WorldWideScience

Sample records for assessing infrastructure vulnerability

  1. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars

    1998-12-31

    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  2. Framework for Vulnerability Assessment of Coastal Infrastructure

    Science.gov (United States)

    Obrien, P. S.; Moritz, H. R.; White, K. D.

    2015-12-01

    Coastal infrastructure can be highly vulnerable to changing climate, including increasing sea levels and altered frequency and intensity of coastal storms. Existing coastal infrastructure may be of a sufficient age that it is already experiencing noticeable impacts from global sea level rise, and require a variety of potential preparedness and resilience measures to adapt to changing climate. Methods to determine vulnerability to changing sea level and support planning of potential future adaptation measures are needed for application to projects having multiple purposes (e.g., navigation, coastal risk reduction). Here we describe a potential framework for assessing projects with several components typical of existing coastal infrastructure spanning a range of engineering disciplines (e.g., hydrology, geotechnical, structural, electrical, and mechanical). The US Army Corps of Engineers (USACE) Climate Preparedness and Resilience Register (CPRR) framework is currently under development. It takes a tiered approach as described in earlier USACE guidance (Engineer Technical Letter 1100-2-1) using the three scenarios prescribed by Engineer Regulation ER 1100-2-8162. Level 1 is a qualitative assessment defining the major sea level change-related impacts and ranks them in order of soonest occurrence. Level 2 is a quantitative evaluation that analyzes current and future performance of individual project components, including electrical, mechanical and structural components and functions using the sea level change scenarios prescribed by ER 1100-2-8162. Level 3 proposes adaptation measures per ETL 1100-2-1 and evaluates changes in sea level change-related impacts.

  3. Approaches for assessment of vulnerability of critical infrastructures to weather-related hazards

    Science.gov (United States)

    Eidsvig, Unni; Uzielli, Marco; Vidar Vangelsten, Bjørn

    2016-04-01

    Critical infrastructures are essential components for the modern society to maintain its function, and malfunctioning of one of the critical infrastructure systems may have far-reaching consequences. Climate changes may lead to increase in frequency and intensity of weather-related hazards, creating challenges for the infrastructures. This paper outlines approaches to assess vulnerability posed by weather-related hazards to infrastructures. The approaches assess factors that affect the probability of a malfunctioning of the infrastructure should a weather-related threat occur, as well factors that affect the societal consequences of the infrastructure malfunctioning. Even if vulnerability factors are normally very infrastructure specific and hazard dependent, generic factors could be defined and analyzed. For the vulnerability and resilience of the infrastructure, such factors include e.g. robustness, buffer capacity, protection, quality, age, adaptability and transparency. For the vulnerability of the society in relation to the infrastructure, such factors include e.g. redundancy, substitutes and cascading effects. A semi-quantitative, indicator-based approach is proposed, providing schemes for ranking of the most important vulnerability indicators relevant for weather-related hazards on a relative scale. The application of the indicators in a semi-quantitative risk assessment is also demonstrated. In addition, a quantitative vulnerability model is proposed in terms of vulnerability (representing degree of loss) as a function of intensity, which is adaptable to different types of degree of loss (e.g. fraction of infrastructure users that lose their service, fraction of repair costs to full reconstruction costs). The vulnerability model can be calibrated with empirical data using deterministic calibration or a variety of probabilistic calibration approaches to account for the uncertainties within the model. The research leading to these results has received funding

  4. Assessing the vulnerability of infrastructure to climate change on the Islands of Samoa

    Directory of Open Access Journals (Sweden)

    S. H. M. Fakhruddin

    2015-03-01

    Full Text Available Pacific Islanders have been exposed to risks associated with climate change. Samoa as one of the Pacific Islands are prone to climatic hazards that will likely increase in coming decades, affecting coastal communities and infrastructure around the islands. Climate models do not predict a reduction of such disaster events in the future in Samoa; indeed, most predict an increase in such events. This paper identifies key infrastructure and their functions and status in order to provide an overall picture of relative vulnerability to climate-related stresses of such infrastructure on the island. By reviewing existing reports as well as holding a series of consultation meetings, a list of critical infrastructures were developed and shared with stakeholders for their consideration. An indicator-based vulnerability model (SIVM was developed in collaboration with stakeholders to assess the vulnerability of selected infrastructure systems on the Samoan Islands. Damage costs were extracted from the Evan cyclone recovery needs document. On the other hand, criticality and capacity to repair data were collected from stakeholders. Having stakeholder perspectives on these two issues was important because (a criticality of a given infrastructure could be viewed differently among different stakeholders, and (b stakeholders were the best available source (in this study to estimate the capacity to repair non-physical damage to such infrastructure. Analysis of the results suggested rankings from most vulnerable to least vulnerable sectors are the transportation sector, the power sector, the water supply sector and the sewerage system.

  5. Assessing the vulnerability of infrastructure to climate change on the Islands of Samoa

    Science.gov (United States)

    Fakhruddin, S. H. M.; Babel, M. S.; Kawasaki, A.

    2015-06-01

    Pacific Islanders have been exposed to risks associated with climate change. Samoa, as one of the Pacific Islands, is prone to climatic hazards that will likely increase in the coming decades, affecting coastal communities and infrastructure around the islands. Climate models do not predict a reduction of such disaster events in the future in Samoa; indeed, most predict an increase. This paper identifies key infrastructure and their functions and status in order to provide an overall picture of relative vulnerability to climate-related stresses of such infrastructure on the island. By reviewing existing reports as well as holding a series of consultation meetings, a list of critical infrastructure was developed and shared with stakeholders for their consideration. An indicator-based vulnerability model (SIVM) was developed in collaboration with stakeholders to assess the vulnerability of selected infrastructure systems on the Samoan Islands. Damage costs were extracted from the Cyclone Evan recovery needs document. Additionally, data on criticality and capacity to repair damage were collected from stakeholders. Having stakeholder perspectives on these two issues was important because (a) criticality of a given infrastructure could be viewed differently among different stakeholders, and (b) stakeholders were the best available source (in this study) to estimate the capacity to repair non-physical damage to such infrastructure. Analysis of the results suggested a ranking of sectors from the most vulnerable to least vulnerable are: the transportation sector, the power sector, the water supply sector and the sewerage system.

  6. Modeling s-t Path Availability to Support Disaster Vulnerability Assessment of Network Infrastructure

    CERN Document Server

    Matisziw, Timothy C

    2010-01-01

    The maintenance of system flow is critical for effective network operation. Any type of disruption to network facilities (arcs/nodes) potentially risks loss of service, leaving users without access to important resources. It is therefore an important goal of planners to assess infrastructures for vulnerabilities, identifying those vital nodes/arcs whose debilitation would compromise the most source-sink (s-t) interaction or system flow. Due to the budgetary limitations of disaster management agencies, protection/fortification and planning for the recovery of these vital infrastructure facilities is a logical and efficient proactive approach to reducing worst-case risk of service disruption. Given damage to a network, evaluating the potential for flow between s-t pairs requires assessing the availability of an operational s-t path. Recent models proposed for identifying infrastructure vital to system flow have relied on enumeration of all s-t paths to support this task. This paper proposes an alternative model...

  7. Coastal Vulnerability and risk assessment of infrastructures, natural and cultural heritage sites in Greece.

    Science.gov (United States)

    Alexandrakis, George; Kampanis, Nikolaos

    2016-04-01

    The majority of human activities are concentrated around coastal areas, making coastline retreat, a significant threat to coastal infrastructure, thus increasing protection cost and investment revenue losses. In this study the management of coastal areas in terms of protecting coastal infrastructures, cultural and environmental heritage sites, through risk assessment analysis is been made. The scope is to provide data for spatial planning for future developments in the coastal zone and the protection of existing ones. Also to determine the impact of coastal changes related to the loss of natural resources, agricultural land and beaches. The analysis is based on a multidisciplinary approach, combining environmental, spatial and economic data. This can be implemented by integrating the assessment of vulnerability of coasts, the spatial distribution and structural elements of coastal infrastructure (transport, tourism, and energy) and financial data by region, in a spatial database. The approach is based on coastal vulnerability estimations, considering sea level rise, land loss, extreme events, safety, adaptability and resilience of infrastructure and natural sites. It is based on coupling of environmental indicators and econometric models to determine the socio-economic impact in coastal infrastructure, cultural and environmental heritage sites. The indicators include variables like the coastal geomorphology; coastal slope; relative sea-level rise rate; shoreline erosion/accretion rate; mean tidal range and mean wave height. The anthropogenic factors include variables like settlements, sites of cultural heritage, transport networks, land uses, significance of infrastructure (e.g. military, power plans) and economic activities. The analysis in performed by a GIS application. The forcing variables are determined with the use of sub-indices related to coastal geomorphology, climate and wave variables and the socioeconomics of the coastal zone. The Greek coastline in

  8. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  9. Next-generation Algorithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Burchett, Deon L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chen, Richard Li-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phillips, Cynthia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richard, Jean-Philippe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    This report summarizes the work performed under the project project Next-Generation Algo- rithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience. The goal of the project was to improve mathematical programming-based optimization technology for in- frastructure protection. In general, the owner of a network wishes to design a network a network that can perform well when certain transportation channels are inhibited (e.g. destroyed) by an adversary. These are typically bi-level problems where the owner designs a system, an adversary optimally attacks it, and then the owner can recover by optimally using the remaining network. This project funded three years of Deon Burchett's graduate research. Deon's graduate advisor, Professor Jean-Philippe Richard, and his Sandia advisors, Richard Chen and Cynthia Phillips, supported Deon on other funds or volunteer time. This report is, therefore. essentially a replication of the Ph.D. dissertation it funded [12] in a format required for project documentation. The thesis had some general polyhedral research. This is the study of the structure of the feasi- ble region of mathematical programs, such as integer programs. For example, an integer program optimizes a linear objective function subject to linear constraints, and (nonlinear) integrality con- straints on the variables. The feasible region without the integrality constraints is a convex polygon. Careful study of additional valid constraints can significantly improve computational performance. Here is the abstract from the dissertation: We perform a polyhedral study of a multi-commodity generalization of variable upper bound flow models. In particular, we establish some relations between facets of single- and multi- commodity models. We then introduce a new family of inequalities, which generalizes traditional flow cover inequalities to the multi-commodity context. We present encouraging numerical results. We also consider the directed

  10. Critical infrastructures risk and vulnerability assessment in transportation of dangerous goods transportation by road and rail

    CERN Document Server

    Vamanu, Bogdan I; Katina, Polinpapilinho F

    2016-01-01

    This book addresses a key issue in today’s society: the safer transport of dangerous goods, taking into account people, the environment and economics. In particular, it offers a potential approach to identifying the issues, developing the models, providing the methods and recommending the tools to address the risks and vulnerabilities involved. We believe this can only be achieved by assessing those risks in a comprehensive, quantifiable and integrated manner. Examining both rail and road transportation, the book is divided into three sections, covering: the mature and accepted (by both academia and practitioners) methodology of risk assessment; the vulnerability assessment – a novel approach proposed as a vital complement to risk; guidance and support to build the tools that make methods and equations to yield: the Decision Support Systems. Throughout the book, the authors do not endeavor to provide THE solution. Instead, the book offers insightful food for thought for students, researchers, practitioner...

  11. Network Vulnerability Assessment of the U.S. Crude Pipeline Infrastructure

    OpenAIRE

    Larranaga, Michael D.

    2012-01-01

    Approved for public release; distribution is unlimited The potential for cascade failure of the U.S. crude oil pipeline infrastructure is analyzed using Model Based Risk Assessment software. The pipeline system that distributes crude oil to refineries across the United States has gained much media attention with President Obamas denial of a permit to complete a key portion the Keystone-XL pipeline that will carry oil from Alberta, Canada to the Cushing Oil Trading Hub (COTH) in Cushing, OK...

  12. A probabilistic approach for assessing the vulnerability of transportation infrastructure to flooding from sea level rise and storm surge.

    Science.gov (United States)

    Douglas, E. M.; Kirshen, P. H.; Bosma, K.; Watson, C.; Miller, S.; McArthur, K.

    2015-12-01

    There now exists a plethora of information attesting to the reality of our changing climate and its impacts on both human and natural systems. There also exists a growing literature linking climate change impacts and transportation infrastructure (highways, bridges, tunnels, railway, shipping ports, etc.) which largely agrees that the nation's transportation systems are vulnerable. To assess this vulnerability along the coast, flooding due to sea level rise and storm surge has most commonly been evaluated by simply increasing the water surface elevation and then estimating flood depth by comparing the new water surface elevation with the topographic elevations of the land surface. While this rudimentary "bathtub" approach may provide a first order identification of potential areas of vulnerability, accurate assessment requires a high resolution, physically-based hydrodynamic model that can simulate inundation due to the combined effects of sea level rise, storm surge, tides and wave action for site-specific locations. Furthermore, neither the "bathtub" approach nor other scenario-based approaches can quantify the probability of flooding due to these impacts. We developed a high resolution coupled ocean circulation-wave model (ADCIRC/SWAN) that utilizes a Monte Carlo approach for predicting the depths and associated exceedance probabilities of flooding due to both tropical (hurricanes) and extra-tropical storms under current and future climate conditions. This required the development of an entirely new database of meteorological forcing (e.g. pressure, wind speed, etc.) for historical Nor'easters in the North Atlantic basin. Flooding due to hurricanes and Nor'easters was simulated separately and then composite flood probability distributions were developed. Model results were used to assess the vulnerability of the Central Artery/Tunnel system in Boston, Massachusetts to coastal flooding now and in the future. Local and regional adaptation strategies were

  13. Facility Environmental Vulnerability Assessment

    International Nuclear Information System (INIS)

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor

  14. Facility Environmental Vulnerability Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and

  15. Assessing Storm Vulnerabilities and Resilience Strategies: A Scenario-Method for Engaging Stakeholders of Public/Private Maritime Infrastructure

    Science.gov (United States)

    Becker, A.; Burroughs, R.

    2014-12-01

    This presentation discusses a new method to assess vulnerability and resilience strategies for stakeholders of coastal-dependent transportation infrastructure, such as seaports. Much coastal infrastructure faces increasing risk to extreme events resulting from sea level rise and tropical storms. As seen after Hurricane Sandy, natural disasters result in economic costs, damages to the environment, and negative consequences on resident's quality of life. In the coming decades, tough decisions will need to be made about investment measures to protect critical infrastructure. Coastal communities will need to weigh the costs and benefits of a new storm barrier, for example, against those of retrofitting, elevating or simply doing nothing. These decisions require understanding the priorities and concerns of stakeholders. For ports, these include shippers, insurers, tenants, and ultimate consumers of the port cargo on a local and global scale, all of whom have a stake in addressing port vulnerabilities.Decision-makers in exposed coastal areas need tools to understand stakeholders concerns and perceptions of potential resilience strategies. For ports, they need answers to: 1) How will stakeholders be affected? 2) What strategies could be implemented to build resilience? 3) How effectively would the strategies mitigate stakeholder concerns? 4) What level of time and investment would strategies require? 5) Which stakeholders could/should take responsibility? Our stakeholder-based method provides answers to questions 1-3 and forms the basis for further work to address 4 and 5.Together with an expert group, we developed a pilot study for stakeholders of Rhode Island's critical energy port, the Port of Providence. Our method uses a plausible extreme storm scenario with localized visualizations and a portfolio of potential resilience strategies. We tailor a multi-criteria decision analysis tool and, through a series of workshops, we use the storm scenario, resilience strategies

  16. Assessing vulnerability

    NARCIS (Netherlands)

    Hellmuth, M.; Kabat, P.

    2003-01-01

    It is in the shantytowns and rural villages of the Third World that floods and droughts strike hardest and deepest. Vulnerability to the vagaries of climate depends not only on location, but, crucially, on the capacity of the victims to cope with the impacts of extreme weather. So, where are the peo

  17. Vulnerability of critical infrastructures : identifying critical nodes.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  18. 电网重要基础设施自然灾害脆弱性评价研究%Natural Disaster Vulnerability Assessment of Important Grid Infrastructure

    Institute of Scientific and Technical Information of China (English)

    门永生; 朱朝阳; 于振; 吴睦远; 何真珍

    2014-01-01

    Important grid infrastructures exhibit significant vulnerability in case of natural disasters.Accord-ing to the characteristics of impact of typical natural disasters on the important grid facilities,a vulnerability evalua-tion index system,including 3 levels of static and dynamic and as a total of 40 index,is built for important grid in-frastructure based on 8 kinds of typical natural disasters.Based on the static index,the index evaluation method is proposed,the value range of each index is determined,the evaluation grade standards are determined,and the e-valuation process and calculation rules of the composite index are given.It is shown in example analysis that the natural disaster vulnerability index of a hub substation,an important infrastructure of a grid,is 155,of medium vulnerability grade,and the lightning vulnerability index is the highest as 72.The evaluation method not only can be used in comparative sequencing of natural disaster vulnerability of similar important grid infrastructures,and can also be find out the weak links of the infrastructures through the evaluation,therefore targeted preventive measures could be taken accordingly to improve the ability of disaster prevention and mitigation and guarantee safe operation of the grid system.%电网重要基础设施对自然灾害表现出较为显著的脆弱性。针对典型自然灾害对电网重要设施影响的特征,构建了基于8类典型自然灾害的电网重要基础设施脆弱性评价指标体系,包括静态和动态3级共40个指标。针对静态指标提出了对电网重要基础设施进行评价的指数评价方法,确定各指数的取值范围,划分评价等级标准,给出了评价流程及综合指数的计算规则。实例分析表明某电网重要基础设施---枢纽变电站自然灾害脆弱性综合指数为155,脆弱性等级为中等,其中雷击脆弱性指数最高为72。基于该评价方法不仅可用于同类电网重要基础设施自

  19. Vulnerability Assessments in Ethical Hacking

    OpenAIRE

    Ashiqur Rahman ,; Md. SarwarAlam Rasel; Asaduzzaman Noman; Shakh Md. Alimuzjaman Alim

    2016-01-01

    Ethical hackers use the same methods and techniques to test and bypass a system's defenses as their less-principled counterparts, but rather than taking advantage of any vulnerabilities found, they document them and provide actionable advice on how to fix them so the organization can improve its overall security. The purpose of ethical hacking is to evaluate the security of a network or system's infrastructure. It entails finding and attempting to exploit any vulnerabilities to de...

  20. Areas vulnerable to natural disasters and damage estimation of infrastructure in Busan, Korea

    Institute of Scientific and Technical Information of China (English)

    JEON Sang-Soo

    2014-01-01

    Since the damages caused by disasters associated with climate anomalies and the diversification of the social structure increase every year, an efficient management system associated with a damage assessment of the areas vulnerable to disasters is demanded to prevent or mitigate the damages to infrastructure. The areas vulnerable to disasters in Busan, located at southeastern part of Korea, were estimated based on historical records of damages and a risk assessment of the infrastructure was performed to provide fundamental information prior to the establishment of the real-time monitoring system for infrastructure and establish disaster management system. The results are illustrated by using geographical information system (GIS) and provide the importance of the roadmap for comprehensive and specific strategy to manage natural disasters.

  1. Managing a network vulnerability assessment

    CERN Document Server

    Peltier, Thomas R; Blackley, John A

    2003-01-01

    Managing a Network Vulnerability Assessment provides a formal framework for finding and eliminating network security threats, ensuring that no vulnerabilities are overlooked. This thorough overview focuses on the steps necessary to successfully manage an assessment, including the development of a scope statement, the understanding and proper use of assessment methodology, the creation of an expert assessment team, and the production of a valuable response report. The book also details what commercial, freeware, and shareware tools are available, how they work, and how to use them.

  2. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, G; Abhayaratne, P; Bale, J; Bhattacharjee, A; Blair, C; Hansell, L; Jayne, A; Kosal, M; Lucas, S; Moran, K; Seroki, L; Vadlamudi, S

    2006-12-04

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CI facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that

  3. Karst groundwaters vulnerability assessment methods

    Directory of Open Access Journals (Sweden)

    Marius Vlaicu

    2008-01-01

    Full Text Available A major socio-economic and scientific issue is represented by karst hydrostructures vulnerability mapping, which qualitatively and quantitatively highlights their exposure degree. Two research trends have been developed, one taking into account the environment features exclusively – the aquifer and protective cover type, permeability, aquifer depth, recharge rate, etc. (intrinsic vulnerability, the other focused on the types and quantities of pollutants (specific vulnerability. MAGIERA (2000 described and compared 69 methods, grouped in 5 types: hydrogeological complex and setting methods, index models and analogical relations (AF, AVI, Ekv, ΔhT’, parametric system models (DRASTIC, DWSAP, SINTACS, EPPNA, GOD, EPIK, REKS, PI, GSI, GLA, mathematical models (VULK, FAVA and statistical methods (CALVUL. However, it is also possible to classify the methods on the basis of other criteria, such as scale (local, regional, national, aim (land use planning, protection zoning, site assessment and target (source or resource vulnerability.

  4. Vulnerability Assessments in Ethical Hacking

    Directory of Open Access Journals (Sweden)

    Ashiqur Rahman ,

    2016-06-01

    Full Text Available Ethical hackers use the same methods and techniques to test and bypass a system's defenses as their less-principled counterparts, but rather than taking advantage of any vulnerabilities found, they document them and provide actionable advice on how to fix them so the organization can improve its overall security. The purpose of ethical hacking is to evaluate the security of a network or system's infrastructure. It entails finding and attempting to exploit any vulnerabilities to determine whether unauthorized access or other malicious activities are possible. Vulnerabilities tend to be found in poor or improper system configuration, known and unknown hardware or software flaws, and operational weaknesses in process or technical countermeasures. One of the first examples of ethical hacking occurred in the 1970s, when the United States government used groups of experts called "red teams" to hack its own computer systems. It has become a sizable sub-industry within the information security market and has expanded to also cover the physical and human elements of an organization's defenses. A successful test doesn't necessarily mean a network or system is 100% secure, but it should be able to withstand automated attacks and unskilled hackers.

  5. Transdisciplinary knowledge integration : cases from integrated assessment and vulnerability assessment

    NARCIS (Netherlands)

    Hinkel, J.

    2008-01-01

    Keywords: climate change, integrated assessment, knowledge integration, transdisciplinary research, vulnerability, vulnerability assessment. This thesis explores how transdisciplinary knowledge integration can be facilitated in the context of integrated assessments and vulnerability assessments of

  6. Assessing European wild fire vulnerability

    Science.gov (United States)

    Oehler, F.; Oliveira, S.; Barredo, J. I.; Camia, A.; Ayanz, J. San Miguel; Pettenella, D.; Mavsar, R.

    2012-04-01

    Wild fire vulnerability is a measure of potential socio-economic damage caused by a fire in a specific area. As such it is an important component of long-term fire risk management, helping policy-makers take informed decisions about adequate expenditures for fire prevention and suppression, and to target those regions at highest risk. This paper presents a first approach to assess wild fire vulnerability at the European level. A conservative approach was chosen that assesses the cost of restoring the previous land cover after a potential fire. Based on the CORINE Land Cover, a restoration cost was established for each land cover class at country level, and an average restoration time was assigned according to the recovery capacity of the land cover. The damage caused by fire was then assessed by discounting the cost of restoring the previous land cover over the restoration period. Three different vulnerability scenarios were considered assuming low, medium and high fire severity causing different levels of damage. Over Europe, the potential damage of wild land fires ranges from 10 - 13, 732 Euro*ha-1*yr-1 for low fire severity, 32 - 45,772 Euro*ha-1*yr-1 for medium fire severity and 54 - 77,812 Euro*ha-1*yr-1 for high fire severity. The least vulnerable are natural grasslands, moors and heathland and sclerophyllous vegetation, while the highest cost occurs for restoring broad-leaved forest. Preliminary validation comparing these estimates with official damage assessments for past fires shows reasonable results. The restoration cost approach allows for a straightforward, data extensive assessment of fire vulnerability at European level. A disadvantage is the inherent simplification of the evaluation procedure with the underestimation of non-markets goods and services. Thus, a second approach has been developed, valuing individual wild land goods and services and assessing their annual flow which is lost for a certain period of time in case of a fire event. However

  7. Volcanic risk assessment: Quantifying physical vulnerability in the built environment

    Science.gov (United States)

    Jenkins, S. F.; Spence, R. J. S.; Fonseca, J. F. B. D.; Solidum, R. U.; Wilson, T. M.

    2014-04-01

    This paper presents structured and cost-effective methods for assessing the physical vulnerability of at-risk communities to the range of volcanic hazards, developed as part of the MIA-VITA project (2009-2012). An initial assessment of building and infrastructure vulnerability has been carried out for a set of broadly defined building types and infrastructure categories, with the likelihood of damage considered separately for projectile impact, ash fall loading, pyroclastic density current dynamic pressure and earthquake ground shaking intensities. In refining these estimates for two case study areas: Kanlaon volcano in the Philippines and Fogo volcano in Cape Verde, we have developed guidelines and methodologies for carrying out physical vulnerability assessments in the field. These include identifying primary building characteristics, such as construction material and method, as well as subsidiary characteristics, for example the size and prevalence of openings, that may be important in assessing eruption impacts. At-risk buildings around Kanlaon were found to be dominated by timber frame buildings that exhibit a high vulnerability to pyroclastic density currents, but a low vulnerability to failure from seismic shaking. Around Fogo, the predominance of unreinforced masonry buildings with reinforced concrete slab roofs suggests a high vulnerability to volcanic earthquake but a low vulnerability to ash fall loading. Given the importance of agriculture for local livelihoods around Kanlaon and Fogo, we discuss the potential impact of infrastructure vulnerability for local agricultural economies, with implications for volcanic areas worldwide. These methodologies and tools go some way towards offering a standardised approach to carrying out future vulnerability assessments for populated volcanic areas.

  8. Decision Aid Tool and Ontology-Based Reasoning for Critical Infrastructure Vulnerabilities and Threats Analysis

    Science.gov (United States)

    Choraś, Michał; Flizikowski, Adam; Kozik, Rafał; Hołubowicz, Witold

    In this paper, a decision aid tool (DAT) for Critical Infrastructure threats analysis and ranking is presented. We propose the ontology-based approach that provides classification, relationships and reasoning about vulnerabilities and threats of the critical infrastructures. Our approach is a part of research within INSPIRE project for increasing security and protection through infrastructure resilience.

  9. Identifying and Addressing Infrastructure Vulnerabilities Under Climate Change in Data-Scarce Regions: the Role of Conservation

    Science.gov (United States)

    Shortridge, J.; Guikema, S.

    2015-12-01

    Climate change is expected to have dramatic impacts on built infrastructure, particularly in the water resources sector where infrastructure tends to have long lifespans and performance is highly sensitive to climate conditions. However, adapting to water resources infrastructure to climate change is challenging due to the considerable uncertainty surrounding projections of future hydrologic conditions. This has prompted the development of a number of approaches aimed at supporting planning under "deep-uncertainty" which cannot be represented probabilistically. One such method is robust decision making (RDM), which uses simulation models to assess how systems perform over a wide range of future scenarios and identify vulnerable scenarios where system performance is unacceptable. With the Lake Tana basin in Ethiopia as a case study, we use an RDM analysis to assess the vulnerability of planned irrigation infrastructure to climate change and environmental uncertainties related to data limitations. We find that planned infrastructure is vulnerable not only to climate change, but also to poorly characterized environmental conditions today. This suggests areas for research that could provide important insights into the long-term sustainability and effectiveness of the planned projects. Additionally, we evaluate the degree to which methods such as irrigation efficiency and upstream land conservation can improve the long-term performance of the proposed infrastructure. In doing so, we demonstrate how robust decision frameworks can provide decision support in data-scarce regions where more complex modeling and analysis may be impractical.

  10. Scenarios for coastal vulnerability assessment

    Science.gov (United States)

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Hay, John; Wong, Poh Poh; Nurse, Leonard; Wolanski, Eric; McLusky, Donald S.

    2011-01-01

    Coastal vulnerability assessments tend to focus mainly on climate change and especially on sea-level rise. Assessment of the influence of nonclimatic environmental change or socioeconomic change is less well developed and these drivers are often completely ignored. Given that the most profound coastal changes of the twentieth century due to nonclimate drivers are likely to continue through the twenty-first century, this is a major omission. It may result in not only overstating the importance of climate change but also overlooking significant interactions of climate change and other drivers. To support the development of policies relating to climate change and coastal management, integrated assessments of climatic change in coastal areas are required, including the effects of all the relevant drivers. This chapter explores the development of scenarios (or "plausible futures") of relevant climate and nonclimate drivers that can be used for coastal analysis, with an emphasis on the nonclimate drivers. It shows the importance of analyzing the impacts of climate change and sea-level rise in a broader context of coastal change and all its drivers. This will improve the analysis of impacts, key vulnerabilities, and adaptation needs and, hence, inform climate and coastal policy. Stakeholder engagement is important in the development of scenarios, and the underlying assumptions need to be explicit, transparent, and open to scientific debate concerning their uncertainties/realism and likelihood.

  11. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, G; Abhayaratne, P; Bale, J; Bhattacharjee, A; Blair, C; Hansell, L; Jayne, A; Kosal, M; Lucas, S; Moran, K; Seroki, L; Vadlamudi, S

    2006-12-04

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CI facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that

  12. Assessing the Security Vulnerabilities of Correctional Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.S.; Spencer, D.S.

    1998-10-27

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  13. Risk assessment methodologies for Critical Infrastructure Protection. Part I: A state of the art

    OpenAIRE

    Giannopoulos, Georgios; FILIPPINI ROBERTO; SCHIMMER Muriel

    2012-01-01

    Effective risk assessment methodologies are the cornerstone of a successful Critical Infrastructure Protection program. The extensive number of risk assessment methodologies for critical infrastructures clearly supports this argument. Risk assessment is indispensable in order to identify threats, assess vulnerabilities and evaluate the impact on assets, infrastructures or systems taking into account the probability of the occurrence of these threats. This is a critical element that differenti...

  14. Integrating socio-economic and infrastructural dimension to reveal hazard vulnerability of coastal districts

    Science.gov (United States)

    Mazumdar, Jublee; Paul, Saikat

    2015-04-01

    Losses of life and property due to natural hazards have intensified in the past decade, motivating an alteration of disaster management away from simple post event resettlement and rehabilitation. The degree of exposure to hazard for a homogeneous population is not entirely reliant upon nearness to the source of hazard event. Socio-economic factors and infrastructural capability play an important role in determining the vulnerability of a place. This study investigates the vulnerability of eastern coastal states of India from tropical cyclones. The record of past hundred years shows that the physical vulnerability of eastern coastal states is four times as compared to the western coastal states in terms of frequency and intensity of tropical cyclones. Nevertheless, these physical factors played an imperative role in determining the vulnerability of eastern coast. However, the socio-economic and infrastructural factors influence the risk of exposure exponentially. Inclusion of these indicators would provide better insight regarding the preparedness and resilience of settlements to hazard events. In this regard, the present study is an effort to develop an Integrated Vulnerability Model (IVM) based on socio-economic and infrastructural factors for the districts of eastern coastal states of India. A method is proposed for quantifying the socio-economic and infrastructural vulnerability to tropical cyclone in these districts. The variables included in the study are extracted from Census of India, 2011 at district level administrative unit. In the analysis, a large number of variables are reduced to a smaller number of factors by using principal component analysis that represents the socio-economic and infrastructure vulnerability to tropical cyclone. Subsequently, the factor scores in socio-economic Vulnerability Index (SeVI) and Infrastructure Vulnerability Index (InVI) are standardized from 0 to 1, indicating the range from low to high vulnerability. The factor

  15. Utilizing Semantic Big Data for realizing a National-scale Infrastructure Vulnerability Analysis System

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Supriya [ORNL; Shankar, Mallikarjun [ORNL

    2016-01-01

    Critical Infrastructure systems(CIs) such as energy, water, transportation and communication are highly interconnected and mutually dependent in complex ways. Robust modeling of CIs interconnections is crucial to identify vulnerabilities in the CIs. We present here a national-scale Infrastructure Vulnerability Analysis System (IVAS) vision leveraging Se- mantic Big Data (SBD) tools, Big Data, and Geographical Information Systems (GIS) tools. We survey existing ap- proaches on vulnerability analysis of critical infrastructures and discuss relevant systems and tools aligned with our vi- sion. Next, we present a generic system architecture and discuss challenges including: (1) Constructing and manag- ing a CI network-of-networks graph, (2) Performing analytic operations at scale, and (3) Interactive visualization of ana- lytic output to generate meaningful insights. We argue that this architecture acts as a baseline to realize a national-scale network based vulnerability analysis system.

  16. Critical infrastructure systems of systems assessment methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Sholander, Peter E.; Darby, John L.; Phelan, James M.; Smith, Bryan; Wyss, Gregory Dane; Walter, Andrew; Varnado, G. Bruce; Depoy, Jennifer Mae

    2006-10-01

    Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies that separately consider physical security and cyber security. This research has developed a risk assessment methodology that explicitly accounts for both physical and cyber security, while preserving the traditional security paradigm of detect, delay, and respond. This methodology also accounts for the condition that a facility may be able to recover from or mitigate the impact of a successful attack before serious consequences occur. The methodology uses evidence-based techniques (which are a generalization of probability theory) to evaluate the security posture of the cyber protection systems. Cyber threats are compared against cyber security posture using a category-based approach nested within a path-based analysis to determine the most vulnerable cyber attack path. The methodology summarizes the impact of a blended cyber/physical adversary attack in a conditional risk estimate where the consequence term is scaled by a ''willingness to pay'' avoidance approach.

  17. Chemical and radiological vulnerability assessment in urban areas

    Directory of Open Access Journals (Sweden)

    Stojanović Božidar

    2006-01-01

    Full Text Available Cities and towns are faced with various types of threat from the extraordinary events involving chemical and radiological materials as exemplified by major chemical accidents, radiological incidents, fires, explosions, traffic accidents, terrorist attacks, etc. On the other hand, many sensitive or vulnerable assets exist within cities, such as: settlements, infrastructures, hospitals, schools, churches, businesses, government, and others. Besides emergency planning, the land use planning also represents an important tool for prevention or reduction of damages on people and other assets due to unwanted events. This paper considers development of method for inclusion vulnerability assessment in land use planning with objective to assess and limit the consequences in cities of likely accidents involving hazardous materials. We made preliminary assessment of criticality and vulnerability of the assets within Belgrade city area in respect to chemical sites and transportation roads that can be exposed to chemical accidents, or terrorist attacks.

  18. Spatial risk assessment for critical network infrastructure using sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    Michael M·derl; Wolfgang Rauch

    2011-01-01

    The presented spatial risk assessment method allows for managing critical network infrastructure in urban areas under abnormal and future conditions caused e.g.,by terrorist attacks,infrastructure deterioration or climate change.For the spatial risk assessment,vulnerability maps for critical network infrastructure are merged with hazard maps for an interfering process.Vulnerability maps are generated using a spatial sensitivity analysis of network transport models to evaluate performance decrease under investigated thread scenarios.Thereby parameters are varied according to the specific impact of a particular threat scenario.Hazard maps are generated with a geographical information system using raster data of the same threat scenario derived from structured interviews and cluster analysis of events in the past.The application of the spatial risk assessment is exemplified by means of a case study for a water supply system,but the principal concept is applicable likewise to other critical network infrastructure.The aim of the approach is to help decision makers in choosing zones for preventive measures.

  19. Assessing vulnerability of urban African communities

    DEFF Research Database (Denmark)

    Karlsson Nyed, Patrik; Jean-Baptiste, Nathalie; Herslund, Lise Byskov

    2014-01-01

    East African cities are in the process of assessing their vulnerabilities to climate change, but face difficulties in capturing the complexity of the various facets of vulnerability. This holistic approach, captures four different dimensions of vulnerability to flooding - Assets, Institutions......, Attitudes and the Physical environment, with Dar es Salaam, Tanzania, as a case city. The methodology is actively involving the expertise of the stakeholders, and uses GIS to analyze and compile the data. The final output is presented as a comprehensible map, delineating the varying vulnerability to...

  20. Vulnerability of electricity transmission infrastructure to natural hazards

    Science.gov (United States)

    Komendantova, Nadejda

    2016-04-01

    Electricity transmission system is a very complex system, which consists of several elements, such as overhead lines, substations and transformers, covers wide areas, is interconnected with several networks with numerous inter-dependencies. This highly integrated system is exposed to several hazards, leading to interruption of power supply. Natural hazards, such as an increased frequency of extreme weather events, including storms, icing, wet snow deposits, lighting, floods, avalanches, rock falls and landslides or changing air temperature have effects on transmission and lead to destruction of this infrastructure, which is also critical for society as it guarantees functioning of vital for society services. The reliability of critical electricity transmission infrastructure depends on its ability to ensure normal operation, to limit number of incidents and to avoid major incidents and to limit consequences of major incidents. The concept of reliability is closely connected with the concept of resilience, which is understood, in general, as the ability of a system to react and recover from anticipated disturbances and events. In regards to electricity transmission resilience is the ability of the power system to adapt, self-organize and recover or achieve the level even higher than those before the shock. This paper reviews three major natural hazards disasters, which resulted in significant blackouts in Europe. The first one is the 2003 blackout in Italy, which was caused by flash-over from trees. The second one is the 2003 blackout in Sweden, which was caused by rainstorms. The third one is the 2005 blackout in Germany, which was caused by wet snow. The inter-comparative analysis of these events allowed us to develop recommendations on electricity transmission network resilience.

  1. ICT In Bits and Pieces on the vulnerability of information-infrastructures,

    NARCIS (Netherlands)

    Luiijf, H.A.M.

    2001-01-01

    Information operations studies in the Netherlands made the Dutch Ministry of Defence (MoD) aware that both military and public information-infrastructures can be target for hostile information operations. As a result, MoD stimulated discussions within the Dutch government on the threat to and vulner

  2. Assessing human vulnerability: Daytime residential distribution as a vulnerability indicator

    Science.gov (United States)

    Gokesch, Karin; Promper, Catrin; Papathoma-Köhle, Maria; Glade, Thomas

    2014-05-01

    Natural hazard risk management is based on detailed information on potential impacts of natural hazards. Especially concerning fast onset hazards such as flash floods, earthquakes but also debris flows and landslides, knowing potential hotspots of impact to both, assets and human lives is essential. This information is important for emergency management and decision making in the response phase of the disaster management cycle. Emergency managers are in need of information regarding not only the number of humans being potentially affected but also the respective vulnerability of the group affected based on characteristics such as age, income, health condition, mobility, etc. regarding a certain hazard. The analysis presented focuses on the distribution of the population, assuming a certain pattern of people in a certain radius of action. The method applied is based on a regular pattern of movement of different groups of people and a pattern of presence in certain units, e.g. schools, businesses or residential buildings. The distribution is calculated on a minimum of available data including the average household size, as well as information on building types. The study area is located in the Southwest of Lower Austria, Austria. The city of Waidhofen/Ybbs can be regarded as a regional center providing basic infrastructure, shops and schools. The high concentration of buildings combining shops and residential units leads to a high damage potential throughout the whole study area. The presented results indicate the population distribution within the study area on an average working day. It is clear that explicitly high numbers of people are located in specific buildings (e.g. schools and hospitals) which also include highly vulnerable groups especially to fast onset hazards. The results provide emergency services with the information that they need in order to intervene directly where large numbers of victims or people that need to be evacuated are located. In this

  3. Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    Science.gov (United States)

    Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.

    2016-10-27

    With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pilemounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all humanuse of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see http://dx.doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis

  4. Concepts to Analyze the Vulnerability of Critical Infrastructures - Taking into account Cybernetics

    Directory of Open Access Journals (Sweden)

    Frédéric Petit

    2010-02-01

    Full Text Available Critical Infrastructures (CIs are complex systems. For their operations, these infrastructures are increasingly using Supervisory Control And Data Acquisition (SCADA systems. Management practices are therefore highly dependent on the cyber tools, but also on the data needed to make these tools work. Therefore, CIs are greatly vulnerable to degradation of data. In this context, this paper aims at presenting the fundamentals of a method for analyzing the vulnerabilities of CIs towards the use of cyber data. By characterizing cyber vulnerability of CIs, it will be possible to improve the resilience of these networks and to foster a proactive approach to risk management not only by considering cybernetics from a cyber-attack point of view but also by considering the consequences of the use of corrupted data.

  5. Vulnerability assessment at a national level in Georgia

    Science.gov (United States)

    Tsereteli, N.; Arabidze, V.; Varazanashvili, O.; Gugeshashvili, T.

