were investigated using acid polyacrylamide gel electrophoresis. Results showed that the highest number of bands in the electrophoregrams were related to the ω type of geliadins. Conversely, the lowest number of bands were pertained to the β type of gliadins. Genetic diversity between populations was greater than within population variation. Assessment of total variation for the three gliadin types indicated that the highest total variation was related to β type while, the lowest one was belonged to ω type. Cluster analysis using complete linkage method divided populations into two separated groups in which genetic diversity does not follow from geographical distribution.

  7. Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    2014-04-01

    Full Text Available Molecular markers have proven to be invaluable tools for assessing plants’ genetic resources by improving our understanding with regards to the distribution and the extent of genetic variation within and among species. Recently developed marker technologies allow the uncovering of the extent of the genetic variation in an unprecedented way through increased coverage of the genome. Markers have diverse applications in plant sciences, but certain marker types, due to their inherent characteristics, have also shown their limitations. A combination of diverse marker types is usually recommended to provide an accurate assessment of the extent of intra- and inter-population genetic diversity of naturally distributed plant species on which proper conservation directives for species that are at risk of decline can be issued. Here, specifically, natural populations of forest trees are reviewed by summarizing published reports in terms of the status of genetic variation in the pure species. In general, for outbred forest tree species, the genetic diversity within populations is larger than among populations of the same species, indicative of a negligible local spatial structure. Additionally, as is the case for plants in general, the diversity at the phenotypic level is also much larger than at the marker level, as selectively neutral markers are commonly used to capture the extent of genetic variation. However, more and more, nucleotide diversity within candidate genes underlying adaptive traits are studied for signatures of selection at single sites. This adaptive genetic diversity constitutes important potential for future forest management and conservation purposes.

  8. Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes.

    Science.gov (United States)

    Cullingham, Catherine I; Moehrenschlager, Axel

    2013-12-01

    Reintroductions are increasingly used to reestablish species, but a paucity of long-term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small-population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos.

  9. Combining demographic and genetic factors to assess population vulnerability in stream species

    Science.gov (United States)

    Erin L, Landguth; Muhlfeld, Clint C.; Jones, Leslie W.; Waples, Robin S.; Whited, Diane; Lowe, Winsor H.; Lucotch, John; Neville, Helen; Luikart, Gordon

    2014-01-01

    Accelerating climate change and other cumulative stressors create an urgent need to understand the influence of environmental variation and landscape features on the connectivity and vulnerability of freshwater species. Here, we introduce a novel modeling framework for aquatic systems that integrates spatially explicit, individual-based, demographic and genetic (demogenetic) assessments with environmental variables. To show its potential utility, we simulated a hypothetical network of 19 migratory riverine populations (e.g., salmonids) using a riverscape connectivity and demogenetic model (CDFISH). We assessed how stream resistance to movement (a function of water temperature, fluvial distance, and physical barriers) might influence demogenetic connectivity, and hence, population vulnerability. We present demographic metrics (abundance, immigration, and change in abundance) and genetic metrics (diversity, differentiation, and change in differentiation), and combine them into a single vulnerability index for identifying populations at risk of extirpation. We considered four realistic scenarios that illustrate the relative sensitivity of these metrics for early detection of reduced connectivity: (1) maximum resistance due to high water temperatures throughout the network, (2) minimum resistance due to low water temperatures throughout the network, (3) increased resistance at a tributary junction caused by a partial barrier, and (4) complete isolation of a tributary, leaving resident individuals only. We then applied this demogenetic framework using empirical data for a bull trout (Salvelinus confluentus) metapopulation in the upper Flathead River system, Canada and USA, to assess how current and predicted future stream warming may influence population vulnerability. Results suggest that warmer water temperatures and associated barriers to movement (e.g., low flows, dewatering) are predicted to fragment suitable habitat for migratory salmonids, resulting in the loss

  10. Molecular Population Genetics

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  11. At risk, or not at risk: Epidemiological approaches for assessing psychiatric (genetic) risk factors in the general population

    NARCIS (Netherlands)

    Breetvelt, E.J.

    2013-01-01

    This thesis “At risk, or not at risk” describes several approaches - cross-sectional, prospective, phenotype mining and forward genetics - for assessing psychiatric (genetic) risk factors in a general population study. The aims were 1) to investigate how routine and follow-up data from populationbas

  12. Assessing the accuracy and power of population genetic inference from low-pass next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Jacob Evan Crawford

    2012-04-01

    Full Text Available Next-generation sequencing technologies have made it possible to address principle population genetic questions in almost any system, but high error rates associated with this data can introduce significant biases into downstream analyses, so careful consideration of experimental design and interpretation in essential in studies based on short-read sequencing. Exploration of population genetic analyses based on next-generation sequencing, has revealed some of the potential biases, but previous work has emphasized human population genetics, and further examination of parameters relevant to other systems is necessary, including when sample sizes are small and genetic variation is high. To assess experimental power to address several principal objectives of population genetic studies under these conditions, we simulated population samples under selective sweep, population growth, and population subdivision models and tested the power to recover the correct model from sequence polymorphism data inferred from 4x, 8x, and 15x short-read data. We found that estimates of population genetic differentiation and population growth parameters were systematically biased when inference was based on 4x sequencing, but biases were markedly reduced at even 8x read depth. We also found that the power to identify footprints of positive selection depends on an interaction between read depth and the strength of selection, with strong selection being recovered consistently at all read depths, but weak selection requiring deeper read depths for reliable detection. Although we have only explored a small subset of the many possible experimental designs, population genetic models and SNP calling approaches, our results reveal some general patterns and provide some assessment of what biases could be expected under similar experimental structures.

  13. Inter simple sequence repeat fingerprints for assess genetic diversity of tunisian garlic populations

    OpenAIRE

    Jabbes, Naouel; Geoffriau, Emmanuel; Le Clerc, Valérie; Dridi, Boutheina; Hannechi, Chérif

    2011-01-01

    Garlic (Allium sativum L.) that is cultivated in Tunisia is heterogeneous and unclassified with no registered local cultivars. At present, the level of genetic diversity in Tunisian garlic is almost unknown. Inter Simple Sequence Repeats (ISSR) genetic markers were therefore used to assess the genetic diversity and its distribution in 31 Tunisian garlic accessions with 4 French classified clones used as control. It was the first time that ISSR markers were used to detect diversity in garlic. ...

  14. Genetic diversity in mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs.

    Science.gov (United States)

    Gillies, A C; Navarro, C; Lowe, A J; Newton, A C; Hernández, M; Wilson, J; Cornelius, J P

    1999-12-01

    Swietenia macrophylla King, a timber species native to tropical America, is threatened by selective logging and deforestation. To quantify genetic diversity within the species and monitor the impact of selective logging, populations were sampled across Mesoamerica, from Mexico to Panama, and analysed for RAPD DNA variation. Ten decamer primers generated 102 polymorphic RAPD bands and pairwise distances were calculated between populations according to Nei, then used to construct a radial neighbour-joining dendrogram and examine intra- and interpopulation variance coefficients, by analysis of molecular variation (AMOVA). Populations from Mexico clustered closely together in the dendrogram and were distinct from the rest of the populations. Those from Belize also clustered closely together. Populations from Panama, Guatemala, Costa Rica, Nicaragua and Honduras, however, did not cluster closely by country but were more widely scattered throughout the dendrogram. This result was also reflected by an autocorrelation analysis of genetic and geographical distance. Genetic diversity estimates indicated that 80% of detected variation was maintained within populations and regression analysis demonstrated that logging significantly decreased population diversity (P = 0.034). This study represents one of the most wide-ranging surveys of molecular variation within a tropical tree species to date. It offers practical information for the future conservation of mahogany and highlights some factors that may have influenced the partitioning of genetic diversity in this species across Mesoamerica.

  15. Random amplified polymorphic DNA and amplified fragment length polymorphism assessment of genetic variation in Nicaraguan populations of Pinus oocarpa.

    Science.gov (United States)

    Díaz, V; Muñiz, L M; Ferrer, E

    2001-11-01

    Pinus oocarpa is the most widely distributed pine species of Mexico and Central America. The natural populations of Nicaragua have been affected by extensive human activities. As a consequence, their size has been reduced, and there is a serious threat to the development of mature woodland. Knowledge of population structures and the genetic diversity of the species is required for the design of sustainable use and conservation strategies. Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to assess the genetic variation among 10 populations from three geographical regions of Nicaragua. Both markers revealed high levels of diversity in these populations. G(ST) values and analyses of molecular variance (AMOVA) found that most variation was within populations but there is still a significant differentiation between populations indicating that the populations sampled cannot be considered a single panmictic unit. The partitions created by AMOVA also showed that there was little differentiation between populations of different regions, although cluster analyses based on RAPDs and AFLPs indicated a closer relationship among most of the populations from a same geographical region. Management of P. oocarpa in Nicaragua should be aimed to maintain the high degree of genetic variation within individual populations that is still observed even in some of these highly degraded populations.

  16. Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA.

    Science.gov (United States)

    Renau-Morata, Begoña; Nebauer, Sergio G; Sales, Ester; Allainguillaume, Joel; Caligari, Peter; Segura, Juan

    2005-05-01

    Cedrus atlantica (Pinaceae) is a large and exceptionally long-lived conifer native to the Rif and Atlas Mountains of North Africa. To assess levels and patterns of genetic diversity of this species, samples were obtained throughout the natural range in Morocco and from a forest plantation in Arbúcies, Girona (Spain) and analyzed using RAPD markers. Within-population genetic diversity was high and comparable to that revealed by isozymes. Managed populations harbored levels of genetic variation similar to those found in their natural counterparts. Genotypic analyses of molecular variance (AMOVA) found that most variation was within populations, but significant differentiation was also found between populations, particularly in Morocco. Bayesian estimates of F(ST) corroborated the AMOVA partitioning and provided evidence for population differentiation in C. atlantica. Both distance- and Bayesian-based clustering methods revealed that Moroccan populations comprise two genetically distinct groups. Within each group, estimates of population differentiation were close to those previously reported in other gymnosperms. These results are interpreted in the context of the postglacial history of the species and human impact. The high degree of among-group differentiation recorded here highlights the need for additional conservation measures for some Moroccan populations of C. atlantica.

  17. Genetic variation of the St. Lawrence beluga whale population assessed by DNA fingerprinting.

    Science.gov (United States)

    Patenaude, N J; Quinn, J S; Beland, P; Kingsley, M; White, B N

    1994-08-01

    Recent surveys suggest that the endangered St. Lawrence beluga (Delphinapterus leucas) population is not recovering significantly despite 20 years of protection. Dead individuals that have been autopsied show high levels of tumours and infections. This situation could be a result of pollution, loss of genetic variation, inbreeding depression or a combination of these factors. Analyses of DNA fingerprints from St. Lawrence belugas with three minisatellite probes (Jeffreys 33.6, 33.15 and M13) indicate a reduced level of genetic variation compared to Beaufort Sea animals. The average band-sharing between individuals of the St. Lawrence beluga population for the three probes (0.534, 0.573 and 0.478, respectively) was significantly higher than that of the Beaufort Sea beluga population (0.343, 0.424, 0.314, respectively). Higher levels of mean allele frequency in the St. Lawrence belugas (0.33 vs. 0.21) suggest that this population is composed of individuals which are related. Inbreeding depression could therefore be a factor in the lack of recovery of the St. Lawrence beluga population.

  18. A first assessment of genetic variation among Morchella esculenta (morel) populations.

    Science.gov (United States)

    Dalgleish, H J; Jacobson, K M

    2005-01-01

    Habitat loss and fragmentation have serious consequences for species diversity as well as genetic diversity within a species. As the most sought-after culinary fungus in the Midwest United States, morels (Morchella esculenta and related species) demand the attention of conservationists interested in preserving biological and genetic diversity. Little is known about the natural history of M. esculenta, which is critical information for understanding population dynamics as well as the impacts of habitat fragmentation and harvesting. We report initial results from our long-term studies of genetic variability among fruiting bodies at the Conard Environmental Research Area at Grinnell College, Grinnell, Iowa. Using random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR), a technique that has been successfully used to examine intrapopulation structure and detect clonal populations in numerous fungi, we found substantially higher levels of genetic polymorphism among 57 fruiting bodies than has been previously reported. Though laboratory studies indicate that the inbreeding potential for this fungus is high, we found little evidence for inbreeding, with only two pairs of the randomly chosen isolates having identical genotypes at the 34 loci examined. This work highlights the importance of further attempts to resolve important aspects of the morel life cycle regarding heterokaryosis and inbreeding potential.

  19. Genetic diversity in four populations of Nguni (Zulu sheep assessed by microsatellite analysis

    Directory of Open Access Journals (Sweden)

    Nokuthula W. Kunene

    2014-02-01

    Full Text Available Zulu sheep are found mainly in the rural KwaZulu-Natal province and the numbers are declining due to indiscriminate inbreeding. There is thus a need for phenotypic and genetic characterisation as a first phase for planning conservation strategies. Zulu sheep populations sampled were from Makhathini research station (MS (n=33, University of Zululand (UZ (n=21, a community at KwaMthethwa (KM (n=32 and from Msinga (EM (n=33. One European breed Appen - ninica (AP was used as out group. Microsatellite analysis using 29 microsatellite loci was used in this study. Among the Zulu sheep, the mean number of alleles per locus was the lowest (3.86 in UZ and the highest (6.24 was realised in EM. The mean values of observed and expected heterozygosity were 0.57 and 0.61, respectively. Neighbour-joining tree showed two main Zulu sheep clusters: the UZ, KM and MS sheep populations clustered together and the second cluster included only representatives from the EM population. The STRUCTURE analysis showed that KM, AP and EM were founded in separate clusters, whereas UZ and MS clustered together. The study demonstrated that there was a common origin of the population from the research stations (MS and UZ populations. It also demonstrated that the EM had a different history for the other three populations. This work suggests that exchange of rams could be useful in reducing inbreeding when considering conservation breeding programmes.

  20. Genetic diversity and population structure of 10 Chinese indigenous egg-type duck breeds assessed by microsatellite polymorphism

    Indian Academy of Sciences (India)

    Li Hui-Fang; Song Wei-Tao; Shu Jing-Ting; Chen Kuan-Wei; Zhu Wen-Qi; Han Wei; Xu Wen-Juan

    2010-04-01

    The genetic structure and diversity of 10 Chinese indigenous egg-type duck breeds were investigated using 29 microsatellite markers. The total number of animals examined were 569, on average 57 animals per breed were selected. The microsatellite marker set analysed provided 177 alleles (mean 6.1 alleles per locus, ranging from 3 to 10). All populations showed high levels of heterozygosity with the lowest estimate of 0.539 for the Jinding ducks, and the highest 0.609 observed for Jingjiang partridge ducks. The global heterozygote deficit across all populations ($F_{\\text{IT}}$) amounted to $-0.363$. About 10% of the total genetic variability originated from differences among breeds, with all loci contributing significantly. An unrooted consensus tree was constructed using the NeighborNet tree based on the Reynold’s genetic distance. The structure software was used to assess genetic clustering of these egg-type duck breeds. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. An integrated analysis was undertaken to obtain information on the population dynamics in Chinese indigenous egg-type duck breeds, and to better determine the conservation priorities.

  1. Population genetics without intraspecific data

    DEFF Research Database (Denmark)

    Thorne, Jeffrey L; Choi, Sang Chul; Yu, Jiaye

    2007-01-01

    A central goal of computational biology is the prediction of phenotype from DNA and protein sequence data. Recent models of sequence change use in silico prediction systems to incorporate the effects of phenotype on evolutionary rates. These models have been designed for analyzing sequence data...... populations, and parameters of interspecific models should have population genetic interpretations. We show, with two examples, how population genetic interpretations can be assigned to evolutionary models. The first example considers the impact of RNA secondary structure on sequence change, and the second...... reflects the tendency for protein tertiary structure to influence nonsynonymous substitution rates. We argue that statistical fit to data should not be the sole criterion for assessing models of sequence change. A good interspecific model should also yield a clear and biologically plausible population...

  2. Population Genetics with Fluctuating Population Sizes

    CERN Document Server

    Chotibut, Thiparat

    2016-01-01

    Standard neutral population genetics theory with a strictly fixed population size has important limitations. An alternative model that allows independently fluctuating population sizes and reproduces the standard neutral evolution is reviewed. We then study a situation such that the competing species are neutral at the equilibrium population size but population size fluctuations nevertheless favor fixation of one species over the other. In this case, a separation of timescales emerges naturally and allows adiabatic elimination of a fast population size variable to deduce the fluctuations-induced selection dynamics near the equilibrium population size. The results highlight the incompleteness of the standard population genetics with a strictly fixed population size.

  3. Assessment of genetic diversity among rice (Oryza sativa L. landrace populations under traditional production using microsatellite (SSR markers

    Directory of Open Access Journals (Sweden)

    Santosh Kumar, I.S.Bisht and K.V.Bhat

    2010-07-01

    Full Text Available Despite the surge of support for on farm conservation of plant genetic resources on global scale, no agreed set of scientificprinciples yet exists for its effective implementation. Farming communities in traditional agroecosystem have been playingan important role in conserving agricultural diversity and assessment at genetic level is a prerequisite for understandingdetrimental evolutionary patterns and devising suitable strategies for their conservation and sustainable use. The presentinvestigation was undertaken with the objectives of understanding farmer management of population structure of ricelandraces in traditional farming systems as well as inter- and intra-population molecular diversity at microsatellite loci. Themicrosatellites (STMS markers were used for analysing selected eleven rice landrace populations from various parts ofUttarakhand state in north-western Himalayas. A total number of 98 alleles were recorded, of which 91 were common andseven were rare. The mean number of alleles per locus was 6.13 and for different groups of rice landrace populations, namelyeight populations of common landrace and three populations of rare landraces were 4.96 and 4.37, respectively. The studyalso compared genebank-conserved (ex situ and on-farm-managed (in situ landrace populations of same named commonlandraces Jaulia and Thapachini, and revealed greater number of alleles per locus for on-farm-managed populations ascompared to the populations under static management. Significant number of alleles specific to populations under dynamicmanagement could also be recorded. Changes in yield parameters also seemed affected under dynamic farmer managementfor same rice landrace populations. Further, the rare landraces included in the present study were more diverse than thecommon landrace populations. The rare landraces were distinct entities largely representing locally common alleles. Geneticdifferentiation results from the joint effects of various

  4. Applying new genetic approaches to improve quality of population assessment of green and loggerhead turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As the NOAA-Fisheries? National Sea Turtle Genetics Lab, the SWFSC Marine Turtle Genetics Program has the lead responsibility for generating, analyzing and...

  5. Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Carly A Conran

    2016-01-01

    Full Text Available Several different approaches are available to clinicians for determining prostate cancer (PCa risk. The clinical validity of various PCa risk assessment methods utilizing single nucleotide polymorphisms (SNPs has been established; however, these SNP-based methods have not been compared. The objective of this study was to compare the three most commonly used SNP-based methods for PCa risk assessment. Participants were men (n = 1654 enrolled in a prospective study of PCa development. Genotypes of 59 PCa risk-associated SNPs were available in this cohort. Three methods of calculating SNP-based genetic risk scores (GRSs were used for the evaluation of individual disease risk such as risk allele count (GRS-RAC, weighted risk allele count (GRS-wRAC, and population-standardized genetic risk score (GRS-PS. Mean GRSs were calculated, and performances were compared using area under the receiver operating characteristic curve (AUC and positive predictive value (PPV. All SNP-based methods were found to be independently associated with PCa (all P 0.05 for comparisons between the three methods, and all three SNP-based methods had a significantly higher AUC than family history (all P < 0.05. Results from this study suggest that while the three most commonly used SNP-based methods performed similarly in discriminating PCa from non-PCa at the population level, GRS-PS is the method of choice for risk assessment at the individual level because its value (where 1.0 represents average population risk can be easily interpreted regardless of the number of risk-associated SNPs used in the calculation.

  6. Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean.

    Directory of Open Access Journals (Sweden)

    Lyza Johnston

    Full Text Available Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp. and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations.

  7. Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean.

    Science.gov (United States)

    Johnston, Lyza; Miller, Margaret W; Baums, Iliana B

    2012-01-01

    Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp.) and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations.

  8. At the brink of supercoloniality: genetic, behavioral and chemical assessments of population structure of the desert ant Cataglyphis niger

    Directory of Open Access Journals (Sweden)

    Maya eSaar

    2014-05-01

    Full Text Available The nesting habits of ants play an important role in structuring ant populations. They vary from monodomy, a colony occupies a single nest, via polydomy, a colony occupies multiple adjacent nests, to supercoloniality, a colony spans over large territories comprising dozen to thousands nests without having any boundaries. The population structure of the desert ant Cataglyphis niger, previously considered to form supercolonies, was studied using genetic, chemical and behavioral tools in plots of 50x50 meters at two distinct populations. At the Palmahim site, the plot comprised 15 nests that according to the genetic analysis constituted three colonies. Likewise at the Rishon Leziyyon site 14 nests constituted 5 genetic colonies. In both sites, both chemical analysis and the behavioral (aggression tests confirmed the colony genetic architecture. The behavioral tests also revealed that aggression between colonies within a population was higher than that exhibited between colonies of different populations, suggesting the occurrence of the nasty neighbor phenomenon. In contrast to supercolony structure previously reported in another population of this species, the presently studied populations were composed of polydomous colonies. However, both the genetic and chemical data revealed that the inter-colonial differences between sites were larger than those within site, suggesting some within-site population viscosity. Thus, C. niger exhibits flexible nesting characteristics, from polydomy to supercoloniality, and can be considered at the brink of supercoloniality. We attribute the differences in population structure among sites to the intensity of intraspecific competition.

  9. A Direct Assessment of the Role of Genetic Drift in Determining Allele Frequency Variation in Populations of EUPHYDRYAS EDITHA

    OpenAIRE

    Mueller, Laurence D.; Wilcox, Bruce A.; Ehrlich, Paul R.; David G Heckel; Murphy, Dennis D.

    1985-01-01

    Estimates of allele frequencies at six polymorphic loci were collected over eight generations in two populations of Euphydryas editha . We have estimated, in addition, the effective population size for each generation for both populations with results from mark-recapture and other field data. The variation in allele frequencies generated by random genetic drift was then studied using computer simulations and our direct estimates of effective population size. Substantial differences between ob...

  10. Genetic diversity and differentiation of sea trout (Salmo trutta) populations in Lithuanian rivers assessed by microsatellite DNA variation.

    Science.gov (United States)

    Samuiloviene, Aurelija; Kontautas, Antanas; Gross, Riho

    2009-11-01

    The genetic diversity and differentiation of sea trout were studied in three river basins in Lithuania: Akmena-Dane, Bartuva, and Nemunas. A total of 282 individuals were genotyped at eight microsatellite loci. A similar level of genetic diversity was found in all of the populations studied: mean allelic richness ranged from 3.64 to 5.03, and average expected heterozygosity ranged from 0.588 to 0.721. Significant genetic divergence was observed among the different river basins as well as between populations within the drainages. All pairwise F (ST) values were highly significant, ranging from 0.027 to 0.197. The analysis of molecular variance showed rather weak hierarchical population structuring within the Nemunas basin, which may be explained by extensive gene flow among different river basins or, alternatively, reflect the influence of artificial breeding. Information on genetic diversity and differentiation of the Lithuanian sea trout populations will be useful for future management decisions.

  11. Applying new genetic approaches to improve quality of population assessment of leatherback turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project addresses gaps in life history information for sea turtles that have been long-standing needs for building accurate population models. The goal is to...

  12. Population genetic structure in Phyla scaberrima from Mexico and Colombia assessed by AFLP markers and implications for conservation.

    Science.gov (United States)

    Androcioli, L G; Ruas, E A; Rodrigues, L A; Ruas, C F; Perilla, H E R; Ruas, P M

    2015-12-02

    Phyla scaberrima (Verbenaceae) is a herbaceous perennial species that is distributed from Mexico (center of origin) to Colombia, growing in forest and swamp edges or grasslands from sea level up to an altitude of 1800 m. The chemical properties and uses in popular medicine have drastically affected the population size of this species. In this study, we investigated genetic variability in populations of P. scaberrima using AFLP markers. Three AFLP primer combinations rendered a total of 997 markers in a sample of 131 individuals from five populations, including two populations from Mexico and three from Colombia. The average percentage of polymorphic loci, gene diversity and Shannon-Wiener index were 46.62, 0.0695, and 0.119, respectively. Analysis of molecular variance showed that the distribution of the genetic variability within populations (85.41%) was higher than between groups (8.11%) and between populations (6.48%). Principal coordinate analysis and Bayesian analysis for the K number of clusters showed that the individuals were dispersed in five (K= 5) clusters. The low levels of genetic diversity observed in these populations demonstrated that the populations from Mexico and Colombia need urgent management to recover their genetic variability.

  13. Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate

    OpenAIRE

    Srivathsan, Amrita; Ang, Andie; Vogler, Alfried P; Meier, Rudolf

    2016-01-01

    Background Rapid habitat loss and degradation are responsible for population decline in a growing number of species. Understanding the natural history of these species is important for designing conservation strategies, such as habitat enhancements or ex-situ conservation. The acquisition of observational data may be difficult for rare and declining species, but metagenomics and metabarcoding can provide novel kinds of information. Here we use these methods for analysing fecal samples from an...

  14. Ocean currents help explain population genetic structure

    Science.gov (United States)

    White, Crow; Selkoe, Kimberly A.; Watson, James; Siegel, David A.; Zacherl, Danielle C.; Toonen, Robert J.

    2010-01-01

    Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management. PMID:20133354

  15. Assessing the genetic influence of ancient sociopolitical structure: micro-differentiation patterns in the population of Asturias (Northern Spain.

    Directory of Open Access Journals (Sweden)

    Antonio F Pardiñas

    Full Text Available The human populations of the Iberian Peninsula are the varied result of a complex mixture of cultures throughout history, and are separated by clear social, cultural, linguistic or geographic barriers. The stronger genetic differences between closely related populations occur in the northern third of Spain, a phenomenon commonly known as "micro-differentiation". It has been argued and discussed how this form of genetic structuring can be related to both the rugged landscape and the ancient societies of Northern Iberia, but this is difficult to test in most regions due to the intense human mobility of previous centuries. Nevertheless, the Spanish autonomous community of Asturias shows a complex history which hints of a certain isolation of its population. This, joined together with a difficult terrain full of deep valleys and steep mountains, makes it suitable for performing a study of genetic structure, based on mitochondrial DNA and Y-Chromosome markers. Our analyses do not only show that there are micro-differentiation patterns inside the Asturian territory, but that these patterns are strikingly similar between both uniparental markers. The inference of barriers to gene flow also indicates that Asturian populations from the coastal north and the mountainous south seem to be relatively isolated from the rest of the territory. These findings are discussed in light of historic and geographic data and, coupled with previous evidence, show that the origin of the current genetic patterning might indeed lie in Roman and Pre-Roman sociopolitical divisions.

  16. Assessing the genetic influence of ancient sociopolitical structure: micro-differentiation patterns in the population of Asturias (Northern Spain).

    Science.gov (United States)

    Pardiñas, Antonio F; Roca, Agustín; García-Vazquez, Eva; López, Belén

    2012-01-01

    The human populations of the Iberian Peninsula are the varied result of a complex mixture of cultures throughout history, and are separated by clear social, cultural, linguistic or geographic barriers. The stronger genetic differences between closely related populations occur in the northern third of Spain, a phenomenon commonly known as "micro-differentiation". It has been argued and discussed how this form of genetic structuring can be related to both the rugged landscape and the ancient societies of Northern Iberia, but this is difficult to test in most regions due to the intense human mobility of previous centuries. Nevertheless, the Spanish autonomous community of Asturias shows a complex history which hints of a certain isolation of its population. This, joined together with a difficult terrain full of deep valleys and steep mountains, makes it suitable for performing a study of genetic structure, based on mitochondrial DNA and Y-Chromosome markers. Our analyses do not only show that there are micro-differentiation patterns inside the Asturian territory, but that these patterns are strikingly similar between both uniparental markers. The inference of barriers to gene flow also indicates that Asturian populations from the coastal north and the mountainous south seem to be relatively isolated from the rest of the territory. These findings are discussed in light of historic and geographic data and, coupled with previous evidence, show that the origin of the current genetic patterning might indeed lie in Roman and Pre-Roman sociopolitical divisions.

  17. Integrating Fisheries Dependent and Independent Approaches to assess Fisheries, Abundance, Diversity, Distribution and Genetic Connectivity of Red Sea Elasmobranch Populations

    KAUST Repository

    Spaet, Julia L.

    2014-05-01

    The Red Sea has long been recognized as a global hotspot of marine biodiversity. Ongoing overfishing, however, is threatening this unique ecosystem, recently leading to the identification of the Red Sea as one of three major hotspots of extinction risk for sharks and rays worldwide. Elasmobranch catches in Saudi Arabian Red Sea waters are unregulated, often misidentified and unrecorded, resulting in a lack of species-specific landings information, which would be vital for the formulation of effective management strategies. Here we employed an integrated approach of fisheries dependent and independent survey methods combined with molecular tools to provide biological, ecological and fisheries data to aid in the assessment of the status of elasmobranch populations in the Red Sea. Over the course of two years, we conducted market surveys at the biggest Saudi Arabian fish market in Jeddah. Market landings were dominated by, mostly immature individuals - implying both recruitment and growth overfishing. Additionally, we employed baited remote underwater video (BRUVS) and longline surveys along almost the entire length of the Red Sea coast of Saudi Arabia as well as at selected reef systems in Sudan. The comparison of catch per unit effort (CPUE) data for Saudi Arabian Red Sea BRUVS and longline surveys to published data originating from non-Red Sea ocean systems revealed CPUE values several orders of magnitude lower for both survey methods in the Red Sea compared to other locations around the world. Finally, we infered the regional population structure of four commercially important shark species between the Red Sea and the Western Indian Ocean.We genotyped nearly 2000 individuals at the mitochondrial control region as well as a total of 20 microsatellite loci. Genetic homogeneity could not be rejected for any of the four species across the spatial comparison. Based on high levels of region-wide exploitation, we suggest that, for management purposes, the population

  18. Genetic interest assessment

    Science.gov (United States)

    Doughney, Erin

    Genetics is becoming increasingly integrated into peoples' lives. Different measures have been taken to try and better genetics education. This thesis examined undergraduate students at the University of North Texas not majoring in the life sciences interest in genetic concepts through the means of a Likert style survey. ANOVA analysis showed there was variation amongst the interest level in different genetic concepts. In addition age and lecture were also analyzed as contributing factors to students' interest. Both age and lecture were evaluated to see if they contributed to the interest of students in genetic concepts and neither showed statistical significance. The Genetic Interest Assessment (GIA) serves to help mediate the gap between genetic curriculum and students' interest.

  19. RAD SNP markers as a tool for conservation of dolphinfish Coryphaena hippurus in the Mediterranean Sea: Identification of subtle genetic structure and assessment of populations sex-ratios.

    Science.gov (United States)

    Maroso, Francesco; Franch, Rafaella; Dalla Rovere, Giulia; Arculeo, Marco; Bargelloni, Luca

    2016-08-01

    Dolphinfish is an important fish species for both commercial and sport fishing, but so far limited information is available on genetic variability and pattern of differentiation of dolphinfish populations in the Mediterranean basin. Recently developed techniques allow genome-wide identification of genetic markers for better understanding of population structure in species with limited genome information. Using restriction-site associated DNA analysis we successfully genotyped 140 individuals of dolphinfish from eight locations in the Mediterranean Sea at 3324 SNP loci. We identified 311 sex-related loci that were used to assess sex-ratio in dolphinfish populations. In addition, we identified a weak signature of genetic differentiation of the population closer to Gibraltar Strait in comparison to other Mediterranean populations, which might be related to introgression of individuals from Atlantic. No further genetic differentiation could be detected in the other populations sampled, as expected considering the known highly mobility of the species. The results obtained improve our knowledge of the species and can help managing dolphinfish stock in the future.

  20. Genetic consequences of population decline in the European otter ( Lutra lutra ) : an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993

    DEFF Research Database (Denmark)

    Pertoldi, C.; Hansen, Michael Møller; Loeschcke, V.;

    2001-01-01

    The European otter (Lutra lutra) was common in Denmark until the 1960s, but its present distribution encompasses only a minor part of the country. The aim of this study was to assess whether the recent population decline has resulted in loss of genetic variability and to gain further insight...... alleles, suggested that a drastic long-term population decline has taken place, which could have started more than 2000 years ago, possibly due to ancient anthropogenic pressure. Finally, assignment tests and pairwise F-ST values suggested weak but statistically significant genetic differentiation between...... the extant population and historical samples of otters from other regions in Denmark, more likely reflecting differentiation among original populations rather than recent drift....

  1. Wolf population genetics in Europe

    DEFF Research Database (Denmark)

    Hindrikson, Maris; Remm, Jaanus; Pilot, Malgorzata

    2017-01-01

    The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human–carnivore conflict, which has led to long-term persecution of wolves......, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population...... (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite studies and also included...

  2. Microsatellite data analysis for population genetics.

    Science.gov (United States)

    Kim, Kyung Seok; Sappington, Thomas W

    2013-01-01

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of variation at selectively neutral marker loci, and microsatellites continue to be a popular choice of marker. In recent decades, software programs to estimate population genetics parameters have been developed at an increasing pace as computational science and theoretical knowledge advance. Numerous population genetics software programs are presently available to analyze microsatellite genotype data, but only a handful are commonly employed for calculating parameters such as genetic variation, genetic structure, patterns of spatial and temporal gene flow, population demography, individual population assignment, and genetic relationships within and between populations. In this chapter, we introduce statistical analyses and relevant population genetic software programs that are commonly employed in the field of population genetics and molecular ecology.

  3. Genetic Diversity and Population Structure in Vicia faba L. Landraces and Wild Related Species Assessed by Nuclear SSRs

    Science.gov (United States)

    Silva, Manuela; Lopes, Susana; Viegas, Wanda; Veloso, Maria Manuela

    2016-01-01

    Faba bean (Vicia faba L.) is a facultative cross-pollinating legume crop with a great importance for food and feed due to its high protein content as well as the important role in soil fertility and nitrogen fixation. In this work we evaluated genetic diversity and population structure of faba bean accessions from the Western Mediterranean basin and wild related species. For that purpose we screened 53 V. faba, 2 V. johannis and 7 V. narbonensis accessions from Portugal, Spain and Morocco with 28 faba bean Single Sequence Repeats (SSR). SSR genotyping showed that the number of alleles detected per locus for the polymorphic markers ranged between 2 and 10, with Polymorphic Information Content (PIC) values between 0.662 and 0.071, and heterozygosity (HO) between 0–0.467. Heterozygosity and inbreeding coefficient levels indicate a higher level of inbreeding in wild related species than in cultivated Vicia. The analysis of molecular variance (AMOVA) showed a superior genetic diversity within accessions than between accessions even from distant regions. These results are in accordance to population structure analysis showing that individuals from the same accession can be genetically more similar to individuals from far away accessions, than from individuals from the same accession. In all three levels of analysis (whole panel of cultivated and wild accessions, cultivated faba bean accessions and Portuguese accessions) no population structure was observed based on geography or climatic factors. Differences between V. narbonensis and V. johannis are undetectable although these wild taxa are clearly distinct from V. faba accessions. Thus, a limited gene flow occurred between cultivated accessions and wild relatives. Contrastingly, the lack of population structure seems to indicate a high degree of gene flow between V. faba accessions, possibly explained by the partially allogamous habit in association with frequent seed exchange/introduction. PMID:27168146

  4. Stochastic problems in population genetics

    CERN Document Server

    Maruyama, Takeo

    1977-01-01

    These are" notes based on courses in Theoretical Population Genetics given at the University of Texas at Houston during the winter quarter, 1974, and at the University of Wisconsin during the fall semester, 1976. These notes explore problems of population genetics and evolution involving stochastic processes. Biological models and various mathematical techniques are discussed. Special emphasis is given to the diffusion method and an attempt is made to emphasize the underlying unity of various problems based on the Kolmogorov backward equation. A particular effort was made to make the subject accessible to biology students who are not familiar with stochastic processes. The references are not exhaustive but were chosen to provide a starting point for the reader interested in pursuing the subject further. Acknowledgement I would like to use this opportunity to express my thanks to Drs. J. F. Crow, M. Nei and W. J. Schull for their hospitality during my stays at their universities. I am indebted to Dr. M. Kimura...

  5. Population genetics of African ungulates

    DEFF Research Database (Denmark)

    Lorenzen, Eline

    Molecular genetic techniques were used to gain insights into the evolutionary forces that have shaped the present day diversity of African savannah ungu-lates, which constitute the most species-rich mega faunal assemblage on earth. The studies included in this thesis represent individual species......-specific data sets, which are used to elucidate evolutionary processes of importance to the savannah ungulate community. Patterns of DNA variation were analyzed to assess the genetic signatures of Pleistocene refugia and investigate aspects of speciation, intraspecific structuring, hybridization, and historic...

  6. Alignment-free phylogenetics and population genetics.

    Science.gov (United States)

    Haubold, Bernhard

    2014-05-01

    Phylogenetics and population genetics are central disciplines in evolutionary biology. Both are based on comparative data, today usually DNA sequences. These have become so plentiful that alignment-free sequence comparison is of growing importance in the race between scientists and sequencing machines. In phylogenetics, efficient distance computation is the major contribution of alignment-free methods. A distance measure should reflect the number of substitutions per site, which underlies classical alignment-based phylogeny reconstruction. Alignment-free distance measures are either based on word counts or on match lengths, and I apply examples of both approaches to simulated and real data to assess their accuracy and efficiency. While phylogeny reconstruction is based on the number of substitutions, in population genetics, the distribution of mutations along a sequence is also considered. This distribution can be explored by match lengths, thus opening the prospect of alignment-free population genomics.

  7. Deeper insight into maternal genetic assessments and demographic history for Egyptian indigenous chicken populations using mtDNA analysis

    Directory of Open Access Journals (Sweden)

    Marwa A. Eltanany

    2016-09-01

    Full Text Available This study principally sought to reveal the demographic expansion of Egyptian indigenous chickens (EIC using representative breeds: Sinai (North, Fayoumi (Middle and Dandarawi (South of Egypt as well as to deeply clarify their genetic diversity, possible matrilineal origin and dispersal routes. A total of 33 partial mitochondrial DNA sequences were generated from EIC and compared with a worldwide reference dataset of 1290 wild and domestic chicken sequences. Study populations had 12 polymorphic variable sites and 7 haplotypes. A lack of maternal substructure between EIC was detected (FST = 0.003. The unimodal mismatch distribution and negative values of Tajima’s D (−0.659 and Fu’s Fs (−0.157 indicated demographic expansion among EIC and pointed to Fayoumi as the oldest EIC population. Egyptian haplotypes were clustered phylogenetically into two divergent clades. Their phylogeography revealed an ancient single maternal lineage of Egyptian chickens likely derived from Indian-Subcontinent. Moreover, a recent maternal commercial heritage possibly originated in Yunnan-Province and/or surrounding areas was admixed restrictedly into Sinai. It is implied that Egypt was an entry point for Indian chicken into Africa and its further dispersal route to Europe. This study provides a clue supporting the previous assumption that urged utilizing consistent founder populations having closely related progenitors for synthetizing a stabilized homogenous crossbreed as a sustainable discipline in breeding program.

  8. Bacterial Population Genetics in a Forensic Context

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations

  9. (Genetic structure of natural populations)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs.

  10. Microbial diversity - insights from population genetics

    NARCIS (Netherlands)

    Mes, T.H.M.

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, Ne, is one of the parameters that determines population genetic

  11. Conservation genetics of managed ungulate populations

    Science.gov (United States)

    Scribner, Kim T.

    1993-01-01

    Natural populations of many species are increasingly impacted by human activities. Perturbations are particularly pronunced for large ungulates due in part to sport and commercial harvest, to reductions and fragmentation of native habitat, and as the result of reintroductions. These perturbations affect population size, sex and age composition, and population breeding structure, and as a consequence affect the levels and partitioning of genetic variation. Three case histories highlighting long-term ecological genetic research on mule deer Odocoileus hemionus (Rafinesque, 1817), white-tailed deer O. virginianus (Zimmermann, 1780), and Alpine ibex Capra i. ibex Linnaeus, 1758 are presented. Joint examinations of population ecological and genetic data from several populations of each species reveal: (1) that populations are not in genetic equilibrium, but that allele frequencies and heterozygosity change dramatically over time and among cohorts produced in successive years, (2) populations are genetically structured over short and large geographic distances reflecting local breeding structure and patterns of gene flow, respectively; however, this structure is quite dynamic over time, due in part to population exploitation, and (3) restocking programs are often undertaken with small numbers of founding individuals resulting in dramatic declines in levels of genetic variability and increasing levels of genetic differentiation among populations due to genetic drift. Genetic characteristics have and will continue to provide valuable indirect sources of information relating enviromental and human perturbations to changes in population processes.

  12. SERDP CU-1129 Biological Assessment for Characterizing Contamination Risk at the Genetic-, Individual-, and Population-Level

    Science.gov (United States)

    2004-04-14

    amphipod. Environ. Tox. Chem. 18, 1783-1790. Hagan, C.R., Rudin, C.M. (2002). Mobile genetic element activation and genotoxic cancer therapy : potential...Mol. Gen. Genet. 257, 497-504 (1998). 13. Arkhipova, I.R., & Morrison, H.G. Three retrotransposon families in the genome of Giardia lamblia: two

  13. Genetic variation among white croaker populations

    Science.gov (United States)

    Han, Zhiqiang; Gao, Tianxiang; Zhuang, Zhimeng; Tang, Qisheng

    2008-02-01

    To investigate the genetic structures and differentiation of different wild populations of white croaker ( Pennahia argentata), horizontal starch gel electrophoresis was performed on 133 individuals collected from five different locations in China and Japan. The eleven enzyme systems revealed 15 loci, of which eleven were polymorphic. The percentage of polymorphic loci of white croaker populations varied from 6.67% to 53.33%; the mean observed and expected heterozygosity ranged from 0.0033 to 0.0133 and 0.0032 to 0.0191, respectively. The expected heterozygosity revealed a low genetic variability for white croaker in comparison with other marine fishes. The genetic distances between populations ranged from 0.00005 to 0.00026. A weak differentiation was observed within each clade and between clades; and no significant differences in gene frequencies among populations were observed in white croaker. Among the five populations, three Chinese populations showed more genetic diversity than that in Japanese populations.

  14. A direct assessment of genetic contribution to the incidence of coronary infarct in the general population Greek EPIC cohort

    Science.gov (United States)

    To estimate the fraction of the incidence of coronary infarct attributable to the combined action of common genetic polymorphisms likely to be related to this condition, we conducted a case-control study nested within the Greek component of the European Prospective Investigation into Cancer and Nutr...

  15. Bacterial Population Genetics in a Forensic Context

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations

  16. How Ebola impacts genetics of Western lowland gorilla populations.

    Directory of Open Access Journals (Sweden)

    Pascaline J Le Gouar

    Full Text Available BACKGROUND: Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed. METHODOLOGY/PRINCIPAL FINDINGS: We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected. Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population. CONCLUSIONS/SIGNIFICANCE: Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.

  17. Population genetic diversity and fitness in multiple environments

    Directory of Open Access Journals (Sweden)

    McGreevy Thomas J

    2010-07-01

    Full Text Available Abstract Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater and stressful conditions (diluted seawater. The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation

  18. What Use Is Population Genetics?

    Science.gov (United States)

    Charlesworth, Brian

    2015-07-01

    The Genetic Society of America's Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. For over 40 years, 2015 recipient Brian Charlesworth has been a leader in both theoretical and empirical evolutionary genetics, making substantial contributions to our understanding of how evolution acts on genetic variation. Some of the areas in which Charlesworth's research has been most influential are the evolution of sex chromosomes, transposable elements, deleterious mutations, sexual reproduction, and life history. He also developed the influential theory of background selection, whereby the recurrent elimination of deleterious mutations reduces variation at linked sites, providing a general explanation for the correlation between recombination rate and genetic variation.

  19. Genetic drift of HIV populations in culture.

    Directory of Open Access Journals (Sweden)

    Yegor Voronin

    2009-03-01

    Full Text Available Populations of Human Immunodeficiency Virus type 1 (HIV-1 undergo a surprisingly large amount of genetic drift in infected patients despite very large population sizes, which are predicted to be mostly deterministic. Several models have been proposed to explain this phenomenon, but all of them implicitly assume that the process of virus replication itself does not contribute to genetic drift. We developed an assay to measure the amount of genetic drift for HIV populations replicating in cell culture. The assay relies on creation of HIV populations of known size and measurements of variation in frequency of a neutral allele. Using this assay, we show that HIV undergoes approximately ten times more genetic drift than would be expected from its population size, which we defined as the number of infected cells in the culture. We showed that a large portion of the increase in genetic drift is due to non-synchronous infection of target cells. When infections are synchronized, genetic drift for the virus is only 3-fold higher than expected from its population size. Thus, the stochastic nature of biological processes involved in viral replication contributes to increased genetic drift in HIV populations. We propose that appreciation of these effects will allow better understanding of the evolutionary forces acting on HIV in infected patients.

  20. An integration of historical records and genetic data to the assessment of global distribution and population structure in Octopus vulgaris

    Directory of Open Access Journals (Sweden)

    Daniele eDe Luca

    2014-09-01

    Full Text Available The common octopus (Octopus vulgaris Cuvier, 1797 is one of the most widely distributed species belonging to the genus Octopus as well as an important commercially harvested species and a model organism for behavioral biology of invertebrates. It has been described for the first time in the Mediterranean Sea but it is considered a cosmopolitan species inhabiting the temperate and tropical sea of the northern and southern hemispheres. In the last few years, several species previously considered as O. vulgaris have been recognized as new species, limiting the distributional range of vulgaris and reinforcing the thesis of a species complex. Where it is an important fishery resource, numerous studies have been conducted in order to define its genetic structure with the purpose of managing different stocks. However, many locations are still poorly investigated from this point of view and others are under taxonomic revision to exclude or confirm its occurrence. Here we provide a summary of the current status of knowledge on distribution and genetic structure in this species in the different oceanic regions.

  1. Genetic stock assessment of spawning arctic cisco (Coregonus autumnalis) populations by flow cytometric determination of DNA content.

    Science.gov (United States)

    Lockwood, S F; Bickham, J W

    1991-01-01

    Intraspecific variation in cellular DNA content was measured in five Coregonus autumnalis spawning populations from the Mackenzie River drainage, Canada, using flow cytometry. The rivers assayed were the Peel, Arctic Red, Mountain, Carcajou, and Liard rivers. DNA content was determined from whole blood preparations of fish from all rivers except the Carcajou, for which kidney tissue was used. DNA content measurements of kidney and blood preparations of the same fish from the Mountain River revealed statistically indistinguishable results. Mosaicism was found in blood preparations from the Peel, Arctic Red, Mountain, and Liard rivers, but was not observed in kidney tissue preparations from the Mountain or Carcajou rivers. The Liard River sample had significantly elevated mean DNA content relative to the other four samples; all other samples were statistically indistinguishable. Significant differences in mean DNA content among spawning stocks of a single species reinforces the need for adequate sample sizes of both individuals and populations when reporting "C" values for a particular species.

  2. Stocking impact and temporal stability of genetic composition in a brackish northern pike population ( Esox lucius L.), assessed using microsatellite DNA analysis of historical and contemporary samples

    DEFF Research Database (Denmark)

    Larsen, Peter Foged; Hansen, Michael Møller; Eg Nielsen, Einar;

    2005-01-01

    During the last decade, brackish northern pike populations in Denmark have been subject to stocking programmes, using nonindigenous pike from freshwater lakes, in order to compensate for drastic population declines. The present study was designed to investigate the genetic impact of stocking...... freshwater pike into a brackish pike population in Stege Nor, Denmark. We analysed polymorphism at eight microsatellite loci in samples representing the indigenous Stege Nor population prior to stocking (ie from 1956 to 1957), along with a sample of the contemporary Stege Nor population and samples from...

  3. Genetics of autoimmune diseases: insights from population genetics.

    Science.gov (United States)

    Ramos, Paula S; Shedlock, Andrew M; Langefeld, Carl D

    2015-11-01

    Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Autoimmune diseases (ADs) are a family of complex heterogeneous disorders with similar underlying mechanisms characterized by immune responses against self. Collectively, ADs are common, exhibit gender and ethnic disparities, and increasing incidence. As natural selection is an important influence on human genetic variation, and immune function genes are enriched for signals of positive selection, it is thought that the prevalence of AD risk alleles seen in different population is partially the result of differing selective pressures (for example, due to pathogens). With the advent of high-throughput technologies, new analytical methodologies and large-scale projects, evidence for the role of natural selection in contributing to the heritable component of ADs keeps growing. This review summarizes the genetic regions associated with susceptibility to different ADs and concomitant evidence for selection, including known agents of selection exerting selective pressure in these regions. Examples of specific adaptive variants with phenotypic effects are included as an evidence of natural selection increasing AD susceptibility. Many of the complexities of gene effects in different ADs can be explained by population genetics phenomena. Integrating AD susceptibility studies with population genetics to investigate how natural selection has contributed to genetic variation that influences disease risk will help to identify functional variants and elucidate biological mechanisms. As such, the study of population genetics in human population holds untapped potential for elucidating the genetic causes of human disease and more rapidly focusing to personalized medicine.