    2012-04-01

    Vulnerability assessment at a national level in Georgia Nino Tsereteli, Vakhtang Arabidze, Otar Varazanashvili, Tengiz Gugeshashvili The risk always exists when cities are built on. Population growth in cities and urbanization in natural hazard-prone zones leads to infrastructure expansion. The goal of the society is to construct natural hazards resistant infrastructure and minimize the expected losses. This is a complicated task as there is always knowledge deficiency on real seismic hazard and vulnerability. Assessment of vulnerability is vital in risk analysis, as vulnerability is defined in many different ways. Work presented here mostly deals with assessment of infrastructure's and population vulnerability at national level in Georgia. This work was initiated by NATO SFP project "seismic Hazard and Risk Assessment for Southern Caucasus - Eastern Turkey Energy Corridors" and the two work packages WP4 (seismic risk) and WP5 (city scenarios) of risk module of EMME (Earthquake Model of the Middle East Region) project. First step was creation databases (inventory) of elements at risk in GIS. Element at risk were the buildings, population, pipelines. The inventories was studied and Created in GIS for the following categories: Building material, number of stories, number of entrances, condition of building, building period. For pipelines pipe tipe (continous or segmented), material, pipe diameter. Very important is to estimate the initial cost of building for assessment of economic losses. From this purpose the attempt was done and the algorithm of this estimation were prepared taking into account obtained the inventory. Build quality, reliability and durability are of special importance to corresponding state agencies and include different aesthetic, engineering, practical, social, technological and economical aspects. The necessity that all of these aspects satisfy existing normative requirements becomes evident as the building and structures come into exploitation

  6. Determining Vulnerability Importance in Environmental Impact Assessment

    International Nuclear Information System (INIS)

    The concept of vulnerability has been used to describe the susceptibility of physical, biotic, and social systems to harm or hazard. In this sense, it is a tool that reduces the uncertainties of Environmental Impact Assessment (EIA) since it does not depend exclusively on the value assessments of the evaluator, but rather is based on the environmental state indicators of the site where the projects or activities are being carried out. The concept of vulnerability thus reduces the possibility that evaluators will subjectively interpret results, and be influenced by outside interests and pressures during projects. However, up until now, EIA has been hindered by a lack of effective methods. This research study analyzes the concept of vulnerability, defines Vulnerability Importance and proposes its inclusion in qualitative EIA methodology. The method used to quantify Vulnerability Importance is based on a set of environmental factors and indicators that provide a comprehensive overview of the environmental state. The results obtained in Colombia highlight the usefulness and objectivity of this method since there is a direct relation between this value and the environmental state of the departments analyzed. - Research Highlights: ► The concept of vulnerability could be considered defining Vulnerability Importance included in qualitative EIA methodology. ► The use of the concept of environmental vulnerability could reduce the subjectivity of qualitative methods of EIA. ► A method to quantify the Vulnerability Importance proposed provides a comprehensive overview of the environmental state. ► Results in Colombia highlight the usefulness and objectivity of this method.

  7. European risk assessment methodology for critical infrastructures

    NARCIS (Netherlands)

    Klaver, M.H.A.; Luiijf, H.A.M.; Nieuwenhuijs, A.H.; Cavenne, F.; Ulisse, A.; Bridegeman, G.

    2008-01-01

    Most risk assessment methodologies aim at the risk at the level of an individual organization or company. The European Union commissioned a study to define the elements for a uniform and scalable risk assessment methodology which takes into account critical infrastructure dependencies across organiz

  8. Development on Vulnerability Assessment Methods of PPS

    Institute of Scientific and Technical Information of China (English)

    MIAO; Qiang; ZHANG; Wen-liang; BU; Li-xin; YIN; Hong-he; LI; Xin-jun; FANG; Xin

    2013-01-01

    Through investigating information from domestic and abroad,joint the domestic assessment experience,we present a set of physical protection system(PPS)vulnerability assessment methods for on-operating nuclear power plants and for on-designing nuclear facilities.The methods will help to strengthen and upgrade the security measures of the nuclear facilities,improve the effectiveness and

  9. Salt vulnerability assessment methodology for urban streams

    Science.gov (United States)

    Betts, A. R.; Gharabaghi, B.; McBean, E. A.

    2014-09-01

    De-icing agents such as road salts while used for winter road maintenance can cause negative effects on urban stream water quality and drinking water supplies. A new methodology using readily available spatial data to identify Salt Vulnerable Areas (SVAs) for urban streams is used to prioritize implementation of best management practices. The methodology calculates the probable chloride concentration statistics at specified points in the urban stream network and compares the results with known aquatic species exposure tolerance limits to characterize the vulnerability scores. The approach prioritizes implementation of best management practices to areas identified as vulnerable to road salt. The vulnerability assessment is performed on seven sites in four watersheds in the Greater Toronto Area and validated using the Hanlon Creek watershed in Guelph. The mean annual in-stream chloride concentration equation uses readily available spatial data - with province-wide coverage - that can be easily used in any urban watershed.

  10. Methodology for prioritizing cyber-vulnerable critical infrastructure equipment and mitigation strategies.

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Lon Andrew; Stinebaugh, Jennifer A.

    2010-04-01

    The Department of Homeland Security (DHS), National Cyber Security Division (NSCD), Control Systems Security Program (CSSP), contracted Sandia National Laboratories to develop a generic methodology for prioritizing cyber-vulnerable, critical infrastructure assets and the development of mitigation strategies for their loss or compromise. The initial project has been divided into three discrete deliverables: (1) A generic methodology report suitable to all Critical Infrastructure and Key Resource (CIKR) Sectors (this report); (2) a sector-specific report for Electrical Power Distribution; and (3) a sector-specific report for the water sector, including generation, water treatment, and wastewater systems. Specific reports for the water and electric sectors are available from Sandia National Laboratories.

  11. Urban flood risk mitigation: from vulnerability assessment to resilient city

    Science.gov (United States)

    Serre, D.; Barroca, B.

    2009-04-01

    some research activities have been undertaken, there are no specific methods and tools to assess flood vulnerability at the scale of the city. Indeed, by studying literature we can list some vulnerability indicators and a few Geographic Information System (GIS) tools. But generally indicators and GIS are not developed specifically at the city scale: often a regional scale is used. Analyzing vulnerability at this scale needs more accurate and formalized indicators and GIS tools. The second limit of existing GIS is temporal: even if vulnerability could be assessed and localized through GIS, such tools cannot assist city managers in their decision to efficiency recover after a severe flood event. Due to scale and temporal limits, methods and tools available to assess urban vulnerability need large improvements. Talking into account all these considerations and limits, our research is focusing on: • vulnerability indicators design; • recovery scenarios design; • GIS for city vulnerability assessment and recovery scenarios. Dealing with vulnerability indicators, the goal is to design a set of indicators of city sub systems. Sub systems are seen like assets of high value and complex and interdependent infrastructure networks (i.e. power supplies, communications, water, transport etc.). The infrastructure networks are critical for the continuity of economic activities as well as for the people's basic living needs. Their availability is also required for fast and effective recovery after flood disasters. The severity of flood damage therefore largely depends on the degree that both high value assets and critical urban infrastructure are affected, either directly or indirectly. To face the challenge of designing indicators, a functional model of the city system (and sub systems) has to be built to analyze the system response to flood solicitation. Then, a coherent and an efficient set of vulnerability of indicators could be built up. With such methods city stakeholders

  12. Assessing tsunami vulnerability, an example from Herakleio, Crete

    Science.gov (United States)

    Papathoma, M.; Dominey-Howes, D.; Zong, Y.; Smith, D.

    Recent tsunami have caused massive loss of life, destruction of coastal infrastructures and disruption to economic activity. To date, tsunami hazard studies have concentrated on determining the frequency and magnitude of events and in the production of simplistic flood maps. In general, such maps appear to have assumed a uniform vulnerability of population, infrastructure and business. In reality however, a complex set of factors interact to produce a pattern of vulnerability that varies spatially and temporally. A new vulnerability assessment approach is described, that incorporates multiple factors (e.g. parameters relating to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. The new methodology is applied on a coastal segment in Greece and, in particular, in Crete, westof the city of Herakleio. The results are presented within a Geographic Information System (GIS). The application of GIS ensures the approach is novel for tsunami studies, since it permits interrogation of the primary database by several different end-users. For example, the GIS may be used: (1) to determine immediate post-tsunami disaster response needs by the emergency services; (2) to preplan tsunami mitigation measures by disaster planners; (3) as a tool for local planning by the municipal authorities or; (4) as a basis for catastrophe modelling by insurance companies. We show that population density varies markedly with the time of the year and that 30% of buildings within the inundation zone are only single story thus increasing the vulnerability of their occupants. Within the high inundation depth zone, 11% of buildings are identified as in need of reinforcement and this figure rises to 50% within the medium inundation depth zone. 10% of businesses are located within the high inundation depth zone and these may need to consider their level of insurance cover to protect against primary building damage, contents loss and business interruption

  13. 6 CFR 27.215 - Security vulnerability assessments.

    Science.gov (United States)

    2010-01-01

    ...-risk, the facility must complete a Security Vulnerability Assessment. A Security Vulnerability... 6 Domestic Security 1 2010-01-01 2010-01-01 false Security vulnerability assessments. 27.215... provided in § 27.235, a covered facility must complete the Security Vulnerability Assessment through...

  14. A security assessment methodology for critical infrastructures

    NARCIS (Netherlands)

    Caselli, Marco; Kargl, Frank; Hämmerli, Bernhard M.; Lopez, Javier

    2014-01-01

    Interest in security assessment and penetration testing techniques has steadily increased. Likewise, security of industrial control systems (ICS) has become more and more important. Very few methodologies directly target ICS and none of them generalizes the concept of "critical infrastructures pente

  15. NGNP Infrastructure Readiness Assessment: Consolidation Report

    Energy Technology Data Exchange (ETDEWEB)

    Brian K Castle

    2011-02-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  16. Vulnerability assessment using two complementary analysis tools

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, W.K.

    1993-07-01

    To analyze the vulnerability of nuclear materials to theft or sabotage, Department of Energy facilities have been using, since 1989, a computer program called ASSESS, Analytic System and Software for Evaluation of Safeguards and Security. During the past year Sandia National Laboratories has begun using an additional program, SEES, Security Exercise Evaluation Simulation, enhancing the picture of vulnerability beyond what either program achieves alone. Assess analyzes all possible paths of attack on a target and, assuming that an attack occurs, ranks them by the probability that a response force of adequate size can interrupt the attack before theft or sabotage is accomplished. A Neutralization module pits, collectively, a security force against the interrupted adversary force in a fire fight and calculates the probability that the adversaries are defeated. SEES examines a single scenario and simulates in detail the interactions among all combatants. its output includes shots fired between shooter and target, and the hits and kills. Whereas ASSESS gives breadth of analysis, expressed statistically and performed relatively quickly, SEES adds depth of detail, modeling tactical behavior. ASSESS finds scenarios that exploit the greatest weakness of a facility. SEES explores these scenarios to demonstrate in detail how various tactics to nullify the attack might work out. Without ASSESS to find the facility weakness, it is difficult to focus SEES objectively on scenarios worth analyzing. Without SEES to simulate the details of response vs. adversary interaction, it is not possible to test tactical assumptions and hypotheses. Using both programs together, vulnerability analyses achieve both breadth and depth.

  17. Rapid Assessment of Seismic Vulnerability in Palestinian Refugee Camps

    Science.gov (United States)

    Al-Dabbeek, Jalal N.; El-Kelani, Radwan J.

    Studies of historical and recorded earthquakes in Palestine demonstrate that damaging earthquakes are occurring frequently along the Dead Sea Transform: Earthquake of 11 July 1927 (ML 6.2), Earthquake of 11 February 2004 (ML 5.2). In order to reduce seismic vulnerability of buildings, losses in lives, properties and infrastructures, an attempt was made to estimate the percentage of damage degrees and losses at selected refugee camps: Al Ama`ri, Balata and Dhaishe. Assessing the vulnerability classes of building structures was carried out according to the European Macro-Seismic Scale 1998 (EMS-98) and the Fedral Emergency Management Agency (FEMA). The rapid assessment results showed that very heavy structural and non structural damages will occur in the common buildings of the investigated Refugee Camps (many buildings will suffer from damages grades 4 and 5). Bad quality of buildings in terms of design and construction, lack of uniformity, absence of spaces between the building and the limited width of roads will definitely increase the seismic vulnerability under the influence of moderate-strong (M 6-7) earthquakes in the future.

  18. Assessing Labour Market Vulnerability among Young People

    OpenAIRE

    Theo Sparreboom; Lubna Shahnaz

    2007-01-01

    Labour market performance in Pakistan has improved markedly in recent years. This paper examines the extent to which young people have benefited from this improvement, using the labour market vulnerability framework that was recently introduced by the ILO. This framework can be used to assess the difficulties young people face on the road to decent employment, and may also serve as a basis for the development of appropriate policies and interventions. Drawing on empirical evidence from variou...

  19. DETERMINANTS OF RISK ASSESSMENT PROCESS IN CRITICAL ENERGY INFRASTRUCTURE

    OpenAIRE

    Przemysław Borkowski

    2016-01-01

    Article deals with the problem of risk assessment in critical energy infrastructure. Firstly the critical infrastructure in energy sector is discussed than risk identification methodology for application to critical infrastructure is proposed. Specific conditions resulting from features of critical infrastructure are addressed in the context of risk assessment procedure. The limits of such a procedure are outlined and critical factors influencing different stages of risk assessment process a...

  20. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    Energy Technology Data Exchange (ETDEWEB)

    Moss, R. H. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.; Blohm, A. J. [Univ. of Maryland, College Park, MD (United States); Delgado, A. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.; Henriques, J. J. [James Madison Univ., Harrisonburg, VA (United States); Malone, E L. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before final conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and infrastructure

  1. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    Science.gov (United States)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  2. Drought vulnerability assessment: The case of wheat farmers in Western Iran

    Science.gov (United States)

    Zarafshani, Kiumars; Sharafi, Lida; Azadi, Hossein; Hosseininia, Gholamhossein; De Maeyer, Philippe; Witlox, Frank

    2012-12-01

    Drought, as a natural and slow-onset phenomenon, creates numerous damages to agricultural communities. As a drought prone area in the Middle East, Iran has currently launched a crisis management approach to mitigate the harmful impacts of drought. However, thus far studies indicate that effective drought management strategies should be designed based upon vulnerability management which can increase farmers' ability to challenge the impacts. The purpose of this study was to assess drought vulnerability across three drought intensities (very high, extremely high, and critical) areas in Western Iran. Accordingly, a survey study was applied and 370 wheat farmers who all experienced drought during 2007-2009 were selected through a multi-stage stratified random sampling method. Face to face interviews were used to collect data on vulnerability indices from the farmers. Me-Bar and Valdez's vulnerability formula was applied to assess the vulnerability of wheat farmers during drought. Results revealed that the farmers' vulnerability is influenced mainly by economic, socio-cultural, psychological, technical, and infrastructural factors. The results also indicated that the farmers in Sarpole-Zahab township were most vulnerable compared to those in the Kermanshah township as the least vulnerable. Accordingly, some conclusions and recommendations are drawn for both policy-makers and practitioners who often must prioritize limited resources in the design vulnerability-reducing interventions.

  3. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    TREMEL, CHARLES L

    2007-06-28

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  4. Interactive exploration of the vulnerability of the human infrastructure: an approach using simultaneous display of similar locations

    Science.gov (United States)

    Ceré, Raphaël; Kaiser, Christian

    2015-04-01

    Currently, three quarters of the Swiss population is living in urban areas. The total population is still increasing, and urbanized space is increasing event faster. Consequently, the intensity of use has decreased but the exposure of the urban space to natural events has grown along with the cost related to the impact of hazards. In line with this fact, during the 20th century there has been a noticeable increase of natural disasters accompanied by the rapid increase of the world population, leading to higher costs. Additionally to the fact that more people are exposed to natural hazards, the value of goods globally has increased more than proportionally. Consequently, the vulnerability of urban space is, more than ever before, a major issue for socio-economic development. Here, vulnerability is defined as the potential human loss or loss of infrastructure caused by a hazardous event. It encompasses factors of urban infrastructure, population and the environment, which increase the susceptibility of a location to the impact of hazards. This paper describes a novel method for improving the interactive use of exploratory data analysis in the context of minimizing vulnerability and disaster risk by prevention or mitigation. This method is used to assess the similarity between different locations with respect to several characteristics relevant to vulnerability at different scales, allowing for automatic display of multiple locations similar to the one under investigation by an expert. Visualizing vulnerability simultaneously for several locations allows for analyzing and comparing of metric characteristics between multiple places and at different scales. The interactivity aspect is also useful for understanding vulnerability patterns and it facilitates disaster risk management and decisions on global preventive measures in urban spaces. Metrics for vulnerability assessment can be extracted from extensive geospatial datasets such as high-resolution digital elevation

  5. Assessing Hydro-Ecological Vulnerability from Space

    Science.gov (United States)

    Stampoulis, D.; Andreadis, K.; Granger, S. L.; Fisher, J. B.; Turk, F. J.; Behrangi, A.; Das, N. N.; Ines, A.

    2015-12-01

    The main driver of economic growth in East Africa is agriculture. However, climate change and the resulting intensification of the hydrologic cycle will increase water limitation in this already drought-burdened region, and the challenge of ensuring food security is bound to become critical. Efforts must, therefore, be made to develop appropriate adaptation strategies for agriculture in such regions. Assessing and predicting ecosystem responses to global environmental change can advance management and decision support systems that would improve food security and economic development. The current study uses a plethora of multi-year remote sensing earth observations to study the hydro-ecological vulnerability of the various ecosystems in the water-stressed East African region to droughts. More specifically, we assess the hydrologic sensitivity and resilience of soil moisture and vegetation water content (derived from NRL's WindSat radiometer), during dry spells, for different dry-period durations, and for various vegetation categories. Spatiotemporal patterns and characteristics of the response of the two aforementioned variables to sustained precipitation deficits (derived from TRMM 3B42 V7), as well as their persistence in maintaining their stability are identified. We also assess changes, in space and time, in the normalized radar surface-backscattering cross-sections from NASA's QuikSCAT Scatterometer, to obtain information on the vegetation regimes, as well as changes in vegetation phenometrics using the enhanced vegetation index (EVI) derived from MODIS. Quantifying the response and characterizing the resilience of the two aforementioned major hydrological attributes using various remote sensing techniques that complement each other, can provide critical insight into the region's vulnerability and adaptive capacity with respect to rainfall variability.

  6. Debris Flow Vulnerability Assessment in Urban Area Associated with Landslide Hazard Map : Application to Busan, Korea

    Science.gov (United States)

    Okjeong, Lee; Yoonkyung, Park; Mookwang, Sung; Sangdan, Kim

    2016-04-01

    In this presentation, an urban debris flow disaster vulnerability assessment methodology is suggested with major focus on urban social and economic aspect. The proposed methodology is developed based on the landslide hazard maps that Korean Forest Service has utilized to identify landslide source areas. Frist, debris flows are propagated to urban areas from such source areas by Flow-R model, and then urban vulnerability is evaluated by two categories; physical and socio-economic aspect. The physical vulnerability is associated to buildings that can be broken down by a landslide event directly. This study considers two popular building structure types, reinforced concrete frame and non-reinforced concretes frame, to evaluate the physically-based vulnerability. The socio-economic vulnerability is measured as a function of the resistant levels of the exposed people, the intensity and magnitude of indirect or intangible losses, and preparedness level of the local government. An indicator-based model is established to evaluate the life and indirect loss under urban debris flow disasters as well as the resilience ability against disasters. To illuminate the validity of the suggested methodology, physical and socio-economic vulnerability levels are investigated for Daejeon, Korea using the proposed approach. The results reveal that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions. Key words: Debris flow disasters, Physical vulnerability, Socio-economic Vulnerability, Urban Acknowledgement This research was supported by a grant(13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement(KAIA).

  7. Dynamic Assessment on Ecosystem Vulnerability in Dashanbao Wetland

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to assess the ecosystem vulnerability of Dashanbao wetland.[Method] The evaluation index system of ecosystem vulnerability of Dashanbao wetland was constructed by using analytic hierarchy process(AHP),and the ecosystem vulnerability of Dashanbao wetland from 2002 to 2008 was assessed based on vulnerable degree of ecosystem.[Result] The vulnerable degree of ecosystem of Dashanbao wetland from 2002 to 2008 was 0.560 0,0.513 7,0.516 4,0.465 4,0.476 0,0.449 2 and 0.400 6 respectively,tha...

  8. Performance assessment of innovation infrastructure facilities in Russia

    OpenAIRE

    Barinova, Vera; Sorokina, Alla

    2014-01-01

    Performance assessment of innovation infrastructure facilities might be seen as one of the most topical issues of regional development in Russia. Due to the variety of infrastructure types, it's difficult to select the assessment indicators, for there are no generally accepted and integrated performance assessment measures, based on verifiable data according to the enquiries of the stakeholders. The article discusses ways to evaluate the efficiency of innovation infrastructure facilities in R...

  9. Volcanic hazards at distant critical infrastructure: A method for bespoke, multi-disciplinary assessment

    Science.gov (United States)

    Odbert, H. M.; Aspinall, W.; Phillips, J.; Jenkins, S.; Wilson, T. M.; Scourse, E.; Sheldrake, T.; Tucker, P.; Nakeshree, K.; Bernardara, P.; Fish, K.

    2015-12-01

    Societies rely on critical services such as power, water, transport networks and manufacturing. Infrastructure may be sited to minimise exposure to natural hazards but not all can be avoided. The probability of long-range transport of a volcanic plume to a site is comparable to other external hazards that must be considered to satisfy safety assessments. Recent advances in numerical models of plume dispersion and stochastic modelling provide a formalized and transparent approach to probabilistic assessment of hazard distribution. To understand the risks to critical infrastructure far from volcanic sources, it is necessary to quantify their vulnerability to different hazard stressors. However, infrastructure assets (e.g. power plantsand operational facilities) are typically complex systems in themselves, with interdependent components that may differ in susceptibility to hazard impact. Usually, such complexity means that risk either cannot be estimated formally or that unsatisfactory simplifying assumptions are prerequisite to building a tractable risk model. We present a new approach to quantifying risk by bridging expertise of physical hazard modellers and infrastructure engineers. We use a joint expert judgment approach to determine hazard model inputs and constrain associated uncertainties. Model outputs are chosen on the basis of engineering or operational concerns. The procedure facilitates an interface between physical scientists, with expertise in volcanic hazards, and infrastructure engineers, with insight into vulnerability to hazards. The result is a joined-up approach to estimating risk from low-probability hazards to critical infrastructure. We describe our methodology and show preliminary results for vulnerability to volcanic hazards at a typical UK industrial facility. We discuss our findings in the context of developing bespoke assessment of hazards from distant sources in collaboration with key infrastructure stakeholders.

  10. Assessing community vulnerabilities to natural hazards on the Island of Hawaii

    Science.gov (United States)

    Nishioka, Chris; Delparte, Donna

    2010-05-01

    The island of Hawaii is susceptible to numerous natural hazards such as tsunamis, flooding, lava flow, earthquakes, hurricanes, landslides, wildfires and storm surge. The impact of a natural disaster on the island's communities has the potential to endanger peoples' lives and threaten critical infrastructure, homes, businesses and economic drivers such as tourism. A Geographic Information System (GIS) has the ability to assess community vulnerabilities by examining the spatial relationships between hazard zones, socioeconomic infrastructure and demographic data. By drawing together existing datasets, GIS was used to examine a number of community vulnerabilities. Key areas of interest were government services, utilities, property assets, industry and transportation. GIS was also used to investigate population dynamics in hazard zones. Identification of community vulnerabilities from GIS analysis can support mitigation measures and assist planning and response measures to natural hazards.

  11. Rockfall vulnerability assessment for masonry buildings

    Science.gov (United States)

    Mavrouli, Olga

    2015-04-01

    The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The

  12. Extending Vulnerability Assessment to Include Life Stages Considerations

    Science.gov (United States)

    Hodgson, Emma E.; Essington, Timothy E.; Kaplan, Isaac C.

    2016-01-01

    Species are experiencing a suite of novel stressors from anthropogenic activities that have impacts at multiple scales. Vulnerability assessment is one tool to evaluate the likely impacts that these stressors pose to species so that high-vulnerability cases can be identified and prioritized for monitoring, protection, or mitigation. Commonly used semi-quantitative methods lack a framework to explicitly account for differences in exposure to stressors and organism responses across life stages. Here we propose a modification to commonly used spatial vulnerability assessment methods that includes such an approach, using ocean acidification in the California Current as an illustrative case study. Life stage considerations were included by assessing vulnerability of each life stage to ocean acidification and were used to estimate population vulnerability in two ways. We set population vulnerability equal to: (1) the maximum stage vulnerability and (2) a weighted mean across all stages, with weights calculated using Lefkovitch matrix models. Vulnerability was found to vary across life stages for the six species explored in this case study: two krill–Euphausia pacifica and Thysanoessa spinifera, pteropod–Limacina helicina, pink shrimp–Pandalus jordani, Dungeness crab–Metacarcinus magister and Pacific hake–Merluccius productus. The maximum vulnerability estimates ranged from larval to subadult and adult stages with no consistent stage having maximum vulnerability across species. Similarly, integrated vulnerability metrics varied greatly across species. A comparison showed that some species had vulnerabilities that were similar between the two metrics, while other species’ vulnerabilities varied substantially between the two metrics. These differences primarily resulted from cases where the most vulnerable stage had a low relative weight. We compare these methods and explore circumstances where each method may be appropriate. PMID:27416031

  13. Extending Vulnerability Assessment to Include Life Stages Considerations.

    Directory of Open Access Journals (Sweden)

    Emma E Hodgson

    Full Text Available Species are experiencing a suite of novel stressors from anthropogenic activities that have impacts at multiple scales. Vulnerability assessment is one tool to evaluate the likely impacts that these stressors pose to species so that high-vulnerability cases can be identified and prioritized for monitoring, protection, or mitigation. Commonly used semi-quantitative methods lack a framework to explicitly account for differences in exposure to stressors and organism responses across life stages. Here we propose a modification to commonly used spatial vulnerability assessment methods that includes such an approach, using ocean acidification in the California Current as an illustrative case study. Life stage considerations were included by assessing vulnerability of each life stage to ocean acidification and were used to estimate population vulnerability in two ways. We set population vulnerability equal to: (1 the maximum stage vulnerability and (2 a weighted mean across all stages, with weights calculated using Lefkovitch matrix models. Vulnerability was found to vary across life stages for the six species explored in this case study: two krill-Euphausia pacifica and Thysanoessa spinifera, pteropod-Limacina helicina, pink shrimp-Pandalus jordani, Dungeness crab-Metacarcinus magister and Pacific hake-Merluccius productus. The maximum vulnerability estimates ranged from larval to subadult and adult stages with no consistent stage having maximum vulnerability across species. Similarly, integrated vulnerability metrics varied greatly across species. A comparison showed that some species had vulnerabilities that were similar between the two metrics, while other species' vulnerabilities varied substantially between the two metrics. These differences primarily resulted from cases where the most vulnerable stage had a low relative weight. We compare these methods and explore circumstances where each method may be appropriate.

  14. Completing Northeast Regional Vulnerability Assessment Incorporating the NatureServe Climate Change Vulnerability Index

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — NatureServe and Heritage Program collaborators have developed a Climate Change Vulnerability Index (CCVI) to provide a rapid, scientifically defensible assessment...

  15. Fuzzy architecture assessment for critical infrastructure resilience

    Energy Technology Data Exchange (ETDEWEB)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systems architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.

  16. Elements at risk as a framework for assessing the vulnerability of communities to landslides

    Science.gov (United States)

    Papathoma-Köhle, M.; Neuhäuser, B.; Ratzinger, K.; Wenzel, H.; Dominey-Howes, D.

    2007-12-01

    The assessment of the vulnerability of communities prone to landslide related disasters is a topic that is growing in importance. Few studies discuss this issue and limited research has been carried out on the relationship between types of landslide and their potential impact on buildings and infrastructure. We outline a framework to undertake an assessment of the vulnerability of buildings to landslide utilising a similar framework used for assessing the vulnerability of buildings to tsunami damage. The framework is based on the development of an "elements at risk database" that takes into consideration the characteristics and use of the buildings, their importance for the local economy and the characteristics of the inhabitants (population density, age and so forth). The attributes that affect vulnerability are imported and examined within a GIS database which is used to visualise the physical, human and economic vulnerability. The results may have important implications for disaster management and emergency planning, and the database can be used by various end-users and stakeholders such as insurance companies, local authorities and the emergency services. The approach presented here can be integrated in to a wider more detailed "Framework for Landslide Risk and Vulnerability Assessment for Communities". We illustrate the potential of this framework and present preliminary results from Lichtenstein, Baden Württemberg, Germany.

  17. Social vulnerability assessment: a growing practice in Europe?

    Science.gov (United States)

    Tapsell, S.; McC arthy, S.

    2012-04-01

    This paper builds upon work on social vulnerability from the CapHaz-Net consortium, an ongoing research project funded by the European Commission in its 7th Framework Programme. The project focuses on the social dimensions of natural hazards, as well as on regional practices of risk prevention and management, and aims at improving the resilience of European societies to natural hazards, paying particular attention to social capacity building. The topic of social vulnerability is one of seven themes being addressed in the project. There are various rationales for examining the relevance of social vulnerability to natural hazards. Vulnerability assessment has now been accepted as a requirement for the effective development of emergency management capability, and assessment of social vulnerability has been recognised as being integral to understanding the risk to natural hazards. The aim of our research was to examine social vulnerability, how it might be understood in the context of natural hazards in Europe, and how social vulnerability can be addressed to increase social capacity. The work comprised a review of research on social vulnerability to different natural hazards within Europe and included concepts and definitions of social vulnerability (and related concepts), the purpose of vulnerability assessment and who decides who is vulnerable, different approaches to assessing or measuring social vulnerability (such as the use of 'classical' quantitative vulnerability indicators and qualitative community-based approaches, along with the advantages and disadvantages of both), conceptual frameworks for assessing social vulnerability and three case studies of social vulnerability studies within Europe: flash floods in the Italian Alps, fluvial flooding in Germany and heat waves in Spain. The review reveals variable application of social vulnerability analysis across Europe and there are indications why this might be the case. Reasons could range from the scale of

  18. Rockfall vulnerability assessment for reinforced concrete buildings

    Directory of Open Access Journals (Sweden)

    O. Mavrouli

    2010-10-01

    Full Text Available The vulnerability of buildings to the impact of rockfalls is a topic that has recently attracted increasing attention in the scientific literature. The quantification of the vulnerability, when based on empirical or heuristic approaches requires data recorded from historical rockfalls, which are not always available. This is the reason why appropriate alternatives are required. The use of analytical and numerical models can be one of them. In this paper, a methodology is proposed for the analytical evaluation of the vulnerability of reinforced concrete buildings. The vulnerability is included in the risk equation by incorporating the uncertainty of the impact location of the rock block and the subsequent damage level. The output is a weighted vulnerability that ranges from 0 to 1 and expresses the potential damage that a rock block causes to a building in function of its velocity and size. The vulnerability is calculated by the sum of the products of the probability of block impact on each element of the building and its associated damage state, the latter expressed in relative recovery cost terms. The probability of exceeding a specific damage state such as non-structural, local, partial, extensive or total collapse is also important for the quantification of risk and to this purpose, several sets of fragility curves for various rock diameters and increasing velocities have been prepared. An example is shown for the case of a simple reinforced concrete building and impact energies from 0 to 4075 kJ.

  19. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  20. Urbanising Thailand: Implications for climate vulnerability assessment

    NARCIS (Netherlands)

    R. Friend; C. Choosuk; K. Hutanuwatr; Y. Inmuong; J. Kittitornkool; B. Lambregts; B. Promphakping; T. Roachanakanan; P. Thiengburanathum; S. Siriwattanaphaiboon

    2016-01-01

    This report summarises a series of studies carried out by a multi-disciplinary team of Thai scholars. It focuses on the dynamics of urbanisation and climate change risks, and on the linkages between urbanisation, climate change and emerging patterns of urban poverty and vulnerability. It provides ne

  1. Knowledge Management and Visualization in Support of Vulnerability Assessment of Electricity Production

    Energy Technology Data Exchange (ETDEWEB)

    Dodrill, Keith; Garrett, J.H. (Carnegie Mellon); Matthews, S. (Carnegie Mellon); Shih, C-Y. (Carnegie Mellon); Soibelman, L. (Carnegie Mellon); McSurdy, S.

    2007-01-01

    With the rapid growth in demand of electricity, vulnerability assessment of electricity production and its availability has become essential to our economy, national defense, and quality of life. The main focus to date has generally been on protecting power plants and energy transmission systems. However, the extraction and delivery of fuels is also a critical component of the value chain for electricity production. A disruption at any point in the infrastructure could result in lost power production and delivery. The need for better analysis of fuel delivery vulnerabilities is pressing. Therefore, the purpose of this paper is to present the preliminary results of a research project that aims to analyze the vulnerability associated with delivery of fuels and to ensure availability of fuel supplies, by providing insight into likely vulnerability problems so that solutions and preventative methods may be devised. In this research project, a framework for electricity production vulnerability assessment was proposed. Different data sources were integrated into a data warehouse to allow interactive analysis of enormous historical datasets for coal transactions and coal transportation. By summarizing and slicing the historical datasets into different data cubes, the enormous datasets were able to be analyzed and visualized. An interactive GIS interface allows users to interact with it to perform different queries and then visualize the results. The analyses help decision makers understand the impact of fuel delivery disruption and the vulnerabilities in the coal transportation system. Thus, solutions and policies might be advised to avoid disruptions.

  2. Socio-economic Vulnerability Assessment of Natural Disaster Considering Urban Characteristics in South Korea

    Science.gov (United States)

    Park, Yoonkyung; Jun, Hwandon; Kim, Sangdan

    2015-04-01

    In this presentation, an indicator-based model is proposed to quantify socio-economic damage under natural disaster in Seoul, Korea. Seoul is the highest population density in Korea. Scales of the model are divided into two classes. First scale is "borough", which is town, or a district with a large town, and has its own council. In the case of Seoul, average size of boroughs is 24.28 square kilometers. Second one is "census output area", which is the finest level of statistical information. Average size of census output area in Seoul is 0.0374 kilometers. The Census output area has high resolution than boroughs. For the purpose of considering various aspects on socio-economic vulnerability under natural disaster, the proposed socio-economic vulnerability assessment model is composed of demographic/social indicator, economic indicator, and prepare/response/recovery indicator. Each of them is consist of 5, 3, and 6 proxy variables, respectively. Using the suggested model, the socio-economic vulnerability for 25 boroughs and 16,230 census output areas of Seoul is assessed. As a result, it is shown that southeastern boroughs in Seoul (Gangnam and Seocho) have lower vulnerability scores than other boroughs. According to this results, these places are much safer than other regions under natural disaster. Additionally, the socio-economic vulnerability was assessed in scale of census output data. Socio-economic vulnerability scores are shown similar results comparing with results of borough scale. However, socio-economic vulnerability scores are calculated in higher resolution. These results are caused by different demographic and social factors in each census output area even census output areas are located same borough. The additional importance of vulnerability assessment in the scale of census output areas will be presented. Acknowledgement This research was supported by a grant(13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land

  3. [Assessment of eco-environmental vulnerability of Hainan Island, China].

    Science.gov (United States)

    Huang, Bao-rong; Ouyang, Zhi-yun; Zhang, Hui-zhi; Zhang, Li-hua; Zheng, Hua

    2009-03-01

    Based on the assessment method of environmental vulnerability constructed by SOPAC and UNEP, this paper constructed an indicator system from three sub-themes including hazard, resistance, and damage to assess the eco-environmental vulnerability of Hainan Island. The results showed that Hainan Island was suffering a middling level eco-environmental hazard, and the main hazards came from some intensive human activities such as intensive agriculture, mass tourism, mining, and a mass of solid wastes thrown by islanders and tourists. Some geographical characters such as larger land area, larger altitude range, integrated geographical form, and abundant habitat types endowed Hainan Island higher resistance to environmental hazards. However, disturbed by historical accumulative artificial and natural hazards, the Island ecosystem had showed serious ecological damage, such as soil degradation and biodiversity loss. Comprehensively considered hazard, resistance, damage, and degradation, the comprehensive environmental vulnerability of the Island was at a middling level. Some indicators showed lower vulnerability, but some showed higher vulnerability.

  4. California Statewide PEV Infrastructure Assessment; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Eichman, Joshua

    2015-06-10

    This presentation discusses how the California Statewide Plug-In Electric Vehicle (PEV) Infrastructure Assessment provides a framework for understanding the potential energy (kWh) and demand (MW) impacts of PEV market growth; how PEV travel simulations can inform the role of public infrastructure in future market growth; and how ongoing assessment updates and Alternative Fuels Data Center outreach can help coordinate stakeholder planning and decision making and reduce uncertainties.

  5. The Assessment of Vulnerability of Industrial Parks to Climate Change in South Korea

    Science.gov (United States)

    Ryu, J. E.; Lee, D. K.; Jung, T. Y.; Choi, K. L.; Lee, S. H.

    2014-12-01

    Many countries are developing policy and measures to adapt to climate changes at the national and local levels, but the assessment of vulnerability to climate change and the establishment of countermeasures in the industries considering industrial factors such as worker, infrastructure are insufficient due to the characteristics of diverse processes and fields. In South Korea, the national government provides infrastructures for industrial parks where various companies in manufacturing and other industries are concentrated . Because of their concentration, damages can aggravate in case of natural disasters such as typhoons. In this study, vulnerability indices for climate change were developed and evaluated using climate scenarios for the climate exposure of localized terrential downpour for eight industrial parks. The vulnerability indices were selected and reviewed through literature review and two in-depth interviews with experts in various industries, and the assessment of vulnerability to climate change was conducted by collecting relevant information including the Directory of Industrial Complexes. The vulnerability of each industrial park to climate change was assessed for four time serious such as the base line, 2020s, 2050s, and 2100s . As a result, even though the possibility of localized heavy rain was the highest in Yeosu(Southeast coast) at present, but it was predicted that Gwangyang(Southwest coast) will be higher in the future. For the influences of climate including sensitivity, Ulsan Mipo(Southeast coast) is currently under the highest influence of climate, but the Gumi(Inland area) was forecasted to be under the highest influence of climate in the future. As a result of the assessment of vulnerability to climate change including adaptive capacity, Gumi and Myongji Noksan(Southeast coast) were most vulnerable to localized heavy rain. The degree of vulnerability of all the industrial parks except Ulsan and Yeosu was forecasted to increase in the

  6. A framework for sea level rise vulnerability assessment for southwest U.S. military installations

    Science.gov (United States)

    Chadwick, B.; Flick, Reinhard; Helly, J.; Nishikawa, T.; Pei, Fang Wang; O'Reilly, W.; Guza, R.; Bromirski, Peter; Young, A.; Crampton, W.; Wild, B.; Canner, I.

    2011-01-01

    We describe an analysis framework to determine military installation vulnerabilities under increases in local mean sea level as projected over the next century. The effort is in response to an increasing recognition of potential climate change ramifications for national security and recommendations that DoD conduct assessments of the impact on U.S. military installations of climate change. Results of the effort described here focus on development of a conceptual framework for sea level rise vulnerability assessment at coastal military installations in the southwest U.S. We introduce the vulnerability assessment in the context of a risk assessment paradigm that incorporates sources in the form of future sea level conditions, pathways of impact including inundation, flooding, erosion and intrusion, and a range of military installation specific receptors such as critical infrastructure and training areas. A unique aspect of the methodology is the capability to develop wave climate projections from GCM outputs and transform these to future wave conditions at specific coastal sites. Future sea level scenarios are considered in the context of installation sensitivity curves which reveal response thresholds specific to each installation, pathway and receptor. In the end, our goal is to provide a military-relevant framework for assessment of accelerated SLR vulnerability, and develop the best scientifically-based scenarios of waves, tides and storms and their implications for DoD installations in the southwestern U.S. ?? 2011 MTS.

  7. Scenario-based Storm Surge Vulnerability Assessment of Catanduanes

    Science.gov (United States)

    Suarez, J. K. B.

    2015-12-01

    After the devastating storm surge effect of Typhoon Haiyan, the public recognized an improved communication about risks, vulnerabilities and what is threatened by storm surge. This can be provided by vulnerability maps which allow better visual presentations and understanding of the risks and vulnerabilities. Local implementers can direct the resources needed for protection of these areas. Moreover, vulnerability and hazard maps are relevant in all phases of disaster management designed by the National Disaster Risk Reduction Council (NDRRMC) - disaster preparedness, prevention and mitigation and response and recovery and rehabilitation. This paper aims to analyze the vulnerability of Catanduanes, a coastal province in the Philippines, to storm surges in terms of four parameters: population, built environment, natural environment and agricultural production. The vulnerability study relies on the storm surge inundation maps based on the Department of Science and Technology Nationwide Operational Assessment of Hazards' (DOST-Project NOAH) proposed four Storm Surge Advisory (SSA) scenarios (1-2, 3, 4, and 5 meters) for predicting storm surge heights. To determine total percent affected for each parameter elements, an overlay analysis was performed in ArcGIS Desktop. Moreover, vulnerability and hazard maps are generated as a final output and a tool for visualizing the impacts of storm surge event at different surge heights. The result of this study would help the selected province to know their present condition and adapt strategies to strengthen areas where they are found to be most vulnerable in order to prepare better for the future.

  8. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    Science.gov (United States)

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.

    2014-11-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.

  9. Quantitative Vulnerability Assessment of Cyber Security for Distribution Automation Systems

    Directory of Open Access Journals (Sweden)

    Xiaming Ye

    2015-06-01

    Full Text Available The distribution automation system (DAS is vulnerable to cyber-attacks due to the widespread use of terminal devices and standard communication protocols. On account of the cost of defense, it is impossible to ensure the security of every device in the DAS. Given this background, a novel quantitative vulnerability assessment model of cyber security for DAS is developed in this paper. In the assessment model, the potential physical consequences of cyber-attacks are analyzed from two levels: terminal device level and control center server level. Then, the attack process is modeled based on game theory and the relationships among different vulnerabilities are analyzed by introducing a vulnerability adjacency matrix. Finally, the application process of the proposed methodology is illustrated through a case study based on bus 2 of the Roy Billinton Test System (RBTS. The results demonstrate the reasonability and effectiveness of the proposed methodology.

  10. Vulnerability assessment of atmospheric environment driven by human impacts.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Ding, Feng; Li, Yu; He, Li

    2016-11-15

    Atmospheric environment quality worsening is a substantial threat to public health worldwide, and in many places, air pollution due to the intensification of the human activity is increasing dramatically. However, no studies have been investigated the integration of vulnerability assessment and atmospheric environment driven by human impacts. The objective of this study was to identify and prioritize the undesirable environmental changes as an early warning system for environment managers and decision makers in term of human, atmospheric environment, and social economic elements. We conduct a vulnerability assessment method of atmospheric environment associated with human impact, this method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators under the Exposure-Sensitivity- Adaptive Capacity (ESA) framework. Decision makers can find out relevant vulnerability assessment results with different vulnerable attitudes. In the Beijing-Tianjin-Hebei (BTH) region, China, we further applied this developed method and proved it to be reliable and consistent with the China Environmental Status Bulletin. Results indicate that the vulnerability of atmospheric environment in the BTH region is not optimistic, and environment managers should do more about air pollution. Thus, the most appropriate strategic decision and development program of city or state can be picked out assisting by the vulnerable results. PMID:27424115

  11. Vulnerability assessment of atmospheric environment driven by human impacts.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Ding, Feng; Li, Yu; He, Li

    2016-11-15

    Atmospheric environment quality worsening is a substantial threat to public health worldwide, and in many places, air pollution due to the intensification of the human activity is increasing dramatically. However, no studies have been investigated the integration of vulnerability assessment and atmospheric environment driven by human impacts. The objective of this study was to identify and prioritize the undesirable environmental changes as an early warning system for environment managers and decision makers in term of human, atmospheric environment, and social economic elements. We conduct a vulnerability assessment method of atmospheric environment associated with human impact, this method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators under the Exposure-Sensitivity- Adaptive Capacity (ESA) framework. Decision makers can find out relevant vulnerability assessment results with different vulnerable attitudes. In the Beijing-Tianjin-Hebei (BTH) region, China, we further applied this developed method and proved it to be reliable and consistent with the China Environmental Status Bulletin. Results indicate that the vulnerability of atmospheric environment in the BTH region is not optimistic, and environment managers should do more about air pollution. Thus, the most appropriate strategic decision and development program of city or state can be picked out assisting by the vulnerable results.

  12. Attacker economics for Internet-scale vulnerability risk assessment

    OpenAIRE

    Allodi, Luca

    2013-01-01

    Vulnerability risk assessment is a crucial process in security management, and the CVSS score is the standard-de-facto risk metric for software vulnerabilities. In this manuscript I show that current risk assessment methodologies do not fit real “in the wild” attack data. I also present my three-steps plan to identify an Internet-scale risk assessment methodology that accounts for attacker economics and opportunities. Eventually, I want to provide answers like the following: “If we depl...

  13. Towards a holistic perspective on city-level vulnerability assessment

    DEFF Research Database (Denmark)

    Karlsson Nyed, Patrik; Herslund, Lise Byskov

    and are facilitating the subsequent steps of the methodology. The preceding Deliverable 3.3 compiled a comprehensive list of relevant indicators of vulnerability to flooding. This deliverable (D3.4) takes off from there with the selection and weighting of indicators by the stakeholders. Subsequently the stakeholders......, taking on the task of an S-MCE approach in a developing country also reveals its limitations. The methodology here was developed with the comprehension that the data availability and accessibility might be limited. Consequently, there was a hope that the bulk of the input data would be already available...... the vulnerable subwards are more linked to the indicators of the Physical dimension (e.g. Low-lying Areas, Population Density, Dangerous Infrastructure/Industry). These patterns may possibly be related to the attraction of the city center and the job opportunities found there. The greater job opportunities...

  14. Assessment of Road Infrastructures Pertaining to Malaysian Experience

    Directory of Open Access Journals (Sweden)

    Samsuddin Norshakina

    2016-01-01

    Full Text Available Road Infrastructures contribute towards many severe accidents and it needs supervision as to improve road safety levels. The numbers of fatalities have increased annually and road authority should seriously consider conducting programs or activities to periodically monitor, restore of improve road infrastructure. Implementation of road safety audits may reduce fatalities among road users and maintain road safety at acceptable standards. This paper is aimed to discuss the aspects of road infrastructure in Malaysia. The research signifies the impact of road hazards during the observations and the impact of road infrastructure types on road accidents. The F050 (Jalan Kluang-Batu Pahat road case study showed that infrastructure risk is closely related with number of accident. As the infrastructure risk increase, the number of road accidents also increase. It was also found that different road zones along Jalan Kluang-Batu Pahat showed different level of intersection volume due to number of road intersection. Thus, it is hoped that by implementing continuous assessment on road infrastructures, it might be able to reduce road accidents and fatalities among drives and the community.

  15. Threat Assessment of Potential Terrorist Attacks to the Transport Infrastructure

    Directory of Open Access Journals (Sweden)

    Gabriel Nowacki

    2014-06-01

    Full Text Available The paper presents threat assessment of potential terrorist attacks to the transport infrastructure. The range of transportation infrastructure has spread and includes railway, inland waterways, road, maritime, air, intermodal transport infrastructure and intelligent transport systems (ITS. ITS service is the provision of an ITS application through a well-defined organisational and operational framework with the aim of contributing to the user safety, efficiency, comfort and/or to facilitate or support transport and travel operations. Terrorism means acts of violence committed by groups that view themselves as victimized by some notable historical wrong. Although these groups have no formal connection with governments, they usually have the financial and moral backing of sympathetic governments. Typically, they stage unexpected attacks on civilian targets, including transport infrastructure, with the aim of sowing fear and confusion. Based on the analyses, transportation infrastructure is potentially threatened with terrorism attacks, especially road and rail infrastructure (about 23 %, and to a smaller degree the maritime and air transport infrastructure (about 2 %. There were 90,3% of incidents involve land transport (74,5% – vehicles, 9,5% – buses, 6,3% - rail covered the 41-year period 1967-2007 in the USA. Legal steps to fight terrorism have been taken on the international level, furthermore, some institutions have been established for this purpose.

  16. Regulatory Guide on Conducting a Security Vulnerability Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ek, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This document will provide guidelines on conducting a security vulnerability assessment at a facility regulated by the Radiation Protection Centre. The guidelines provide a performance approach assess security effectiveness. The guidelines provide guidance for a review following the objectives outlined in IAEA NSS#11 for Category 1, 2, & 3 sources.

  17. Assessing vulnerability to climate change and socioeconomic stressors in the Reef Islands group, Solomon Islands

    DEFF Research Database (Denmark)

    Birk, Thomas

    2014-01-01

    This article assesses the vulnerability to climatic and socioeconomic stresses in the Reef Islands, Solomon Islands, an atoll island group in the Southwest Pacific. Climate change and the associated sea-level rise are often seen as the most pressing challenges to atoll communities, yet this study...... aims at critically re-assessing this view by placing climate in the context of a range of other internal and external stressors affecting local livelihoods, including population growth, inadequate land use practices, and lack of economic potential, as well as external factors such as poorly developed...... infrastructure, economic marginalization and weak governance of Solomon Islands. Findings suggest that some of these non-climatic stresses are currently – and in the short term – more important determinants of local vulnerability than climate change and sea-level rise. Certainly, these stresses are likely...

  18. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment

    Science.gov (United States)

    Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.

    2008-01-01

    Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.

  19. Integrated assessment of urban vulnerability and resilience. Case study: Targu Ocna town, Romania

    Science.gov (United States)

    Grozavu, Adrian; Bănică, Alexandru

    2015-04-01

    Vulnerability assessment frequently emphasizes the internal fragility of a system in relation to a given hazard, when compared to similar systems or to a reference standard. This internal fragility, either biophysical or structural, may affect the ability to predict, to prepare for and cope with or to recover from the manifestation of a risk phenomenon. Thus, the vulnerability is highly related to resilience and adaptability. There is no single methodology for vulnerability and resilience analysis, their assessment can only be made by identifying and integrating indicators which are compatible with the analysis level and the geographic, economic and social features of a certain area. An integrated model of evaluating vulnerability and resilience capacity is being proposed in this paper for Targu Ocna, a small mining settlement in the Eastern Carpathians of Romania, that became in the last years a tourist town and acts within the surrounding territory as a dynamic local pole. Methodologically, the following steps and operations were considered: identifying potential hazards, identifying elements at risk, identifying proper indicators and integrating them in order to evaluate the general vulnerability and resilience. The inventory of elements at risk (the number of people potentially affected, residential or other functionalities buildings, roads and other infrastructure elements etc.) was made based on General Urban Plan, topographic maps (scale 1:5000), ortophotos from 2003 and 2008 and field mapping and researches. Further on, several vulnerability indicators were identified and included within the analytical approach: dependency ratio, income, quality of the habitat and technical urban facilities, environment quality showing differentiated sensitivity. Issues such as preparedness and preventive measures (priority areas within the risk prevention plans), coping ability (networks' geometry and connectivity, emergency utilities and services accessibility) and the

  20. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US

    Science.gov (United States)

    Burkart, M.R.; Kolpin, D.W.; James, D.E.

    1999-01-01

    Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and response variables whether they define intrinsic or specific vulnerability. Multivariate statistical analyses are useful for ranking variables critical to estimating water quality responses of interest. Overlay and index methods involve intersecting maps of intrinsic and specific vulnerability properties and indexing the variables by applying appropriate weights. Deterministic models use process-based equations to simulate contaminant transport and are distinguished from the other methods in their potential to predict contaminant transport in both space and time. An example of a one-dimensional leaching model linked to a geographic information system (GIS) to define a regional metamodel for contamination in the Midwest is included.

  1. Assessing Terrorist Motivations for Attacking Critical "Chemical" Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, G; Bale, J; Moran, K

    2004-12-14

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security, and way of life. One particular type of CI--that relating to chemicals--constitutes both an important element of our nation's infrastructure and a particularly attractive set of potential targets. This is primarily because of the large quantities of toxic industrial chemicals (TICs) it employs in various operations and because of the essential economic functions it serves. This study attempts to minimize some of the ambiguities that presently impede chemical infrastructure threat assessments by providing new insight into the key motivational factors that affect terrorist organizations propensity to attack chemical facilities. Prepared as a companion piece to the Center for Nonproliferation Studies August 2004 study--''Assessing Terrorist Motivations for Attacking Critical Infrastructure''--it investigates three overarching research questions: (1) why do terrorists choose to attack chemical-related infrastructure over other targets; (2) what specific factors influence their target selection decisions concerning chemical facilities; and (3) which, if any, types of groups are most inclined to attack chemical infrastructure targets? The study involved a multi-pronged research design, which made use of four discrete investigative techniques to answer the above questions as comprehensively as possible. These include: (1) a review of terrorism and threat assessment literature to glean expert consensus regarding terrorist interest in targeting chemical facilities; (2) the preparation of case studies to help identify internal group factors and contextual influences that have played a significant role in leading some terrorist groups to attack chemical facilities; (3) an examination of data from the Critical Infrastructure Terrorist Incident Catalog (CrITIC) to further illuminate the nature of terrorist attacks against chemical

  2. Assessing vulnerability to drought: identifying underlying factors across Europe

    Science.gov (United States)

    Urquijo, Julia; Gonzalez Tánago, Itziar; Ballesteros, Mario; De Stefano, Lucia

    2015-04-01

    Drought is considered one of the most severe and damaging natural hazards in terms of people and sectors affected and associated losses. Drought is a normal and recurrent climatic phenomenon that occurs worldwide, although its spatial and temporal characteristics vary significantly among climates. In the case of Europe, in the last thirty years, the region has suffered several drought events that have caused estimated economic damages over a €100 billion and have affected almost 20% of its territory and population. In recent years, there has been a growing awareness among experts and authorities of the need to shift from a reactive crisis approach to a drought risk management approach, as well as of the importance of designing and implementing policies, strategies and plans at country and river basin levels to deal with drought. The identification of whom and what is vulnerable to drought is a central aspect of drought risk mitigation and planning and several authors agree that societal vulnerability often determines drought risk more than the actual precipitation shortfalls. The final aim of a drought vulnerability assessment is to identify the underlying sources of drought impact, in order to develop policy options that help to enhance coping capacity and therefore to prevent drought impact. This study identifies and maps factors underlying vulnerability to drought across Europe. The identification of factors influencing vulnerability starts from the analysis of past drought impacts in four European socioeconomic sectors. This analysis, along with an extensive literature review, led to the selection of vulnerability factors that are both relevant and adequate for the European context. Adopting the IPCC model, vulnerability factors were grouped to describe exposure, sensitivity and adaptive capacity. The aggregation of these components has resulted in the mapping of vulnerability to drought across Europe at NUTS02 level. Final results have been compared with

  3. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  4. Risk Assessment of Critical Communication Infrastructure in Railways in Norway

    OpenAIRE

    Johnsen, Stig O.; Veen, Mona

    2013-01-01

    This paper discusses the significant findings of a risk assessment of infrastructure used in emergency communication by railways in Norway. The initial risk assessment was performed in 2008 and we have reviewed the results in 2010, documenting mitigating actions and their effect. The development of safety and security culture has also been evaluated. The risk assessment was based on a socio-technical approach, which considers technical, organizational and human factors. Action research was us...

  5. Assessing and managing freshwater ecosystems vulnerable to global change

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Birge, Hannah E.; Drakare, Stina; McKie, Brendan G.; Johnson, Richard K.

    2014-01-01

    Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.

  6. Assessment of Logistics effects from Transport Infrastructure Investments

    DEFF Research Database (Denmark)

    Holvad, Torben; Salling, Kim Bang

    2004-01-01

    on the basis of the importance of this research area from a societal and economic viewpoint. This paper aims to identify a framework for assessment of logistic effects from transport infrastructure investment such that these effects can be integrated into the appraisal methodologies. Particular attention...... Transport (CLG) http://www.ctt.dtu.dk/projects/clg/. Finally, section 5 presents conclusions and the research perspective....

  7. 77 FR 28894 - Maritime Vulnerability Self-Assessment Tool

    Science.gov (United States)

    2012-05-16

    ...-1933, email TSA-OSCCommunications@tsa.dhs.gov . SUPPLEMENTARY INFORMATION: On December 5, 2003 (68 FR...: Transportation Security Administration, DHS. ACTION: Notice of removal of TSA's maritime vulnerability self- assessment tool. SUMMARY: The Transportation Security Administration (TSA) announces that the TSA...

  8. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2011-01-01

    Most of the work relating to Infrastructure has been concentrated in the new CSC and RPC manufactory at building 904, on the Prevessin site. Brand new gas distribution, powering and HVAC infrastructures are being deployed and the production of the first CSC chambers has started. Other activities at the CMS site concern the installation of a new small crane bridge in the Cooling technical room in USC55, in order to facilitate the intervention of the maintenance team in case of major failures of the chilled water pumping units. The laser barrack in USC55 has been also the object of a study, requested by the ECAL community, for the new laser system that shall be delivered in few months. In addition, ordinary maintenance works have been performed during the short machine stops on all the main infrastructures at Point 5 and in preparation to the Year-End Technical Stop (YETS), when most of the systems will be carefully inspected in order to ensure a smooth running through the crucial year 2012. After the incide...

  9. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2012-01-01

    The CMS Infrastructures teams are preparing for the LS1 activities. A long list of maintenance, consolidation and upgrade projects for CMS Infrastructures is on the table and is being discussed among Technical Coordination and sub-detector representatives. Apart from the activities concerning the cooling infrastructures (see below), two main projects have started: the refurbishment of the SX5 building, from storage area to RP storage and Muon stations laboratory; and the procurement of a new dry-gas (nitrogen and dry air) plant for inner detector flushing. We briefly present here the work done on the first item, leaving the second one for the next CMS Bulletin issue. The SX5 building is entering its third era, from main assembly building for CMS from 2000 to 2007, to storage building from 2008 to 2012, to RP storage and Muon laboratory during LS1 and beyond. A wall of concrete blocks has been erected to limit the RP zone, while the rest of the surface has been split between the ME1/1 and the CSC/DT laborat...

  10. INFRASTRUCTURE

    CERN Multimedia

    A.Gaddi

    2011-01-01

    Between the end of March to June 2011, there has been no detector downtime during proton fills due to CMS Infrastructures failures. This exceptional performance is a clear sign of the high quality work done by the CMS Infrastructures unit and its supporting teams. Powering infrastructure At the end of March, the EN/EL group observed a problem with the CMS 48 V system. The problem was a lack of isolation between the negative (return) terminal and earth. Although at that moment we were not seeing any loss of functionality, in the long term it would have led to severe disruption to the CMS power system. The 48 V system is critical to the operation of CMS: in addition to feeding the anti-panic lights, essential for the safety of the underground areas, it powers all the PLCs (Twidos) that control AC power to the racks and front-end electronics of CMS. A failure of the 48 V system would bring down the whole detector and lead to evacuation of the cavern. EN/EL technicians have made an accurate search of the fault, ...

  11. Vulnerability Assessment of Rainfall-Induced Debris Flow

    Science.gov (United States)

    Lu, G. Y.; Wong, D. W.; Chiu, L. S.

    2006-05-01

    Debris flow is a common hazard triggered by large amount of rainfall over mountainous areas. A debris flow event results from a complex interaction between rainfall and topographical properties of watersheds. Heavy rainfall facilitates this process by increasing pore water pressure, seepage force and reducing effective stress of soils (normal stress carried by soil particles at the points of contact). Since debris flow events are closely related to topography and rainfall, the goal of this research is to assess debris flow vulnerability related to these two factors. Objectives of this research are to: (1) examine new spatial interpolation techniques to estimate high spatial rainfall data relevant to debris flows. (2) develop topographical factors using Geography Information System (GIS) and remote sensing (RS) approaches and (3) combine the estimated rainfall and topographical factors to assess the vulnerability of debris flow. We examined three spatial interpolation techniques: adaptive inversed distance weight (AIDW), simple kriging and spatial disaggregation using wind induced-topographic effect that incorporates gauge measurements, satellite remote sensing data (TRMM). The topographical factors are derived from high resolution digital elevation model (DEM), and adopt fuzzy-based topographical models proposed by Tseng (2004). Estimated rainfall and topographical factors are processed by self-organizing maps (SOM) to provide vulnerability assessment. To demonstrate our technique, rainfall data collected by 39 rain gauges in the central part of Taiwan during the passage of Typhoon Tori-Ji around July 29, 2001 were used. Results indicate that the proposed spatial interpolation methods outperform existing methods (i.e. kriging, inverse distance weight, and co-kriging methods). The vulnerability assessment of 187 debris flows watersheds in the study area will be presented. Keyword: Debris flow, spatial interpolation, adaptive inverse distance weight, TRMM, self

  12. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  13. Seismic and wind vulnerability assessment for the GAR-13 global risk assessment

    OpenAIRE

    Yamín Lacouture, Luis Eduardo; Hurtado Chaparro, Alvaro Ivan; Barbat Barbat, Horia Alejandro; Cardona Arboleda, Omar Dario

    2014-01-01

    A general methodology to evaluate vulnerability functions suitable for a probabilistic global risk assessment is proposed. The methodology is partially based in the methodological approach of the Multi-hazard Loss Estimation Methodology (Hazus) developed by the Federal Emergency Management Agency (FEMA). The vulnerability assessment process considers the resolution, information and limitations established for both the hazard and exposure models adopted. Seismic and wind vulnerability function...

  14. Assessing large-scale wildlife responses to human infrastructure development.

    Science.gov (United States)

    Torres, Aurora; Jaeger, Jochen A G; Alonso, Juan Carlos

    2016-07-26

    Habitat loss and deterioration represent the main threats to wildlife species, and are closely linked to the expansion of roads and human settlements. Unfortunately, large-scale effects of these structures remain generally overlooked. Here, we analyzed the European transportation infrastructure network and found that 50% of the continent is within 1.5 km of transportation infrastructure. We present a method for assessing the impacts from infrastructure on wildlife, based on functional response curves describing density reductions in birds and mammals (e.g., road-effect zones), and apply it to Spain as a case study. The imprint of infrastructure extends over most of the country (55.5% in the case of birds and 97.9% for mammals), with moderate declines predicted for birds (22.6% of individuals) and severe declines predicted for mammals (46.6%). Despite certain limitations, we suggest the approach proposed is widely applicable to the evaluation of effects of planned infrastructure developments under multiple scenarios, and propose an internationally coordinated strategy to update and improve it in the future. PMID:27402749

  15. Development of an Automated Security Risk Assessment Methodology Tool for Critical Infrastructures.

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Calvin Dell; Roehrig, Nathaniel S.; Torres, Teresa M.

    2008-12-01

    This document presents the security automated Risk Assessment Methodology (RAM) prototype tool developed by Sandia National Laboratories (SNL). This work leverages SNL's capabilities and skills in security risk analysis and the development of vulnerability assessment/risk assessment methodologies to develop an automated prototype security RAM tool for critical infrastructures (RAM-CITM). The prototype automated RAM tool provides a user-friendly, systematic, and comprehensive risk-based tool to assist CI sector and security professionals in assessing and managing security risk from malevolent threats. The current tool is structured on the basic RAM framework developed by SNL. It is envisioned that this prototype tool will be adapted to meet the requirements of different CI sectors and thereby provide additional capabilities.

  16. Spatial vulnerability assessments by regression kriging

    Science.gov (United States)

    Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor

    2016-04-01

    information representing IEW or GRP forming environmental factors were taken into account to support the spatial inference of the locally experienced IEW frequency and measured GRP values respectively. An efficient spatial prediction methodology was applied to construct reliable maps, namely regression kriging (RK) using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Application of RK also provides the possibility of inherent accuracy assessment. The resulting maps are characterized by global and local measures of its accuracy. Additionally the method enables interval estimation for spatial extension of the areas of predefined risk categories. All of these outputs provide useful contribution to spatial planning, action planning and decision making. Acknowledgement: Our work was partly supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  17. Assessment of Socioeconomic Vulnerability to Floods in the Bâsca Chiojdului Catchment Area

    Directory of Open Access Journals (Sweden)

    REMUS PRĂVĂLIE

    2014-12-01

    Full Text Available Hydrological risk phenomena such as floods are among the most costly natural disasters worldwide, effects consisting of socioeconomic damages and deaths. The Bâsca Chiojdului catchment area, by its morphometric and hydrographic peculiarities, is prone to generate these hydrological risk phenomena, so there is a high vulnerability in the socioeconomic elements. This paper is focused on the identification of the main socioeconomic elements vulnerable to hydrological risk phenomena such as floods, based on the assessment of their manifestation potential. Thus, following the delimitation of areas with the highest flood occurrence potential (susceptibility to floods, major socioeconomic factors existing in the basin, considering human settlements (constructions, transport infrastructure, and agricultural areas (the most important category, were superimposed. Results showed a high vulnerability for all three exposed socioeconomic elements especially in valley sectors, of which household structures were the most vulnerable, given both their importance and the high number of areas highly exposed to floods (approximately 2,500 houses and outbuildings, out of a total of about 10,250, intersect the most susceptible area to floods in the study area.

  18. Vulnerability Assessments and Resilience Planning at Federal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Richard H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Blohm, Andrew [Univ. of Maryland, College Park, MD (United States); Delgado, Alison [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henriques, Justin J. [James Madison Univ., Harrisonburg, VA (United States); Malone, Elizabeth L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-01

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Departments of Energy and Defense. The paper provides a framework of steps for climate vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change.

  19. Assessment of Seismic Vulnerability of a Historical Masonry Building

    Directory of Open Access Journals (Sweden)

    Angelo Garofano

    2012-09-01

    Full Text Available A multidisciplinary approach for assessing the seismic vulnerability of heritage masonry buildings is described throughout the paper. The procedure is applied to a specific case study that represents a very common typology of masonry building in Italy. The seismic vulnerability of the examined building was assessed after the following: (a historical investigation about the building and the surrounding area, (b detailed geometrical relieves, (c identification of materials by means of surveys and literature indications, (d dynamic in-situ tests, (e foundation soil characterization, (f dynamic identification of the structure by means of a refined Finite Element (FE model. After these steps, the FE model was used to assess the safety level of the building by means of non-linear static analyses according to the provisions of Eurocode 8 and estimate of the q-factor. Some parametric studies were also carried out by means of both linear dynamic and non-linear static analyses.

  20. Vulnerability of coastal infrastructure in the Arctic: A focus on the historic settlement on Herschel Island

    OpenAIRE

    Radosavljevic, Boris; Lantuit, Hugues; Fritz, Michael; Overduin, Paul; Krautblatter, Michael

    2013-01-01

    Herschel Island has a long history of human habitation by indigenous peoples, and whalers who came to the island at the end of the 19th century. Their traces include many archeological sites, and some of the oldest standing buildings in the Yukon, built during the whaling era. The island has been a territorial park since 1987, and it is a candidate to become a UNESCO World Heritage Site. The historic settlement, airstrip, and park infrastructure are located on Simpson Point, a narrow gravelly...

  1. Assessment of climate vulnerability in the Norwegian built environment

    Science.gov (United States)

    Hygen, H. O.; Øyen, C. F.; Almâs, A. J.

    2010-09-01

    The main trends expected for the change of Norwegian climate for this century are increasing temperatures, precipitation and wind. This indicates a probable increase of climate related risks to the Norwegian built environment. Previous assessments of climate vulnerability of the built environment have been based on general terms and experiences. The report "Climate and vulnerability analysis for Norwegian built environment; Basis elucidation for the Official Norwegian Report (NOU) on climate adaptation (in Norwegian only)" has used previously defined indexes to quantify the future vulnerability and thus estimated the impact of future climate strain to the existing built environment. The method used to do this assessment has been to create national geolocated maps of relevant climate indexes. Climate indexes for this analysis are: * Wood decay, * Temperature and heating degree days, * Snow load and wet winter precipitation, * Precipitation, flood and extreme precipitation * Wind and wind-driven rain * Frost decay * Frost amount * Perma frost Most of these indexes have been established both for the normal period 1961 - 1990 and projected climate of 2071 - 2100. To compensate for uncertainties in the projection, a set of three projections has been used. These indexes have been combined with geolocated information for Norway's 3.9 million buildings, by imposing GIS digitalized building information to the geolocated maps. The result of this combination is a synopsis of the number of buildings in Norway vulnerable to the displayed present climate parameters and to the projected changes. Consequenses for the Norwegian buildings stock and actions to be taken by the government are also discussed.

  2. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    2012-01-01

    The CMS Infrastructures teams are constantly ensuring the smooth operation of the different services during this critical period when the detector is taking data at full speed. A single failure would spoil hours of high luminosity beam and everything is put in place to avoid such an eventuality. In the meantime however, the fast approaching LS1 requires that we take a look at the various activities to take place from the end of the year onwards. The list of infrastructures consolidation and upgrade tasks is already long and will touch all the services (cooling, gas, inertion, powering, etc.). The definitive list will be available just before the LS1 start. One activity performed by the CMS cooling team that is worth mentioning is the maintenance of the cooling circuits at the CMS Electronics Integration Centre (EIC) at building 904. The old chiller has been replaced by a three-units cooling plant that also serves the HVAC system for the new CSC and RPC factories. The commissioning of this new plant has tak...

  3. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    2010-01-01

    In addition to the intense campaign of replacement of the leaky bushing on the Endcap circuits, other important activities have also been completed, with the aim of enhancing the overall reliability of the cooling infrastructures at CMS. Remaining with the Endcap circuit, the regulating valve that supplies cold water to the primary side of the circuit heat-exchanger, is not well adapted in flow capability and a new part has been ordered, to be installed during a stop of LHC. The instrumentation monitoring of the refilling rate of the circuits has been enhanced and we can now detect leaks as small as 0.5 cc/sec, on circuits that have nominal flow rates of some 20 litres/sec. Another activity starting now that the technical stop is over is the collection of spare parts that are difficult to find on the market. These will be stored at P5 with the aim of reducing down-time in case of component failure. Concerning the ventilation infrastructures, it has been noticed that in winter time the relative humidity leve...

  4. Coastal Hazard Vulnerability Assessment: A Case Study of Erosion and Flooding on Herschel Island, Yukon Territory, Canada

    OpenAIRE

    Radosavljevic, Boris; Lantuit, Hugues; Pollard, Wayne; Overduin, Paul; Couture, N. J.; Sachs, Torsten; Helm, Veit; Fritz, Michael

    2015-01-01

    Coastal infrastructure, cultural, and archeological sites are increasingly vulnerable to erosion and flooding along permafrost coasts. Amplified warming of the Arctic, sea level rise, lengthening of the open water period, and a predicted increase in frequency of major storms compound these threats. Mitigation necessitates decision-making tools at an appropriate scale. We present a study of coastal erosion combining it with a flooding risk assessment for the culturally important historic settl...

  5. Energy Vulnerability Assessment for the US Pacific Islands. Technical Appendix 2

    International Nuclear Information System (INIS)

    The study, Energy Vulnerability Assessment of the US Pacific Islands, was mandated by the Congress of the United States as stated in House Resolution 776-220 of 1992, Section 1406. The resolution states that the US Secretary of Energy shall conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption. Such study shall outline how the insular areas shall gain access to vital oil supplies during times of national emergency. The resolution defines insular areas as the US Virgin Islands, Puerto Rico, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, and Palau. The US Virgin Islands and Puerto Rico are not included in this report. The US Department of Energy (USDOE) has broadened the scope of the study contained in the House Resolution to include emergency preparedness and response strategies which would reduce vulnerability to an oil supply disruption as well as steps to ameliorate adverse economic consequences. This includes a review of alternative energy technologies with respect to their potential for reducing dependence on imported petroleum. USDOE has outlined the four tasks of the energy vulnerability assessment as the following: (1) for each island, determine crude oil and refined product demand/supply, and characterize energy and economic infrastructure; (2) forecast global and regional oil trade flow patterns, energy demand/supply, and economic activities; (3) formulate oil supply disruption scenarios and ascertain the general and unique vulnerabilities of these islands to oil supply disruptions; and (4) outline emergency preparedness and response options to secure oil supplies in the short run, and reduce dependence on imported oil in the longer term

  6. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    Science.gov (United States)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  7. Energy Vulnerability Assessment for the US Pacific Islands. Technical Appendix 2

    Energy Technology Data Exchange (ETDEWEB)

    Fesharaki, F.; Rizer, J.P.; Greer, L.S.

    1994-05-01

    The study, Energy Vulnerability Assessment of the US Pacific Islands, was mandated by the Congress of the United States as stated in House Resolution 776-220 of 1992, Section 1406. The resolution states that the US Secretary of Energy shall conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption. Such study shall outline how the insular areas shall gain access to vital oil supplies during times of national emergency. The resolution defines insular areas as the US Virgin Islands, Puerto Rico, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, and Palau. The US Virgin Islands and Puerto Rico are not included in this report. The US Department of Energy (USDOE) has broadened the scope of the study contained in the House Resolution to include emergency preparedness and response strategies which would reduce vulnerability to an oil supply disruption as well as steps to ameliorate adverse economic consequences. This includes a review of alternative energy technologies with respect to their potential for reducing dependence on imported petroleum. USDOE has outlined the four tasks of the energy vulnerability assessment as the following: (1) for each island, determine crude oil and refined product demand/supply, and characterize energy and economic infrastructure; (2) forecast global and regional oil trade flow patterns, energy demand/supply, and economic activities; (3) formulate oil supply disruption scenarios and ascertain the general and unique vulnerabilities of these islands to oil supply disruptions; and (4) outline emergency preparedness and response options to secure oil supplies in the short run, and reduce dependence on imported oil in the longer term.

  8. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  9. Climate Change Vulnerability Assessment for Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  10. Preliminary regulatory assessment of nuclear power plants vulnerabilities

    International Nuclear Information System (INIS)

    Preliminary attempts to develop models for nuclear regulatory vulnerability assessment of nuclear power plants are presented. Development of the philosophy and computer tools could be new and important insight for management of nuclear operators and nuclear regulatory bodies who face difficult questions about how to assess the vulnerability of nuclear power plants and other nuclear facilities to external and internal threats. In the situation where different and hidden threat sources are dispersed throughout the world, the assessment of security and safe operation of nuclear power plants is very important. Capability to evaluate plant vulnerability to different kinds of threats, like human and natural occurrences and terrorist attacks and preparation of emergency response plans and estimation of costs are of vital importance for assurance of national security. On the basis of such vital insights, nuclear operators and nuclear regulatory bodies could plan and optimise changes in oversight procedures, organisations, equipment, hardware and software to reduce risks taking into account security and safety of nuclear power plants operation, budget, manpower, and other limitations. Initial qualitative estimations of adapted assessments for nuclear applications are shortly presented. (author)

  11. An Assessment of the radiological vulnerability for Spanish soils

    International Nuclear Information System (INIS)

    A methodology is presented to assess the radiological vulnerability of soils, based exclusively on their pedagogical properties. The radiological vulnerability defined as the potential capacity of soils to fix or transfer deposited radiocaesium and radiostrontium to plants, is represented in terms of vulnerability indexes. Two pathways are considered, the external irradiation and their transfer through the food chain, where the top horizon and a critical depth of 60 cm is taken into account, respectively, Partial vulnerability indexes are considered for each pathway, which allows a qualitative prediction of the behaviour of the contaminants in soils Global indexes have been obtained as the sum of the partial indexes. The methodology has been applied and validated using a data base consisting of more than 2000 soil profiles selected from all over Spain. This included a pedagogical characterisation and normalisation of the different soil profiles. Results have been obtained for individual soil profiles and with the aid of a GIS, the distribution of the partial and global indexes have been presented for the most representative soil types. (Author)

  12. Earthquake Vulnerability Assessment of House Constructions in Himalayas

    Directory of Open Access Journals (Sweden)

    Ila Gupta,

    2007-12-01

    Full Text Available The entire Himalayan range is highly prone to earthquake s and the latest Kashmir earthquake (October 08, 2005 has once again drawn our attention to the highly vulnerable Himalayan settlements. Narcndranagar block of the Himalayan state of Uttaranchal lies in seismic zone IV of the seismic zoning map of India. Like in other hilly areas Narendranagar block also witnessed the traditional practice of house construction being replaced by modern construction materials and practices without the knowledge of earthquake resistant techniques rendering the present buildings more vulnerable to earthquakes. The objective of this paper is to assess the vulnerability of the buildings so that corrective measures can be taken to minimize the destruction during future earthquakes. Types of buildings observed in the entire block with different combinations of materials and their earthquake behaviours are explained. The existing structures are grouped into vulnerability categories Vl , V2 and V3 as per the descriptions provided in the MSK (Medvedev - Sponheaer - Karnik Intensity Scale. Damage estimation for a hypothetical earthquake is carried out for the Narcndranagar block. Conclusions and recommendations suggesting use of such studies in all earth quake prone areas of the Trans Himalayan region arc provided.

  13. A New Method for Reclamation Planning in Coastal Areas Based on Vulnerability Assessment to Typhoon Storm Surge Inundation

    Science.gov (United States)

    Dong, S.

    2015-12-01

    Rapid urban expansion in mega-cities (cities with populations over 10 million) leads to increased land demand and vulnerability to hazards as often significant numbers of people are economically and social disadvantaged. An effective way to create new flat land for further development is land reclamation and this has reached 511.71 km2 in the period of 1990 - 2009 along the Shanghai coast. This, in turn, leads to a potential increase in the vulnerability of the new coastal area to natural hazards. This is typically represented by typhoon storms that have the potential to be the most destructive natural hazard and therefore pose a significant threat to both infrastructure and livelihood in Shanghai. Due to insufficient knowledge of vulnerability of land use to typhoon storms and current planning, the reclaimed land is becoming one of the most vulnerable parts of the coastal low-land. While it is tempting to claim there is an increasing vulnerability to typhoon-inundation in Shanghai, this must be weighed against the socio-political response, where it is likely that city authorities will undertake rational land use planning to protect the reclamation from the inundation, sea level rise, and ground subsidence. Therefore, this research present a new method for reclamation planning based on vulnerability assessment to typhoon- inundation. First, MIKE21 was used to simulate the inundation scenario of two typhoon events in 1997 and 2007 respectively. Then, the vulnerability of 7 land use types with a set of hazard-proxies to these two typhoon inundations was assessed and verified by a new stage-damage curve system. Based on the above vulnerability assessment, this research will provide a planning tool for reclamation along Shanghai coastal area. This work is part of a larger study on the response of vulnerability to land use and land cover change.

  14. EVALUATION OF VULNERABILITY ASSESSMENT IN SYSTEM FROM HACKERS IN CYBER SECURITY

    OpenAIRE

    S.Suma Christal Mary

    2010-01-01

    Vulnerability is very essential in cyber security related mechanisms. The usage of this vulnerability is to identify the attacks over the cyber space system. This term become increased the challenges in cyberspace system in large areas. Interdependencies between computer communication system and the physical infrastructure also become more complex as information technologies are further integrated into devices and networks. Vulnerability causes due to ethical hacking, Trojan attacks, logical ...

  15. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2013-01-01

      Most of the CMS infrastructures at P5 will go through a heavy consolidation-work period during LS1. All systems, from the cryogenic plant of the superconducting magnet to the rack powering in the USC55 counting rooms, from the cooling circuits to the gas distribution, will undergo consolidation work. As announced in the last issue of the CMS Bulletin, we present here one of the consolidation projects of LS1: the installation of a new dry-gas plant for inner detectors inertion. So far the oxygen and humidity suppression inside the CMS Tracker and Pixel volumes were assured by flushing dry nitrogen gas evaporated from a large liquid nitrogen tank. For technical reasons, the maximum flow is limited to less than 100 m3/h and the cost of refilling the tank every two weeks with liquid nitrogen is quite substantial. The new dry-gas plant will supply up to 400 m3/h of dry nitrogen (or the same flow of dry air, during shut-downs) with a comparatively minimal operation cost. It has been evaluated that the...

  16. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi.

    The various water-cooling circuits ran smoothly over the summer. The overall performance of the cooling system is satisfactory, even if some improvements are possible, concerning the endcap water-cooling and the C6F14 circuits. In particular for the endcap cooling circuit, we aim to lower the water temperature, to provide more margin for RPC detectors. An expert-on-call piquet has been established during the summer global run, assuring the continuous supervision of the installations. An effort has been made to collect and harmonize the existing documentation on the cooling infrastructures at P5. The last six months have seen minor modifications to the electrical power network at P5. Among these, the racks in USC55 for the Tracker and Sniffer systems, which are backed up by the diesel generator in case of power outage, have been equipped with new control boxes to allow a remote restart. Other interventions have concerned the supply of assured power to those installations that are essential for CMS to run eff...

  17. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    2010-01-01

    During the last six months, the main activity on the cooling circuit has essentially been preventive maintenance. At each short machine technical stop, a water sample is extracted out of every cooling circuit to measure the induced radioactivity. Soon after, a visual check of the whole detector cooling network is done, looking for water leaks in sensitive locations. Depending on sub-system availability, the main water filters are replaced; the old ones are inspected and sent to the CERN metallurgical lab in case of suspicious sediments. For the coming winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages are foreseen. A few faulty valves, found on the muon system cooling circuit, will be replaced; the cooling gauges for TOTEM and CASTOR, in the CMS Forward region, will be either changed or shielded against the magnetic stray field. The demineralizer cartridges will be replaced as well. New instrumentation will also be installed in the SCX5 PC farm ...

  18. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    2011-01-01

    During the last winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages were completed. On the surface, the site cooling facility has passed the annual maintenance process that includes the cleaning of the two evaporative cooling towers, the maintenance of the chiller units and the safety checks on the software controls. In parallel, CMS teams, reinforced by PH-DT group personnel, have worked to shield the cooling gauges for TOTEM and CASTOR against the magnetic stray field in the CMS Forward region, to add labels to almost all the valves underground and to clean all the filters in UXC55, USC55 and SCX5. Following the insertion of TOTEM T1 detector, the cooling circuit has been branched off and commissioned. The demineraliser cartridges have been replaced as well, as they were shown to be almost saturated. New instrumentation has been installed in the SCX5 PC farm cooling and ventilation network, in order to monitor the performance of the HVAC system...

  19. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    With all the technical services running, the attention has moved toward the next shutdown that will be spent to perform those modifications needed to enhance the reliability of CMS Infrastructures. Just to give an example for the cooling circuit, a set of re-circulating bypasses will be installed into the TS/CV area to limit the pressure surge when a circuit is partially shut-off. This problem has affected especially the Endcap Muon cooling circuit in the past. Also the ventilation of the UXC55 has to be revisited, allowing the automatic switching to full extraction in case of magnet quench. (Normally 90% of the cavern air is re-circulated by the ventilation system.) Minor modifications will concern the gas distribution, while the DSS action-matrix has to be refined according to the experience gained with operating the detector for a while. On the powering side, some LV power lines have been doubled and the final schematics of the UPS coverage for the counting rooms have been released. The most relevant inte...