  4. Genetic analysis in the Collaborative Cross breeding population.

    Science.gov (United States)

    Philip, Vivek M; Sokoloff, Greta; Ackert-Bicknell, Cheryl L; Striz, Martin; Branstetter, Lisa; Beckmann, Melissa A; Spence, Jason S; Jackson, Barbara L; Galloway, Leslie D; Barker, Paul; Wymore, Ann M; Hunsicker, Patricia R; Durtschi, David C; Shaw, Ginger S; Shinpock, Sarah; Manly, Kenneth F; Miller, Darla R; Donohue, Kevin D; Culiat, Cymbeline T; Churchill, Gary A; Lariviere, William R; Palmer, Abraham A; O'Hara, Bruce F; Voy, Brynn H; Chesler, Elissa J

    2011-08-01

    Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such populations may be subject to consequences of inbreeding depression. The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. Five of the eight founders are common laboratory strains, and three are wild-derived. Since its inception, the partially inbred CC has been characterized for physiological, morphological, and behavioral traits. The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. Processes including inbreeding depression and its impact on allelic and phenotypic diversity were assessed. Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. However, some focal evidence of allele purging was detected including a suggestive QTL for litter size in a location of changing allele frequency. Despite these inescapable pressures, high diversity and precision for genetic mapping remain. These results demonstrate the potential of the CC population once completed and highlight implications for development of related populations.

  5. Microbial diversity--insights from population genetics.

    Science.gov (United States)

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  6. Great ape genetic diversity and population history

    DEFF Research Database (Denmark)

    Prado-Martinez, Javier; Sudmant, Peter H; Kidd, Jeffrey M

    2013-01-01

    Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape...... species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central....../eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost...

  7. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus.

    Science.gov (United States)

    Furlan, Elise; Stoklosa, J; Griffiths, J; Gust, N; Ellis, R; Huggins, R M; Weeks, A R

    2012-04-01

    Genetic diversity generally underpins population resilience and persistence. Reductions in population size and absence of gene flow can lead to reductions in genetic diversity, reproductive fitness, and a limited ability to adapt to environmental change increasing the risk of extinction. Island populations are typically small and isolated, and as a result, inbreeding and reduced genetic diversity elevate their extinction risk. Two island populations of the platypus, Ornithorhynchus anatinus, exist; a naturally occurring population on King Island in Bass Strait and a recently introduced population on Kangaroo Island off the coast of South Australia. Here we assessed the genetic diversity within these two island populations and contrasted these patterns with genetic diversity estimates in areas from which the populations are likely to have been founded. On Kangaroo Island, we also modeled live capture data to determine estimates of population size. Levels of genetic diversity in King Island platypuses are perilously low, with eight of 13 microsatellite loci fixed, likely reflecting their small population size and prolonged isolation. Estimates of heterozygosity detected by microsatellites (H(E)= 0.032) are among the lowest level of genetic diversity recorded by this method in a naturally outbreeding vertebrate population. In contrast, estimates of genetic diversity on Kangaroo Island are somewhat higher. However, estimates of small population size and the limited founders combined with genetic isolation are likely to lead to further losses of genetic diversity through time for the Kangaroo Island platypus population. Implications for the future of these and similarly isolated or genetically depauperate populations are discussed.

  8. The genetic structure of the Swedish population.

    Directory of Open Access Journals (Sweden)

    Keith Humphreys

    Full Text Available Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise F(st indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to

  9. Population Dynamics of Genetic Regulatory Networks

    Science.gov (United States)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  10. The geometry of population genetics

    CERN Document Server

    Akin, Ethan

    1979-01-01

    The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono­ graph I hope to show that his ideas illuminate many aspects of pop­ ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...

  11. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data

    DEFF Research Database (Denmark)

    Pinto, M Alice; Henriques, Dora; Chávez-Galarza, Julio

    2014-01-01

    to preserve the genetic integrity of A. m. mellifera, protected populations had a measurable component of their gene pool derived from commercial C-lineage honey bees. Here we used both sequence data from the tRNAleu-cox2 intergenic mtDNA region and a genome-wide scan, with over 1183 single nucleotide...

  12. A Population of Assessment Tasks

    Science.gov (United States)

    Daro, Phil; Burkhardt, Hugh

    2012-01-01

    We propose the development of a "population" of high-quality assessment tasks that cover the performance goals set out in the "Common Core State Standards for Mathematics." The population will be published. Tests are drawn from this population as a structured random sample guided by a "balancing algorithm."

  13. The population genetics of evolutionary rescue.

    Directory of Open Access Journals (Sweden)

    H Allen Orr

    2014-08-01

    Full Text Available Evolutionary rescue occurs when a population that is threatened with extinction by an environmental change adapts to the change sufficiently rapidly to survive. Here we extend the mathematical theory of evolutionary rescue. In particular, we model evolutionary rescue to a sudden environmental change when adaptation involves evolution at a single locus. We consider adaptation using either new mutations or alleles from the standing genetic variation that begin rare. We obtain several results: i the total probability of evolutionary rescue from either new mutation or standing variation; ii the conditions under which rescue is more likely to involve a new mutation versus an allele from the standing genetic variation; iii a mathematical description of the U-shaped curve of total population size through time, conditional on rescue; and iv the time until the average population size begins to rebound as well as the minimal expected population size experienced by a rescued population. Our analysis requires taking into account a subtle population-genetic effect (familiar from the theory of genetic hitchhiking that involves "oversampling" of those lucky alleles that ultimately sweep to high frequency. Our results are relevant to conservation biology, experimental microbial evolution, and medicine (e.g., the dynamics of antibiotic resistance.

  14. Philosophy of race meets population genetics.

    Science.gov (United States)

    Spencer, Quayshawn

    2015-08-01

    In this paper, I respond to four common semantic and metaphysical objections that philosophers of race have launched at scholars who interpret recent human genetic clustering results in population genetics as evidence for biological racial realism. I call these objections 'the discreteness objection', 'the visibility objection', 'the very important objection', and 'the objectively real objection.' After motivating each objection, I show that each one stems from implausible philosophical assumptions about the relevant meaning of 'race' or the nature of biological racial realism. In order to be constructive, I end by offering some advice for how we can productively critique attempts to defend biological racial realism based on recent human genetic clustering results. I also offer a clarification of the relevant human-population genetic research.

  15. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef.

    Science.gov (United States)

    van Oppen, Madeleine J H; Lukoschek, Vimoksalehi; Berkelmans, Ray; Peplow, Lesa M; Jones, Alison M

    2015-01-01

    Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes

  16. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Madeleine J.H. van Oppen

    2015-07-01

    Full Text Available Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative

  17. The Genetic Deafness in Chinese Population

    Institute of Scientific and Technical Information of China (English)

    LIU Xuezhong; Ouyang Xiaomei; Denise Yan

    2006-01-01

    Deafness is an etiologically heterogeneous trait with many known genetic, environmental causes or a combination thereof. The identification of more than 120 independent genes for deafness has provided profound new insights into the pathophysiology of hearing. However, recent findings indicate that a large proportion of both syndromic and nonsyndromic forms of deafness in Chinese population are caused by a small number of mutations.This review is focused on syndromic and nonsyndromic deafness as well as on the latest information linking inherited mitochondrial pathologies to a variety of etiologies of sensorineural deafness in Chinese population. Better understanding of the genetic causes of deafness in Chinese population is important for accurate genetics counseling and early diagnosis for timely intervention and treatment options.

  18. Genetic Structure of the Spanish Population

    Directory of Open Access Journals (Sweden)

    Gutiérrez Marta

    2010-05-01

    Full Text Available Abstract Background Genetic admixture is a common caveat for genetic association analysis. Therefore, it is important to characterize the genetic structure of the population under study to control for this kind of potential bias. Results In this study we have sampled over 800 unrelated individuals from the population of Spain, and have genotyped them with a genome-wide coverage. We have carried out linkage disequilibrium, haplotype, population structure and copy-number variation (CNV analyses, and have compared these estimates of the Spanish population with existing data from similar efforts. Conclusions In general, the Spanish population is similar to the Western and Northern Europeans, but has a more diverse haplotypic structure. Moreover, the Spanish population is also largely homogeneous within itself, although patterns of micro-structure may be able to predict locations of origin from distant regions. Finally, we also present the first characterization of a CNV map of the Spanish population. These results and original data are made available to the scientific community.

  19. Population and genomic lessons from genetic analysis of two Indian populations.

    Science.gov (United States)

    Juyal, Garima; Mondal, Mayukh; Luisi, Pierre; Laayouni, Hafid; Sood, Ajit; Midha, Vandana; Heutink, Peter; Bertranpetit, Jaume; Thelma, B K; Casals, Ferran

    2014-10-01

    Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.

  20. Genetic affinities between endogamous and inbreeding populations of Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Borkar Minal

    2007-04-01

    Full Text Available Abstract Background India has experienced several waves of migration since the Middle Paleolithic. It is believed that the initial demic movement into India was from Africa along the southern coastal route, approximately 60,000–85,000 years before present (ybp. It has also been reported that there were two other major colonization which included eastward diffusion of Neolithic farmers (Elamo Dravidians from Middle East sometime between 10,000 and 7,000 ybp and a southern dispersal of Indo Europeans from Central Asia 3,000 ybp. Mongol entry during the thirteenth century A.D. as well as some possible minor incursions from South China 50,000 to 60,000 ybp may have also contributed to cultural, linguistic and genetic diversity in India. Therefore, the genetic affinity and relationship of Indians with other world populations and also within India are often contested. In the present study, we have attempted to offer a fresh and immaculate interpretation on the genetic relationships of different North Indian populations with other Indian and world populations. Results We have first genotyped 20 tetra-nucleotide STR markers among 1800 north Indian samples of nine endogamous populations belonging to three different socio-cultural strata. Genetic distances (Nei's DA and Reynold's Fst were calculated among the nine studied populations, Caucasians and East Asians. This analysis was based upon the allelic profile of 20 STR markers to assess the genetic similarity and differences of the north Indian populations. North Indians showed a stronger genetic relationship with the Europeans (DA 0.0341 and Fst 0.0119 as compared to the Asians (DA 0.1694 and Fst – 0.0718. The upper caste Brahmins and Muslims were closest to Caucasians while middle caste populations were closer to Asians. Finally, three phylogenetic assessments based on two different NJ and ML phylogenetic methods and PC plot analysis were carried out using the same panel of 20 STR markers and 20

  1. Genetic Heterogeneity in Algerian Human Populations.

    Science.gov (United States)

    Bekada, Asmahan; Arauna, Lara R; Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David

    2015-01-01

    The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region.

  2. Genetic differentiation and phylogenetic relationships among greek silurus glanis and silurus aristotelis (Pisces, siluridae) populations, assessed by PCR-RFLP analysis of mitochondrial DNA segments

    Science.gov (United States)

    Triantafyllidis; Abatzopoulos; Economidis

    1999-05-01

    Mitochondrial DNA diversity of seven Silurus glanis populations (six from Greece and one from the Danube Delta) and three populations of the endemic Greek Silurus aristotelis was investigated. RFLP analysis of four regions of mitochondrial DNA (cytochrome b, D-loop, ND-5/6) amplified by PCR was used. Ten and nine haplotypes were found in S. glanis and S. aristotelis, respectively. No haplotype was shared between the two species. Significant geographical substructuring was observed in the distribution of haplotypes, with most populations possessing private haplotypes. These haplotypes can serve as genetic 'tags' and therefore warrant protection. Haplotype diversity was very low for all Greek S. glanis populations, possibly because the small size and large annual fluctuations of Greek inland waters do not support large fish populations. Nucleotide divergence was in the range of 0.00-0.52% among S. glanis populations, and 0. 00-0.11% among S. aristotelis populations. Historical factors such as glaciations could account for these low values. The value of 6. 75% sequence divergence of the two species refutes the classification of the two species in different genera, as proposed by some authors. This study constitutes the first attempt, based on mitochondrial molecular data, to address the complicated evolutionary history of the two species which belong to the widely distributed and economically important Siluridae family.

  3. Genetic analysis in the Collaborative Cross breeding population

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek [University of Tennessee, Knoxville (UTK); Sokoloff, Greta [ORNL; Ackert-Bicknell, Cheryl [Jackson Laboratory, The, Bar Harbor, ME; Striz, Martin [University of Kentucky, Lexington; Branstetter, Lisa R [ORNL; Beckmann, Melissa [ORNL; Spence, Jason S [ORNL; Jackson, Barbara L [ORNL; Galloway, Leslie D [ORNL; Barker, Gene [ORNL; Wymore, Ann M [Oak Ridge National Laboratory (ORNL); Hunsicker, Patricia R [ORNL; Durtschi, David W [University of Kentucky, Lexington; Shaw, Ginger S [University of Kentucky, Lexington; Shinpock, Sarah G [ORNL; Manly, Kenneth F [University of Kentucky, Lexington; Miller, Darla R [ORNL; Donahue, Kevin [University at Buffalo, NY; Culiat, Cymbeline T [ORNL; Churchill, Gary A [Jackson Laboratory, The, Bar Harbor, ME; Lariviere, William R [University of Pittsburgh; Palmer, Abraham [University of Chicago; O' Hara, Bruce [University of Kentucky; Voy, Brynn H [ORNL; Chesler, Elissa J [ORNL

    2011-01-01

    Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such populations may be subject to consequences of inbreeding depression. The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. Five of the eight founders are common laboratory strains, and three are wild-derived. Since its inception, the partially inbred CC has been characterized for physiological, morphological, and behavioral traits. The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. Processes including inbreeding depression and its impact on allelic and phenotypic diversity were assessed. Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. However, some focal evidence of allele purging was detected including a suggestive QTL for litter size in a location of changing allele frequency. Despite these inescapable pressures, high diversity and precision for genetic mapping remain. These results demonstrate the potential of the CC population once completed and highlight implications for development of related populations. Supplementary material consists of Supplementary Table 1 Phenotypic means, variances, ranges and heritabilities for all traits and generations, Supplementary Table

  4. Genetic Diversity Analysis of the Natural Populations of Mediterra­nean Mussels [Mytilus galloprovincialis (Lmk.] in Agadir Bay: Assess­ment of the Molecular Polymorphism and Environmental Impact

    Directory of Open Access Journals (Sweden)

    Amal Korrida

    2010-07-01

    Full Text Available Mediterranean mussel (Mytilus galloprovincialis Lmk has a great environmental and economic importance for Morocco. This work studies the genetic structure and impact of chemical pollution on three different marine populations of Mytilus galloprovincialis that live within Agadir bay. Three collections were made at two clean sites (Cape Ghir and Cape Aglou and at an impacted site exposed to intense boating and industrial activities (Anza. A 300-bp portion of the mitochondrial DNA coding-region Cytochrome C Oxidase subunit 1 (COI was studied by polymerase chain reaction (PCR and DNA sequencing reactions to assess and evaluate amounts of polymorphism in each site. Genetic analysis using COI for 64 individuals showed no significant differentiation between the three subpopulations. AMOVA demonstrated that only 2.83% of variation exists between populations. Besides the genetic evidence presented herein, mussel’s adaptation mechanisms and strategies to marine pollution are also discussed.

  5. Genetic classification of populations using supervised learning.

    LENUS (Irish Health Repository)

    Bridges, Michael

    2011-01-01

    There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case-control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed unsupervised. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available.In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.

  6. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Institute of Scientific and Technical Information of China (English)

    Jiandong YANG; Zhihe ZHANG; Fujun SHEN; Xuyu YANG; Liang ZHANG; Limin CHEN; Wenping ZHANG; Qing ZHU; Rong HOU

    2011-01-01

    Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species.Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China.Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation.Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population.The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve.Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations.All individuals from the same subpopulation were assigned to one cluster.This indicates high gene flow between subpopulations.F statistic analyses revealed a low Fls-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR.Additionally,our data show a high level of genetic diversity for the Tangjiahe population.Mean allele number (A),Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangiiahe population was 5.9,5.173 and 0.703,respectively.This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6):717-724,2011].

  7. A population genetics model of linkage disequilibrium in admixed populations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Understanding linkage disequilibrium (LD) created in admixed population and the rate of decay in the disequilibrium over evolution is an important subject in population genetics theory and in disease gene mapping in human populations. The present study represents the theoretical investigation of effects of gene frequencies, levels of LD and admixture proportions of donor populations on the evolutionary dynamics of the LD of the admixed population. We examined the conditions under which the admixed population reached linkage equilibrium or the peak level of the LD. The study reveals the inappropriateness in approximating the dynamics of the LD generated by population admixture by the commonly used formula in literature. An appropriate equation for the dynamics is proposed. The distinct feature of the newly suggested formula is that the value of the nonlinear component of the LD remains constant in the first generation of the population evolution. Comparison between the predicted disequilibrium dynamics shows that the error will be caused by using the old formula, and thus resulting in a misguidance in using the evolutionary information of the admixed population in gene mapping.

  8. Genetic diversity of Vietnamese domestic chicken populations as decision-making support for conservation strategies

    NARCIS (Netherlands)

    Pham, H.T.M.; Berthouly-Salazar, C.; Crooijmans, R.P.M.A.

    2013-01-01

    The aims of this study were to assess the genetic diversity of 17 populations of Vietnamese local chickens (VNN) and one Red Jungle Fowl population, together with six chicken populations of Chinese origin (CNO), and to provide priorities supporting the conservation of genetic resources using 20 micr

  9. Deep Learning for Population Genetic Inference.

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S

    2016-03-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  10. Deep Learning for Population Genetic Inference.

    Directory of Open Access Journals (Sweden)

    Sara Sheehan

    2016-03-01

    Full Text Available Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data to the output (e.g., population genetic parameters of interest. We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history. Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  11. Population Genetics of Three Dimensional Range Expansions

    Science.gov (United States)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  12. Genetics in population health science: strategies and opportunities.

    Science.gov (United States)

    Belsky, Daniel W; Moffitt, Terrie E; Caspi, Avshalom

    2013-10-01

    Translational research is needed to leverage discoveries from the frontiers of genome science to improve public health. So far, public health researchers have largely ignored genetic discoveries, and geneticists have ignored important aspects of population health science. This mutual neglect should end. In this article, we discuss 3 areas where public health researchers can help to advance translation: (1) risk assessment: investigate genetic profiles as components in composite risk assessments; (2) targeted intervention: conduct life-course longitudinal studies to understand when genetic risks manifest in development and whether intervention during sensitive periods can have lasting effects; and (3) improved understanding of environmental causation: collaborate with geneticists on gene-environment interaction research. We illustrate with examples from our own research on obesity and smoking.

  13. Reliability of genetic bottleneck tests for detecting recent population declines

    NARCIS (Netherlands)

    Peery, M. Zachariah; Kirby, Rebecca; Reid, Brendan N.; Stoelting, Ricka; Doucet-Beer, Elena; Robinson, Stacie; Vasquez-Carrillo, Catalina; Pauli, Jonathan N.; Palsboll, Per J.

    2012-01-01

    The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popula

  14. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    Science.gov (United States)

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  15. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    Directory of Open Access Journals (Sweden)

    Sara Melito

    Full Text Available BACKGROUND: Helichrysum italicum (Asteraceae is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. METHODS: H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. KEY RESULTS: The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. CONCLUSIONS: The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  16. Change in genetic size of small-closed populations: lessons from a domestic mammal population

    Directory of Open Access Journals (Sweden)

    Farhad Ghafouri-Kesbi

    2010-01-01

    Full Text Available The aim of this study was to monitor changes in genetic size of a small-closed population of Iranian Zandi sheep, by using pedigree information from animals born between 1991 and 2005. The genetic size was assessed by using measures based on the probability of identity-by-descend of genes (coancestry, f, and effective population size, Ne, as well as measures based on probability of gene origin (effective number of founders, f e, effective number of founder genomes, f g, and effective number of non-founder genomes, f ne. Average coancestry, or the degree of genetic similarity of individuals, increased from 0.81% to 1.44% during the period 1993 to 2005, at the same time that Ne decreased from 263 to 93. The observed trend for f e was irregular throughout the experiment in a way that f e was 68, 87, 77, 92, and 80 in 1993, 1996, 1999, 2002, and 2005, respectively. Simultaneously, f g, the most informative effective number, decreased from 61 to 35. The index of genetic diversity (GD which was obtained from estimates of f g,decreased about 2% throughout the period studied. In addition, a noticeable reduction was observed in the estimates of f ne from 595 in 1993 to 61 in 2005. The higher than 1 ratio of f e to f g indicated the presence of bottlenecks and genetic drift in the development of this population of Zandi sheep. From 1993 to 1999, f ne was much higher than f e, thereby indicating that with respect to loss of genetic diversity, the unequal contribution of founders was more important than the random genetic drift in non-founder generations. Subsequently, random genetic drift in non-founder generations was the major reason for f e> f ne. The minimization of average coancestry in new reproductive individuals was recommended as a means of preserving the population against a further loss in genetic diversity.

  17. Estimating the contribution of genetic variants to difference in incidence of disease between population groups.

    Science.gov (United States)

    Moonesinghe, Ramal; Ioannidis, John P A; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-08-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene-environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal.

  18. An Assessment of Genetic Diversity and Drought Tolerance in Argan Tree (Argania spinosa) Populations: Potential for the Development of Improved Drought Tolerance

    Science.gov (United States)

    Chakhchar, Abdelghani; Haworth, Matthew; El Modafar, Cherkaoui; Lauteri, Marco; Mattioni, Claudia; Wahbi, Said; Centritto, Mauro

    2017-01-01

    The argan tree (Argania spinosa) occurs in a restricted area of Southwestern Morocco characterized by low water availability and high evapotranspirative demand. Despite the adaptation of the argan tree to drought stress, the extent of the argan forest has declined markedly due to increased aridity, land use changes and the expansion of olive cultivation. The oil of the argan seed is used for cooking and as the basis for numerous cosmetics. The identification of argan tree varieties with enhanced drought tolerance may minimize the economic losses associated with the decline of the argan forest and constrain the spread of desertification. In this study we collected argan ecotypes from four contrasting habitats and grew them under identical controlled environment conditions to investigate their response to drought. Leaf gas exchange analysis indicated that the argan ecotypes showed a high degree of adaptation to drought stress, maintaining photosynthetic activity at low levels of foliar water content and co-ordinating photosynthesis, stomatal behavior and metabolism. The stomata of the argan trees were highly sensitive to increased leaf to air vapor pressure deficit, representing an adaptation to growth in an arid environment where potential evapotranspiration is high. However, despite originating in contrasting environments, the four argan ecotypes exhibited similar gas exchange characteristics under both fully irrigated and water deficit conditions. Population genetic analyses using microsatellite markers indicated a high degree of relatedness between the four ecotypes; indicative of both artificial selection and the transport of ecotypes between different provinces throughout centuries of management of the argan forest. The majority of genetic variation across the four populations (71%) was observed between individuals, suggesting that improvement of argan is possible. Phenotypic screening of physiological responses to drought may prove effective in identifying

  19. Genetic diversity in introduced populations with an Allee effect.

    Science.gov (United States)

    Wittmann, Meike J; Gabriel, Wilfried; Metzler, Dirk

    2014-09-01

    A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations.

  20. Experimental separation of genetic and demographic factors on extinction risk in wild populations.

    Science.gov (United States)

    Wootton, J Timothy; Pfister, Catherine A

    2013-10-01

    When populations reach small size, an extinction risk vortex may arise from genetic (inbreeding depression, genetic drift) and ecological (demographic stochasticity, Allee effects, environmental fluctuation) processes. The relative contribution of these processes to extinction in wild populations is unknown, but important for conserving endangered species. In experimental field populations of a harvested kelp (Postelsia palmaeformis), in which we independently varied initial genetic diversity (completely inbred, control, outbred) and population size, ecological processes dominated the risk of extinction, whereas the contribution of genetic diversity was slight. Our results match theoretical predictions that demographic processes will generally doom small populations to extinction before genetic effects act strongly, prioritize detailed ecological analysis over descriptions of genetic structure in assessing conservation of at-risk species, and highlight the need for field experiments manipulating both demographics and genetic structure on long-term extinction risk.

  1. A population genetics view of animal domestication.

    Science.gov (United States)

    Larson, Greger; Burger, Joachim

    2013-04-01

    The fundamental shift associated with the domestication of plants and animals allowed for a dramatic increase in human population sizes and the emergence of modern society. Despite its importance and the decades of research devoted to studying it, questions regarding the origins and processes of domestication remain. Here, we review recent theoretical advances and present a perspective that underscores the crucial role that population admixture has played in influencing the genomes of domestic animals over the past 10000 years. We then discuss novel approaches to generating and analysing genetic data, emphasising the importance of an explicit hypothesis-testing approach for the inference of the origins and subsequent evolution and demography of domestic animals. By applying next-generation sequencing technology alongside appropriate biostatistical methodologies, a substantially deeper understanding of domestication is on the horizon.

  2. The population genetics of cooperative gene regulation

    Directory of Open Access Journals (Sweden)

    Stewart Alexander J

    2012-09-01

    Full Text Available Abstract Background Changes in gene regulatory networks drive the evolution of phenotypic diversity both within and between species. Rewiring of transcriptional networks is achieved either by changes to transcription factor binding sites or by changes to the physical interactions among transcription factor proteins. It has been suggested that the evolution of cooperative binding among factors can facilitate the adaptive rewiring of a regulatory network. Results We use a population-genetic model to explore when cooperative binding of transcription factors is favored by evolution, and what effects cooperativity then has on the adaptive re-writing of regulatory networks. We consider a pair of transcription factors that regulate multiple targets and overlap in the sets of target genes they regulate. We show that, under stabilising selection, cooperative binding between the transcription factors is favoured provided the amount of overlap between their target genes exceeds a threshold. The value of this threshold depends on several population-genetic factors: strength of selection on binding sites, cost of pleiotropy associated with protein-protein interactions, rates of mutation and population size. Once it is established, we find that cooperative binding of transcription factors significantly accelerates the adaptive rewiring of transcriptional networks under positive selection. We compare our qualitative predictions to systematic data on Saccharomyces cerevisiae transcription factors, their binding sites, and their protein-protein interactions. Conclusions Our study reveals a rich set of evolutionary dynamics driven by a tradeoff between the beneficial effects of cooperative binding at targets shared by a pair of factors, and the detrimental effects of cooperative binding for non-shared targets. We find that cooperative regulation will evolve when transcription factors share a sufficient proportion of their target genes. These findings help to

  3. Genetic Diversity of RAPD Mark for Natural Davidia involucrata Populations

    Institute of Scientific and Technical Information of China (English)

    Congwen Song; Manzhu Bao

    2006-01-01

    The genetic diversity and genetic variation within and among populations of five natural Davidia involucrata populations were studied from 13 primers based on random amplified polymorphic DNA (RAPD) analysis.The results show that natural D.involucrata population has a rich genetic diversity,and the differences among populations are significant.Twenty-six percent of genetic variation exists among D.involucrata populations,which is similar to that of the endangered tree species Liriodendron chinense and Cathaya argyrophylla in China,but different from more widely distributed tree species.The analysis of the impacts of sampling method on genetic diversity parameters shows that the number of sampled individuals has little effect on the effective number of alleles and genetic diversity,but has a marked effect on the genetic differentiation among populations and gene flows.This study divides the provenances of D.involucrata into two parts,namely,a southeast and a northwest provenance.

  4. Population size and time since island isolation determine genetic diversity loss in insular frog populations.

    Science.gov (United States)

    Wang, Supen; Zhu, Wei; Gao, Xu; Li, Xianping; Yan, Shaofei; Liu, Xuan; Yang, Ji; Gao, Zengxiang; Li, Yiming

    2014-02-01

    Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land-bridge archipelagoes offer ideal model systems for identifying the long-term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square-root-transformed) and population size (log-transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations.

  5. Demography and genetic structure of a recovering grizzly bear population

    Science.gov (United States)

    Kendall, K.C.; Stetz, J.B.; Boulanger, J.; Macleod, A.C.; Paetkau, David; White, Gary C.

    2009-01-01

    Grizzly bears (brown bears; Ursus arctos) are imperiled in the southern extent of their range worldwide. The threatened population in northwestern Montana, USA, has been managed for recovery since 1975; yet, no rigorous data were available to monitor program success. We used data from a large noninvasive genetic sampling effort conducted in 2004 and 33 years of physical captures to assess abundance, distribution, and genetic health of this population. We combined data from our 3 sampling methods (hair trap, bear rub, and physical capture) to construct individual bear encounter histories for use in Huggins-Pledger closed mark-recapture models. Our population estimate, N?? = 765 (95% CI = 715-831) was more than double the existing estimate derived from sightings of females with young. Based on our results, the estimated known, human-caused mortality rate in 2004 was 4.6% (95% CI = 4.2-4.9%), slightly above the 4% considered sustainable; however, the high proportion of female mortalities raises concern. We used location data from telemetry, confirmed sightings, and genetic sampling to estimate occupied habitat. We found that grizzly bears occupied 33,480 km2 in the Northern Continental Divide Ecosystem (NCDE) during 1994-2007, including 10,340 km beyond the Recovery Zone. We used factorial correspondence analysis to identify potential barriers to gene flow within this population. Our results suggested that genetic interchange recently increased in areas with low gene flow in the past; however, we also detected evidence of incipient fragmentation across the major transportation corridor in this ecosystem. Our results suggest that the NCDE population is faring better than previously thought, and they highlight the need for a more rigorous monitoring program.

  6. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?

    NARCIS (Netherlands)

    Piotti, A.; Leonardi, S.; Heuertz, M.; Buiteveld, J.; Geburek, T.; Gerber, S.; Kramer, K.; Vettori, C.; Vendramin, G.G.

    2013-01-01

    The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which

  7. Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population.

    Science.gov (United States)

    Lefèvre, F; Fady, B; Fallour-Rubio, D; Ghosn, D; Bariteau, M

    2004-12-01

    Recently established, temperate tree populations combine a high level of differentiation for adaptive traits, suggesting rapid genetic evolution, with a high level of genetic diversity within population, suggesting a limited impact of genetic drift and purifying selection. To study experimentally the evolutionary forces in a recently established population, we assessed the spatial and temporal patterns of genetic diversity within a disjunct population of Cedrus atlantica established 140 years ago in south-eastern France from a North African source. The population is expanding through natural regeneration. Three generations were sampled, including founder trees. We analysed 12 isozyme loci, three of which were previously found in tight association with selected genes, and quantitative traits. No bottleneck effect was detected in the founder generation, but a simple test of allelic association revealed an initial disequilibrium which disappeared in the following generations. The impact of genetic drift during secondary evolution was limited, as suggested by the weak temporal differentiation. The genetic load was not reduced after 3 generations, and the quantitative variation for adaptive traits did not change either. Thus, initial genetic changes first proceed from a rapid re-organisation of the diversity through mating and recombination, whereas genetic erosion through drift and selection is delayed due to temporal and spatial stochasticity. Two life-history traits of trees contribute to slowing down the processes of genetic erosion: perenniality and large spatial scale. Thus, one would expect recently established tree populations to have a higher diversity than older ones, which seems in accordance with experimental surveys.

  8. Genetic drift and the population history of the Irish travellers.

    Science.gov (United States)

    Relethford, John H; Crawford, Michael H

    2013-02-01

    The Irish Travellers are an itinerant group in Ireland that has been socially isolated. Two hypotheses have been proposed concerning the genetic origin of the Travellers: (1) they are genetically related to Roma populations in Europe that share a nomadic lifestyle or (2) they are of Irish origin, and genetic differences from the rest of Ireland reflect genetic drift. These hypotheses were tested using data on 33 alleles from 12 red blood cell polymorphism loci. Comparison with other European, Roma, and Indian populations shows that the Travellers are genetically distinct from the Roma and Indian populations and most genetically similar to Ireland, in agreement with earlier genetic analyses of the Travellers. However, the Travellers are still genetically distinct from other Irish populations, which could reflect some external gene flow and/or the action of genetic drift in a small group that was descended from a small number of founders. In order to test the drift hypothesis, we analyzed genetic distances comparing the Travellers to four geographic regions in Ireland. These distances were then compared with adjusted distances that account for differential genetic drift using a method developed by Relethford (Hum Biol 68 (1996) 29-44). The unadjusted distances show the genetic distinctiveness of the Travellers. After adjustment for the expected effects of genetic drift, the Travellers are equidistant from the other Irish samples, showing their Irish origins and population history. The observed genetic differences are thus a reflection of genetic drift, and there is no evidence of any external gene flow.

  9. Potential for Incorporation of Genetic Polymorphism Data in Human Health Risk Assessment

    Science.gov (United States)

    This overview summarizes several EPA assessment publications evaluating the potential impact of genetic polymorphisms in ten metabolizing enzymes on the variability in enzyme function across ethnically diverse populations.

  10. Highlighting nonlinear patterns in population genetics datasets

    KAUST Repository

    Alanis Lobato, Gregorio

    2015-01-30

    Detecting structure in population genetics and case-control studies is important, as it exposes phenomena such as ecoclines, admixture and stratification. Principal Component Analysis (PCA) is a linear dimension-reduction technique commonly used for this purpose, but it struggles to reveal complex, nonlinear data patterns. In this paper we introduce non-centred Minimum Curvilinear Embedding (ncMCE), a nonlinear method to overcome this problem. Our analyses show that ncMCE can separate individuals into ethnic groups in cases in which PCA fails to reveal any clear structure. This increased discrimination power arises from ncMCE\\'s ability to better capture the phylogenetic signal in the samples, whereas PCA better reflects their geographic relation. We also demonstrate how ncMCE can discover interesting patterns, even when the data has been poorly pre-processed. The juxtaposition of PCA and ncMCE visualisations provides a new standard of analysis with utility for discovering and validating significant linear/nonlinear complementary patterns in genetic data.

  11. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    Science.gov (United States)

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  12. Genetic structure of Indian populations based on fifteen autosomal microsatellite loci

    Directory of Open Access Journals (Sweden)

    Bindu G Hima

    2006-05-01

    Full Text Available Abstract Background Indian populations endowed with unparalleled genetic complexity have received a great deal of attention from scientists world over. However, the fundamental question over their ancestry, whether they are all genetically similar or do exhibit differences attributable to ethnicity, language, geography or socio-cultural affiliation is still unresolved. In order to decipher their underlying genetic structure, we undertook a study on 3522 individuals belonging to 54 endogamous Indian populations representing all major ethnic, linguistic and geographic groups and assessed the genetic variation using autosomal microsatellite markers. Results The distribution of the most frequent allele was uniform across populations, revealing an underlying genetic similarity. Patterns of allele distribution suggestive of ethnic or geographic propinquity were discernible only in a few of the populations and was not applicable to the entire dataset while a number of the populations exhibited distinct identities evident from the occurrence of unique alleles in them. Genetic substructuring was detected among populations originating from northeastern and southern India reflective of their migrational histories and genetic isolation respectively. Conclusion Our analyses based on autosomal microsatellite markers detected no evidence of general clustering of population groups based on ethnic, linguistic, geographic or socio-cultural affiliations. The existence of substructuring in populations from northeastern and southern India has notable implications for population genetic studies and forensic databases where broad grouping of populations based on such affiliations are frequently employed.

  13. Transmission function models of finite population genetic algorithms

    NARCIS (Netherlands)

    Kemenade, C.H.M. van; Kok, J.N.; La Poutré, J.A.; Thierens, D.

    1998-01-01

    Infinite population models show a deterministic behaviour. Genetic algorithms with finite populations behave non-deterministicly. For small population sizes, the results obtained with these models differ strongly from the results predicted by the infinite population model. When the population size i

  14. Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations.

    Science.gov (United States)

    Gomaa, Nasr H; Montesinos-Navarro, Alicia; Alonso-Blanco, Carlos; Picó, F Xavier

    2011-09-01

    Currently, there exists a limited knowledge on the extent of temporal variation in population genetic parameters of natural populations. Here, we study the extent of temporal variation in population genetics by genotyping 151 genome-wide SNP markers polymorphic in 466 individuals collected from nine populations of the annual plant Arabidopsis thaliana during 4 years. Populations are located along an altitudinal climatic gradient from Mediterranean to subalpine environments in NE Spain, which has been shown to influence key demographic attributes and life cycle adaptations. Genetically, A. thaliana populations were more variable across space than over time. Common multilocus genotypes were detected several years in the same population, whereas low-frequency multilocus genotypes appeared only 1 year. High-elevation populations were genetically poorer and more variable over time than low-elevation populations, which might be caused by a higher overall demographic instability at higher altitudes. Estimated effective population sizes were low but also showed a significant decreasing trend with increasing altitude, suggesting a deeper impact of genetic drift at high-elevation populations. In comparison with single-year samplings, repeated genotyping over time captured substantially higher amount of genetic variation contained in A. thaliana populations. Furthermore, repeated genotyping of populations provided novel information on the genetic properties of A. thaliana populations and allowed hypothesizing on their underlying mechanisms. Therefore, including temporal genotyping programmes into traditional population genetic studies can significantly increase our understanding of the dynamics of natural populations.

  15. Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers.

    Science.gov (United States)

    Edea, Zewdu; Dadi, Hailu; Kim, Sang-Wook; Dessie, Tadelle; Lee, Taeheon; Kim, Heebal; Kim, Jong-Joo; Kim, Kwan-Suk

    2013-01-01

    In total, 166 individuals from five indigenous Ethiopian cattle populations - Ambo (n = 27), Borana (n = 35), Arsi (n = 30), Horro (n = 36), and Danakil (n = 38) - were genotyped for 8773 single nucleotide polymorphism (SNP) markers to assess genetic diversity, population structure, and relationships. As a representative of taurine breeds, Hanwoo cattle (n = 40) were also included in the study for reference. Among Ethiopian cattle populations, the proportion of SNPs with minor allele frequencies (MAFs) ≥0.05 ranged from 81.63% in Borana to 85.30% in Ambo, with a mean of 83.96% across all populations. The Hanwoo breed showed the highest proportion of polymorphism, with MAFs ≥0.05, accounting for 95.21% of total SNPs. The mean expected heterozygosity varied from 0.370 in Danakil to 0.410 in Hanwoo. The mean genetic differentiation (F ST; 1%) in Ethiopian cattle revealed that within individual variation accounted for approximately 99% of the total genetic variation. As expected, F ST and Reynold genetic distance were greatest between Hanwoo and Ethiopian cattle populations, with average values of 17.62 and 18.50, respectively. The first and second principal components explained approximately 78.33% of the total variation and supported the clustering of the populations according to their historical origins. At K = 2 and 3, a considerable source of variation among cattle is the clustering of the populations into Hanwoo (taurine) and Ethiopian cattle populations. The low estimate of genetic differentiation (F ST) among Ethiopian cattle populations indicated that differentiation among these populations is low, possibly owing to a common historical origin and high gene flow. Genetic distance, phylogenic tree, principal component analysis, and population structure analyses clearly differentiated the cattle population according to their historical origins, and confirmed that Ethiopian cattle populations are genetically distinct from the Hanwoo breed.

  16. Study on genetic coadaptability of wild quail populations in China

    Institute of Scientific and Technical Information of China (English)

    CHANG; Guobin; CHANG; Hong; LIU; Xiangping; YANG; Zhangping; CHEN; Guohong; ZHAO; Wenming; JI; Dejun; XUE; Yan; HUANG; Feng; HASSAN; Hussein

    2006-01-01

    Genetic coadaptability of wild Japanese quail, wild Common quail and Domestic quail populations in China was studied using 7 microsatellite DNA markers and Monte Carlo method to test genetic disequilibrium. The molecular effects of genetic coadaptability were analyzed through a new statistical model of neutral site. The results showed that genetic coadaptability dominated the genetic disequilibrium of the three quail populations, and totally 16.67%, 9.66% and 10.05% of non-allelic combinations were in the genetic disequilibrium in wild Japanese quail, wild Common quail and Domestic quail populations, respectively. Genetic coadaptability existed at almost all the tested sites. In the molecular point of view, genetic coadaptability plays an important role of keeping lots of polymorphisms in natural populations. Therefore, it is another key factor to the genetic disequilibrium in the population except for linkage. The results enrich the conceptions and connotations of genetic disequilibrium, and help us know more about genetic coadaptability and its effects, and lay a foundation of evaluation and protection of wild quail genetic resources in China.

  17. Phylogenetics, phylogeography and population genetics of North American sea ducks (tribe: Mergini)

    Science.gov (United States)

    Talbot, Sandra; Sonsthagen, Sarah A.; Pearce, John M.; Scribner, Kim T.

    2015-01-01

    Many environments occupied by North American sea ducks are remote and difficult to access, and as a result, detailed information about life history characteristics that drive population dynamics within and across species is limited. Nevertheless, progress on this front during the past several decades has benefited by the application of genetic technologies, and for several species, these technologies have allowed for concomitant tracking of population trends and genetic diversity, delineation of populations, assessment of gene flow among metapopulations, and understanding of migratory connectivity between breeding and wintering grounds. This chapter provides an overview of phylogenetic, phylogeographic, and population genetics studies of North American sea duck species, many of which have sought to understand the major and minor genetic divisions within and among sea duck species, and most of which have been conducted with the understanding that the maintenance of genetic variation in wild sea duck populations is fundamental to the group’s long-term persistence.

  18. Population genetic structure of an endangered Utah endemic, Astragalus ampullarioides (Fabaceae).

    Science.gov (United States)

    Breinholt, Jesse W; Van Buren, Renee; Kopp, Olga R; Stephen, Catherine L

    2009-03-01

    The endangered Shivwits milkvetch, Astragalus ampullarioides, is a perennial, herbaceous plant. This Utah endemic was federally listed as endangered in 2001 because of its high habitat specificity and low numbers of individuals and populations. All habitat currently occupied by A. ampullarioides was designated as critical by the U.S. Fish and Wildlife Service in 2006 as a result of conservation litigation. We used AFLP markers to assess genetic differentiation among the seven extant populations and quantified genetic diversity in each. Six different AFLP markers resulted in 217 unambiguous polymorphic loci. We used multiple methods to examine any changes in population genetic structure in this species over time. Results indicate that A. ampullarioides had much higher gene flow among populations in the past, but has since fragmented into regional genetic units. These regions further fragmented genetically, and extant populations have differentiated through genetic drift. Populations had low levels of gene flow, even between geographically close populations. Rapid urban development reduces gene flow among regions and encroaches on populations of A. ampullarioides and remaining patches of unoccupied habitat. The genetic makeup of each of the extant populations should be carefully considered in management decisions such as population establishment or augmentation.

  19. Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Hanwoo breeds using SNP markers

    Directory of Open Access Journals (Sweden)

    Zewdu eEdea

    2013-03-01

    Full Text Available In total, 166 individuals from 5 indigenous Ethiopian cattle populations—Ambo (n = 27, Borana (n = 35, Arsi (n = 30, Horro (n = 36, and Danakil (n = 38—were genotyped for 8773 single nucleotide polymorphism (SNP markers to assess genetic diversity, population structure, and relationships. As a representative of taurine breeds, Hanwoo cattle (n = 40 were also included in the study for reference. Among Ethiopian cattle populations, the proportion of SNPs with minor allele frequencies (MAFs ≥ 0.05 ranged from 81.63% in Borana to 85.30% in Ambo, with a mean of 83.96% across all populations. The Hanwoo breed showed the highest proportion of polymorphism, with MAFs ≥ 0.05, accounting for 95.21% of total SNPs. The mean expected heterozygosity varied from 0.370 in Danakil to 0.410 in Hanwoo. The mean genetic differentiation (FST (1% in Ethiopian cattle revealed that within-individual variation accounted for approximately 99% of the total genetic variation. As expected, FST and Reynold genetic distance were greatest between Hanwoo and Ethiopian cattle populations, with average values of 17.62 and 18.50, respectively. The first and second principal components explained approximately 78.33% of the total variation and supported the clustering of the populations according to their historical origins. At K = 2 and 3, a considerable source of variation among cattle is the clustering of the populations into Hanwoo (taurine and Ethiopian cattle populations. The low estimate of genetic differentiation (FST among Ethiopian cattle populations indicated that differentiation among these populations is low, possibly owing to a common historical origin and high gene flow. Genetic distance, phylogenic tree, PCA, and population structure analyses clearly differentiated the cattle population according to their historical origins, and confirmed that Ethiopian cattle populations are genetically distinct from the Hanwoo breed

  20. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    Science.gov (United States)

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  1. Extreme genetic diversity in asexual grass thrips populations.

    Science.gov (United States)

    Fontcuberta García-Cuenca, A; Dumas, Z; Schwander, T

    2016-05-01

    The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within-lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra- and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.

  2. Genetic diversity and conservation status of managed vicuña (Vicugna vicugna) populations in Argentina.

    Science.gov (United States)

    Anello, M; Daverio, M S; Romero, S R; Rigalt, F; Silbestro, M B; Vidal-Rioja, L; Di Rocco, F

    2016-02-01

    The vicuña (Vicugna vicugna) was indiscriminately hunted for more than 400 years and, by the end of 1960s, it was seriously endangered. At that time, a captive breeding program was initiated in Argentina by the National Institute of Agricultural Technology (INTA) with the aim of preserving the species. Nowadays, vicuñas are managed in captivity and in the wild to obtain their valuable fiber. The current genetic status of Argentinean vicuña populations is virtually unknown. Using mitochondrial DNA and microsatellite markers, we assessed levels of genetic diversity of vicuña populations managed in the wild and compared it with a captive population from INTA. Furthermore, we examined levels of genetic structure and evidence for historical bottlenecks. Overall, all populations revealed high genetic variability with no signs of inbreeding. Levels of genetic diversity between captive and wild populations were not significantly different, although the captive population showed the lowest estimates of allelic richness, number of mitochondrial haplotypes, and haplotype diversity. Significant genetic differentiation at microsatellite markers was found between free-living populations from Jujuy and Catamarca provinces. Moreover, microsatellite data also revealed genetic structure within the Catamarca management area. Genetic signatures of past bottlenecks were detected in wild populations by the Garza Williamson test. Results from this study are discussed in relation to the conservation and management of the species.

  3. Identification of management units using population genetic data

    NARCIS (Netherlands)

    Palsboll, Per J.; Berube, Martine; Allendorf, Fred W.

    2007-01-01

    The identification of management units (MUs) is central to the management of natural populations and is crucial for monitoring the effects of human activity upon species abundance. Here, we propose that the identification of MUs from population genetic data should be based upon the amount of genetic

  4. Genetic diversity of natural Hepatacodium miconioides populations in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    LI Junmin; JIN Zexin

    2006-01-01

    Hepatacodium miconioides is the Class Ⅱ protected plant species in China.This paper studies the genetic diversity and differentiation of its nine natural populations in Zhejiang Province by using random amplified polymorphic DNA (RAPD) technique.Twelve random primers were selected in the amplification,and 164 repetitive loci were produced.The percentage of polymorphic loci in each H.miconioides population ranged from 14.60% to 27.44%,with an average of 20.73%.Among the test populations,Kuochangshan had the highest percentage of polymorphic loci,Simingshan took the second place,and Guanyinping had the lowest percentage.As estimated by Shannon index,the genetic diversity within H.miconioides populations accounted for 27.28% of the total genetic diversity,while that among H.miconioides populations accounted for 72.72%.The genetic differentiation among H.miconioides populations as estimated by Nei index was 0.715,7.This figure was generally consistent with that estimated by Shannon index,i.e.,the genetic differentiation among populations was relatively high,but that within populations was relatively low.The gene flow among H.miconioides populations was relatively low (0.198,7),and the genetic similarity ranged from 0.655,7 to 0.811,9,with an average of 0.730,6.The highest genetic distance among populations was 0.422,9,while the lowest was 0.208,3.All the results showed that there was a distinct genetic differentiation among H.miconioides populations.The genetic distance matrix of nine test populations was calculated using this method,and the clustering analysis was made using the unweighted pair group method with arithmetic mean (UPGMA).The cluster analysis suggested that the ninepopulations of H.miconioides in Zhejiang Province could be divided into two groups,the eastern Zhejiang group and the western Zhejiang group.

  5. GENETICS OF INDO-EUROPEAN POPULATIONS: THE PAST, THE FUTURE

    OpenAIRE

    Balanovsky, Oleg; Utevska, Olga; Balanovska, Elena

    2013-01-01

    We describe our experience of comparing genetic and linguistic data in relation to the Indo-European problem. Our recent comparison of the genetic variation with lexicostatistical data on North Caucasian populations identified the parallel evolution of genes and languages; one can say that history of the populations was reflected in the linguistic and the genetic mirrors. For other linguistic families one can also expect this similarity, though it could be blurred by elite dominance and other...

  6. Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis

    Institute of Scientific and Technical Information of China (English)

    QIAO Hongjin; LIU Xiangquan; ZHANG Xijia; JIANG Haibin; WANG Jiying; ZHANG Limin

    2013-01-01

    Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa,Rhizostomatidae).One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations.The polymorphic ratio,Shannon's diversity index and average heterozygosity were 70.3%,0.346 and 0.228 for the white hatchery population,74.3%,0.313,and 0.201 for the red hatchery population,79.3%,0.349,and 0.224 for the Jiangsu wild population,and 74.9%,0.328 and 0.210 for the Penglai wild population,respectively.Thus,all populations had a relatively high level of genetic diversity.A specific band was identified that could separate the white from the red hatchery population.There was 84.85% genetic differentiation within populations.Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided.For the hatchery populations,the white and red populations clustered separately; however,for the wild populations,Penglai and Jiangsu populations clustered together.The genetic diversity at the clone level was also determined.Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations,which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing.These findings will benefit the artificial seeding and conservation of the germplasm resources.

  7. Inbreeding and loss of genetic variation in a reintroduced population of Mauritius Kestrel.

    Science.gov (United States)

    Ewing, Steven R; Nager, Ruedi G; Nicoll, Malcolm A C; Aumjaud, Aurelien; Jones, Carl G; Keller, Lukas F

    2008-04-01

    Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N(eI)= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N(eV)= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.