  20. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    The long winter shut-down allows for modifications that will improve the reliability of the detector infrastructures at P5. The annual maintenance of detector services is taking place as well. This means a full stop of water-cooling circuits from November 24th with a gradual restart from mid January 09. The annual maintenance service includes the cleaning of the two SF5 cooling towers, service of the chiller plants on the surface, and the cryogenic plant serving the CMS Magnet. In addition, the overall site power is reduced from 8MW to 2MW, compatible with the switchover to the Swiss power network in winter. Full power will be available again from end of January. Among the modification works planned, the Low Voltage cabinets are being refurbished; doubling the cable sections and replacing the 40A circuit breakers with 60A types. This will reduce the overheating that has been experienced. Moreover, two new LV transformers will be bought and pre-cabled in order to assure a quick swap in case of failure of any...

  1. Tool-based risk assessment of cloud infrastructures as socio-technical systems

    NARCIS (Netherlands)

    Nidd, Michael; Ivanova, Marieta Georgieva; Probst, Christian W.; Tanner, Axel; Ko, Ryan; Choo, Raymond

    2015-01-01

    Assessing risk in cloud infrastructures is difficult. Typical cloud infrastructures contain potentially thousands of nodes that are highly interconnected and dynamic. Another important component is the set of human actors who get access to data and computing infrastructure. The cloud infrastructure

  2. Free and Open Source Software for land degradation vulnerability assessment

    Science.gov (United States)

    Imbrenda, Vito; Calamita, Giuseppe; Coluzzi, Rosa; D'Emilio, Mariagrazia; Lanfredi, Maria Teresa; Perrone, Angela; Ragosta, Maria; Simoniello, Tiziana

    2013-04-01

    Nowadays the role of FOSS software in scientific research is becoming increasingly important. Besides the important issues of reduced costs for licences, legality and security there are many other reasons that make FOSS software attractive. Firstly, making the code opened is a warranty of quality permitting to thousands of developers around the world to check the code and fix bugs rather than rely on vendors claims. FOSS communities are usually enthusiastic about helping other users for solving problems and expand or customize software (flexibility). Most important for this study, the interoperability allows to combine the user-friendly QGIS with the powerful GRASS-GIS and the richness of statistical methods of R in order to process remote sensing data and to perform geo-statistical analysis in one only environment. This study is focused on the land degradation (i.e. the reduction in the capacity of the land to provide ecosystem goods and services and assure its functions) and in particular on the estimation of the vulnerability levels in order to suggest appropriate policy actions to reduce/halt land degradation impacts, using the above mentioned software. The area investigated is the Basilicata Region (Southern Italy) where large natural areas are mixed with anthropized areas. To identify different levels of vulnerability we adopted the Environmentally Sensitive Areas (ESAs) model, based on the combination of indicators related to soil, climate, vegetation and anthropic stress. Such indicators were estimated by using the following data-sources: - Basilicata Region Geoportal to assess soil vulnerability; - DESERTNET2 project to evaluate potential vegetation vulnerability and climate vulnerability; - NDVI-MODIS satellite time series (2000-2010) with 250m resolution, available as 16-day composite from the NASA LP DAAC to characterize the dynamic component of vegetation; - Agricultural Census data 2010, Corine Land Cover 2006 and morphological information to assess

  3. A Multimethod Approach towards Assessing Urban Flood Patterns and Its Associated Vulnerabilities in Singapore

    Directory of Open Access Journals (Sweden)

    Winston T. L. Chow

    2016-01-01

    Full Text Available We investigated flooding patterns in the urbanised city-state of Singapore through a multimethod approach combining station precipitation data with archival newspaper and governmental records; changes in flash floods frequencies or reported impacts of floods towards Singapore society were documented. We subsequently discussed potential flooding impacts in the context of urban vulnerability, based on future urbanisation and forecasted precipitation projections for Singapore. We find that, despite effective flood management, (i significant increases in reported flash flood frequency occurred in contemporary (post-2000 relative to preceding (1984–1999 periods, (ii these flash floods coincide with more localised, “patchy” storm events, (iii storms in recent years are also more intense and frequent, and (iv floods result in low human casualties but have high economic costs via insurance damage claims. We assess that Singapore presently has low vulnerability to floods vis-à-vis other regional cities largely due to holistic flood management via consistent and successful infrastructural development, widespread flood monitoring, and effective advisory platforms. We conclude, however, that future vulnerabilities may increase from stresses arising from physical exposure to climate change and from demographic sensitivity via rapid population growth. Anticipating these changes is potentially useful in maintaining the high resilience of Singapore towards this hydrometeorological hazard.

  4. A Contamination Vulnerability Assessment for the Sacramento Area Groundwater Basin

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-03-10

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement the groundwater assessment program in cooperation with local water purveyors. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basin of Sacramento suburban area, located to the north of the American River and to the east of the Sacramento River. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3

  5. Assessment of the biodiesel distribution infrastructure in Canada

    International Nuclear Information System (INIS)

    Canada's biodiesel industry is in its infancy, and must work to achieve the demand needed to ensure its development. This assessment of Canada's biodiesel distribution infrastructure was conducted to recommend the most efficient infrastructure pathway for effective biodiesel distribution. The study focused on the establishment of a link between biodiesel supplies and end-users. The current Canadian biodiesel industry was discussed, and future market potentials were outlined. The Canadian distillate product distribution infrastructure was discussed. Technical considerations and compliance issues were reviewed. The following 2 scenarios were used to estimate adaptations and costs for the Canadian market: (1) the use of primary terminals to ensure quality control of biodiesel, and (2) storage in secondary terminals where biodiesel blends are prepared before being transported to retail outlets. The study showed that relevant laboratory training programs are needed as well as proficiency testing programs in order to ensure adequate quality control of biodiesel. Standards for biodiesel distribution are needed, as well as specifications for the heating oil market. It was concluded that this document may prove useful in developing government policy objectives and identifying further research needs. 21 refs., 12 tabs., 13 figs

  6. Assessing internal biophysical vulnerability to landslide hazards - a nested catchment approach: Xiangxi Watershed / Three Gorges Reservoir

    Science.gov (United States)

    Wiegand, Matthias; Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz

    2010-05-01

    . Dwellings and road infrastructure, chosen as high priorities, are captured based on various data like: high resolution satellite imagery, topographic information and field investigation. Currently demographic data is available only at administrative county level - therefore buildings will serve as spatial proxy for population density. Elements at risk will be classified into categories and susceptibility factors will be identified for sampled groups. The envisaged model defines the susceptibility of a certain element at risk not only by the element itself - it assumes that the specific susceptibility is also strongly influenced by the particular surroundings. The susceptibility of a certain building, as for instance, will be defined by the structure type and condition, and in addition or as proxy, specific site characteristics like: slope angle and aspect, soil type and erodibility, lithology, proximity to streams, proximity to the Three Gorges reservoir, depth to groundwater, land use change and dissect intensity, if feasible. Each factor with potential influence on susceptibility will go through a GIS based factor weighting procedure as part of the quantitative vulnerability model. Holistic, "cross scale integrated" vulnerability assessment models need to integrate environmental, social/ cultural and economic aspects. Therefore the proposed vulnerability assessment model must be seen as a starting point for a conceptual framework, and might serve as stimulus to local disaster- and resources management systems. Furthermore the GIS based model enables the opportunity to be linked and refined within the local spatial data infrastructure initiatives.

  7. VuWiki: An Ontology-Based Semantic Wiki for Vulnerability Assessments

    Science.gov (United States)

    Khazai, Bijan; Kunz-Plapp, Tina; Büscher, Christian; Wegner, Antje

    2014-05-01

    The concept of vulnerability, as well as its implementation in vulnerability assessments, is used in various disciplines and contexts ranging from disaster management and reduction to ecology, public health or climate change and adaptation, and a corresponding multitude of ideas about how to conceptualize and measure vulnerability exists. Three decades of research in vulnerability have generated a complex and growing body of knowledge that challenges newcomers, practitioners and even experienced researchers. To provide a structured representation of the knowledge field "vulnerability assessment", we have set up an ontology-based semantic wiki for reviewing and representing vulnerability assessments: VuWiki, www.vuwiki.org. Based on a survey of 55 vulnerability assessment studies, we first developed an ontology as an explicit reference system for describing vulnerability assessments. We developed the ontology in a theoretically controlled manner based on general systems theory and guided by principles for ontology development in the field of earth and environment (Raskin and Pan 2005). Four key questions form the first level "branches" or categories of the developed ontology: (1) Vulnerability of what? (2) Vulnerability to what? (3) What reference framework was used in the vulnerability assessment?, and (4) What methodological approach was used in the vulnerability assessment? These questions correspond to the basic, abstract structure of the knowledge domain of vulnerability assessments and have been deduced from theories and concepts of various disciplines. The ontology was then implemented in a semantic wiki which allows for the classification and annotation of vulnerability assessments. As a semantic wiki, VuWiki does not aim at "synthesizing" a holistic and overarching model of vulnerability. Instead, it provides both scientists and practitioners with a uniform ontology as a reference system and offers easy and structured access to the knowledge field of

  8. Site-specific Vulnerability Assessment for Debris Flows: Two Case Studies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Here the vulnerability is defined as the potential total maximum losses due to a debris flow damaging event for a specific debris flow fan. The vulnerability is classified into property vulnerability and population vulnerability. Assessment indexes include the assets of buildings, traffic facilities, lifeline works, personal properties, and land resources for property vulnerability; age, education, and wealth of the inhabitants, natural population growth rate, and population density for population vulnerability. The vulnerability is expressed as the sum of the transformed values of the losses of property and population. Two study cases with post-fact damages by historic debris flow events in Sichuan of SW China are presented.

  9. Vulnerability Indicators Are More Accurate in Assessing Poverty Problems

    Institute of Scientific and Technical Information of China (English)

    郭劲光

    2007-01-01

    Poverty is a complex social phenomenon that every country has to contend with at some point in time. Based on an analysis of poverty in China’s rural areas, this article assesses the present poverty alleviation measures from a new perspective. With the goal of better understanding the nature of poverty, new approaches focusing on the vulnerability to poverty are considered. Through a re-examination of the current situation and the underlying reasons for poverty in light of structural and cultural factors, this article attempts to provide new policy suggestions for dealing with poverty.

  10. Environmental assessment of pavement infrastructure: A systematic review.

    Science.gov (United States)

    Inyim, Peeraya; Pereyra, Jose; Bienvenu, Michael; Mostafavi, Ali

    2016-07-01

    Through a critical review and systematic analysis of pavement life cycle assessment (LCA) studies published over the past two decades, this study shows that the available information regarding the environmental impacts of pavement infrastructure is not sufficient to determine what pavement type is more environmentally sustainable. Limitations and uncertainties related to data, system boundary and functional unit definitions, consideration of use and maintenance phase impacts, are identified as the main reasons for inconsistency of reported results in pavement LCA studies. The study outcomes also highlight the need for advancement of knowledge pertaining to: (1) utilization of performance-adjusted functional units, (2) accurate estimation of use, maintenance, and end-of-life impacts, (3) incorporation of the dynamic and uncertain nature of pavement condition performance in impact assessment; (4) development of region-specific inventory data for impact estimation; and (5) consideration of a standard set of impact categories for comparison of environmental performance of different pavement types. Advancing the knowledge in these areas is critical in providing consistent and reliable results to inform decision-making toward more sustainable roadway infrastructure. PMID:27045541

  11. Salt vulnerability assessment methodology for municipal supply wells

    Science.gov (United States)

    Betts, Andrew; Gharabaghi, Bahram; McBean, Ed; Levison, Jana; Parker, Beth

    2015-12-01

    De-icing agents containing chloride ions used for winter road maintenance have the potential to negatively impact groundwater resources for drinking water supplies. A novel methodology using commonly-available geospatial data (land use, well head protection areas) and public accessible data (salt application rates, hydrometric data) to identify salt vulnerable areas (SVAs) for groundwater wells is developed to prioritize implementation of better management practices for road salt applications. The approach uses simple mass-balance terms to collect chloride input from 3 pathways: surface runoff, shallow interflow and baseflow. A risk score is calculated, which depends on the land use within the respective municipal supply well protection area. Therefore, it is plausible to avoid costly and extensive numerical modeling (which also would bear many assumptions, simplifications and uncertainties). The method is applied to perform a vulnerability assessment on twenty municipal water supply wells in the Grand River watershed, Ontario, Canada. The calculated steady-state groundwater recharge chloride concentration for the supply wells is strongly correlated to the measured transient groundwater chloride concentrations in the case study evaluation, with an R2 = 0.84. The new method provides a simple, robust, and practical method for municipalities to assess the long-term risk of chloride contamination of municipal supply wells due to road salt application.

  12. Vulnerability assessment and mitigation for the Chinese railway system under floods

    International Nuclear Information System (INIS)

    The economy of China and the travel needs of its citizens depend significantly on the continuous and reliable services provided by its railway system. However, this system is subject to frequent natural hazards, such as floods, earthquakes, and debris flow. A mechanism to assess the railway system vulnerability under these hazards and the design of effective vulnerability mitigation strategies are essential to the reliable functioning of the railway system. This article proposes a comprehensive methodology to quantitatively assess the railway system vulnerability under floods using historical data and GIS technology. The proposed methodology includes a network representation of the railway system, the generation of flood event scenarios, a method to estimate railway link vulnerability, and a quantitative vulnerability value computation approach. The railway system vulnerability is evaluated in terms of its service disruption related to the number of interrupted trains and the durations of interruption. A maintenance strategy to mitigate vulnerability is proposed that simultaneously considers link vulnerability and number of trains using it. Numerical experiments show that the flood-induced vulnerability of the proposed representation of the Chinese railway system reaches its maximum monthly value in July, and the proposed vulnerability mitigation strategy is more effective compared to other strategies. - Highlights: • We propose a methodology to assess flood-induced railway system vulnerability. • Railway system vulnerability is evaluated in terms of its service disruption. • Chinese railway system reaches its maximum monthly vulnerability in July. • We propose an effective maintenance strategy considering link vulnerability and burden

  13. Tool-based Risk Assessment of Cloud Infrastructures as Socio-Technical Systems

    OpenAIRE

    Nidd, Michael; Ivanova, Marieta Georgieva; Christian W. Probst; Tanner, Axel

    2015-01-01

    Assessing risk in cloud infrastructures is difficult. Typical cloud infrastructures contain potentially thousands of nodes that are highly interconnected and dynamic. Another important component is the set of human actors who get access to data and computing infrastructure. The cloud infrastructure therefore constitutes a socio-technical system. Attacks on socio-technical systems are still mostly identified through expert brainstorming. However, formal risk assessment for systems including hu...

  14. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf.

    Directory of Open Access Journals (Sweden)

    Jonathan A Hare

    Full Text Available Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region. These

  15. Development of a security vulnerability assessment process for the RAMCAP chemical sector.

    Science.gov (United States)

    Moore, David A; Fuller, Brad; Hazzan, Michael; Jones, J William

    2007-04-11

    The Department of Homeland Security (DHS), Directorate of Information Analysis & Infrastructure Protection (IAIP), Protective Services Division (PSD), contracted the American Society of Mechanical Engineers Innovative Technologies Institute, LLC (ASME ITI, LLC) to develop guidance on Risk Analysis and Management for Critical Asset Protection (RAMCAP). AcuTech Consulting Group (AcuTech) has been contracted by ASME ITI, LLC, to provide assistance by facilitating the development of sector-specific guidance on vulnerability analysis and management for critical asset protection for the chemical manufacturing, petroleum refining, and liquefied natural gas (LNG) sectors. This activity involves two key tasks for these three sectors: Development of a screening to supplement DHS understanding of the assets that are important to protect against terrorist attack and to prioritize the activities. Development of a standard security vulnerability analysis (SVA) framework for the analysis of consequences, vulnerabilities, and threats. This project involves the cooperative effort of numerous leading industrial companies, industry trade associations, professional societies, and security and safety consultants representative of those sectors. Since RAMCAP is a voluntary program for ongoing risk management for homeland security, sector coordinating councils are being asked to assist in communicating the goals of the program and in encouraging participation. The RAMCAP project will have a profound and positive impact on all sectors as it is fully developed, rolled-out and implemented. It will help define the facilities and operations of national and regional interest for the threat of terrorism, define standardized methods for analyzing consequences, vulnerabilities, and threats, and describe best security practices of the industry. This paper will describe the results of the security vulnerability analysis process that was developed and field tested for the chemical manufacturing

  16. Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea

    Directory of Open Access Journals (Sweden)

    S. Torresan

    2012-07-01

    Full Text Available Sea level rise, changes in storms and wave climate as a consequence of global climate change are expected to increase the size and magnitude of flooded and eroding coastal areas, thus having profound impacts on coastal communities and ecosystems. River deltas, beaches, estuaries and lagoons are considered particularly vulnerable to the adverse effects of climate change, which should be studied at the regional/local scale. This paper presents a regional vulnerability assessment (RVA methodology developed to analyse site-specific spatial information on coastal vulnerability to the envisaged effects of global climate change, and assist coastal communities in operational coastal management and conservation. The main aim of the RVA is to identify key vulnerable receptors (i.e. natural and human ecosystems in the considered region and localize vulnerable hot spot areas, which could be considered as homogeneous geographic sites for the definition of adaptation strategies. The application of the RVA methodology is based on a heterogeneous subset of bio-geophysical and socio-economic vulnerability indicators (e.g. coastal topography, geomorphology, presence and distribution of vegetation cover, location of artificial protection, which are a measure of the potential harm from a range of climate-related impacts (e.g. sea level rise inundation, storm surge flooding, coastal erosion. Based on a system of numerical weights and scores, the RVA provides relative vulnerability maps that allow to prioritize more vulnerable areas and targets of different climate-related impacts in the examined region and to support the identification of suitable areas for human settlements, infrastructures and economic activities, providing a basis for coastal zoning and land use planning. The implementation, performance and results of the methodology for the coastal area of the North Adriatic Sea (Italy are fully described in the paper.

  17. Remote sensing techniques applied to seismic vulnerability assessment

    Science.gov (United States)

    Juan Arranz, Jose; Torres, Yolanda; Hahgi, Azade; Gaspar-Escribano, Jorge

    2016-04-01

    Advances in remote sensing and photogrammetry techniques have increased the degree of accuracy and resolution in the record of the earth's surface. This has expanded the range of possible applications of these data. In this research, we have used these data to document the construction characteristics of the urban environment of Lorca, Spain. An exposure database has been created with the gathered information to be used in seismic vulnerability assessment. To this end, we have used data from photogrammetric flights at different periods, using both orthorectified images in the visible and infrared spectrum. Furthermore, the analysis is completed using LiDAR data. From the combination of these data, it has been possible to delineate the building footprints and characterize the constructions with attributes such as the approximate date of construction, area, type of roof and even building materials. To carry out the calculation, we have developed different algorithms to compare images from different times, segment images, classify LiDAR data, and use the infrared data in order to remove vegetation or to compute roof surfaces with height value, tilt and spectral fingerprint. In addition, the accuracy of our results has been validated with ground truth data. Keywords: LiDAR, remote sensing, seismic vulnerability, Lorca

  18. Assessing Embodied Energy and Greenhouse Gas Emissions in Infrastructure Projects

    Directory of Open Access Journals (Sweden)

    Jan Krantz

    2015-10-01

    Full Text Available Greenhouse gas (GHG emissions from construction processes are a serious concern globally. Of the several approaches taken to assess emissions, Life Cycle Assessment (LCA based methods do not just take into account the construction phase, but consider all phases of the life cycle of the construction. However, many current LCA approaches make general assumptions regarding location and effects, which do not do justice to the inherent dynamics of normal construction projects. This study presents a model to assess the embodied energy and associated GHG emissions, which is specifically adapted to address the dynamics of infrastructure construction projects. The use of the model is demonstrated on the superstructure of a prefabricated bridge. The findings indicate that Building Information Models/Modeling (BIM and Discrete Event Simulation (DES can be used to efficiently generate project-specific data, which is needed for estimating the embodied energy and associated GHG emissions in construction settings. This study has implications for the advancement of LCA-based methods (as well as project management as a way of assessing embodied energy and associated GHG emissions related to construction.

  19. Artificial intelligence and signal processing for infrastructure assessment

    Science.gov (United States)

    Assaleh, Khaled; Shanableh, Tamer; Yehia, Sherif

    2015-04-01

    The Ground Penetrating Radar (GPR) is being recognized as an effective nondestructive evaluation technique to improve the inspection process. However, data interpretation and complexity of the results impose some limitations on the practicality of using this technique. This is mainly due to the need of a trained experienced person to interpret images obtained by the GPR system. In this paper, an algorithm to classify and assess the condition of infrastructures utilizing image processing and pattern recognition techniques is discussed. Features extracted form a dataset of images of defected and healthy slabs are used to train a computer vision based system while another dataset is used to evaluate the proposed algorithm. Initial results show that the proposed algorithm is able to detect the existence of defects with about 77% success rate.

  20. Assessment of remotely sensed drought features in vulnerable agriculture

    Directory of Open Access Journals (Sweden)

    N. R. Dalezios

    2012-10-01

    Full Text Available The growing number and effectiveness of Earth observation satellite systems, along with the increasing reliability of remote sensing methodologies and techniques, present a wide range of new capabilities in monitoring and assessing droughts. A number of drought indices have been developed based on NOAA-AVHRR data exploiting the remote sensing potential at different temporal scales. In this paper, the remotely sensed Reconnaissance Drought Index (RDI is employed for the quantification of drought. RDI enables the assessment of hydro-meteorological drought, since it uses hydrometeorological parameters, such as precipitation and potential evapotranspiration. The study area is Thessaly, central Greece, which is a drought-prone agricultural region characterized by vulnerable agriculture. Several drought features are analyzed and assessed by using monthly RDI images over the period 1981–2001: severity, areal extent, duration, periodicity, onset and end time. The results show an increase in the areal extent during each drought episode and that droughts are classified into two classes, namely small areal extent drought and large areal extent drought, respectively, lasting 12 or 13 months coinciding closely with the hydrological year. The onset of large droughts coincides with the beginning of the hydrological year, whereas the onset of small droughts is in spring. During each drought episode, the maximum occurs usually in the summer and they all last until the end of the hydrological year. This finding could justify an empirical prognostic potential of drought assessment.

  1. National Levee Database: monitoring, vulnerability assessment and management in Italy

    Science.gov (United States)

    Barbetta, Silvia; Camici, Stefania; Maccioni, Pamela; Moramarco, Tommaso

    2015-04-01

    Italian levees and historical breach failures to be exploited in the framework of an operational procedure addressed to the seepage vulnerability assessment of river reaches where the levee system is an important structural measure against flooding. For its structure, INLED is a dynamic geospatial database with ongoing efforts to add levee data from authorities with the charge of hydraulic risk mitigation. In particular, the database is aimed to provide the available information about: i) location and condition of levees; ii) morphological and geometrical properties; iii) photographic documentation; iv) historical levee failures; v) assessment of vulnerability to overtopping and seepage carried out through a procedure based on simple vulnerability indexes (Camici et al. 2014); vi) management, control and maintenance; vii)flood hazard maps developed by assuming the levee system undamaged/damaged during the flood event. Currently, INLED contains data of levees that are mostly located in the Tiber basin, Central Italy. References Apel H., Merz B. & Thieken A.H. Quantification of uncertainties in flood risk assessments. Int J River Basin Manag 2008, 6, (2), 149-162. Camici S,, Barbetta S., Moramarco T., Levee body vulnerability to seepage: the case study of the levee failure along the Foenna stream on 1st January 2006 (central Italy)", Journal of Flood Risk Management, in press. Colleselli F. Geotechnical problems related to river and channel embankments. Rotterdam, the Netherlands: Springer, 1994. H. R.Wallingford Consultants (HRWC). Risk assessment for flood and coastal defence for strategic planning: high level methodology technical report, London, 2003. Mazzoleni M., Bacchi B., Barontini S., Di Baldassarre G., Pilotti M. & Ranzi R. Flooding hazard mapping in floodplain areas affected by piping breaches in the Po River, Italy. J Hydrol Eng 2014, 19, (4), 717-731.

  2. Reliability assessment of power pole infrastructure incorporating deterioration and network maintenance

    International Nuclear Information System (INIS)

    There is considerable investment in timber utility poles worldwide, and there is a need to examine the structural reliability and probability based management optimisation of these power distribution infrastructure elements. The work presented in this paper builds on the existing studies in this area through assessment of both treated and untreated timber power poles, with the effects of deterioration and network maintenance incorporated in the analysis. This more realistic assessment approach, with deterioration and maintenance considered, was achieved using event-based Monte Carlo simulation. The output from the probabilistic model is used to illustrate the importance of considering network maintenance in the time-dependent structural reliability assessment of timber power poles. Under wind load, treated and untreated poles designed and maintained in accordance with existing Australian standards were found to have similar failure rates. However, untreated pole networks required approximately twice as many maintenance based pole replacements to sustain the same level of reliability. The effect of four different network maintenance strategies on infrastructure performance was also investigated herein. This assessment highlighted the fact that slight alterations to network maintenance practices can lead to significant changes in performance of timber power pole networks. - Highlights: • A time-dependent structural reliability model was developed for timber power poles. • Deterioration and network maintenance were incorporated into this event based model. • Network maintenance had a significant impact on power pole wind vulnerability. • Treated and untreated poles designed to Australian standards had similar reliability. • Minor alterations to maintenance strategies had large effects on network performance

  3. Coastal vulnerability assessment for Chennai, east coast of India using geospatial techniques

    Digital Repository Service at National Institute of Oceanography (India)

    ArunKumar, A.; Kunte, P.D.

    , and mean wave height for assessment of coastal vulnerability of the U.S. Atlantic coast. Pendleton, et al. (2005) assessed the coastal vulnerability of Golden Gate National Recreation area to sea level rise by calculating a coastal vulnerability index... to coastal erosion hazards. Dwarakish et al. (2009) calculated CVI for Udupi coastal zone of Karnataka from shore-line change rate, sea-level change rate, coastal slope, mean tidal range, coastal geomorphology. Srinivasa Kumar et al. (2010) assessed the CVI...

  4. Assessing quick wins to protect critical urban infrastructure from floods: a case study in Bangkok, Thailand.

    NARCIS (Netherlands)

    Zevenbergen, Chris; Herk, S. van; Escarameia, M.; Gersonius, B.; Serre, D.; Walliman, N.; Bruijn, K.M. de; Graaf, Rutger de

    2015-01-01

    This paper focuses on the vulnerability and protection of critical urban infrastructure from flooding. It presents a pragmatic and rapid screening procedure, referred to as a ‘Quick Scan methodology’. The purpose of the Quick Scan is to provide guidance for network operators and decision makers on i

  5. Department of Energy, highly enriched uranium ES ampersand H vulnerability assessment, Idaho National Engineering Laboratory site assessment team report

    International Nuclear Information System (INIS)

    In accordance with the February 22, 1996 directive issued by Secretary of Energy O'Leary on the Vulnerability Assessment of Highly Enriched Uranium (HEU) Storage, the Idaho National Engineering Laboratory conducted an assessment of the site's HEU holdings and any associated vulnerabilities. The assessment was conducted between April 25 and May 24, 1996. The scope of this assessment, as defined in the Assessment Plan, included all HEU, and any spent fuel not evaluated in the Spent Fuel Vulnerability Assessment. Addressed in this assessment were all of the holdings at the Idaho National Engineering Laboratory (INEL) except any located at Argonne National Laboratory-West (ANL-W) and the Naval Reactors Facility. Excluded from the assessment were those HEU holdings previously assessed in the Idaho National Engineering Laboratory Spent Nuclear Fuel Inventory and Vulnerability Site Assessment Report and any HEU holdings evaluated in the Plutonium Vulnerability Assessment Report

  6. Seismic vulnerability and risk assessment of Kolkata City, India

    Directory of Open Access Journals (Sweden)

    S. K. Nath

    2014-04-01

    Full Text Available The city of Kolkata is one of the most urbanized and densely populated regions in the world, which is a major industrial and commercial hub of the Eastern and Northeastern region of India. In order to classify the seismic risk zones of Kolkata we used seismic hazard exposures on the vulnerability components namely, landuse/landcover, population density, building typology, age and height. We microzoned seismic hazard of the City by integrating seismological, geological and geotechnical themes in GIS which in turn is integrated with the vulnerability components in a logic-tree framework to estimate both the socio-economic and structural risk of the City. In both the risk maps, three broad zones have been demarcated as "severe", "high" and "moderate". There had also been a risk-free zone in the City. The damage distribution in the City due to the 1934 Bihar-Nepal Earthquake of Mw 8.1 well matches with the risk regime. The design horizontal seismic coefficients for the City have been worked out for all the predominant periods which indicate suitability of "A", "B" and "C" type of structures. The cumulative damage probabilities in terms of "slight", "moderate", "extensive" and "complete" have also been assessed for the significant four model building types viz. RM2L, RM2M, URML and URMM for each structural seismic risk zone in the City. Both the Seismic Hazard and Risk maps are expected to play vital roles in the earthquake inflicted disaster mitigation and management of the city of Kolkata.

  7. Contribution for the vulnerability assessment of water pipe network systems

    OpenAIRE

    Pinto, Jorge; Afonso, Luís; Varajão, João; Bentes, Isabel; Varum, Humberto; António A. L. S. Duarte; Agarwal, Jitendra

    2010-01-01

    Water pipe network systems are key public utilities which require being robust, protected and preserved. Knowing their weaknesses will help these processes. The theory of vulnerability of water pipe networks can contribute in this context because it is able to map the vulnerable parts of this type of system. The meaning of vulnerability has been defined as being the disproportionateness of the failure consequences in relation to the initial damage and, in particular, its theoretical concepts....

  8. Sense in Sensitivity: Assessing Species Vulnerability to Climate Change

    OpenAIRE

    Mcdougall, Amy

    2013-01-01

    This thesis investigates the impact of future climate change upon species vulnerability. Reports of shifts in species distributions are already numerous, but the pattern of change is not fully understood. This thesis looks to predict which species are likely to be most at risk under climate change and why? This thesis takes the equation; Vulnerability= Sensitivity + Exposure to better discover which species are most vulnerable to climate change. Additionally, this research explores how mitiga...

  9. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    Science.gov (United States)

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability.

  10. Hazard risk and vulnerability assessment : Regional District of Nanaimo : final report

    International Nuclear Information System (INIS)

    A Hazard Risk and Vulnerability Assessment (HRVA) is a mandated regulatory requirement in British Columbia that requires local authorities to prepare emergency plans that reflect the local authority's assessment of the relative risk of occurrence and the potential impact on people and property of the hazards, emergencies or disasters that could affect the jurisdictional area for which the local authority has responsibility. This report constituted an HRVA for the Regional District of Nanaimo, British Columbia. It presented the study scope and methodology and provided an overview of the Regional District of Nanaimo. This included information on the setting, demographics, and economy. Next, it discussed social vulnerability; critical response and recovery facilities; and critical infrastructure such as water, energy, telecommunications and transportation. A summary of the Regional District of Nanaimo's response capabilities that were considered when assessing the Regional District's overall risk to the hazards was also presented. Response capabilities were discussed with reference to fire and rescue; police; ambulance; and search and rescue. Emergency support and preparedness organizations were also identified. These included the Emergency Coordination Centre, environmental services, emergency social services, amateur radio and health authorities. Last, 33 hazards that could affect the Regional District of Nanaimo were identified and discussed. The study identified the following hazards as high risk: flooding; forest fires and wildland urban interface fires; and human diseases and pandemic. It was recommended that the advancement of business continuity planning in the Regional District of Nanaimo would help to reduce the impact of a possible human disease and pandemic risk outbreak affecting the population. 75 refs., 25 figs., 14 tabs., 2 appendices

  11. Assessing the potential of change in urban infrastructure systems

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten

    2000-01-01

    In order to understand the dynamics and the potential of change, urban infrastructure must be seen as socio-technical artefacts. The paper offers a methodology for analysing current infrastructure and a case study demonstrating that social relations plays a significant role as barriers...

  12. Comprehensive Assessment of Eco-environment Vulnerability in Hebei Province Based on ArcGIS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] This study aimed to assess the vulnerability of ecological environment in Hebei Province.[Method] Based on ArcGIS,by using the dominant factor and maximum limits factor method,we established the sensitivity-reality indicator system and assessment model of the eco-environment vulnerability in Hebei Province to quantitatively evaluate its eco-environment vulnerability,and analyzed its spatial distribution.[Result] The status quo of environmental degradation was inconsistent with the sensitivity of...

  13. Social cost impact assessment of pipeline infrastructure projects

    International Nuclear Information System (INIS)

    A key advantage of trenchless construction methods compared with traditional open-cut methods is their ability to install or rehabilitate underground utility systems with limited disruption to the surrounding built and natural environments. The equivalent monetary values of these disruptions are commonly called social costs. Social costs are often ignored by engineers or project managers during project planning and design phases, partially because they cannot be calculated using standard estimating methods. In recent years some approaches for estimating social costs were presented. Nevertheless, the cost data needed for validation of these estimating methods is lacking. Development of such social cost databases can be accomplished by compiling relevant information reported in various case histories. This paper identifies eight most important social cost categories, presents mathematical methods for calculating them, and summarizes the social cost impacts for two pipeline construction projects. The case histories are analyzed in order to identify trends for the various social cost categories. The effectiveness of the methods used to estimate these values is also discussed. These findings are valuable for pipeline infrastructure engineers making renewal technology selection decisions by providing a more accurate process for the assessment of social costs and impacts. - Highlights: • Identified the eight most important social cost factors for pipeline construction • Presented mathematical methods for calculating those social cost factors • Summarized social cost impacts for two pipeline construction projects • Analyzed those projects to identify trends for the social cost factors

  14. Risk Assessment Methodology for Protecting Our Critical Physical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    BIRINGER,BETTY E.; DANNEELS,JEFFREY J.

    2000-12-13

    Critical infrastructures are central to our national defense and our economic well-being, but many are taken for granted. Presidential Decision Directive (PDD) 63 highlights the importance of eight of our critical infrastructures and outlines a plan for action. Greatly enhanced physical security systems will be required to protect these national assets from new and emerging threats. Sandia National Laboratories has been the lead laboratory for the Department of Energy (DOE) in developing and deploying physical security systems for the past twenty-five years. Many of the tools, processes, and systems employed in the protection of high consequence facilities can be adapted to the civilian infrastructure.

  15. Modeling the Connectedness Between best Management Practices and Vulnerability Assessments

    Science.gov (United States)

    Anandhi, A.; Bailey, N.; Thomas, M.; Bartnick, B.

    2015-12-01

    The overall goal of this study is to better understand the connectedness between Best management practices (BMPs) and vulnerability assessments (VA) in a changing landuse. Developing this connectedness will help understand key vulnerabilities and improve adaptive capacity important for ecosystem sustainability. BMPs are practical management practices or systems designed and installed in watersheds to provide a wide range of effects to protect or restore the physical, chemical, and biological condition of waterbodies (e.g. changing hydrology; improving vegetative habitat; mitigate adverse environmental change). VAs can be defined as "the degree to which the system is susceptible to and is unable to cope with adverse effects of change" and are often characterized as a function of exposure, sensitivity and adaptive capacity. There are many variables and factors used in calculating the impact of BMPs and VAs. The event mean concentration or load (e.g. nutrient, sediment,) associated with the specific landuse is an important variable. There is much data that predicts the loads associated with the major landuses (urban, agricultural). Loads greatly vary with region; rainfall characteristics (e.g. rainfall intensity, rainfall frequency); soil characteristics (e.g. soil type, hydrologic soil groups); hydrologic characteristics (e.g. runoff potential). A concern also exists that possibly all of the variables associated with changes in an individual land use have not been identified and distinguished for their impact on land use. For example, the loads associated with a high density residential with much green space may be more similar to medium density than loads associated with high rise apartment buildings. Other factors may include age of construction, % of families with children, % of families with pets, level of transiency, and construction activity The objective of our study is to develop an initial framework using multiple variables and factors to represent the

  16. Tsunami Hazard, Vulnerability and Risk assessment for the coast of Oman

    Science.gov (United States)

    Gonzalez, Mauricio; Aniel-Quiroga, Íñigo; Aguirre-Ayerbe, Ignacio; Álvarez-Gómez, José Antonio; MArtínez, Jara; Gonzalez-Riancho, Pino; Fernandez, Felipe; Medina, Raúl; Al-Yahyai, Sultan

    2016-04-01

    Tsunamis are relatively infrequent phenomena representing a greater threat than earthquakes, hurricanes and tornadoes, and causing the loss of thousands of human lives and extensive damage to coastal infrastructures around the world. Advances in the understanding and prediction of tsunami impacts allow the development of new methodologies in this field. This work presents the methodology that has been followed for developing the tsunami hazard, vulnerability and risk assessment for the coast of Oman, including maps containing the results of the process. Oman is located in the south eastern corner of the Arabian Peninsula and of the Arabian plate, in front of the Makran Subduction Zone (MSZ), which is the major source of earthquakes in the eastern border of the Arabian plate and Oman (Al-Shaqsi, 2012). There are at least three historical tsunamis assigned to seismic origin in the MSZ (Heidarzadeh et al., 2008; Jordan, 2008). These events show the high potential for tsunami generation of the MSZ, being one of the most tsunamigenic zones in the Indian Ocean. For the tsunami hazard assessment, worst potential cases have been selected, as well as the historical case of 1945, when an 8.1 earthquake generated a tsunami affecting the coast of Oman, and prompting 4000 casualties in the countries of the area. These scenarios have been computationally simulated in order to get tsunami hazard maps, including flooding maps. These calculations have been carried out at national and local scale, in 9 municipalities all along the coast of Oman, including the cities of Sohar, Wudam, Sawadi, Muscat, Quriyat, Sur, Masirah, Al Duqm, and Salalah. Using the hazard assessment as input, this work presents as well an integrated framework for the tsunami vulnerability and risk assessment carried out in the Sultanate of Oman. This framework considers different dimensions (human, structural) and it is developed at two different spatial resolutions, national and local scale. The national

  17. Integration of geospatial techniques in the assessment of vulnerability of trees to ice storms in Norman, Oklahoma

    Science.gov (United States)

    Rahman, Muhammad Tauhidur

    Every year, natural hazards such as hurricanes, floods, wild fires, droughts, earthquakes, volcanic eruptions, and ice storms destroy millions of trees across the World and cause extensive damage to their species composition, structure, and dynamics. Recently within the last decade, ice storms has caused catastrophic damage to trees, infrastructures, power lines in Oklahoma, and has taken over several dozen human lives. However, studies pertaining to the vulnerability and assessment of tree damage from ice storms in Oklahoma are almost non-existent. This study aims to fulfill that gap by first integrating remote sensing (RS) and geographic information systems (GIS) to assess and estimate tree damage caused by the December 8-11, 2007 ice storm that struck the north-central part of Oklahoma. It also explores the factors that contributed to the tree damage and created multiple regression models based on the factors. Finally, it examines the vulnerability of trees to ice storms by creating an ice storm tree damage vulnerability index for the City of Norman, Oklahoma. The integrated RS and GIS method assessed tree height and crown damage with high degree of accuracy. The thickness of ice accumulation has emerged as the most important predictor, followed by tree branch angle and pre-storm crown, wind, stem, and branch diameters for tree damage from ice storms. Results indicate that the vulnerability index accurately predicted several areas that are highly vulnerable. Results from this study are significant from both theoretical, and methodological and implication perspectives. The present study contributes significantly by identifying the geographic conditions of the City of Norman that make its urban forestry vulnerable to ice storm damage. In doing so, it initiates steps for future tree vulnerability research. Methodologically, the study contributes significantly to geospatial technology paradigm in geography by integrating RS and GIS to assess tree damage not only on

  18. Assessment of Road Infrastructures Pertaining to Malaysian Experience

    OpenAIRE

    Samsuddin Norshakina; Mohd Masirin Mohd Idrus

    2016-01-01

    Road Infrastructures contribute towards many severe accidents and it needs supervision as to improve road safety levels. The numbers of fatalities have increased annually and road authority should seriously consider conducting programs or activities to periodically monitor, restore of improve road infrastructure. Implementation of road safety audits may reduce fatalities among road users and maintain road safety at acceptable standards. This paper is aimed to discuss the aspects of road infra...

  19. Assessing node risk and vulnerability in epidemics on networks

    CERN Document Server

    Rogers, Tim

    2015-01-01

    Which nodes are most vulnerable to an epidemic spreading through a network, and which carry the highest risk of causing a major outbreak if they are the source of the infection? Here we show how these questions can be answered to good approximation using the cavity method. Several curious properties of node vulnerability and risk are explored: some nodes are more vulnerable than others to weaker infections, yet less vulnerable to stronger ones; a node is always more likely to be caught in an outbreak than it is to start one, except when the disease has a deterministic lifetime; the rank order of node risk depends on the details of the distribution of infectious periods.