  8. Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women

    Science.gov (United States)

    ... Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-related Cancer in Women The U.S. Preventive Services ... Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-related Cancer in Women. This final recommendation statement ...

  9. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  10. Detailed genetic structure of European bitterling populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Veronika Bartáková

    2015-11-01

    Full Text Available The European bitterling (Rhodeus amarus is a small cyprinid fish whose populations declined markedly between 1950 and 1980. However, its range currently expands, partly due to human-assisted introductions. We determined the genetic variability and detailed spatial structure among bitterling populations in Central Europe and tested alternative hypotheses about colonization of this area. Twelve polymorphic microsatellite loci on a large sample of 688 individuals had been used to analyse genetic variability and population structure. Samples originated from 27 localities with emphasis on area of the Czech Republic where three major sea drainages (Black, Baltic, and Northern Sea meet. Highly variable level of intrapopulation genetic variability had generally been detected and a recent decrease in numbers (“bottleneck” had been indicated by genetic data among six populations. High level of interpopulation differentiation was identified even within the basins. There was a significant role of genetic drift and indications of low dispersal ability of R. amarus. Surprisingly, the Odra River was inhabited by two distinct populations without any genetic signatures of a secondary contact. Czech part of the Odra (Baltic basin was colonized from the Danubian refugium (similarly to adjacent Danubian basin rivers including the Morava, while Polish part of the Odra was genetically similar to the populations in the Vistula River (Baltic basin, that has been colonized by a different (Eastern phylogeographic lineage of R. amarus. Most Czech R. amarus populations were colonized from the Danubian refugium, suggesting potential for a human-mediated colonization of the Odra or Elbe Rivers by R. amarus. One Elbe basin population was genetically mixed from the two (Danubian and Eastern phylogeographic lineages. In general the Czech populations of R. amarus were genetically stable except for a single population which has probably been recently introduced. This research

  11. Population genetic structure of Aedes albopictus in Penang, Malaysia.

    Science.gov (United States)

    Zawani, M K N; Abu, H A; Sazaly, A B; Zary, S Y; Darlina, M N

    2014-10-07

    The mosquito Aedes albopictus is indigenous to Southeast Asian and is a vector for arbovirus diseases. Studies examining the population genetics structure of A. albopictus have been conducted worldwide; however, there are no documented reports on the population genetic structure of A. albopictus in Malaysia, particularly in Penang. We examined the population genetics of A. albopictus based on a 445-base pair segment of the mitochondrial DNA cytochrome oxidase 1 gene among 77 individuals from 9 localities representing 4 regions (Seberang Perai Utara, Seberang Perai Tengah, Northeast, and Southwest) of Penang. A total of 37 haplotypes were detected, including 28 unique haplotypes. The other 9 haplotypes were shared among various populations. These shared haplotypes reflect the weak population genetic structure of A. albopictus. The phylogenetic tree showed a low bootstrap value with no genetic structure, which was supported by minimum spanning network analysis. Analysis of mismatch distribution showed poor fit of equilibrium distribution. The genetic distance showed low genetic variation, while pairwise FST values showed no significant difference between all regions in Penang except for some localities. High haplotype diversity and low nucleotide diversity was observed for cytochrome oxidase 1 mtDNA. We conclude that there is no population genetic structure of A. albopictus mosquitoes in the Penang area.

  12. Genetic structure in insular and mainland populations of house sparrows (Passer domesticus) and their hemosporidian parasites

    Science.gov (United States)

    Bichet, Coraline; Moodley, Yoshan; Penn, Dustin J; Sorci, Gabriele; Garnier, Stéphane

    2015-01-01

    Small and isolated populations usually exhibit low levels of genetic variability, and thus, they are expected to have a lower capacity to adapt to changes in environmental conditions, such as exposure to pathogens and parasites. Comparing the genetic variability of selectively neutral versus functional loci allows one to assess the evolutionary history of populations and their future evolutionary potential. The genes of the major histocompatibility complex (MHC) control immune recognition of parasites, and their unusually high diversity is genes which is likely driven by parasite-mediated balancing selection. Here, we examined diversity and differentiation of neutral microsatellite loci and functional MHC class I genes in house sparrows (Passer domesticus), living in six insular and six mainland populations, and we aimed to determine whether their diversity or differentiation correlates with the diversity and the prevalence of infection of hemosporidian parasites. We found that island bird populations tended to have lower neutral genetic variability, whereas MHC variability gene was similar between island and mainland populations. Similarly, island populations tended to show greater genetic differentiation than mainland populations, especially at microsatellite markers. The maintenance of MHC genetic diversity and its less marked structure in the island populations could be attributed to balancing-selection. The greater MHC differentiation among populations was negatively correlated with similarity in blood parasites (prevalence and diversity of parasite strains) between populations. Even at low prevalence and small geographical scale, haemosporidian parasites might contribute to structure the variability of immune genes among populations of hosts. PMID:25937907

  13. Population genetic structure and body shape assessment of Pagrus pagrus (Linnaeus, 1758 (Perciformes: Sparidae from the Buenos Aires coast of the Argentine Sea

    Directory of Open Access Journals (Sweden)

    Leonardo P. Porrini

    Full Text Available This study highlights the analysis of the morphological and genetic variation of the common sea bream Pagrus pagrus, and compares its two main areas of concentration: the northern (35ºS - 38ºS and the southern areas (39ºS - 41ºS of the Buenos Aires coast of the Argentine Sea. Body shape characterization presented two significantly different morphotypes (Wilks' Lambda=0.224, P<0.001. Northern individuals displayed a higher middle area while southern ones were smaller and their caudal peduncle was shorter. The northern and southern areas did not yield significant genetic differences either with the control region or the microsatellite loci, revealing that P. pagrus is not genetically structured. However, individuals from these areas should not be managed as a single group since they display distinct life history traits, responsible for morphological differentiation. The presence of two spawning areas with distinctive characteristics would define two stocks of P. pagrus from the Buenos Aires coast.

  14. Genetic variation and population structure in native Americans.

    Directory of Open Access Journals (Sweden)

    Sijia Wang

    2007-11-01

    Full Text Available We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1 a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2 a relative lack of differentiation between Mesoamerican and Andean populations, (3 a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4 a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.

  15. Family Assessment and Genetic Counseling.

    Science.gov (United States)

    Carpenter, Pat; And Others

    Presented are two papers from a panel discussion on prenatal diagnosis and genetic counseling with families. D. Blackston (director of the Developmental Evaluation Clinic, Decatur, Georgia) points out that a concise family history, pregnancy and birth data, developmental history, careful physical examination, and appropriate laboratory studies are…

  16. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation.

    Science.gov (United States)

    Singh, Pradeep; Nag, Akshay; Parmar, Rajni; Ghosh, Sneha; Bhau, Brijmohan Singh; Sharma, Ram Kumar

    2015-12-01

    The endangered Aquilaria malaccensis,is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (Nm: 3.37), low genetic differentiation (FST: 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  17. Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae.

    Directory of Open Access Journals (Sweden)

    Jiali Zhao

    Full Text Available AIMS: We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1 determine the level of genetic diversity across the studied regions; (2 explore the likely origins of invasive populations in China; and (3 investigate whether there is the evidence of multiple introductions into China. METHODS: We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China. IMPORTANT FINDINGS: We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (F IS or population differentiation (F ST. Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China.

  18. Assessment of genetic correlation between bacterial cold water disease resistance and spleen index in a domesticated population of rainbow trout: identification of QTL on chromosome Omy19.

    Directory of Open Access Journals (Sweden)

    Gregory D Wiens

    Full Text Available Selective breeding of animals for increased disease resistance is an effective strategy to reduce mortality in aquaculture. However, implementation of selective breeding programs is limited by an incomplete understanding of host resistance traits. We previously reported results of a rainbow trout selection program that demonstrated increased survival following challenge with Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD. Mechanistic study of disease resistance identified a positive phenotypic correlation between post-challenge survival and spleen somatic-index (SI. Herein, we investigated the hypothesis of a genetic correlation between the two traits influenced by colocalizing QTL. We evaluated the inheritance and calculated the genetic correlation in five year-classes of odd- and even-year breeding lines. A total of 322 pedigreed families (n = 25,369 fish were measured for disease resistance, and 251 families (n = 5,645 fish were evaluated for SI. Spleen index was moderately heritable in both even-year (h(2  = 0.56±0.18 and odd-year (h(2  = 0.60±0.15 lines. A significant genetic correlation between SI and BCWD resistance was observed in the even-year line (rg  = 0.45±0.20, P = 0.03 but not in the odd-year line (rg  = 0.16±0.12, P = 0.19. Complex segregation analyses of the even-year line provided evidence of genes with major effect on SI, and a genome scan of a single family, 2008132, detected three significant QTL on chromosomes Omy19, 16 and 5, in addition to ten suggestive QTL. A separate chromosome scan for disease resistance in family 2008132 identified a significant BCWD QTL on Omy19 that was associated with time to death and percent survival. In family 2008132, Omy19 microsatellite alleles that associated with higher disease resistance also associated with increased spleen size raising the hypothesis that closely linked QTL contribute to the correlation between

  19. [Risk assessment of genetically modified organisms].

    Science.gov (United States)

    Costa, Thadeu Estevam Moreira Maramaldo; Dias, Aline Peçanha Muzy; Scheidegger, Erica Miranda Damasio; Marin, Victor Augustus

    2011-01-01

    Since the commercial approve in 1996, the global area of transgenic crops has raised more than 50 times. In the last two decades, governments have been planning strategies and protocols for safety assessment of food and feed genetically modified (GM). Evaluation of food safety should be taken on a case-by-case analysis depending on the specific traits of the modified crops and the changes introduced by the genetic modification, using for this the concept of substantial equivalence. This work presents approaches for the risk assessment of GM food, as well as some problems related with the genetic construction or even with the expression of the inserted gene.

  20. Genetic consequences of population decline in the Danish population of the little owl (Athene noctua)

    DEFF Research Database (Denmark)

    Pertoldi, Cino; Pellegrino, Irene; Cucco, Maroc

    2012-01-01

    Background: Danish populations of the little owl (Athene noctua) have experienced dramaticdeclines in size over the past century. Before 1960 the little owl population was abundantin Denmark (estimated N>2000), but between 1960 and 1980 the population declinedrapidly, and since 1980 the little owl...... population has survived only in small and fragmentedareas. Question: Is the decline in population size associated with reduced genetic variation in theseDanish populations of the little owl? Are the populations genetically fragmented?Field site: Samples were collected from birds in Denmark (from 57457″N...

  1. Genetic variation and population history of three Carassius auratus populations in Huaihe River, China.

    Science.gov (United States)

    Chen, Wei; Zhao, Yuanjun; Yang, Chengzhong

    2016-11-01

    In order to investigate the relationships of drainage history of Huaihe River with the genetic history of Carassius auratus along the river, we examined the genetic variations and population histories of three wild C. auratus populations in Huaihe River based on the D-loop gene. The results showed that their nucleotide and haplotype diversities were ranged from 0.00268 to 0.00651 and from 0.863 to 0.902, respectively, and their genetic distance was quite small. The analysis of molecular variance demonstrated that a frequent inter-population connection and large historic gene flows occurred among the three populations. Demographic analysis indicated that expansions had been happened in three populations. After investigating the historic process of the Huaihe River, we presumed that both nature and artificial factors may play important roles in shaping the genetic structure of the three populations. The present study also provided genetic information of C. auratus for further conservation of its germplasm resources.

  2. Assessment of ASEAN population programme.

    Science.gov (United States)

    1982-01-01

    The objectives of the 5th meeting of the ASEAN Heads of Population Program, held at Chiang Mai during November 1981, were the following: to discuss and consider the midterm reviews of some of the Phase 1 projects; to discuss and consider the ASEAN population experts' views on the progress made in the rest of the phase 1 projects; to discuss and consider the progress made in the implementation of the phase 2 projects; to discuss and consider the ASEAN population experts' recommendations on the ASEAN population program in the 1980s based on the report of the programming exercise submitted by the consultant in the expert group meeting; and to discuss administrative and other problems faced by the program implementors in the operationalization of the ongoing ASEAN population projects and provide appropriate directions to solve such problems. As a result of the programming exercise, the meeting established the directions for the future ASEAN population program and strongly recommended the continuation, intensification, and expansion of the ASEAN population program. A total of 12 projects comprise the ASEAN population program: 5 projects under phase 1 and 7 under phase 2. Under phase 1, 1 project has been completed, and the 1st parts of 2 other projects are in the process of implementation. Phase 2 projects, which started in September/October 1980, are all in the process of implementation. The following phase 1 projects are summarized: integration of population and rural development policies and programs; modular training for trainers of population and development agencies in ASEAN countries; multi-media support for population programs in the context of rural development in ASEAN countries; and migration in relation to rural development. The following phase 2 projects are also summarized: institutional development and exchange of personnel; women in development in ASEAN countries; and migration in relation to rural development. The following phase 2 projects are also

  3. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae: effects of reproductive strategy.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available BACKGROUND: Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. METHODOLOGY/PRINCIPAL FINDINGS: Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. CONCLUSIONS/SIGNIFICANCE: Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  4. The genetic structure of a relict population of wood frogs

    Science.gov (United States)

    Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara

    2012-01-01

    Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.

  5. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    Science.gov (United States)

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China.

  6. Genetic Variation of Host Populations of Liriomyza sativae Blanchard

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ping; DU Yu-zhou; HE Ya-ting; ZHENG Fu-shan; LU Zi-qiang

    2008-01-01

    In this study, partial sequences of the mitochondrial cytochrome oxidase subunit Ⅰ (mtDNA-COI) gene and the ribosomal internal transcribed spacer 1 (rDNA-ITS1) gene, isolated from five artificial populations of Liriomyza sativae (Diptera:Agromyzidae), were sequenced and compared, to analyze their genetic variation. Analysis of the mtDNA-CO1 gene showed that a low genetic variation was detected among the five populations and only five variable sites were found in the nucleotide sequences. Most of the observed variations that occurred within the populations were because of nucleotide transitions, whereas, the interpopulation variation was because of the differences in haplotype frequencies occurring among the host populations. Analysis of the rDNA-ITS1 gene revealed a small diversity in the five host populations. The trend of genetic differentiation in the host populations was consistent with the preference of L. sativae to the plant hosts.

  7. GESP: A computer program for modeling genetic effective population size, inbreeding, and divergence in substructured populations.

    Science.gov (United States)

    Olsson, Fredrik; Laikre, Linda; Hössjer, Ola; Ryman, Nils

    2017-03-24

    The genetically effective population size (Ne) is of key importance for quantifying rates of inbreeding and genetic drift, and is often used in conservation management to set targets for genetic viability. The concept was developed for single, isolated populations and the mathematical means for analyzing the expected Ne in complex, subdivided populations have previously not been available. We recently developed such analytical theory and central parts of that work have now been incorporated into a freely available software tool presented here. GESP (Genetic Effective population size, inbreeding, and divergence in Substructured Populations) is R-based and designed to model short and long term patterns of genetic differentiation and effective population size of subdivided populations. The algorithms performed by GESP allow exact computation of global and local inbreeding and eigenvalue effective population size, predictions of genetic divergence among populations (GST) as well as departures from random mating (FIS, FIT) while varying i) subpopulation census and effective size, separately or including trend of the global population size, ii) rate and direction of migration between all pairs of subpopulations, iii) degree of relatedness and divergence among subpopulations, iv) ploidy (haploid or diploid), and v) degree of selfing. Here, we describe GESP and exemplify its use in conservation genetics modeling. This article is protected by copyright. All rights reserved.

  8. Genetic diversity in wild populations of Paulownia fortune.

    Science.gov (United States)

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together.

  9. The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape

    NARCIS (Netherlands)

    Dobon, B.; Hassan, H.Y.; Laayouni, H.; Luisi, P.; Ricano-Ponce, I.; Zhernakova, A.; Wijmenga, C.; Tahir, H.; Comas, D.; Netea, M.G.; Bertranpetit, J.

    2015-01-01

    East Africa is a strategic region to study human genetic diversity due to the presence of ethnically, linguistically, and geographically diverse populations. Here, we provide new insight into the genetic history of populations living in the Sudanese region of East Africa by analysing nine ethnic gro

  10. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    Science.gov (United States)

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  11. Population genetics of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis across multiple spatial scales.

    Directory of Open Access Journals (Sweden)

    Shem D Unger

    Full Text Available Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states. We identified two genetically differentiated groups at the range-wide scale: 1 the Ohio River drainage and 2 the Tennessee River drainage. An analysis of molecular variance (AMOVA based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94-98% occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species.

  12. Genetic Variation Within and Among Populations of Delmarva Fox Squirrels

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of this study was to provide important information about genetic variation in populations of the Delmarva Fox Squirrel in the context of a more general...

  13. Thirty years of tick population genetics: a comprehensive review.

    Science.gov (United States)

    Araya-Anchetta, Ana; Busch, Joseph D; Scoles, Glen A; Wagner, David M

    2015-01-01

    Population genetic studies provide insights into the basic biology of arthropod disease vectors by estimating dispersal patterns and their potential to spread pathogens. In wingless vectors, such as ticks, gene flow will be defined in large part by the mobility of their hosts. However, tick behaviors and life cycle strategies can limit their dispersal even on highly mobile hosts and lead to an increase in genetic structure. In this review we synthesize the published literature from three decades of tick population genetic studies. Based on studies from 22 tick species (including representatives from Amblyomma, Bothriocroton, Dermacentor, Ixodes, Ornithodoros, and Rhipicephalus), observed levels of population genetic structure in ticks varied from no structure to very high levels. In about half of the species (including representatives from Amblyomma, Bothriocroton, Dermacentor, and Ornithodoros), tick genetic structure appeared to be determined primarily by the movement capacity of hosts, with low gene flow observed in ticks that use smaller bodied less mobile hosts and high gene flow in ticks using highly mobile hosts. In a number of other species (primarily from Ixodes, Ornithodoros, and Rhipicephalus), behavioral limitations to gene flow appeared to result in greater genetic structure than expected based upon host movement capability alone. We also discuss the strengths and limitations of genetic markers and their applicability to ticks and suggest possible analyses when planning population genetic studies for ticks.

  14. Modernization, Population Dispersion, and Papago Genetic Integrity

    Science.gov (United States)

    Smith, David G.

    1972-01-01

    That residents of Papago villages were less closely related in the 19th century than during recent decades is considered in historical and genetic perspectives. A preliminary version of this paper was read at the annual meeting of the American Anthropological Association, New York City, 1971. (FF)

  15. Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population.

    Science.gov (United States)

    Lee, Michael; Sharopova, Natalya; Beavis, William D; Grant, David; Katt, Maria; Blair, Deborah; Hallauer, Arnel

    2002-01-01

    The effects of intermating on recombination and the development of linkage maps were assessed in maize. Progeny derived from a common population (B73 x Mo17) before and after five generations of intermating were genotyped at the same set of 190 RFLP loci. Intermating resulted in nearly a four-fold increase in the genetic map distance and increased the potential for improved genetic resolution in 91% of the intervals evaluated. This mapping population and related information should connect research involving dense genetic maps, physical mapping, gene isolation, comparative genomics, analysis of quantitative trait loci and investigations of heterosis.

  16. Genetic diversity and population structure of cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Jing Lv

    Full Text Available Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.

  17. Population Genetic Structure of Aedes fluviatilis (Diptera: Culicidae)

    Science.gov (United States)

    Multini, Laura Cristina; Suesdek, Lincoln; Marrelli, Mauro Toledo

    2016-01-01

    Although Aedes fluviatilis is an anthropophilic mosquito found abundantly in urban environments, its biology, epidemiological potential and genetic characteristics are poorly understood. Climate change and urbanization processes that result in environmental modifications benefit certain anthropophilic mosquito species such as Ae. fluviatilis, greatly increasing their abundance in urban areas. To gain a better understanding of whether urbanization processes modulate the genetic structure of this species in the city of São Paulo, we used eight microsatellite loci to genetically characterize Ae. fluviatilis populations collected in nine urban parks in the city of São Paulo. Our results show that there is high gene flow among the populations of this species, heterozygosity deficiency and low genetic structure and that the species may have undergone a recent population expansion. There are two main hypotheses to explain these findings: (i) Ae. fluviatilis populations have undergone a population expansion as a result of urbanization; and (ii) as urbanization of the city of São Paulo occurred recently and was quite intense, the structuring of these populations cannot be observed yet, apart from in the populations of Ibirapuera and Piqueri parks, where the first signs of structuring have appeared. We believe that the expansion found in Ae. fluviatilis populations is probably correlated with the unplanned urbanization of the city of São Paulo, which transformed green areas into urbanized areas, as well as the increasing population density in the city. PMID:27598889

  18. Toward a Better Understanding of Population Genetics: Pop!World--A Virtual, Inquiry-Based Tool for Teaching Population Genetics

    Science.gov (United States)

    Poulin, Jessica; Ramamurthy, Bina; Dittmar, Katharina

    2013-01-01

    Population genetics is fundamental to understanding evolutionary theory, and is taught in most introductory biology/evolution courses. Many students are unaware that understanding this topic requires pertinent knowledge

  19. A genetic assessment of the English bulldog

    OpenAIRE

    Niels C Pedersen; Pooch, Ashley S.; Liu, Hongwei

    2016-01-01

    Background This study examines genetic diversity among 102 registered English Bulldogs used for breeding based on maternal and paternal haplotypes, allele frequencies in 33 highly polymorphic short tandem repeat (STR) loci on 25 chromosomes, STR-linked dog leukocyte antigen (DLA) class I and II haplotypes, and the number and size of genome-wide runs of homozygosity (ROH) determined from high density SNP arrays. The objective was to assess whether the breed retains enough genetic diversity to ...

  20. Population genetics of Wolbachia-infected, parthenogenetic and uninfected, sexual populations of Tetrastichus coeruleus (Hymenoptera: Eulophidae).

    Science.gov (United States)

    Reumer, Barbara M; van Alphen, Jacques J M; Kraaijeveld, Ken

    2013-09-01

    Wolbachia are endosymbiotic bacteria known to manipulate the reproduction of their hosts. These manipulations are expected to have consequences on the population genetics of the host, such as heterozygosity levels, genetic diversity and gene flow. The parasitoid wasp Tetrastichus coeruleus has populations that are infected with parthenogenesis-inducing Wolbachia and populations that are not infected. We studied the population genetics of T. coeruleus between and within Wolbachia-infected and uninfected populations, using nuclear microsatellites and mitochondrial DNA. We expected reduced genetic diversity in both DNA types in infected populations. However, migration and gene flow could introduce new DNA variants into populations. We therefore paid special attention to individuals with unexpected (genetic) characteristics. Based on nuclear and mitochondrial DNA, two genetic clusters were evident: a thelytokous cluster containing all Wolbachia-infected, parthenogenetic populations and an arrhenotokous cluster containing all uninfected, sexual populations. Nuclear and mitochondrial DNA did not exhibit concordant patterns of variation, although there was reduced genetic diversity in infected populations for both DNA types. Within the thelytokous cluster, there was nuclear DNA variation, but no mitochondrial DNA variation. This nuclear DNA variation may be explained by occasional sex between infected females and males, by horizontal transmission of Wolbachia, and/or by novel mutations. Several females from thelytokous populations were uninfected and/or heterozygous for microsatellite loci. These unexpected characteristics may be explained by migration, by inefficient transmission of Wolbachia, by horizontal transmission of Wolbachia, and/or by novel mutations. However, migration has not prevented the build-up of considerable genetic differentiation between thelytokous and arrhenotokous populations.

  1. Molecular Population Genetics of Rice Domestication

    Institute of Scientific and Technical Information of China (English)

    Tian Tang; Suhua Shi

    2007-01-01

    Domestication is a selection process that genetically modifies species to meet human needs. A most intriguing feature of domestication is the extreme phenotypic diversification among breeds. What could be the ultimate source of such genetic variations? Another notable outcome of artificial selection is the reduction in the fitness of domesticated species when they live in the wild without human assistance. The complete sequences of the two subspecies of rice cultivars provide an opportunity to address these questions. Between the two subspecies, we found much higher rates of non-synonymous (N) than synonymous (S) substitutions and the N/S ratios are higher between cultivars than between wild species. Most interestingly, substitutions of highly dissimilar amino acids that are deleterious and uncommon between natural species are disproportionately common between the two subspecies of rice. We suggest strong selection in the absence of effective recombination may be the driving force, which we called the domestication-associated Hill-Robertson effect. These hitchhiking mutations may contribute to some fitness reduction in cultivars. Comparisons of the two genomes also reveal the existence of highly divergent regions in the genomes. Haplotypes in these regions often form highly polymorphic linkage blocks that are much older than speciation between wild species. Genes from such regions could contribute to the differences between indica and japonica and are likely to be involved in the diversifying selection under domestication. Their existence suggests that the amount of genetic variation within the single progenitor species Oryza ruflpogon may be insufficient to account for the variation among rice cultivars, which may come from a more inclusive gene pool comprising most of the A-genome wild species. Genes from the highly polymorphic regions also provide strong support for the independent domestication of the two subspecies. The genomic variation in rice has revealing

  2. The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape.

    Science.gov (United States)

    Dobon, Begoña; Hassan, Hisham Y; Laayouni, Hafid; Luisi, Pierre; Ricaño-Ponce, Isis; Zhernakova, Alexandra; Wijmenga, Cisca; Tahir, Hanan; Comas, David; Netea, Mihai G; Bertranpetit, Jaume

    2015-01-01

    East Africa is a strategic region to study human genetic diversity due to the presence of ethnically, linguistically, and geographically diverse populations. Here, we provide new insight into the genetic history of populations living in the Sudanese region of East Africa by analysing nine ethnic groups belonging to three African linguistic families: Niger-Kordofanian, Nilo-Saharan and Afro-Asiatic. A total of 500 individuals were genotyped for 200,000 single-nucleotide polymorphisms. Principal component analysis, clustering analysis using ADMIXTURE, FST statistics, and the three-population test were used to investigate the underlying genetic structure and ancestry of the different ethno-linguistic groups. Our analyses revealed a genetic component for Sudanese Nilo-Saharan speaking groups (Darfurians and part of Nuba populations) related to Nilotes of South Sudan, but not to other Sudanese populations or other sub-Saharan populations. Populations inhabiting the North of the region showed close genetic affinities with North Africa, with a component that could be remnant of North Africans before the migrations of Arabs from Arabia. In addition, we found very low genetic distances between populations in genes important for anti-malarial and anti-bacterial host defence, suggesting similar selective pressures on these genes and stressing the importance of considering functional pathways to understand the evolutionary history of populations.

  3. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Science.gov (United States)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  4. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history.

    Science.gov (United States)

    Cabana, Graciela S; Lewis, Cecil M; Tito, Raúl Y; Covey, R Alan; Cáceres, Angela M; Cruz, Augusto F De La; Durand, Diana; Housman, Genevieve; Hulsey, Brannon I; Iannacone, Gian Carlo; López, Paul W; Martínez, Rolando; Medina, Ángel; Dávila, Olimpio Ortega; Pinto, Karla Paloma Osorio; Santillán, Susan I Polo; Domínguez, Percy Rojas; Rubel, Meagan; Smith, Heather F; Smith, Silvia E; Massa, Verónica Rubín de Celis; Lizárraga, Beatriz; Stone, Anne C

    2014-01-01

    Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations

  5. Genetic analysis of population differentiation and adaptation in Leuciscus waleckii.

    Science.gov (United States)

    Chang, Yumei; Tang, Ran; Sun, Xiaowen; Liang, Liqun; Chen, Jinping; Huang, Jinfeng; Dou, Xinjie; Tao, Ran

    2013-12-01

    Demographic events and natural selection both influence animal phenotypic and genetic variation; exploring the effects of demography and selection on population divergence is of great significance in evolutionary biology. To uncover the causes behind the patterns of genetic differentiation and adaptation among six populations of Leuciscus waleckii from Dali Basin (two populations, alkaline vs. freshwater) and Amur Basin (four populations, freshwater rivers vs. alkaline lake), a set of 21 unlinked polymorphic microsatellite markers and two mitochondrial DNA sequences (Cytb and D-loop) were applied to examine whether populations from different environments or habitats have distinct genetic differentiation and whether alkalinity is the major factor that caused population divergence. Bayesian analysis and principal component analysis as well as haplotype network analysis showed that these populations are primarily divided into two groups, which are congruent with geographic separation but not inconsistent with the habitat environment (alkalinity). Using three different approaches, outlier detection indicated that one locus, HLJYL017, may be under directional selection and involved in local adaptation processes. Overall, this study suggested that demographic events and selection of local environmental conditions including of alkalinity are jointly responsible for population divergence. These findings constitute an important step towards the understanding of the genetic basis of differentiation and adaptation, as well as towards the conservation of L. waleckii.

  6. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  7. Translating Population Difference: The Use and Re-Use of Genetic Ancestry in Brazilian Cancer Genetics.

    Science.gov (United States)

    Gibbon, Sahra

    2016-01-01

    In the past ten years, there has been an expansion of scientific interest in population genetics linked to both understanding histories of human migration and the way that population difference and diversity may account for and/or be implicated in health and disease. In this article, I examine how particular aspects of a globalizing research agenda related to population differences and genetic ancestry are taken up in locally variant ways in the nascent field of Brazilian cancer genetics. Drawing on a broad range of ethnographic data from clinical and nonclinical contexts in the south of Brazil, I examine the ambiguities that attention to genetic ancestry generates, so revealing the disjunctured and diverse ways a global research agenda increasingly orientated to questions of population difference and genetic ancestry is being used and reused.

  8. Population genetic structure of Venezuelan chiropterophilous columnar cacti (Cactaceae).

    Science.gov (United States)

    Nassar, Jafet M; Hamrick, J L; Fleming, Theodore H

    2003-11-01

    We conducted allozyme surveys of three Venezuelan self-incompatible chiropterophilous columnar cacti: two diploid species, Stenocereus griseus and Cereus repandus, and one tetraploid, Pilosocereus lanuginosus. The three cacti are pollinated by bats, and both bats and birds disperse seeds. Population sampling comprised two spatial scales: all Venezuelan arid zones (macrogeographic) and two arid regions in northwestern Venezuela (regional). Ten to 15 populations and 17-23 loci were analyzed per species. Estimates of genetic diversity were compared with those of other allozyme surveys in the Cactaceae to examine how bat-mediated gene dispersal affects the population genetic attributes of the three cacti. Genetic diversity was high for both diploid (P(s) = 94.1-100, P(p) = 56.7-72.3, H(s) = 0.182-0.242, H(p) = 0.161-0.205) and tetraploid (P(s) = 93.1, P(p) = 76.1, H(s) = 0.274, H(p) = 0.253) species. Within-population heterozygote deficit was detected in the three cacti at macrogeographic (F(IS) = 0.145-0.182) and regional (F(IS) = 0.057-0.174) levels. Low genetic differentiation was detected at both macrogeographic (G(ST) = 0.043-0.126) and regional (G(ST) = 0.009-0.061) levels for the three species, suggesting substantial gene flow among populations. Gene exchange among populations seems to be regulated by distance among populations. Our results support the hypothesis that bat-mediated gene dispersal confers high levels of genetic exchange among populations of the three columnar cacti, a process that enhances levels of genetic diversity within their populations.

  9. Genetic diversity among ancient Nordic populations

    DEFF Research Database (Denmark)

    Melchior, Linea Cecilie; Lynnerup, Niels; Siegismund, Hans Redlef

    2010-01-01

    the ancient Danes (average 13%) than among extant Danes and Scandinavians ( approximately 2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic...... samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least...... for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture....

  10. Stellar Population Analysis of Galaxies based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    Abdel-Fattah Attia; H.A.Ismail; I.M.Selim; A.M.Osman; I.A.Isaa; M.A.Marie; A.A.Shaker

    2005-01-01

    We present a new method for determining the age and relative contribution of different stellar populations in galaxies based on the genetic algorithm.We apply this method to the barred spiral galaxy NGC 3384, using CCD images in U, B, V, R and I bands. This analysis indicates that the galaxy NGC 3384 is mainly inhabited by old stellar population (age > 109 yr). Some problems were encountered when numerical simulations are used for determining the contribution of different stellar populations in the integrated color of a galaxy. The results show that the proposed genetic algorithm can search efficiently through the very large space of the possible ages.

  11. Population genetics in minority children with type 2 diabetes mellitus.

    Science.gov (United States)

    Wallerstein, Robert

    2002-04-01

    Non-insulin dependent (type 2) diabetes mellitus (DM) is a rapidly emerging health threat in minority populations in the United States, with the African-American, Hispanic, and Native American populations at greatest risk. Clearly, environmental factors play a role in this disorder, but the ethnic predilection suggests a significant genetic component. Type 2 DM is a condition not well understood on a genetic basis. Familial clustering and ethnic variation have been documented. The populations of Africans living in diverse environments provide a unique opportunity to study type 2 DM as the mechanism is becoming more clear.

  12. The Etruscans: a population-genetic study

    DEFF Research Database (Denmark)

    Vernesi, Cristiano; Caramelli, David; Dupanloup, Isabelle;

    2004-01-01

    The origins of the Etruscans, a non-Indo-European population of preclassical Italy, are unclear. There is broad agreement that their culture developed locally, but the Etruscans' evolutionary and migrational relationships are largely unknown. In this study, we determined mitochondrial DNA sequences...

  13. Genetic variability and population structure of Salvia lachnostachys: implications for breeding and conservation programs.

    Science.gov (United States)

    Erbano, Marianna; Schühli, Guilherme Schnell E; Santos, Élide Pereira Dos

    2015-04-08

    The genetic diversity and population structure of Salvia lachnostachys Benth were assessed. Inter Simple Sequence Repeat (ISSR) molecular markers were used to investigate the restricted distribution of S. lachnostachys in Parana State, Brazil. Leaves of 73 individuals representing three populations were collected. DNA was extracted and submitted to PCR-ISSR amplification with nine tested primers. Genetic diversity parameters were evaluated. Our analysis indicated 95.6% polymorphic loci (stress value 0.02) with a 0.79 average Simpson's index. The Nei-Li distance dendrogram and principal component analysis largely recovered the geographical origin of each sample. Four major clusters were recognized representing each collected population. Nei's gene diversity and Shannon's information index were 0.25 and 0.40 respectively. As is typical for outcrossing herbs, the majority of genetic variation occurred at the population level (81.76%). A high gene flow (Nm = 2.48) was observed with a correspondingly low fixation index. These values were generally similar to previous studies on congeneric species. The results of principal coordinate analysis (PCA) and of arithmetic average (UPGMA) were consistent and all three populations appear distinct as in STRUCTURE analysis. In addition, this analysis indicated a majority intrapopulation genetic variation. Despite the human pressure on natural populations our study found high levels of genetic diversity for S. lachnostachys. This was the first molecular assessment for this endemic species with medicinal proprieties and the results can guide for subsequent bioprospection, breeding programs or conservation actions.

  14. Dynamic Change of Genetic Diversity in Conserved Populations with Different Initial Genetic Architectures

    Institute of Scientific and Technical Information of China (English)

    LU Yun-feng; LI Hong-wei; WU Ke-liang; WU Chang-xin

    2013-01-01

    Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity

  15. Safety assessment of genetically modified foods.

    Science.gov (United States)

    Taylor, S L

    2001-12-01

    The development of novel foods produced through agricultural biotechnology is a complex three-stage process: gene discovery, line selection, and product advancement to commercialization. The safety of genetically modified foods is an integral part of the overall developmental process throughout all of the stages. In the discovery stage, the safety of the gene, its source, and the gene products must be considered. If any questions arise at this stage, these questions must be answered later in the developmental process. During the line selection stage, the genetically modified seed progresses through a variety of greenhouse and field trials. At this stage, the biological and agronomic equivalence of the genetically modified crop to its traditional counterpart must be compared. While the evaluations made during this stage are not specifically directed toward a safety assessment, many potential products with unusual characteristics are eliminated during this stage of development. However, the elimination of products with unusual agronomic or biological characteristics enhances the likelihood that a safe product will be generated. Finally, in the pre-commercialization stage, the genetically modified product undergoes a detailed safety assessment process. This process focuses on the safety of the gene products associated with the introduced gene and any other likely toxicological or anti-nutrient factors associated with the source of the novel gene and the crop to which it was introduced. The safety of the genetically modified product for both food and feed uses is considered. Thus far, all of the genetically modified products brought into the marketplace have been subjected to such an intensive safety assessment. The safety assessment data have been reviewed by regulatory authorities around the world. The current generation of genetically modified products are quite safe for human and feed animal consumption.

  16. Medical Genetics and the First Studies of the Genetics of Populations in Mexico.

    Science.gov (United States)

    Barahona, Ana

    2016-09-01

    Following World War II (WWII), there was a new emphasis within genetics on studying the genetic composition of populations. This probably had a dual source in the growing strength of evolutionary biology and the new international interest in understanding the effects of radiation on human populations, following the atomic bombings in Japan. These global concerns were shared by Mexican physicians. Indeed, Mexico was one of the leading centers of this trend in human genetics. Three leading players in this story were Mario Salazar Mallén, Adolfo Karl, and Rubén Lisker. Their trajectories and the international networks in human genetics that were established after WWII, paved the way for the establishment of medical and population genetics in Mexico. Salazar Mallén's studies on the distribution and characterization of ABO blood groups in indigenous populations were the starting point while Karl's studies on the distribution of abnormal hemoglobin in Mexican indigenous populations showed the relationships observed in other laboratories at the time. It was Lisker's studies, however, that were instrumental in the development of population genetics in the context of national public policies for extending health care services to the Mexican population. In particular, he conducted studies on Mexican indigenous groups contributing to the knowledge of the biological diversity of human populations according to international trends that focused on the variability of human populations in terms of genetic frequencies. From the start, however, Lisker was as committed to the reconstruction of shared languages and practices as he was to building networks of collaboration in order to guarantee the necessary groundwork for establishing the study of the genetics of human populations in Mexico. This study also allows us to place Mexican science within a global context in which connected narratives describe the interplay between global trends and national contexts.

  17. Iberia: population genetics, anthropology, and linguistics.

    Science.gov (United States)

    Arnaiz-Villena, A; Martínez-Laso, J; Alonso-García, J

    1999-10-01

    Basques, Portuguese, Spaniards, and Algerians have been studied for HLA and mitochondrial DNA markers, and the data analysis suggests that pre-Neolithic gene flow into Iberia came from ancient white North Africans (Hamites). The Basque language has also been used to translate the Iberian-Tartesian language and also Etruscan and Minoan Linear A. Physical anthropometry of Iberian Mesolithic and Neolithic skeletons does not support the demic replacement in Iberia of preexisting Mesolithic people by Neolithic people bearing new farming technologies from Europe and the Middle East. Also, the presence of cardial impressed pottery in western Mediterranean Europe and across the Maghreb (North Africa) coasts at the beginning of the Neolithic provides good evidence of pre-Neolithic circum-Mediterranean contacts by sea. In addition, pre-dynastic Egyptian El-Badari culture (4,500 years ago) is similar to southern Iberian Neolithic settlements with regard to pottery and animal domestication. Taking the genetic, linguistic, anthropological, and archeological evidence together with the documented Saharan area desiccation starting about 10,000 years ago, we believe that it is possible that a genetic and cultural pre-Neolithic flow coming from southern Mediterranean coasts existed toward northern Mediterranean areas, including at least Iberia and some Mediterranean islands. This model would substitute for the demic diffusion model put forward to explain Neolithic innovations in Western Europe.

  18. Genetic diversity in Chilean populations of rainbow trout, Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Claudia B Cárcamo

    2015-03-01

    Full Text Available The rainbow trout Oncorhynchus mykiss, was first introduced in Chile between 1905 and 1920 and is currently widely distributed in Chile from Antofagasta (23°S to Patagonia (55°S. The broad range of the geographic and climatic distributions of this species in Chile offers a unique opportunity to study the effect of naturalization of an introduced species on its genetic variability. It is of particular importance to observe the genetic variability of populations in the northern range of this species distribution, in a transition zone where a Mediterranean-type climate changes to an arid climate. The present study analyzed allozymic variability and distribution within and between populations of O. mykiss from the river basins of Elqui and Limari rivers, and six culture strains, using starch-gel protein electrophoresis. Populations were found to be in Hardy-Weinberg equilibrium and the average values of He (0.045, polymorphism (13.9% and allele per locus (1.19 are similar to rainbow trout in its native distributional range. About 77.8% of the genetic variability was within population, similar to the variability reported for wild populations in the northern hemisphere. However, a marked genetic differentiation between wild populations was also found. This is likely to be the consequence of initial founder effects followed by subsequent introgression of resident populations caused by reseeding with trout of different origins in both basins.

  19. Genetic mixture of multiple source populations accelerates invasive range expansion.

    Science.gov (United States)

    Wagner, Natalie K; Ochocki, Brad M; Crawford, Kerri M; Compagnoni, Aldo; Miller, Tom E X

    2017-01-01

    A wealth of population genetic studies have documented that many successful biological invasions stem from multiple introductions from genetically distinct source populations. Yet, mechanistic understanding of whether and how genetic mixture promotes invasiveness has lagged behind documentation that such mixture commonly occurs. We conducted a laboratory experiment to test the influence of genetic mixture on the velocity of invasive range expansion. The mechanistic basis for effects of genetic mixture could include evolutionary responses (mixed invasions may harbour greater genetic diversity and thus elevated evolutionary potential) and/or fitness advantages of between-population mating (heterosis). If driven by evolution, positive effects of source population mixture should increase through time, as selection sculpts genetic variation. If driven by heterosis, effects of mixture should peak following first reproductive contact and then dissipate. Using a laboratory model system (beetles spreading through artificial landscapes), we quantified the velocity of range expansion for invasions initiated with one, two, four or six genetic sources over six generations. Our experiment was designed to test predictions corresponding to the evolutionary and heterosis mechanisms, asking whether any effects of genetic mixture occurred in early or later generations of range expansion. We also quantified demography and dispersal for each experimental treatment, since any effects of mixture should be manifest in one or both of these traits. Over six generations, invasions with any amount of genetic mixture (two, four and six sources) spread farther than single-source invasions. Our data suggest that heterosis provided a 'catapult effect', leaving a lasting signature on range expansion even though the benefits of outcrossing were transient. Individual-level trait data indicated that genetic mixture had positive effects on local demography (reduced extinction risk and enhanced

  20. Population status and population genetics of northern leopard frogs in Arizona

    Science.gov (United States)

    Theimer, Tad C.; Drost, Charles A.; O'Donnell, Ryan P.; Mock, Karen E.

    2011-01-01

    Increasing isolation of populations by habitat fragmentation threatens the persistence of many species, both from stochastic loss of small isolated populations, and from inbreeding effects in populations that have become genetically isolated. In the southwestern United States, amphibian habitat is naturally patchy in occurrence because of the prevailing aridity of the region. Streams, rivers, and other wetlands are important both as habitat and as corridors that connect populations. However, populations of some species have become more fragmented and isolated by habitat degradation and loss. Northern leopard frogs (Rana pipiens) have experienced serious declines in the Southwest. We conducted an extensive survey across the known range of northern leopard frogs in Arizona to determine the current distribution and abundance of the species. From a range that once spanned much of the northern and central part of the State, northern leopard frogs have been reduced to three or four widely separated populations, near Lyman Lake in east-central Arizona, in the Stoneman Lake area south of Flagstaff, along Truxton Wash near Peach Springs, and a population of uncertain extent on Navajo Nation lands. The Lyman Lake and Truxton Wash populations are small and extremely isolated. The Stoneman Lake population, however, is an extensive metapopulation spread across several stream drainages, including numerous ponds, wetlands, and artificial tanks. This is the only population in Arizona that is increasing in extent and numbers, but there is concern about the apparent introduction of nonnative genetic stock from eastern North America into this area. We analyzed genetic diversity within and genetic divergence among populations of northern leopard frogs, across both extant and recently extirpated populations in Arizona. We also analyzed mitochondrial DNA to place these populations into a larger phylogenetic framework and to determine whether any populations contained genetic material

  1. Genetic diversity among ancient Nordic populations.

    Science.gov (United States)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (approximately 2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  2. Genetic structure in dwarf bamboo (Bashania fangiana clonal populations with different genet ages.

    Directory of Open Access Journals (Sweden)

    Qing-qing Ma

    Full Text Available Amplified fragment length polymorphism (AFLP fingerprints were used to reveal genotypic diversity of dwarf bamboo (Bashania fangiana clonal populations with two different genet ages (≤30 years versus >70 years at Wolong National Natural Reserve, Sichuan province, China. We generated AFLP fingerprints for 96 leaf samples, collected at 30 m intervals in the two populations, using ten selective primer pairs. A total of 92 genotypes were identified from the both populations. The mean proportion of distinguishable genotypes (G/N was 0.9583 (0.9375 to 0.9792 and Simpson's index of diversity (D was 0.9982 (0.9973 to 0.9991. So, two B. fangiana populations were multiclonal and highly diverse. The largest single clone may occur over a distance of about 30 m. Our results demonstrated that the genotypic diversity and genet density of B. fangiana clonal population did not change significantly (47 versus 45 with genet aging and low partitioned genetic differentiation was between the two populations (Gst = 0.0571. The analysis of molecular variance consistently showed that a large proportion of the genetic variation (87.79% existed among the individuals within populations, whereas only 12.21% were found among populations. In addition, the high level of genotypic diversity in the two populations implies that the further works were needed to investigate the reasons for the poor seed set in B. fangiana after flowering.

  3. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Changtragoon, Suchitra; Ponoy, Bundit;

    2015-01-01

    Twenty-nine provenances of teak (Tectona grandis Linn. f.) representing the full natural distribution range of the species were genotyped with microsatellite DNA markers to analyse genetic diversity and population genetic structure. Provenances originating from the semi-moist east coast of India...... had the highest genetic diversity while provenances from Laos showed the lowest. In the eastern part of the natural distribution area, comprising Myanmar, Thailand and Laos, there was a strong clinal decrease in genetic diversity the further east the provenance was located. Overall, the pattern...... of the findings for conservation and use of genetic resources of the species are discussed....

  4. Genetic structure and phylogeography of European catfish (Silurus glanis) populations.

    Science.gov (United States)

    Triantafyllidis, A; Krieg, F; Cottin, C; Abatzopoulos, T J; Triantaphyllidis, C; Guyomard, R

    2002-06-01

    The genetic structure of Silurus glanis (Europe's largest freshwater fish species) across most of its natural distribution was investigated using 10 microsatellite loci. The revealed levels of genetic diversity were much higher than previous allozyme and restriction fragment length polymorphism mitochondrial DNA analyses had shown; relative levels of variability among populations were however, in good agreement with the previous studies. Populations from large basins (Volga and Danube rivers) were the most polymorphic, while samples from the smaller Greek rivers, which are more prone to genetic bottleneck, exhibited the lowest levels of genetic diversity. Microsatellite multilocus genotyping permitted the assignment of individual fish to their population of origin with a score as high as 98.3%. Despite the great genetic differentiation of S. glanis populations, no consistent pattern of geographical structuring was revealed, in contrast to previous studies of European freshwater fish species. A model of isolation by distance seems more probable and a hypothesis of recent dispersion from only one glacial refugium is proposed. The discovery of the highest levels of microsatellite and mitochondrial diversity in the Volga sample and the presence of river connections, during the Pleistocene, between this area and all major areas of the present catfish distribution, place this refugium around the Ponto-Caspian region. Combining these data with those from previous studies, a number of markers are now available to monitor wild and hatchery populations even at the individual level.

  5. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    Science.gov (United States)

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  6. Population structure and genetic diversity in natural populations of Theobroma speciosum Willd. Ex Spreng (Malvaceae).

    Science.gov (United States)

    Giustina, L D; Luz, L N; Vieira, F S; Rossi, F S; Soares-Lopes, C R A; Pereira, T N S; Rossi, A A B

    2014-02-14

    The genus Theobroma found in the Amazon region is composed of 22 species, including Theobroma speciosum, better known as cacauí. These species are constantly threatened by forest fragmentation caused by human activities and require conservation strategies and management aimed at preserving them in their natural environments. The main objective of this study was to analyze the population structure and genetic diversity within and between natural populations of T. speciosum by using ISSR molecular markers to understand the population structure of the species. Four natural populations belonging to the Amazon rainforest (BAC, CRO, FLA, and PNA), located in the State of Mato Grosso, were selected. Amplification reactions were performed using 15 ISSR primers. A total of 101 loci were found, of which 54.46% were polymorphic at the species level. The BAC population showed higher genetic diversity (H=0.095 and I=0.144) and higher percentage of polymorphism (28.71%). The populations showed an FST value of 0.604, indicating marked genetic differentiation. The highest genetic variation was found between populations. Gene flow was low between populations, indicating genetic isolation between populations.

  7. Safety assessment of genetically modified foods

    NARCIS (Netherlands)

    Kleter, G.A.; Noordam, M.Y.

    2016-01-01

    The cultivation of genetically modified (GM) crops has steadily increased since their introduction to the market in the mid-1990s. Before these crops can be grown and sold they have to obtain regulatory approval in many countries, the process of which includes a pre-market safety assessment. The foo

  8. Genetic diversity among ancient Nordic populations.

    Directory of Open Access Journals (Sweden)

    Linea Melchior

    Full Text Available Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13% than among extant Danes and Scandinavians (approximately 2.5% as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  9. Population genetic structure of a colonising, triploid weed, Hieracium lepidulum.

    Science.gov (United States)

    Chapman, H; Robson, B; Pearson, M L

    2004-03-01

    Understanding the breeding system and population genetic structure of invasive weed species is important for biocontrol, and contributes to our understanding of the evolutionary processes associated with invasions. Hieracium lepidulum is an invasive weed in New Zealand, colonising a diverse range of habitats including native Nothofagus forest, pine plantations, scrubland and tussock grassland. It is competing with native subalpine and alpine grassland and herbfield vegetation. H. lepidulum is a triploid, diplosporous apomict, so theoretically all seed is clonal, and there is limited potential for the creation of variation through recombination. We used intersimple sequence repeats (ISSRs) to determine the population genetic structure of New Zealand populations of H. lepidulum. ISSR analysis of five populations from two regions in the South Island demonstrated high intrapopulation genotypic diversity, and high interpopulation genetic structuring; PhiST = 0.54 over all five populations. No private alleles were found in any of the five populations, and allelic differentiation was correlated to geographic distance. Cladistic compatibility analysis indicated that both recombination and mutation were important in the creation of genotypic diversity. Our data will contribute to any biocontrol program developed for H. lepidulum. It will also be a baseline data set for future comparisons of genetic structure during the course of H. lepidulum invasions.

  10. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    Science.gov (United States)

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  11. Genetic structure of natural and restored shoalgrass Halodule wrightii populations in the NW Gulf of Mexico

    Science.gov (United States)

    Travis, S.E.; Sheridan, P.

    2006-01-01

    The decline of seagrass communities worldwide has sparked an urgent need for effective restoration strategies, which require a working knowledge of population genetic structure. Halodule wrighti is a common seagrass of the Caribbean region that is being restored to areas of the Gulf of Mexico, yet little is known of its population genetics. This study provides an assessment of individual, clonal and population effects on the genetic structure of 4 natural H. wrightii populations occupying 170 km of coastline in and around Galveston Bay, Texas, for comparison with 7 restored populations ranging in age from 2 to 7 yr. By using molecular markers, in the form of amplified fragment length polymorphisms (AFLPs), we found considerable variation in clonal richness at the population scale (from 0.54 to 0.82), with the restored populations occupying an intermediate to high position within this range. Replicate sampling within individual seagrass beds of 3 to 5m diameter generally revealed higher levels of clonal richness, elevated by 4 to 22% over that at the population scale, suggesting that seed recruitment is more important at the local scale than at distances of >10 m. Genetic diversity was 2 to 3 times less than that expected for a widespread, outcrossing species like H. wrightii, although a 170% increase in the frequency of variable markers relative to the mean for all other populations was noted for a volunteer population that had recruited from a mixture of donor materials planted at a nearby restoration site. Within the spatial extent of this study, natural populations adhered to a model of isolation-by-distance, whereas donor materials from these same natural populations were undergoing a rapid genetic convergence within a restored site where they had been planted together. ?? Inter-Research 2006.

  12. Population genetics at three spatial scales of a rare sponge living in fragmented habitats

    Directory of Open Access Journals (Sweden)

    Uriz Maria J

    2010-01-01

    Full Text Available Abstract Background Rare species have seldom been studied in marine habitats, mainly because it is difficult to formally assess the status of rare species, especially in patchy benthic organisms, for which samplings are often assumed to be incomplete and, thus, inappropriate for establishing the real abundance of the species. However, many marine benthic invertebrates can be considered rare, due to the fragmentation and rarity of suitable habitats. Consequently, studies on the genetic connectivity of rare species in fragmented habitats are basic for assessing their risk of extinction, especially in the context of increased habitat fragmentation by human activities. Sponges are suitable models for studying the intra- and inter-population genetic variation of rare invertebrates, as they produce lecitotrophic larvae and are often found in fragmented habitats. Results We investigated the genetic structure of a Mediterranean sponge, Scopalina lophyropoda (Schmidt, using the allelic size variation of seven specific microsatellite loci. The species can be classified as "rare" because of its strict habitat requirements, the low number of individuals per population, and the relatively small size of its distribution range. It also presents a strong patchy distribution, philopatric larval dispersal, and both sexual and asexual reproduction. Classical genetic-variance-based methods (AMOVA and differentiation statistics revealed that the genetic diversity of S. lophyropoda was structured at the three spatial scales studied: within populations, between populations of a geographic region, and between isolated geographic regions, although some stochastic gene flow might occur among populations within a region. The genetic structure followed an isolation-by-distance pattern according to the Mantel test. However, despite philopatric larval dispersal and fission events in the species, no single population showed inbreeding, and the contribution of clonality to the

  13. Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale).

    Science.gov (United States)

    Keane, Brian; Collier, Matthew H; Rogstad, Steven H

    2005-06-01

    Assessing the genetic structure of natural populations differentially impacted by anthropogenic contaminants can be a useful tool for evaluating the population genetic consequences of exposure to pollution. In this study, measures of genetic diversity at variable-number-tandem-repeat loci in six dandelion populations (3 urban and 3 rural) showed patterns that may have been influenced by exposure to environmental contaminants. Mean genetic similarity among individuals within a population was significantly and positively correlated with increasing levels of airborne particulate matter (< or = 10 microm, PM10) and soil concentrations of four metals (Cd, Fe, Ni and Pb). In addition, mean genetic similarity was always significantly higher at the urban sites compared to rural sites. There was a significant negative correlation between the number of genotypes at a site and increasing amounts of PM10, concentrations of five soil metals (Cd, Cu, Fe, Ni and Pb), leaf tissue levels of Fe and a significant positive correlation between the extent of clonality at a site and levels of PM10 and soil concentrations of five metals (Cd, Cu, Fe, Ni and Pb). Although, this study does not directly establish a causal link between the specific contaminants detected at the study sites and differences in genetic diversity, our data are consistent with the hypothesis that pollution-induced selection has contributed in some fashion to the lower genetic diversity found at the urban sites.

  14. gPGA: GPU Accelerated Population Genetics Analyses.

    Directory of Open Access Journals (Sweden)

    Chunbao Zhou

    Full Text Available The isolation with migration (IM model is important for studies in population genetics and phylogeography. IM program applies the IM model to genetic data drawn from a pair of closely related populations or species based on Markov chain Monte Carlo (MCMC simulations of gene genealogies. But computational burden of IM program has placed limits on its application.With strong computational power, Graphics Processing Unit (GPU has been widely used in many fields. In this article, we present an effective implementation of IM program on one GPU based on Compute Unified Device Architecture (CUDA, which we call gPGA.Compared with IM program, gPGA can achieve up to 52.30X speedup on one GPU. The evaluation results demonstrate that it allows datasets to be analyzed effectively and rapidly for research on divergence population genetics. The software is freely available with source code at https://github.com/chunbaozhou/gPGA.

  15. Quasispecies theory in the context of population genetics

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2005-08-01

    Full Text Available Abstract Background A number of recent papers have cast doubt on the applicability of the quasispecies concept to virus evolution, and have argued that population genetics is a more appropriate framework to describe virus evolution than quasispecies theory. Results I review the pertinent literature, and demonstrate for a number of cases that the quasispecies concept is equivalent to the concept of mutation-selection balance developed in population genetics, and that there is no disagreement between the population genetics of haploid, asexually-replicating organisms and quasispecies theory. Conclusion Since quasispecies theory and mutation-selection balance are two sides of the same medal, the discussion about which is more appropriate to describe virus evolution is moot. In future work on virus evolution, we would do good to focus on the important questions, such as whether we can develop accurate, quantitative models of virus evolution, and to leave aside discussions about the relative merits of perfectly equivalent concepts.

  16. Quantifying population genetic differentiation from next-generation sequencing data

    DEFF Research Database (Denmark)

    Fumagalli, Matteo; Vieira, Filipe G.; Korneliussen, Thorfinn Sand;

    2013-01-01

    Over the last few years, new high-throughput DNA sequencing technologies have dramatically increased speed and reduced sequencing costs. However, the use of these sequencing technologies is often challenged by errors and biases associated with the bioinformatical methods used for analyzing the da...... individuals, suggesting that employing this new method is useful for investigating the genetic relationships of populations sampled at low coverage....... method for quantifying population genetic differentiation from next-generation sequencing data. In addition, we present a strategy to investigate population structure via Principal Components Analysis. Through extensive simulations, we compare the new method herein proposed to approaches based...... on genotype calling and demonstrate a marked improvement in estimation accuracy for a wide range of conditions. We apply the method to a large-scale genomic data set of domesticated and wild silkworms sequenced at low coverage. We find that we can infer the fine-scale genetic structure of the sampled...

  17. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  18. [Study on the maximum entropy principle and population genetic equilibrium].

    Science.gov (United States)

    Zhang, Hong-Li; Zhang, Hong-Yan

    2006-03-01

    A general mathematic model of population genetic equilibrium about one locus was constructed based on the maximum entropy principle by WANG Xiao-Long et al. They proved that the maximum solve of the model was just the frequency distribution that a population reached Hardy-Weinberg genetic equilibrium. It can suggest that a population reached Hardy-Weinberg genetic equilibrium when the genotype entropy of the population reached the maximal possible value, and that the frequency distribution of the maximum entropy was equivalent to the distribution of Hardy-Weinberg equilibrium law about one locus. They further assumed that the frequency distribution of the maximum entropy was equivalent to all genetic equilibrium distributions. This is incorrect, however. The frequency distribution of the maximum entropy was only equivalent to the distribution of Hardy-Weinberg equilibrium with respect to one locus or several limited loci. The case with regard to limited loci was proved in this paper. Finally we also discussed an example where the maximum entropy principle was not the equivalent of other genetic equilibria.

  19. Population genetics and demographic history of red seaweed, Palmaria palmata, from the Canada–northwest Atlantic

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2013-05-01

    Full Text Available The paleoclimate change (e.g. the glacial fluctuation in the late Pleistocene played an important role in shaping species’ population genetic structure, geographic distribution patterns, and gradient of diversity and composition. In this study, we sampled eight populations (138 individuals of Palmaria palmata, a commercially and ecologically important red macroalga found on both sides of the North Atlantic coast, aiming to assess the genetic structure and demographic history through the integration of mitochondrial cox2–3 spacer and RAPD variation. Eleven mtDNA cox2–3 haplotypes were detected, one of which (C3 was common and located centrally in a haplotype network. It is shared by all populations and is regarded as ancestral. Two northern populations from the Gulf of St. Lawrence had highest levels of genetic diversity, and were significantly divergent from all other populations. AMOVA showed that highest genetic variation for cox2–3 occurred within populations, while less existed among groups. This was consistent with the results of a STRUCTURE clustering analysis of RAPD data. Our genetic diversity and haplotype network analyses indicated that multiple glacial refugia might have existed for the species along the Canada–north- west Atlantic coast. Furthermore, Bayesian skyline plot analysis based on cox2–3 spacer sequences indicated that population size underwent a slight increase over temporal and spatial scales. This occurred in approximately 0.18–0.13 million years ago. Pairwise genetic distance (K2P between populations from the Gulf of St. Lawrence and the Bay of Fundy was 0.2%, indicating that they diverged from their common ancestor since about 0.36 million years ago. The evidence from our study suggests that climatic oscillations during the late Pleistocene had a drastic influence on the demography and genetic diversity of P. palmata in the Canada–northwest Atlantic.

  20. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV)

    DEFF Research Database (Denmark)

    Snow, M.; Bain, N.; Black, J.

    2004-01-01

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the m......The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders...

  1. Genetic population structure of local populations of the endangered saltmarsh sesarmid crab Clistocoeloma sinense in Japan.

    Science.gov (United States)

    Yuhara, Takeshi; Kawane, Masako; Furota, Toshio

    2014-01-01

    During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species.

  2. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Science.gov (United States)

    Serrano, Magdalena; Calvo, Jorge H; Martínez, Marta; Marcos-Carcavilla, Ane; Cuevas, Javier; González, Carmen; Jurado, Juan J; de Tejada, Paloma Díez

    2009-01-01

    Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008) consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08) mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will facilitate the

  3. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Directory of Open Access Journals (Sweden)

    Jurado Juan J

    2009-09-01

    Full Text Available Abstract Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008 consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08 mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will

  4. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum

    OpenAIRE

    Melito, Sara; Sias, Angela; Petretto, Giacomo Luigi; Chessa, Mario; Pintore, Giorgio Antonio Mario; Porceddu, Andrea

    2013-01-01

    Background: Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods: H. italicum plants were AFLP fi...

  5. Unexpectedly low rangewide population genetic structure of the imperiled eastern box turtle Terrapene c. carolina.

    Directory of Open Access Journals (Sweden)

    Steven J A Kimble

    Full Text Available Rangewide studies of genetic parameters can elucidate patterns and processes that operate only over large geographic scales. Herein, we present a rangewide population genetic assessment of the eastern box turtle Terrapene c. carolina, a species that is in steep decline across its range. To inform conservation planning for this species, we address the hypothesis that disruptions to demographic and movement parameters associated with the decline of the eastern box turtle has resulted in distinctive genetic signatures in the form of low genetic diversity, high population structuring, and decreased gene flow. We used microsatellite genotype data from (n = 799 individuals from across the species range to perform two Bayesian population assignment approaches, two methods for comparing historical and contemporary migration among populations, an evaluation of isolation by distance, and a method for detecting barriers to gene flow. Both Bayesian methods of population assignment indicated that there are two populations rangewide, both of which have maintained high levels of genetic diversity (HO = 0.756. Evidence of isolation by distance was detected in this species at a spatial scale of 300-500 km, and the Appalachian Mountains were identified as the primary barrier to gene flow across the species range. We also found evidence for historical but not contemporary migration between populations. Our prediction of many, highly structured populations across the range was not supported. This may point to cryptic contemporary gene flow, which might in turn be explained by the presence of rare transients in populations. However these data may be influenced by historical signatures of genetic connectivity because individuals of this species can be long-lived.

  6. Genetic hitchhiking in a subdivided population of Mytilus edulis

    Directory of Open Access Journals (Sweden)

    David Patrice

    2008-05-01

    Full Text Available Abstract Background Few models of genetic hitchhiking in subdivided populations have been developed and the rarity of empirical examples is even more striking. We here provide evidences of genetic hitchhiking in a subdivided population of the marine mussel Mytilus edulis. In the Bay of Biscay (France, a patch of M. edulis populations happens to be separated from its North Sea conspecifics by a wide region occupied only by the sister species M. galloprovincialis. Although genetic differentiation between the two M. edulis regions is largely non-significant at ten marker loci (average FST~0.007, a strong genetic differentiation is observed at a single locus (FST = 0.25. We validated the outlier status of this locus, and analysed DNA sequence polymorphism in order to identify the nature of the selection responsible for the unusual differentiation. Results We first showed that introgression of M. galloprovincialis alleles was very weak in both populations and did not significantly affect their differentiation. Secondly, we observed the genetic signature of a selective sweep within both M. edulis populations in the form of a star-shaped clade of alleles. This clade was nearly fixed in the North Sea and was segregating at a moderate frequency in the Bay of Biscay, explaining their genetic differentiation. Incomplete fixation reveals that selection was not direct on the locus but that the studied sequence recombined with a positively selected allele at a linked locus while it was on its way to fixation. Finally, using a deterministic model we showed that the wave of advance of a favourable allele at a linked locus, when crossing a strong enough barrier to gene flow, generates a step in neutral allele frequencies comparable to the step observed between the two M. edulis populations at the outlier locus. In our case, the position of the barrier is now materialised by a large patch of heterospecific M. galloprovincialis populations. Conclusion High FST

  7. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    Science.gov (United States)

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations.

  8. Can small wildlife conservancies maintain genetically stable populations of large mammals? Evidence for increased genetic drift in geographically restricted populations of Cape buffalo in East Africa

    DEFF Research Database (Denmark)

    Heller, R; Okello, J B A; Siegismund, H

    2010-01-01

    populations, the level of genetic differentiation found here is comparable to that among pan-African populations. Overall, correlations between conservancy area and indices of genetic diversity suggest buffalo populations inhabiting small parks are showing signs of genetic erosion, stressing the need for more...

  9. Genetic substructure of Kuwaiti population reveals migration history.

    Directory of Open Access Journals (Sweden)

    Osama Alsmadi

    Full Text Available The State of Kuwait is characterized by settlers from Saudi Arabia, Iran, and other regions of the Arabian Peninsula. The settlements and subsequent admixtures have shaped the genetics of Kuwait. High prevalence of recessive disorders and metabolic syndromes (that increase risk of diabetes is seen in the peninsula. Understanding the genetic structure of its population will aid studies designed to decipher the underlying causes of these disorders. In this study, we analyzed 572,366 SNP markers from 273 Kuwaiti natives genotyped using the illumina HumanOmniExpress BeadChip. Model-based clustering identified three genetic subgroups with different levels of admixture. A high level of concordance (Mantel test, p=0.0001 for 9999 repeats was observed between the derived genetic clusters and the surname-based ancestries. Use of Human Genome Diversity Project (HGDP data to understand admixtures in each group reveals the following: the first group (Kuwait P is largely of West Asian ancestry, representing Persians with European admixture; the second group (Kuwait S is predominantly of city-dwelling Saudi Arabian tribe ancestry, and the third group (Kuwait B includes most of the tent-dwelling Bedouin surnames and is characterized by the presence of 17% African ancestry. Identity by Descent and Homozygosity analyses find Kuwait's population to be heterogeneous (placed between populations that have large amount of ROH and the ones with low ROH with Kuwait S as highly endogamous, and Kuwait B as diverse. Population differentiation FST estimates place Kuwait P near Asian populations, Kuwait S near Negev Bedouin tribes, and Kuwait B near the Mozabite population. FST distances between the groups are in the range of 0.005 to 0.008; distances of this magnitude are known to cause false positives in disease association studies. Results of analysis for genetic features such as linkage disequilibrium decay patterns conform to Kuwait's geographical location at the nexus

  10. Within-population genetic structure in beech (Fagus sylvatica L. stands characterized by different disturbance histories: does forest management simplify population substructure?

    Directory of Open Access Journals (Sweden)

    Andrea Piotti

    Full Text Available The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L. plots experiencing different disturbance levels. Five plot pairs made up by disturbed and undisturbed plots having the same biogeographic history were sampled throughout Europe. Overall, 1298 individuals were analyzed using four highly polymorphic nuclear microsatellite markers (SSRs. Bayesian clustering within plots identified 3 to 11 genetic clusters (within-plot θ ST ranged from 0.025 to 0.124. The proportion of within-population genetic variation due to genetic substructuring (F CluPlot = 0.067 was higher than the differentiation among the 10 plots (F PlotTot = 0.045. Focusing on the comparison between managed and unmanaged plots, disturbance mostly explains differences in the complexity of within-population genetic structure, determining a reduction of the number of genetic clusters present in a standardized area. Our results show that: i genetic substructuring needs to be investigated when studying the within-population genetic structure in forest tree populations, and ii indices describing subtle characteristics of the within-population genetic structure are good candidates for providing early signals of the consequences of forest management, and of disturbance events in general.

  11. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?

    Science.gov (United States)

    Piotti, Andrea; Leonardi, Stefano; Heuertz, Myriam; Buiteveld, Joukje; Geburek, Thomas; Gerber, Sophie; Kramer, Koen; Vettori, Cristina; Vendramin, Giovanni Giuseppe

    2013-01-01

    The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L.) plots experiencing different disturbance levels. Five plot pairs made up by disturbed and undisturbed plots having the same biogeographic history were sampled throughout Europe. Overall, 1298 individuals were analyzed using four highly polymorphic nuclear microsatellite markers (SSRs). Bayesian clustering within plots identified 3 to 11 genetic clusters (within-plot θ ST ranged from 0.025 to 0.124). The proportion of within-population genetic variation due to genetic substructuring (F CluPlot = 0.067) was higher than the differentiation among the 10 plots (F PlotTot = 0.045). Focusing on the comparison between managed and unmanaged plots, disturbance mostly explains differences in the complexity of within-population genetic structure, determining a reduction of the number of genetic clusters present in a standardized area. Our results show that: i) genetic substructuring needs to be investigated when studying the within-population genetic structure in forest tree populations, and ii) indices describing subtle characteristics of the within-population genetic structure are good candidates for providing early signals of the consequences of forest management, and of disturbance events in general.

  12. Community structure and population genetics of Eastern Mediterranean polychaetes

    Directory of Open Access Journals (Sweden)

    Giorgos eChatzigeorgiou

    2014-10-01

    Full Text Available Species and genetic diversity are often found to co-vary since they are influenced by external factors in similar ways. In this paper, we analyse the genetic differences of the abundant polychaete Hermodice carunculata (Pallas, 1776 during two successive years at two locations in northern Crete (Aegean Sea and compare them to other populations in the Mediterranean Sea and the Atlantic Ocean. The genetic analysis is combined with an analysis of ecological divergence of the total polychaete community structure (beta diversity at these locations. The phylogenetic analysis of all included H. carunculata populations revealed two main clades, one exclusively found in the Mediterranean and a second occurring in both the Mediterranean and the Atlantic. Genetic diversity indices reveal unexpectedly high differences between the two Cretan populations, despite the absence of apparent oceanographic barriers. A similarly high divergence, represented by a high beta diversity index, was observed between the polychaete communities at the two locations. This comparatively high divergence of the genetic structure of a dominant species and the total polychaete community might be explained by the strong influence of local environmental factors as well as inter-specific interactions between the dominance of a single species and the members of the community.

  13. Rapid genetic erosion in pollutant-exposed experimental chironomid populations

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Carsten [Abteilung Okologie und Evolution, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: cnowak@senckenberg.de; Vogt, Christian [Abteilung Aquatische Okotoxikologie, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: vogt@bio.uni-frankfurt.de; Pfenninger, Markus [Abteilung Okologie und Evolution, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: pfenninger@bio.uni-frankfurt.de; Schwenk, Klaus [Abteilung Okologie und Evolution, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: k.schwenk@bio.uni-frankfurt.de; Oehlmann, Joerg [Abteilung Aquatische Okotoxikologie, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: oehlmann@bio.uni-frankfurt.de; Streit, Bruno [Abteilung Okologie und Evolution, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: streit@bio.uni-frankfurt.de; Oetken, Matthias [Abteilung Aquatische Okotoxikologie, Institut fuer Okologie, Evolution und Diversitaet, J. W. Goethe-Universitaet Frankfurt am Main, Siesmayerstrasse 70, 60054 Frankfurt am Main (Germany)], E-mail: oetken@bio.uni-frankfurt.de

    2009-03-15

    Few studies have evaluated how effectively environmental contamination may reduce genetic diversity of a population. Here, we chose a laboratory approach in order to test if tributyltin (TBT) exposure at environmentally relevant concentrations leads to reduced genetic variation in the midge Chironomus riparius. Two TBT-exposed and two unexposed experimental populations were reared simultaneously in the laboratory for 12 generations. We recorded several life-history traits in each generation and monitored genetic variation over time using five variable microsatellite markers. TBT-exposed strains showed increased larval mortality (treatments: 43.8%; controls: 27.8%), slightly reduced reproductive output, and delayed larval development. Reduction of genetic variation was strongest and only significant in the TBT-exposed strains (treatments: -45.9%, controls: -24.4% of initial heterozygosity) after 12 generations. Our findings document that chemical pollution may lead to a rapid decrease in genetic diversity, which has important implications for conservation strategies and ecological management in polluted environments. - Chronic TBT exposure reduces allelic variation at five variable microsatellite loci in experimental populations of Chironomus riparius.

  14. Genetic population structure in the Antarctic benthos: insights from the widespread amphipod, Orchomenella franklini.

    Science.gov (United States)

    Baird, Helena Phoenix; Miller, Karen Joy; Stark, Jonathan Sean

    2012-01-01

    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1-10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (F(ST) = 0.086, R(ST) = 0.139, pbenthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos.

  15. The genetic population structure of northern Sweden and its implications for mapping genetic diseases.

    Science.gov (United States)

    Einarsdottir, Elisabet; Egerbladh, Inez; Beckman, Lars; Holmberg, Dan; Escher, Stefan A

    2007-11-01

    The northern Swedish population has a history of admixture of three ethnic groups and a dramatic population growth from a relatively small founder population. This has resulted in founder effects that together with unique resources for genealogical analyses provide excellent conditions for genetic mapping of monogenic diseases. Several recent examples of successful mapping of genetic factors underlying susceptibility to complex diseases have suggested that the population of northern Sweden may also be an important tool for efficient mapping of more complex phenotypes. A potential factor contributing to these effects may be population sub-isolates within the large river valleys, constituting a central geographic characteristic of this region. We here provide evidence that marriage patterns as well as the distribution of gene frequencies in a set of marker loci are compatible with this notion. The possible implications of this population structure on linkage- and association based strategies for identifying genes contributing risk to complex diseases are discussed.

  16. Population genetic structure in the Holstein breed in Brazil.

    Science.gov (United States)

    Magalhães Araújo da Silva, Mário Henrique; Malhado, Carlos Henrique Mendes; Costa, José Lauro; Cobuci, Jaime Araujo; Costa, Claudio Napolis; Carneiro, Paulo Luiz Souza

    2016-02-01

    We evaluated the population genetic structure of the Holstein breed in Brazil through pedigree analysis with the aim of supporting genetic management of extant herds. We used data from genealogical records of 204,511 animals in farms from south and southeast Brazil. Pedigree records between 1943 and 2005 were divided into seven periods of 8 years to estimate the effective population size (N e ). N e varied during the study periods, ranging from 0.19 to 3016.25. There was an increase in the percentage of inbred animals over time, from 0.18 to 5.0 %. However, this figure may be an underestimate due to the low completeness of pedigree, primarily related to paternal pedigree. The effective number of founders (fe) was 473 animals and ancestors (fa) was 471. The genetic contribution of 260 ancestors (founders or not) accounted for 50 % of the genetic variability in the population. The average relatedness coefficient (AR) and inbreeding coefficient indicate that the Holstein breed in Brazil is being effectively managed, despite a moderate founder effect and the low number of animals that are responsible for the population variance.

  17. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  18. The impact of clonality on parasite population genetic structure

    Directory of Open Access Journals (Sweden)

    Prugnolle F.

    2008-09-01

    Full Text Available In this paper, we briefly review the consequences of clonal reproduction on the apportionment of genetic diversity in parasite populations. We distinguish three kinds of parasite life-cycle where clonal reproduction occurs. The consequences of this mode of reproduction for the different kinds of parasite life-cycles are described. We here particularly focus on clonal diploids.

  19. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae.

    Science.gov (United States)

    Clowers, Katie J; Heilberger, Justin; Piotrowski, Jeff S; Will, Jessica L; Gasch, Audrey P

    2015-09-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.

  20. Population genetic structuring in Opisthorchis viverrini over various spatial scales in Thailand and Lao PDR.

    Science.gov (United States)

    Laoprom, Nonglak; Sithithaworn, Paiboon; Andrews, Ross H; Ando, Katsuhiko; Laha, Thewarach; Klinbunga, Sirawut; Webster, Joanne P; Petney, Trevor N

    2012-01-01

    Khon Kaen Province in northeast Thailand is known as a hot spot for opisthorchiasis in Southeast Asia. Preliminary allozyme and mitochondrial DNA haplotype data from within one endemic district in this Province (Ban Phai), indicated substantial genetic variability within Opisthorchis viverrini. Here, we used microsatellite DNA analyses to examine the genetic diversity and population structure of O. viverrini from four geographically close localities in Khon Kaen Province. Genotyping based on 12 microsatellite loci yielded a mean number of alleles per locus that ranged from 2.83 to 3.7 with an expected heterozygosity in Hardy-Weinberg equilibrium of 0.44-0.56. Assessment of population structure by pairwise F(ST) analysis showed inter-population differentiation (Pviverrini over a small spatial scale which is similar to that found at a larger scale. This provides the basis for the investigation of the role of parasite genetic diversity and differentiation in transmission dynamics and control of O. viverrini.

  1. Genetic differentiation among populations of the Roseate Spoonbill (Platalea ajaja; Aves: Pelecaniformes) in three Brazilian Wetlands.

    Science.gov (United States)

    Miño, Carolina Isabel; Del Lama, Silvia Nassif

    2014-08-01

    Effective population size, levels of genetic diversity, gene flow, and genetic structuring were assessed in 205 colonial Roseate spoonbills from 11 breeding colonies from north, central west, and south Brazil. Colonies and regions exhibited similar moderate levels of diversity at five microsatellite loci (mean expected heterozygosity range 0.50-0.62; allelic richness range 3.17-3.21). The central west region had the highest Ne (59). F ST values revealed low but significant genetic structuring among colonies within the north and within the south regions. Significant global genetic structuring was found between the northern and central western populations as well as between the northern and southern populations. An individual-based Bayesian clustering method inferred three population clusters. Assignment tests correctly allocated up to 64% of individuals to their source regions. Collectively, results revealed complex demographic dynamics, with ongoing gene flow on a local scale, but genetic differentiation on a broader scale. Populations in the three regions may all be conserved, but special concern should be given to central western ones, which can significantly contribute to the species' gene pool in Brazil.

  2. Risk Assessment of Genetically Modified Microorganisms

    DEFF Research Database (Denmark)

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...... the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the experiences...

  3. Acceptance of genetic testing in a general population

    DEFF Research Database (Denmark)

    Aro, A R; Hakonen, A; Hietala, M;

    1997-01-01

    The aim of the study was to analyze effects of age, education and gender on acceptance of genetic testing. Subjects, n = 1967 aged 15-69, were a stratified random sample of the Finnish population. One thousand, one hundred and sixty nine subjects, 530 men and 639 women, returned the questionnaire....... The majority of the respondents approved of the availability of genetic testing. Young, aged 15-24, were more favourable towards testing and more willing to undergo suggested tests, but they were also more worried than others about the misuse of test results. Men aged 45-69 with only basic education were more...... in favour of mandatory genetic testing than other respondents. Respondents with university education were more critical towards genetic testing and expressed their worry about eugenics more often than other education groups. In conclusion, there are age, education and gender related differences...

  4. Genetic variation of cowslip (Primula veris L. populations (West Poland

    Directory of Open Access Journals (Sweden)

    Maria Morozowska

    2011-04-01

    Full Text Available Genetic variation of twelve Polish populations of Primula veris L. from western Poland was investigated in respect of six enzyme systems: 6-phosphogluconate dehydrogenase (6PGD, diaphorase (DIA, menadione reductase (MNR, formate dehydrogenase (FDH, isocitrate dehydrogenase (IDH and glutamate oxaloacetate transaminase (GOT. Only two of them (6PGD and DIA were polymorphic and all populations were compared according to four loci and eight alleles. For 6PGD only one out of the two detected loci (locus 6PGD-2 was polymorphic and consisted of three alleles a, b and c. For DIA each of two detected loci had two alleles. For 6PGD-2 one population was monomorphic and four populations were monomorphic for DIA-1 and DIA-2. The rest of the populations were polymorphic with low frequency of heterozygotes. The low heterozygosity level, found in the examined populations, was confirmed by high values of the fixation index (F. The level of genetic differentiation among GST populations specified for each polymorphic loci, was equal to 0.045 for 6PGD-2 and had the value of 0.078 for DIA-2 and 0.186 for DIA-1. Nm value for polymorphic loci was 1.10 for DIA-1 and 2.94 for DIA-2, and for 6PGD-2 was 5.33, what indicates some gene flow between the examined populations. The dendrogram constructed on the basis of genotype frequencies showed that the populations were divided into two groups, however the most southern population No. 2 was clearly similar to the northern population No. 8.

  5. Population structure and genetic diversity of moose in Alaska.

    Science.gov (United States)

    Schmidt, Jennifer I; Hundertmark, Kris J; Bowyer, R Terry; McCracken, Kevin G

    2009-01-01

    Moose (Alces alces) are highly mobile mammals that occur across arboreal regions of North America, Europe, and Asia. Alaskan moose (Alces alces gigas) range across much of Alaska and are primary herbivore consumers, exerting a prominent influence on ecosystem structure and functioning. Increased knowledge gained from population genetics provides insights into their population dynamics, history, and dispersal of these unique large herbivores and can aid in conservation efforts. We examined the genetic diversity and population structure of moose (n = 141) with 8 polymorphic microsatellites from 6 regions spanning much of Alaska. Expected heterozygosity was moderate (H(E) = 0.483-0.612), and private alleles ranged from 0 to 6. Both F(ST) and R(ST) indicated significant population structure (P moose from the Yakutat and Tetlin regions versus all other moose, with slight substructure observed among the second population. Estimates of dispersal differed between analytical approaches, indicating a high level of historical or current gene flow. Mantel tests indicated that isolation-by-distance partially explained observed structure among moose populations (R(2) = 0.45, P moose in Alaska with population expansion from interior Alaska westward toward the coast.

  6. Population genetics and evaluation of genetic evidence for subspecies in the Semipalmated Sandpiper (Calidris pusilla)

    Science.gov (United States)

    Miller, Mark P.; Gratto-Trevor, Cheri; Haig, Susan M.; Mizrahi, David S.; Mitchell, Melanie M.; Mullins, Thomas D.

    2013-01-01

    Semipalmated Sandpipers (Calidris pusilla) are among the most common North American shorebirds. Breeding in Arctic North America, this species displays regional differences in migratory pathways and possesses longitudinal bill length variation. Previous investigations suggested that genetic structure may occur within Semipalmated Sandpipers and that three subspecies corresponding to western, central, and eastern breeding groups exist. In this study, mitochondrial control region sequences and nuclear microsatellite loci were used to analyze DNA of birds (microsatellites: n = 120; mtDNA: n = 114) sampled from seven North American locations. Analyses designed to quantify genetic structure and diversity patterns, evaluate genetic evidence for population size changes, and determine if genetic data support the existence of Semipalmated Sandpiper subspecies were performed. Genetic structure based only on the mtDNA data was observed, whereas the microsatellite loci provided no evidence of genetic differentiation. Differentiation among locations and regions reflected allele frequency differences rather than separate phylogenetic groups, and similar levels of genetic diversity were noted. Combined, the two data sets provided no evidence to support the existence of subspecies and were not useful for determining migratory connectivity between breeding sites and wintering grounds. Birds from western and central groups displayed signatures of population expansions, whereas the eastern group was more consistent with a stable overall population. Results of this analysis suggest that the eastern group was the source of individuals that colonized the central and western regions currently utilized by Semipalmated Sandpipers.

  7. How Obstacles Perturb Population Fronts and Alter Their Genetic Structure.

    Directory of Open Access Journals (Sweden)

    Wolfram Möbius

    2015-12-01

    Full Text Available As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the

  8. Comparative population genetics of two invading ticks: Evidence of the ecological mechanisms underlying tick range expansions.

    Science.gov (United States)

    Nadolny, Robyn; Gaff, Holly; Carlsson, Jens; Gauthier, David

    2015-10-01

    Two species of ixodid tick, Ixodes affinis Neumann and Amblyomma maculatum Koch, are simultaneously expanding their ranges throughout the mid-Atlantic region of the US. Although we have some understanding of the ecology and life history of these species, the ecological mechanisms governing where and how new populations establish and persist are unclear. To assess population connectivity and ancestry, we sequenced a fragment of the 16S mitochondrial rRNA gene from a representative sample of individuals of both species from populations throughout the eastern US. We found that despite overlapping host preferences throughout ontogeny, each species exhibited very different genetic and geographic patterns of population establishment and connectivity. I. affinis was of two distinct mitochondrial clades, with a clear geographic break separating northern and southern populations. Both I. affinis populations showed evidence of recent expansion, although the southern population was more genetically diverse, indicating a longer history of establishment. A. maculatum exhibited diverse haplotypes that showed no significant relationship with geographic patterns and little apparent connectivity between sites. Heteroplasmy was also observed in the 16S mitochondrial rRNA gene in 3.5% of A. maculatum individuals. Genetic evidence suggests that these species rely on different key life stages to successfully disperse into novel environments, and that host vagility, habitat stability and habitat connectivity all play critical roles in the establishment of new tick populations.

  9. Population genetics of venous thromboembolism. A narrative review.

    Science.gov (United States)

    Margaglione, Maurizio; Grandone, Elvira

    2011-02-01

    Results from epidemiological studies are consistent with the hypothesis that disparities in venous thromboembolism (VTE) burden are attributable to differences in genetic structure among populations from different genetic backgrounds. To that end, recent genetic studies have demonstrated not only potential associations between certain alleles and VTE but also clear differences in the distribution of these alleles in patients stratified by ancestry. There are a number of notable clinical and pathophysiological questions that arise from these findings. First at all is defining the precise variant(s) that alter disease susceptibility. The comparatively lower rates of VTE recorded among Asians would imply that risk profile is devoid of many risk factors on comparison to Caucasian or African counterparts or that a putative protective factor is advocated in the former population. Identification of these variants provided specific insight into VTE disease in selected populations and also shed lights on the biology of the disease. The association observed between ancestry and VTE is likely to be multifactorial, possibly reflecting, in addition to genetic variation, also socioeconomic differences. Acknowledgment of this may provide useful information in biomedical contexts and help to identify individual risk factors for VTE.

  10. The probability of genetic parallelism and convergence in natural populations.

    Science.gov (United States)

    Conte, Gina L; Arnegard, Matthew E; Peichel, Catherine L; Schluter, Dolph

    2012-12-22

    Genomic and genetic methods allow investigation of how frequently the same genes are used by different populations during adaptive evolution, yielding insights into the predictability of evolution at the genetic level. We estimated the probability of gene reuse in parallel and convergent phenotypic evolution in nature using data from published studies. The estimates are surprisingly high, with mean probabilities of 0.32 for genetic mapping studies and 0.55 for candidate gene studies. The probability declines with increasing age of the common ancestor of compared taxa, from about 0.8 for young nodes to 0.1-0.4 for the oldest nodes in our study. Probability of gene reuse is higher when populations begin from the same ancestor (genetic parallelism) than when they begin from divergent ancestors (genetic convergence). Our estimates are broadly consistent with genomic estimates of gene reuse during repeated adaptation to similar environments, but most genomic studies lack data on phenotypic traits affected. Frequent reuse of the same genes during repeated phenotypic evolution suggests that strong biases and constraints affect adaptive evolution, resulting in changes at a relatively small subset of available genes. Declines in the probability of gene reuse with increasing age suggest that these biases diverge with time.

  11. Genetic affinities of the central Indian tribal populations.

    Directory of Open Access Journals (Sweden)

    Gunjan Sharma

    Full Text Available BACKGROUND: The central Indian state Madhya Pradesh is often called as 'heart of India' and has always been an important region functioning as a trinexus belt for three major language families (Indo-European, Dravidian and Austroasiatic. There are less detailed genetic studies on the populations inhabited in this region. Therefore, this study is an attempt for extensive characterization of genetic ancestries of three tribal populations, namely; Bharia, Bhil and Sahariya, inhabiting this region using haploid and diploid DNA markers. METHODOLOGY/PRINCIPAL FINDINGS: Mitochondrial DNA analysis showed high diversity, including some of the older sublineages of M haplogroup and prominent R lineages in all the three tribes. Y-chromosomal biallelic markers revealed high frequency of Austroasiatic-specific M95-O2a haplogroup in Bharia and Sahariya, M82-H1a in Bhil and M17-R1a in Bhil and Sahariya. The results obtained by haploid as well as diploid genetic markers revealed strong genetic affinity of Bharia (a Dravidian speaking tribe with the Austroasiatic (Munda group. The gene flow from Austroasiatic group is further confirmed by their Y-STRs haplotype sharing analysis, where we determined their founder haplotype from the North Munda speaking tribe, while, autosomal analysis was largely in concordant with the haploid DNA results. CONCLUSIONS/SIGNIFICANCE: Bhil exhibited largely Indo-European specific ancestry, while Sahariya and Bharia showed admixed genetic package of Indo-European and Austroasiatic populations. Hence, in a landscape like India, linguistic label doesn't unequivocally follow the genetic footprints.

  12. Population genetics of non-genetic traits: Evolutionary roles of stochasticity in gene expression

    KAUST Repository

    Mineta, Katsuhiko

    2015-05-01

    The role of stochasticity in evolutionary genetics has long been debated. To date, however, the potential roles of non-genetic traits in evolutionary processes have been largely neglected. In molecular biology, growing evidence suggests that stochasticity in gene expression (SGE) is common and that SGE has major impacts on phenotypes and fitness. Here, we provide a general overview of the potential effects of SGE on population genetic parameters, arguing that SGE can indeed have a profound effect on evolutionary processes. Our analyses suggest that SGE potentially alters the fate of mutations by influencing effective population size and fixation probability. In addition, a genetic control of SGE magnitude could evolve under certain conditions, if the fitness of the less-fit individual increases due to SGE and environmental fluctuation. Although empirical evidence for our arguments is yet to come, methodological developments for precisely measuring SGE in living organisms will further advance our understanding of SGE-driven evolution.

  13. Genetic structure and admixture between Bayash Roma from northwestern Croatia and general Croatian population: evidence from Bayesian clustering analysis.

    Science.gov (United States)

    Novokmet, Natalija; Galov, Ana; Marjanović, Damir; Škaro, Vedrana; Projić, Petar; Lauc, Gordan; Primorac, Dragan; Rudan, Pavao

    2015-01-01

    The European Roma represent a transnational mosaic of minority population groups with different migration histories and contrasting experiences in their interactions with majority populations across the European continent. Although historical genetic contributions of European lineages to the Roma pool were investigated before, the extent of contemporary genetic admixture between Bayash Roma and non-Romani majority population remains elusive. The aim of this study was to assess the genetic structure of the Bayash Roma population from northwestern Croatia and the general Croatian population and to investigate the extent of admixture between them. A set of genetic data from two original studies (100 Bayash Roma from northwestern Croatia and 195 individuals from the general Croatian population) was analyzed by Bayesian clustering implemented in STRUCTURE software. By re-analyzing published data we intended to focus for the first time on genetic differentiation and structure and in doing so we clearly pointed to the importance of considering social phenomena in understanding genetic structuring. Our results demonstrated that two population clusters best explain the genetic structure, which is consistent with social exclusion of Roma and the demographic history of Bayash Roma who have settled in NW Croatia only about 150 years ago and mostly applied rules of endogamy. The presence of admixture was revealed, while the percentage of non-Croatian individuals in general Croatian population was approximately twofold higher than the percentage of non-Romani individuals in Roma population corroborating the presence of ethnomimicry in Roma.

  14. Genetic population structure of Anopheles gambiae in Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Caccone Adalgisa

    2007-10-01

    Full Text Available Abstract Background Patterns of genetic structure among mosquito vector populations in islands have received particular attention as these are considered potentially suitable sites for experimental trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation have been estimated between populations of Anopheles gambiae s.s. from the islands of Bioko and Annobón, and from continental Equatorial Guinea (EG and Gabon. Methods Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three island samples (two in Bioko and one in Annobón and three mainland samples (two in EG and one in Gabon. Four samples belonged to the M molecular form and two to the S-form. Microsatellite data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and analyse population differentiation. Results High levels of genetic differentiation were found between the more geographically remote island of Annobón and the continent, contrasting with the shallow differentiation between Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and S forms was higher than that observed between island and mainland samples of the same molecular form. Conclusion The observed patterns of population structure seem to be governed by the presence of both physical (the ocean and biological (the M-S form discontinuity barriers to gene flow. The significant degree of genetic isolation between M and S forms detected by microsatellite loci located outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the hypothesis of on-going incipient speciation within this species. The implications of these findings regarding vector control strategies are discussed.

  15. Genetic structure in two northern muriqui populations (Brachyteles hypoxanthus, Primates, Atelidae as inferred from fecal DNA

    Directory of Open Access Journals (Sweden)

    Valéria Fagundes

    2008-01-01

    Full Text Available We assessed the genetic diversity of two northern muriqui (Brachyteles hypoxanthus Primata, Atelidae populations, the Feliciano Miguel Abdala population (FMA, n = 108 in the Brazilian state of Minas Gerais (19°44' S, 41°49' W and the Santa Maria de Jetibá population (SMJ, n = 18 in the Brazilian state of Espírito Santo (20°01' S, 40°44' W. Fecal DNA was isolated and PCR-RFLP analysis used to analyze 2160 bp of mitochondrial DNA, made up of an 820 bp segment of the gene cytochrome c oxidase subunit 2 (cox2, EC 1.9.3.1, an 880 bp segment of the gene cytochrome b (cytb, EC 1.10.2.2 and 460 bp of the hypervariable segment of the mtDNA control region (HVRI. The cox2 and cytb sequences were monomorphic within and between populations whereas the HVRI revealed three different population exclusive haplotypes, one unique to the SMJ population and two, present at similar frequencies, in the FMA population. Overall haplotype diversity (h = 0.609 and nucleotide diversity (pi = 0.181 were high but reduced within populations. The populations were genetically structured with a high fixation index (F ST = 0.725, possibly due to historical subdivision. These findings have conservation implications because they seem to indicate that the populations are distinct management units.

  16. Microsatellite analysis of genetic diversity and population structure of Chinese mitten crab (Eriocheir sinensis)

    Institute of Scientific and Technical Information of China (English)

    Yumei Chang; Liqun Liang; Haitao Ma; Jianguo He; Xiaowen Sun

    2008-01-01

    Chinese mitten crab (Eriocheir sinensis) has higher commercial value as food source than any other species of Eriocheir in China.To evaluate the germplasm resources and characterize the genetic diversity and population structure of the crabs in different water systems,two stocks and two farming populations were assessed with 25 polymorphic microsallite loci available in public GenBank.Basic statistics showed that the average observed heterozygosity (Ho) amongst populations ranged from 0.5789 to 0.6824.However,a remarkable presence of inbreeding and heterozygote deficiencies were observed.To analyze population structure,pairwise FST coefficients explained only ~10.3% variability from the subdivision of mitten crab populations,the remaining variability stems from the subdivision within subpopulations.Although the four populations had slight differentiation,different allelic frequencies resulted in distinct population structures.Two stocks and one farming population were clustered together to the phylogenetic branch of Yangtze crab,with an approximate membership of 95%.Whereas,another fanning population was clustered singly to the phylogenetic branch of the Liaohe crab,with a membership of 97.1%.The tests for individual admixture showed that Yangtze crab had probably been contaminated with individuals from other water systems.Genetic relationships between populations also supported the conclusion that Yangtze crab and Liaohe crab had different gene pools in spite of the origins of the same species.

  17. Performance Analyses on Population Seeding Techniques for Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    P. Victer Paul

    2013-06-01

    Full Text Available In Genetic Algorithm (GA, the fitness or quality of individual solutions in the initial population plays a significant part in determining the final optimal solution. The traditional GA withrandom population seeding technique is simple and proficient however the generated population may contain poor fitness individuals, which take long time to converge to the optimal solution. On the otherhand, the hybrid population seeding techniques, which have the benefits of generating good fitness individuals and fast convergence to the optimal solution. Researchers have proposed several populationseeding techniques using the background knowledge on the problem taken to solve. In this paper, we analyse the performance of different population seeding techniques for the permutation coded genetic algorithm based on the quality of the individuals generated. Experiments are carried out using the famous Travelling Salesman Problem (TSP benchmark instances obtained from the TSPLIB, which isthe standard library for TSP problems. The experimental results show the order of performance of different population seeding techniques in terms of Convergence Rate (% and Error Rate (%.

  18. Assessment of genetic diversity in tomato landraces using ISSR markers

    Directory of Open Access Journals (Sweden)

    Henareh Mashhid

    2016-01-01

    Full Text Available Tomato is one of the most economically important vegetable crops in many parts of the world. Turkey and Iran are the main producers of tomatoes in the world. The objective of this study was to assess the genetic variation of 93 tomato landraces from East Anatolian region of Turkey and North-West of Iran, along with three commercial cultivars using 14 ISSR primers. The percentage of polymorphic loci (PPL for all primers was 100%. The mean of expected heterozygosity (He for the primers varied from 0.153 (UBC808 to 0.30 (UBC848. The dendrogram placed the landraces and commercial cultivars into nine groups. The genotypes originating from the same region, often located in the same group or two adjacent groups. The highest likelihood of the data was obtained when population were located into 2 sub-populations (K = 2. These sub-populations had Fst value of 0.16 and 0.21.

  19. Genetic population substructure in bison at Yellowstone National Park.

    Science.gov (United States)

    Halbert, Natalie D; Gogan, Peter J P; Hedrick, Philip W; Wahl, Jacquelyn M; Derr, James N

    2012-01-01

    The Yellowstone National Park bison herd is 1 of only 2 populations known to have continually persisted on their current landscape since pre-Columbian times. Over the last century, the census size of this herd has fluctuated from around 100 individuals to over 3000 animals. Previous studies involving radiotelemetry, tooth wear, and parturition timing provide evidence of at least 2 distinct groups of bison within Yellowstone National Park. To better understand the biology of Yellowstone bison, we investigated the potential for limited gene flow across this population using multilocus Bayesian clustering analysis. Two genetically distinct and clearly defined subpopulations were identified based on both genotypic diversity and allelic distributions. Genetic cluster assignments were highly correlated with sampling locations for a subgroup of live capture individuals. Furthermore, a comparison of the cluster assignments to the 2 principle winter cull sites revealed critical differences in migration patterns across years. The 2 Yellowstone subpopulations display levels of differentiation that are only slightly less than that between populations which have been geographically and reproductively isolated for over 40 years. The identification of cryptic population subdivision and genetic differentiation of this magnitude highlights the importance of this biological phenomenon in the management of wildlife species.