  20. Assessment of the vulnerability and the resilience of the population at risk of multi-hazard: a support to geo-risk management in Central Africa

    Science.gov (United States)

    Michellier, Caroline; Kervyn, François; Tréfon, Théodore; Wolff, Eléonore

    2013-04-01

    GeoRisCA is a project which aims at studying the geo-risk in the Kivu region (DRC, Rwanda, Burundi), in order to support risk management. The approach developed in GeoRisCA combines methodologies from various disciplines, which will allow the analyses of seismic, volcanic and mass-movement hazards and the vulnerability assessment of the threatened elements. Vulnerability is a complex concept which is commonly defined as the susceptibility of the population, the infrastructures and the natural ecosystems to suffer from damages if a hazard occurs. The densely populated area extended from the North Kivu province in Democratic Republic of the Congo (DRC) to North Burundi and East Rwanda is vulnerable to several geohazards, such as landslides triggered by geodynamical processes (climate, seismicity, volcanism) and possibly worsen by anthropic actions. Located in the East African rift valley, the region is also characterized by a strong seismicity, with increasing people and infrastructure exposed. In addition, east DRC hosts the two most active African volcanoes: Nyiragongo and Nyamulagira. Their activity can have serious impacts, as in 2002 when Nyiragongo directly endangers the ~800.000 inhabitants of Goma city, located ~15 km to the south. Linked to passive volcanic degassing, SO2 and CO2 discharge may also increase the population vulnerability(morbidity, mortality). Focusing specifically on this region, the vulnerability assessment methodology developed in GeoRisCA takes into account "exposure to perturbations" and "adaptive capacity or resilience" of the vulnerable systems. On one hand, the exposure is identified as the potential degree of loss of a given element or set of elements at risk; i.e., the susceptibility of people, infrastructures and buildings with respect to a hazard (social vulnerability). It focuses mainly on land use, and on demographic and socio-economic factors that increase or attenuate the impacts of hazards events on local populations. On the

  1. Population Evacuation: Assessing Biophysical Risk and Social Vulnerability to Floods

    Science.gov (United States)

    Sim, S.; Lee, D. H.

    2014-12-01

    A relatively new topic of environmental hazards research revolves around vulnerability to disasters. These studies focused separately on biophysical and social vulnerability perspectives. Only recently, community-based vulnerability studies have become common because of the recognition that combining social and biophysical components is important and practical (Cutter, et al., 2000; Cutter, et al., 2003; Turner, et al., 2003). Researchers have modeled vulnerability to analyze its spatial variation (Montz, Cross, and Cutter, 2006). This study aimed at developing a technical framework for community-based vulnerability to the specific hazards of floods. Developing a technical framework in this research used a "vulnerability of place" method (Hebb & Mortsch, 2007). The data reduction technique used was Principal Components Analysis (PCA) which allows for each variable to explain part of the vulnerability. The case study was on flooding in the Tennessee River Basin. The initial run with all 46 variables produced 13 components that explained 69.77% of the variance. Because of the relative homogeneity across the county (i.e., land use and soil types most vulnerable to flooding being located away from heavily populated areas) biophysical variables became less important in this region in creating overall risk scores. This is made all the more obvious by the number of social variables (17) compared to the number of biophysical variables (8) in the final components. The lowest risk block groups are located within the cities: central Florence, central, and central Madison. The highest risk block groups are in rural areas covered predominately with pasture and agricultural land or forests. They also lie near or within the 100 year floodplain.

  2. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy`s (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions.

  3. Reconsidering the risk assessment concept: Standardizing the impact description as a building block for vulnerability assessment

    Directory of Open Access Journals (Sweden)

    K. Hollenstein

    2005-01-01

    Full Text Available Risk assessments for natural hazards are becoming more widely used and accepted. Using an extended definition of risk, it becomes obvious that performant procedures for vulnerability assessments are vital for the success of the risk concept. However, there are large gaps in knowledge about vulnerability. To alleviate the situation, a conceptual extension of the scope of existing and new models is suggested. The basis of the suggested concept is a stadardization of the output of hazard assessments. This is achieved by defining states of the target objects that depend on the impact and at the same time affect the object's performance characteristics. The possible state variables can be related to a limited set of impact descriptors termed generic impact description interface. The concept suggests that both hazard and vulnerability assessment models are developed according to the specification of this interface, thus facilitating modularized risk assessments. Potential problems related to the application of the concept include acceptance issues and the lacking accuracy of transformation of outputs of existing models. Potential applications and simple examples for adapting existing models are briefly discussed.

  4. A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Herslund, Lise Byskov; Jalyer, Fatameh; Jean-Baptiste, Nathalie;

    2016-01-01

    In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub- Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability...... in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional...... the potential of the approach to assessing several dimensions of vulnerability and illustrate the complexity of urban vulnerability at different scales: households (e.g., lacking assets); communities (e.g., situated in low-lying areas, lacking urban services and green areas); and entire cities (e.g., facing...

  5. Assessing Local Vulnerability to Climate Change in Agriculture for Tocantins, Brazil

    OpenAIRE

    Guerrero-Escobar, Santiago; Juarez-Torres, Miriam; Martinez Cruz, Adan

    2014-01-01

    We propose a reliable indicator of vulnerability to climate change in agriculture that allows assessing within the system the main components of vulnerability at a local level: stressors exposure (SE), stressors sensitivity (SS), and adaptive capacity (AC). Also, this indicator will allow identifying main vulnerability drivers and planning policies to increase system resiliency as well as designing climate change adaptation policies at the local level.

  6. Assessing the Performance of a Classification-Based Vulnerability Analysis Model

    OpenAIRE

    Wang, Tai-Ran; Mousseau, Vincent; Pedroni, Nicola; Zio, Enrico

    2015-01-01

    In this article, a classification model based on the majority rule sorting (MR-Sort) method is employed to evaluate the vulnerability of safety-critical systems with respect to malevolent intentional acts. The model is built on the basis of a (limited-size) set of data representing (a priori known) vulnerability classification examples. The empirical construction of the clas-sification model introduces a source of uncertainty into the vulnerability analysis process: a quantitative assessment ...

  7. Assessing the Agricultural Vulnerability for India under Changing Climate

    Science.gov (United States)

    Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra

    2016-04-01

    Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.

  8. Optimal recovery sequencing for critical infrastructure resilience assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Vugrin, Eric D.; Brown, Nathanael J. K.; Turnquist, Mark Alan (Cornell University, Ithaca, NY)

    2010-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the identification of optimal recovery strategies that maximize resilience. To this goal, we formulate a bi-level optimization problem for infrastructure network models. In the 'inner' problem, we solve for network flows, and we use the 'outer' problem to identify the optimal recovery modes and sequences. We draw from the literature of multi-mode project scheduling problems to create an effective solution strategy for the resilience optimization model. We demonstrate the application of this approach to a set of network models, including a national railroad model and a supply chain for Army munitions production.

  9. The Assessment of Comprehensive Vulnerability of Chemical Industrial Park Based on Entropy Method and Matter-element Extension Model

    Directory of Open Access Journals (Sweden)

    Yan Jingyi

    2016-01-01

    Full Text Available The paper focuses on studying connotative meaning, evaluation methods and models for chemical industry park based on in-depth analysis of relevant research results in China and abroad, it summarizes and states the feature of menacing vulnerability and structural vulnerability and submits detailed influence factors such as personnel vulnerability, infrastructural vulnerability, environmental vulnerability and the vulnerability of safety managerial defeat. Using vulnerability scoping diagram establishes 21 evaluation indexes and an index system for the vulnerability evaluation of chemical industrial park. The comprehensive weights are calculated with entropy method, combining matter-element extension model to make the quantitative evaluation, then apply to evaluate some chemical industrial park successfully. This method provides a new ideas and ways for enhancing overall safety of the chemical industrial park.

  10. Development and Application of Urban Landslide Vulnerability Assessment Methodology Reflecting Social and Economic Variables

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2016-01-01

    Full Text Available An urban landslide vulnerability assessment methodology is proposed with major focus on considering urban social and economic aspects. The proposed methodology was developed based on the landslide susceptibility maps that Korean Forest Service utilizes to identify landslide source areas. Frist, debris flows are propagated to urban areas from such source areas by Flow-R (flow path assessment of gravitational hazards at a regional scale, and then urban vulnerability is assessed by two categories: physical and socioeconomic aspect. The physical vulnerability is related to buildings that can be impacted by a landslide event. This study considered two popular building structure types, reinforced-concrete frame and nonreinforced-concrete frame, to assess the physical vulnerability. The socioeconomic vulnerability is considered a function of the resistant levels of the vulnerable people, trigger factor of secondary damage, and preparedness level of the local government. An index-based model is developed to evaluate the life and indirect damage under landslide as well as the resilience ability against disasters. To illustrate the validity of the proposed methodology, physical and socioeconomic vulnerability levels are analyzed for Seoul, Korea, using the suggested approach. The general trend found in this study indicates that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions.

  11. Applying and validating the PTVA-3 Model at the Aeolian Islands, Italy: assessment of the vulnerability of buildings to tsunamis

    Science.gov (United States)

    Dall'Osso, F.; Maramai, A.; Graziani, L.; Brizuela, B.; Cavalletti, A.; Gonella, M.; Tinti, S.

    2010-07-01

    The volcanic archipelago of the Aeolian Islands (Sicily, Italy) is included on the UNESCO World Heritage list and is visited by more than 200 000 tourists per year. Due to its geological characteristics, the risk related to volcanic and seismic activity is particularly high. Since 1916 the archipelago has been hit by eight local tsunamis. The most recent and intense of these events happened on 30 December 2002. It was triggered by two successive landslides along the north-western side of the Stromboli volcano (Sciara del Fuoco), which poured approximately 2-3×107 m3 of rocks and debris into the Tyrrhenian Sea. The waves impacted across the whole archipelago, but most of the damage to buildings and infrastructures occurred on the islands of Stromboli (maximum run-up 11 m) and Panarea. The aim of this study is to assess the vulnerability of buildings to damage from tsunamis located within the same area inundated by the 2002 event. The assessment is carried out by using the PTVA-3 Model (Papathoma Tsunami Vulnerability Assessment, version 3). The PTVA-3 Model calculates a Relative Vulnerability Index (RVI) for every building, based on a set of selected physical and structural attributes. Run-up values within the area inundated by the 2002 tsunami were measured and mapped by the Istituto Italiano di Geofisica e Vulcanologia (INGV) and the University of Bologna during field surveys in January 2003. Results of the assessment show that if the same tsunami were to occur today, 54 buildings would be affected in Stromboli, and 5 in Panarea. The overall vulnerability level obtained in this analysis for Stromboli and Panarea are "average"/"low" and "very low", respectively. Nonetheless, 14 buildings in Stromboli are classified as having a "high" or "average" vulnerability. For some buildings, we were able to validate the RVI scores calculated by the PTVA-3 Model through a qualitative comparison with photographs taken by INGV and the University of Bologna during the post

  12. Applying and validating the PTVA-3 Model at the Aeolian Islands, Italy: assessment of the vulnerability of buildings to tsunamis

    Directory of Open Access Journals (Sweden)

    F. Dall'Osso

    2010-07-01

    Full Text Available The volcanic archipelago of the Aeolian Islands (Sicily, Italy is included on the UNESCO World Heritage list and is visited by more than 200 000 tourists per year. Due to its geological characteristics, the risk related to volcanic and seismic activity is particularly high. Since 1916 the archipelago has been hit by eight local tsunamis. The most recent and intense of these events happened on 30 December 2002. It was triggered by two successive landslides along the north-western side of the Stromboli volcano (Sciara del Fuoco, which poured approximately 2–3×107 m3 of rocks and debris into the Tyrrhenian Sea. The waves impacted across the whole archipelago, but most of the damage to buildings and infrastructures occurred on the islands of Stromboli (maximum run-up 11 m and Panarea.

    The aim of this study is to assess the vulnerability of buildings to damage from tsunamis located within the same area inundated by the 2002 event. The assessment is carried out by using the PTVA-3 Model (Papathoma Tsunami Vulnerability Assessment, version 3. The PTVA-3 Model calculates a Relative Vulnerability Index (RVI for every building, based on a set of selected physical and structural attributes. Run-up values within the area inundated by the 2002 tsunami were measured and mapped by the Istituto Italiano di Geofisica e Vulcanologia (INGV and the University of Bologna during field surveys in January 2003. Results of the assessment show that if the same tsunami were to occur today, 54 buildings would be affected in Stromboli, and 5 in Panarea. The overall vulnerability level obtained in this analysis for Stromboli and Panarea are "average"/"low" and "very low", respectively. Nonetheless, 14 buildings in Stromboli are classified as having a "high" or "average" vulnerability. For some buildings, we were able to validate the RVI scores calculated by the PTVA-3 Model through a qualitative comparison with photographs taken by INGV and

  13. Assessment of infrastructure functional damages caused by natural-technological disasters

    Science.gov (United States)

    Massabò, Marco; Trasforini, Eva; Traverso, Stefania; Rudari, Roberto; De Angeli, Silvia; Cecinati, Francesca; Cerruti, Valentina

    2013-04-01

    The assessment of infrastructure damages caused by technological disaster poses several challenges, from gathering needed information on the territorial system to the definition of functionality curves for infrastructures elements (such as, buildings, road school) that are exposed to both natural and technological event. Moreover, areas affected by natural or natech (technological disasters triggered by natural events) disasters have often very large extensions and a rapid survey of them to gather all the needed information is a very difficult task, for many reasons, not least the difficult access to the existing databases and resources. We use multispectral optical imagery with other geographical and unconventional data to identify and characterize exposed elements. Our efforts in the virtual survey and during the investigation steps have different aims: to identify the vulnerability of infrastructures, buildings or activities; to execute calculations of exposition to risk; to estimate physical and functional damages. Subsequently, we apply specific algorithms to estimate values of acting forces and physical and functional damages. The updated picture of target areas in terms of risk-prone people, infrastructures and their connections is very important. It is possible to develop algorithms providing values of systemic functionality for each network element. The methodology is here applied to a natech disaster, arising from the combination of a flood event (specifically, the January 2010 flooding of Drin and Buna rivers, with a worsening in the road safety levels in the Shkoder area) with and the subsequent overturning of a truck transporting hazardous material. The accident causes the loss of containment and the total material release. Once the release has taken place, the evolution will depend on the physical state of the substance spilled (liquid, gas or dust). As a specific case we consider the rupture of a trucks transporting liquid fuels such as gasoline

  14. Assessing the impact of sea-level rise on a vulnerable coastal community in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Kwasi Appeaning Addo

    2013-03-01

    Full Text Available Climate change and its associated sea-level rise are expected to significantly affect vulnerable coastal communities. Although the extent of the impact will be localised, its assessment will adopt a monitoring approach that applies globally. The topography of the beach, the type of geological material and the level of human intervention will determine the extent of the area to be flooded and the rate at which the shoreline will move inland. Gleefe, a coastal community in Ghana, has experienced frequent flooding in recent times due to the increasing occurrence of storm surge and sea-level rise. This study used available geospatial data and field measurements to determine how the beach topography has contributed to the incidence of flooding at Gleefe. The topography is generally low-lying. Sections of the beach have elevations of around 1 m, which allows seawater to move inland during very high tide. Accelerated sea-level rise as predicted by the Intergovernmental Panel on Climate Change (IPCC will destroy homes of the inhabitants and inundate the Densu wetlands behind the beach. Destruction of infrastructure will render the inhabitants homeless, whilst flooding of the wetlands will destroy the habitats of migratory birds and some endangered wildlife species such as marine turtle. Effective adaptation measures should be adopted to protect this very important coastal environment, the ecology of the wetlands and the livelihoods of the community dwellers.

  15. A Multi-view Framework to Assess Spatial Data Infrastructures

    NARCIS (Netherlands)

    Crompvoets, J.W.H.C.; Rajabifard, A.; Loenen, van B.; Delgado Fernandez, T.

    2008-01-01

    There is growing interest internationally in the role that Spatial Data Infrastructures SDIs play as key tools in supporting sustainable development. SDIs, as defined in the context of this book, are network-based national solutions to provide easy, consistent and effective access to geographic info

  16. How urban system vulnerabilities to flooding could be assessed to improve resilience and adaptation in spatial planning

    Science.gov (United States)

    Pasi, Riccardo; Viavattene, Christophe; La Loggia, Goffredo

    2016-04-01

    Natural hazards damage assets and infrastructure inducing disruptions to urban functions and key daily services. These disruptions may be short or long with a variable spatial scale of impact. From an urban planning perspective, measuring these disruptions and their consequences at an urban scale is fundamental in order to develop more resilient cities. Whereas the assessment of physical vulnerabilities and direct damages is commonly addressed, new methodologies for assessing the systemic vulnerability at the urban scale are required to reveal these disruptions and their consequences. Physical and systemic vulnerability should be measured in order to reflect the multifaceted fragility of cities in the face of external stress, both in terms of the natural/built environment and socio-economic sphere. Additionally, a systemic approach allows the consideration of vulnerability across different spatial scales, as impacts may vary and be transmitted across local, regional or national levels. Urban systems are spatially distributed and the nature of this can have significant effects on flood impacts. The proposed approach identifies the vulnerabilities of flooding within urban contexts, including both in terms of single elementary units (buildings, infrastructures, people, etc.) and systemic functioning (urban functions and daily life networks). Direct losses are appraised initially using conventional methodologies (e.g. depth-damage functions). This aims to both understand the spatial distribution of physical vulnerability and associated losses and, secondly, to identify the most vulnerable building types and ways to improve the physical adaptation of our cities, proposing changes to building codes, design principles and other municipal regulation tools. The subsequent systemic approach recognises the city as a collection of sub-systems or functional units (such as neighbourhoods and suburbs) providing key daily services for inhabitants (e.g. healthcare facilities

  17. EVALUATION OF VULNERABILITY ASSESSMENT IN SYSTEM FROM HACKERS IN CYBER SECURITY

    Directory of Open Access Journals (Sweden)

    S.Suma Christal Mary

    2010-07-01

    Full Text Available Vulnerability is very essential in cyber security related mechanisms. The usage of this vulnerability is to identify the attacks over the cyber space system. This term become increased the challenges in cyberspace system in large areas. Interdependencies between computer communication system and the physical infrastructure also become more complex as information technologies are further integrated into devices and networks. Vulnerability causes due to ethical hacking, Trojan attacks, logical bombing. In the recent days firewalls are eliminate the various cyber attacks. The usage of filtering algorithm prevent from E-mail bombing. To secure the server system we can avoid hacking. The above countermeasures are identifying the attacks and improve the efficiency.

  18. Livelihood Vulnerability Assessment Of Farmers and Nomads in Eastern Ecotone of Tibetan Plateau

    Science.gov (United States)

    Yan, J.; Zhang, Y.

    2011-12-01

    Livelihood vulnerability assessment provides a scientific basis for anti-poverty of people and regional sustainable development in vulnerable area. Although there are massive discussions on concept of vulnerability, it is still difficult to make it quantitative and to carry out comprehensive appraise. Vulnerability assessments based on sustainable livelihood frame are widely accepted in case studies for attentions to vulnerable groups. However, these case studies are always on regional scale and never reflect how climate change affects people's livelihood and adaptive capability of people. It is necessary to seek vulnerable assessment index system and means based on livelihood process of local people. This paper develops a livelihood vulnerability assessment index system on the basis of sustainable livelihood framework and appraises livelihood vulnerability values of 11 townships, using data of 879 sample households. Livelihood vulnerability assessment index system reflects main risks, livelihood assets and adaptation strategies of local people and government. The results show that livelihood vulnerability level of plateau region is higher than that of mountain to plateau region and mountain gorge region. Manzhang Township in plateau region is the most vulnerable township and nomads there cannot cope with risks of climate change, meadow degeneration and herbs degradation. Upper part of mountain to plateau region and the whole plateau region have high livelihood vulnerability values and local nomads would not cope with risks if no measures are taken by government. The driving forces of livelihood vulnerability include strikes of risks and deficiency of livelihood assets and adaptive capability. Farmers and nomads in high mountain gorge region and lower part of mountain to plateau region can cope with these risks, meanwhile, there are more employment opportunities in second and tertiary industries are needed to help them realize livelihood diversification. Therefore

  19. A New Approach to Feasibility Risk Assessment within Transport Infrastructure Appraisal

    DEFF Research Database (Denmark)

    Salling, Kim Bang

    2013-01-01

    This paper introduces a new approach of applying feasibility risk assessment within transport project infrastructure appraisal. The procedure is based upon quantitative risk analysis and Monte Carlo simulation in combination with conventional cost-benefit analysis converting deterministic benefit...

  20. A landscape-based assessment of climate change vulnerability for native Hawaiian plants

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One common way to conduct species vulnerability assessments (VA) to climate change (CC) is to model species distributions and predict CC-related range shifts....

  1. Climate change planning for the Great Plains : Wildlife vulnerability assessment & recommendations for land and grazing management

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is the Great Plains Landscape Conservation Cooperative (GP LCC) Vulnerability Assessment Report The purpose of the GP LCC is to conduct applied science...

  2. Vulnerability and Risk Assessment of Extreme Weather Events- A Case Study from Bangladesh

    Science.gov (United States)

    Fakhruddin, S.; Mukand, M. S.; Kawasaki, A.; Webster, P. J.

    2013-12-01

    Assessment of hazard, vulnerability and risk of extreme weather are essential in order to inform and implement appropriate adaptation/prevention/mitigation strategies. Due to complex nature and uncertainties in future climate change predictions, it is not feasible to detail assessment of vulnerability at detailed scales for potential hazard and risk. Though different approaches and methods exist for running hazard, vulnerability and risk assessment, but still difficult to address all physical science, engineering, and social science research. In this study, we try to discuss on the human vulnerability and risk assessment approaches, tools and techniques of natural hazard due to extreme weather events (i.e. floods, cyclone). We analyzed different approaches and methods of vulnerability and risk assessment for flood hazard based on medium (1-10 days) and seasonal (1-3 months) ensembles probabilistic forecasts. The multiple weather ensembles (EPS) forecasts of European Center for Medium Range Forecasts (ECMWF) and downscaled Community Climate System Model Version 3 (CCSM3) forecasts data were used to set up hydrological model. Due to high uncertainty in forecasts information, results summarized that data and inherent low resolutions of the information are major constrains for details comprehensive assessment. Risk and vulnerability rises to be based on multi-scale and cross-scale analyses, considering resilience dimensions and provide innovative tools for understanding, assessing and communicating probabilistic information to the users for decision making. The sectoral responses were developed with possible impacts scenarios based on uncertainty ranges to choose the most robust solution.

  3. On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?

    Directory of Open Access Journals (Sweden)

    Tanja Wolf

    2015-10-01

    Full Text Available Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

  4. On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?

    Science.gov (United States)

    Wolf, Tanja; Chuang, Wen-Ching; McGregor, Glenn

    2015-10-23

    Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

  5. Climate Vulnerability Assessments : An Assessment of Climate Change Vulnerability, Risk, and Adaptation in Albania’s Power Sector

    OpenAIRE

    World Bank

    2009-01-01

    Energy security is a key concern in Albania, which relies on hydropower for about 90 percent of its electricity production. While renewable energy resources like hydropower play a fundamental role in moving the world towards a low-carbon economy, they are also vulnerable to climatic conditions. Climate variability already affects Albania's energy production to a considerable extent, and cl...

  6. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.

    Directory of Open Access Journals (Sweden)

    Peter B Moyle

    Full Text Available Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1 current status of each species (baseline vulnerability to extinction and (2 likely future impacts of climate change (vulnerability to extinction. Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish

  7. Assessing the Vulnerability to Climate Change in the Romanian Part of the Tisza River Basin

    Directory of Open Access Journals (Sweden)

    ALEXANDRU-IONUŢ PETRIŞOR

    2011-01-01

    Full Text Available Clime change represents a current and important issue; in addition to the disputed global warming, at local or regional levels, floods could also be a consequence of this phenomenon. If the potential effects are assessed in terms of exposure, sensitivity, and vulnerability, a GIS methodology, based on statistical indicators and GIS modelling was used to assess the overall vulnerability of the Tisza river basin and define the flood-prone area. Even though specific indicators exhibited high values in some NUTS III units, the overall vulnerability of the regions appears to be low.

  8. Assessment of floodplain vulnerability during extreme Mississippi River flood 2011.

    Science.gov (United States)

    Goodwell, Allison E; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A; Kumar, Praveen; Garcia, Marcelo H; Rhoads, Bruce L; Holmes, Robert R; Parker, Gary; Berretta, David P; Jacobson, Robert B

    2014-01-01

    Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km(2) agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding. PMID:24512322

  9. Assessing Coastal Composite Vulnerability Indices on Seasonal Change in Phetchaburi, Thailand

    Directory of Open Access Journals (Sweden)

    Oraon Sarajit

    2015-01-01

    Full Text Available The aims of this study were to apply the Geo-information technology for coastal vulnerability assessment of Phetchaburi coast, which depended on seasonal changed (by influence of Southwest monsoon and Northeast monsoon. The assessment uses a coastal vulnerability index (CVI, consists of a physical environment vulnerability index (PVI and the socio-economic vulnerability index (SVI with 9 variables; coastal slope, mean tidal ranges, average wave height, rates of coastal erosion, population density, land use, built-up, transportation and coastal protection measures. The results showed, the different during monsoon had an indecisive difference effect on mean tidal ranges, average wave height, and changes in the coastline. However, the monsoon had effected to sand sediment of the beach. That increased in the Southwest monsoon and decreased in the Northeast monsoon. The level of vulnerability of the coastal area was shown by a map of CVI, with high coastal vulnerability areas having a size of 4.6 square kilometers (10.89% of the coastal surveillance area, mainly in Pak-Thale, Bang-Keaw and Chao-Samran. The moderate and the low coastal vulnerability areas have size of 31.29 square kilometers and 6.97 square kilometers, respectively. The variables that influence the vulnerability are land use, slope, erosion rate and population density.

  10. Assessing social vulnerability in African urban context. The challenge to cope with climate change induced hazards by communities and households

    Science.gov (United States)

    Kabisch, Sigrun; Jean-Baptiste, Nathalie

    2013-04-01

    Social vulnerability assessment remains central in discourses on global climatic change and takes a more pertinent meaning considering that natural disasters in African countries continue to deeply affect human settlements and destroys human livelihoods. In recent years, in particular large territories and growing cities have experienced severe weather events. Among them are river and flash floods, affecting the social and economic assets of local populations. The impact of the damage related to floods is not only perceptible during seasonal events but also during unexpected larger disasters which place a particular burden on local population and institutions to adapt effectively to increasing climatic pressures. Important features for social vulnerability assessment are the increasing severity of the physical damages, the shortcoming of social and technical infrastructure, the complexity of land management/market, the limited capacity of local institutions and last but not least the restricted capacities of local population to resist these events. Understanding vulnerability implies highlighting and interlinking relevant indicators and/or perceptions encompassed in four main dimensions: social, institutional, physical and attitudinal vulnerability. Case studies in Dar es Salaam, Ouagadougou and Addis Ababa were carried out to obtain insights into the context-related conditions, behavior routines and survival networks in urban areas in west and east Africa. Using a combination of tools (e.g. focus group discussions, transect walks, interviews) we investigated in close cooperation with African partners how households and communities are being prepared to cope with, as well as to recover from floods. A comprehensive process of dealing with floods can be described based on sequential attributes concerning i) Anticipation before a flood occurs, ii) Resistance and coping activities during a flood event and, iii) Recovery and reconstruction afterwards. A participatory

  11. Vulnerability assessment of storm surges in the coastal area of Guangdong Province

    Directory of Open Access Journals (Sweden)

    K. Li

    2011-07-01

    Full Text Available Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei. Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.

  12. A New Systematic Approach to Vulnerability Assessment of Innovation Capability of Construction Enterprises

    Directory of Open Access Journals (Sweden)

    Jingxiao Zhang

    2015-12-01

    Full Text Available The purpose of this research is to study the vulnerability of construction enterprises’ innovation capabilities (CEIC and their respective primary influencing factors. This paper proposed a vulnerability system framework of CEIC, designed two comprehensive assessments for analysis, namely the entropy and set pair analysis method (E-SPA and the principle cluster analysis and SPA method (P-SPA, and compared grades to verify the vulnerability assessments. Further, the paper quantitatively assessed the major influencing factors in facilitating management, reducing vulnerability, and improving the ability of construction enterprises to respond to changes in the construction industry. The results showed that vulnerability could be effectively and systematically evaluated using E-SPA. However, managing or reducing entrepreneurial sensitivity and improving the ability to respond was critical to supporting sustainable CEIC. The case studies included in this paper suggested that in ensuring sustainable CEIC, companies should concentrate on highly educated human resources, R&D investments, intellectual property related innovations, and government support. This research provided a practical framework and established a sustainable strategy for companies to manage their vulnerability in developing innovation capability. In addition, this research presented an innovative and effective way to quantitatively analyze vulnerability which offered a foundation to signify a new paradigm shift in construction sustainable development.

  13. Variability in vulnerability assessment of older people by individual general practitioners: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Yvonne M Drewes

    Full Text Available BACKGROUND: In clinical practice, GPs appeared to have an internalized concept of "vulnerability." This study investigates the variability between general practitioners (GPs in their vulnerability-assessment of older persons. METHODS: Seventy-seven GPs categorized their 75-plus patients (n = 11392 into non-vulnerable, possibly vulnerable, and vulnerable patients. GPs personal and practice characteristics were collected. From a sample of 2828 patients the following domains were recorded: sociodemographic, functional [instrumental activities in daily living (IADL, basic activities in daily living (BADL], somatic (number of diseases, polypharmacy, psychological (Mini-Mental State Examination, 15-item Geriatric Depression Scale; GDS-15 and social (De Jong-Gierveld Loneliness Scale; DJG. Variability in GPs' assessment of vulnerability was tested with mixed effects logistic regression. P-values for variability (pvar were calculated by the log-likelihood ratio test. RESULTS: Participating GPs assessed the vulnerability of 10,361 patients. The median percentage of vulnerable patients was 32.0% (IQR 19.5 to 40.1%. From the somatic and psychological domains, GPs uniformly took into account the patient characteristics 'total number of diseases' (OR 1.7, 90% range  = 0, p var = 1, 'polypharmacy' (OR 2.3, 90% range  = 0, p var = 1 and 'GDS-15' (OR 1.6, 90% range  = 0, p var = 1. GPs vary in the way they assessed their patients' vulnerability in the functional domain (IADL: median OR 2.8, 90% range 1.6, p var < 0.001, BADL: median OR 2.4, 90% range 2.9, p var < 0.001 and the social domain (DJG: median OR 1.2, 90% range  = 1.2, p var < 0.001. CONCLUSIONS: GPs seem to share a medical concept of vulnerability, since they take somatic and psychological characteristics uniformly into account in the vulnerability-assessment of older persons. In the functional and social domains, however, variability was found. Vulnerability assessment by GPs might be a

  14. Vulnerability assessment of medieval civic towers as a tool for retrofitting design

    International Nuclear Information System (INIS)

    The seismic vulnerability of an ancient civic bell-tower is studied. Rather than seeing it as an intermediate stage toward a risk analysis, the assessment of vulnerability is here pursued for the purpose of optimizing the retrofit design. The vulnerability curves are drawn by carrying out a single time history analysis of a model calibrated on the basis of experimental data. From the results of this analysis, the medians of three selected performance parameters are estimated, and they are used to compute, for each of them, the probability of exceeding or attaining the three corresponding levels of light, moderate and severe damage. The same numerical model is then used to incorporate the effects of several retrofitting solutions and to re-estimate the associated vulnerability curves. The ultimate goal is to provide a numerical tool able to drive the optimization process of a retrofit design by the comparison of the vulnerability estimates associated with the different retrofitting solutions

  15. Climate change vulnerabilities- an integrated assessment in Pyramid Lake Paiute Indian Reservation

    Science.gov (United States)

    Gautam, M. R.; Chief, K.; Wilde, K.; Smith, W.

    2011-12-01

    There are increasing concerns of potential climate change impacts that may place the Truckee River Basin in Nevada under unprecedented stress. We hypothesized that Pyramid Lake, a terminal lake of Truckee River, is prone to climatic as well as non-climatic stressors stemming from cumulative impacts from upstream urban areas and activities. Thus climate change may impair the ability of a major downstream water user, the Pyramid Lake Paiute Tribe (PLPT), to cope and adapt. The conventional approach in assessing vulnerability primarily focuses on hazards or biophysical vulnerabilities, such as water availability, floods, and drought impact. However, we found it inadequate to address the overall vulnerability of the PLPT. Thus in addition to biophysical vulnerabilities, intrinsic and external vulnerabilities were considered such as socio-economic variables (e.g. adaptive capacity) and policy and legal drivers (e.g. water rights). We proposed an elaborate framework for an integrated vulnerability assessment by adapting IPCC framework for vulnerability assessment, the Exposure-Sensitivity-Adaptive Capacity, and applied it to PLPT. Analysis of projected climate change dataset pointed towards increased incidences of floods and droughts and a warming trend over the whole basin with a higher rate at the lower basin in the future. In effort to understand how climatic trends trigger the vulnerability of PLPT, a multi-pronged approach was employed to understand key tribal livelihood assets including an in-depth analysis of the adaptive capacity of PLPT, a climate change survey, and a historical analysis of water conflict and negotiation. Results of the survey identified key natural assets as the lake, endangered fish, rangeland, and wetlands. The framework of a casual-loop diagram was developed in a system dynamic model that incorporated opinions of tribal stakeholders and other experts to evaluate how potential future climate changes might impact the endangered Cui ui fish

  16. Assessing climate refugia from a terrestrial vegetation vulnerability assessment for 29 types in California.

    Science.gov (United States)

    Thorne, J. H.; Bjorkman, J.; Boynton, R.; Stewart, J.; Holguin, A.; Schwartz, M.; Albright, W.

    2015-12-01

    We assessed the climate vulnerability of 29 terrestrial macrogroup vegetation types in the National Vegetation Classification Scheme covering 99% of California. Using a 2015 landcover map, we defined current and future climate exposure of each type by assessing conditions at all known locations. This approach identifies both areas of expected high stress and of climate refugia. Species distribution models of the vegetation types proved to over-predict the extent of occupied lands, compared to their mapped extents. Trait based components of the vulnerability assessment were far less influential on level of vulnerability than climate projection. Various cutoffs can be selected to describe refugia. Here we classed refugia as the 20% of climate conditions most frequently occupied by a type. Under CNRM CM5 RCP 4.5, of 70,143 km2 that are the most climate-insulated locations, 46,420 km2 move to higher levels of climate exposure. At the other extreme of climate projections tested, MIROC ESM RCP 8.5, 59,137 km2 are lost. Four macrogroups lose their refugia under CNRM 4.5: Pacific Northwest Conifer Forests, Mountain Riparian Scrub and Wet Meadow, Salt Marsh, and Great Basin Upland Scrub. Under MIROC 8.5 and additional 8 macrogroups lose the most commonly experienced climate: Subalpine Aspen Forests & Pine Woodlands, Non-Native Forest and Woodlands, North Coast Deciduous Scrub and Terrace Prairie, Coastal Dune and Bluff Scrub, Freshwater Marsh, Wet Mountain Meadow, Big Sagebrush Scrub, and Alpine Vegetation. These results raise interesting questions regarding the definition of refugia. We review the results and ask how appropriate they are for different ecosystem types.

  17. Risk Assessment of Infrastructure System of Systems with Precursor Analysis.

    Science.gov (United States)

    Guo, Zhenyu; Haimes, Yacov Y

    2016-08-01

    Physical infrastructure systems are commonly composed of interconnected and interdependent subsystems, which in their essence constitute system of systems (S-o-S). System owners and policy researchers need tools to foresee potential emergent forced changes and to understand their impact so that effective risk management strategies can be developed. We develop a systemic framework for precursor analysis to support the design of an effective and efficient precursor monitoring and decision support system with the ability to (i) identify and prioritize indicators of evolving risks of system failure; and (ii) evaluate uncertainties in precursor analysis to support informed and rational decision making. This integrated precursor analysis framework is comprised of three processes: precursor identification, prioritization, and evaluation. We use an example of a highway bridge S-o-S to demonstrate the theories and methodologies of the framework. Bridge maintenance processes involve many interconnected and interdependent functional subsystems and decision-making entities and bridge failure can have broad social and economic consequences. The precursor analysis framework, which constitutes an essential part of risk analysis, examines the impact of various bridge inspection and maintenance scenarios. It enables policy researchers and analysts who are seeking a risk perspective on bridge infrastructure in a policy setting to develop more risk informed policies and create guidelines to efficiently allocate limited risk management resources and mitigate severe consequences resulting from bridge failures. PMID:27575259

  18. Application of Satellite Gravimetry for Water Resource Vulnerability Assessment

    Science.gov (United States)

    Rodell, Matthew

    2012-01-01

    The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.

  19. Department of Energy Plutonium ES ampersand H Vulnerability Assessment Savannah River Site interim compensatory measures

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) has recently completed a self-assessment of potential vulnerabilities associated with plutonium and other transuranic materials stored at the site. An independent Working Group Assessment Team (WGAT) appointed by DOE/ES ampersand H also performed an independent assessment, and reviewed and validated the site self-assessment. The purpose of this report is to provide a status of interim compensatory measures at SRS to address hazards in advance of any corrective actions. ES ampersand H has requested this status for all vulnerabilities ranked medium or higher with respect to potential consequences to workers, environment, and the public

  20. A method proposal for cumulative environmental impact assessment based on the landscape vulnerability evaluation

    International Nuclear Information System (INIS)

    Cumulative environmental impact assessment deals with the occasional use in practical application of environmental impact assessment process. The main reasons are the difficulty of cumulative impact identification caused by lack of data, inability to measure the intensity and spatial effect of all types of impacts and the uncertainty of their future evolution. This work presents a method proposal to predict cumulative impacts on the basis of landscape vulnerability evaluation. For this purpose, qualitative assessment of landscape ecological stability is conducted and major vulnerability indicators of environmental and socio-economic receptors are specified and valuated. Potential cumulative impacts and the overall impact significance are predicted quantitatively in modified Argonne multiple matrixes while considering the vulnerability of affected landscape receptors and the significance of impacts identified individually. The method was employed in the concrete environmental impact assessment process conducted in Slovakia. The results obtained in this case study reflect that this methodology is simple to apply, valid for all types of impacts and projects, inexpensive and not time-consuming. The objectivity of the partial methods used in this procedure is improved by quantitative landscape ecological stability evaluation, assignment of weights to vulnerability indicators based on the detailed characteristics of affected factors, and grading impact significance. - Highlights: • This paper suggests a method proposal for cumulative impact prediction. • The method includes landscape vulnerability evaluation. • The vulnerability of affected receptors is determined by their sensitivity. • This method can increase the objectivity of impact prediction in the EIA process

  1. A Dynamic Vulnerability Map to Assess the Risk of Road Network Traffic Utilization

    CERN Document Server

    Nabaa, Michel; Dutot, Antoine; Olivier, Damien; Mallet, Pascal

    2009-01-01

    Le Havre agglomeration (CODAH) includes 16 establishments classified Seveso with high threshold. In the literature, we construct vulnerability maps to help decision makers assess the risk. Such approaches remain static and do take into account the population displacement in the estimation of the vulnerability. We propose a decision making tool based on a dynamic vulnerability map to evaluate the difficulty of evacuation in the different sectors of CODAH. We use a Geographic Information system (GIS) to visualize the map which evolves with the road traffic state through a detection of communities in large graphs algorithm.

  2. Assessing climate change and health vulnerability at the local level: Travis County, Texas.

    Science.gov (United States)

    Prudent, Natasha; Houghton, Adele; Luber, George

    2016-10-01

    We created a measure to help comprehend population vulnerability to potential flooding and excessive heat events using health, built environment and social factors. Through principal component analysis (PCA), we created non-weighted sum index scores of literature-reviewed social and built environment characteristics. We created baseline poor health measures using 1999-2005 age-adjusted cardiovascular and combined diabetes and hypertension mortality rates to correspond with social-built environment indices. We mapped US Census block groups by linked age-adjusted mortality and a PCA-created social-built environment index. The goal was to measure flooding and excessive heat event vulnerability as proxies for population vulnerability to climate change for Travis County, Texas. This assessment identified communities where baseline poor health, social marginalisation and built environmental impediments intersected. Such assessments may assist targeted interventions and improve emergency preparedness in identified vulnerable communities, while fostering resilience through the focus of climate change adaptation policies at the local level.

  3. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  4. A Comparative Infrastructure Development Assessment of the Kingdom of Thailand and the Republic of Korea

    OpenAIRE

    Asian Development Bank

    2014-01-01

    This publication is a comparative analysis of the provision of infrastructure in the Republic of Korea and the Kingdom of Thailand. It presents a comparative assessment of the two countries with the purpose of learning from the experience of others. Those interested in identifying the similarities and di erences in infrastructure development between a developed country and a middle-income country may fi nd this report helpful. It seeks to explain and interpret the outcomes in each country and...

  5. Assessment of impacts and vulnerability to India's coastline due to climate change

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    SCIENCE, VOL. 100, NO. 9, 10 MAY 2011 1273 Assessment of impacts and vulnerability to India’s coastline due to climate change The recently concluded Second National Communications Project, coordinated by the Ministry of Environment and Forests (Mo...- ence, impacts and vulnerability along the Indian coasts has been low. India has a long coastline of about 7500 km and the livelihood of many depends on the activities related to the coast. There are already many anthropogenic problems varying...

  6. A Climate Change Vulnerability Assessment of California's At-Risk Birds

    OpenAIRE

    Thomas Gardali; Seavy, Nathaniel E.; DiGaudio, Ryan T.; Comrack, Lyann A.

    2012-01-01

    Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified clim...