  20. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools

    Directory of Open Access Journals (Sweden)

    Thomson Pippa

    2003-09-01

    Full Text Available Abstract In a project on the biodiversity of chickens funded by the European Commission (EC, eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line and the most polymorphic population (Gallus gallus spadiceus were, respectively, as follows: number of alleles per locus, per population: 3.5, 1.3 and 5.2; average gene diversity across markers: 0.47, 0.05 and 0.64; and proportion of polymorphic markers: 0.91, 0.25 and 1.0. These were in good agreement with the breeding history of the populations. For instance, unselected populations were found to be more polymorphic than selected breeds such as layers. Thus DNA pools are effective in the preliminary assessment of genetic variation of populations and markers. Mean genetic distance indicates the extent to which a given population shares its genetic diversity with that of the whole tested gene pool and is a useful criterion for conservation of diversity. The distribution of population-specific (private alleles and the amount of genetic variation shared among populations supports the hypothesis that the red jungle fowl is the main progenitor of the domesticated chicken.

  1. Genetic Diversity and Genetic Structure of Different Types of Natural Populations in Osmanthus fragrans Lour. and the Relationships with Sex Ratio, Population Structure, and Geographic Isolation

    Directory of Open Access Journals (Sweden)

    Shaoqing Hu

    2014-01-01

    Full Text Available Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites, once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of Ne, He, and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity.

  2. Genetic diversity and genetic structure of different types of natural populations in Osmanthus fragrans Lour. and the relationships with sex ratio, population structure, and geographic isolation.

    Science.gov (United States)

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhao, Hongbo; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of N e , H e , and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity.

  3. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens.

    Science.gov (United States)

    Wilson, Benjamin A; Garud, Nandita R; Feder, Alison F; Assaf, Zoe J; Pennings, Pleuni S

    2016-01-01

    Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance. Throughout this review, we discuss the uses of sequence data and population genetic theory in studying the evolution of drug resistance.

  4. Hitchhiker's guide to genetic diversity in socially structured populations

    Institute of Scientific and Technical Information of China (English)

    L.S.PREMO

    2012-01-01

    When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking.A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration.Under conditions in which genetic and cultural variants are transmitted symmetrically,neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking.Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity,and it may be applicable to humans as well.This paper provides a critical review of recent models of both types of hitchhiking in socially structured populations.The models' assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species,and vice versa [Current Zoology 58 (1):287-297,2012].

  5. [Genetic ecological monitoring in human populations: heterozygosity, mtDNA haplotype variation, and genetic load].

    Science.gov (United States)

    Balanovskiĭ, O P; Koshel', S M; Zaporozhchenko, V V; Pshenichnov, A S; Frolova, S A; Kuznetsova, M A; Baranova, E E; Teuchezh, I E; Kuznetsova, A A; Romashkina, M V; Utevskaia, O M; Churnosov, M I; Villems, R; Balanovskaia, E V

    2011-11-01

    Yu. P. Altukhov suggested that heterozygosity is an indicator of the state of the gene pool. The idea and a linked concept of genetic ecological monitoring were applied to a new dataset on mtDNA variation in East European ethnic groups. Haplotype diversity (an analog of the average heterozygosity) was shown to gradually decrease northwards. Since a similar trend is known for population density, interlinked changes were assumed for a set of parameters, which were ordered to form a causative chain: latitude increases, land productivity decreases, population density decreases, effective population size decreases, isolation of subpopulations increases, genetic drift increases, and mtDNA haplotype diversity decreases. An increase in genetic drift increases the random inbreeding rate and, consequently, the genetic load. This was confirmed by a significant correlation observed between the incidence of autosomal recessive hereditary diseases and mtDNA haplotype diversity. Based on the findings, mtDNA was assumed to provide an informative genetic system for genetic ecological monitoring; e.g., analyzing the ecology-driven changes in the gene pool.

  6. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations

    Directory of Open Access Journals (Sweden)

    Balloux François

    2010-10-01

    Full Text Available Abstract Background The dramatic progress in sequencing technologies offers unprecedented prospects for deciphering the organization of natural populations in space and time. However, the size of the datasets generated also poses some daunting challenges. In particular, Bayesian clustering algorithms based on pre-defined population genetics models such as the STRUCTURE or BAPS software may not be able to cope with this unprecedented amount of data. Thus, there is a need for less computer-intensive approaches. Multivariate analyses seem particularly appealing as they are specifically devoted to extracting information from large datasets. Unfortunately, currently available multivariate methods still lack some essential features needed to study the genetic structure of natural populations. Results We introduce the Discriminant Analysis of Principal Components (DAPC, a multivariate method designed to identify and describe clusters of genetically related individuals. When group priors are lacking, DAPC uses sequential K-means and model selection to infer genetic clusters. Our approach allows extracting rich information from genetic data, providing assignment of individuals to groups, a visual assessment of between-population differentiation, and contribution of individual alleles to population structuring. We evaluate the performance of our method using simulated data, which were also analyzed using STRUCTURE as a benchmark. Additionally, we illustrate the method by analyzing microsatellite polymorphism in worldwide human populations and hemagglutinin gene sequence variation in seasonal influenza. Conclusions Analysis of simulated data revealed that our approach performs generally better than STRUCTURE at characterizing population subdivision. The tools implemented in DAPC for the identification of clusters and graphical representation of between-group structures allow to unravel complex population structures. Our approach is also faster than

  7. Parallel tagged next-generation sequencing on pooled samples - a new approach for population genetics in ecology and conservation.

    Science.gov (United States)

    Zavodna, Monika; Grueber, Catherine E; Gemmell, Neil J

    2013-01-01

    Next-generation sequencing (NGS) on pooled samples has already been broadly applied in human medical diagnostics and plant and animal breeding. However, thus far it has been only sparingly employed in ecology and conservation, where it may serve as a useful diagnostic tool for rapid assessment of species genetic diversity and structure at the population level. Here we undertake a comprehensive evaluation of the accuracy, practicality and limitations of parallel tagged amplicon NGS on pooled population samples for estimating species population diversity and structure. We obtained 16S and Cyt b data from 20 populations of Leiopelma hochstetteri, a frog species of conservation concern in New Zealand, using two approaches - parallel tagged NGS on pooled population samples and individual Sanger sequenced samples. Data from each approach were then used to estimate two standard population genetic parameters, nucleotide diversity (π) and population differentiation (FST), that enable population genetic inference in a species conservation context. We found a positive correlation between our two approaches for population genetic estimates, showing that the pooled population NGS approach is a reliable, rapid and appropriate method for population genetic inference in an ecological and conservation context. Our experimental design also allowed us to identify both the strengths and weaknesses of the pooled population NGS approach and outline some guidelines and suggestions that might be considered when planning future projects.

  8. Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout ( Salmo trutta ) populations

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Ruzzante, D.E.; Eg Nielsen, Einar;

    2002-01-01

    (3 km) river showed Ne greater than or equal to 300. Assuming a stepping-stone model of gene flow we considered the relative roles of gene flow, random genetic drift and selection to assess the possibilities for local adaptation. The requirements for local adaptation were fulfilled, but only......We examined the long-term temporal (1910s to 1990s) genetic variation at eight microsatellite DNA loci in brown trout (Salmo trutta L) collected from five anadromous populations in Denmark to assess the long-term stability of genetic composition and to estimate effective population sizes (N......-e). Contemporary and historical samples consisted of tissue and archived scales, respectively. Pairwise Theta(ST) estimates, a hierarchical analysis of molecular variance (AMOVA) and multidimensional scaling analysis of pairwise genetic distances between samples revealed much closer genetic relationships among...

  9. Estimation of recombination frequency in bi-parental genetic populations.

    Science.gov (United States)

    Sun, Ziqi; Li, Huihui; Zhang, Luyan; Wang, Jiankang

    2012-06-01

    Summary Linkage analysis plays an important role in genetic studies. In linkage analysis, accurate estimation of recombination frequency is essential. Many bi-parental populations have been used, and determining an appropriate population is of great importance in precise recombination frequency. In this study, we investigated the estimation efficiency of recombination frequency in 12 bi-parental populations. The criteria that we used for comparison were LOD score in testing linkage relationship, deviation between estimated and real recombination frequency, standard error (SE) of estimates and the least theoretical population size (PS) required to observe at least one recombinant and to declare the statistically significant linkage relationship. Theoretical and simulation results indicated that larger PS and smaller recombination frequency resulted in higher LOD score and smaller deviation. Lower LOD score, higher deviation and higher SE for estimating the recombination frequency in the advanced backcrossing and selfing populations are larger than those in backcross and F2 populations, respectively. For advanced backcrossing and selfing populations, larger populations were needed in order to observe at least one recombinant and to declare significant linkage. In comparison, in F2 and F3 populations higher LOD score, lower deviation and SE were observed for co-dominant markers. A much larger population was needed to observe at least one recombinant and to detect loose linkage for dominant and recessive markers. Therefore, advanced backcrossing and selfing populations had lower precision in estimating the recombination frequency. F2 and F3 populations together with co-dominant markers represent the ideal situation for linkage analysis and linkage map construction.

  10. A review of the key genetic tools to assist imperiled species conservation: analyzing West Indian manatee populations

    Science.gov (United States)

    Bonde, Robert K.; McGuire, Peter M.; Hunter, Margaret E.

    2012-01-01

    Managers faced with decisions on threatened and endangered wildlife populations often are lacking detailed information about the species of concern. Integration of genetic applications will provide management teams with a better ability to assess and monitor recovery efforts on imperiled species. The field of molecular biology continues to progress rapidly and many tools are currently available. Presently, little guidance is available to assist researchers and managers with the appropriate selection of genetic tools to study the status of wild manatee populations. We discuss several genetic tools currently employed in the application of conservation genetics, and address the utility of using these tools to determine population status to aid in conservation efforts. As an example, special emphasis is focused on the endangered West Indian manatee (Order Sirenia). All four extant species of sirenians are imperiled throughout their range, predominately due to anthropogenic sources; therefore, the need for genetic information on their population status is direly needed.

  11. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder ( Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Eg Nielsen, Einar; Grønkjær, P.;

    2007-01-01

    with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic......A number of evolutionary mechanisms have been suggested for generating low but significant genetic structuring among marine fish populations. We used nine microsatellite loci and recently developed methods in landscape genetics and coalescence-based estimation of historical gene flow and effective...... population sizes to assess temporal and spatial dynamics of the population structure in European flounder (Platichthys flesus L.). We collected 1062 flounders from 13 localities in the northeast Atlantic and Baltic Seas and found temporally stable and highly significant genetic differentiation among samples...

  12. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rabinowicz Pablo D

    2010-01-01

    Full Text Available Abstract Background Castor bean (Ricinus communis is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale. We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74% followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity.

  13. Genetic Variability and Population Structure of Salvia lachnostachys: Implications for Breeding and Conservation Programs

    Directory of Open Access Journals (Sweden)

    Marianna Erbano

    2015-04-01

    Full Text Available The genetic diversity and population structure of Salvia lachnostachys Benth were assessed. Inter Simple Sequence Repeat (ISSR molecular markers were used to investigate the restricted distribution of S. lachnostachys in Parana State, Brazil. Leaves of 73 individuals representing three populations were collected. DNA was extracted and submitted to PCR-ISSR amplification with nine tested primers. Genetic diversity parameters were evaluated. Our analysis indicated 95.6% polymorphic loci (stress value 0.02 with a 0.79 average Simpson’s index. The Nei-Li distance dendrogram and principal component analysis largely recovered the geographical origin of each sample. Four major clusters were recognized representing each collected population. Nei’s gene diversity and Shannon’s information index were 0.25 and 0.40 respectively. As is typical for outcrossing herbs, the majority of genetic variation occurred at the population level (81.76%. A high gene flow (Nm = 2.48 was observed with a correspondingly low fixation index. These values were generally similar to previous studies on congeneric species. The results of principal coordinate analysis (PCA and of arithmetic average (UPGMA were consistent and all three populations appear distinct as in STRUCTURE analysis. In addition, this analysis indicated a majority intrapopulation genetic variation. Despite the human pressure on natural populations our study found high levels of genetic diversity for S. lachnostachys. This was the first molecular assessment for this endemic species with medicinal proprieties and the results can guide for subsequent bioprospection, breeding programs or conservation actions.

  14. Genetic structure of West Greenland populations of lumpfish Cyclopterus lumpus

    DEFF Research Database (Denmark)

    Mayoral, Elsa Garcia; Olsen, M.; Hedeholm, R.

    2016-01-01

    In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow for identifica......In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow...... for identification of origin of C. lumpus in Greenlandic waters, genetic assignment analysis was performed for 86 C. lumpus sampled on a feeding migration. Significant structuring with isolation by distance was observed in the West Greenland samples and two major subpopulations, north and south, were suggested...

  15. Genetic Variability of Apolipoprotein E in Different Populations from Venezuela

    Directory of Open Access Journals (Sweden)

    M. T. Fernández-Mestre

    2005-01-01

    Full Text Available The genetic variation at the Apolipoprotein E locus (APOE is an important determinant of plasma lipids and has been implicated in various human pathological conditions. The objective of the present study was to estimate the distribution of APOE alleles in five Venezuelan communities: two Amerindian tribes (Bari and Yucpa, one Negroid population from Curiepe, one Caucasoid population from Colonia Tovar and the mestizo urban population living in Caracas. The APOE*3 allele was the most common allele in all populations studied. However, a significant increase in the APOE*2 allele frequency in the Mestizo (18.96% and Negroid (16.25% populations was found. Similar to results reported in other Native American populations we have found that the APOE*2 allele is completely absent in the Bari and Yucpa Amerindians. Frequencies found in the Colonia Tovar population are in agreement with those reported in the population of Germany, indicating a high degree of relatedness. The results support the notion that the distribution of the APOE alleles shows ethnic variability.

  16. Genetically distinct coelacanth population off the northern Tanzanian coast.

    Science.gov (United States)

    Nikaido, Masato; Sasaki, Takeshi; Emerson, J J; Aibara, Mitsuto; Mzighani, Semvua I; Budeba, Yohana L; Ngatunga, Benjamin P; Iwata, Masamitsu; Abe, Yoshitaka; Li, Wen-Hsiung; Okada, Norihiro

    2011-11-01

    Since the sensational discovery of a living coelacanth off the east coast of South Africa, the geographic distribution of viable coelacanth populations has been a subject of debate. In the past, the coelacanths off the African mainland were thought to be strays from the Comoros because most coelacanths captured were caught in the waters surrounding the Comoros archipelagos. However, in recent years, a large number of coelacanths were captured off the coast of Tanzania, including nine living specimens observed in a remotely operated vehicles survey. Thus, it is possible that there is a reproducing population inhabiting waters off the Tanzania coast. We have sequenced the complete mitochondrial genomes of 21 Tanzanian and 2 Comoran coelacanths and analyzed these sequences together with two additional full mitochondrial genomes and 47 d-loop sequences from the literature. We found that the coelacanth population off the northern Tanzanian coast is genetically differentiated from those of the southern Tanzania coast and the Comoros, whereas no significant genetic differentiation occurs between the latter two localities. The differentiation between the northern and southern Tanzanian coast populations is consistent with the hypothesis that the existence of northward-flowing ocean current along the Tanzanian coast may reduce or prevent gene flow from the northern to the southern population. Finally, we estimated that the population localized to the southern Tanzanian coast and the Comoros diverged from other coelacanths at least 200,000 y ago. These results indicate that the coelacanths off the northern Tanzania coast are not strays but a genetically distinct group. Our study provides important information for the conservation of this threatened "living fossil."

  17. Emergent patterns of population genetic structure for a coral reef community.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Bowen, Brian W; Toonen, Robert J

    2014-06-01

    What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2=0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2=0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaìi marine species may be generated by demographic variability due to species-specific abundance and migration patterns and/or seascape and historical factors.

  18. Distribution and population genetics of walleye and sauger

    Science.gov (United States)

    Haponski, Amanda E.; Sloss, Brian L.

    2014-01-01

    Conserving genetic diversity and local adaptations are management priorities for wild populations of exploited species, which increasingly are subject to climate change, habitat loss, and pollution. These constitute growing concerns for the walleye Sander vitreus, an ecologically and economically valuable North American temperate fish with large Laurentian Great Lakes' fisheries. This study compares genetic diversity and divergence patterns across its widespread native range using mitochondrial (mt) DNA control region sequences and nine nuclear DNA microsatellite (μsat) loci, examining historic and contemporary influences. We analyze the genetic and morphological characters of a putative endemic variant– “blue pike” S. v. “glaucus” –described from Lakes Erie and Ontario, which became extinct. Walleye with turquoise-colored mucus also are evaluated, since some have questioned whether these are related to the “blue pike”.

  19. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    Science.gov (United States)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  20. Population structure and genetic analysis of narrow-clawed crayfish (Astacus leptodactylus) populations in Turkey.

    Science.gov (United States)

    Akhan, Suleyman; Bektas, Yusuf; Berber, Selcuk; Kalayci, Gokhan

    2014-10-01

    The genetic differentiation among Turkish populations of the narrow-clawed crayfish was investigated using a partial sequence of cytochrome oxidase subunit I gene (585 bp) of 183 specimens from 17 different crayfish populations. Median joining network and all phylogenetic analyses disclosed a strong haplotype structure with three prominent clades diverged by a range between 20 and 50 mutations and substantial inter-group pairwise sequence divergence (5.19-6.95 %), suggesting the presence of three distinct clades within the Anatolian populations of Astacus leptodactylus. The divergence times among the three clades of Turkish A. leptodactylus are estimated to be 4.96-3.70 Mya using a molecular clock of 1.4 % sequence divergence per million years, pointing to a lower Pliocene separation. The high level of genetic variability (H d = 95.8 %, π = 4.17 %) and numerous private haplotypes suggest the presence of refugial populations in Anatolia unaffected by Pleistocene habitat restrictions. The pattern of genetic variation among Turkish A. leptodactylus populations, therefore, suggests that the unrevealed intraspecific genetic structure is independent of geographic tendency and congruent with the previously reported geographic distribution and number of subspecies (A. l. leptodactylus and A. l. salinus) of A. leptodactylus.

  1. Reconstructing the population genetic history of the Caribbean.

    Directory of Open Access Journals (Sweden)

    Andrés Moreno-Estrada

    2013-11-01

    Full Text Available The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola, two mainland (Honduras, Colombia, and three Native South American (Yukpa, Bari, and Warao populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse--which today is reflected by shorter, older ancestry tracts--consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse--reflected by longer, younger tracts--is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub

  2. Capacities for population-genetic variation and ecological adaptations

    Directory of Open Access Journals (Sweden)

    Marinković Dragoslav

    2007-01-01

    Full Text Available In contemporary science of population genetics it is equally complex and important to visualize how adaptive limits of individual variation are determined, as well as to describe the amount and sort of this variation. Almost all century the scientists devoted their efforts to explain the principles and structure of biological variation (genetic, developmental, environmental, interactive, etc., basing its maintenance within existing limits mostly on equilibria proclaimed by Hardy-Weinberg rules. Among numerous model-organisms that have been used to prove these rules and demonstrate new variants within mentioned concepts, Drosophila melanogaster is a kind of queen that is used in thousands of experiments for almost exactly 100 years (CARPENTER 1905, with which numerous discoveries and principles were determined that later turned out to be applicable to all other organisms. It is both, in nature and in laboratory, that Drosophilids were used to demonstrate the basic principles of population-genetic variation that was later applied to other species of animals. In ecological-genetic variation their richness in different environments could be used as an exact indicator of the status of a determined habitat, and its population-genetic structure may definitely point out to a possibility that specific resources of the environment start to be in danger to deteriorate, or to disappear in the near future. This paper shows clear-cut differences among environmental habitats, when populations of Drosophilidae are quantitatively observed in different wild, semi-domestic and domestic environments, demonstrating a highly expressed mutual dependence of these two parameters. A crucial approach is how to estimate the causes that determine the limits of biological, i.e. of individual and population-genetic variation. The realized, i.e. adaptive variation, is much lesser than a total possible variation of a polygenic trait, and in this study, using a moderately

  3. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population.

    Science.gov (United States)

    Brieuc, Marine S O; Purcell, Maureen K; Palmer, Alexander D; Naish, Kerry A

    2015-11-17

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h² = 0.377 (0.226 - 0.550)) and days to death (h² = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  4. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population

    Science.gov (United States)

    Brieuc, Marine S. O.; Purcell, Maureen K.; Palmer, Alexander D.; Naish, Kerry A.

    2015-01-01

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h2 = 0.377 (0.226 - 0.550)) and days to death (h2 = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  5. Genetic variation of phytate and ionorganic phosphorus in maize population

    OpenAIRE

    2009-01-01

    Analysis of 60 maize populations was conducted to identify genotypes that had either low or high concentration of phytate. Genetic variability in seed phytate content was observed, with values ranging from 1,147 to 4, 13 g kg-1. Inorganic phosphorus (Pi) concentrations were between 0, 35 and 1, 29 and averaged 0, 65 g kg-1. Three groups of populations were identified as having low, intermediate and high phytate content. The low phytate concentration was measured in eight, intermediate in 25 a...

  6. Population genetic structuring in Opisthorchis viverrini over various spatial scales in Thailand and Lao PDR.

    Directory of Open Access Journals (Sweden)

    Nonglak Laoprom

    Full Text Available Khon Kaen Province in northeast Thailand is known as a hot spot for opisthorchiasis in Southeast Asia. Preliminary allozyme and mitochondrial DNA haplotype data from within one endemic district in this Province (Ban Phai, indicated substantial genetic variability within Opisthorchis viverrini. Here, we used microsatellite DNA analyses to examine the genetic diversity and population structure of O. viverrini from four geographically close localities in Khon Kaen Province. Genotyping based on 12 microsatellite loci yielded a mean number of alleles per locus that ranged from 2.83 to 3.7 with an expected heterozygosity in Hardy-Weinberg equilibrium of 0.44-0.56. Assessment of population structure by pairwise F(ST analysis showed inter-population differentiation (P<0.05 which indicates population substructuring between these localities. Unique alleles were found in three of four localities with the highest number observed per locality being three. Our results highlight the existence of genetic diversity and population substructuring in O. viverrini over a small spatial scale which is similar to that found at a larger scale. This provides the basis for the investigation of the role of parasite genetic diversity and differentiation in transmission dynamics and control of O. viverrini.

  7. Integrating genetic data and population viability analyses for the identification of harbour seal (Phoca vitulina) populations and management units.

    Science.gov (United States)

    Olsen, Morten T; Andersen, Liselotte W; Dietz, Rune; Teilmann, Jonas; Härkönen, Tero; Siegismund, Hans R

    2014-02-01

    Identification of populations and management units is an essential step in the study of natural systems. Still, there is limited consensus regarding how to define populations and management units, and whether genetic methods allow for inference at the relevant spatial and temporal scale. Here, we present a novel approach, integrating genetic, life history and demographic data to identify populations and management units in southern Scandinavian harbour seals. First, 15 microsatellite markers and model- and distance-based genetic clustering methods were used to determine the population genetic structure in harbour seals. Second, we used harbour seal demographic and life history data to conduct population viability analyses (PVAs) in the vortex simulation model in order to determine whether the inferred genetic units could be classified as management units according to Lowe and Allendorf's (Molecular Ecology, 19, 2010, 3038) 'population viability criterion' for demographic independence. The genetic analyses revealed fine-scale population structuring in southern Scandinavian harbour seals and pointed to the existence of several genetic units. The PVAs indicated that the census population size of each of these genetic units was sufficiently large for long-term population viability, and hence that the units could be classified as demographically independent management units. Our study suggests that population genetic inference can offer the same degree of temporal and spatial resolution as 'nongenetic' methods and that the combined use of genetic data and PVAs constitutes a promising approach for delineating populations and management units.

  8. Population genetic segmentation of MHC-correlated perfume preferences.

    Science.gov (United States)

    Hämmerli, A; Schweisgut, C; Kaegi, M

    2012-04-01

    It has become difficult to find a matching perfume. An overwhelming number of 300 new perfumes launch each year, and marketing campaigns target pre-defined groups based on gender, age or income rather than on individual preferences. Recent evidence for a genetic basis of perfume preferences, however, could be the starting point for a novel population genetic approach to better match perfumes with people's preferences. With a total of 116 participants genotyped for alleles of three loci of the major histocompatibility complex (MHC), the aim of this study was to test whether common MHC alleles could be used as genetic markers to segment a given population into preference types. Significant deviations from random expectations for a set of 10 common perfume ingredients indicate how such segmentation could be achieved. In addition, preference patterns of participants confronted with images that contained a sexual communication context significantly differed in their ratings for some of the scents compared with participants confronted with images of perfume bottles. This strongly supports the assumption that genetically correlated perfume preferences evolved in the context of sexual communication. The results are discussed in the light of perfume customization.

  9. The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation.

    Science.gov (United States)

    Miller, Craig R; Waits, Lisette P

    2003-04-01

    Protein, mtDNA, and nuclear microsatellite DNA analyses have demonstrated that the Yellowstone grizzly bear has low levels of genetic variability compared with other Ursus arctos populations. Researchers have attributed this difference to inbreeding during a century of anthropogenic isolation and population size reduction. We test this hypothesis and assess the seriousness of genetic threats by generating microsatellite data for 110 museum specimens collected between 1912 and 1981. A loss of variability is detected, but it is much less severe than hypothesized. Variance in allele frequencies over time is used to estimate an effective population size of approximately 80 across the 20th century and >100 currently. The viability of the population is unlikely to be substantially reduced by genetic factors in the next several generations. However, gene flow from outside populations will be beneficial in avoiding inbreeding and the erosion of genetic diversity in the future.

  10. Complex genetic origin of Indian populations and its implications

    Indian Academy of Sciences (India)

    Rakesh Tamang; Lalji Singh; Kumarasamy Thangaraj

    2012-11-01

    Indian populations are classified into various caste, tribe and religious groups, which altogether makes them very unique compared to rest of the world. The long-term firm socio-religious boundaries and the strict endogamy practices along with the evolutionary forces have further supplemented the existing high-level diversity. As a result, drawing definite conclusions on its overall origin, affinity, health and disease conditions become even more sophisticated than was thought earlier. In spite of these challenges, researchers have undertaken tireless and extensive investigations using various genetic markers to estimate genetic variation and its implication in health and diseases. We have demonstrated that the Indian populations are the descendents of the very first modern humans, who ventured the journey of out-of-Africa about 65,000 years ago. The recent gene flow from east and west Eurasia is also evident. Thus, this review attempts to summarize the unique genetic variation among Indian populations as evident from our extensive study among approximately 20,000 samples across India.

  11. Risk assessment of Genetically Modified Organisms (GMOs

    Directory of Open Access Journals (Sweden)

    Waigmann E

    2012-10-01

    Full Text Available

    EFSA’s remit in the risk assessment of GMOs is very broad encompassing genetically modified plants, microorganisms and animals and assessing their safety for humans, animals and the environment. The legal frame for GMOs is set by Directive 2001/18/EC on their release into the environment, and Regulation (EC No 1829/2003 on GM food and feed. The main focus of EFSA’s GMO Panel and GMO Unit lies in the evaluation of the scientific risk assessment of new applications for market authorisation of GMOs, and in the development of corresponding guidelines for the applicants. The EFSA GMO Panel has elaborated comprehensive guidance documents on GM plants, GM microorganisms and GM animals, as well as on specific aspects of risk assessment such as the selection of comparators. EFSA also provides special scientific advice upon request of the European Commission; examples are post-market environmental monitoring of GMOs, and consideration of potential risks of new plant breeding techniques. The GMO Panel regularly reviews its guidance documents in the light of experience gained with the evaluation of applications, technological progress in breeding technologies and scientific developments in the diverse areas of risk assessment.

  12. Genetic variation and population structure of interleukin genes among seven ethnic populations from Karnataka, India

    Indian Academy of Sciences (India)

    Srilakshmi M. Raj; Diddahally R. Govindaraju; Ranajit Chakraborty

    2007-12-01

    The extent of genetic variation and the degree of genetic differentiation among seven ethnic populations from Karnataka, India (Bunt, Havyak, Iyengar, Lingayath, Smartha, Vaishya, Vokkaliga), was investigated using four single nucleotide polymorphisms (SNPs: IL-1A 4845, IL-1B 3954, IL-1B 511 and IL-1RA 2018) of the interleukin gene cluster. Allele frequencies varied by threefold among these populations, which also differed for gene diversity and heterozygosity levels. The average degree of population subdivision among these castes was low ($F_{ST} = 0.02$). However, pair-wise interpopulation differentiation ranged from 0–7%, indicating no detectable differentiation to moderate differentiation between specific populations. The results of phylogenetic analysis based on genetic distances between populations agreed with known social and cultural data on these ethnic groups. Variation in the allele frequencies, as well as differentiation, may be attributed to differential selection and demographic factors including consanguinity among the ethnic groups. Information on the distribution of functionally relevant polymorphisms among ethnic populations may be important towards developing community medicine and public health policies.

  13. Population genetic structure in the paddyfield warbler (Acrocephalus agricola Jerd.)

    Institute of Scientific and Technical Information of China (English)

    Pavel ZEHTINDJIEV; Mihaela ILIEVA; Bengt HANSSON; Olga OPARINA; Mihail OPARIN; Staffan BENSCH

    2011-01-01

    Population genefc structure was studied in paddyfield warblers Acrocephalus agricola breeding in NE Bulgaria, SE Russia and S Kazakhstan. We were particularly interested in the degree of genetic differentiation and gene flow of the Bulgarian population due to its geographical isolation, recent origin and unique migratory strategy. Analyses of mitochondrial DNA (mtDNA) showed that there was no divergence between Bulgarian and Russian populations (FST = 0.007), whereas those in Kazakhstan differed significantly from the European breeding populations (Russia: FST = 0.058; Bulgaria: Fsr = 0.114). The degree of differentiation between populations at nuclear markers (five microsatellite loci; FsT ≈ 0) was weaker than for mtDNA. We suggest that this relatively weak differentiation over the range of this species reflects a recent postglacial expansion, and results from mismatch distribution analyses and Fu's Fs tests are in agreement. Preservation of small and geographically isolated populations which may contain individuals with unique adaptive traits, such as the studied Bulgarian population of paddyfield warbler,is valuable for the long-term conservation of expanding migratory bird species.

  14. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.

    2014-01-01

    in 236 samples. All estimated loci were very polymorphic indicated by high values of polymorphism information content (from 0.76 in S0225 to 0.92 in Sw2410). Indigenous populations had very high level of genetic diversity (mean He = 0.75); of all indigenous breeds, Lung Pu showed highest mean number...

  15. Comparison of distance matrices in studies of population structure and genetic microdifferentiation: quadratic assignment.

    Science.gov (United States)

    Dow, M M; Cheverud, J M

    1985-11-01

    Questions concerning the relative effects of various evolutionary forces in molding the genetic variability exhibited by groups of human populations have typically been investigated by comparing a variety of genetic and cultural/historical "distance" matrices. A major methodological difficulty has been the lack of formal testing procedures with which to assess the degree of confirmation or disconfirmation of an estimated measure of relationship between such matrices. In this paper, we examine a very flexible matrix combinatorial procedure which generates statistical significance levels for correlational measures of pattern similarity between distance matrices. A recent generalization of the basic procedure to the three-matrix case allows questions concerning which of two matrices best fits a third matrix to be formally tested. Applications of these hypothesis testing and inference procedures to two separate sets of genetic, geographic, and cultural distance matrices illustrates their potential for finally solving a long-standing problem in anthropological genetics.

  16. Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation.

    Science.gov (United States)

    Holmes, Christopher J; Pantel, Jelena H; Schulz, Kimberly L; Cáceres, Carla E

    2016-07-01

    When newly created habitats are initially colonized by genotypes with rapid population growth rates, later arriving colonists may be prevented from establishing. Although these priority effects have been documented in multiple systems, their duration may be influenced by the diversity of the founding population. We conducted a large-scale field manipulation to investigate how initial clonal diversity influences temporal and landscape patterns of genetic structure in a developing metapopulation. Six genotypes of obligately asexual Daphnia pulex were stocked alone (no clonal diversity) or in combination ('high' clonal diversity) into newly created experimental woodland ponds. We also measured the population growth rate of all clones in the laboratory when raised on higher-quality and lower-quality resources. Our predictions were that in the 3 years following stocking, clonally diverse populations would be more likely to persist than nonclonally diverse populations and exhibit evidence for persistent founder effects. We expected that faster growing clones would be found in more pools and comprise a greater proportion of individuals genotyped from the landscape. Genetic composition, both locally and regionally, changed significantly following stocking. Six of 27 populations exhibited evidence for persistent founder effects, and populations stocked with 'high' clonal diversity were more likely to exhibit these effects than nonclonally diverse populations. Performance in the laboratory was not predictive of clonal persistence or overall dominance in the field. Hence, we conclude that although laboratory estimates of fitness did not fully explain metapopulation genetic structure, initial clonal diversity did enhance D. pulex population establishment and persistence in this system.

  17. Phylogeny, genetic relationships and population structure of five Italian local chicken breeds

    Directory of Open Access Journals (Sweden)

    Simone Ceccobelli

    2013-09-01

    Full Text Available Number and population size of local chicken breeds in Italy is considered to be critical. Molecular data can be used to provide reliable insight into the diversity of chicken breeds. The first aim of this study was to investigate the maternal genetic origin of five Italian local chicken breeds (Ancona, Livorno, Modenese, Romagnola and Valdarnese bianca based on mitochondrial DNA (mtDNA information. Secondly, the extent of the genetic diversity, population structure and the genetic relationships among these chicken populations, by using 27 microsatellite markers, were assessed. To achieve these targets, a 506 bp fragment of the D-loop region was sequenced in 50 chickens of the five breeds. Eighteen variable sites were observed which defined 12 haplotypes. They were assigned to three clades and two maternal lineages. Results indicated that 90% of the haplotypes are related to clade E, which has been described to originate from the Indian subcontinent. For the microsatellite analysis, 137 individual blood samples from the five Italian breeds were included. A total of 147 alleles were detected at 27 microsatellite loci. The five Italian breeds showed a slightly higher degree of inbreeding (FIS=0.08 than the commercial populations that served as reference. Structure analysis showed a separation of the Italian breeds from the reference populations. A further sub-clustering allowed discriminating among the five different Italian breeds. This research provides insight into population structure, relatedness and variability of the five studied breeds.

  18. Genetic differentiation between cave and surface-dwelling populations of Garra barreimiae (Cyprinidae in Oman

    Directory of Open Access Journals (Sweden)

    Seemann Robert

    2011-06-01

    Full Text Available Abstract Background Phenotypic similarities among cave-dwelling animals displaying troglomorphic characters (e.g. reduced eyes and lack of pigmentation have induced a long-term discussion about the forces driving convergent evolution. Here we introduce Garra barreimiae Fowler & Steinitz, 1956, as an interesting system to study the evolution of troglomorphic characters. The only hitherto known troglomorphic population of this species lives in Al Hoota Cave (Sultanate of Oman close to a surface population. As a first approach, we assessed the genetic differentiation between the two morphotypes of G. barreimiae to determine whether gene flow still occurs. Results We analysed the mitochondrial control region (CR. In G. barreimiae the CR starts immediately downstream of the tRNA-Thr gene, while the tRNA-Pro gene is missing at this genomic location. Interestingly, a putative tRNA-Pro sequence is found within the CR. The phylogenetic analyses of the CR sequences yielded a tree divided into three clades: Clade 1 has a high genetic distance to the other clades and contains the individuals of three populations which are separated by a watershed from all the others. Clade 2 comprises the individuals from Wadi Bani Khalid, the geographically most remote population. Clade 3 comprises all other populations investigated including that of Al Hoota Cave. The latter forms a haplogroup which also includes individuals from the adjacent surface population. Conclusions Our data indicates that the troglomorphic cave population is of quite recent origin supporting the hypothesis that selection drives the fast evolution of troglomorphic traits. In this context pleiotropic effects might play an important role as it has been shown for Astyanax. There seems to be some gene flow from the cave population into the adjacent surface populations. One blind individual, found at a surface locality geographically distinct from Al Hoota Cave, is genetically differentiated from the

  19. The use of carcasses for the analysis of cetacean population genetic structure: a comparative study in two dolphin species.

    Science.gov (United States)

    Bilgmann, Kerstin; Möller, Luciana M; Harcourt, Robert G; Kemper, Catherine M; Beheregaray, Luciano B

    2011-01-01

    Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully

  20. Whole mitochondrial genome genetic diversity in an Estonian population sample.

    Science.gov (United States)

    Stoljarova, Monika; King, Jonathan L; Takahashi, Maiko; Aaspõllu, Anu; Budowle, Bruce

    2016-01-01

    Mitochondrial DNA is a useful marker for population studies, human identification, and forensic analysis. Commonly used hypervariable regions I and II (HVI/HVII) were reported to contain as little as 25% of mitochondrial DNA variants and therefore the majority of power of discrimination of mitochondrial DNA resides in the coding region. Massively parallel sequencing technology enables entire mitochondrial genome sequencing. In this study, buccal swabs were collected from 114 unrelated Estonians and whole mitochondrial genome sequences were generated using the Illumina MiSeq system. The results are concordant with previous mtDNA control region reports of high haplogroup HV and U frequencies (47.4 and 23.7% in this study, respectively) in the Estonian population. One sample with the Northern Asian haplogroup D was detected. The genetic diversity of the Estonian population sample was estimated to be 99.67 and 95.85%, for mtGenome and HVI/HVII data, respectively. The random match probability for mtGenome data was 1.20 versus 4.99% for HVI/HVII. The nucleotide mean pairwise difference was 27 ± 11 for mtGenome and 7 ± 3 for HVI/HVII data. These data describe the genetic diversity of the Estonian population sample and emphasize the power of discrimination of the entire mitochondrial genome over the hypervariable regions.

  1. Difference in MSA phenotype distribution between populations: genetics or environment?

    Science.gov (United States)

    Ozawa, Tetsutaro; Revesz, Tamas; Paviour, Dominic; Lees, Andrew J; Quinn, Niall; Tada, Mari; Kakita, Akiyoshi; Onodera, Osamu; Wakabayashi, Koichi; Takahashi, Hitoshi; Nishizawa, Masatoyo; Holton, Janice L

    2012-01-01

    The reasons for the differences in emphasis on striatonigral or olivopontocerebellar involvement in multiple system atrophy (MSA) remain to be determined. Semi-quantitative pathological analyses carried out in the United Kingdom and Japan demonstrated that olivopontocerebellar-predominant pathology was more frequent in Japanese MSA than British MSA. This observation provides evidence for a difference in phenotype distribution between British and Japanese patients with definite MSA. Studies of the natural history and epidemiology of MSA carried out in various populations have revealed that the relative prevalences of clinical subtypes of MSA probably differ among populations; the majority of MSA patients diagnosed in Europe have predominant parkinsonism (MSA-P), while the majority of MSA patients diagnosed in Asia have predominant cerebellar ataxia (MSA-C). Although potential drawbacks to the published frequencies of clinical subtypes and pathological subtypes should be considered because of selection biases, the difference demonstrated in pathological subtype is also consistent with the differences in clinical subtype of MSA demonstrated between Europe and Asia. Modest alterations in susceptibility factors may contribute to the difference in MSA phenotype distribution between populations. Synergistic interactions between genetic risk variants and environmental toxins responsible for parkinsonism or cerebellar dysfunction should therefore be explored. Further investigations are needed to determine the environmental, genetic, and epigenetic factors that account for the differences in clinicopathological phenotype of MSA among different populations.

  2. Population Bottlenecks Increase Additive Genetic Variance But Do Not Break a Selection Limit in Rainforest Drosophila

    DEFF Research Database (Denmark)

    van Heerwaarden, Belinda; Willi, Yvonne; Kristensen, Torsten N;

    2008-01-01

    According to neutral quantitative genetic theory, population bottlenecks are expected to decrease standing levels of additive genetic variance of quantitative traits. However, some empirical and theoretical results suggest that, if nonadditive genetic effects influence the trait, bottlenecks may ...

  3. Quantitative genetics of migration syndromes: a study of two barn swallow populations.

    Science.gov (United States)

    Teplitsky, C; Mouawad, N G; Balbontin, J; De Lope, F; Møller, A P

    2011-09-01

    Migration is a complex trait although little is known about genetic correlations between traits involved in such migration syndromes. To assess the migratory responses to climate change, we need information on genetic constraints on evolutionary potential of arrival dates in migratory birds. Using two long-term data sets on barn swallows Hirundo rustica (from Spain and Denmark), we show for the first time in wild populations that spring arrival dates are phenotypically and genetically correlated with morphological and life history traits. In the Danish population, length of outermost tail feathers and wing length were negatively genetically correlated with arrival date. In the Spanish population, we found a negative genetic correlation between arrival date and time elapsed between arrival date and laying date, constraining response to selection that favours both early arrival and shorter delays. This results in a decreased rate of adaptation, not because of constraints on arrival date, but constraints on delay before breeding, that is, a trait that can be equally important in the context of climate change.

  4. Different patterns of genetic structure of relict and isolated populations of endangered peat-bog pine (Pinus uliginosa Neumann).

    Science.gov (United States)

    Wachowiak, W; Prus-Glowacki, W

    2009-01-01

    Recent changes in environmental conditions in populations of peat-bog pine (Pinus uliginosa Neumann) caused rapid decline or even extinction of the species in several stands in Central Europe. Conservation strategies for P. uliginosa require information about the evolutionary history and genetic structure of its populations. Using isozymes we assessed the genetic structure of P. uliginosa from four isolated stands in Poland and compared the results to genetic structures of other closely related pine species including eight populations of Pinus mugo, ten of Pinus sylvestris and one of Pinus uncinata. The level of genetic variability of P. uliginosa measured by the mean number of alleles per locus and average heterozygosity was similar to others related to P. uliginosa taxa from the reference group but it differs among populations. High genetic similarity was found between two populations of P. uliginosa from Low Silesian Pinewood. The populations were genetically distinct as compared to other populations including locus classicus of the species from the peat bog at Batorów Reserve. Very low genetic distance (DN = 0.002) and small genetic differentiation (GST = 0.003) were found between P. uliginosa and P. mugo in the sympatric populations of the species from Zieleniec peat bog suggesting the ongoing natural hybridisation and genetic contamination of peat-bog pine from this area. Some evidence for skew in allele frequency distribution potentially due to recent bottleneck was found in population from Low Silesian Pinewood. The analysed open pollinated progeny derived from two P. uliginosa stands from Low Silesian Pinewood showed the excess of homozygotes as compared to the maternal trees indicating high level of inbreeding (F = 0.105, F = 0.081). The results are discussed in the context of evolution of P. uliginosa populations, taxonomic relationships between the analysed species and conservation strategies for active protection of peat-bog pine.

  5. Detecting populations in the 'ambiguous' zone : kinship-based estimation of population structure at low genetic divergence

    NARCIS (Netherlands)

    Palsboll, Per J.; Peery, M. Zachariah; Berube, Martine

    2010-01-01

    Identifying population structure is one of the most common and important objectives of spatial analyses using population genetic data. Population structure is detected either by rejecting the null hypothesis of a homogenous distribution of genetic variation, or by estimating low migration rates. Iss

  6. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius).

    Science.gov (United States)

    Milano, Ilaria; Babbucci, Massimiliano; Cariani, Alessia; Atanassova, Miroslava; Bekkevold, Dorte; Carvalho, Gary R; Espiñeira, Montserrat; Fiorentino, Fabio; Garofalo, Germana; Geffen, Audrey J; Hansen, Jakob H; Helyar, Sarah J; Nielsen, Einar E; Ogden, Rob; Patarnello, Tomaso; Stagioni, Marco; Tinti, Fausto; Bargelloni, Luca

    2014-01-01

    Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large- and fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (F(CT) = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (F(CT) range 0.275-0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.

  7. Genetic determinants of hair and eye colours in the Scottish and Danish populations

    Directory of Open Access Journals (Sweden)

    Morling Niels

    2009-12-01

    Full Text Available Abstract Background Eye and hair colour is highly variable in the European population, and is largely genetically determined. Both linkage and association studies have previously been used to identify candidate genes underlying this variation. Many of the genes found were previously known as underlying mutant mouse phenotypes or human genetic disease, but others, previously unsuspected as pigmentation genes, have also been discovered. Results We assayed the hair of a population of individuals of Scottish origin using tristimulus colorimetry, in order to produce a quantitative measure of hair colour. Cluster analysis of this data defined two groups, with overlapping borders, which corresponded to visually assessed dark versus red/light hair colour. The Danish population was assigned into categorical hair colour groups. Both cohorts were also assessed for eye colour. DNA from the Scottish group was genotyped at SNPs in 33 candidate genes, using 384 SNPs identified by HapMap as representatives of each gene. Associations found between SNPs and colorimetric hair data and eye colour categories were replicated in a cohort of the Danish population. The Danish population was also genotyped with SNPs in 4 previously described pigmentation genes. We found replicable associations of hair colour with the KITLG and OCA2 genes. MC1R variation correlated, as expected, with the red dimension of colorimetric hair colour in Scots. The Danish analysis excluded those with red hair, and no associations were found with MC1R in this group, emphasising that MC1R regulates the colour rather than the intensity of pigmentation. A previously unreported association with the HPS3 gene was seen in the Scottish population. However, although this replicated in the smaller cohort of the Danish population, no association was seen when the whole study population was analysed. Conclusions We have found novel associations with SNPs in known pigmentation genes and colorimetrically

  8. Genetic relationships between Anhui and Heilongjiang populations of Phytophthora sojae assessed by SSR markers%安徽和黑龙江省大豆疫霉群体遗传结构的SSR分析

    Institute of Scientific and Technical Information of China (English)

    王子迎; 王朝霞; 沈洁; 鲁红侠

    2009-01-01

    The genetic diversity of two geographic populations of Phytophthora sojae Kauf. & Gerd. from Anhui and Heilongjiang Provinces was determined using the molecular marker of simple sequence repeats (SSRs). Genetic variation was analyzed for 83 isolates of P. sojae. By using 20 pairs of SSR primers, a total of 109 polymophic bands (alleles) were amplified at an average of 5.5 bands per pair of primers. Genetic similarity analysis showed that there were obvious differences between Helongjiang and Anhui populations. Cluster analysis with an unweighted pair group method revealed that the 83 isolates of P. sojae were clearly separated into seven clustering groups (genotypes) at a level of 80% similarity. We also found that isolates from Heilongjiang had lower genotypic diversity than those of Anhui. In addition, three particular P. sojae genotypes were only found in Anhui population and two particular genotypes were only found in Heilongjiang population. In conclusion, the results in this study do not support the hypothesis that P. sojae in Anhui has immigrated from Heilongjiang.%采用简单重复序列(SSR)的分析方法,对来自安徽和黑龙江省的大豆疫霉群体进行了遗传多样性分析.通过使用20对SSR引物对供试的83株大豆疫霉菌株进行PCR扩增,共得到109个SSR标记,全部为多态性标记,平均每对引物扩增出5.5条带.遗传变异与相似性分析表明,安徽群体具有更高的遗传变异度,安徽群体与黑龙江群体问遗传相似性较低:聚类分析显示,供试菌株在80%的相似性水平上可被区分为7个类群,且安徽群体分布于更多的聚类组中:Shannon-Wiener多样性指数也表明安徽群体的遗传多样性较黑龙江群体丰富.综合分析表明,本研究的结果不支持关于安徽的大豆疫霉可能来源于黑龙江的推测.

  9. Modified Multi-Population Genetic Algorithm for Yeast Fed-batch Cultivation Parameter Identification

    Directory of Open Access Journals (Sweden)

    Angelova M.

    2009-12-01

    Full Text Available In this work, a modified multi-population genetic algorithm is developed for the purpose of parameter identification of fermentation process model. Modified multi-population genetic algorithm is similar to the multi-population one and its development is instigated by modified genetic algorithm, similar to simple one. A comparison of four types of genetic algorithms, namely simple, modified, multipopulation and modified multi-population is presented for parameter identification of a fed-batch cultivation of Saccharomyces cerevisiae

  10. Population genetic analysis among five Indian population groups using six microsatellite markers.

    Science.gov (United States)

    Ghosh, Anu; Das, Birajalaxmi; Seshadri, M

    2003-04-01

    Genetic variation at six tetranucleotide microsatellites (HUMTHO1, HUMVWA, F13A01, D3S1359, D12S66, and D12S67) has heen determined in five endogamous ethnic population groups of India belonging to two major linguistic families. The populations analyzed were Konkanastha Brahmins and Marathas (Maharashtra state) from the Indo-Aryan linguistic family and Nairs, Ezhavas, and Muslims (Kerala state) from the Dravidian family. All six loci show high gene diversity, ranging from 0.63 +/- 0.04 to 0.84 +/- 0.02. The average GST value observed was 1.7%, indicating that the differences between the populations account for less than 2% of the diversity, while the genetic variation is high within the five population groups studied (>98%). The phylogenetic tree fails to show any clear cluster. The absence of any cluster along with low average GST is suggestive of substantial genetic similarity among the studied populations, in spite of clear geographical, linguistic, and cultural barriers. This similarity indicates either a greater gene flow between these groups or, alternatively, may reflect a recent evolution for them, considering that the Indian caste system evolved only about 3000 years ago.

  11. Regional genetic differentiation among populations of Cladocora caespitosa in the Western Mediterranean

    Science.gov (United States)

    Casado-Amezúa, Pilar; Kersting, Diego K.; Templado, José; Machordom, Annie

    2014-12-01

    Cladocora caespitosa is the only reef-forming zooxanthellate scleractinian in the Mediterranean Sea. This endemic coral has suffered severe mortality events at different Mediterranean sites owing to anomalous summer heat waves related to global climate change. In this study, we assessed genetic structure and gene flow among four populations of this species in the Western Mediterranean Sea: Cape Palos (SE Spain), Cala Galdana (Balearic Islands), Columbretes Islands, and L'Ametlla (NE Spain). The results obtained from Bayesian approaches, F ST statistics, and Bayesian analysis of migration rates suggest certain levels of genetic differentiation driven by high levels of self-recruitment, a fact that is supported by egg-retention mechanisms. Conversely, genetic connectivity among distant populations, even if generally low, seems to be related to sporadic dispersal events through regional surface currents linked to the spawning period that occurs at the end of summer-beginning of autumn. These features, together with a certain isolation of the Columbretes Islands, could explain the regional genetic differentiation found among populations. These results help to better understand population structure and connectivity of the species and will serve as an approach for further studies on different aspects of the biology and ecology of C. caespitosa.