  7. Data Quality Objectives Workbook for Assessing Chemical Vulnerability Potential in REDOX and U Plants

    International Nuclear Information System (INIS)

    The purpose of this data quality objective workbook is to present the rationale for selecting the sampling and characterization strategy that supports the assessment of the chemical vulnerabilities of the five tanks. Since characterization of the tanks' contents is likely to be expensive, a secondary goal was established to characterize the tank contents for proper waste designation and disposal at the same time the tanks are characterized for chemical vulnerability

  8. Food Adulteration: From Vulnerability Assessment to New Analytical Solutions.

    Science.gov (United States)

    Cavin, Christophe; Cottenet, Geoffrey; Blancpain, Carine; Bessaire, Thomas; Frank, Nancy; Zbinden, Pascal

    2016-01-01

    Crises related to the presence of melamine in milk or horse meat in beef have been a wake-up call to the whole food industry showing that adulteration of food raw materials is a complex issue. By analysing the situation, it became clear that the risk-based approach applied to ensure the safety related to chemical contaminants in food is not adequate for food fraud. Therefore, a specific approach has been developed to evaluate adulteration vulnerabilities within the food chain. Vulnerabilities will require the development of new analytical solutions. Fingerprinting methodologies can be very powerful in determining the status of a raw material without knowing the identity of each constituent. Milk adulterated by addition of adulterants with very different chemical properties could be detected rapidly by Fourier-transformed mid-infrared spectroscopy (FT-mid-IR) fingerprinting technology. In parallel, a fast and simple multi-analytes liquid-chromatography tandem mass-spectrometry (LC/MS-MS) method has been developed to detect either high levels of nitrogen-rich compounds resulting from adulteration or low levels due to accidental contamination either in milk or in other sensitive food matrices. To verify meat species authenticity, DNA-based methods are preferred for both raw ingredients and processed food. DNA macro-array, and more specifically the Meat LCD Array have showed efficient and reliable meat identification, allowing the simultaneous detection of 32 meat species. While the Meat LCD Array is still a targeted approach, DNA sequencing is a significant step towards an untargeted one. PMID:27198809

  9. Food Adulteration: From Vulnerability Assessment to New Analytical Solutions.

    Science.gov (United States)

    Cavin, Christophe; Cottenet, Geoffrey; Blancpain, Carine; Bessaire, Thomas; Frank, Nancy; Zbinden, Pascal

    2016-01-01

    Crises related to the presence of melamine in milk or horse meat in beef have been a wake-up call to the whole food industry showing that adulteration of food raw materials is a complex issue. By analysing the situation, it became clear that the risk-based approach applied to ensure the safety related to chemical contaminants in food is not adequate for food fraud. Therefore, a specific approach has been developed to evaluate adulteration vulnerabilities within the food chain. Vulnerabilities will require the development of new analytical solutions. Fingerprinting methodologies can be very powerful in determining the status of a raw material without knowing the identity of each constituent. Milk adulterated by addition of adulterants with very different chemical properties could be detected rapidly by Fourier-transformed mid-infrared spectroscopy (FT-mid-IR) fingerprinting technology. In parallel, a fast and simple multi-analytes liquid-chromatography tandem mass-spectrometry (LC/MS-MS) method has been developed to detect either high levels of nitrogen-rich compounds resulting from adulteration or low levels due to accidental contamination either in milk or in other sensitive food matrices. To verify meat species authenticity, DNA-based methods are preferred for both raw ingredients and processed food. DNA macro-array, and more specifically the Meat LCD Array have showed efficient and reliable meat identification, allowing the simultaneous detection of 32 meat species. While the Meat LCD Array is still a targeted approach, DNA sequencing is a significant step towards an untargeted one.

  10. Vulnerability assessment of urban ecosystems driven by water resources, human health and atmospheric environment

    Science.gov (United States)

    Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li

    2016-05-01

    As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.

  11. Accounting for adaptive capacity and uncertainty in assessments of species’ climate-change vulnerability

    Science.gov (United States)

    Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Luikart, Gordon; Whited, Diane; Muhlfeld, Clint C.

    2016-01-01

    Climate change vulnerability assessments (CCVAs) are valuable tools for assessing species’ vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. Here, we provide a more comprehensive CCVA approach that incorporates all three elements used for assessing species’ climate change vulnerability: exposure, sensitivity, and adaptive capacity. We illustrate our approach using case studies of two threatened salmonids with different life histories – anadromous steelhead trout (Oncorhynchus mykiss) and non-anadromous bull trout (Salvelinus confluentus) – within the Columbia River Basin, USA. We identified general patterns of high vulnerability in low-elevation and southernmost habitats for both species. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the two species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multi-species conservation. Our results highlight how CCVAs should be considered within a broader conceptual and computational framework for refining hypotheses, guiding research, and comparing plausible scenarios of species’ vulnerability for ongoing and projected climate change.

  12. Coastal vulnerability assessment of Cape Cod National Seashore to sea-level rise

    Science.gov (United States)

    Hammar-Klose, Erika S.; Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress

    2003-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within the Cape Cod National Seashore (CACO). The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean wave height. The rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. CACO consists of high glacial cliffs, beaches, sand spits, and salt marsh wetlands. The areas most vulnerable to sea-level rise are those with the lowest regional coastal slopes, geomorphologic types that are susceptible to inundation, and the highest rates of shoreline change. Most of CACO's infrastructure lies on high elevation uplands away from the shore; most high use areas are accessible by foot only. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers.

  13. A climate change vulnerability assessment of California's at-risk birds.

    Directory of Open Access Journals (Sweden)

    Thomas Gardali

    Full Text Available Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable and exposure (the magnitude of climate change expected for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife.

  14. Vulnerability assessments, identity and spatial scale challenges in disaster-risk reduction

    Directory of Open Access Journals (Sweden)

    Edward R. Carr

    2015-02-01

    Full Text Available Current approaches to vulnerability assessment for disaster-risk reduction (DRR commonly apply generalised, a priori determinants of vulnerability to particular hazards in particular places. Although they may allow for policy-level legibility at high levels of spatial scale, these approaches suffer from attribution problems that become more acute as the level of analysis is localised and the population under investigation experiences greater vulnerability. In this article, we locate the source of this problem in a spatial scale mismatch between the essentialist framings of identity behind these generalised determinants of vulnerability and the intersectional, situational character of identity in the places where DRR interventions are designed and implemented. Using the Livelihoods as Intimate Government (LIG approach to identify and understand different vulnerabilities to flooding in a community in southern Zambia, we empirically demonstrate how essentialist framings of identity produce this mismatch. Further, we illustrate a means of operationalising intersectional, situational framings of identity to achieve greater and more productive understandings of hazard vulnerability than available through the application of general determinants of vulnerability to specific places and cases.

  15. On the use of IT investment assessment methods in the area of spatial data infrastructure

    Science.gov (United States)

    Zwirowicz-Rutkowska, Agnieszka

    2016-06-01

    One of the important issues concerning development of spatial data infrastructures (SDIs) is the carrying out of economic and financial analysis. It is essential to determine expenses and also assess effects resulting from the development and use of infrastructures. Costs and benefits assessment could be associated with assessment of the infrastructure effectiveness and efficiency as well as the infrastructure value, understood as the infrastructure impact on economic aspects of an organisational performance, both of an organisation which realises an SDI project and all users of the infrastructure. The aim of this paper is an overview of various assessment methods of investment as well as an analysis of different types of costs and benefits used for information technology (IT) projects. Based on the literature, the analysis of the examples of the use of these methods in the area of spatial data infrastructures is also presented. Furthermore, the issues of SDI projects and investments are outlined. The results of the analysis indicate usefulness of the financial methods from different fields of management in the area of SDI building, development and use. The author proposes, in addition to the financial methods, the adaptation of the various techniques used for IT investments and their development, taking into consideration the SDI specificity for the purpose of assessment of different types of costs and benefits and integration of financial aspects with non-financial ones. Among the challenges are identification and quantification of costs and benefits, as well as establishing measures which would fit the characteristics of the SDI project and artefacts resulting from the project realisation. Moreover, aspects of subjectivity and variability in time should be taken into account as the consequences of definite goals and policies as well as business context of organisation undertaking the project or using its artefacts and also investors.

  16. 77 FR 32655 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Science.gov (United States)

    2012-06-01

    ... protection security measures, incident response, recovery, infrastructure resilience; reconstituting critical..., vulnerability, risk mitigation, and infrastructure continuity information. Organizational Structure:...

  17. Multi-scale quantitative vulnerability assessment of buildings towards debris-flows: an application to Fella River Basin, Italy

    Science.gov (United States)

    Liliana Ciurean, Roxana; Hussin, Haydar; Glade, Thomas; van Westen, Cees; Papathoma-Köhle, Maria

    2015-04-01

    In physical vulnerability assessments, selection of working tools and methods is dependent not only on practical applications or decision question and data availability, but also on the scale of investigation. The aim of this study is to implement and compare two methodologies for assessing vulnerability of buildings in Fella River Basin (Friuli-Venezia Giulia, Italy). In this region, a major rainfall event in August 2003 triggered more than a thousand debris flows and floods resulting in two casualties. Damages to buildings, communication and transport infrastructure exceeded 400 million euros of monetary losses. The approaches considered are developed based on two methods of estimating debris-flow intensities: (1) for the regional and local scale, the behavior and run-out of the flow event was reconstructed using numerical debris flow modeling (Flow-R and Flow2D, respectively) to generate physical outputs (extension, depth, impact pressure, velocities) and determine the areas where elements at risk can be impacted; (2) for the local scale, a second method uses orthophoto documentation acquired shortly after the 2003 event for determining the location of the debris deposition and its depth at each impacted building. An extensive building inventory comprising information about the material of construction, occupancy type and use was compiled by desktop mapping and field work. The significance of the calculated intensity values were investigated in terms of resulting physical damages which were quantified for each affected structure as the ratio between the monetary loss and the reconstruction value. Different empirical vulnerability curves were obtained as functions of debris flow depth and impact pressure, respectively. The obtained curves were lastly compared with existing ones from the literature and sources of uncertainty from data input and the models employed were studied and discussed. The results of this study can be applied to further local consequence

  18. Infrastructure assessment for disaster management using multi-sensor and multi-temporal remote sensing imagery

    DEFF Research Database (Denmark)

    Butenuth, Matthias; Frey, Daniel; Nielsen, Allan Aasbjerg;

    2011-01-01

    In this paper, a new assessment system is presented to evaluate infrastructure objects such as roads after natural disasters in near-realtime. A particular aim is the exploitation of multi-sensorial and multi-temporal imagery together with further {GIS-}data in a comprehensive assessment framework...

  19. 77 FR 68795 - Protected Critical Infrastructure Information (PCII) Office Self-Assessment Questionnaire

    Science.gov (United States)

    2012-11-16

    ... SECURITY Protected Critical Infrastructure Information (PCII) Office Self- Assessment Questionnaire AGENCY.... See 6 CFR 29.4(d). This questionnaire is designed to gather information from PCII Officers that will... Information (PCII) Office Self-Assessment Questionnaire. OMB Number: 1670-NEW. Frequency: Annually....

  20. Development on Vulnerability Assessment Methods of PPS of Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    MIAO; Qiang; ZHANG; Wen-liang; ZONG; Bo; BU; Li-xin; YIN; Hong-he; FANG; Xin

    2012-01-01

    <正>We present a set of vulnerability assessment methods of physical protection system (PPS) of nuclear power plants after investigating and collecting the experience of assessment in China. The methods have important significance to strengthen and upgrade the security of the nuclear power plants, and also to

  1. The role of assessment infrastructures in crafting project-based science classrooms

    Science.gov (United States)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research

  2. Spatial vulnerability assessment : methodology for the community and district level applied to floods in Buzi, Mozambique

    International Nuclear Information System (INIS)

    Within this thesis a conceptual model is presented which allows for the definition of a vulnerability assessment according to its time and spatial scale and within a multi-dimensional framework, which should help to design and develop appropriate methodologies and adaptation of concepts for the required scale of implementation. Building on past experiences with participatory approaches in community mapping in the District of Buzi in Mozambique, the relevance of such approaches for a community-based disaster risk reduction framework is analysed. Finally, methodologies are introduced which allow the assessment of vulnerability and the prioritisation of vulnerability factors at the community level. At the district level, homogenous vulnerability regions are identified through the application of integrated modelling approaches which build on expert knowledge and weightings. A set of indicators is proposed, which allow the modelling of vulnerability in a data-scarce environment. In developing these different methodologies for the community and district levels, it has been identified that the monitoring of vulnerability and the identification of trends is essential to addressing the objective of a continuous and improved disaster risk management. In addition to the technical and methodological challenges discussed in this thesis, the commitment from different stakeholders and the availability of capacity in different domains is essential for the successful, practical implementation of the developed approaches. (author)

  3. Using multi-criteria decision analysis to assess the vulnerability of drinking water utilities.

    Science.gov (United States)

    Joerin, Florent; Cool, Geneviève; Rodriguez, Manuel J; Gignac, Marc; Bouchard, Christian

    2010-07-01

    Outbreaks of microbiological waterborne disease have increased governmental concern regarding the importance of drinking water safety. Considering the multi-barrier approach to safe drinking water may improve management decisions to reduce contamination risks. However, the application of this approach must consider numerous and diverse kinds of information simultaneously. This makes it difficult for authorities to apply the approach to decision making. For this reason, multi-criteria decision analysis can be helpful in applying the multi-barrier approach to vulnerability assessment. The goal of this study is to propose an approach based on a multi-criteria analysis method in order to rank drinking water systems (DWUs) based on their vulnerability to microbiological contamination. This approach is illustrated with an application carried out on 28 DWUs supplied by groundwater in the Province of Québec, Canada. The multi-criteria analysis method chosen is measuring attractiveness by a categorical based evaluation technique methodology allowing the assessment of a microbiological vulnerability indicator (MVI) for each DWU. Results are presented on a scale ranking DWUs from less vulnerable to most vulnerable to contamination. MVI results are tested using a sensitivity analysis on barrier weights and they are also compared with historical data on contamination at the utilities. The investigation demonstrates that MVI provides a good representation of the vulnerability of DWUs to microbiological contamination.

  4. Vulnerability Index to Climate Change and its Application for Community-level Risk Assessment in Thailand

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2014-06-01

    Full Text Available On the basis of the vulnerability-led approach, the Prevalent Community-level Vulnerability Index (PCVI was developed as a simple composite index used to represent community-level vulnerability to climate change in the socioeconomic and hazard contexts. The PCVI consists of three major components which are Exposure & hazard, Socioeconomic-ecological fragility and Coping capacity. All of these components are further comprised of different indicators, representing different aspects of biophysical and social vulnerability of grass-root communities. Based on the results analyzed in the provincial pilot sites, the PCVI could represent both spatial patterns and magnitudes of vulnerability of each community in consistence with the local economic-social-environmental contexts. It generally reflects the differences in the local contexts and factors that determine overall vulnerability of each community. For the ease in calculating the PCVI especially for the provincial operating staffs and general public, the PREvalent Community Climate Change Vulnerability Tool (RECCC was further developed as a user-friendly, Excel-based program. In conclusions, the outputs of this study that include the PCVI and its database as well as the RECCC program are useful not only for analyzing vulnerability and assessing risks of community to climate change, but also for supporting decision-making process in developing and implementing adaptation activities at provincial level. These outputs were also designed for further integrating as a supplementary part of Provincial�s Decision Supporting System (DSS, with the purpose of promoting the participation of local organizations and stakeholders in coping with the adverse impacts of climate change. However, additional development of ERCCC program, together with dissemination of the vulnerability framework as well as the use of ERCCC program to local organizations needs to be continued.

  5. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations.

    Science.gov (United States)

    Sehgal, Vinay Kumar; Dhakar, Rajkumar

    2016-03-01

    The study presents a methodology to assess and map agricultural drought vulnerability during main kharif crop season at local scale and compare its intra-seasonal variations. A conceptual model of vulnerability based on variables of exposure, sensitivity, and adaptive capacity was adopted, and spatial datasets of key biophysical factors contributing to vulnerability were generated using remote sensing and GIS for Rajasthan State of India. Hazard exposure was based on frequency and intensity of gridded standardized precipitation index (SPI). Agricultural sensitivity was based on soil water holding capacity as well as on frequency and intensity of normalized difference vegetation index (NDVI)-derived trend adjusted vegetation condition index (VCITadj). Percent irrigated area was used as a measure of adaptive capacity. Agricultural drought vulnerability was derived separately for early, mid, late, and whole kharif seasons by composting rating of factors using linear weighting scheme and pairwise comparison of multi-criteria evaluation. The regions showing very low to extreme rating of hazard exposure, drought sensitivity, and agricultural vulnerability were identified at all four time scales. The results indicate that high to extreme vulnerability occurs in more than 50% of net sown area in the state and such areas mostly occur in western, central, and southern parts. The higher vulnerability is on account of non-irrigated croplands, moderate to low water holding capacity of sandy soils, resulting in higher sensitivity, and located in regions with high probability of rainfall deficiency. The mid and late season vulnerability has been found to be much higher than that during early and whole season. Significant correlation of vulnerability rating with food grain productivity, drought recurrence period, crop area damaged in year 2009 and socioeconomic indicator of human development index (HDI) proves the general soundness of methodology. Replication of this methodology

  6. Systematic analysis of natural hazards along infrastructure networks using a GIS-tool for risk assessment

    Science.gov (United States)

    Baruffini, Mirko

    2010-05-01

    Due to the topographical conditions in Switzerland, the highways and the railway lines are frequently exposed to natural hazards as rockfalls, debris flows, landslides, avalanches and others. With the rising incidence of those natural hazards, protection measures become an important political issue. However, they are costly, and maximal protection is most probably not economically feasible. Furthermore risks are distributed in space and time. Consequently, important decision problems to the public sector decision makers are derived. This asks for a high level of surveillance and preservation along the transalpine lines. Efficient protection alternatives can be obtained consequently considering the concept of integral risk management. Risk analysis, as the central part of risk management, has become gradually a generally accepted approach for the assessment of current and future scenarios (Loat & Zimmermann 2004). The procedure aims at risk reduction which can be reached by conventional mitigation on one hand and the implementation of land-use planning on the other hand: a combination of active and passive mitigation measures is applied to prevent damage to buildings, people and infrastructures. With a Geographical Information System adapted to run with a tool developed to manage Risk analysis it is possible to survey the data in time and space, obtaining an important system for managing natural risks. As a framework, we adopt the Swiss system for risk analysis of gravitational natural hazards (BUWAL 1999). It offers a complete framework for the analysis and assessment of risks due to natural hazards, ranging from hazard assessment for gravitational natural hazards, such as landslides, collapses, rockfalls, floodings, debris flows and avalanches, to vulnerability assessment and risk analysis, and the integration into land use planning at the cantonal and municipality level. The scheme is limited to the direct consequences of natural hazards. Thus, we develop a

  7. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal.

    Science.gov (United States)

    Shrestha, Sangam; Semkuyu, Dickson John; Pandey, Vishnu P

    2016-06-15

    Groundwater vulnerability and risk assessment is a useful tool for groundwater pollution prevention and control. In this study, GIS based DRASTIC model have been used to assess intrinsic aquifer vulnerability to pollution whereas Groundwater Risk Assessment Model (GRAM) was used to assess the risk to groundwater pollution in the groundwater basin of Kathmandu Valley. Seven hydrogeological factors were used in DRASTIC model to produce DRASTIC Index (DI) map which represent intrinsic groundwater vulnerability to pollution of the area. The seven hydrogeological factors used were depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity of aquifer. GIS based GRAM was used to produce likelihood of release of hazards, likelihood of detection of hazards, consequence of hazards and residual risk of groundwater contamination in terms of nitrate in the groundwater basin. It was found that more than 50% of the groundwater basin area in the valley is susceptible to groundwater pollution and these areas are mostly in Northern groundwater district Low and very low vulnerable areas account for only 13% and are located in Central and Southern groundwater districts. However after taking into account the barriers to groundwater pollution and likelihood of hazards release and detection, it was observed that most areas i.e. about 87% of the groundwater basin are at moderate residual risk to groundwater pollution. The resultant groundwater vulnerability and risk map provides a basis for policy makers and planner's ability to use information effectively for decision making at protecting the groundwater from pollutants.

  8. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal.

    Science.gov (United States)

    Shrestha, Sangam; Semkuyu, Dickson John; Pandey, Vishnu P

    2016-06-15

    Groundwater vulnerability and risk assessment is a useful tool for groundwater pollution prevention and control. In this study, GIS based DRASTIC model have been used to assess intrinsic aquifer vulnerability to pollution whereas Groundwater Risk Assessment Model (GRAM) was used to assess the risk to groundwater pollution in the groundwater basin of Kathmandu Valley. Seven hydrogeological factors were used in DRASTIC model to produce DRASTIC Index (DI) map which represent intrinsic groundwater vulnerability to pollution of the area. The seven hydrogeological factors used were depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity of aquifer. GIS based GRAM was used to produce likelihood of release of hazards, likelihood of detection of hazards, consequence of hazards and residual risk of groundwater contamination in terms of nitrate in the groundwater basin. It was found that more than 50% of the groundwater basin area in the valley is susceptible to groundwater pollution and these areas are mostly in Northern groundwater district Low and very low vulnerable areas account for only 13% and are located in Central and Southern groundwater districts. However after taking into account the barriers to groundwater pollution and likelihood of hazards release and detection, it was observed that most areas i.e. about 87% of the groundwater basin are at moderate residual risk to groundwater pollution. The resultant groundwater vulnerability and risk map provides a basis for policy makers and planner's ability to use information effectively for decision making at protecting the groundwater from pollutants. PMID:26971207

  9. Designing a graph-based approach to landscape ecological assessment of linear infrastructures

    International Nuclear Information System (INIS)

    The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact

  10. Designing a graph-based approach to landscape ecological assessment of linear infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Girardet, Xavier, E-mail: xavier.girardet@univ-fcomte.fr; Foltête, Jean-Christophe, E-mail: jean-christophe.foltete@univ-fcomte.fr; Clauzel, Céline, E-mail: celine.clauzel@univ-fcomte.fr

    2013-09-15

    The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact.

  11. Establishment and Application of Assessment Indicator System of Agricultural Catastrophe Vulnerability

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    To give play to the role of agricultural catastrophe risk fund in spreading agricultural catastrophe risk,we select natural conditions,economic conditions,social conditions,as the external vulnerability assessment indicators;select commodity rate of agricultural products,substitutability of agricultural products,the extent of agricultural products being related to the national economy and the people’s livelihood,as the internal vulnerability assessment indicators.We assign weight to indicators using Analytic Hierarchy Process,and establish assessment indicator system of agricultural catastrophe vulnerability,to analyze the compensation for losses of different agricultural products arising from agricultural catastrophe in different regions.And we take the case of rice in Sichuan Province,to demonstrate the role this indicator system.

  12. Expert assessment of vulnerability of permafrost carbon to climate change

    Science.gov (United States)

    Schuur, E.A.G.; Abbott, B.W.; Bowden, W.B.; Brovkin, V.; Camill, P.; Canadell, J.G.; Chanton, J.P.; Chapin, F. S., III; Christensen, T.R.; Ciais, P.; Crosby, B.T.; Czimczik, C.I.; Grosse, G.; Harden, J.; Hayes, D.J.; Hugelius, G.; Jastrow, J.D.; Jones, J.B.; Kleinen, T.; Koven, C.D.; Krinner, G.; Kuhry, P.; Lawrence, D.M.; McGuire, A.D.; Natali, S.M.; O'Donnell, J. A.; Ping, C.-L.; Riley, W.J.; Rinke, A.; Romanovsky, V.E.; Sannel, A.B.K.; Schädel, C.; Schaefer, K.; Sky, J.; Subin, Z.M.; Tarnocai, C.; Turetsky, M.R.; Waldrop, M.P.; Anthony, K.M. Walter; Wickland, K.P.; Wilson, C.J.; Zimov, S.A.

    2013-01-01

    Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.

  13. Assessing the Vulnerability of Eco-Environmental Health to Climate Change

    Directory of Open Access Journals (Sweden)

    Ken Verrall

    2010-02-01

    Full Text Available There is an urgent need to assess the vulnerability of eco-environmental health to climate change. This paper aims to provide an overview of current research, to identify knowledge gaps, and to propose future research needs in this challenging area. Evidence shows that climate change is affecting and will, in the future, have more (mostly adverse impacts on ecosystems. Ecosystem degradation, particularly the decline of the life support systems, will undoubtedly affect human health and wellbeing. Therefore, it is important to develop a framework to assess the vulnerability of eco-environmental health to climate change, and to identify appropriate adaptation strategies to minimize the impact of climate change.

  14. Vulnerability of Russian regions to natural risk: experience of quantitative assessment

    Directory of Open Access Journals (Sweden)

    E. Petrova

    2006-01-01

    Full Text Available One of the important tracks leading to natural risk prevention, disaster mitigation or the reduction of losses due to natural hazards is the vulnerability assessment of an 'at-risk' region. The majority of researchers propose to assess vulnerability according to an expert evaluation of several qualitative characteristics, scoring each of them usually using three ratings: low, average, and high. Unlike these investigations, we attempted a quantitative vulnerability assessment using multidimensional statistical methods. Cluster analysis for all 89 Russian regions revealed five different types of region, which are characterized with a single (rarely two prevailing factor causing increase of vulnerability. These factors are: the sensitivity of the technosphere to unfavorable influences; a 'human factor'; a high volume of stored toxic waste that increases possibility of NDs with serious consequences; the low per capita GRP, which determine reduced prevention and protection costs; the heightened liability of regions to natural disasters that can be complicated due to unfavorable social processes. The proposed methods permitted us to find differences in prevailing risk factor (vulnerability factor for the region types that helps to show in which direction risk management should focus on.

  15. Assessment of coastal vulnerability to environmental change in Jiangsu coastal plain

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Assessment of coastal vulnerability to future environmental change has been emphasized in coastal nations or regions. The Jiangsu coastal plain, located to the north of the Yangtze River Delta in China, is most vulnerable to sea level rise and exacerbating coastal hazards. This paper develops the method of delimiting vulnerable scope and assessing coastal vulnerability through field observations and sampling and by applying remote sensing and GIS, which are suitable for great river delta and coastal plains with large area, relative complex micro-geomorphology and the protection of seawall. Applying this method, the coastal vulnerability of the Jiangsu coastal plain to relative sea level rise (approximately 50 cm up to the year 2050) and exacerbating storm surges have been assessed. The results show that, up to the year 2050, the Jiangsu coastal plain will probably lose 12.8 % of tidal flats (about 5.8′104 hm2) and 7.9 % of cultivated land (about 7.2′104 hm2). Meanwhile, 2.0 % of population, 3.8 % of original value of fixed assets, 3.2% of GDP (Gross Domestic Product), 40.3 % of salt industry and 5.8 % of aquiculture respectively will be affected due to coastal environmental change.

  16. Assessment of Flood Vulnerability to Climate Change Using Fuzzy Operators in Seoul

    Science.gov (United States)

    Lee, M. J.

    2014-12-01

    The goal of this study is to apply the IPCC(Intergovernmental Panel on Climate Change) concept of vulnerability to climate change and verify the use of a combination of vulnerability index and fuzzy operators to flood vulnerability analysis and mapping in Seoul using GIS. In order to achieve this goal, this study identified indicators influencing floods based on literature review. We include indicators of exposure to climate(daily max rainfall, days of 80㎜ over), sensitivity(slope, geological, average DEM, Impermeability layer, topography and drainage), and adaptive capacity(retarding basin and green-infra). Also, this research used fuzzy operator model for aggregating indicators, and utilized frequency ratio to decide fuzzy membership values. Results show that number of days of precipitation above 80㎜, the distance from river and impervious surface have comparatively strong influence on flood damage. Furthermore, when precipitation is over 269㎜, areas with scare flood mitigation capacities, industrial land use, elevation of 16˜20m, within 50m distance from rivers are quite vulnerable to floods. Yeongdeungpo-gu, Yongsan-gu, Mapo-gu include comparatively large vulnerable areas. The relative weight of each factor was then converted into a fuzzy membership value and integrated as a flood vulnerability index using fuzzy operators (fuzzy AND, fuzzy OR, fuzzy algebraic sum, and fuzzy algebraic product). Comparing the results of the highest for the fuzzy AND operator, fuzzy gamma operator (γ = 0.2) is higher with improved computational. This study improved previous flood vulnerability assessment methodology by adopting fuzzy operator model. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing flood mitigation policies. Acknowledgements: The authors appreciate the support that this study has received from "Development of Time Series Disaster Mapping Technologies through Natural Disaster Factor Spatial

  17. Towards an empirical vulnerability function for use in debris flow risk assessment

    Directory of Open Access Journals (Sweden)

    S. Fuchs

    2007-08-01

    Full Text Available In quantitative risk assessment, risk is expressed as a function of the hazard, the elements at risk and the vulnerability. From a natural sciences perspective, vulnerability is defined as the expected degree of loss for an element at risk as a consequence of a certain event. The resulting value is dependent on the impacting process intensity and the susceptibility of the elements at risk, and ranges from 0 (no damage to 1 (complete destruction. With respect to debris flows, the concept of vulnerability – though widely acknowledged – did not result in any sound quantitative relationship between process intensities and vulnerability values so far, even if considerable loss occurred during recent years.

    To close this gap and establish this relationship, data from a well-documented debris flow event in the Austrian Alps was used to derive a quantitative vulnerability function applicable to buildings located on the fan of the torrent. The results suggest a second order polynomial function to fit best to the observed damage pattern. Vulnerability is highly dependent on the construction material used for exposed elements at risk. The buildings studied within the test site were constructed by using brick masonry and concrete, a typical design in post-1950s building craft in alpine countries. Consequently, the presented intensity-vulnerability relationship is applicable to this construction type within European mountains. However, a wider application of the presented method to additional test sites would allow for further improvement of the results and would support an enhanced standardisation of the vulnerability function.

  18. Groundwater vulnerability assessment in Jaworzynka's Valley catchment basin (Tatra Mountains, Poland)

    Science.gov (United States)

    Cypel, M.

    2012-04-01

    During the research an attempt was made to assess an intrinsic groundwater vulnerability to contamination in Tatra Mountains (Poland. Assessment of the degree of hazard of permeating pollutions from land surface directly to the ground water table was the main target of the research. The Jaworzynka's Valley in West Tatra Mountains was chosen as the exact research area. Jaworzynka's Valley is a typical karst catchment basin. Location of study area wasn't accidental, because in the north part of the valley there is a well which is being used as drinking water intake for the whole Zakopane City. This is the reason, why the quality of ground water is so important. The method used in this research, entitled KARSTIC, wasn't applied in Poland before. This is a parametric method of groundwater vulnerability assessment. KARSTIC is a modification of much better known DRASTIC method, specialized for specific karst terrain. KARSTIC method created by A. Davis and others (1994), was used for the first time, during a research in the Black Hills Mountains, USA. Research in Jaworzynka's Valley was based on the Black Hills study. In order to apply this method in Tatra Mountains, it was necessary to make a few changes in relation to original area. Applying KARSTIC method consists of successive stages. Schematization of hydrogeological conditions is an inseparable part of KARSTIC method. The first step bases on collecting all of available data such as maps, databases and documentations. Next stage consists of classifying all parameters employed in this method and then assigning a ratings and weights for this parameters. Subsequently it is necessary to use a mathematical formula, named Pollution Potential Index, which presents a ground water vulnerability in each point. The final step is visualization on the ground water vulnerability map. The result of research displays the high vulnerability in close proximity of the drinking water intake. The most vulnerable areas in Jaworzynka

  19. Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options☆

    Science.gov (United States)

    Reed, M.S.; Podesta, G.; Fazey, I.; Geeson, N.; Hessel, R.; Hubacek, K.; Letson, D.; Nainggolan, D.; Prell, C.; Rickenbach, M.G.; Ritsema, C.; Schwilch, G.; Stringer, L.C.; Thomas, A.D.

    2013-01-01

    Experts working on behalf of international development organisations need better tools to assist land managers in developing countries maintain their livelihoods, as climate change puts pressure on the ecosystem services that they depend upon. However, current understanding of livelihood vulnerability to climate change is based on a fractured and disparate set of theories and methods. This review therefore combines theoretical insights from sustainable livelihoods analysis with other analytical frameworks (including the ecosystem services framework, diffusion theory, social learning, adaptive management and transitions management) to assess the vulnerability of rural livelihoods to climate change. This integrated analytical framework helps diagnose vulnerability to climate change, whilst identifying and comparing adaptation options that could reduce vulnerability, following four broad steps: i) determine likely level of exposure to climate change, and how climate change might interact with existing stresses and other future drivers of change; ii) determine the sensitivity of stocks of capital assets and flows of ecosystem services to climate change; iii) identify factors influencing decisions to develop and/or adopt different adaptation strategies, based on innovation or the use/substitution of existing assets; and iv) identify and evaluate potential trade-offs between adaptation options. The paper concludes by identifying interdisciplinary research needs for assessing the vulnerability of livelihoods to climate change. PMID:25844020

  20. Quantitative Security Risk Assessment and Management for Railway Transportation Infrastructures

    Science.gov (United States)

    Flammini, Francesco; Gaglione, Andrea; Mazzocca, Nicola; Pragliola, Concetta

    Scientists have been long investigating procedures, models and tools for the risk analysis in several domains, from economics to computer networks. This paper presents a quantitative method and a tool for the security risk assessment and management specifically tailored to the context of railway transportation systems, which are exposed to threats ranging from vandalism to terrorism. The method is based on a reference mathematical model and it is supported by a specifically developed tool. The tool allows for the management of data, including attributes of attack scenarios and effectiveness of protection mechanisms, and the computation of results, including risk and cost/benefit indices. The main focus is on the design of physical protection systems, but the analysis can be extended to logical threats as well. The cost/benefit analysis allows for the evaluation of the return on investment, which is a nowadays important issue to be addressed by risk analysts.

  1. 78 FR 29375 - Protected Critical Infrastructure Information (PCII) Office Self-Assessment Questionnaire

    Science.gov (United States)

    2013-05-20

    ... SECURITY Protected Critical Infrastructure Information (PCII) Office Self- Assessment Questionnaire AGENCY... Officer Questionnaire. DHS previously published this ICR in the Federal Register on November 26, 2012, for...). This questionnaire is designed to gather information from PCII Officers that can be used to...

  2. A Guide to School Vulnerability Assessments: Key Principles for Safe Schools

    Science.gov (United States)

    Office of Safe and Drug-Free Schools, US Department of Education, 2008

    2008-01-01

    Crises affect schools across the country every day. While natural hazards such as tornadoes, floods, hurricanes, and earthquakes may be thought of more commonly as emergencies, schools are also at risk from other hazards such as school violence, infectious disease, and terrorist threats. Through the vulnerability assessment process, schools can…

  3. Security and Vulnerability Assessment of Social Media Sites: An Exploratory Study

    Science.gov (United States)

    Zhao, Jensen; Zhao, Sherry Y.

    2015-01-01

    While the growing popularity of social media has brought many benefits to society, it has also resulted in privacy and security threats. The authors assessed the security and vulnerability of 50 social media sites. The findings indicate that most sites (a) posted privacy and security policies but only a minority stated clearly their execution of…

  4. The vulnerability assessment of rainfall-induced debris flows in Taiwan

    Science.gov (United States)

    Lu, George Yen-Hsu

    2007-12-01

    A debris flow vulnerability assessment which incorporates topographic and rainfall effects is developed. Rainfall at a scale compatible with the resolution of digital elevation model is obtained using a neural network estimation method with a wind induced topographic effect and rainfall derived from satellite rain estimates and an improved inverse distance weight method. The technique is tested using data collected during the passage of typhoon Tori-Ji on July 2001, which caused massive debris flows in central Taiwan. Numerous debris flows triggered by the typhoon were used as control for the study. The results show that the proposed wind-topography neural network (WTNN) technique outperforms other popular interpolation techniques, including inversed distance weight method (IDW), ordinary kriging (OK), co-kriging method, and multiple linear regression method. Multiple fuzzy-logic-based debris flow susceptibility factors are used to characterize watersheds. Self-organizing maps (SOM) was adopted for the debris flow vulnerability assessment by incorporating estimated rainfall and debris flow susceptibility factors. The result examined by contingency table agrees to the assessment proposed by Soil and Water Conservation Bureau of Taiwan and National Science and Technology Center for Hazard Reduction of Taiwan. An index of vulnerability representing the degrees of hazard is implemented in a GIS-based decision support system which decision maker can use to manage debris flow environmental issues. Key Words. Debris flow, spatial interpolation, vulnerability assessment, satellite rainfall, neural network, GIS.

  5. Combining demographic and genetic factors to assess population vulnerability in stream species

    Science.gov (United States)

    Erin L, Landguth; Muhlfeld, Clint C.; Jones, Leslie W.; Waples, Robin S.; Whited, Diane; Lowe, Winsor H.; Lucotch, John; Neville, Helen; Luikart, Gordon

    2014-01-01

    Accelerating climate change and other cumulative stressors create an urgent need to understand the influence of environmental variation and landscape features on the connectivity and vulnerability of freshwater species. Here, we introduce a novel modeling framework for aquatic systems that integrates spatially explicit, individual-based, demographic and genetic (demogenetic) assessments with environmental variables. To show its potential utility, we simulated a hypothetical network of 19 migratory riverine populations (e.g., salmonids) using a riverscape connectivity and demogenetic model (CDFISH). We assessed how stream resistance to movement (a function of water temperature, fluvial distance, and physical barriers) might influence demogenetic connectivity, and hence, population vulnerability. We present demographic metrics (abundance, immigration, and change in abundance) and genetic metrics (diversity, differentiation, and change in differentiation), and combine them into a single vulnerability index for identifying populations at risk of extirpation. We considered four realistic scenarios that illustrate the relative sensitivity of these metrics for early detection of reduced connectivity: (1) maximum resistance due to high water temperatures throughout the network, (2) minimum resistance due to low water temperatures throughout the network, (3) increased resistance at a tributary junction caused by a partial barrier, and (4) complete isolation of a tributary, leaving resident individuals only. We then applied this demogenetic framework using empirical data for a bull trout (Salvelinus confluentus) metapopulation in the upper Flathead River system, Canada and USA, to assess how current and predicted future stream warming may influence population vulnerability. Results suggest that warmer water temperatures and associated barriers to movement (e.g., low flows, dewatering) are predicted to fragment suitable habitat for migratory salmonids, resulting in the loss

  6. Infrastructure sensing.

    Science.gov (United States)

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  7. Infrastructure sensing.

    Science.gov (United States)

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  8. Assessing Tsunami Vulnerabilities of Geographies with Shallow Water Equations

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2012-01-01

    Tsunami preparedness is crucial for saving human lives in case of disasters that involve massive water movement. In this work, we develop a framework for visual assessment of tsunami preparedness of geographies. Shallow water equations (also called Saint Venant equations) are a set of hyperbolic partial differential equations that are derived by depth-integrating the Navier-Stokes equations and provide a great abstraction of water masses that have lower depths compared to their free surface area. Our specific contribution in this study is to use Microsoft's XNA Game Studio to import underwater and shore line geographies, create different tsunami scenarios, and visualize the propagation of the waves and their impact on the shore line geography. Most importantly, we utilized the computational power of graphical processing units (GPUs) as HLSL based shader files and delegated all of the heavy computations to the GPU. Finally, we also conducted a validation study, in which we have tested our model against a controlled shallow water experiment. We believe that such a framework with an easy to use interface that is based on readily available software libraries, which are widely available and easily distributable, would encourage not only researchers, but also educators to showcase ideas.

  9. Social vulnerability assessment using spatial multi-criteria analysis (SEVI model and the Social Vulnerability Index (SoVI model – a case study for Bucharest, Romania

    Directory of Open Access Journals (Sweden)

    I. Armaș

    2013-06-01

    Full Text Available In recent decades, the development of vulnerability frameworks has enlarged the research in the natural hazards field. Despite progress in developing the vulnerability studies, there is more to investigate regarding the quantitative approach and clarification of the conceptual explanation of the social component. At the same time, some disaster-prone areas register limited attention. Among these, Romania's capital city, Bucharest, is the most earthquake-prone capital in Europe and the tenth in the world. The location is used to assess two multi-criteria methods for aggregating complex indicators: the social vulnerability index (SoVI model and the spatial multi-criteria social vulnerability index (SEVI model. Using the data of the 2002 census we reduce the indicators through a factor analytical approach to create the indices and examine if they bear any resemblance to the known vulnerability of Bucharest city through an exploratory spatial data analysis (ESDA. This is a critical issue that may provide better understanding of the social vulnerability in the city and appropriate information for authorities and stakeholders to consider in their decision making. The study emphasizes that social vulnerability is an urban process that increased in a post-communist Bucharest, raising the concern that the population at risk lacks the capacity to cope with disasters. The assessment of the indices indicates a significant and similar clustering pattern of the census administrative units, with an overlap between the clustering areas affected by high social vulnerability. Our proposed SEVI model suggests adjustment sensitivity, useful in the expert-opinion accuracy.

  10. Social vulnerability assessment using spatial multi-criteria analysis (SEVI model) and the Social Vulnerability Index (SoVI model) - a case study for Bucharest, Romania

    Science.gov (United States)

    Armaş, I.; Gavriş, A.

    2013-06-01

    In recent decades, the development of vulnerability frameworks has enlarged the research in the natural hazards field. Despite progress in developing the vulnerability studies, there is more to investigate regarding the quantitative approach and clarification of the conceptual explanation of the social component. At the same time, some disaster-prone areas register limited attention. Among these, Romania's capital city, Bucharest, is the most earthquake-prone capital in Europe and the tenth in the world. The location is used to assess two multi-criteria methods for aggregating complex indicators: the social vulnerability index (SoVI model) and the spatial multi-criteria social vulnerability index (SEVI model). Using the data of the 2002 census we reduce the indicators through a factor analytical approach to create the indices and examine if they bear any resemblance to the known vulnerability of Bucharest city through an exploratory spatial data analysis (ESDA). This is a critical issue that may provide better understanding of the social vulnerability in the city and appropriate information for authorities and stakeholders to consider in their decision making. The study emphasizes that social vulnerability is an urban process that increased in a post-communist Bucharest, raising the concern that the population at risk lacks the capacity to cope with disasters. The assessment of the indices indicates a significant and similar clustering pattern of the census administrative units, with an overlap between the clustering areas affected by high social vulnerability. Our proposed SEVI model suggests adjustment sensitivity, useful in the expert-opinion accuracy.

  11. Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data

    International Nuclear Information System (INIS)

    Infrastructure disaster risk assessment seeks to estimate the probability of a given customer or area losing service during a disaster, sometimes in conjunction with estimating the duration of each outage. This is often done on the basis of past data about the effects of similar events impacting the same or similar systems. In many situations this past performance data from infrastructure systems is zero-inflated; it has more zeros than can be appropriately modeled with standard probability distributions. The data are also often non-linear and exhibit threshold effects due to the complexities of infrastructure system performance. Standard zero-inflated statistical models such as zero-inflated Poisson and zero-inflated negative binomial regression models do not adequately capture these complexities. In this paper we develop a novel method that is a hybrid classification tree/regression method for complex, zero-inflated data sets. We investigate its predictive accuracy based on a large number of simulated data sets and then demonstrate its practical usefulness with an application to hurricane power outage risk assessment for a large utility based on actual data from the utility. While formulated for infrastructure disaster risk assessment, this method is promising for data-driven analysis for other situations with zero-inflated, complex data exhibiting response thresholds.

  12. Assessing social capacity and vulnerability of private households to natural hazards - integrating psychological and governance factors

    Science.gov (United States)

    Werg, J.; Grothmann, T.; Schmidt, P.

    2013-06-01

    People are unequally affected by extreme weather events in terms of mortality, morbidity and financial losses; this is the case not only for developing, but also for industrialized countries. Previous research has established indicators for identifying who is particularly vulnerable and why, focusing on socio-demographic factors such as income, age, gender, health and minority status. However, these factors can only partly explain the large disparities in the extent to which people are affected by natural hazards. Moreover, these factors are usually not alterable in the short to medium term, which limits their usefulness for strategies of reducing social vulnerability and building social capacity. Based on a literature review and an expert survey, we propose an approach for refining assessments of social vulnerability and building social capacity by integrating psychological and governance factors.

  13. Assessment of Political Vulnerabilities on Security of Energy Supply in the Baltic States

    Directory of Open Access Journals (Sweden)

    Česnakas Giedrius

    2016-06-01

    Full Text Available The article argues that despite the evident link between political environment and security of energy supply, political elements are not sufficiently represented in contemporary scientific literature, namely in indexes that are designed for the assessment of security of energy supply. In an attempt to fill this gap, the article presents an innovative methodology for quantitative assessment of the political vulnerabilities on security of energy supply and applies it to the analysis of the Baltic States.

  14. Comparative assessment of lowland and highland Smallholder farmers' vulnerability to climate variability in Ethiopia

    Science.gov (United States)

    Ayal, D. Y., Sr.; Abshare, M. W. M.; Desta, S. D.; Filho, W. L.

    2015-12-01

    Desalegn Yayeh Ayal P.O.BOX 150129 Addis Ababa University Ethiopia Mobil +251910824784 Abstract Smallholder farmers' near term scenario (2010-2039) vulnerability nature and magnitude was examined using twenty-two exposure, sensitivity and adaptive capacity vulnerability indicators. Assessment of smallholder farmers' vulnerability to climate variability revealed the importance of comprehending exposure, sensitivity and adaptive capacity induces. Due to differences in level of change in rainfall, temperature, drought frequency, their environmental interaction and variations on adaptive capacity the nature and magnitude of smallholder farmers vulnerability to physical, biological and epidemiological challenges of crop and livestock production varied within and across agro-ecologies. Highlanders' sensitive relates with high population density, erosion and crop disease and pest damage occurrence. Whereas lowlanders will be more sensitive to high crop disease and pest damage, provenance of livestock disease, absence of alternative water sources, less diversified agricultural practices. However, with little variations in the magnitude and nature of vulnerability, both highlanders and lowlanders are victims of climate variability and change. Given the ever increasing population, temperature and unpredictable nature of rainfall variability, the study concluded that future adaptation strategies should capitalize on preparing smallholder farmers for both extremes- excess rainfall and flooding on the one hand and severe drought on the other.

  15. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model.

    Science.gov (United States)

    Sadat-Noori, Mahmood; Ebrahimi, Kumars

    2016-01-01

    Groundwater contamination is a major concern for groundwater resource managers worldwide. We evaluated groundwater pollution potential by producing a vulnerability map of an aquifer using a modified Depth to water, Net recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, and Hydraulic conductivity (DRASTIC) model within a Geographic Information System (GIS) environment. The proposed modification which incorporated the use of statistical techniques optimizes the rating function of the DRASTIC model parameters, to obtain a more accurate vulnerability map. The new rates were computed using the relationships between the parameters and point data chloride concentrations in groundwater. The model was applied on Saveh-Nobaran plain in central Iran, and results showed that the coefficient of determination (R (2)) between the point data and the relevant vulnerability map increased significantly from 0.52 to 0.78 after modification. As compared to the original DRASTIC model, the modified version produced better vulnerability zonation. Additionally, single-parameter and parameter removal sensitivity analyses were performed to evaluate the relative importance of each DRASTIC parameter. The results from both analyses revealed that the vadose zone is the most sensitive parameter influencing the variability of the aquifers' vulnerability index. Based on the results, for non-point source pollution in agricultural areas, using the modified DRASTIC model is efficient compared to the original model. The proposed method can be effective for future groundwater assessment and plain-land management where agricultural activities are dominant. PMID:26650205

  16. The Gulf Coast Vulnerability Assessment: Mangrove, Tidal Emergent Marsh, Barrier Islands, and Oyster Reef

    Science.gov (United States)

    Watson, Amanda; Reece, Joshua S.; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, Patricia (Soupy)

    2015-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both

  17. Cyber and physical infrastructure interdependencies.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  18. Using Bayesian networks to assess the vulnerability of Hawaiian terrestrial biota to climate change

    Science.gov (United States)

    Fortini, L.; Jacobi, J.; Price, J.; Vorsino, A.; Paxton, E.; Amidon, F.; 'Ohukani'ohi'a Gon, S., III; Koob, G.; Brink, K.; Burgett, J.; Miller, S.

    2012-12-01

    As the effects of climate change on individual species become increasingly apparent, there is a clear need for effective adaptation planning to prevent an increase in species extinctions worldwide. Given the limited understanding of species responses to climate change, vulnerability assessments and species distribution models (SDMs) have been two common tools used to jump-start climate change adaptation efforts. However, although these two approaches generally serve the same purpose of understanding species future responses to climate change, they have rarely mixed. In collaboration with research and management partners from federal, state and non-profit organizations, we are conducting a climate change vulnerability assessment for hundreds of plant and forest bird species of the Main Hawaiian Islands. This assessment is the first to comprehensively consider the potential threats of climate change to a significant portion of Hawaii's fauna and flora (over one thousand species considered) and thus fills a critical gap defined by natural resource scientists and managers in the region. We have devised a flexible approach that effectively integrates species distribution models into a vulnerability assessment framework that can be easily updated with improved models and data. This tailors our assessment approach to the Pacific Island reality of often limited and fragmented information on species and large future climate uncertainties, This vulnerability assessment is based on a Bayesian network-based approach that integrates multiple landscape (e.g., topographic diversity, dispersal barriers), species trait (e.g., generation length, fecundity) and expert-knowledge based information (e.g., capacity to colonize restored habitat) relevant to long-term persistence of species under climate change. Our presentation will highlight some of the results from our assessment but will mainly focus on the utility of the flexible approach we have developed and its potential

  19. Assessment of the Green Infrastructure of Bucharest using CORINE and Urban Atlas data

    Directory of Open Access Journals (Sweden)

    Alexandru-Ionuţ Petrişor

    2015-06-01

    Full Text Available Urban ecology provides the theoretical foundation for assessing the interaction between man and nature in cities. Nature seems to be reduced and malfunctioning, resulting into a decrease in the ecosystem services provided to humans. The new method, based on assessing the green infrastructure, is designed to replace monetary and carbon footprint assessments and be particularly relevant for the urban areas, which grow and change fast and are the main drivers of environmental changes. This study uses 2005-2007 CORINE and Urban Atlas data to look at Bucharest. The results show that, despite of the method, the area occupied by the green infrastructure represents about 1/3 of the total area, corresponding to 50 m2/person, although the green spaces only account for 6.5 m2/person, which is far below the European average (26 m2/person.

  20. Assessment on the Vulnerability of Mangrove Ecosystems in the Guangxi Coastal Zone under Sea Level Rise

    Science.gov (United States)

    Li, S.; Ge, Z.; Zhang, L.

    2013-12-01

    Sea level rise caused by global climate change will have significant impacts on coastal zone. The mangrove ecosystems occur at the intertidal zone in tropical and subtropical coasts and are particularly sensitive to sea level rise. To study the responses of mangrove ecosystems to sea level rise, assess the impacts of sea level rise on mangrove ecosystem and formulate the feasible and practical mitigation strategies are the important prerequisites for securing the coastal ecosystems. In this research, taking the mangrove ecosystems in the coastal zone of Guangxi province, China as a case study, the potential impacts of sea level rise on the mangrove ecosystems were analyzed by adopting the SPRC (Source-Pathway- Receptor- Consequence) model. An index system for vulnerability assessment on coastal mangrove ecosystems under sea level rise was worked out, in which rate of sea level rise, subsidence/uplift rate, habitat elevation, daily inundation duration, intertidal slope and sedimentation rate were selected as the key indicators according to the IPCC definition of vulnerability, i.e. the aspects of exposure, sensitivity and adaptation. A quantitatively spatial assessment method based on the GIS platform was established by quantifying each indicator, calculating the vulnerability index and grading the vulnerability. The vulnerability assessment based on the sea-level rise rates of the present trend and IPCC A1F1 scenario were performed for three sets of projections of short-term (2030s), mid-term (2050s) and long-term (2100s). The results showed at the present trend of sea level rise rate of 0.27 cm/a, the mangrove ecosystems in the coastal zone of Guangxi was within the EVI score of 0 in the projections of 2030s, 2050s and 2100s, respectively. As the sedimentation and land uplift could offset the rate of sea level rise and the impact of sea level rise on habitats/species of mangrove ecosystems was negligible. While at the A1F1 scenario with a sea level rise rate of 0

  1. Coastal erosion vulnerability and risk assessment focusing in tourism beach use.

    Science.gov (United States)

    Alexandrakis, George

    2016-04-01

    It is well established that the global market for tourism services is a key source of economic growth. Especially among Mediterranean countries, the tourism sector is one of the principal sectors driving national economies. With the majority of the mass tourism activities concentrated around coastal areas, coastal erosion, inter alia, poses a significant threat to coastal economies that depend heavily on revenues from tourism. The economic implications of beach erosion were mainly focused in the cost of coastal protection measures, instead of the revenue losses from tourism. For this, the vulnerability of the coast to sea level rise and associated erosion, in terms of expected land loss and economic activity need to be identified. To achieve this, a joint environmental and economic evaluation approach of the problem can provide a managerial tool to mitigate the impact of beach erosion in tourism, through realistic cost-benefit scenarios for planning alternative protection measures. Such a multipurpose tool needs to consider social, economic and environmental factors, which relationships can be better understood when distributed and analyzed along the geographical space. The risk assessment is implemented through the estimation of the vulnerability and exposure variables of the coast in two scales. The larger scale estimates the vulnerability in a regional level, with the use environmental factors with the use of CVI. The exposure variable is estimated by the use of socioeconomic factors. Subsequently, a smaller scale focuses on highly vulnerable beaches with high social and economic value. The assessment of the natural processes to the environmental characteristics of the beach is estimated with the use of the Beach Vulnerability Index (BVI) method. As exposure variable, the value of beach width that is capitalized in revenues is implemented through a hedonic pricing model. In this econometric modelling, Beach Value is related with economic and environmental

  2. Assessing climate change and health vulnerability at the local level: Travis County, Texas.

    Science.gov (United States)

    Prudent, Natasha; Houghton, Adele; Luber, George

    2016-10-01

    We created a measure to help comprehend population vulnerability to potential flooding and excessive heat events using health, built environment and social factors. Through principal component analysis (PCA), we created non-weighted sum index scores of literature-reviewed social and built environment characteristics. We created baseline poor health measures using 1999-2005 age-adjusted cardiovascular and combined diabetes and hypertension mortality rates to correspond with social-built environment indices. We mapped US Census block groups by linked age-adjusted mortality and a PCA-created social-built environment index. The goal was to measure flooding and excessive heat event vulnerability as proxies for population vulnerability to climate change for Travis County, Texas. This assessment identified communities where baseline poor health, social marginalisation and built environmental impediments intersected. Such assessments may assist targeted interventions and improve emergency preparedness in identified vulnerable communities, while fostering resilience through the focus of climate change adaptation policies at the local level. PMID:26748543

  3. Coastal vulnerability assessment with the use of environmental and socio-economic indicators

    Science.gov (United States)

    Alexandrakis, George; Petrakis, Stelios; Vousdoukas, Mixalis; Ghionis, George; Hatziyanni, Eleni; Kampanis, Nikolaos

    2014-05-01

    Climate change has significant repercussions on the natural environment, triggering obvious changes in the natural processes that have a severe socio-economic impact on the coastal zone; where a great number of human activities are concentrated. So far, the estimation of coastal vulnerability was based primarily on the natural processes and less on socio-economic variables, which would assist in the identification of vulnerable areas. The present investigation proposes a methodology to examine the vulnerability of a highly touristic area in the Island of Crete to an expected sea level rise of up to ~40 cm by the year 2100, according to the A1B scenario of IPCC 2007. The methodology includes the combination of socio-economic indicators into a GIS-based coastal vulnerability index for wave-induced erosion. This approach includes three sub-indices that contribute equally to the overall index. The sub-indices refer to coastal forcing, socio-economic and coastal characteristics. All variables are ranked on a 1-5 scale with 5 indicating higher vulnerability. The socio-economic sub-index includes, as indicators, the population of the study area, cultural heritage sites, transport networks, land use and protection measures. The coastal forcing sub-index includes the frequency of extreme events, while the Coastal Vulnerability Index includes the geological variables (coastal geomorphology, historical coastline changes, and regional coastal slope) and the variables representing the marine processes (relative sea level rise, mean significant wave height, and tidal range). The main difficulty for the estimation of the index lies in assessing and ranking the socio-economic indicators. The whole approach was tested and validated through field and desktop studies, using as a case study the Elouda bay, Crete Isl., an area of high cultural and economic value, which combines monuments from ancient and medieval times, with a very high touristic development since the 1970s.

  4. Vulnerability Assessment of Agri-ecotourism Communities as Influenced by Climate Change

    Directory of Open Access Journals (Sweden)

    Hanilyn A. Hidalgo

    2015-01-01

    Full Text Available The growth of tourism in the Philippines can be largely attributed to nature-based destinations but communities in these areas largely depend on farming and fishing to sustain their day-to-day needs.  The need to capacitate the community’s social and human capital in addressing climate change impacts to their livelihood, properties and natural environment is deemed necessary to lessen their vulnerability issues in the management of agriecotourism destinations. The study aimed to 1. characterize and rank hazards that are likely to affect the nature-based tourism communities, 2. describe the nature-based tourism communities’ current sensitivity and exposure to climate stresses; and 3. estimate future vulnerability and risks of nature-based tourism communities.  Three agri-ecotourism communities were selected using five criteria such as attraction uniqueness, hazard type, risk level, tourism dependency and market potential.  The areas were subjected to tourism vulnerability case assessment focusing on services and energy; human health; food, security, water and agriculture; business and continuity; and biodiversity and culture.   Calaguas Island’s top hazards are typhoon, drought and strong wind.  Pecuaria Farm’s main hazards are drought, rat infestation and grass fire while Bulusan Lake’s major hazards are heavy rains and ash falls brought by volcanic eruption.  Generally, vulnerability is high in the human health, services and energy sectors of tourism. The vulnerability of the three agri-ecotourism sites was intensified by factors that merely characterize the kind of community they have: a high marketing dependency, b poor political will, c low level of awareness and preparedness, d poor farming practices and e lack of tourism-related livelihood options. Destinations with functioning agricultural areas are the most affected sites due to an estimated increase in the temperature and increase in rainfall precipitations.  Poverty

  5. Quality of service provision assessment in the healthcare information and telecommunications infrastructures.

    Science.gov (United States)

    Babulak, Eduard

    2006-01-01

    The continuous increase in the complexity and the heterogeneity of corporate and healthcare telecommunications infrastructures will require new assessment methods of quality of service (QoS) provision that are capable of addressing all engineering and social issues with much faster speeds. Speed and accessibility to any information at any time from anywhere will create global communications infrastructures with great performance bottlenecks that may put in danger human lives, power supplies, national economy and security. Regardless of the technology supporting the information flows, the final verdict on the QoS is made by the end user. The users' perception of telecommunications' network infrastructure QoS provision is critical to the successful business management operation of any organization. As a result, it is essential to assess the QoS Provision in the light of user's perception. This article presents a cost effective methodology to assess the user's perception of quality of service provision utilizing the existing Staffordshire University Network (SUN) by adding a component of measurement to the existing model presented by Walker. This paper presents the real examples of CISCO Networking Solutions for Health Care givers and offers a cost effective approach to assess the QoS provision within the campus network, which could be easily adapted to any health care organization or campus network in the world. PMID:16137920

  6. Comparative analysis of climate change vulnerability assessments. Lessons from Tunisia and Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Hammill, Anne; Bizikova, Livia; Dekens, Julie; McCandless, Matthew

    2013-03-15

    Vulnerability assessments (VAs) are central to shaping climate change adaptation decisions. They help to define the nature and extent of the threat that may harm a given human or ecological system, providing a basis for devising measures that will minimize or avoid this harm. Yet the wide variety of VA approaches can be confusing for practitioners, creating uncertainty about the ''right'' way to assess vulnerability. In an effort to provide some guidance on designing and conducting VAs, this paper reviews and compares VAs undertaken in Indonesia and Tunisia to distill key approaches, components and lessons. It begins with a general overview of definitions, approaches and challenges with conducting VAs, and then proposes a framework for analyzing and comparing them. The framework looks at four components of VAs: (1) Framing: where do we come from? (2) Process of conducting the VAs: how does it work? (3) Inputs: what is needed? (4) Outputs: what does it tell us? The framework is then applied to analyze the assessments carried out in Tunisia and Indonesia, from their respective framings of vulnerability to the outputs of the process. The report then concludes with observations on differences and similarities between the VAs, as well as lessons learned that can inform the design and execution of future assessments.

  7. Comparative analysis of climate change vulnerability assessments. Lessons from Tunisia and Indonesia

    International Nuclear Information System (INIS)

    Vulnerability assessments (VAs) are central to shaping climate change adaptation decisions. They help to define the nature and extent of the threat that may harm a given human or ecological system, providing a basis for devising measures that will minimize or avoid this harm. Yet the wide variety of VA approaches can be confusing for practitioners, creating uncertainty about the ''right'' way to assess vulnerability. In an effort to provide some guidance on designing and conducting VAs, this paper reviews and compares VAs undertaken in Indonesia and Tunisia to distill key approaches, components and lessons. It begins with a general overview of definitions, approaches and challenges with conducting VAs, and then proposes a framework for analyzing and comparing them. The framework looks at four components of VAs: (1) Framing: where do we come from? (2) Process of conducting the VAs: how does it work? (3) Inputs: what is needed? (4) Outputs: what does it tell us? The framework is then applied to analyze the assessments carried out in Tunisia and Indonesia, from their respective framings of vulnerability to the outputs of the process. The report then concludes with observations on differences and similarities between the VAs, as well as lessons learned that can inform the design and execution of future assessments.

  8. Assessing the physical vulnerability of check dams through an empirical damage index

    Directory of Open Access Journals (Sweden)

    Andrea Dell'Agnese

    2013-06-01

    Full Text Available A comprehensive analysis of flood risk in mountain streams has to include an assessment of the vulnerability of the protection systems, in addition to an assessment of the vulnerability of the constructed environment on alluvial fans and floodplains. Structures forming the protection systems are of a dual nature, i.e. they are designed to mitigate natural process-related hazards and, on the other hand, are prone to be damaged during their lifecycle by the same processes they should mitigate. Therefore, their effectiveness declines over time. Hence, the knowledge of how effectively control structures perform is essential for risk management. A procedure was developed to assess the physical vulnerability of check dams based on empirical evidence collected in South Tyrol, Northern Italy. A damage index defined on pre- and postevent comparisons of check dam conditions was evaluated for 362 structures in 18 mountain streams along with the relevant processes and the structural characteristics affecting it. Although the available dataset did not allow conclusive functional relationships between damage index and impact variables to be established, it was possible to assess the average expected residual functionality of check dams according to structure characteristics, and event type and intensity. These results may help plan appropriate check dam maintenance.

  9. Physical, social and institutional vulnerability assessment in small Alpine communities. Results of the SAMCO-ANR project in the Upper Guil Valley (French Southern Alps)

    Science.gov (United States)

    Carlier, Benoit; Dujarric, Constance; Frison-Bruno, Nikita; Puissant, Anne; Lissak, Candide; Madelin, Malika; Viel, Vincent; Bétard, François; Fort, Monique; Arnaud-Fassetta, Gilles

    2016-04-01

    The Upper Guil catchment is particularly prone to hydromorphological hazards such as torrential floods, debris flows, landslides or avalanches. Following the catastrophic events of the last 60 years (1957, 1978, 2000, and 2008), some measures were taken to reduce exposure to risks (engineering works, standards of construction, rescue training…). Nevertheless, the development of urban settlement in endangered areas and the obsolescence of the existing protective measures revealed the necessity to reassess the vulnerability of the different stakes exposed to hazards and to take into account of these various component parts of the vulnerability (not only physical but also social, etc.). In addition, catastrophic events should be more frequent in the French Southern Alps, according to the last GIEC report. In the frame of the SAMCO project designed for mountain risk assessment in a context of global change, we developed a systemic approach to assess three specific components of vulnerability - physical, social and institutional - for the six municipalities of the Upper Guil catchment (Ristolas, Abriès, Aiguilles, Château-Ville-Vieille, Molines-en-Queyras and St-Véran). Physical vulnerability, which represents total potential consequences of hazards on stakes, was estimated and mapped using a GIS model based on an empirical semi-quantitative indicator, the Potential Damage Index (PDI). This index allowed us to quantify and describe both direct (physical injury, structural and functional damage on buildings, network and land cover) and indirect consequences (socio-economic impacts) induced by hazards, by combining weighted parameters (age, state, material, function, etc.) reflecting the exposure of elements at risk. At least 1890 buildings, 367 km² of land cover and 902 km of linear infrastructure were considered. To assess social and institutional vulnerability our approach was based on questionnaires (5% of the total population investigated), interviews and

  10. Effective Livelihood Policies In The Assessment Of Poverty Reduction: Protecting The Vulnerable

    Directory of Open Access Journals (Sweden)

    Mansoor Maitah

    2011-06-01

    Full Text Available For the last several decades Poverty reduction has been one of the main objectives of development programs in many developing countries of the world. Rural poverty is central in Africa as it concerns more than three quarters of the poor Africans. Yet over a long period of time this basic fact has often been ignored and too little investment made in rural development in terms of infrastructure and services. The livelihood approach starts with the identification of who is vulnerable and adds, to what and to what extent? Hence, there are two broad approaches to defining livelihoods, one has a narrower economic focus, the other involves view which unites economic, social and environmental concepts, while building on the strengths of the urban and rural poor. Theory behind these two approaches is based on the same underling concept that incorporates issues around vulnerability. The purpose of this study is to take stock of all these approaches and to reconsider the relationship between poverty and exposure to risk.

  11. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment

    Science.gov (United States)

    Charles-Guzman, Kizzy; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events. PMID:23818911

  12. Vulnerability And Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Jr., R L; Price, D E; Spero, K K

    2005-01-03

    For over ten years, the Counterproliferation Analysis and Planning System (CAPS) at Lawrence Livermore National Laboratory (LLNL) has been a planning tool used by U.S. combatant commands for mission support planning against foreign programs engaged in the manufacture of weapons of mass destruction (WMD). CAPS is endorsed by the Secretary of Defense as the preferred counterproliferation tool to be used by the nation's armed services. A sister system, the Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging CAPS expertise designed to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities is presented.

  13. Vulnerability And Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    International Nuclear Information System (INIS)

    For over ten years, the Counterproliferation Analysis and Planning System (CAPS) at Lawrence Livermore National Laboratory (LLNL) has been a planning tool used by U.S. combatant commands for mission support planning against foreign programs engaged in the manufacture of weapons of mass destruction (WMD). CAPS is endorsed by the Secretary of Defense as the preferred counterproliferation tool to be used by the nation's armed services. A sister system, the Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging CAPS expertise designed to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities is presented

  14. Combining Reference Class Forecasting with Overconfidence Theory for Better Risk Assessment of Transport Infrastructure Investments

    DEFF Research Database (Denmark)

    Leleur, Steen; Salling, Kim Bang; Pilkauskiene, Inga;

    2015-01-01

    Assessing the risks of infrastructure investments has become a topic of growing importance. This is due to a sad record of implemented projects with cost overruns and demand shortfalls leading, in retrospect, to the finding that there is a need for better risk assessment of transport infrastructure...... investments. In the last decade progress has been made by dealing with this situation known as planners’ optimism bias. Especially attention can be drawn to the use of reference class forecasting that has led to adjustment factors that, when used on the estimates of costs and demand, lead to cost...... possible reference pool of projects and second to apply overconfidence theory (OT) to interpret expert judgments (EJ) about costs and demand as relating to a specific project up for examination. By combining flexible use of RCF with EJ based on OT interpretation it is argued that the current adjustment...

  15. Assessment of Social Vulnerability Identification at Local Level around Merapi Volcano - A Self Organizing Map Approach

    Science.gov (United States)

    Lee, S.; Maharani, Y. N.; Ki, S. J.

    2015-12-01

    The application of Self-Organizing Map (SOM) to analyze social vulnerability to recognize the resilience within sites is a challenging tasks. The aim of this study is to propose a computational method to identify the sites according to their similarity and to determine the most relevant variables to characterize the social vulnerability in each cluster. For this purposes, SOM is considered as an effective platform for analysis of high dimensional data. By considering the cluster structure, the characteristic of social vulnerability of the sites identification can be fully understand. In this study, the social vulnerability variable is constructed from 17 variables, i.e. 12 independent variables which represent the socio-economic concepts and 5 dependent variables which represent the damage and losses due to Merapi eruption in 2010. These variables collectively represent the local situation of the study area, based on conducted fieldwork on September 2013. By using both independent and dependent variables, we can identify if the social vulnerability is reflected onto the actual situation, in this case, Merapi eruption 2010. However, social vulnerability analysis in the local communities consists of a number of variables that represent their socio-economic condition. Some of variables employed in this study might be more or less redundant. Therefore, SOM is used to reduce the redundant variable(s) by selecting the representative variables using the component planes and correlation coefficient between variables in order to find the effective sample size. Then, the selected dataset was effectively clustered according to their similarities. Finally, this approach can produce reliable estimates of clustering, recognize the most significant variables and could be useful for social vulnerability assessment, especially for the stakeholder as decision maker. This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering

  16. Stochastic Assessment of Water Resource System Vulnerability to Multi-year Drought

    Science.gov (United States)

    Hall, J. W.; Borgomeo, E.; Farmer, C.; Pflug, G.; Hochrainer-Stigler, S.

    2015-12-01

    Global climate models suggest an increase in evapotranspiration in many parts of the world which is likely to cause an increase in drought severity, yet the weakness of climate models in modelling persistence of hydro-climatic variables and the uncertainties associated with regional climate projections mean that impact assessments based on climate model output may underestimate the risk of multi-year droughts. In this paper we propose a vulnerability-based approach to test water resource system response to drought. We generate a large number of synthetic streamflow series with different drought durations and deficits and use them as input to a water resource system model. Two approaches to drought simulation are presented: (1) using a numerical streamflow generator based upon an optimal bootstrapping algorithm and (2) using a copula to characterise the joint probability distribution streamflow characteristics in successive months. Droughts with longer durations and larger deficits than the observed record are generated (1) by changing the objective function of the optimisation and (2) by perturbing the copula dependence parameter and by adopting an importance sampling strategy for low flows. In this way potential climate-induced changes in monthly hydrological persistence are factored into the vulnerability analysis. The method is applied to the London water resource system (England) to investigate under which drought conditions severe water use restrictions would need to be imposed on water users. Results indicate that the water resource system is vulnerable to drought conditions outside the range of historical events. The vulnerability assessment results were coupled with climate model information to compare alternative water management options with respect to their vulnerability to increasingly long and severe drought conditions.

  17. A landscape-based assessment of climate change vulnerability for all native Hawaiian plants

    Science.gov (United States)

    Fortini, Lucas; Price, Jonathan; Jacobi, James; Vorsino, Adam; Burgett, Jeff; Brinck, Kevin W.; Amidon, Fred; Miller, Steve; `Ohukani`ohi`a Gon, Sam; Koob, Gregory; Paxton, Eben

    2013-01-01

    In Hawaiʽi and elsewhere, research efforts have focused on two main approaches to determine the potential impacts of climate change on individual species: estimating species vulnerabilities and projecting responses of species to expected changes. We integrated these approaches by defining vulnerability as the inability of species to exhibit any of the responses necessary for persistence under climate change (i.e., tolerate projected changes, endure in microrefugia, or migrate to new climate-compatible areas, but excluding evolutionary adaptation). To operationalize this response-based definition of species vulnerability within a landscape-based analysis, we used current and future climate envelopes for each species to define zones across the landscape: the toleration zone; the microrefugia zone; and the migration zone. Using these response zones we calculated a diverse set of factors related to habitat area, quality, and distribution for each species, including the amount of habitat protection and fragmentation and areas projected to be lost to sea-level rise. We then calculated the probabilities of each species exhibiting these responses using a Bayesian network model and determined the overall climate change vulnerability of each species by using a vulnerability index. As a first iteration of a response-based species vulnerability assessment (VA), our landscape-based analysis effectively integrates species-distribution models into a Bayesian network-based VA that can be updated with improved models and data for more refined analyses in the future. Our results show that the species most vulnerable to climate change also tend to be species of conservation concern due to non-climatic threats (e.g., competition and predation from invasive species, land-use change). Also, many of Hawaiʽi’s taxa that are most vulnerable to climate change share characteristics with species that in the past were found to be at risk of extinction due to non-climatic threats (e

  18. Structured Assessment Approach: a microcomputer-based insider-vulnerability analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Patenaude, C.J.; Sicherman, A.; Sacks, I.J.

    1986-01-01

    The Structured Assessment Approach (SAA) was developed to help assess the vulnerability of safeguards systems to insiders in a staged manner. For physical security systems, the SAA identifies possible diversion paths which are not safeguarded under various facility operating conditions and insiders who could defeat the system via direct access, collusion or indirect tampering. For material control and accounting systems, the SAA identifies those who could block the detection of a material loss or diversion via data falsification or equipment tampering. The SAA, originally desinged to run on a mainframe computer, has been converted to run on a personal computer. Many features have been added to simplify and facilitate its use for conducting vulnerability analysis. For example, the SAA input, which is a text-like data file, is easily readable and can provide documentation of facility safeguards and assumptions used for the analysis.

  19. The Structured Assessment Approach: A microcomputer-based insider-vulnerability analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Patenaude, C.J.; Sicherman, A.; Sacks, I.J.

    1986-01-01

    The Structured Assessment Approach (SAA) was developed to help assess the vulnerability of safeguards systems to insiders in a staged manner. For physical security systems, the SAA identifies possible diversion paths which are not safeguarded under various facility operating conditions and insiders who could defeat the system via direct access, collusion or indirect tampering. For material control and accounting systems, the SAA identifies those who could block the detection of a material loss or diversion via data falsification or equipment tampering. The SAA, originally designed to run on a mainframe computer, has been converted to run on a personal computer. Many features have been added to simplify and facilitate its use for conducting vulnerability analysis. The SAA microcomputer based approach is discussed in this paper.

  20. Vulnerability Assessment of Snow Disaster Based on Traffic System: A Case Study of Chenzhou City in Hunan Province, China

    Institute of Scientific and Technical Information of China (English)

    Xu Xiaoge; Wang Jingai

    2009-01-01

    The article establishes the patterns of urban snow di-saster system and disaster chain based on the theory of regional disaster system. The patterns indicate that urban snow disaster is exacerbated mainly through the traffic system. In addition, the paper sets up the vulnerability assessment index system and synthetically vulnerability assessment model of urban snow disaster which are mainly based on traffic system, and applies them in Chenzhou City. The results of assessment indicate that obvious geographical differences exist in the vulnerability of snow disaster bearing bodies: vulnerability of Chenzhou section of the Beijing-Zhuhai expressway is the highest in Chenzhou City, and the southeastern counties are more vulnerable than the northwest region. Furthermore, according to the snow disaster vulnerability dynamic process analysis, the vulnerability of Chenzhou City obviously increased in 2008 winter compared with that in 2007. Finally, the paper presents some suggestions for the locations of the emergency commands and the reserves of relief materials based on the evaluation results, and points out that disaster monitoring and relevant technical level should be strengthened for the minimization of traffic system's vulner-ability.

  1. A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support

    OpenAIRE

    Bensi, Michelle Terese

    2010-01-01

    A Bayesian network methodology is developed for performing infrastructure seismic risk assessment and providing decision support with an emphasis on immediate post-earthquake applications. The methodology consists of four major components: (1) a seismic demand model of ground motion intensity as a spatially distributed Gaussian random field accounting for multiple seismic sources with uncertain characteristics and including finite fault rupture and directivity effects; (2) a model of the perf...

  2. Community Needs Assessment and Portal Prototype Development for an Arctic Spatial Data Infrastructure (ASDI)

    Science.gov (United States)

    Wiggins, H. V.; Warnick, W. K.; Hempel, L. C.; Henk, J.; Sorensen, M.; Tweedie, C. E.; Gaylord, A. G.

    2007-12-01

    As the creation and use of geospatial data in research, management, logistics, and education applications has proliferated, there is now a tremendous potential for advancing science through a variety of cyber-infrastructure applications, including Spatial Data Infrastructure (SDI) and related technologies. SDIs provide a necessary and common framework of standards, securities, policies, procedures, and technology to support the effective acquisition, coordination, dissemination and use of geospatial data by multiple and distributed stakeholder and user groups. Despite the numerous research activities in the Arctic, there is no established SDI and, because of this lack of a coordinated infrastructure, there is inefficiency, duplication of effort, and reduced data quality and search ability of arctic geospatial data. The urgency for establishing this framework is significant considering the myriad of data that is being collected in celebration of the International Polar Year (IPY) in 2007-2008 and the current international momentum for an improved and integrated circum-arctic terrestrial-marine-atmospheric environmental observatories network. The key objective of this project is to lay the foundation for full implementation of an Arctic Spatial Data Infrastructure (ASDI) through an assessment of community needs, readiness, and resources and through the development of a prototype web-mapping portal.

  3. Developing a national food defense guideline based on a vulnerability assessment of intentional food contamination in Japanese food factories using the CARVER+Shock vulnerability assessment tool.

    Science.gov (United States)

    Kanagawa, Yoshiyuki; Akahane, Manabu; Hasegawa, Atsushi; Yamaguchi, Kentaro; Onitake, Kazuo; Takaya, Satoshi; Yamamoto, Shigeki; Imamura, Tomoaki

    2014-12-01

    The awareness of food terrorism has increased following the September 11, 2001 terrorist attacks in New York City, United States, and many measures and policies dealing with this issue have been established worldwide. Suspected deliberate food-poisoning crimes have occurred in Japan, although they are not regarded as acts of food terrorism. One area of concern is that the small- to medium-sized companies that dominate Japan's food industry are extremely vulnerable to deliberate food poisoning. We conducted a literature research on food defense measures undertaken by the World Health Organization and in the United States and Europe. Using the Carver+Shock vulnerability assessment tool, eight food factories and related facilities in Japan were evaluated and we found the level of awareness of food defense to be low and the measures inappropriate. On the basis of this evaluation, we developed a set of guidelines that Japanese food companies can use to help develop their food defense strategies and to serve as a reference in considering specific measures. PMID:25496071

  4. Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba

    OpenAIRE

    Bultó, Paulo Lázaro Ortíz; Rodríguez, Antonio Pérez; Valencia, Alina Rivero; Vega, Nicolás León; Gonzalez, Manuel Díaz; Carrera, Alina Pérez

    2006-01-01

    In this study we assessed the potential effects of climate variability and change on population health in Cuba. We describe the climate of Cuba as well as the patterns of climate-sensitive diseases of primary concern, particularly dengue fever. Analyses of the associations between climatic anomalies and disease patterns highlight current vulnerability to climate variability. We describe current adaptations, including the application of climate predictions to prevent disease outbreaks. Finally...

  5. Modelling robust crop production portfolios to assess agricultural vulnerability to climate change

    OpenAIRE

    Mitter, Hermine; Heumesser, Christine; Schmid, Erwin

    2014-01-01

    Agricultural vulnerability is assessed by (i) modelling climate change impacts on crop yields and gross margins, (ii) identifying crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on adaptive capacity. We combine, spatially explicit, a statistical climate change model, the bio-physical process model EPIC and a portfolio optimization model. Under climate change, optimal portfolios include higher shares of intensive crop managem...

  6. Seismic Vulnerability Assessment of Low-Rise Reinforced Concrete Buildings in Kathmandu, Nepal

    OpenAIRE

    Shah, Prateek Pratap; Pujol, Santiago

    2015-01-01

    In seismically active cities like Kathmandu, there often exists a need to assess the seismic vulnerability of a large number of poorly designed buildings within a short period of time. Traditional analysis techniques do not work because they require building data that are either inaccurate or unavailable. One alternative to traditional analysis techniques is to use simple correlations like the Priority Index. This index uses basic building information such as floor area, column area, and wall...

  7. An interdisciplinary assessment of regional-scale nonpoint source ground-water vulnerability; theory and application

    Science.gov (United States)

    Bernknopf, Richard L.; Dinitz, Laura B.; Loague, Keith

    2001-01-01

    An integrated earth science-economics model, developed within a geographic information system (GIS), combines a regional-scale nonpoint source vulnerability assessment with a specific remediation measure to avoid unnecessary agricultural production costs associated with the use of agrochemicals in the Pearl Harbor basin on the island of Oahu, Hawaii. This approach forms the core of a risk-based regulation for the application of agrochemicals and estimates the benefits of an information-based approach to decisionmaking.

  8. Assessment of groundwater vulnerability by combining drastic and susceptibility index: Application to Annaba superficial aquifer (Algeria)

    Science.gov (United States)

    Sedrati, Nassima; Djabri, Larbi; Chaffai, Hicham; Bougherira, Nabil

    2016-07-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The aim of this work is to propose a new integrated methodology to assess actual and forecasted groundwater vulnerability by combining Drastic and susceptibility index. The contamination susceptibility index (SI) at a given location was calculated by taking the product of the vulnerability DRASTIC index (VI) and the quality index (QI): SI=VI x QI. The superficial aquifer of Annaba plain was the study case proposed for the application of this methodology. The study revealed that the area with Very High vulnerability would increase 73 % in this superficial layer. This result can be explained by the susceptibility index map shows both hydrogeological and hydrochemical data related to the contamination problem including areas that should be taken into consideration during water management planning. The index map indicates that the most susceptible groundwater is occupies the majority of the study area. The validity of the DRASTIC and the susceptibility index methods, verified by comparing the distribution of some pollutants (Daouad, 2013) in the groundwater and the different vulnerability classes, shows a high contamination that affect the water quality in study areas.

  9. A new approach to flood vulnerability assessment for historic buildings in England

    Science.gov (United States)

    Stephenson, V.; D'Ayala, D.

    2014-05-01

    The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is presented here that studies the nature of the vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. Key findings of the work include determining the applicability of these indicators to fragility analysis, and the determination of the relative vulnerability of the three case study sites.