  12. Genetic structure and demographic history of brown trout ( Salmo trutta ) populations from the southern Balkans

    DEFF Research Database (Denmark)

    Apostolidis, A.P.; Madeira, M.J.; Hansen, Michael Møller

    2008-01-01

    1. The present study was designed to characterize the genetic structure of brown trout (Salmo trutta) populations from the southern Balkans and to assess the spread of non-native strains and their introgression into native trout gene pools. We analysed polymorphism at nine microsatellite loci in ...... compromised. Therefore, appropriate management and conservation strategies should be developed urgently in order to protect the subspecific biodiversity and to reverse currently negative trends....

  13. Local genetic structure in a white-bearded manakin population.

    Science.gov (United States)

    Höglund, Jacob; Shorey, Lisa

    2003-09-01

    Local genetic structure was studied in lekking white-bearded manakins in a study area on northern Trinidad, West Indies. The study population consisted of nine leks, at which a total of 238 birds were caught. By genotyping the individuals at eight polymorphic microsatellite loci we inferred some males on leks to be related (r = 0.25) as we found an average number of 14.8 half-sib relationships and two full-sib relationships per lek. We found that the sampled birds belonged to one genetic population that was slightly inbred (FIS and FIT = 0.02). Kinship coefficients decreased with increasing geographical distance, indicating that related birds displayed at the same or nearby leks. However, leks did not consist of only one family group because the average genetic distance (aij) between males within leks was higher than when comparing males on leks within close proximity. These patterns suggest limited male dispersal, that some type of kin recognition process between individuals may exist in this species and that males on leks may be more likely to establish themselves as territory-holding birds if a relative is already present.

  14. Population Genetics of Plasmodium vivax in the Peruvian Amazon.

    Directory of Open Access Journals (Sweden)

    Christopher Delgado-Ratto

    2016-01-01

    Full Text Available Characterizing the parasite dynamics and population structure provides useful information to understand the dynamic of transmission and to better target control interventions. Despite considerable efforts for its control, vivax malaria remains a major health problem in Peru. In this study, we have explored the population genetics of Plasmodium vivax isolates from Iquitos, the main city in the Peruvian Amazon, and 25 neighbouring peri-urban as well as rural villages along the Iquitos-Nauta Road.From April to December 2008, 292 P. vivax isolates were collected and successfully genotyped using 14 neutral microsatellites. Analysis of the molecular data revealed a similar proportion of monoclonal and polyclonal infections in urban areas, while in rural areas monoclonal infections were predominant (p = 0.002. Multiplicity of infection was higher in urban (MOI = 1.5-2 compared to rural areas (MOI = 1 (p = 0.003. The level of genetic diversity was similar in all areas (He = 0.66-0.76, p = 0.32 though genetic differentiation between areas was substantial (PHIPT = 0.17, p<0.0001. Principal coordinate analysis showed a marked differentiation between parasites from urban and rural areas. Linkage disequilibrium was detected in all the areas ([Formula: see text] = 0.08-0.49, for all p<0.0001. Gene flow among the areas was stablished through Bayesian analysis of migration models. Recent bottleneck events were detected in 4 areas and a recent parasite expansion in one of the isolated areas. In total, 87 unique haplotypes grouped in 2 or 3 genetic clusters described a sub-structured parasite population.Our study shows a sub-structured parasite population with clonal propagation, with most of its components recently affected by bottleneck events. Iquitos city is the main source of parasite spreading for all the peripheral study areas. The routes of transmission and gene flow and the reduction of the parasite population described are important from the public

  15. The genetic basis of population fecundity prediction across multiple field populations of Nilaparvata lugens.

    Science.gov (United States)

    Sun, Zhong Xiang; Zhai, Yi Fan; Zhang, Jian Qing; Kang, Kui; Cai, Jing Heng; Fu, Yonggui; Qiu, Jie Qi; Shen, Jia Wei; Zhang, Wen Qing

    2015-02-01

    Identifying the molecular markers for complex quantitative traits in natural populations promises to provide novel insight into genetic mechanisms of adaptation and to aid in forecasting population dynamics. In this study, we investigated single nucleotide polymorphisms (SNPs) using candidate gene approach from high- and low-fecundity populations of the brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) divergently selected for fecundity. We also tested whether the population fecundity can be predicted by a few SNPs. Seven genes (ACE, fizzy, HMGCR, LpR, Sxl, Vg and VgR) were inspected for SNPs in N. lugens, which is a serious insect pest of rice. By direct sequencing of the complementary DNA and promoter sequences of these candidate genes, 1033 SNPs were discovered within high- and low-fecundity BPH populations. A panel of 121 candidate SNPs were selected and genotyped in 215 individuals from 2 laboratory populations (HFP and LFP) and 3 field populations (GZP, SGP and ZSP). Prior to association tests, population structure and linkage disequilibrium (LD) among the 3 field populations were analysed. The association results showed that 7 SNPs were significantly associated with population fecundity in BPH. These significant SNPs were used for constructing general liner models with stepwise regression. The best predictive model was composed of 2 SNPs (ACE-862 and VgR-816 ) with very good fitting degree. We found that 29% of the phenotypic variation in fecundity could be accounted for by only two markers. Using two laboratory populations and a complete independent field population, the predictive accuracy was 84.35-92.39%. The predictive model provides an efficient molecular method to predict BPH fecundity of field populations and provides novel insights for insect population management.

  16. Molecular Genetic Variation in a Clonal Plant Population of Leymus chinensis (Trin.) Tzvel.

    Institute of Scientific and Technical Information of China (English)

    Yu-Sheng WANG; Li-Ming ZHAO; Hua WANG; Jie WANG; Da-Ming HUANG; Rui-Min HONG; Xiao-Hua TENG; Nakamura MIKI

    2005-01-01

    Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P < 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P < 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P < 0.001), as well as 72.59% variation within populations (P < 0.001). Molecular variation within populations was significantly different among 16 populations.

  17. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa

    Directory of Open Access Journals (Sweden)

    Khulekhani Sedwell Khanyile

    2015-02-01

    Full Text Available Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterised and utilized. Surveys that can reveal a population’s genetic structure and provide an insight into its demographic history will give valuable information to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n =146, Malawi (n =30 and Zimbabwe (n =136 were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29-0.36, was observed between SNP markers that were less than 10kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK and 0.24 (VD at SNP marker interval of 500kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective population

  18. Sex change and effective population size: implications for population genetic studies in marine fish.

    Science.gov (United States)

    Coscia, I; Chopelet, J; Waples, R S; Mann, B Q; Mariani, S

    2016-10-01

    Large variance in reproductive success is the primary factor that reduces effective population size (Ne) in natural populations. In sequentially hermaphroditic (sex-changing) fish, the sex ratio is typically skewed and biased towards the 'first' sex, while reproductive success increases considerably after sex change. Therefore, sex-changing fish populations are theoretically expected to have lower Ne than gonochorists (separate sexes), assuming all other parameters are essentially equal. In this study, we estimate Ne from genetic data collected from two ecologically similar species living along the eastern coast of South Africa: one gonochoristic, the 'santer' sea bream Cheimerius nufar, and one protogynous (female-first) sex changer, the 'slinger' sea bream Chrysoblephus puniceus. For both species, no evidence of genetic structuring, nor significant variation in genetic diversity, was found in the study area. Estimates of contemporary Ne were significantly lower in the protogynous species, but the same pattern was not apparent over historical timescales. Overall, our results show that sequential hermaphroditism may affect Ne differently over varying time frames, and that demographic signatures inferred from genetic markers with different inheritance modes also need to be interpreted cautiously, in relation to sex-changing life histories.

  19. Genetic structure of wild emmer wheat populations as reflected by transcribed versus anonymous SSR markers.

    Science.gov (United States)

    Peleg, Zvi; Fahima, Tzion; Abbo, Shahal; Krugman, Tamar; Saranga, Yehoshua

    2008-03-01

    Simple sequence repeat (SSR) markers have become a major tool in population genetic analyses. The anonymous genomic SSRs (gSSRs) have been recently supplemented with expressed sequence tag (EST) derived SSRs (eSSRs), which represent the transcribed regions of the genome. In the present study, we used 8 populations of wild emmer wheat (Triticum turgidum subsp. dicoccoides) to compare the usefulness of the two types of SSR markers in assessing allelic diversity and population structure. gSSRs revealed significantly higher diversity than eSSRs in terms of average number of alleles (14.92 vs. 7.4, respectively), polymorphic information content (0.87 vs. 0.68, respectively), and gene diversity (He; 0.55 vs. 0.38, respectively). Despite the overall differences in the level of diversity, Mantel tests for correlations between eSSR and gSSR pairwise genetic distances were found to be significant for each population as well as for all accessions jointly (RM=0.54, p=0.01). Various genetic structure analyses (AMOVA, PCoA, STRUCTURE, unrooted UPGMA tree) revealed a better capacity of eSSRs to distinguish between populations, while gSSRs showed a higher proportion of intrapopulation (among accessions) diversity. We conclude that eSSR and gSSR markers should be employed in conjunction to obtain a high inter- and intra-specific (or inter- and intra-varietal) distinctness.

  20. Genetic diversity of Pinus nigra Arn. populations in Southern Spain and Northern Morocco revealed by inter-simple sequence repeat profiles.

    Science.gov (United States)

    Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E; Tiscar, Pedro A; Viñegla, Benjamin; Linares, Juan C; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2012-01-01

    Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei's genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei's genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups-Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco-while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.

  1. Population genetics of foxtail millet and its wild ancestor

    Directory of Open Access Journals (Sweden)

    Wang Yongfang

    2010-10-01

    Full Text Available Abstract Background Foxtail millet (Setaria italica (L. P. Beauv., one of the most ancient domesticated crops, is becoming a model system for studying biofuel crops and comparative genomics in the grasses. However, knowledge on the level of genetic diversity and linkage disequilibrium (LD is very limited in this crop and its wild ancestor, green foxtail (Setaria viridis (L. P. Beauv.. Such information would help us to understand the domestication process of cultivated species and will allow further research in these species, including association mapping and identification of agricultural significant genes involved in domestication. Results In this study, we surveyed DNA sequence for nine loci across 50 accessions of cultivated foxtail millet and 34 of its wild progenitor. We found a low level of genetic diversity in wild green foxtail (θ = 0.0059, θ means Watterson's estimator of θ. Despite of a 55% loss of its wild diversity, foxtail millet still harbored a considerable level of diversity (θ = 0.0027 when compared to rice and sorghum (θ = 0.0024 and 0.0034, respectively. The level of LD in the domesticated foxtail millet extends to 1 kb, while it decayed rapidly to a negligible level within 150 bp in wild green foxtail. Using coalescent simulation, we estimated the bottleneck severity at k = 0.6095 when ρ/θ = 1. These results indicated that the domestication bottleneck of foxtail millet was more severe than that of maize but slightly less pronounced than that of rice. Conclusions The results in this study establish a general framework for the domestication history of foxtail millet. The low level of genetic diversity and the increased level of LD in foxtail millet are mainly caused by a population bottleneck, although gene flow from foxtail millet to green foxtail is another factor that may have shaped the pattern of genetic diversity of these two related gene pools. The knowledge provided in this study will benefit future population

  2. Genetic structure of Chilean populations of Seriola lalandi for the diversification of the national aquaculture in the north of Chile

    Directory of Open Access Journals (Sweden)

    Gonzalo Fernández

    2015-05-01

    Full Text Available Seriola lalandi has been recognized as a potential aquaculture species in Chile, however, little is known about the genetic structure of local populations. This is important, as the current production system is based on an initial wild catching and ill management of these stocks can cause reduced genetic variability. To assess the genetic structure of local S. lalandi we evaluated 27 published microsatellite markers developed from genomic libraries of other species of the genera. However only 12 markers could be used to properly assess the populations, most of these markers showed deviations from Hardy-Weinberg equilibrium with moderate inbreeding (F = 0.12. This species tends to show schooling behavior, so in all likelihood mating between relatives within small groups of fish is not unexpected. The population structure was assessed using Structure software, showing the presence of admixture with varying levels of individual ancestry. This was seen in both populations, without significant genetic differentiation. This may be explained by the migratory behavior, with mating between different populations likely to happen in small groups. Management of aquaculture resources is essential to secure a sustainable production system; this study is the first to provide estimates of genetic diversity of Chilean populations of S. lalandi.

  3. Next Gen Pop Gen: implementing a high-throughput approach to population genetics in boarfish (Capros aper).

    Science.gov (United States)

    Farrell, Edward D; Carlsson, Jeanette E L; Carlsson, Jens

    2016-12-01

    The recently developed approach for microsatellite genotyping by sequencing (GBS) using individual combinatorial barcoding was further improved and used to assess the genetic population structure of boarfish (Capros aper) across the species' range. Microsatellite loci were developed de novo and genotyped by next-generation sequencing. Genetic analyses of the samples indicated that boarfish can be subdivided into at least seven biological units (populations) across the species' range. Furthermore, the recent apparent increase in abundance in the northeast Atlantic is better explained by demographic changes within this area than by influx from southern or insular populations. This study clearly shows that the microsatellite GBS approach is a generic, cost-effective, rapid and powerful method suitable for full-scale population genetic studies-a crucial element for assessment, sustainable management and conservation of valuable biological resources.

  4. Genetic variation and population structure in Oryza malampuzhaensis Krish. et Chand. endemic to Western Ghats, South India

    Indian Academy of Sciences (India)

    George Thomas; Sreejayan; Latha Joseph; Philomena Kuriachan

    2001-12-01

    Oryza malampuzhaensis Krish. et Chand. ($2n = 4x = 48$; Poaceae, Oryza) is endemic to Western Ghats, South India, and shows a highly localized distribution over a small geographical area in this region. This is the most poorly understood taxon in genus Oryza and is often misidentified as O. officinalis owing to their close morphology. We assessed the nature and distribution of genetic variation among 11 populations of O. malampuzhaensis using random amplified polymorphic DNA markers. The analysis revealed low genetic variation in O. malampuzhaensis. Cluster analysis of pairwise genetic distances of populations revealed three distinct clusters and the grouping of populations largely corresponded to their geographical proximity. Restricted gene flow and a geography-dependent differentiation were evident among populations. The altitude-influenced differences in ecological factors among the natural habitats of the populations seem to be the cause of the geography-dependent differentiation. Genetically isolated smaller populations and a narrow genetic base in O. malampuzhaensis point to its vulnerability to genetic drift and genetic depauperation. Thus O. malampuzhaensis appears to be under the threat of extinction and needs to be conserved by use of suitable methods. The present study also identified molecular markers diagnostic for O. malampuzhaensis.

  5. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Salem, Khaled F M; Sallam, Ahmed

    2016-01-01

    Understanding the population structure and genetic diversity is a very important goal to improve the economic value of crops. In rice, a loss of genetic diversity in the last few centuries is observed. To address this challenge, a set of 22 lines from three different regions - India (two), and Philippines (six), and Egypt (14) - were used to assess the genetic diversity and the features of population structure. These genotypes were analyzed using 106 SSR alleles that showed a clear polymorphism among the lines. Genetic diversity was estimated based on the number of different alleles, polymorphism information content (PIC), and gene diversity. A total of 106 SSR alleles was identified from the 23 SSR loci and used to study the population structure and carry out a cluster analysis. All SSR loci showed a wide range of the number of different alleles extended from two (one loci) to seven alleles (three loci). Five and eight loci showed high PIC and gene diversity (≥0.70), respectively. The results of population structure are in agreement with cluster analysis results. Both analyses revealed two different subpopulations (G1 and G2) with different genetic properties in number of private alleles, number of different alleles (Na), number of effective alleles (Ne), expected heterozygosity (He), and Shannon's Information Index (SII). Our findings indicate that five SSR loci (RM 111, RM 307, RM 22, RM 19, and RM 271) could be used in breeding programs to enhance the marker-assisted selection through QTL mapping and association studies. A high genetic diversity found between genotypes which can be exploited to improve and produce rice cultivars for important traits (e.g. high agronomic features and tolerance to biotic or/and abiotic stresses).

  6. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

    DEFF Research Database (Denmark)

    Milano, I.; Babbucci, M.; Cariani, A.;

    2014-01-01

    of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining......Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur...

  7. Assessment of palatal rugae patterns in Manipuri and Kerala population

    Directory of Open Access Journals (Sweden)

    R Surekha

    2012-01-01

    Full Text Available Background: Palatal rugae comprises three to seven ridges radiating out tangentially from the incisive papilla on the anterior part of the palate. These rugae patterns are studied for various reasons, mainly in the fields of anthropology, genetics, orthodontics, prosthodontics, and forensic science. Objective: To compare the palatal rugae pattern in two different populations (Manipuri and Kerala, and to assess the predominant pattern if any in the selected groups. Materials and Methods: Sixty maxillary study models (30 from each group including males and females were examined in the age group ranging from 17 to 23 years. Palatal rugae pattern were analyzed on the right and left sides of the palate for total number, length, shape, direction, and unification. Results: After analyzing the rugae patterns in both the groups and between the two sides of the palate, the wavy pattern was found to be predominant followed by curved, straight, and circular in overall population. Manipuri population showed predominant curved shape than the Kerala population and was statistically significant. Females in general had slightly more rugae than males and the left side of the palate showed comparatively more number of rugae than on the right side. Conclusion: A statistically significant association between the shape of the rugae and population exists although, subtle. Parameters like direction and unification need more attention for better understanding.

  8. Genetic Diversity and Population Structure of Chinese and American Alfalfa(Medicago Sativa. L) Germplasm Assessed by SSR Markers%基于SSR标记的中美紫花苜蓿品种遗传多样性研究

    Institute of Scientific and Technical Information of China (English)

    强海平; 余国辉; 刘海泉; 高洪文; 刘贵波; 赵海明; 王赞

    2014-01-01

    mtic188、bf111、afctt1、bf641851、maa660456、aw361等位点上表现较高的遗传多样性,表明这些位点可以较好地反映中美紫花苜蓿品种的遗传多样性,适用于中美紫花苜蓿品种的遗传多样性检测。就不同染色体而言,第二条和第八条染色体上分布的SSR标记揭示的遗传多样性较高,而第一条相对较低。基于混合模型的方法对紫花苜蓿全体基因型进行群体结构分析,两种不同方法均显示确定最优的群体数K值为2,中美两国16个紫花苜蓿品种共100个基因型个体基本按照来源分为两个亚群体,群体间有少量混杂的情况发生。主成分分析和聚类分析与群体结构的分析结果相一致。中国紫花苜蓿品种多样性略高于美国,但差异不显著。中美两国紫花苜蓿材料蕴含了比较丰富的遗传变异,显示了较高水平的基因多样性。中美群体间的遗传多样性水平存在一定的差异,中国紫花苜蓿种质多样性水平略高于美国。群体结构不严格按照来源国家的划分而区分,这一现象与紫花苜蓿异花授粉与广泛的基因交流有着密切的关系。%Objective Alfalfa is the most important cultivated forage across the world. However, for little improvement in forage yield and quality in recent years, conventional breeding methods are far from satisfying the practical need. On the one hand, the improvement in cultivars relies on the quantity of breeding resources, on the other hand, it relies on the understanding of the genetic basis of agronomic traits. Based on SSR markers, the study was conducted to analyze the genetic diversity and population structure of the germplasm from China and the United States and provide basic information on mining beneficial markers and alleles significantly associated with important quantitative and quality traits of alfalfa when using genome-wide association study to facilitate breeding process.[Method]In total, 40

  9. Initial founders of captive populations are genetically representative of natural populations in critically endangered dusky gopher frogs, Lithobates sevosus.

    Science.gov (United States)

    Hinkson, Kristin M; Henry, Natochia L; Hensley, Nina M; Richter, Stephen C

    2016-09-01

    The rapid rate of decline in amphibian populations has urged many researchers and conservationists to establish captive, or ex situ, populations. Such populations are guarded against effects of habitat loss and degradation, and if actively managed, can serve as a reservoir for rare alleles that might be lost in the wild. Without proper management, ex situ population sizes can dwindle and will no longer perform this function. The dusky gopher frog, Lithobates sevosus, is a critically endangered species, imperiled by habitat loss and population isolation. To assist in recovery of the species and prevent further genetic erosion, a captive breeding program was initiated. We investigated how well natural genetic variation was captured within the ex situ population and determined relatedness within each ex situ population. We genotyped individuals from two natural populations and two founding, captive populations to compare metrics of genetic variation and relatedness. The data show the initial founder populations are genetically representative of the natural populations, although variation is low in each, and that relatedness values are similar. Therefore, founding captive populations were successful at capturing genetic variation in the wild. Future research should continue to compare genetic variation of captive and natural populations to monitor efficacy of their management programs. Zoo Biol. 35:378-384, 2016. © 2016 Wiley Periodicals, Inc.

  10. Genetic differences between wild and hatchery populations of Diplodus sargus and D. vulgaris inferred from RAPD markers: implications for production and restocking programs design.

    Science.gov (United States)

    Pereira, J C; Lino, P G; Leitão, A; Joaquim, S; Chaves, R; Pousão-Ferreira, P; Guedes-Pinto, H; dos Santos, M Neves

    2010-01-01

    Restocking and stock enhancement programs are now recognized as an important tool for the management of fishery resources. It is important, however, to have an adequate knowledge on the genetic population structure of both the released stock and the wild population before carrying out such programs. In this study, random amplified polymorphic DNA (RAPD) markers were applied to assess genetic diversity and population structure of wild and hatchery populations of the white seabream Diplodus sargus and the common two-banded seabream D. vulgaris (Sparidae). The estimated values for intrapopulation genetic variation, measured using the percentage of polymorphic loci (%P), Shannon index (H'), and Nei's gene diversity (h), showed high values for all populations. The percentage of genetic variation within D. sargus and D. vulgaris populations, based on coefficient of gene differentiation, reached 82.5% and 90% of the total genetic variation, respectively. An undeniable decrease in genetic variation was found in both hatchery populations, particularly in D. sargus, compared to the wild ones. However, the high values of variation within all populations and the low levels of genetic variation among populations did not indicate inbreeding or depression effects, thus indicating a fairly proper hatchery management. Nevertheless, the results of this study highlight the importance of monitoring the genetic variation of hatchery populations, particularly those to be used in restocking programs. The creation of a genetic baseline database will contribute to a more efficient conservation management and to the design of genetically sustainable restocking programs.

  11. Transferrin variation and genetic structure of reindeer populations in Scandinavia

    Directory of Open Access Journals (Sweden)

    Knut H. Røed

    1987-06-01

    Full Text Available Polyacrylamide gel electrophoresis was used to analyse transferrin variation in herds of semi-domestic reindeer from Scandinavia. The results are compared with previously reported values for other populations of both semi-domestic and wild reindeer using the same techniques as in the present study. In all populations the number of alleles was high, ranging from seven to eleven, and the heterozygosity was correspondingly high, with a mean of 0.749. This high genetic variation in all populations suggests that inbreeding is not widespread among Scandinavian reindeer. The pattern of allele frequency distribution indicates a high degree of genetic heterogeneity in the transferrin locus, both between the different semi-domestic herds and between the different wild populations. The mean value of genetic distance was 0.069 between semi-domestic herds and 0.091 between wild populations. Between semi-domestic and wild populations the genetic distance was particularly high, with a mean of 0.188. This high value was mainly due to a different pattern in the distribution of the two most common transferrin alleles: Tfu was most common among semi-domestic herds, while TfEI was most common among wild populations. These differences in transferrin allele distribution are discussed in relation to possible different origins of semi-domestic and wild reindeer in Scandinavia, or alternatively, to different selection forces acting on transferrin genotypes in semi-domestic and wild populations.Transferrin-variasjon og genetisk struktur hos rein i Skandinavia.Abstact in Norwegian / Sammendrag: Transferrin-variasjon i tamreinflokker ble analysert ved hjelp av polyacrylamid gel elektroforese. Resultatene er sammenlignet med verdier som tidligere er beskrevet for både tamrein og villrein hvor det ble benyttet samme metode som i denne undersøkelsen. I alle populasjonene ble det registrert et høyt antall alleler (7-11 og heterozygositeten var tilsvarende høy med en

  12. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases.

    Science.gov (United States)

    Goubert, C; Minard, G; Vieira, C; Boulesteix, M

    2016-09-01

    The Asian tiger mosquito Aedes albopictus is currently one of the most threatening invasive species in the world. Native to Southeast Asia, the species has spread throughout the world in the past 30 years and is now present in every continent but Antarctica. Because it was the main vector of recent Dengue and Chikungunya outbreaks, and because of its competency for numerous other viruses and pathogens such as the Zika virus, A. albopictus stands out as a model species for invasive diseases vector studies. A synthesis of the current knowledge about the genetic diversity of A. albopictus is needed, knowing the interplays between the vector, the pathogens, the environment and their epidemiological consequences. Such resources are also valuable for assessing the role of genetic diversity in the invasive success. We review here the large but sometimes dispersed literature about the population genetics of A. albopictus. We first debate about the experimental design of these studies and present an up-to-date assessment of the available molecular markers. We then summarize the main genetic characteristics of natural populations and synthesize the available data regarding the worldwide structuring of the vector. Finally, we pinpoint the gaps that remain to be addressed and suggest possible research directions.

  13. Genetic population structure in the Antarctic benthos: insights from the widespread amphipod, Orchomenella franklini.

    Directory of Open Access Journals (Sweden)

    Helena Phoenix Baird

    Full Text Available Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903. Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres, locations (1-10 kilometres and regions (1000 s of kilometres sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (F(ST = 0.086, R(ST = 0.139, p<0.001 consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with N(em≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos.

  14. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance.

    Science.gov (United States)

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two F st outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  15. Genetic similarity of island populations of tent caterpillars during successive outbreaks.

    Directory of Open Access Journals (Sweden)

    Michelle T Franklin

    Full Text Available Cyclic or fluctuating populations experience regular periods of low population density. Genetic bottlenecks during these periods could give rise to temporal or spatial genetic differentiation of populations. High levels of movement among increasing populations, however, could ameliorate any differences and could also synchronize the dynamics of geographically separated populations. We use microsatellite markers to investigate the genetic differentiation of four island and one mainland population of western tent caterpillars, Malacosoma californicum pluviale, in two periods of peak or pre-peak density separated by 8 years. Populations showed high levels of genetic variation and little genetic differentiation either temporally between peaks or spatially among sites. Mitochondrial haplotypes were also shared between one island population and one mainland population in the two years studied. An isolation-by-distance analysis showed the FST values of the two geographically closest populations to have the highest level of differentiation in both years. We conclude that high levels of dispersal among populations maintain both synchrony of population dynamics and override potential genetic differentiation that might occur during population troughs. As far we are aware, this is the first time that genetic similarity between temporally separated population outbreaks in insects has been investigated. A review of genetic data for both vertebrate and invertebrate species of cyclic animals shows that a lack of spatial genetic differentiation is typical, and may result from high levels of dispersal associated with fluctuating dynamics.

  16. Genetic similarity of island populations of tent caterpillars during successive outbreaks.

    Science.gov (United States)

    Franklin, Michelle T; Myers, Judith H; Cory, Jenny S

    2014-01-01

    Cyclic or fluctuating populations experience regular periods of low population density. Genetic bottlenecks during these periods could give rise to temporal or spatial genetic differentiation of populations. High levels of movement among increasing populations, however, could ameliorate any differences and could also synchronize the dynamics of geographically separated populations. We use microsatellite markers to investigate the genetic differentiation of four island and one mainland population of western tent caterpillars, Malacosoma californicum pluviale, in two periods of peak or pre-peak density separated by 8 years. Populations showed high levels of genetic variation and little genetic differentiation either temporally between peaks or spatially among sites. Mitochondrial haplotypes were also shared between one island population and one mainland population in the two years studied. An isolation-by-distance analysis showed the FST values of the two geographically closest populations to have the highest level of differentiation in both years. We conclude that high levels of dispersal among populations maintain both synchrony of population dynamics and override potential genetic differentiation that might occur during population troughs. As far we are aware, this is the first time that genetic similarity between temporally separated population outbreaks in insects has been investigated. A review of genetic data for both vertebrate and invertebrate species of cyclic animals shows that a lack of spatial genetic differentiation is typical, and may result from high levels of dispersal associated with fluctuating dynamics.

  17. Genetic diversity of microsatellite loci in hierarchically structured populations.

    Science.gov (United States)

    Song, Seongho; Dey, Dipak K; Holsinger, Kent E

    2011-08-01

    Microsatellite loci are widely used for investigating patterns of genetic variation within and among populations. Those patterns are in turn determined by population sizes, migration rates, and mutation rates. We provide exact expressions for the first two moments of the allele frequency distribution in a stochastic model appropriate for studying microsatellite evolution with migration, mutation, and drift under the assumption that the range of allele sizes is bounded. Using these results, we study the behavior of several measures related to Wright's F(ST), including Slatkin's R(ST). Our analytical approximations for F(ST) and R(ST) show that familiar relationships between N(e)m and F(ST) or R(ST) hold when the migration and mutation rates are small. Using the exact expressions for F(ST) and R(ST), our numerical results show that, when the migration and mutation rates are large, these relationships no longer hold. Our numerical results also show that the diversity measures most closely related to F(ST) depend on mutation rates, mutational models (stepwise versus two-phase), migration rates, and population sizes. Surprisingly, R(ST) is relatively insensitive to the mutation rates and mutational models. The differing behaviors of R(ST) and F(ST) suggest that properties of the among-population distribution of allele frequencies may allow the roles of mutation and migration in producing patterns of diversity to be distinguished, a topic of continuing investigation.

  18. Genetic variation within native populations of endemic silkmoth Antheraea assamensis (Helfer from Northeast India indicates need for in situ conservation.

    Directory of Open Access Journals (Sweden)

    Y Tunginba Singh

    Full Text Available A. assamensis is a phytophagous Lepidoptera from Northeast India reared on host trees of Lauraceae family for its characteristic cocoon silk. Source of these cocoons are domesticated farm stocks that crash frequently and/or wild insect populations that provide new cultures. The need to reduce dependence on wild populations for cocoons necessitates assessment of genetic diversity in cultivated and wild populations. Molecular markers based on PCR of Inter-simple sequence repeats (ISSR and simple sequence repeats (SSR were used with four populations of wild insects and eleven populations of cultivated insects. Wild populations had high genetic diversity estimates (H(i = 0.25; H(S = 0.28; H(E = 0.42 and at least one population contained private alleles. Both marker systems indicated that genetic variability within populations examined was significantly high. Among cultivated populations, insects of the Upper Assam region (H(i = 0.19; H(S = 0.18; H(E = 0 were genetically distinct (F(ST = 0.38 with both marker systems from insects of Lower Assam (H(i =0.24; H(S =0.25; H(E = 0.3. Sequencing of polymorphic amplicons suggested transposition as a mechanism for maintaining genomic diversity. Implications for conservation of native populations in the wild and preserving in-farm diversity are discussed.

  19. Genetic Signature of Anthropogenic Population Collapse in Orang-utans.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Great ape populations are undergoing a dramatic decline, which is predicted to result in their extinction in the wild from entire regions in the near future. Recent findings have particularly focused on African apes, and have implicated multiple factors contributing to this decline, such as deforestation, hunting, and disease. Less well-publicised, but equally dramatic, has been the decline in orang-utans, whose distribution is limited to parts of Sumatra and Borneo. Using the largest-ever genetic sample from wild orang-utan populations, we show strong evidence for a recent demographic collapse in North Eastern Borneo and demonstrate that this signature is independent of the mutation and demographic models used. This is the first demonstration that genetic data can detect and quantify the effect of recent, human-induced deforestation and habitat fragmentation on an endangered species. Because current demographic collapses are usually confounded by ancient events, this suggests a much more dramatic decline than demographic data alone and emphasises the need for major conservation efforts.

  20. Genetic signature of anthropogenic population collapse in orang-utans.

    Directory of Open Access Journals (Sweden)

    Benoît Goossens

    2006-02-01

    Full Text Available Great ape populations are undergoing a dramatic decline, which is predicted to result in their extinction in the wild from entire regions in the near future. Recent findings have particularly focused on African apes, and have implicated multiple factors contributing to this decline, such as deforestation, hunting, and disease. Less well-publicised, but equally dramatic, has been the decline in orang-utans, whose distribution is limited to parts of Sumatra and Borneo. Using the largest-ever genetic sample from wild orang-utan populations, we show strong evidence for a recent demographic collapse in North Eastern Borneo and demonstrate that this signature is independent of the mutation and demographic models used. This is the first demonstration that genetic data can detect and quantify the effect of recent, human-induced deforestation and habitat fragmentation on an endangered species. Because current demographic collapses are usually confounded by ancient events, this suggests a much more dramatic decline than demographic data alone and emphasises the need for major conservation efforts.

  1. Genetic diversity of Leishmania infantum field populations from Brazil

    Directory of Open Access Journals (Sweden)

    Marcela Segatto

    2012-02-01

    Full Text Available Leishmania infantum (syn. Leishmania chagasi is the etiological agent of visceral leishmaniasis (VL in Brazil. The epidemiology of VL is poorly understood. Therefore, a more detailed molecular characterization at an intraspecific level is certainly needed. Herein, three independent molecular methods, multilocus microsatellite typing (MLMT, random amplification of polymorphic DNA (RAPD and simple sequence repeats-polymerase chain reaction (SSR-PCR, were used to evaluate the genetic diversity of 53 L. infantum isolates from five different endemic areas in Brazil. Population structures were inferred by distance-based and Bayesian-based approaches. Eighteen very similar genotypes were detected by MLMT, most of them differed in only one locus and no correlation was found between MLMT profiles, geographical origin or the estimated population structure. However, complex profiles composed of 182 bands obtained by both RAPD and SSR-PCR assays gave different results. Unweighted pair group method with arithmetic mean trees built from these data revealed a high degree of homogeneity within isolates of L. infantum. Interestingly, despite this genetic homogeneity, most of the isolates clustered according to their geographical origin.

  2. Population genetics of the Chilean frog Batrachyla Leptopus (Leptodactylidae

    Directory of Open Access Journals (Sweden)

    J.R. Formas

    2000-03-01

    Full Text Available Electrophoretic variation of proteins encoded by 14 loci was analyzed in eight (five continental and three insular populations of the Chilean leptodactylid frog Batrachyla leptopus. The overall proportion of polymorphic loci was estimated to be 18.7% and the average number of alleles per locus, 1.2, while observed and expected heterozygosities were 1.7 and 5.1%, respectively. The estimated coefficient of genetic identity was 0.940; the corresponding figure for genetic distance was 0.063. F-statistics analysis showed a total inbreeding coefficient (Fit of 0.855 and high levels of genetic subdivision (Fst = 0.596 as well as of inbreeding within populations (Fis = 0.640. However, there was only a moderate level of genetic differentiation (Fst = 0.181 between the insular group of populations and the continental group.A variação eletroforética de proteínas codificadas por 14 loci foi analisada em oito populações (5 continentais e 3 insulares da rã leptodactilídea chilena Batrachyla leptopus. A proporção geral de loci polimórficos foi estimada como sendo de 18,7% e o número médio de alelos por loco, 1,2, enquanto que as heterozigosidades observada e esperada foram 1,7 e 5,1%, respectivamente. O coeficiente esperado de identidade genética foi 0,940; o número correspondente para a distância genética foi 0,063. A análise estatística F mostrou um coeficiente de endogamia total (Fit de 0,855 e altos níveis de subdivisão genética (Fst = 0,596, assim como de endogamia dentro das populações (Fis = 0,640. Contudo, houve apenas um nível moderado de diferenciação genética (Fst = 0,181 entre o grupo insular de populações e o grupo continental.

  3. Demography, genetic diversity, and population relationships among Argentinean Mapuche Indians

    Directory of Open Access Journals (Sweden)

    Alicia S. Goicoechea

    2000-09-01

    Full Text Available Fertility, mortality and migration data from four Mapuche Indian communities located along a 215-km NE-SW linear area in the Province of Río Negro, Argentina, were collated with genetic information furnished by nine blood group systems and by mtDNA haplogroups. The demographic and genetic data indicated a clear dichotomy, which split the four populations into two groups of two. Differing degrees of non-Indian exchanges was probably the main determining factor for this separation. Total genetic variability was very similar in all groups, and the interpopulational variability accounted for only 10% of the total variability. A low prevalence of the Diego(a antigen among the Mapuche was confirmed. The fact that significant genetic heterogeneity and population clusters were found in such a small territorial region attests to the sensitivity of demographic and genetic approaches in unraveling human history.Dados relativos a fertilidade, mortalidade e migração de quatro comunidades de índios Mapuche localizadas em uma área linear na direção nordeste-sudoeste com 215 km de extensão na Província de Rio Negro, Argentina, foram associados com a informação genética fornecida por nove sistemas de grupos sangüíneos e os haplogrupos do DNA mitocondrial. Ambos os tipos de informação apontam claramente para uma dicotomia, as quatro populações sendo divididas em grupos de duas. O principal fator responsável por esta separação é provavelmente graus diferentes de mistura com não-índios. A variabilidade genética total foi muito similar em todos os grupos, aquela entre populações sendo de apenas 10% deste valor. Foi confirmada a baixa prevalência do antígeno Diego(a entre os Mapuche. O fato de que heterogeneidade genética significativa e conjuntos populacionais diversos foram observados em uma região territorial tão pequena demonstra a sensibilidade dos enfoques demográfico e genético no esclarecimento da história humana.

  4. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within Mesophotic reefs.

    Directory of Open Access Journals (Sweden)

    Daniel A Brazeau

    Full Text Available Mesophotic coral reefs (30-150 m have recently received increased attention as a potential source of larvae (e.g., the refugia hypothesis to repopulate a select subset of the shallow water (<30 m coral fauna. To test the refugia hypothesis we used highly polymorphic Amplified Fragment Length Polymorphism (AFLP markers as a means to assess small-scale genetic heterogeneity between geographic locations and across depth clines in the Caribbean coral, Montastraea cavernosa. Zooxanthellae-free DNA extracts of coral samples (N = 105 were analyzed from four depths, shallow (3-10 m, medium (15-25 m, deep (30-50 m and very deep (60-90 m from Little Cayman Island (LCI, Lee Stocking Island (LSI, Bahamas and San Salvador (SS, Bahamas which range in distance from 170 to 1,600 km apart. Using AMOVA analysis there were significant differences in ΦST values in pair wise comparisons between LCI and LSI. Among depths at LCI, there was significant genetic differentiation between shallow and medium versus deep and very deep depths in contrast there were no significant differences in ΦST values among depths at LSI. The assignment program AFLPOP, however, correctly assigned 95.7% of the LCI and LSI samples to the depths from which they were collected, differentiating among populations as little as 10 to 20 m in depth from one another. Discriminant function analysis of the data showed significant differentiation among samples when categorized by collection site as well as collection depth. FST outlier analyses identified 2 loci under positive selection and 3 under balancing selection at LCI. At LSI 2 loci were identified, both showing balancing selection. This data shows that adult populations of M. cavernosa separated by depths of tens of meters exhibits significant genetic structure, indicative of low population connectivity among and within sites and are not supplying successful recruits to adjacent coral reefs less than 30 m in depth.

  5. Population genetics of drifting (Calanus spp.) and resident (Acartia clausi) plankton in Norwegian fjords

    Digital Repository Service at National Institute of Oceanography (India)

    Bucklin, A.; Kaartvedt, S.; Guarnieri, M.; Goswami, U.

    rRNA, population genetic diversity and structure in drifting populations of Calanus spp. with that of resident populations of Acartia clausi is contrasted. With the exception of Sorfjorden (where Calanus spp. were rare), two or three species...

  6. Genetics of radionuclide-contaminated mosquitofish populations and homology between Gambusia affinis and G. holbrooki

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, C.W.; Bickham, J.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Wildlife and Fisheries Sciences; Elbl, T. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Cell and Molecular Biology; Shugart, L.R. [L.R. Shugart and Associates, Oak Ridge, TN (United States); Chesser, R.K. [Univ. of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.

    1998-10-01

    The effects of radionuclide contamination on genetic structure of eastern mosquitofish (Gambusia holbrooki) populations from the US Department of Energy`s Savannah River Site (SRS) were investigated to develop methods of assessing ecological risk of chronic exposures to xenobiotics. Fish from two contaminated and two reference sites were examined by the randomly amplified polymorphic DNA (RAPD) technique, which revealed that the frequency of three markers was greater in the contaminated than the reference sites and that the frequency of two markers was greater in reference than in the contaminated sites. A previous study examined populations of western mosquitofish (G. affinis) from the Oak Ridge National Laboratory (ORNL) and found that certain RAPD markers were present in radionuclide-contaminated ORNL populations at a higher frequency than in reference populations. The contaminant-indicative markers observed in the SRS populations were the same size and amplified by the same polymerase chain reaction primers used in the ORNL study. Southern blot analysis revealed that the SRS G. holbrooki contaminant-indicative markers were homologous to the ORNL G. affinis contaminant-indicative markers. The observation that two species show similar patterns of band frequency shifts at two separate localities is consistent with the hypothesis that these DNA markers may originate from genetic elements that provide a selective advantage in contaminated habitats. Thus, the methodology used in these studies may prove to be useful to indicate population-level effects of environmental contamination.

  7. The present Pyrenean population of bearded vulture (Gypaetus barbatus): Its genetic characteristics

    Indian Academy of Sciences (India)

    C B García; J A Gil; M Alcántara; J González; M R Cortés; J I Bonafonte; M V Arruga

    2012-09-01

    The Pyrenean population of the endangered bearded vulture (Gypaetus barbatus) is the largest natural population in Europe. In this study, its current genetic variability was assessed using 110 animals of the recent population in order to know what the present situation. Sex identification by DNA methodology in the 110 bearded vultures, mitochondrial DNA (mtDNA) and eight microsatellite markers in 87 bearded vultures have been analysed. Our results for sex identification present a number of 49 males and 61 females; no significant differences for number of males and females in this population have been observed. mtDNA studies indicate that nucleotide and haplotype diversities and number of variable sites were low. Tajima’s D test and Fu and Li’s D* and F* tests suggest that mutations are selectively neutral and the population is expanding. A mean number of alleles per locus and a mean observed heterozygosity have been obtained by microsatellite analysis. FIS is not high, and inbreeding depression could be discarded in the near future. The results suggest that the Pyrenean population of bearded vultures have to be controlled in order to avoid the loss of genetic variability. This data should be taken into account when considering conservation plans for the species.

  8. Population genetics of the black scar oyster, Crassostrea iredalei: repercussion of anthropogenic interference.

    Science.gov (United States)

    Zainal Abidin, Danial Hariz; Mustaffa, Suzana; Rahim, Masazurah A; Nair, Devakie M; Naim, Darlina Md; Mohd Nor, Siti Azizah

    2016-01-01

    Mitochondrial cytochrome oxidase subunit I (COI) gene was utilized to assess the population genetics of the commercially important black scar oyster, Crassostrea iredalei among 11 populations throughout the west and east coasts Peninsular Malaysia and Sabah (Malaysian Borneo). Overall, populations of C. iredalei demonstrated low nucleotide diversity π (0.000-0.004) and low-to-high haplotype diversity h (0.000-0.795) levels. Genetic structuring was detected between the Peninsular Malaysia and Sabah populations as revealed by the FST analysis. However, the COI gene analyses showed minimal and non-significant (p > 0.05) population differentiation within the east and west coasts Peninsular Malaysia and Sabah regions. This was attributed to both high larval dispersal along the east and west coasts and human-driven spat translocation between the two coastlines due to C. iredalei cultivation practices. Phylogeographic relationships inferences were also conducted to further support these hypotheses. The neutrality and mismatch distribution analyses suggested that C. iredalei had experienced a/several bottleneck event(s), followed by population expansion. The molecular information obtained from this study could be incorporated in a pragmatic aquaculture management strategy of wild broodstock and the hatchery lines of C. iredalei in Malaysia.

  9. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa.

    Science.gov (United States)

    Khanyile, Khulekani S; Dzomba, Edgar F; Muchadeyi, Farai C

    2015-01-01

    Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterized and utilized. Surveys that can reveal a population's genetic structure and provide an insight into its demographic history will give valuable information that can be used to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n = 146), Malawi (n = 30) and Zimbabwe (n = 136) were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29 to 0.36, was observed between SNP markers that were less than 10 kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK) and 0.24 (VD) at SNP marker interval of 500 kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective

  10. Genetic variability and individual assignment of Chinese indigenous sheep populations (Ovis aries) using microsatellites.

    Science.gov (United States)

    Niu, L L; Li, H B; Ma, Y H; Du, L X

    2012-02-01

    The purpose of this study was to assess the genetic characteristics of six breeds of Chinese local sheep using 19 microsatellite loci and to effectively validate statistical methods for individual assignment based on informative microsatellites. All the six breeds deviated from Hardy-Weinberg equilibrium expectations, while the majority of markers complied. The polymorphism information content (PIC) of overall loci for the six populations ranged from 0.283 (SRCRSP5) to 0.852 (OarVH72). Tibetan sheep were the most diverse population with the highest mean allelic richness (6.895), while Ujmuqin (UQ) harboured the lowest allelic richness (6.000). The F-statistics for the six populations were F(IS)  = -0.172, F(IT)  = -0.082 and F(ST)  = 0.077, respectively. Furthermore, the pair-wise F(IS) revealed a moderate genetic differentiation among populations (P individual assignment will ensure a powerful detection of individual origin, with accuracy up to 91.87%, when the likelihood-based method is used. Overall, these findings shed light onto the genetic characteristics of Chinese indigenous sheep and offer a set of microsatellite loci that is simple, economic and highly informative for individual assignment of Chinese sheep.

  11. Genetic population structure of sympatric and allopatric populations of Baltic ciscoes (Coregonus albula complex, Teleostei, Coregonidae

    Directory of Open Access Journals (Sweden)

    Nitz Barbara

    2010-03-01

    Full Text Available Abstract Background Teleost fishes of the Coregonidae are good model systems for studying postglacial evolution, adaptive radiation and ecological speciation. Of particular interest is whether the repeated occurrence of sympatric species pairs results from in-situ divergence from a single lineage or from multiple invasions of one or more different lineages. Here, we analysed the genetic structure of Baltic ciscoes (Coregonus albula complex, examining 271 individuals from 8 lakes in northern Germany using 1244 polymorphic AFLP loci. Six lakes had only one population of C. albula while the remaining two lakes had C. albula as well as a sympatric species (C. lucinensis or C. fontanae. Results AFLP demonstrated a significant population structure (Bayesian θB = 0.22. Lower differentiation between allopatric (θB = 0.028 than sympatric (0.063-0.083 populations contradicts the hypothesis of a sympatric origin of taxa, and there was little evidence for stocking or ongoing hybridization. Genome scans found only three loci that appeared to be under selection in both sympatric population pairs, suggesting a low probability of similar mechanisms of ecological segregation. However, removal of all non-neutral loci decreased the genetic distance between sympatric pairs, suggesting recent adaptive divergence at a few loci. Sympatric pairs in the two lakes were genetically distinct from the six other C. albula populations, suggesting introgression from another lineage may have influenced these two lakes. This was supported by an analysis of isolation-by-distance, where the drift-gene flow equilibrium observed among allopatric populations was disrupted when the sympatric pairs were included. Conclusions While the population genetic data alone can not unambiguously uncover the mode of speciation, our data indicate that multiple lineages may be responsible for the complex patterns typically observed in Coregonus. Relative differences within and among lakes raises

  12. Does local adaptation to resources explain genetic differentiation among Daphnia populations?

    Science.gov (United States)

    Allen, Michael R; Thum, Ryan A; Cáceres, Carla E

    2010-08-01

    Substantial genetic differentiation is frequently observed among populations of cyclically parthenogenetic zooplankton despite their high dispersal capabilities and potential for gene flow. Local adaptation has been invoked to explain population genetic differentiation despite high dispersal, but several neutral models that account for basic life history features also predict high genetic differentiation. Here, we study genetic differentiation among four populations of Daphnia pulex in east central Illinois. As with other studies of Daphnia, we demonstrate substantial population genetic differentiation despite close geographic proximity (explain genetic differentiation among these Daphnia populations and that other factors related to extinction/colonization dynamics, a long approach to equilibrium F(ST) or substantial genetic drift due to a low number of individuals hatching from the egg bank each season may explain genetic differentiation.

  13. Integrating genetic data and population viability analyses for the identification of harbour seal (Phoca vitulina) populations and management units

    DEFF Research Database (Denmark)

    Olsen, Morten Tange; Andersen, Liselotte Wesley; Dietz, Rune

    2014-01-01

    present a novel approach, integrating genetic, life-history and demographic data to identify populations and management units in southern Scandinavian harbour seals. First, 15 microsatellite markers and model- and distance-based genetic clustering methods were used to determine the population genetic...... structure in harbour seals. Second, we used harbour seal demographic and life-history data to conduct population viability analyses (PVAs) in the VORTEX simulation model in order to determine whether the inferred genetic units could be classified as management units according to Lowe and Allendorf's (2010......Identification of populations and management units is an essential step in the study of natural systems. Still, there is limited consensus regarding how to define populations and management units, and whether genetic methods allow for inference at the relevant spatial and temporal scale. Here, we...

  14. The impact of genomics on population genetics of parasitic diseases.

    Science.gov (United States)

    Hupalo, Daniel N; Bradic, Martina; Carlton, Jane M

    2015-02-01

    Parasites, defined as eukaryotic microbes and parasitic worms that cause global diseases of human and veterinary importance, span many lineages in the eukaryotic Tree of Life. Historically challenging to study due to their complicated life-cycles and association with impoverished settings, their inherent complexities are now being elucidated by genome sequencing. Over the course of the last decade, projects in large sequencing centers, and increasingly frequently in individual research labs, have sequenced dozens of parasite reference genomes and field isolates from patient populations. This 'tsunami' of genomic data is answering questions about parasite genetic diversity, signatures of evolution orchestrated through anti-parasitic drug and host immune pressure, and the characteristics of populations. This brief review focuses on the state of the art of parasitic protist genomics, how the peculiar genomes of parasites are driving creative methods for their sequencing, and the impact that next-generation sequencing is having on our understanding of parasite population genomics and control of the diseases they cause.

  15. Cytochrome P450 genetic polymorphisms of Mexican indigenous populations.

    Science.gov (United States)

    Sosa-Macías, Martha; Llerena, Adrián

    2013-01-01

    This review focuses on the genetic polymorphisms of the cytochrome P450 (CYP) genes in Mexican indigenous populations, who are a part of the wide ethnic diversity of this country. These native groups have a particular historical trajectory that is different from the Mexican Mestizos. This variability may be reflected in the frequency distribution of polymorphisms in the CYP genes that encode enzymes involved in the metabolism of drugs and other xenobiotics. Therefore, these polymorphisms may affect drug efficacy and safety in indigenous populations in Mexico. The present study aimed to analyze the prevalence of CYP polymorphisms in indigenous Mexicans and to compare the results with studies in Mexican Mestizos. Because the extrapolation of pharmacogenetic data from Mestizos is not applicable to the majority of indigenous groups, pharmacogenetic studies directed at indigenous populations need to be developed. The Amerindians analyzed in this study showed a low phenotypic (CYP2D6) and genotypic (CYP2D6, CYP2C9) diversity, unlike Mexican Mestizos. The frequency of polymorphisms in the CYP1A1, CYP2C19, CYP2E1, and CYP3A4 genes was more similar among the Amerindians and Mexican Mestizos, with the exception of the CYP1A2 gene, whose *1F variant frequency in Mexican Amerindians was the highest described to date.

  16. Genetic variations and population structure in three populations of beardless barb, Cyclocheilichthys apogon (Valenciennes, 1842) inferred from mitochondrial cytochrome b sequences.

    Science.gov (United States)

    Kenthao, Anan; Wangsomnuk, Preeya Puangsomlee; Jearranaiprepame, Pornpimol

    2016-11-14

    This study aimed to investigate the relation of dispersal barrier and genetic diversity, population structure, and demographic history of 46 samples of beardless barb, Cyclocheilichthys apogon (Valenciennes, 1842) collected from three different locations in North-eastern Thailand. The analysis of molecular variance (AMOVA) was employed in order to determine the genetic variability within and among populations of this fish. The neutrality tests and mismatch distribution analysis were additionally applied to assess the neutrality and demographic expansion of the populations, respectively. Contiguous sequences within range from 1100 to1140 bp were obtained with varying 16 different haplotypes with high-haplotype diversity (0.8773 ± 0.0327) and low-nucleotide diversity (0.00215 ± 0.00020). The variations within and among populations accounted for 98.98 and 1.02% of the total variation, respectively. The low level of pairwise Fst estimations indicated a possible gene flow among populations and a suggestion of genetic homogeneity at this geographical range. A supportive idea of having a single-maternal lineage and past demographic expansion or selection experiencing has distinctly appeared among these populations. The current data suggests that all three populations distinctly exist as a single stock unit and that is an important factor in identifying genetic variation of C. apogon in this geographical area to be used in establishing effective plans and strategies for a conservation and management.

  17. Genetic Background and Population Genetics of Hungarian Brown Trout Populations Using PCR-RFLP and Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Ágnes Ősz

    2015-12-01

    4 University of West Hungary, Mosonmagyaróvár Vár 2., 9200 Mosonmagyaróvár, Hungary Based on the analyses of the mitochondrial DNA of several European brown trout populations, five evolutionary lineages of brown trout were indentified (Atlantic, Danubian, Mediterranean, Adriatic, Marble. The species is bred primarily for stock enhancement of natural waters, however the most hatchery-maintained broodstocks originate from the Atlantic lineage. Due to the hydrogeography of Hungary our stocks should theoretically belong to the Danubian lineage; however, this has not been investigated earlier by genetic studies. For our genetic analysis, 702 fin clips were collected from two brown trout broodstocks (Lillafüred and Szilvásvárad as well as populations of natural streams (Bán, Jósva, Kemence, Apátkút, Bittva and Kölöntés in Hungary. Sequencing of the control region in mitochondrial DNA, three PCR-RFLP (mitochondrial DNA control region, lactate dehydrogenase and somatolactin genes and five microsatellite markers were used to distinguish between Danubian and Atlantic lineages of brown trout. The proportion of the mitochondrial haplotype of the Danubian lineage was low, with the exception of the Apátkúti, Kölöntés streams and Szilvásvárad broodstock. Analyses of nuclear PCR-RFLP and microsatellites markers showed various distributions of alleles characteristic of the Atlantic or Danubian lineages, although the Atlantic genotype has dominated in all population. In case of the analyses of microsatellites the polymorphism varied greatly at all locations. In addition we found several alleles that were not described earlier in other populations. Those alleles probably would be typical of Hungarian brown trout populations. Overall the populations were effectively in Hardy-Weinberg equilibrium for both PCR-RFLP and microsatellite markers. The remarkably high proportion of allochthonous Atlantic alleles in the analyzed sites is a clear indicator of the import

  18. Characterization of microsatellites for population genetic analyses of the fungus-growing termite Odontotermes formosanus (Isoptera: Termitidae).

    Science.gov (United States)

    Husseneder, Claudia; Garner, Susan P; Huang, Qiuying; Booth, Warren; Vargo, Edward L

    2013-10-01

    The fungus-growing subterranean termite Odontotermes formosanus Shiraki (Isoptera: Termitidae) is a destructive pest in Southeast Asia. To facilitate studies on the biology, ecology, and control of O. formosanus, we isolated and characterized nine novel microsatellite loci from a mixed partial genomic library of O. formosanus and the sympatric Macrotermes barneyi Light enriched for di-, tri-, and tetranucleotide repeats. We screened these loci in three populations of O. formosanus from China. All loci were polymorphic. Three loci showed heterozygote deficit possibly because of the presence of null alleles. The remaining six loci with 4-15 alleles per locus and an average observed heterozygosity of 0.15-0.60 across populations were used for population genetic analysis. Populations from different provinces (Guangdong, Jiangxi, and Hubei) were genetically differentiated, but the genetic distance between populations was surprisingly small (FST: 0.03-0.08) and the gene flow was considerable (Nem: 3-8), despite the geographical distance being >300 km. Genetic diversity within populations was low (allelic richness: 5.1-6.3) compared with other subterranean dwelling termites, but consistent with the diversity in species of the family Termitidae. Microsatellite markers developed for O. formosanus will allow further studies to examine the phylogeography, population genetic and colony breeding structure, dispersal ranges, and size of foraging territories in this and closely related species, as well as aid in assessing treatment success.

  19. Population genetics of four heavily exploited shark species around the Arabian Peninsula

    KAUST Repository

    Spaet, Julia L. Y.

    2015-05-01

    The northwestern Indian Ocean harbors a number of larger marine vertebrate taxa that warrant the investigation of genetic population structure given remarkable spatial heterogeneity in biological characteristics such as distribution, behavior, and morphology. Here, we investigate the genetic population structure of four commercially exploited shark species with different biological characteristics (Carcharhinus limbatus, Carcharhinus sorrah, Rhizoprionodon acutus, and Sphyrna lewini) between the Red Sea and all other water bodies surrounding the Arabian Peninsula. To assess intraspecific patterns of connectivity, we constructed statistical parsimony networks among haplotypes and estimated (1) population structure; and (2) time of most recent population expansion, based on mitochondrial control region DNA and a total of 20 microsatellites. Our analysis indicates that, even in smaller, less vagile shark species, there are no contemporary barriers to gene flow across the study region, while historical events, for example, Pleistocene glacial cycles, may have affected connectivity in C. sorrah and R. acutus. A parsimony network analysis provided evidence that Arabian S. lewini may represent a population segment that is distinct from other known stocks in the Indian Ocean, raising a new layer of conservation concern. Our results call for urgent regional cooperation to ensure the sustainable exploitation of sharks in the Arabian region.

  20. Population genetics of four heavily exploited shark species around the Arabian Peninsula.

    Science.gov (United States)

    Spaet, Julia L Y; Jabado, Rima W; Henderson, Aaron C; Moore, Alec B M; Berumen, Michael L

    2015-06-01

    The northwestern Indian Ocean harbors a number of larger marine vertebrate taxa that warrant the investigation of genetic population structure given remarkable spatial heterogeneity in biological characteristics such as distribution, behavior, and morphology. Here, we investigate the genetic population structure of four commercially exploited shark species with different biological characteristics (Carcharhinus limbatus, Carcharhinus sorrah, Rhizoprionodon acutus, and Sphyrna lewini) between the Red Sea and all other water bodies surrounding the Arabian Peninsula. To assess intraspecific patterns of connectivity, we constructed statistical parsimony networks among haplotypes and estimated (1) population structure; and (2) time of most recent population expansion, based on mitochondrial control region DNA and a total of 20 microsatellites. Our analysis indicates that, even in smaller, less vagile shark species, there are no contemporary barriers to gene flow across the study region, while historical events, for example, Pleistocene glacial cycles, may have affected connectivity in C. sorrah and R. acutus. A parsimony network analysis provided evidence that Arabian S. lewini may represent a population segment that is distinct from other known stocks in the Indian Ocean, raising a new layer of conservation concern. Our results call for urgent regional cooperation to ensure the sustainable exploitation of sharks in the Arabian region.

  1. Effect of population size on genetic variation levels in Capparis spinosa (Capparaceae detected by RAPDs

    Directory of Open Access Journals (Sweden)

    Houshang Nosrati

    2012-07-01

    Full Text Available Background: The population size of plants affects on population genetic variation. Materials and Methods: We studied the impact of population size on genetic variation in populations of Capparis spinosa (caper, Capparaceae using RAPDs in East Azerbaijan (Iran. Within-population genetic diversity was estimated based on Nei`s and Shanonn`s diversity using Popgen, and genetic similarity among the populations was studied from a UPGMA dendrogram based the matrix of Nei’s distances obtained through SHAN. Difference in the level genetic variation between small-sized and large-sized populations was tested using Mann-Whitney U test, and correlation between geographical and genetic distances among populations was examined by Pearson test (SPSS, 11.3. Total genetic variation was partitioned into within and among populations based on AMOVA using Arlequin. Results: The polymorphism levels of RAPDs bands among the populations ranged from 48.8% to 81.4%, and within-population Nei’s diversity varied from 0.1667 to 0.2630. Genetic variation in small-sized populations (0.1667 to 0.1809 was significantly lower than the variations in large-sized populations (0.2158 -0.2630 (N= 7, P0.674, Pearson correlation test. Conclusions: Population size has a dramatic impact on its genetic diversity. The results revealed that fragmentation of caper population in the study region has most likely occurred recently. The low genetic diversity revealed within caper populations indicates high risk of extinction and suggests that urgent conservation action is needed to recover diversity in these populations.

  2. Octopus vulgaris (Cuvier, 1797 in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Directory of Open Access Journals (Sweden)

    Daniele De Luca

    Full Text Available The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.

  3. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Science.gov (United States)

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.

  4. Genetic structure of autochthonous populations of Meso-America: Mexico.

    Science.gov (United States)

    Lisker, R; Ramírez, E; Babinsky, V

    1996-06-01

    We analyze the possible effect of gene flow on the genetic structure of present-day Mexicans. For this purpose we reviewed previous admixture estimates for various Indian and Mestizo groups. Several facts seem clear: (1) There are no pure Indian groups in Mexico, because all Indian groups show variable degrees of admixture, mostly with whites (range, 0.088 in the Huichol to 0.373 in the Huasteco); (2) the main ancestral contribution to the noncoastal lower middle class Mestizo populations is Indian (above 50%) so that from a genetic standpoint Indians and lower middle class Mestizos are not much different; and (3) black ancestry is quite high on the coasts, ranging from 0.127 to 0.405 on the east coast, and is present in other Mestizos, ranging in large urban centers from 0.027 in Oaxaca to 0.107 in Puebla and in smaller cities from 0.08 in Tlaxcala to 0.181 in Cuanalán.

  5. Diabetes mellitus in two genetically distinct populations in Jordan

    Science.gov (United States)

    Al-Eitan, Laith N.; Nassar, Ahmad M.; Dajani, Rana B.; Almomani, Basima A.; Saadeh, Nesreen A.

    2017-01-01

    Objectives: To compare clinical, anthropometric, and laboratory characteristics in diabetes type 2 patients of 2 genetically-distinct ethnicities living in Jordan, Arabs and Circassians/Chechens. Methods: This cross sectional ethnic comparison study was conducted in King Abdullah University Hospital, Irbid and The National Center for Diabetes, Endocrinology, and Genetics, Amman, Jordan between June 2013 and February 2014. A sample of 347 (237 Arab and 110 Circassian/Chechen) people living with diabetes were included in the study. Data were collected through direct interviews with the participants. Clinical data were collected using a questionnaire and anthropometric measurements. Laboratory data were extracted from the patients’ medical records. Results: More Arabs with diabetes had hypertension as a comorbidity than Circassians/Chechens with diabetes. Arabs living with diabetes were generally more obese, whereas Circassians/Chechens living with diabetes had worse lipid control. Arabs with diabetes had higher means of glycated haemoglobin (HbA1c) and fasting blood sugar, and more Arabs with diabetes had unsatisfactory glycemic control (60.6%) than Circassians/Chechens with diabetes (38.2%) (HbA1c ≥7.0%). Most participants (88.8%) had at least one lipid abnormality (dyslipidemia). Conclusion: Multiple discrepancies among the 2 ethnic diabetic populations were found. New diabetes management recommendations and policies should be used when treating people living with diabetes of those ethnicities, particularly in areas of glycemic control, lipid control, and obesity. PMID:28133689

  6. Genetic consequences of population subdivision: the marsupial Micoureus paraguayanus (Mammalia: Didelphimorphia as a case study

    Directory of Open Access Journals (Sweden)

    Daniel Brito

    2009-12-01

    Full Text Available Habitat fragmentation may cause population subdivision, affecting genetic variation, leading to heterozygosity loss and increased inbreeding, and contributing to population extinction. However, some genetic models have shown that under some conditions, population subdivision can favor heterozygosity and allelic diversity, and small populations may adapt to inbreeding. Here I investigate the relationship between population subdivision and genetic diversity for the marsupial Micoureus paraguayanus (Tate, 1931 using the program Vortex. Hypothetical populations of 100 and 2000 individuals were partitioned into 1, 2, 5 or 10 populations that were linked by varying rates of dispersal and also by sex-biased dispersal. Results suggested that heterozygosity and allelic diversity declined rapidly when a population was subdivided. Genetic and demographic stochasticity diminished the effectiveness of selection against recessive lethal alleles. Dispersal partly reversed the impacts of population subdivision. However, even high rates of dispersal did not eliminate demographic fluctuations or prevent extinction. Although gene flow largely prevented genetic divergence between populations, dispersal did not prevent heterozygosity from being lost more rapidly in subdivided populations than in single populations of equivalent total size. The dynamics of small, fragmented populations were critically dependent on interactions between demographic and genetic processes. Populations of M. paraguayanus may have to be relatively large and continuous to avoid significant losses of genetic diversity.

  7. The Genetic Structure of Wild Orobanche cumana Wallr. (Orobanchaceae Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations

    Directory of Open Access Journals (Sweden)

    Rocío Pineda-Martos

    2014-01-01

    Full Text Available Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms.

  8. Assessing and Broadening Genetic Diversity of Elymus sibiricus Germplasm for the Improvement of Seed Shattering

    Directory of Open Access Journals (Sweden)

    Zongyu Zhang

    2016-07-01

    Full Text Available Siberian wild rye (Elymus sibiricus L. is an important native grass in the Qinghai-Tibet Plateau of China. It is difficult to grow for commercial seed production, since seed shattering causes yield losses during harvest. Assessing the genetic diversity and relationships among germplasm from its primary distribution area contributes to evaluating the potential for its utilization as a gene pool to improve the desired agronomic traits. In the study, 40 EST-SSR primers were used to assess the genetic diversity and population structure of 36 E. sibiricus accessions with variation of seed shattering. A total of 380 bands were generated, with an average of 9.5 bands per primer. The polymorphic information content (PIC ranged from 0.23 to 0.50. The percentage of polymorphic bands (P for the species was 87.11%, suggesting a high degree of genetic diversity. Based on population structure analysis, four groups were formed, similar to results of principal coordinate analysis (PCoA. The molecular variance analysis (AMOVA revealed the majority of genetic variation occurred within geographical regions (83.40%. Two genotypes from Y1005 and ZhN06 were used to generate seven F1 hybrids. The molecular and morphological diversity analysis of F1 population revealed rich genetic variation and high level of seed shattering variation in F1 population, resulting in significant improvement of the genetic base and desired agronomic traits.

  9. Population dynamics of a natural red deer population over 200 years detected via substantial changes of genetic variation.

    Science.gov (United States)

    Hoffmann, Gunther Sebastian; Johannesen, Jes; Griebeler, Eva Maria

    2016-05-01

    Most large mammals have constantly been exposed to anthropogenic influence over decades or even centuries. Because of their long generation times and lack of sampling material, inferences of past population genetic dynamics, including anthropogenic impacts, have only relied on the analysis of the structure of extant populations. Here, we investigate for the first time the change in the genetic constitution of a natural red deer population over two centuries, using up to 200-year-old antlers (30 generations) stored in trophy collections. To the best of our knowledge, this is the oldest DNA source ever used for microsatellite population genetic analyses. We demonstrate that government policy and hunting laws may have strong impacts on populations that can lead to unexpectedly rapid changes in the genetic constitution of a large mammal population. A high ancestral individual polymorphism seen in an outbreeding population (1813-1861) was strongly reduced in descendants (1923-1940) during the mid-19th and early 20th century by genetic bottlenecks. Today (2011), individual polymorphism and variance among individuals is increasing in a constant-sized (managed) population. Differentiation was high among periods (F ST > ***); consequently, assignment tests assigned individuals to their own period with >85% probability. In contrast to the high variance observed at nuclear microsatellite loci, mtDNA (D-loop) was monomorphic through time, suggesting that male immigration dominates the genetic evolution in this population.

  10. Genetic sub-structure in western Mediterranean populations revealed by 12 Y-chromosome STR loci

    DEFF Research Database (Denmark)

    Rodríguez, V; Tomas Mas, Carmen; Sánchez, J J;

    2008-01-01

    .9988 +/- 0.0002. These Y-STRs markers showed a low capacity of discrimination (56.3%) in the Ibiza population probably due to genetic drift. Comparisons between the populations studied and other neighbouring populations showed a clear genetic sub-structure in the western Mediterranean area....

  11. Designs and Methods for Association Studies and Population Size Inference in Statistical Genetics

    DEFF Research Database (Denmark)

    Waltoft, Berit Lindum

    2016-01-01

    . Population genetics In population genetics two methods concerning the inference of the population size back in time are described. Both methods are based on the site iii iv frequency spectrum (SFS), and the fact that the expected SFS only depends on the time between coalescent events back in time. The rst...

  12. Variation in genetic admixture and population structure among Latinos: the Los Angeles Latino eye study (LALES

    Directory of Open Access Journals (Sweden)

    Le Marchand Loic

    2009-11-01

    Full Text Available Abstract Background Population structure and admixture have strong confounding effects on genetic association studies. Discordant frequencies for age-related macular degeneration (AMD risk alleles and for AMD incidence and prevalence rates are reported across different ethnic groups. We examined the genomic ancestry characterizing 538 Latinos drawn from the Los Angeles Latino Eye Study [LALES] as part of an ongoing AMD-association study. To help assess the degree of Native American ancestry inherited by Latino populations we sampled 25 Mayans and 5 Mexican Indians collected through Coriell's Institute. Levels of European, Asian, and African descent in Latinos were inferred through the USC Multiethnic Panel (USC MEP, formed from a sample from the Multiethnic Cohort (MEC study, the Yoruba African samples from HapMap II, the Singapore Chinese Health Study, and a prospective cohort from Shanghai, China. A total of 233 ancestry informative markers were genotyped for 538 LALES Latinos, 30 Native Americans, and 355 USC MEP individuals (African Americans, Japanese, Chinese, European Americans, Latinos, and Native Hawaiians. Sensitivity of ancestry estimates to relative sample size was considered. Results We detected strong evidence for recent population admixture in LALES Latinos. Gradients of increasing Native American background and of correspondingly decreasing European ancestry were observed as a function of birth origin from North to South. The strongest excess of homozygosity, a reflection of recent population admixture, was observed in non-US born Latinos that recently populated the US. A set of 42 SNPs especially informative for distinguishing between Native Americans and Europeans were identified. Conclusion These findings reflect the historic migration patterns of Native Americans and suggest that while the 'Latino' label is used to categorize the entire population, there exists a strong degree of heterogeneity within that population, and that

  13. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  14. Genetic variation of wild and hatchery populations of the catla Indian major carp (Catla catla Hamilton 1822: Cypriniformes, Cyprinidae revealed by RAPD markers

    Directory of Open Access Journals (Sweden)

    S.M. Zakiur Rahman

    2009-01-01

    Full Text Available Genetic variation is a key component for improving a stock through selective breeding programs. Randomly amplified polymorphic DNA (RAPD markers were used to assess genetic variation in three wild population of the catla carp (Catla catla Hamilton 1822 in the Halda, Jamuna and Padma rivers and one hatchery population in Bangladesh. Five decamer random primers were used to amplify RAPD markers from 30 fish from each population. Thirty of the 55 scorable bands were polymorphic, indicating some degree of genetic variation in all the populations. The proportion of polymorphic loci and gene diversity values reflected a relatively higher level of genetic variation in the Halda population. Sixteen of the 30 polymorphic loci showed a significant (p < 0.05, p < 0.01, p < 0.001 departure from homogeneity and the F ST values in the different populations indicated some degree of genetic differentiation in the population pairs. Estimated genetic distances between populations were directly correlated with geographical distances. The unweighted pair group method with averages (UPGMA dendrogram showed two clusters, the Halda population forming one cluster and the other populations the second cluster. Genetic variation of C. catla is a useful trait for developing a good management strategy for maintaining genetic quality of the species.

  15. Genealogical data in population medical genetics: field guidelines

    Directory of Open Access Journals (Sweden)

    Fernando A. Poletta

    2014-01-01

    Full Text Available This is a guide for fieldwork in Population Medical Genetics research projects. Data collection, handling, and analysis from large pedigrees require the use of specific tools and methods not widely familiar to human geneticists, unfortunately leading to ineffective graphic pedigrees. Initially, the objective of the pedigree must be decided, and the available information sources need to be identified and validated. Data collection and recording by the tabulated method is advocated, and the involved techniques are presented. Genealogical and personal information are the two main components of pedigree data. While the latter is unique to each investigation project, the former is solely represented by gametic links between persons. The triad of a given pedigree member and its two parents constitutes the building unit of a genealogy. Likewise, three ID numbers representing those three elements of the triad is the record field required for any pedigree analysis. Pedigree construction, as well as pedigree and population data analysis, varies according to the pre-established objectives, the existing information, and the available resources.

  16. The Druze: a population genetic refugium of the Near East.

    Directory of Open Access Journals (Sweden)

    Liran I Shlush

    Full Text Available BACKGROUND: Phylogenetic mitochondrial DNA haplogroups are highly partitioned across global geographic regions. A unique exception is the X haplogroup, which has a widespread global distribution without major regions of distinct localization. PRINCIPAL FINDINGS: We have examined mitochondrial DNA sequence variation together with Y-chromosome-based haplogroup structure among the Druze, a religious minority with a unique socio-demographic history residing in the Near East. We observed a striking overall pattern of heterogeneous parental origins, consistent with Druze oral tradition, together with both a high frequency and a high diversity of the mitochondrial DNA (mtDNA X haplogroup within a confined regional subpopulation. Furthermore demographic modeling indicated low migration rates with nearby populations. CONCLUSIONS: These findings were enabled through the use of a paternal kindred based sampling approach, and suggest that the Galilee Druze represent a population isolate, and that the combination of a high frequency and diversity of the mtDNA X haplogroup signifies a phylogenetic refugium, providing a sample snapshot of the genetic landscape of the Near East prior to the modern age.

  17. Genetic evidence for two founding populations of the Americas

    Science.gov (United States)

    Skoglund, Pontus; Mallick, Swapan; Bortolini, Maria Cátira; Chennagiri, Niru; Hünemeier, Tábita; Petzl-Erler, Maria Luiza; Salzano, Francisco Mauro; Patterson, Nick; Reich, David

    2015-01-01

    Genetic studies have been consistent with a single common origin of Native American groups from Central and South America1-4. However, some morphological studies have suggested a more complex picture, whereby the northeast Asian affinities of present-day Native Americans contrast with a distinctive morphology seen in some of the earliest American skeletons, which share traits with present-day Australasians (indigenous groups in Australia, Melanesia, and island southeast Asia)5-8. Here we analyze genome-wide data to show that some Amazonian Native Americans descend partly from a Native American founding population that carried ancestry more closely related to indigenous Australians, New Guineans and Andaman Islanders than to any present-day Eurasians or Native Americans. This signature is not present to the same extent or at all in present-day Northern and Central Americans or a ~12,600 year old Clovis genome, suggesting a more diverse set of founding populations of the Americas than previously accepted. PMID:26196601

  18. Genealogical data in population medical genetics: Field guidelines

    Science.gov (United States)

    Poletta, Fernando A.; Orioli, Ieda M.; Castilla, Eduardo E.

    2014-01-01

    This is a guide for fieldwork in Population Medical Genetics research projects. Data collection, handling, and analysis from large pedigrees require the use of specific tools and methods not widely familiar to human geneticists, unfortunately leading to ineffective graphic pedigrees. Initially, the objective of the pedigree must be decided, and the available information sources need to be identified and validated. Data collection and recording by the tabulated method is advocated, and the involved techniques are presented. Genealogical and personal information are the two main components of pedigree data. While the latter is unique to each investigation project, the former is solely represented by gametic links between persons. The triad of a given pedigree member and its two parents constitutes the building unit of a genealogy. Likewise, three ID numbers representing those three elements of the triad is the record field required for any pedigree analysis. Pedigree construction, as well as pedigree and population data analysis, varies according to the pre-established objectives, the existing information, and the available resources. PMID:24764752

  19. Genetic characterization of wild swamp deer populations: ex situ conservation and forensics implications.

    Science.gov (United States)

    Kumar, Ved Prakash; Shrivastwa, Anupam; Nigam, Parag; Kumar, Dhyanendra; Goyal, Surendra Prakash

    2016-10-26

    Swamp deer (Rucervus duvaucelii) is an endemic, Scheduled I species under the Wildlife (Protection) Act 1972, India. According to variations in antler size, it has been classified into three subspecies, namely Western (R. duvaucelii duvaucelii), Central (R. duvaucelii branderi), and Eastern (R. duvaucelii ranjitsinhii). For planning effective ex situ and in situ conservation of a wide-ranging species in different bioclimatic regions and in wildlife forensic, the use of genetic characterization in defining morpho/ecotypes has been suggested because of the geographic clines and reproductive isolation. In spite of these morphotypes, very little is known about the genetic characteristics of the three subspecies, hence no strict subspecies-based breeding plan for retaining the evolutionary characteristics in captive populations for subsequent re-introduction is available except for a few studies. We describe the genetic characteristics of these three subspecies using cytochrome b of the mtDNA genome (400 bp). The DNA sequence data indicated 11 variable sites within the three subspecies. Two paraphyletic clades, namely the Central India and Western-Eastern populations were found, whereas the Western and Eastern populations are monophyletic with a bootstrap value of 69% within the clade. We suggest the need of sorting these three subspecies using different molecular mtDNA markers in zoos for captive breeding purposes so as to retain the genetic diversity of the separate geographic clines and to use a subspecies-specific fixed-state nucleotide to assess the extent of poaching to avoid any population demography stochastically in India.

  20. Subspecies genetic assignments of worldwide captive tigers increase conservation value of captive populations.

    Science.gov (United States)

    Luo, Shu-Jin; Johnson, Warren E; Martenson, Janice; Antunes, Agostinho; Martelli, Paolo; Uphyrkina, Olga; Traylor-Holzer, Kathy; Smith, James L D; O'Brien, Stephen J

    2008-04-22

    Tigers (Panthera tigris) are disappearing rapidly from the wild, from over 100,000 in the 1900s to as few as 3000. Javan (P.t. sondaica), Bali (P.t. balica), and Caspian (P.t. virgata) subspecies are extinct, whereas the South China tiger (P.t. amoyensis) persists only in zoos. By contrast, captive tigers are flourishing, with 15,000-20,000 individuals worldwide, outnumbering their wild relatives five to seven times. We assessed subspecies genetic ancestry of 105 captive tigers from 14 countries and regions by using Bayesian analysis and diagnostic genetic markers defined by a prior analysis of 134 voucher tigers of significant genetic distinctiveness. We assigned 49 tigers to one of five subspecies (Bengal P.t. tigris, Sumatran P.t. sumatrae, Indochinese P.t. corbetti, Amur P.t. altaica, and Malayan P.t. jacksoni tigers) and determined 52 had admixed subspecies origins. The tested captive tigers retain appreciable genomic diversity unobserved in their wild counterparts, perhaps a consequence of large population size, century-long introduction of new founders, and managed-breeding strategies to retain genetic variability. Assessment of verified subspecies ancestry offers a powerful tool that, if applied to tigers of uncertain background, may considerably increase the number of purebred tigers suitable for conservation management.

  1. Mongolians in the Genetic Landscape of Central Asia: Exploring the Genetic Relations among Mongolians and Other World Populations.

    Science.gov (United States)

    Brissenden, Jane E; Kidd, Judith R; Evsanaa, Baigalmaa; Togtokh, Ariunaa J; Pakstis, Andrew J; Friedlaender, Françoise; Kidd, Kenneth K; Roscoe, Janet M

    2015-04-01

    Genetic data on North and Central Asian populations are underrepresented in the literature, especially for autosomal markers. In the present study we used 812 single nucleotide polymorphisms (SNPs) distributed across all the human autosomes and extensively studied at Yale to examine the affinities of two recently collected samples of populations: rural and cosmopolitan Mongolians from Ulaanbaatar and nomadic, Turkic-speaking Tsaatan from Mongolia near the Siberian border. We compare these two populations with each other and with a global set of populations and discuss their relationships to New World populations. Specifically, we analyze data on 521 autosomal loci (single SNPs and multi-SNP haplotypes) studied in 57 populations representing all the major geographical regions of the world. We conclude that these North and Central Asian populations are genetically distinct from all other populations in our study and may be close to the ancestral lineage leading to the New World populations.

  2. Genetic evidence on the origins of Indian caste populations.

    Science.gov (United States)

    Bamshad, M; Kivisild, T; Watkins, W S; Dixon, M E; Ricker, C E; Rao, B B; Naidu, J M; Prasad, B V; Reddy, P G; Rasanayagam, A; Papiha, S S; Villems, R; Redd, A J; Hammer, M F; Nguyen, S V; Carroll, M L; Batzer, M A; Jorde, L B

    2001-06-01

    The origins and affinities of the approximately 1 billion people living on the subcontinent of India have long been contested. This is owing, in part, to the many different waves of immigrants that have influenced the genetic structure of India. In the most recent of these waves, Indo-European-speaking people from West Eurasia entered India from the Northwest and diffused throughout the subcontinent. They purportedly admixed with or displaced indigenous Dravidic-speaking populations. Subsequently they may have established the Hindu caste system and placed themselves primarily in castes of higher rank. To explore the impact of West Eurasians on contemporary Indian caste populations, we compared mtDNA (400 bp of hypervariable region 1 and 14 restriction site polymorphisms) and Y-chromosome (20 biallelic polymorphisms and 5 short tandem repeats) variation in approximately 265 males from eight castes of different rank to approximately 750 Africans, Asians, Europeans, and other Indians. For maternally inherited mtDNA, each caste is most similar to Asians. However, 20%-30% of Indian mtDNA haplotypes belong to West Eurasian haplogroups, and the frequency of these haplotypes is proportional to caste rank, the highest frequency of West Eurasian haplotypes being found in the upper castes. In contrast, for paternally inherited Y-chromosome variation each caste is more similar to Europeans than to Asians. Moreover, the affinity to Europeans is proportionate to caste rank, the upper castes being most similar to Europeans, particularly East Europeans. These findings are consistent with greater West Eurasian male admixture with castes of higher rank. Nevertheless, the mitochondrial genome and the Y chromosome each represents only a single haploid locus and is more susceptible to large stochastic variation, bottlenecks, and selective sweeps. Thus, to increase the power of our analysis, we assayed 40 independent, biparentally inherited autosomal loci (1 LINE-1 and 39 Alu elements

  3. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiyue; ZHOU Taoying; ZHONG Ming; LU Baorong

    2007-01-01

    A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.

  4. Population genetics of Phytophthora infestans in Denmark reveals dominantly clonal populations and specific alleles linked to metalaxyl-M resistance

    DEFF Research Database (Denmark)

    Montes, Melanie Sarah; Nielsen, B.J.; Schmidt, S.G.;

    2016-01-01

    population of P. infestans was characterized over the course of the 2013 growing season, as was the population genetic structure, using simple sequence repeat (SSR) genotypes and single nucleotide polymorphism (SNP)-based mitochondrial haplotyping of over 80 isolates. Both mating types A1 and A2 were present......Control of the potato late blight pathogen Phytophthora infestans relies heavily on chemicals. The fungicide metalaxyl-M (Mefenoxam) has played an important role in controlling the disease, but insensitivity to the fungicide in certain isolates is now of major concern. A genetic basis...... for resistance to metalaxyl suggests the possibility for linking resistance phenotypes to specific population genetic markers, but in order to do this, the population genetic structure and mode of reproduction in a population must first be well described. The dynamics of metalaxyl-M resistance in the Danish...

  5. Genetic differentiation of Puccinia triticina populations in the Middle East and genetic similarity with populations in Central Asia.

    Science.gov (United States)

    Kolmer, J A; Ordoñez, M E; Manisterski, J; Anikster, Y

    2011-07-01

    Leaf rust of wheat, caused by Puccinia triticina, is a common and widespread disease in the Middle East. The objective of this study was to determine whether genetically differentiated groups of P. triticina are present in the Middle East region and to compare the population from the Middle East with the previously characterized population from Central Asia to determine whether genetically similar groups of isolates are found in the two regions. In total, 118 isolates of P. triticina collected from common wheat and durum wheat in Egypt, Israel, Turkey, Ethiopia, and Kenya were tested for virulence on 20 lines of wheat with single genes for leaf rust resistance and for molecular genotypes with 23 simple-sequence repeat (SSR) markers. After removal of isolates with identical virulence and SSR genotype in each country, 103 isolates were retained for further analysis. Clustering of SSR genotypes based on two-dimensional principal coordinates and virulence to wheat differential lines grouped the isolates into four Middle East (ME) groups. The two largest ME groups had virulence phenotypes typical of isolates collected from common wheat and two smaller ME groups had virulence typical of isolates collected from durum wheat. All pairs of ME groups were significantly differentiated for SSR genotype based on R(ST) and F(ST) statistics, and for virulence phenotype based on Φ(PT). All ME groups had observed values of heterozygosity greater than expected and significant fixation indices that indicated the clonal reproduction of urediniospores in the overall population. Linkage disequilibria for SSR genotypes was high across the entire population. The overall values of R(ST) and F(ST) were lower when isolates were grouped by country of origin that indicated the likely migration of isolates within the region. Although the two ME groups with virulence typical of isolates from common wheat were not differentiated for SSR genotype from groups of isolates from Central Asia based on

  6. Alu repeats as markers for human population genetics

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Bazan, H. [Louisiana State Univ., New Orleans, LA (United States). Medical Center] [and others

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  7. Population genetics of the sugarcane borer Diatraea saccharalis (Fabr.) (Lepidoptera: Crambidae)

    OpenAIRE

    Denise Alves Lopes; Liriana Belizário Cantagalli; Ana Lucia Paz Barateiro Stuchi; Claudete Aparecida Mangolin; Maria Claudia Colla Ruvolo-Takasusuki

    2014-01-01

    Diatraea saccharalis is the principal pest of sugarcane in Brazil and is found throughout the sugarcane crop. Information about its population genetics is scarce, but population genetic analysis is of particular importance as a basis for a successful pest control program. Pest control requires a constant evaluation of genetic variability so that appropriate strategies can be employed. In this study, the structure of D. saccharalis populations in sugarcane crops was analyzed with PCR-RAPD (Pol...

  8. Population-scale assessment endpoints in ecological risk assessment part II: selection of assessment endpoint attributes.

    Science.gov (United States)

    Landis, Wayne G; Kaminski, Laurel A

    2007-07-01

    Because ecological services often are tied to specific species, the risk to populations is a critical endpoint and important feature of ecological risk assessments. In Part 1 of this series it was demonstrated that population scale assessment endpoints are important expressions of the valued components of ecological structures. This commentary reviews several of the characteristics of populations that can be evaluated and used in population scale risk assessments. Two attributes are evaluated as promising. The 1st attribute is the change in potential productivity of the population over a specified time period. The 2nd attribute is the change in the age structure of a population, expressed graphically or as a normalized effects vector (NEV). The NEV is a description of the change in age structure due to a toxicant or other stressor and appears to be characteristic of specific stressor effects.

  9. POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans.

    Science.gov (United States)

    Raghavan, Maanasa; Steinrücken, Matthias; Harris, Kelley; Schiffels, Stephan; Rasmussen, Simon; DeGiorgio, Michael; Albrechtsen, Anders; Valdiosera, Cristina; Ávila-Arcos, María C; Malaspinas, Anna-Sapfo; Eriksson, Anders; Moltke, Ida; Metspalu, Mait; Homburger, Julian R; Wall, Jeff; Cornejo, Omar E; Moreno-Mayar, J Víctor; Korneliussen, Thorfinn S; Pierre, Tracey; Rasmussen, Morten; Campos, Paula F; Damgaard, Peter de Barros; Allentoft, Morten E; Lindo, John; Metspalu, Ene; Rodríguez-Varela, Ricardo; Mansilla, Josefina; Henrickson, Celeste; Seguin-Orlando, Andaine; Malmström, Helena; Stafford, Thomas; Shringarpure, Suyash S; Moreno-Estrada, Andrés; Karmin, Monika; Tambets, Kristiina; Bergström, Anders; Xue, Yali; Warmuth, Vera; Friend, Andrew D; Singarayer, Joy; Valdes, Paul; Balloux, Francois; Leboreiro, Ilán; Vera, Jose Luis; Rangel-Villalobos, Hector; Pettener, Davide; Luiselli, Donata; Davis, Loren G; Heyer, Evelyne; Zollikofer, Christoph P E; Ponce de León, Marcia S; Smith, Colin I; Grimes, Vaughan; Pike, Kelly-Anne; Deal, Michael; Fuller, Benjamin T; Arriaza, Bernardo; Standen, Vivien; Luz, Maria F; Ricaut, Francois; Guidon, Niede; Osipova, Ludmila; Voevoda, Mikhail I; Posukh, Olga L; Balanovsky, Oleg; Lavryashina, Maria; Bogunov, Yuri; Khusnutdinova, Elza; Gubina, Marina; Balanovska, Elena; Fedorova, Sardana; Litvinov, Sergey; Malyarchuk, Boris; Derenko, Miroslava; Mosher, M J; Archer, David; Cybulski, Jerome; Petzelt, Barbara; Mitchell, Joycelynn; Worl, Rosita; Norman, Paul J; Parham, Peter; Kemp, Brian M; Kivisild, Toomas; Tyler-Smith, Chris; Sandhu, Manjinder S; Crawford, Michael; Villems, Richard; Smith, David Glenn; Waters, Michael R; Goebel, Ted; Johnson, John R; Malhi, Ripan S; Jakobsson, Mattias; Meltzer, David J; Manica, Andrea; Durbin, Richard; Bustamante, Carlos D; Song, Yun S; Nielsen, Rasmus; Willerslev, Eske

    2015-08-21

    How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.

  10. Exposure Assessment Tools by Lifestages and Populations - General Population

    Science.gov (United States)

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  11. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers.

    Science.gov (United States)

    Matsumoto, Asako; Uchida, Kohji; Taguchi, Yuriko; Tani, Naoki; Tsumura, Yoshihiko

    2010-09-01

    The genetic diversity and population structure of hinoki (Chamaecyparis obtusa) in Japan were investigated by examining the distribution of alleles at 13 microsatellite loci in 25 natural populations from Iwaki in northern Japan to Yakushima Island in southern Japan. On average, 26.9 alleles per locus were identified across all populations and 4.0% of the genetic variation was retained among populations (G(ST) = 0.040). According to linkage disequilibrium analysis, estimates of effective population size and detected evidence of bottleneck events, the genetic diversity of some populations may have declined as a result of fragmentation and/or over-exploitation. The central populations located in the Chubu district appear to have relatively large effective population sizes, while marginal populations, such as the Yakushima, Kobayashi and Iwaki populations, have smaller effective population sizes and are isolated from the other populations. Microsatellite analysis revealed the genetic uniqueness of the Yakushima population. Although genetic differentiation between populations was low, we detected a gradual cline in the genetic structure and found that locus Cos2619 may be non-neutral with respect to natural selection.

  12. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia.

    Science.gov (United States)

    Menegon, Michela; Durand, Patrick; Menard, Didier; Legrand, Eric; Picot, Stéphane; Nour, Bakri; Davidyants, Vladimir; Santi, Flavia; Severini, Carlo

    2014-10-01

    Polymorphic genetic markers and especially microsatellite analysis can be used to investigate multiple aspects of the biology of Plasmodium species. In the current study, we characterized 7 polymorphic microsatellites in a total of 281 Plasmodium vivax isolates to determine the genetic diversity and population structure of P. vivax populations from Sudan, Madagascar, French Guiana, and Armenia. All four parasite populations were highly polymorphic with 3-32 alleles per locus. Mean genetic diversity values was 0.83, 0.79, 0.78 and 0.67 for Madagascar, French Guiana, Sudan, and Armenia, respectively. Significant genetic differentiation between all four populations was observed.

  13. Genetic Diversity and Structure of Brazilian Populations of Diatraea saccharalis (Lepidoptera: Crambidae): Implications for Pest Management.

    Science.gov (United States)

    Silva-Brandão, Karina L; Santos, Thiago V; Cônsoli, Fernando L; Omoto, Celso

    2015-02-01

    The sugarcane borer, Diatraea saccharalis (F.), is the main pest of sugarcane in Brazil. Genetic variability and gene flow among 13 Brazilian populations of the species were evaluated based on mitochondrial DNA sequences to estimate the exchange of genetic information within and among populations. We found high genetic structure among sampled localities (ΦST=0.50923), and pairwise genetic distances were significantly correlated to geographic distances. Demographic analysis and genealogical network of mitochondrial sequences indicate population growth and admixture of D. saccharalis populations, events likely related to the sequential expansion of the corn and sugarcane crops in Brazil. The implications of these findings for pest management are discussed.

  14. Genetic Structure of the Wild Boar (Sus scrofa L. Population in Portugal

    Directory of Open Access Journals (Sweden)

    Fonseca, C.

    2006-06-01

    Full Text Available The main objective of this study was the assessment of the genetic structure and level of variability in the Portuguese wild boar population. A total of 65 wild boar blood samples were collected all over the continental territory, during 2002/03 and 2003/04 hunting seasons. A set of six microsatellite markers, developed for domestic pig, was used. Loci SW986 and SW828 presented a small number of alleles for the Portuguese population, whereas other l o c i, like SW1701 and SW1517, presented a high degree of polymorphism. From the six analysed l o c i, four presented significant deviation from Hardy-We i n b e rg equilibrium conditions, suggesting the existence of genetic structure in the population. Samples were divided into North, Centre and South groups according to the position of wild boar capture location in relation to rivers Douro and Tejo. All the FST estimates were statistically significant and the highest FST value was 0.08 (P<0.001, referring to the distance between Northern and Central groups. FCA analysis was also performed. The resulting bi-dimensional diagram suggests structuring of the Portuguese wild boar population.

  15. Genetic analysis of Trichinella populations by 'cold' single-strand conformation polymorphism analysis.

    Science.gov (United States)

    Gasser, Robin B; Hu, Min; El-Osta, Youssef Abs; Zarlenga, Dante S; Pozio, Edoardo

    2005-09-05

    A non-isotopic single-strand conformation polymorphism ('cold' SSCP) technique has been assessed for the analysis of sequence variability in the expansion segment 5 (ES5) of domain IV and the D3 domain of nuclear ribosomal DNA within and/or among isolates and individual muscle (first-stage) larvae representing all currently recognized species/genotypes of Trichinella. Data are consistent with the ability of cold SSCP to identify intra-specific as well as inter-specific variability among Trichinella genotypes. The cold SSCP approach should be applicable to a range of other genetic markers for comparative studies of Trichinella populations globally.

  16. Lonely populations in the deep: genetic structure of red gorgonians at the heads of submarine canyons in the north-western Mediterranean Sea

    Science.gov (United States)

    Pérez-Portela, Rocío; Cerro-Gálvez, Elena; Taboada, Sergi; Tidu, Carlo; Campillo-Campbell, Carolina; Mora, Joan; Riesgo, Ana

    2016-09-01

    The red gorgonian Paramuricea clavata plays a central role in coralligenous ecosystems of the Mediterranean Sea, being relatively abundant in shallow habitats (5-35 m depth). Recently, deeper populations have been discovered at the heads of submarine canyons in the north-western Mediterranean Sea, between 50 and 70 m deep. Colonies from some of these deeper populations were exceptionally large (>1 m high), contrasting with the general prevalence of smaller size classes in shallower populations. Importantly, the high pressure of trawling activities on the nearby continental shelf could threaten these populations of large and old colonies. Although the genetic diversity and structure of populations in shallow habitats is relatively well known, very little is known about deeper populations. We aimed to assess the genetic structure, connectivity and potential demographic decline of six deep populations of P. clavata located at the heads of La Fonera, Blanes and Arenys de Mar submarine canyons, as well as potential gene flow between those and the two nearest shallow populations. A total of 188 individuals were genotyped using nine microsatellite loci. Results showed strong genetic differentiation among populations in different submarine canyons, among populations within one of the canyons and between shallow and deep populations. Gene flow among populations was very limited, estimates of effective population size in some populations were small, and evidence of recent population reductions (bottlenecks) was detected in several populations. The large genetic differentiation in populations of P. clavata among canyons is related to limited effective dispersal.

  17. Comparative population genetic analysis of brackish- and freshwater populations of Eurasian perch (Perca fluviatilis L.: implication for fish forensics.

    Directory of Open Access Journals (Sweden)

    Lilian Pukk

    2015-11-01

    Full Text Available Understanding the genetic population structure of commercially important fish species is crucial for developing biologically sound management and conservation strategies. Genetic information can be also useful for fighting against illegal fishing and fish trade. Here, we studied commercially important brackish and freshwater populations of Eurasian perch (Perca fluviatilis L. in Estonia, to describe the genetic divergence among populations and evaluate the power of 16 microsatellite markers to assign individual fish and group of fish to their population of origin. To do so, a total of 785 individuals caught from 13 different sites in the Baltic Sea and four locations in Lake Peipus were analyzed. We found significant differences in genetic diversity between brackish and freshwater populations with Baltic Sea samples showing slightly lower allelic richness and heterozygosity compared to Lake Peipus. We also observed moderate genetic differentiation among populations (overall FST=0.034. Individual self-assignment tests assigned large proportion of individuals correctly back to freshwater or coastal origin (Lake Peipus: 87.1%; Baltic Sea: 89.4%. Also, when evaluating the origin of group of individuals, it was possible to identify the origin of the brackish and freshwater fish groups with very high confidence (log 10 LR > 2 when sample size was larger than 15. Our results demonstrate the power of highly variable genetic markers separating two commercially most important Eurasian perch stocks in Estonia and the usefulness of assignment tests to successfully identify the genetic origin of fish.

  18. Genetic genealogy comes of age: perspectives on the use of deep-rooted pedigrees in human population genetics.

    Science.gov (United States)

    Larmuseau, M H D; Van Geystelen, A; van Oven, M; Decorte, R

    2013-04-01

    In this article, we promote the implementation of extensive genealogical data in population genetic studies. Genealogical records can provide valuable information on the origin of DNA donors in a population genetic study, going beyond the commonly collected data such as residence, birthplace, language, and self-reported ethnicity. Recent studies demonstrated that extended genealogical data added to surname analysis can be crucial to detect signals of (past) population stratification and to interpret the population structure in a more objective manner. Moreover, when in-depth pedigree data are combined with haploid markers, it is even possible to disentangle signals of temporal differentiation within a population genetic structure during the last centuries. Obtaining genealogical data for all DNA donors in a population genetic study is a labor-intensive task but the vastly growing (genetic) genealogical databases, due to the broad interest of the public, are making this job more time-efficient if there is a guarantee for sufficient data quality. At the end, we discuss the advantages and pitfalls of using genealogy within sampling campaigns and we provide guidelines for future population genetic studies.

  19. Effect of anthropogenic landscape features on population genetic differentiation of Przewalski's gazelle: main role of human settlement.

    Directory of Open Access Journals (Sweden)

    Ji Yang

    Full Text Available Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii, which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [F(ST/(1-F(ST and F'(ST/(1-F'(ST] in Mantel tests. IBD (isolation by distance was also inferred as a significant factor in Mantel tests when genetic distance was measured as F(ST/(1-F(ST. However, using partial Mantel tests, AIC(c calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species.

  20. Genetic diversity and variability in two Italian autochthonous donkey genetic types assessed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Donato Matassino

    2014-01-01

    Full Text Available Since 13rd century, Italian domestic autochthonous donkey population has been characterised by Mediterranean grey mousy cruciate ancestral phenotype, currently typical of Amiata donkey (AD genetic type. This phenotype persisted up to the 16th century when a marked introduction of Hispanic and French big sized and dark bay or darkish coloured sires occurred. In the context of a safeguard programme of Latial Equide resources, the aim of this research was to evaluate the genetic diversity and similarity between the AD breed and an autochthonous donkey population native from Lazio, the Viterbese donkey (VD, using molecular markers. A total of 135 animals (50 AD and 85 VD were genetically characterised by using 16 short tandem repeat markers. A high genetic differentiation between populations (FST=0.158; P<0.01 and a low betweenbreeds genetic similarity (0.233±0.085 were observed. Correspondence analysis, the result of STRUCTURE software analysis and analysis of molecular variance would seem to indicate genetically different entities as well. It would be desirable to increase the number of comparison with other breeds to better understand the origin of VD. Moreover, results obtained in this study suggest that the loss of genetic variation observed in VD could mainly derive from unnoticed sub-population structuring (Wahlund effect, rather than to other factors such as inbreeding, null alleles or selection influence.

  1. Preschool Age Populations Research Needs - NCS Dietary Assessment Literature Review

    Science.gov (United States)

    Drawing conclusions from the validation studies on preschool populations discussed in this chapter is difficult because of the varied study designs, the relatively small study populations, and limited number of studies on each dietary assessment method.

  2. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    Science.gov (United States)

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-01-01

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P Genetic differentiation existed among populations and the populations exhibited heteroplasmy.

  3. Comparison of genetic population structure of the large blue butterflies Maculinea nausithous and M. teleius

    DEFF Research Database (Denmark)

    Figurny-Puchalska, Edyta; Gadeberg, Rebekka M.E.; Boomsma, Jacobus Jan

    2000-01-01

    We investigated the genetic population structure of two rare myrmecophilous lycaenid butterflies, Maculinea nausithous and M. teleius, which often live sympatrically and have similar biology. In Europe, both species occur in highly fragmented populations and are vulnerable to local extinction...

  4. Acceptance of Genetic Testing in a General Population: Age, Education and Gender Differences.

    Science.gov (United States)

    Aro, A. R.; Hakonen, A.; Hietala, M.; Lonnqvist, J.; Niemela, P.; Peltonen, L; Aula, P.

    1997-01-01

    Effects of age, education, and gender on acceptance of genetic testing were studied. Finnish participants responded to a questionnaire presenting reasons for and against genetic testing (N=1,967). Intentions to take genetic tests, worries, and experience of genetic test or hereditary disease were also assessed. Results are presented and discussed.…

  5. Genetic differentiation among Parastichopus regalis populations from Western Mediterranean Sea: potential effects of its fishery and current connectivity.

    Directory of Open Access Journals (Sweden)

    C. MAGGI

    2015-11-01

    Full Text Available Parastichopus regalis (Cuvier, 1817 is the most expensive seafood product on the catalonian market (NE Spain, with prices around 130 €/Kg (fresh weight. Despite its ecological and economic importance, biological and genetic information on this sea cucumber species is scarce. We provided the first insight on the genetic structure of P. regalis using sequences of cytochrome oxidase I (COI and 16S genes, as well as a morphological description of its populations. Individuals were collected in six locations along the Spanish Mediterranean coast, including an area under fishery pressure (Catalonia. We found high haplotype diversity and low nucleotide diversity for both genes, with higher levels of genetic diversity observed on COI gene. Population pairwise fixation index (FST, AMOVA and correspondence analysis (CA based on COI, revealed significant genetic differentiation among some locations. However, further analysis using nuclear markers (e.g. microsatellites would be necessary to corroborate these results. Moreover, the genetic and morphological data may indicate fishery effects on the Catalonian population with decrease of the size and weight average and lower genetic diversity compared to locations without fishery pressure. For an appropriate management of this species, we suggest: 1 an accurate assessment of the stocks status along the Spanish coasts; 2 the study of the reproductive cycle of this target species and the establishment of a closed fishery season according to it; 3 the founding of protected areas (i.e. not take zones to conserve healthy populations and favour the recruitment on the nearby areas.

  6. Temporal estimates of genetic diversity in some Mytilus galloprovincialis populations impacted by the Prestige oil-spill

    Science.gov (United States)

    Lado-Insua, Tanya; Pérez, Montse; Diz, Angel P.; Presa, Pablo

    2011-04-01

    The sinking of the tanker Prestige in November 2002 off the coast of Galicia resulted in the release of about 60,000 tons of heavy oil. The oil-spill provoked a serious environmental impact in Spanish and French coasts, which biological consequences are still being assessed. In this study we address the temporal dynamics of genetic diversity in some mussel populations impacted by the oil-spill. Changes in genetic diversity can be measured in natural populations provided that serial samples are available from before (year 2000) and after (years 2003, 2005) the oil-spill. Analyses of seven microsatellites indicate a weak but significant increase of genetic variation after the spill. This phenomenon is interpreted herein in terms of a balance between a enhanced genome mutability on microsatellite variation and a low genetic drift due to toxicants and asphyxia although other stochastic phenomena cannot be ruled out. Per locus annotation showed that in spite of the allelic changes observed in the period 2000-2005, the final size of most allelic series remained quite alike to those of year 2000. Present genetic data suggest that the genotoxic impact of the Prestige spill did not compromise the genetic diversity of studied mussel populations, at least regarding the genetic markers analysed.

  7. A multivariate analysis of genetic constraints to life history evolution in a wild population of red deer.

    Science.gov (United States)

    Walling, Craig A; Morrissey, Michael B; Foerster, Katharina; Clutton-Brock, Tim H; Pemberton, Josephine M; Kruuk, Loeske E B

    2014-12-01

    Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance-covariance matrix ( G: ) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G: on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations.

  8. Low genetic differentiation across three major ocean populations of the whale shark, Rhincodon typus.

    Directory of Open Access Journals (Sweden)

    Jennifer V Schmidt

    Full Text Available BACKGROUND: Whale sharks are a declining species for which little biological data is available. While these animals are protected in many parts of their range, they are fished legally and illegally in some countries. Baseline biological and ecological data are needed to allow the formulation of an effective conservation plan for whale sharks. It is not known, for example, whether the whale shark is represented by a single worldwide panmictic population or by numerous, reproductively isolated populations. Genetic analysis of population structure is one essential component of the baseline data required for whale shark conservation. METHODOLOGY/PRINCIPAL FINDINGS: We have identified 8 polymorphic microsatellites in the whale shark and used these markers to assess genetic variation and population structure in a panel of whale sharks covering a broad geographic region. This is the first record of microsatellite loci in the whale shark, which displayed an average of 9 alleles per locus and mean H(o = 0.66 and H(e = 0.69. All but one of the eight loci meet the expectations of Hardy-Weinberg equilibrium. Analysis of these loci in whale sharks representing three major portions of their range, the Pacific (P, Caribbean (C, and Indian (I Oceans, determined that there is little population differentiation between animals sampled in different geographic regions, indicating historical gene flow between populations. F(ST values for inter-ocean comparisons were low (PxC = 0.0387, CxI = 0.0296 and PxI = -0.0022, and only CxI approached statistical significance (p = 0.0495. CONCLUSIONS/SIGNIFICANCE: We have shown only low levels of genetic differentiation between geographically distinct whale shark populations. Existing satellite tracking data have revealed both regional and long-range migration of whale sharks throughout their range, which supports the finding of gene flow between populations. Whale sharks traverse geographic and political boundaries during their

  9. A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations.

    Science.gov (United States)

    Gompert, Zachariah

    2016-01-01

    Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur

  10. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping.

    Science.gov (United States)

    Jin, Liang; Lu, Yan; Xiao, Peng; Sun, Mei; Corke, Harold; Bao, Jinsong

    2010-08-01

    Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations is of great importance and a prerequisite for association mapping. In this study, 100 genome-wide simple sequence repeat (SSR) markers were used to assess genetic diversity, population structure, and LD of 416 rice accessions including landraces, cultivars and breeding lines collected mostly in China. A model-based population structure analysis divided the rice materials into seven subpopulations. 63% of the SSR pairs in these accessions were in LD, which was mostly due to an overall population structure, since the number of locus pairs in LD was reduced sharply within each subpopulation, with the SSR pairs in LD ranging from 5.9 to 22.9%. Among those SSR pairs showing significant LD, the intrachromosomal LD had an average of 25-50 cM in different subpopulations. Analysis of the phenotypic diversity of 25 traits showed that the population structure accounted for an average of 22.4% of phenotypic variation. An example association mapping for starch quality traits using both the candidate gene mapping and genome-wide mapping strategies based on the estimated population structure was conducted. Candidate gene mapping confirmed that the Wx and starch synthase IIa (SSIIa) genes could be identified as strongly associated with apparent amylose content (AAC) and pasting temperature (PT), respectively. More importantly, we revealed that the Wx gene was also strongly associated with PT. In addition to the major genes, we found five and seven SSRs were associated with AAC and PT, respectively, some of which have not been detected in previous linkage mapping studies. The results suggested that the population may be useful for the genome-wide marker-trait association mapping. This new association population has the potential to identify

  11. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion.

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    Full Text Available Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America, via the analyses of 516 individuals, and asked the following questions: 1 Do populations have differing levels of within-population genetic diversity? 2 Do populations form distinct genetic clusters? 3 Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further

  12. Genetic diversity and the genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation.

    Science.gov (United States)

    Tsumura, Y; Matsumoto, A; Tani, N; Ujino-Ihara, T; Kado, T; Iwata, H; Uchida, K

    2007-08-01

    We investigated 25 natural populations of Chamaecyparis obtusa using 51 cleaved amplified polymorphic sequence (CAPS) markers, which were developed using information on sequence-tagged sites (STS) in Cryptomeria japonica. Most CAPS markers have codominant expression patterns, and are suitable for population studies because of their robustness and convenience. We estimated various genetic diversity parameters, including average heterozygosity (H(e)) and allelic richness and found that the more peripheral populations tended to have lower genetic diversity than central populations, in agreement with a previous theoretical study. The overall genetic differentiation between populations was low, but statistically significant (G(ST)=0.039), and similar to the level reported in a previous allozyme study. We attempted to detect non-neutral loci associated with local adaptation to clarify the relationship between the fixation index (F(ST)) and H(e) values for each locus and found seven candidates non-neutral loci. Phylogenetic tree analysis of the populations and Bayesian clustering analysis revealed a pattern of gradually increasing isolation of populations with increasing geographical distance. Three populations had a high degree of linkage disequilibrium, which we attribute to severe bottlenecks due to human disturbance or competition with other species during their migration from refugia after the most recent glaciation. We concluded that the small populations in western Japan and in Kanto district are more important, from a conservation perspective, than the populations in central Japan, due to their genetic divergence, relatively small sizes and restricted areas.

  13. Guidance on the environmental risk assessment of genetically modified plants

    DEFF Research Database (Denmark)

    Bartsch, Detlef; Chueca, Cristina; De-Schrijver, Adinda

    This document provides guidance for the environmental risk assessment (ERA) of genetically modified (GM) plants submitted within the framework of Regulation (EC) No. 1829/2003 on GM food and feed or under Directive 2001/18/EC on the deliberate release into the environment of genetically modified ...

  14. Population genetics of Guibourtia chodatiana (Hassl.) J. Leonard, in a dry Chiquitano forest of Bolivia

    DEFF Research Database (Denmark)

    Ojeda, Manuel; Kjær, Erik Dahl; Philipp, Marianne

    2013-01-01

    Selective logging is a widely extended forestry practice that affects tree populations by changing their spatial structure. As most tropical timber tree species are animal-pollinated, selective logging increase the average distance between conspecific trees and hereby affect the guild...... of pollinators and gene flow between the standing trees. In order to study the effects of logging on the population genetics of tropical timber tree species, we assessed selfing rates, genetic diversity, effective number of pollen donors and effective distances of pollination in progenies collected in a recently...... Logged = 0.41 ± 0.21 SD) and genetic differentiation between plots was very low (Fst = 0.03). The logged population had a slightly higher effective number of pollen donors compared to the control (Nep Logged = 12.5; Nep Control = 10, respectively). However, the fruit set was almost twice in the control...

  15. Genetic variability and population structure of endangered Panax ginseng in the Russian Primorye

    Directory of Open Access Journals (Sweden)

    Muzarok Tamara I

    2010-06-01

    Full Text Available Abstract Background The natural habitat of wild P. ginseng is currently found only in the Russian Primorye and the populations are extremely exhausted and require restoration. Analysis of the genetic diversity and population structure of an endangered species is a prerequisite for conservation. The present study aims to investigate the patterns and levels of genetic polymorphism and population structures of wild P. ginseng with the AFLP method to (1 estimate the level of genetic diversity in the P. ginseng populations in the Russian Primorsky Krai, (2 calculate the distribution of variability within a population and among populations and (3 examine the genetic relationship between the populations. Methods Genetic variability and population structure of ten P. ginseng populations were investigated with Amplified Fragment Length Polymorphism (AFLP markers. The genetic relationships among P. ginseng plants and populations were delineated. Results The mean genetic variability within populations was high. The mean level of polymorphisms was 55.68% at the population level and 99.65% at the species level. The Shannon's index ranged between 0.1602 and 0.3222 with an average of 0.2626 at the population level and 0.3967 at the species level. The analysis of molecular variances (AMOVA showed a significant population structure in P. ginseng. The partition of genetic diversity with AMOVA suggested that the majority of the genetic variation (64.5% was within populations of P. ginseng. The inter-population variability was approximately 36% of the total variability. The genetic relationships among P. ginseng plants and populations were reconstructed by Minimum Spanning tree (MS-tree on the basis of Euclidean distances with ARLEQUIN and NTSYS, respectively. The MS-trees suggest that the southern Uss, Part and Nad populations may have promoted P. ginseng distribution throughout the Russian Primorye. Conclusion The P. ginseng populations in the Russian Primorye

  16. Genetic Variation and Geographic Differentiation Among Populations of the Nonmigratory Agricultural Pest Oedaleus infernalis (Orthoptera: Acridoidea) in China

    Science.gov (United States)

    Sun, Wei; Dong, Hui; Gao, Yue-Bo; Su, Qian-Fu; Qian, Hai-Tao; Bai, Hong-Yan; Zhang, Zhu-Ting; Cong, Bin

    2015-01-01

    The nonmigratory grasshopper Oedaleus infernalis Saussure (Orthoptera : Acridoidea) is an agricultural pest to crops and forage grasses over a wide natural geographical distribution in China. The genetic diversity and genetic variation among 10 geographically separated populations of O. infernalis was assessed using polymerase chain reaction-based molecular markers, including the intersimple sequence repeat and mitochondrial cytochrome oxidase sequences. A high level of genetic diversity was detected among these populations from the intersimple sequence repeat (H: 0.2628, I: 0.4129, Hs: 0.2130) and cytochrome oxidase analyses (Hd: 0.653). There was no obvious geographical structure based on an unweighted pair group method analysis and median-joining network. The values of FST, θII, and Gst estimated in this study are low, and the gene flow is high (Nm > 4). Analysis of the molecular variance suggested that most of the genetic variation occurs within populations, whereas only a small variation takes place between populations. No significant correlation was found between the genetic distance and geographical distance. Overall, our results suggest that the geographical distance plays an unimpeded role in the gene flow among O. infernalis populations. PMID:26496789

  17. Genetic diversity and population structure of different varieties of Morada Nova hair sheep from Brazil.

    Science.gov (United States)

    Ferreira, J S B; Paiva, S R; Silva, E C; McManus, C M; Caetano, A R; Façanha, D A E; de Sousa, M A N

    2014-01-01

    The aim of this study was to analyze genetic diversity and population structure among varieties of White (N = 40), Red (N = 32), and Black (N = 31) Morada Nova hair sheep from flocks in the northeastern Brazilian semiarid region. Fifteen nuclear microsatellite markers and two regions of mitochondrial DNA were used. The intra-population analysis demonstrated that the White variety had higher diversity, while the Red variety had the lowest values. The Bayesian analysis to assess the genetic population structure allowed differentiation between White, Red, and Black varieties, and revealed a tendency towards sub-structuring in the White variety flocks from the States of Ceará and Paraíba. The results of analyses of molecular variance showed that the greatest genetic structure was found when comparing flocks rather than varieties (8.59 vs 6.64% of the total variation, P Dtl, both the dendrogram analysis and the principal coordinate analysis showed the formation of two main groups: one composed of White and another of Black and Red individuals. Five and two haplotypes were found for the D-loop region and the ND5 gene, respectively. A haplotype unique to the Red variety was found in the D-loop region and a variety haplotype unique to the Black variety was found in the ND5 gene; however, these frequencies were low and therefore require further validation. These results support the existence of substantial differences between the Red and White varieties and should be used as separate genetic resources and to improve conservation programs.

  18. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Changtragoon, Suchitra; Ponoy, Bundit

    2015-01-01

    Twenty-nine provenances of teak (Tectona grandis Linn. f.) representing the full natural distribution range of the species were genotyped with microsatellite DNA markers to analyse genetic diversity and population genetic structure. Provenances originating from the semi-moist east coast of India ...

  19. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-03-01

    Full Text Available Abstract Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP, Duffy-binding protein (DBP, Merozoite surface protein-1 (MSP-1, Apical membrane antigen-1 (AMA-1 and Thrombospondin related anonymous protein (TRAP. Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity.

  20. Contribution of conservation genetics in assessing neotropical freshwater fish biodiversity

    Directory of Open Access Journals (Sweden)

    NM. Piorski

    Full Text Available Human activities have a considerable impact on hydrographic systems and fish fauna. The present review on conservation genetics of neotropical freshwater fish reveals that DNA analyses have been promoting increased knowledge on the genetic structure of fish species and their response to environmental changes. This knowledge is fundamental to the management of wild fish populations and the establishment of Evolutionary Significant Units capable of conserving genetic integrity. While population structuring can occur even in long-distance migratory fish, isolated populations can show reduced genetic variation and be at greater risk of extinction. Phylogeography and phylogeny have been powerful tools in understanding the evolution of fish populations, species and communities in distinct neotropic environments. Captive fish can be used to introduce new individuals and genes into the wild and their benefits and disadvantages can be monitored through genetic analysis. Understanding how fish biodiversity in neotropical freshwaters is generated and maintained is highly important, as these habitats are transformed by human development and fish communities are increasingly exploited as food sources to sustain a growing human population.

  1. Genetic structure of colline and montane populations of an endangered plant species.

    Science.gov (United States)

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-08-12

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations.

  2. Genetic structure of colline and montane populations of an endangered plant species

    Science.gov (United States)

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-01-01

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale, there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations. PMID:27519913

  3. Surname distribution in population genetics and in statistical physics

    Science.gov (United States)

    Rossi, Paolo

    2013-12-01

    Surnames tend to behave like neutral genes, and their distribution has attracted a growing attention from genetists and physicists. We review the century-long history of surname studies and discuss the most recent developments. Isonymy has been regarded as a tool for the measurement of consanguinity of individuals and populations and has been applied to the analysis of migrations. The analogy between patrilineal surname transmission and the propagation of Y chromosomes has been exploited for the genetic characterization of families, communities and control groups. Surname distribution is the result of a stochastic dynamics, which has been studied either as a Yule process or as a branching phenomenon: both approaches predict the asymptotic power-law behavior which has been observed in many empirical researches. Models of neutral evolution based on the theory of disordered systems have suggested the application of field-theoretical techniques, and in particular the Renormalization Group, to describe the dynamics leading to scale-invariant distributions and to compute the related (critical) exponents.

  4. Population genetics provides evidence for recombination in Giardia.

    Science.gov (United States)

    Cooper, Margarethe A; Adam, Rodney D; Worobey, Michael; Sterling, Charles R

    2007-11-20

    Giardia lamblia (syn. Giardia intestinalis, Giardia duodenalis) is an enteric protozoan parasite with two nuclei, and it might be one of the earliest branching eukaryotes. However, the discovery of at least rudimentary forms of certain features, such as Golgi and mitochondria, has refuted the proposal that its emergence from the eukaryotic lineage predated the development of certain eukaryotic features. The recent recognition of many of the genes known to be required for meiosis in the genome has also cast doubt on the idea that Giardia is primitively asexual, but so far there has been no direct evidence of sexual reproduction in Giardia, and population data have suggested clonal reproduction. We did a multilocus sequence evaluation of the genotype A2 reference strain, JH, and five genotype A2 isolates from a highly endemic area in Peru. Loci from different chromosomes yielded significantly different phylogenetic trees, indicating that they do not share the same evolutionary history; within individual loci, tests for recombination yielded significant statistical support for meiotic recombination. These observations provide genetic data supportive of sexual reproduction in Giardia.

  5. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Understanding genetic variation in germplasm collection is essential for the conservation and their efficient use in plant breeding. Cucumber is an important vegetable crop worldwide. Previous studies revealed a low genetic diversity in cucumber, but detailed insights into the crop’s genetic structu...

  6. Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations.

    Directory of Open Access Journals (Sweden)

    Yuichi Nakajima

    Full Text Available Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadcast-spawning coral Acropora digitifera at 19 sites in seven regions along the 1,000 km long island chain of Nansei Islands, Japan. This area includes both subtropical and temperate habitats. Thus, the coral populations around the Nansei Islands in Japan are northern peripheral populations that would be subjected to environmental stresses different from those in tropical areas. The existence of high genetic connectivity across this large geographic area was suggested for all sites (F(ST < or = 0.033 although small but significant genetic differentiation was detected among populations in geographically close sites and regions. In addition, A. digitifera appears to be distributed throughout the Nansei Islands without losing genetic diversity. Therefore, A. digitifera populations in the Nansei Islands may be able to recover relatively rapidly even when high disturbances of coral communities occur locally if populations on other reefs are properly maintained.

  7. Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci

    Science.gov (United States)

    Yao, Hong-Bing; Wang, Chuan-Chao; Wang, Jiang; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Du, Qiajun; Deng, Qiongying; Xu, Bingying; Huang, Ying; Wang, Hong-Dan; Li, Shujin; Bin Cong; Ma, Liying; Jin, Li; Krause, Johannes; Li, Hui

    2017-01-01

    The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot debates. However, the limited genetic information of Tibetan populations keeps this topic far from clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) in northwest China. We combined these data with published dataset to infer a detailed population affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. Although the among-population variances are relatively small, the genetic components for Tibetan, Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland East Asian populations, which implies there might be extensive gene flow between those lowland groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in present study is also valuable for forensic identification and paternity tests in China. PMID:28112227

  8. Population genetics of Y-chromosome STRs in a population of Northern Greeks.

    Science.gov (United States)

    Kovatsi, Leda; Saunier, Jessica L; Irwin, Jodi A

    2009-12-01

    Seventeen Y STR loci were typed in a population sample of 191 unrelated male individuals from Northern Greece. Haplotypes are presented for the following loci: DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635, DYS392, Y GATA H4, DYS437, DYS438 and DYS448. The overall haplotype diversity was 0.9992. This database study provides significant additional information for the application of Y-chromosomal STRs to forensic identification efforts in Greece by nearly doubling both the number of individuals and the number of Y-loci typed from Greek populations. These samples have been previously typed for autosomal STRs [L. Kovatsi, T.J. Parsons, R.S. Just, J.A. Irwin, Genetic variation for 15 autosomal STR loci (PowerPlex 16) in a population sample from northern Greece, Forensic Sci. Int. 159 (2006) 61-63] and the mitochondrial DNA control region [J. Irwin, J. Saunier, K. Strouss, C. Paintner, T. Diegoli, K. Sturk, L. Kovatsi, A. Brandstatter, M.A. Cariolou, W. Parson, T.J. Parsons, Mitochondrial control region sequences from northern Greece and Greek Cypriots, Int. J. Legal Med. 122 (2008) 87-89].

  9. Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations.

    Directory of Open Access Journals (Sweden)

    Vania Bonifaz-Peña

    Full Text Available Studies of pharmacogenomics-related traits are increasingly being performed to identify loci that affect either drug response or susceptibility to adverse drug reactions. However, the effect of the polymorphisms can differ in magnitude or be absent depending on the population being assessed. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET Plus array to characterize the distribution of polymorphisms of pharmacogenetics and pharmacogenomics (PGx relevance in two samples from the most populous Latin American countries, Brazil and Mexico. The sample from Brazil included 268 individuals from the southeastern state of Rio de Janeiro, and was stratified into census categories. The sample from Mexico comprised 45 Native American Zapotecas and 224 self-identified Mestizo individuals from 5 states located in geographically distant regions in Mexico. We evaluated the admixture proportions in the Brazilian and Mexican samples using a panel of Ancestry Informative Markers extracted from the DMET array, which was validated with genome-wide data. A substantial variation in ancestral proportions across census categories in Brazil, and geographic regions in Mexico was identified. We evaluated the extent of genetic differentiation (measured as FST values of the genetic markers of the DMET Plus array between the relevant parental populations. Although the average levels of genetic differentiation are low, there is a long tail of markers showing large frequency differences, including markers located in genes belonging to the Cytochrome P450, Solute Carrier (SLC and UDP-glucuronyltransferase (UGT families as well as other genes of PGx relevance such as ABCC8, ADH1A, CHST3, PON1, PPARD, PPARG, and VKORC1. We show how differences in admixture history may have an important impact in the distribution of allele and genotype frequencies at the population level.

  10. Exploring the Distribution of Genetic Markers of Pharmacogenomics Relevance in Brazilian and Mexican Populations

    Science.gov (United States)

    Bonifaz-Peña, Vania; Contreras, Alejandra V.; Struchiner, Claudio Jose; Roela, Rosimeire A.; Furuya-Mazzotti, Tatiane K.; Chammas, Roger; Rangel-Escareño, Claudia; Uribe-Figueroa, Laura; Gómez-Vázquez, María José; McLeod, Howard L.; Hidalgo-Miranda, Alfredo

    2014-01-01

    Studies of pharmacogenomics-related traits are increasingly being performed to identify loci that affect either drug response or susceptibility to adverse drug reactions. However, the effect of the polymorphisms can differ in magnitude or be absent depending on the population being assessed. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array to characterize the distribution of polymorphisms of pharmacogenetics and pharmacogenomics (PGx) relevance in two samples from the most populous Latin American countries, Brazil and Mexico. The sample from Brazil included 268 individuals from the southeastern state of Rio de Janeiro, and was stratified into census categories. The sample from Mexico comprised 45 Native American Zapotecas and 224 self-identified Mestizo individuals from 5 states located in geographically distant regions in Mexico. We evaluated the admixture proportions in the Brazilian and Mexican samples using a panel of Ancestry Informative Markers extracted from the DMET array, which was validated with genome-wide data. A substantial variation in ancestral proportions across census categories in Brazil, and geographic regions in Mexico was identified. We evaluated the extent of genetic differentiation (measured as FST values) of the genetic markers of the DMET Plus array between the relevant parental populations. Although the average levels of genetic differentiation are low, there is a long tail of markers showing large frequency differences, including markers located in genes belonging to the Cytochrome P450, Solute Carrier (SLC) and UDP-glucuronyltransferase (UGT) families as well as other genes of PGx relevance such as ABCC8, ADH1A, CHST3, PON1, PPARD, PPARG, and VKORC1. We show how differences in admixture history may have an important impact in the distribution of allele and genotype frequencies at the population level. PMID:25419701

  11. Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations.

    Science.gov (United States)

    Bonifaz-Peña, Vania; Contreras, Alejandra V; Struchiner, Claudio Jose; Roela, Rosimeire A; Furuya-Mazzotti, Tatiane K; Chammas, Roger; Rangel-Escareño, Claudia; Uribe-Figueroa, Laura; Gómez-Vázquez, María José; McLeod, Howard L; Hidalgo-Miranda, Alfredo; Parra, Esteban J; Fernández-López, Juan Carlos; Suarez-Kurtz, Guilherme

    2014-01-01

    Studies of pharmacogenomics-related traits are increasingly being performed to identify loci that affect either drug response or susceptibility to adverse drug reactions. However, the effect of the polymorphisms can differ in magnitude or be absent depending on the population being assessed. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array to characterize the distribution of polymorphisms of pharmacogenetics and pharmacogenomics (PGx) relevance in two samples from the most populous Latin American countries, Brazil and Mexico. The sample from Brazil included 268 individuals from the southeastern state of Rio de Janeiro, and was stratified into census categories. The sample from Mexico comprised 45 Native American Zapotecas and 224 self-identified Mestizo individuals from 5 states located in geographically distant regions in Mexico. We evaluated the admixture proportions in the Brazilian and Mexican samples using a panel of Ancestry Informative Markers extracted from the DMET array, which was validated with genome-wide data. A substantial variation in ancestral proportions across census categories in Brazil, and geographic regions in Mexico was identified. We evaluated the extent of genetic differentiation (measured as FST values) of the genetic markers of the DMET Plus array between the relevant parental populations. Although the average levels of genetic differentiation are low, there is a long tail of markers showing large frequency differences, including markers located in genes belonging to the Cytochrome P450, Solute Carrier (SLC) and UDP-glucuronyltransferase (UGT) families as well as other genes of PGx relevance such as ABCC8, ADH1A, CHST3, PON1, PPARD, PPARG, and VKORC1. We show how differences in admixture history may have an important impact in the distribution of allele and genotype frequencies at the population level.

  12. Safety Assessment and Countermeasures of Genetically Modified Food

    Directory of Open Access Journals (Sweden)

    2013-05-01

    Full Text Available With the rapid development of science-biotechnology, the safety of genetically modified organisms has become some of the most controversial issues in our society. This study aims to review the safety assessment and countermeasures of Genetically Modified (GM foods. Firstly, the research status and the main contents of GM foods safety assessment are discussed. What’s more, the countermeasures of GM foods safety assessment are proposed. This study tries to summarize and discuss the safety assessment of GM foods.

  13. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials.

    Science.gov (United States)

    Foust, C M; Preite, V; Schrey, A W; Alvarez, M; Robertson, M H; Verhoeven, K J F; Richards, C L

    2016-04-01

    While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using AFLP and methylation-sensitive AFLP, we tested the hypothesis that differentiation to habitats along natural salt marsh environmental gradients occurs at epigenetic, but not genetic loci in two salt marsh perennials. We detected significant genetic and epigenetic structure among populations and among subpopulations, but we found multilocus patterns of differentiation to habitat type only in epigenetic variation for both species. In addition, more epigenetic than genetic loci were correlated with habitat in both species. When we analysed genetic and epigenetic variation simultaneously with partial Mantel, we found no correlation between genetic variation and habitat and a significant correlation between epigenetic variation and habitat in Spartina alterniflora. In Borrichia frutescens, we found significant correlations between epigenetic and/or genetic variation and habitat in four of five populations when populations were analysed individually, but there was no significant correlation between genetic or epigenetic variation and habitat when analysed jointly across the five populations. These analyses suggest that epigenetic mechanisms are involved in the response to salt marsh habitats, but also that the relationships among genetic and epigenetic variation and habitat vary by species. Site-specific conditions may also cloud our ability to detect response in replicate populations with similar environmental gradients. Future studies analysing sequence data and the correlation between genetic variation and DNA methylation will be powerful to identify the contributions of genetic and epigenetic response to environmental gradients.

  14. USF-1 genetic polymorphisms confer a high risk of nonalcoholic fatty liver disease in Chinese population.

    Science.gov (United States)

    Wang, Ying; Wang, Bai-Fang; Tong, Jing; Chang, Bing; Wang, Bing-Yuan

    2015-01-01

    Genetic polymorphisms in upstream transcription factor 1 (USF1) were investigated for their links to increased risk of nonalcoholic fatty liver disease (NAFLD) in Chinese population. Between January 2013 and April 2014, 174 patients with NAFLD in the First Affiliated Hospital of China Medical University were selected for this study. A group of 100 healthy subjects were identified as the control group. The MALDI-TOF-MS, a mass spectrometry based technique, was used to detect USF-1 genetic polymorphisms using PCR amplified DNA products. Furthermore, Automatic Chemistry Analyzer (ACA) was used to determine the clinical indicators. Genotypes, allele frequencies and clinical indicators were measured to assess NAFLD risk in relation to the SNPs. USF-1 rs6427573 genetic polymorphisms were associated with an increased risk of NAFLD (AA vs. GG: OR = 3.16, 95% CI = 1.56-6.43, P = 0.001; GA + AA vs. GG: OR = 1.87, 95% CI = 1.13-3.09, P = 0.015; GG + AA vs. AA: OR = 2.96, 95% CI = 1.49-5.88, P = 0.001; G vs. A: OR = 2.10, 95% CI = 1.43-3.09, P 0.05). Two USF-1 genetic polymorphisms, rs6427573 and rs2516839, may present an increased risk of NAFLD.

  15. Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral.

    Science.gov (United States)

    Nunes, F; Norris, R D; Knowlton, N

    2009-10-01

    Limited dispersal and connectivity in marine organisms can have negative fitness effects in populations that are small and isolated, but reduced genetic exchange may also promote the potential for local adaptation. Here, we compare the levels of genetic diversity and connectivity in the coral Montastraea cavernosa among both central and peripheral populations throughout its range in the Atlantic. Genetic data from one mitochondrial and two nuclear loci in 191 individuals show that M. cavernosa is subdivided into three genetically distinct regions in the Atlantic: Caribbean-North Atlantic, Western South Atlantic (Brazil) and Eastern Tropical Atlantic (West Africa). Within each region, populations have similar allele frequencies and levels of genetic diversity; indeed, no significant differentiation was found between populations separated by as much as 3000 km, suggesting that this coral species has the ability to disperse over large distances. Gene flow within regions does not, however, translate into connectivity across the entire Atlantic. Instead, substantial differences in allele frequencies across regions suggest that genetic exchange is infrequent between the Caribbean, Brazil and West Africa. Furthermore, markedly lower levels of genetic diversity are observed in the Brazilian and West African populations. Genetic diversity and connectivity may contribute to the resilience of a coral population to disturbance. Isolated peripheral populations may be more vulnerable to human impacts, disease or climate change relative to those in the genetically diverse Caribbean-North Atlantic region.

  16. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

    Science.gov (United States)

    Howells, E. J.; van Oppen, M. J. H.; Willis, B. L.

    2009-03-01

    The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01-0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

  17. Genetic polymorphism of blood proteins in a population of Shetland ponies

    NARCIS (Netherlands)

    Buis, R.C.

    1976-01-01

    Genetic variation of proteins (protein polymorphism) is widespread among many animal species. The biological significance of protein polymorphism has been the subject of many studies. This variation has a supporting function for population genetic studies as a source of genetic markers. In farm anim

  18. Developing educational resources for population genetics in R: An open and collaborative approach

    Science.gov (United States)

    The R computing and statistical language community has developed a myriad of resources for conducting populations genetic analyses. However, resources for learning how to carry out population genetic analyses in R are scattered and often incomplete, which can make acquiring this skill unnecessarily ...

  19. Genetic structure of Rajaka caste and affinities with other caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Parvatheesam, C; Babu, B V; Babu, M C

    1997-01-01

    The present study gives an account of the genetic structure in terms of distribution of a few genetic markers, viz., A1A2B0, Rh(D), G6PD deficiency and haemoglobin among the Rajaka caste population of Andhra Pradesh, India. The genetic relationships of the Rajaka caste with other Andhra caste populations were investigated in terms of genetic distance, i.e., Sq B (mn) of Balakrishnan and Sanghvi. Relatively lesser distance was established between the Rajaka and two Panchama castes. Also, the pattern of genetic distance corroborates the hierarchical order of the Hindu varna system.

  20. Attitudes toward genetic testing among the general population and relatives of patients with a severe genetic disease

    DEFF Research Database (Denmark)

    Hietala, M; Hakonen, A; Aro, A R

    1995-01-01

    In the present study we explore the attitudes of the Finnish population toward genetic testing by conducting a questionnaire study of a stratified sample of the population as well as of family members of patients with a severe hereditary disease, aspartylglucosaminuria (AGU). The questionnaire...... members of AGU patients have a favorable attitude toward genetic testing. However, a commonly expressed reason against testing was that test results might lead to discrimination in employment or insurance policies. Based on the responses, we predict that future genetic testing programs will most probably...

  1. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    Science.gov (United States)

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Sifa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  2. Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse populations in behavioral genetics research.

    Science.gov (United States)

    Chesler, Elissa J

    2014-02-01

    The historical origins of classical laboratory mouse strains have led to a relatively limited range of genetic and phenotypic variation, particularly for the study of behavior. Many recent efforts have resulted in improved diversity and precision of mouse genetic resources for behavioral research, including the Collaborative Cross and Diversity Outcross population. These two populations, derived from an eight way cross of common and wild-derived strains, have high precision and allelic diversity. Behavioral variation in the population is expanded, both qualitatively and quantitatively. Variation that had once been canalized among the various inbred lines has been made amenable to genetic dissection. The genetic attributes of these complementary populations, along with advances in genetic and genomic technologies, makes a systems genetic analyses of behavior more readily tractable, enabling discovery of a greater range of neurobiological phenomena underlying behavioral variation.

  3. Genetic Structure of Native Sheep Populations in East and South Asia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Variations of structural loci among 4 sheep populations in China were examined by the method of multiloci electrophoresis, and similar data from 11 sheep populations were taken as basic references to analyze the genetic structure of the native sheep populations in East and South Asia. The results showed that the average heterozygosity and effective number of alleles among 15 populations were 0.2746 and 1.559, respectively. Mongolian sheep possessed the largest average heterozygosity and effective number of alleles. Genetic diversity of sheep populations in Mongolia, China, Vietnam,Bangladesh and Nepal was reduced in this order. The coefficients of genetic differentiation were between 0.0126 and 0.3083, with the average of 0.148, demonstrating that genetic variations lay mainly in populations with 85.2% of the total variations. There exists no correlation between geographical distances and genetic distances. Gene flow was smooth among most populations, which led to inconsistency between geographical distances and genetic distances. The 15 native sheep populations in East and South Asia could be divided into two groups: One group included part populations of China and Mongolia, and the other included Yunnan populations of China, and part populations of Nepal and Bangladesh.Other populations did not cluster together and divide into the above-mentioned two groups. This study indicated genetic differentiation of the 15 native sheep populations in East and South Asia was relatively low, geographical isolation was not the main reason affecting genetic differentiation, and the fifteen sheep populations could be divided into two groups according to phylogenetic relationships.

  4. Human genetic variation database, a reference database of genetic variations in the Japanese population

    Science.gov (United States)

    Higasa, Koichiro; Miyake, Noriko; Yoshimura, Jun; Okamura, Kohji; Niihori, Tetsuya; Saitsu, Hirotomo; Doi, Koichiro; Shimizu, Masakazu; Nakabayashi, Kazuhiko; Aoki, Yoko; Tsurusaki, Yoshinori; Morishita, Shinichi; Kawaguchi, Takahisa; Migita, Osuke; Nakayama, Keiko; Nakashima, Mitsuko; Mitsui, Jun; Narahara, Maiko; Hayashi, Keiko; Funayama, Ryo; Yamaguchi, Daisuke; Ishiura, Hiroyuki; Ko, Wen-Ya; Hata, Kenichiro; Nagashima, Takeshi; Yamada, Ryo; Matsubara, Yoichi; Umezawa, Akihiro; Tsuji, Shoji; Matsumoto, Naomichi; Matsuda, Fumihiko

    2016-01-01

    Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/. PMID:26911352

  5. ATPase 8/6 GENE BASED GENETIC DIVERSITY ASSESSMENT OF SNAKEHEAD MURREL, Channa striata (Perciformes, Channidae).

    Science.gov (United States)

    Baisvar, V S; Kumar, R; Singh, M; Singh, A K; Chauhan, U K; Nagpure, N S; Kushwaha, B

    2015-10-01

    The mitochondrial DNA (mtDNA) ATPase 8/6 gene has been used in phylogenetic as well as in phylogeographic studies along with other mtDNA markers. In this study, ATPase gene sequences were used to assess the genetic structuring and phylogeographic patterns in Channa striata. Out of 884 nucleotide positions generated in ATPase 8/6 genes, 76 were polymorphic. The study suggested 23 unique haplotypes from 67 individuals of nine populations collected from different riverine systems of India. The ATPase 8/6 sequence revealed highest haplotype as well as nucleotide diversities in Imphal River population and lowest diversities in Tapti River population. The pattern of genetic diversity and haplotype network indicated distinct mitochondrial lineages for Chaliyar population, whereas mismatch distribution strongly suggested a population expansion in mid pleistocene epoch (0.4 Mya) with distinct genetic structuring in C. striata. The baseline information on genetic variation and the population sub-structuring would facilitate conservation and management of this important snakehead murrel.

  6. Genetic structure of the threatened Dipterocarpus costatus populations in lowland tropical rainforests of southern Vietnam.

    Science.gov (United States)

    Duc, N M; Duy, V D; Xuan, B T T; Thang, B V; Ha, N T H; Tam, N M

    2016-10-24

    Dipterocarpus costatus is an endangered species restricted to the lowland forests of southern Vietnam. Habitat loss and over-exploitation of D. costatus wood are the major threats to this species. We investigated the level of genetic variability within and among populations of D. costatus in order to provide guidelines for the conservation, management, and restoration of this species to the Forest Protection Department, Vietnam. Nine microsatellite markers were used to analyze 114 samples from four populations representing the natural range of D. costatus in southeast Vietnam. We indicated the low allelic diversity (NA = 2.3) and low genetic diversities with an average observed and expected heterozygosity of 0.130 and 0.151, respectively, in the lowland forests of southeast Vietnam. The low genetic diversity might be a consequence of inbreeding within the small and isolated populations of D. costatus owing to its habitat loss and over-exploitation. All populations deviated from Hardy-Weinberg equilibrium showing reduced heterozygosity. Alleles were lost from the populations by genetic drift. Genetic differentiation among populations was high (average pairwise FST = 0.405), indicating low gene flow (<1) and isolated populations due to its destructed habitat and large geographical distances (P < 0.05) among populations. Heterozygosity excess tests (except of Bu Gia Map only under infinite allele model) were negative. The high genetic variation (62.7%) was found within populations. The STRUCTURE and neighbor joining tree results suggest strong differentiation among D. costatus populations, with the three genetic clusters, Phu Quoc, Tan Phu and Bu Gia Map, and Lo Go-Xa Mat due to habitat fragmentation and isolation. The threatened status of D. costatus was related to a lack of genetic diversity, with all its populations isolated in small forest patches. We recommend the establishment of an ex situ conservation site for D. costatus with a new big population comprising

  7. [Safety assessment of foods derived from genetically modified plants].

    Science.gov (United States)

    Pöting, A; Schauzu, M

    2010-06-01

    The placing of genetically modified plants and derived food on the market falls under Regulation (EC) No. 1829/2003. According to this regulation, applicants need to perform a safety assessment according to the Guidance Document of the Scientific Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. This article gives an overview of the underlying legislation as well as the strategy and scientific criteria for the safety assessment, which should generally be based on the concept of substantial equivalence and carried out in relation to an unmodified conventional counterpart. Besides the intended genetic modification, potential unintended changes also have to be assessed with regard to potential adverse effects for the consumer. All genetically modified plants and derived food products, which have been evaluated by EFSA so far, were considered to be as safe as products derived from the respective conventional plants.

  8. Eugenics from the New Deal to the Great Society: genetics, demography and population quality.

    Science.gov (United States)

    Ramsden, Edmund

    2008-12-01

    The relationship between biological and social scientists as regards the study of human traits and behavior has often been perceived in terms of mutual distrust, even antipathy. In the interwar period, population study seemed an area that might allow for closer relations between them-united as they were by a concern to improve the eugenic quality of populations. Yet these relations were in tension: by the early post-war era, social demographers were denigrating the contributions of biologists to the study of population problems as embodying the elitist ideology of eugenics. In response to this loss of credibility, the eugenics movement pursued a simultaneous program of withdrawal and expansion: its leaders helped focus concern with biological quality onto the developing field of medical genetics, while at the same moment, extended their scope to improving the social quality of populations through birth control policies, guided by demography. While this approach maintained boundaries between the social and the biological, in the 1960s, a revitalized American Eugenics Society helped reunite leading demographers and geneticists. This paper will assess the reasons for this period of influence for eugenics, and explore its implications for the social and biological study of human populations.

  9. Population genetic differentiation of height and body mass index across Europe

    DEFF Research Database (Denmark)

    Robinson, Matthew R.; Hemani, Gibran; Medina-Gomez, Carolina;

    2015-01-01

    Across-nation differences in the mean values for complex traits are common(1-8), but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European coun...... for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P Europe masked genetic differentiation for BMI (P

  10. Safety Assessment of Genetically Modified Foods

    OpenAIRE

    TAYLOR Steve L.

    2001-01-01

    The development of novel foods produced through agricultural biotechnology is a complex three-stage process: gene discovery, line selection, and product advancement to commercialization. The safety of genetically modified foods is an integral part of the overall developmental process throughout all of the stages. In the discovery stage, the safety of the gene, its source, and the gene products must be considered. If any questions arise at this stage, these questions must be answered later in ...

  11. Assessment of genetic diversity in Cattleya intermedia Lindl. (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Nelson Barbosa Machado Neto

    2011-10-01

    Full Text Available Orchids are valuable pot plants and Cattleya intermedia is a promising species underused in breeding programs. Recently, breeding work with this species produced superior plants that are believed to be not the true species owing to the morphological differences from wild plants. The aim of this study was to estimate the level of genetic diversity and interrelationships between wild and bred Cattleya intermedia collected at three different Brazilian states and from commercial breeders with RAPD markers. A total of 65 polymorphic bands were used to generate a genetic distance matrix. No specific groupings were revealed by the cluster analysis as bred materials were not different from wild plants. The genetic differentiation (F ST = 0.01626 was very low indicating a high gene flow in C. intermedia due to artificial crosses and a high differentiation between populations. The genetic variability available within this species is high enough to allow genetic progress in flower shape and size.

  12. Population genetics of Agave cocui: evidence for low genetic diversity at the southern geographic limit of genus Agave.

    Science.gov (United States)

    Figueredo, Carmen J; Nassar, Jafet M

    2011-01-01

    The Agave genus embraces many species with outstanding ecological and economic importance in the arid regions of the Americas. Even though this genus covers a broad geographic distribution, our knowledge on the population genetics of species is concentrated in taxa located in North America. Recently, it has been demonstrated that plant domestication decreases levels of genetic diversity in managed populations and increases population structure with respect to wild populations. We examined levels of allozyme diversity (N = 17 loci) and population structure of Agave cocui, the species at the southern limit of distribution of the genus. We sampled 7 wild populations (N = 30-35 individuals per population) representative of the geographic distribution of the species in Venezuela. Among the agaves studied, A. cocui has some of the lowest estimates of genetic diversity (H(e)[species] = 0.059, H(e)[population] = 0.054) reported until present. We propose that this condition is probably linked to the recent origin of this species in arid and semiarid regions of Colombia and Venezuela, probably through one or a few founder events. The lowest estimates of genetic diversity were associated with small populations in very restricted arid patches; but also with overexploitation of rosettes for production of fermented drinks and fibers. Santa Cruz de Pecaya, one of the 2 centers of economic use of agaves in northwestern Venezuela presented one of the lowest values of genetic variability, a sign suggesting that human impact represents a significant threat to the available genetic pool that this species possesses in the region.

  13. Effective population size, genetic variation, and their relevance for conservation: the bighorn sheep in Tiburon Island and comparisons with managed artiodactyls.

    Directory of Open Access Journals (Sweden)

    Jaime Gasca-Pineda

    Full Text Available The amount of genetic diversity in a finite biological population mostly depends on the interactions among evolutionary forces and the effective population size (N(e as well as the time since population establishment. Because the N(e estimation helps to explore population demographic history, and allows one to predict the behavior of genetic diversity through time, N(e is a key parameter for the genetic management of small and isolated populations. Here, we explored an N(e-based approach using a bighorn sheep population on Tiburon Island, Mexico (TI as a model. We estimated the current (N(crnt and ancestral stable (N(stbl inbreeding effective population sizes as well as summary statistics to assess genetic diversity and the demographic scenarios that could explain such diversity. Then, we evaluated the feasibility of using TI as a source population for reintroduction programs. We also included data from other bighorn sheep and artiodactyl populations in the analysis to compare their inbreeding effective size estimates. The TI population showed high levels of genetic diversity with respect to other managed populations. However, our analysis suggested that TI has been under a genetic bottleneck, indicating that using individuals from this population as the only source for reintroduction could lead to a severe genetic diversity reduction. Analyses of the published data did not show a strict correlation between H(E and N(crnt estimates. Moreover, we detected that ancient anthropogenic and climatic pressures affected all studied populations. We conclude that the estimation of N(crnt and N(stbl are informative genetic diversity estimators and should be used in addition to summary statistics for conservation and population management planning.

  14. Effective