  10. Integrated flood risk assessment for the Mekong Delta through the combined assessment of flood hazard change and social vulnerability

    Science.gov (United States)

    Apel, Heiko; Garschagen, Matthias; Delgado, José Miguel; Viet Dung, Nguyen; Van Tuan, Vo; Thanh Binh, Nguyen; Birkmann, Joern; Merz, Bruno

    2013-04-01

    Low lying estuaries as the Mekong Delta in Vietnam are among the most vulnerable areas with respect to climate change impacts. While regular floods are not a threat but an opportunity for livelihoods and income generation, extreme flood events can pose considerable risks to the people living in Deltas. Climate change is expected to increase the frequency of extreme floods globally, which in combination with sea level rise and a likely intensification of cyclone activity creates increased and/or entirely new hazard exposure in the Deltas. Yet, in line with the risk literature and especially the recent IPCC SREX report, flooding risk needs to be understood as deriving from the interaction of physical hazards and the vulnerabilities of exposed elements. Therefore, the paper aims for an integrated risk assessment through combining the most up to date estimates of flood hazard projections under climate change conditions in the Mekong Delta with the assessment of vulnerability patterns. Projections of flood hazard are estimated based the modulation of the flood frequency distribution by atmospheric circulation patterns. Future projections of these patterns are calculated from an ensemble of climate models. A quasi two-dimensional hydrodynamical model of the Delta is then applied to estimate water levels and flood extend. This model is fed with a set of hydrographs which are based on both the derived climate model uncertainty and the bivariate nature of floods in the Mekong Delta. Flood peak is coupled with flood volume in the probabilistic framework to derive synthetic extreme future floods with associated probabilities of occurrence. This flood hazard analysis is combined with static sea level rise scenarios, which alter the lower boundary of the hydrodynamic model and give estimates of the impact on sea level rise on inundation extend and depths. The vulnerability assessment is based on a three step approach. Firstly, vulnerability profiles are developed for different

  11. Integrated tsunami vulnerability and risk assessment: application to the coastal area of El Salvador

    Science.gov (United States)

    González-Riancho, P.; Aguirre-Ayerbe, I.; García-Aguilar, O.; Medina, R.; González, M.; Aniel-Quiroga, I.; Gutiérrez, O. Q.; Álvarez-Gómez, J. A.; Larreynaga, J.; Gavidia, F.

    2014-05-01

    Advances in the understanding and prediction of tsunami impacts allow for the development of risk reduction strategies for tsunami-prone areas. This paper presents a tsunami vulnerability and risk assessment for the case study of El Salvador, the applied methodology dealing with the complexity and variability of coastal zones by means of (i) an integral approach to cover the entire risk-related process from the hazard, vulnerability and risk assessments to the final risk management; (ii) an integrated approach to combine and aggregate the information stemming from the different dimensions of coupled human and natural systems; and (iii) a dynamic and scale-dependent approach to integrate the spatiotemporal variability considerations. This work also aims at establishing a clear connection to translate the vulnerability and risk assessment results into adequate target-oriented risk reduction measures, trying to bridge the gap between science and management for the tsunami hazard. The approach is applicable to other types of hazards, having been successfully applied to climate-change-related flooding hazard.

  12. What if quality of damage data is poor: an Entity-Vulnerability approach for flood vulnerability assessment

    Science.gov (United States)

    Naso, Susanna; Chen, Albert S.; Djordjević, Slobodan; Aronica, Giuseppe T.

    2015-04-01

    The classical approach to flood defence, aimed at reducing the probability of flooding through hard defences, has been substituted by flood risk management approach which accepts the idea of coping with floods and aims at reducing not only the probability of flooding, but also the consequences. In this view, the concept of vulnerability becomes central, such as the (non-structural) measures for its increment. On 22 November 2011, an exceptional rainstorm hit the Longano catchment (North-East part of Sicily, Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The flash flood involved property, buildings, roads and more than 100 commercial estates have suffered severe damages. Some days after the event, the municipality provided people forms to describe the damages that occurred on their properties. Unfortunately, the lack of common guidelines in compiling them, their coarseness and the impossibility to have monetary information on them (such us damage data from previous events), did not allow the implementation of a detailed damage analysis. What we're developing in this work is a method for a qualitative evaluation of the consequences of floods, based on vulnerability curves for structures and classes of entities at risk. The difficulty in deriving the vulnerability curves for different building typologies, as function of the water depth, was due to the lack of quantitative information both on damages caused by previous events and on buildings' value. To solve the problem we submitted a questionnaire to a team of experts asking for an estimation of building damages to different hypothetical inundation depths. What we wanted to obtain was deriving the vulnerability data from technicians' experience, believing in the fundamental importance of the collaboration among research and professional engineers. Through the elaboration and the synthesis of the experts' estimations we derived the vulnerability curves for different building typologies and

  13. Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity

    International Nuclear Information System (INIS)

    Highlights: • We present a method to analyse material criticality of infrastructure transitions. • Criticality is defined as the potential for, and exposure to, supply disruption. • Our method is dynamic reducing the probability of lock-in to at-risk technologies. • We show that supply disruption potential is reducing but exposure is increasing. - Abstract: Decarbonisation of existing infrastructure systems requires a dynamic roll-out of technology at an unprecedented scale. The potential disruption in supply of critical materials could endanger such a transition to low-carbon infrastructure and, by extension, compromise energy security more broadly because low carbon technologies are reliant on these materials in a way that fossil-fuelled energy infrastructure is not. Criticality is currently defined as the combination of the potential for supply disruption and the exposure of a system of interest to that disruption. We build on this definition and develop a dynamic approach to quantifying criticality, which monitors the change in criticality during the transition towards a low-carbon infrastructure goal. This allows us to assess the relative risk of different technology pathways to reach a particular goal and reduce the probability of being ‘locked in’ to currently attractive but potentially future-critical technologies. To demonstrate, we apply our method to criticality of the proposed UK electricity system transition, with a focus on neodymium. We anticipate that the supply disruption potential of neodymium will decrease by almost 30% by 2050; however, our results show the criticality of low carbon electricity production increases ninefold over this period, as a result of increasing exposure to neodymium-reliant technologies

  14. Remote Sensing Based Vulnerability Assessment of Desertification in Mongolia and Myanmar

    Science.gov (United States)

    Lim, C. H.; Lee, E. J.; Song, C.; Lee, W. K.; Jeon, S. W.

    2015-12-01

    Desertification is one of the global threatening problems in respect of society, economy, and environment, and the assessment of desertification is essential for land planning and management. However desertification is a process that encompasses various factors in various aspects, having difficulties to assess qualitatively. The main purpose of the research is to qualitatively assess sensitivity of land to desertification, and detect the most vulnerable land to desertification in Mongolia and Myanmar using the Mediterranean Desertification and Land Use (MEDALUS) approach. MEDALUS approach aims to provide a manual on key indicators of desertification and mapping environmentally sensitive areas to desertification in the Mediterranean countries. However in this research, MEDALUS approach is implemented and reviewed on the countries located in the Middle Asia; Mongolia and Myanmar. MEDALUS approach identifies regions with the highest risk of desertification with 4 quality index; climate, soil, vegetation, management. Within the four quality index are several regional scale indicators for Mongolia and Myanmar, which gives effect with increasing or decreasing risk of desertification. MODIS satellite images, Digital Elevation Model (DEM), and climatic and geographical data were used to calculate the indicators. The weighting of each indicator ranged from 1 to 2; the higher weight the more vulnerable to desertification. The weighted indicators were allocated to 4 quality index, and the four quality index was summed to calculate Environmentally Sensitive Area Index (ESAI) representing the vulnerability of land degradation to desertification. As a result, the Middle East region of Mongolia showed the highest sensitivity, thus the most vulnerable to desertification. Based on the result of this study, it is useful to identify the current state of affairs and the necessity of land planning in Mongolia and Myanmar, one tool that can be utilized for combating desertification. The

  15. Digital Cartographic Models as Analysis Support in Multicriterial Assessment of Vulnerable Flood Risk Elements

    Science.gov (United States)

    Nichersu, Iulian; Mierla, Marian; Trifanov, Cristian; Nichersu, Iuliana; Marin, Eugenia; Sela, Florentina

    2014-05-01

    In the last 20 years there has been an increase of frequency in extreme weather and hydrological events. This frequency increase arise the need to research the risk to the events that are extreme and has big impact to the environment. This paper presents a method to analysis the vulnerable elements to the risk at extreme hydrological event, to be more precisely to flood. The method is using also the LiDAR point cloud. The risk concept has two main components: the first one hazard (represented by frequency of the occurrence and intensity of the flood) and the second one vulnerability (represented by the vulnerable elements to the flood). The studied area in the present paper is situated in the South-East of Europe (Romania, Danube Delta). The Digital Cartographic Models were accomplished by using the LiDAR data obtained within the CARTODD project. The digital cartographic models, with high resolution, consist of 3 components: digital terrain model (DTM), digital elevation model (DEM) and elevation classes (EC). Completing the information of the three models there were used also the orthophotos in visible (VIS) and infrared (IR) spectrum slices. Digital Terrain Model gives information on the altitude of the terrain and indirect of the flood hazard, taking into account the high resolution that the final product has. Digital Elevation Model supplies information related to the surfaces of the terrain plus the altitude of each object on the surface. This model helps to reach to the third model the Elevation Classes Model. We present here three categories of applications of clouds points analyses in floodrisk assessment: buildings assessment, endangered species mentioned in Annex 1 of the European Habitats Directive and morphologic/habitats damages. Pilot case studies of these applications are: Sulina town; endangering species like Osmoderma eremita, Vipera ursini and Spermophilus citellus; Sireasa Polder. For Sulina town was assessed the manmade vulnerable elements to

  16. Tsunami damages assessment: vulnerability functions on buildings based on field and earth observation survey.

    Science.gov (United States)

    Gauraz, A. L.; Valencia, N.; Koscielny, M.; Guillande, R.; Gardi, A.; Leone, F.; Salaun, T.

    2009-04-01

    The assessment of damages caused by tsunami scenarios on coastal buildings requires using vulnerability matrixes or functions to carry out a relation between the magnitude of the phenomena and the damage expected. These functions represent the probability for a building belonging to a class of vulnerability to suffer from a mean damage level. The physical vulnerability of buildings depends on two parameters: the solicitation level applied by the tsunami on buildings and their resistance capacity. According to the authors after post-tsunami observations (Reese et al. 2007; Ruangrassamee et al. 2006; Leone et al. 2006; Peiris 2006), the level of damage is clearly linked to the water elevation of the inundated areas and the type of observed buildings. Very few works propose relations based on velocity or hydrodynamic pressure of the waves. An approach developed for the estimation of the building vulnerability consists in deriving empirical damage functions starting from field observations. As part of the SCHEMA European Project on the vulnerability assessment for tsunami hazards in the Atlantic and Mediterranean area, vulnerability functions have been elaborated for different classes of buildings in order to produce vulnerability maps for exposed areas with emphasis on extraction of building characteristics using remote sensing data. The damage detection has been carried out by field data collected after the 24 December 2006 tsunami event on the southwest area of Banda Aceh (Sumatra, Thailand) completed by photo-interpretation of satellite images to get representative functions with large population of samples. The building classes consist in several categories depending mainly on the type of construction material (timber/bamboo, traditional brick, reinforced concrete …), the type of structure (beam, pillars, etc) and the number of storeys. The level of damage has been also classified in five categories, from D0 (no damage) to D5 (total destruction). Vulnerability

  17. Vulnerability assessment and protective effects of coastal vegetation during the 2004 Tsunami in Sri Lanka

    Science.gov (United States)

    Kaplan, M.; Renaud, F. G.; Lüchters, G.

    2009-08-01

    The tsunami of December 2004 caused extensive human and economic losses along many parts of the Sri Lankan coastline. Thanks to extensive national and international solidarity and support in the aftermath of the event, most people managed to restore their livelihoods completely but some households did not manage to recover completely from the impacts of the event. The differential in recovery highlighted the various vulnerabilities and coping capacities of communities exposed to the tsunami. Understanding the elements causing different vulnerabilities is crucial to reducing the impact of future events, yet capturing them comprehensively at the local level is a complex task. This research was conducted in a tsunami-affected area in southwestern Sri Lanka to evaluate firstly the role of coastal vegetation in buffering communities against the tsunami and secondly to capture the elements of vulnerability of affected communities. The area was chosen because of its complex landscape, including the presence of an inlet connecting the Maduganga estuary with the sea, and because of the presence of remaining patches of coastal vegetation. The vulnerability assessment was based on a comprehensive vulnerability framework and on the Sustainable Livelihoods Framework in order to detect inherent vulnerabilities of different livelihood groups. Our study resulted in the identification of fishery and labour-led households as the most vulnerable groups. Unsurprisingly, analyses showed that damages to houses and assets decreased quickly with increasing distance from the sea. It could also be shown that the Maduganga inlet channelled the energy of the waves, so that severe damages were observed at relatively large distances from the sea. Some reports after the tsunami stated that mangroves and other coastal vegetation protected the people living behind them. Detailed mapping of the coastal vegetation in the study area and subsequent linear regression revealed significant differences

  18. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks.

    Science.gov (United States)

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-05-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3-22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically exceed

  19. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks.

    Science.gov (United States)

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-05-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3-22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically exceed

  20. Department of Energy HEU ES and H vulnerability assessment, Savannah River Site, Site Assessment Team report. Revision 2

    International Nuclear Information System (INIS)

    This report fulfills the directive issued by the Secretary of Energy on February 22, 1996 to complete a comprehensive assessment of potential vulnerabilities associated with the management of highly enriched uranium (HEU) throughout the DOE complex. In a subsequent letter instruction, the DOE-SR Field Office formally directed WSRC to conduct an assessment of the HEU materials at SRS. The term ''ES and H vulnerabilities'' is defined for the purpose of this assessment to mean conditions or weaknesses that could lead to unnecessary or increased exposure of workers or the public to radiation or to HEU-associated chemical hazards, or to the release of radioactive materials to the environment. The assessment will identify and prioritize ES and H vulnerabilities, and will serve as an information base for identifying corrective actions for the safe management of HEU. Primary facilities that hold HEU at SRS are H-Canyon, K-Reactor assembly area, K, L, and P-Reactor disassembly basins, and the Receiving Basin for Offsite Fuels (RBOF)

  1. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning.

    Science.gov (United States)

    Maxwell, Sean L; Venter, Oscar; Jones, Kendall R; Watson, James E M

    2015-10-01

    The impact of climate change on biodiversity is now evident, with the direct impacts of changing temperature and rainfall patterns and increases in the magnitude and frequency of extreme events on species distribution, populations, and overall ecosystem function being increasingly publicized. Changes in the climate system are also affecting human communities, and a range of human responses across terrestrial and marine realms have been witnessed, including altered agricultural activities, shifting fishing efforts, and human migration. Failing to account for the human responses to climate change is likely to compromise climate-smart conservation efforts. Here, we use a well-established conservation planning framework to show how integrating human responses to climate change into both species- and site-based vulnerability assessments and adaptation plans is possible. By explicitly taking into account human responses, conservation practitioners will improve their evaluation of species and ecosystem vulnerability, and will be better able to deliver win-wins for human- and biodiversity-focused climate adaptation.

  2. Assessment of socio-economic potential of regions for placement of the logistic infrastructure objects

    Directory of Open Access Journals (Sweden)

    Aleksandr Nelevich Rakhmangulov

    2014-06-01

    Full Text Available Currently, at the regional markets, there is a disproportion between the growing demand for transportation and logistics services and the availability of facilities needed for their implementation, which is because the high logistics costs and does not meet the strategic objectives of the country to create a common economic space. The article describes the system of market factors that have the most significant influence on the distribution of logistics facilities. Study and evaluation of potential changes in the region of logistics facility disposition are proposed to perform using simulation techniques and statistical data analysis. The article presents the engineered multivariate statistical models that control the kind and effect of correlation between socio-economic development factors of regions, as well as a simulation model, which allows to assess the dynamics of these factors and predict demand for logistics infrastructure facilities. The choice of region (subject dislocation of the logistics center is proposed to realize by the developed technique based on the calculation of the integrated index that takes into account differences in the level of socio-economic and infrastructural development of the regions. This technique in conjunction with a simulation model is applicable to a variety of administrative and territorial levels (region, city and allows to take into account both the current demand in the logistics infrastructure and demand dynamics. The technique given in the article can be used to assess the level of attractiveness of the Russian Federation in the development of public and private investment projects for the development of logistics infrastructure

  3. The Combined Use of Airborne Remote Sensing Techniques within a GIS Environment for the Seismic Vulnerability Assessment of Urban Areas: An Operational Application

    Directory of Open Access Journals (Sweden)

    Antonio Costanzo

    2016-02-01

    Full Text Available The knowledge of the topographic features, the building properties, and the road infrastructure settings are relevant operational tasks for managing post-crisis events, restoration activities, and for supporting search and rescue operations. Within such a framework, airborne remote sensing tools have demonstrated to be powerful instruments, whose joint use can provide meaningful analyses to support the risk assessment of urban environments. Based on this rationale, in this study, the operational benefits obtained by combining airborne LiDAR and hyperspectral measurements are shown. Terrain and surface digital models are gathered by using LiDAR data. Information about roads and roof materials are provided through the supervised classification of hyperspectral images. The objective is to combine such products within a geographic information system (GIS providing value-added maps to be used for the seismic vulnerability assessment of urban environments. Experimental results are gathered for the city of Cosenza, Italy.

  4. Integration of Gis-analysis and Atmospheric Modelling For Nuclear Risk and Vulnerability Assessment

    Science.gov (United States)

    Rigina, O.; Baklanov, A.; Mahura, A.

    The paper is devoted to the problems of residential radiation risk and territorial vul- nerability with respect to nuclear sites in Europe. The study suggests two approaches, based on an integration of the GIS-analysis and the atmospheric modelling, to calcu- late radiation risk/vulnerability. First, modelling simulations were done for a number of case-studies, based on real data, such as reactor core inventory and estimations from the known accidents, for a number of typical meteorological conditions and different accidental scenarios. Then, using these simulations and the population database as input data, the GIS-analysis reveals administrative units at the highest risk with re- spect to the mean individual and collective doses received by the population. Then, two alternative methods were suggested to assess a probabilistic risk to the population in case of a severe accident on the Kola and Leningrad NPPs (as examples) based on social-geophysical factors: proximity to the accident site, population density and presence of critical groups, and the probabilities of wind trajectories and precipitation. The two latter probabilities were calculated by the atmospheric trajectory models and statistical methods for many years. The GIS analysis was done for the Nordic coun- tries as an example. GIS-based spatial analyses integrated with mathematical mod- elling allow to develop a common methodological approach for complex assessment of regional vulnerability and residential radiation risk, by merging together the sepa- rate aspects: modelling of consequences, probabilistic analysis of atmospheric flows, dose estimation etc. The approach was capable to create risk/vulnerability maps of the Nordic countries and to reveal the most vulnerable provinces with respect to the radiation risk sites.

  5. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  6. Coastal Hazard Vulnerability Assessment: A Case Study of Erosion and Flooding on Herschel Island, Yukon Territory, Canada

    Science.gov (United States)

    Radosavljevic, B.; Lantuit, H.; Overduin, P. P.; Fritz, M.

    2015-12-01

    Coastal infrastructure, cultural, and archeological sites are increasingly vulnerable to erosion and flooding along permafrost coasts. Amplified warming of the Arctic, sea level rise, lengthening of the open water period, and a predicted increase in frequency of major storms compound these threats. Mitigation necessitates decision-making tools at an appropriate scale. We present a study of coastal erosion combining it with a flooding risk assessment for the culturally important historic settlement on Herschel Island, a UNESCO World Heritage candidate site. The resulting map may help local stakeholders devise management strategies to cope with rapidly changing environmental conditions. We analyzed shoreline movement using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, and 2011. Using these data, forecasts of shoreline positions were made for 20 and 50 years into the future. Flooding risk was assessed using a cost-distance map based on a high-resolution Light Detection and Ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement for different periods of the study ranges from -5.5 to 2.7 m·a-1 (mean -0.6 m·a-1). Mean coastal retreat decreased from -0.6 m·a-1 to -0.5 m·a-1, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a-1 in the period 2000-2011. Ice-rich coastal sections, and coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map resulting from shoreline projections and flood risk analysis indicates that most of the area occupied by the historic settlement is at extreme or very high risk of flooding, and some buildings are vulnerable to coastal erosion. The results of this study indicate a greater threat by coastal flooding than erosion. Our assessment may be applied in other locations where limited data are available.

  7. Crossing physical simulations of snow conditions and a geographic model of ski area to assess ski resorts vulnerability

    Science.gov (United States)

    François, Hugues; Spandre, Pierre; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu; Lejeune, Yves

    2016-04-01

    In order to face climate change, meteorological variability and the recurrent lack of natural snow on the ground, ski resorts adaptation often rely on technical responses. Indeed, since the occurrence of episodes with insufficient snowfalls in the early 1990's, snowmaking has become an ordinary practice of snow management, comparable to grooming, and contributes to optimise the operation of ski resorts. It also participates to the growth of investments and is associated with significant operating costs, and thus represents a new source of vulnerability. The assessment of the actual effects of snowmaking and of snow management practices in general is a real concern for the future of the ski industry. The principal model use to simulate snow conditions in resorts, Ski Sim, has also been moving this way. Its developers introduced an artificial input of snow on ski area to complete natural snowfalls and considered different organisations of ski lifts (lower and upper zones). However the use of a degree-day model prevents them to consider the specific properties of artificial snow and the impact of grooming on the snowpack. A first proof of concept in the French Alps has shown the feasibility and the interest to cross the geographic model of ski areas and the output of the physically-based reanalysis of snow conditions SAFRAN - Crocus (François et al., CRST 2014). Since these initial developments, several ways have been explored to refine our model. A new model of ski areas has been developed. Our representation is now based on gravity derived from a DEM and ski lift localisation. A survey about snow management practices also allowed us to define criteria in order to model snowmaking areas given ski areas properties and tourism infrastructures localisation. We also suggest to revisit the assessment of ski resort viability based on the "one hundred days rule" based on natural snow depth only. Indeed, the impact of snow management must be considered so as to propose

  8. Vulnerability assessment and strategies for the Sheldon National Wildlife Refuge and Hart Mountain National Antelope Refuge Complex : Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides the results of the Refuge Vulnerability Assessment (RVA) for the Sheldon National Wildlife Refuge and Hart Mountain National Antelope Refuge...

  9. California GAMA Program: A Contamination Vulnerability Assessment for the Bakersfield Area

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-11-01

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MTBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey (USGS), the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2003, LLNL carried out this vulnerability study in the groundwater basin that underlies Bakersfield, in the southern San Joaquin Valley. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements help determine the recharge water

  10. A Contamination Vulnerability Assessment for the Santa Clara and San Mateo County Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-06

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basins of Santa Clara County and San Mateo County, located to the south of the city of San Francisco. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  11. A model for assessing the systemic vulnerability in landslide prone areas

    Directory of Open Access Journals (Sweden)

    S. Pascale

    2010-07-01

    Full Text Available The objectives of spatial planning should include the definition and assessment of possible mitigation strategies regarding the effects of natural hazards on the surrounding territory. Unfortunately, however, there is often a lack of adequate tools to provide necessary support to the local bodies responsible for land management. This paper deals with the conception, the development and the validation of an integrated numerical model for assessing systemic vulnerability in complex and urbanized landslide-prone areas. The proposed model considers this vulnerability not as a characteristic of a particular element at risk, but as a peculiarity of a complex territorial system, in which the elements are reciprocally linked in a functional way. It is an index of the tendency of a given territorial element to suffer damage (usually of a functional kind due to its interconnections with other elements of the same territorial system. The innovative nature of this work also lies in the formalization of a procedure based on a network of influences for an adequate assessment of such "systemic" vulnerability.

    This approach can be used to obtain information which is useful, in any given situation of a territory hit by a landslide event, for the identification of the element which has suffered the most functional damage, ie the most "critical" element and the element which has the greatest repercussions on other elements of the system and thus a "decisive" role in the management of the emergency.

    This model was developed within a GIS system through the following phases:

    1. the topological characterization of the territorial system studied and the assessment of the scenarios in terms of spatial landslide hazard. A statistical method, based on neural networks was proposed for the assessment of landslide hazard;

    2. the analysis of the direct consequences of a scenario event on the system;

    3. the definition of the

  12. Community vulnerability assessment index for flood prone savannah agro-ecological zone: A case study of Wa West District, Ghana

    Directory of Open Access Journals (Sweden)

    Effah Kwabena Antwi

    2015-12-01

    Full Text Available The savannah regions of Northern Ghana are characterized by smallholder farming systems and high levels of poverty. Over the past two decades, communities in the regions have become more prone to climate and human-induced disasters in the form of annual floods and droughts. This study evaluates the degree and magnitude of vulnerability in four communities subjected to similar climate change induced flood events and propose intervention options. The study employs rural participatory research approaches in developing four vulnerability categories namely socio-economic, ecological, engineering and political; which were used to develop indicators that aided the calculation of total community vulnerability index for each community. The findings indicate that the state of a community's vulnerability to flood is a composite effect of the four vulnerability index categories which may act independently or concurrently to produce the net effect. Based on a synthesis of total vulnerability obtained in each community, Baleufili was found to be the least vulnerable to flood due to its high scores in engineering, socio-economic and political vulnerability indicators. Baleufili and Bankpama were the most ecologically vulnerable communities. The selection of vulnerability index categories and associated indicators were grounded in specific local peculiarities that evolved out of engagement with community stakeholders and expert knowledge of the socioecological landscape. Thus, the Total Community Vulnerability Assessment Framework (TCVAF provides an effective decision support for identifying communities’ vulnerability status and help to design both short and long term interventions options that are community specific as a way of enhancing their coping and adaptive capacity to disasters.

  13. Tsunami vulnerability assessment mapping for the west coast of Peninsular Malaysia using a geographical information system (GIS)

    International Nuclear Information System (INIS)

    The catastrophic Indian Ocean tsunami of 26 December 2004 raised a number of questions for scientist and politicians on how to deal with the tsunami risk and assessment in coastal regions. This paper discusses the challenges in tsunami vulnerability assessment and presents the result of tsunami disaster mapping and vulnerability assessment study for West Coast of Peninsular Malaysia. The spatial analysis was carried out using Geographical Information System (GIS) technology to demarcate spatially the tsunami affected village's boundary and suitable disaster management program can be quickly and easily developed. In combination with other thematic maps such as road maps, rail maps, school maps, and topographic map sheets it was possible to plan the accessibility and shelter to the affected people. The tsunami vulnerability map was used to identify the vulnerability of villages/village population to tsunami. In the tsunami vulnerability map, the intensity of the tsunami was classified as hazard zones based on the inundation level in meter (contour). The approach produced a tsunami vulnerability assessment map consists of considering scenarios of plausible extreme, tsunami-generating events, computing the tsunami inundation levels caused by different events and scenarios and estimating the possible range of casualties for computing inundation levels. The study provides an interactive means to identify the tsunami affected areas after the disaster and mapping the tsunami vulnerable village before for planning purpose were the essential exercises for managing future disasters

  14. A watershed-based method for environmental vulnerability assessment with a case study of the Mid-Atlantic region

    International Nuclear Information System (INIS)

    The paper presents a method for environmental vulnerability assessment with a case study of the Mid-Atlantic region. The method is based on the concept of “self-/peer-appraisal” of a watershed in term of vulnerability. The self-/peer-appraisal process is facilitated by two separate linear optimization programs. The analysis provided insights on the environmental conditions, in general, and the relative vulnerability pattern, in particular, of the Mid-Atlantic region. The suggested method offers a simple but effective and objective way to perform a regional environmental vulnerability assessment. Consequently the method can be used in various steps in environmental assessment and planning. - Highlights: ► We present a method for regional environmental vulnerability assessment. ► It is based on the self-/peer-appraisal concept in term of vulnerability. ► The analysis is facilitated by two separate linear optimization programs. ► The method provides insights on the regional relative vulnerability pattern.

  15. Assessing vulnerability in Istanbul: An example to support disaster management with remote sensing at ZKI-DLR

    OpenAIRE

    Taubenböck, Hannes; Kemper, Thomas; Roth, Achim; Voigt, Stefan

    2006-01-01

    This paper demonstrates the potential of remote sensing for support of disaster management in the disaster preparedness as well as in the disaster response with a focus on vulnerability assessment in Istanbul. With the focus on the megacity Istanbul the capabilities of remote sensing to assess vulnerability are presented. Explosive population growth, uncontrolled urban sprawl, housing at hazardous areas or bad building materials in combination with a significant risk of a major earthquake pre...

  16. Assessment of Intrinsic Vulnerability to Contamination for the Alluvial Aquifer in El-Fayoum Depression Using the Drastic Method

    International Nuclear Information System (INIS)

    Intrinsic vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. The vulnerability for the alluvial aquifer in El-Fayoum depression was assessed by applying the Drastic model as well as utilizing sensitivity analyses to evaluate the reliability of this model. This method uses seven parameters including climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by applying the Generic and Agricultural models according to the Drastic charter. The resulting agricultural Drastic vulnerability map indicates that 23.3%, 22.7% and 12.4% of El-Fayoum depression is under low, low-moderate and moderately high vulnerability of groundwater contamination, respectively, while 41.6% of the area of study can be designated as an area of moderate vulnerability of groundwater contamination. Resulting maps revealed that the potential for polluting groundwater with agricultural chemicals is greater than with Generic Drastic index pollutants. Depth to water table parameter inflicted the largest impact on the intrinsic vulnerability of the alluvial aquifer in El-Fayoum depression. Both the map removal and single-parameter sensitivity analyses indicated that the vulnerability index is the least sensitive to the removal of the recharge and hydraulic conductivity parameters but is highly sensitive to the removal of depth to water parameter.

  17. A service-oriented approach to assessing the infrastructure value index.

    Science.gov (United States)

    Amaral, R; Alegre, H; Matos, J S

    2016-01-01

    Many national and regional administrations are currently facing challenges to ensure long-term sustainability of urban water services, as infrastructures continue to accumulate alarming levels of deferred maintenance and rehabilitation. The infrastructure value index (IVI) has proven to be an effective tool to support long-term planning, in particular by facilitating the ability to communicate and to create awareness. It is given by the ratio between current value of an infrastructure and its replacement cost. Current value is commonly estimated according to an asset-oriented approach, which is based on the concept of useful life of individual components. The standard values assumed for the useful lives can vary significantly, which leads to valuations that are just as different. Furthermore, with water companies increasingly focused on the customer, effective service-centric asset management is essential now more than ever. This paper shows results of on-going research work, which aims to explore a service-oriented approach for assessing the IVI. The paper presents the fundamentals underlying this approach, discusses and compares results obtained from both perspectives and points to challenges that still need to be addressed. PMID:27438261

  18. Fast Risk Assessment Software For Natural Hazard Phenomena Using Georeference Population And Infrastructure Data Bases

    Science.gov (United States)

    Marrero, J. M.; Pastor Paz, J. E.; Erazo, C.; Marrero, M.; Aguilar, J.; Yepes, H. A.; Estrella, C. M.; Mothes, P. A.

    2015-12-01

    Disaster Risk Reduction (DRR) requires an integrated multi-hazard assessment approach towards natural hazard mitigation. In the case of volcanic risk, long term hazard maps are generally developed on a basis of the most probable scenarios (likelihood of occurrence) or worst cases. However, in the short-term, expected scenarios may vary substantially depending on the monitoring data or new knowledge. In this context, the time required to obtain and process data is critical for optimum decision making. Availability of up-to-date volcanic scenarios is as crucial as it is to have this data accompanied by efficient estimations of their impact among populations and infrastructure. To address this impact estimation during volcanic crises, or other natural hazards, a web interface has been developed to execute an ANSI C application. This application allows one to compute - in a matter of seconds - the demographic and infrastructure impact that any natural hazard may cause employing an overlay-layer approach. The web interface is tailored to users involved in the volcanic crises management of Cotopaxi volcano (Ecuador). The population data base and the cartographic basis used are of public domain, published by the National Office of Statistics of Ecuador (INEC, by its Spanish acronym). To run the application and obtain results the user is expected to upload a raster file containing information related to the volcanic hazard or any other natural hazard, and determine categories to group population or infrastructure potentially affected. The results are displayed in a user-friendly report.

  19. Energy infrastructure in India: Profile and risks under climate change

    International Nuclear Information System (INIS)

    India has committed large investments to energy infrastructure assets-power plants, refineries, energy ports, pipelines, roads, railways, etc. The coastal infrastructure being developed to meet the rising energy imports is vulnerable to climate extremes. This paper provides an overview of climate risks to energy infrastructures in India and details two case studies – a crude oil importing port and a western coast railway transporting coal. The climate vulnerability of the port has been mapped using an index while that of the railway has been done through a damage function for RCP 4.5.0 and 8.5 scenarios. Our analysis shows that risk management through adaptation is likely to be very expensive. The system risks can be even greater and might adversely affect energy security and access objectives. Aligning sustainable development and climate adaptation measures can deliver substantial co-benefits. The key policy recommendations include: i) mandatory vulnerability assessment to future climate risks for energy infrastructures; ii) project and systemic risks in the vulnerability index; iii) adaptation funds for unmitigated climate risks; iv) continuous monitoring of climatic parameters and implementation of adaptation measures, and iv) sustainability actions along energy infrastructures that enhance climate resilience and simultaneously deliver co-benefits to local agents. -- Highlights: •Climate risks to energy infrastructures adversely impact energy security. •Case studies of a port and a railway show their future climate change vulnerability. •Managing climate-induced risks through preventive adaptation policies

  20. A new approach to flood loss estimation and vulnerability assessment for historic buildings in England

    Science.gov (United States)

    Stephenson, V.; D'Ayala, D.

    2013-10-01

    The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is proposed that studies the nature of vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide key findings and guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of key vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. This in turn facilitates the production of strategies for mitigating and managing the losses threatened by such extreme climate events.

  1. A new approach to flood loss estimation and vulnerability assessment for historic buildings in England

    Directory of Open Access Journals (Sweden)

    V. Stephenson

    2013-10-01

    Full Text Available The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is proposed that studies the nature of vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide key findings and guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of key vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. This in turn facilitates the production of strategies for mitigating and managing the losses threatened by such extreme climate events.

  2. Tsunami vulnerability and damage assessment in the coastal area of Rabat and Salé, Morocco

    Directory of Open Access Journals (Sweden)

    A. Atillah

    2011-12-01

    Full Text Available This study, a companion paper to Renou et al. (2011, focuses on the application of a GIS-based method to assess building vulnerability and damage in the event of a tsunami affecting the coastal area of Rabat and Salé, Morocco. This approach, designed within the framework of the European SCHEMA project (www.schemaproject.org is based on the combination of hazard results from numerical modelling of the worst case tsunami scenario (inundation depth based on the historical Lisbon earthquake of 1755 and the Portugal earthquake of 1969, together with vulnerability building types derived from Earth Observation data, field surveys and GIS data. The risk is then evaluated for this highly concentrated population area characterized by the implementation of a vast project of residential and touristic buildings within the flat area of the Bouregreg Valley separating the cities of Rabat and Salé. A GIS tool is used to derive building damage maps by crossing layers of inundation levels and building vulnerability. The inferred damage maps serve as a base for elaborating evacuation plans with appropriate rescue and relief processes and to prepare and consider appropriate measures to prevent the induced tsunami risk.

  3. Connectivity, neutral theories and the assessment of species vulnerability to global change in temperate estuaries

    Science.gov (United States)

    Chust, Guillem; Albaina, Aitor; Aranburu, Aizkorri; Borja, Ángel; Diekmann, Onno E.; Estonba, Andone; Franco, Javier; Garmendia, Joxe M.; Iriondo, Mikel; Muxika, Iñigo; Rendo, Fernando; Rodríguez, J. Germán; Ruiz-Larrañaga, Otsanda; Serrão, Ester A.; Valle, Mireia

    2013-10-01

    One of the main adaptation strategies to global change scenarios, aiming to preserve ecosystem functioning and biodiversity, is to maximize ecosystem resilience. The resilience of a species metapopulation can be improved by facilitating connectivity between local populations, which will prevent demographic stochasticity and inbreeding. This investigation estimated the degree of connectivity among estuarine species along the north-eastern Iberian coast, in order to assess community vulnerability to global change scenarios. To address this objective, two connectivity proxy types have been used based upon genetic and ecological drift processes: 1) DNA markers for the bivalve cockle (Cerastoderma edule) and seagrass Zostera noltei, and 2) the decrease in the number of species shared between two sites with geographic distance. Neutral biodiversity theory predicts that dispersal limitation modulates this decrease, and this has been explored in estuarine plants and macroinvertebrates. Results indicate dispersal limitation for both saltmarsh plants and seagrass beds community and Z. noltei populations; this suggests they are especially vulnerable to expected climate changes on their habitats. In contrast, unstructured spatial pattern found in macroinvertebrate communities and in C. edule genetic populations in the area suggests that estuarine soft-bottom macroinvertebrates with planktonic larval dispersal strategies may have a high resilience capacity to moderate changes within their habitats. Our findings allow environmental managers to prioritize the most vulnerable species and habitats to be restored.

  4. Assessment of groundwater vulnerability and sensitivity to pollution in Berrechid plain, using drastic model

    Directory of Open Access Journals (Sweden)

    M. Aboulouafa*1

    2016-06-01

    Full Text Available The Groundwater protection and management is vital for human evolution, socio-economic development and ecological diversity, because it is one of the most valuable natural resources. Agricultural and industrial activities, more and more intensive and significant population growth, have contributed to the degradation of Berrechid Groundwater quality. The present study aimed to assess the vulnerability of Berrechid aquifer using the DRASTIC models. The application of the methodology developed has needed the establishment of a Geographical Information System synthesizing a considerable mass of data (geological, hydrogeological, geophysical, etc., constitutes a real tool to aid in the decision for the managers of water resources in the region of Chaouia. The results show that three classes of vulnerability are observed in the study area: the higher drastic indices appear at the areas with low groundwater table depth and the areas which are not protected by the clays, and the areas less vulnerable are located in areas where the water is deeper and the clays recovery is important.

  5. Assessment of Large Transport Infrastructure Projects: The CBA-DK Model

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Banister, David

    2009-01-01

    This paper presents a newly developed decision support model to assess transport infrastructure projects: CBA-DK. The model combines use of conventional cost–benefit analysis to produce aggregated single point estimates, with quantitative risk analysis using Monte Carlo simulation to produce...... interval results. The embedded uncertainties within traditional CBA such as ex-ante based investment costs and travel time savings are of particular concern. The paper investigates these two impacts in terms of the Optimism Bias principle which is used to take account of the underestimation of construction...

  6. Assessment of Large Transport Infrastructure Projects: the CBA-DK model

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Banister, David

    2008-01-01

    The scope of this paper is to present a newly developed decision support model to assess transport infrastructure projects: CBA-DK. The model makes use of conventional cost-benefit analysis resulting in aggregated single point estimates and quantitative risk analysis using Monte Carlo simulation...... resulting in interval results. The embedded uncertainties within traditional CBA such as ex-ante based investment costs and travel time savings are of particular concern. The methodological approach has been to apply suitable probability distribution functions on the uncertain parameters, thus resulting...

  7. Vulnerability assessment of Glacial Lake Outburst Floods using Remote Sensing and GIS in North Sikkim (India), Eastern Himalaya

    Science.gov (United States)

    Aggarwal, Suruchi; Probha Devi, Juna; Thakur, Praveen Kumar; Rai, Suresh Chand

    2016-04-01

    Glacial lake outburst floods (GLOFs) occur when glacier melt water dammed by a moraine is released in short time. Such floods may lead to disastrous events posing, therefore, a huge threat to human lives and infrastructure. A devastating GLOF in Uttarakhand, India, on 17 July 2013 has led to the loss of all villages in a stretch of 18 km downstream the lake and the loss of more than 5000 lives. The present study evaluates all 16 glacial lakes (with an area >0.1 km²) in the Thangu valley, northern Sikkim (India), eastern Himalaya, with respect to potential threats for the downstream areas. The hazard criteria for the study include slope, aspect and distance of the respective parent glacier, change in the lake area, dam characteristics and lake depth. For the most hazardous lakes, the socio-economic conditions in the downstream areas (settlements and infrastructure) are analysed regarding the impact of potential GLOFs. For the vulnerability analysis, we used various satellite products including LANDSAT, RESOUCESAT-1 and 2, RISAT-1 imageries and ASTER GDEM covering the period from 1977 to 2014. For lake mapping, we applied the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Snow Index (NDSI). A Land Use Land Cover (LULC) map of the study area showing in-situ observations is serving as driving factor for the vulnerability analysis. The results of the study show that almost all evaluated glacial lakes were expanding during the study period (1977-2014). Combining the hazard criteria for the lakes, 5 of the 16 studied glacial lakes are identified as highly hazardous. In the downstream area, there are two villages with 200 inhabitants and an army camp within the zone of highest vulnerability. The identified vulnerability zones may be used by the local authorities to take caution of the threatened villages and infrastructure and for risk analysis for planned future hydropower plants.

  8. An indoor air quality assessment for vulnerable populations exposed to volcanic vog from Kilauea Volcano.

    Science.gov (United States)

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Longo, Anthony A; Harris, Merylin; Bibilone, Renwick

    2010-01-01

    The Ka'u District of Hawaii is exposed to sulfurous air pollution called vog from the ongoing eruption of Kilauea Volcano. Increased volcanic activity in 2008 prompted an indoor air quality assessment of the district's hospital and schools. All indoor sulfur dioxide concentrations were above the World Health Organization's average 24-hour recommendation. Indoor penetration ratios were up to 94% of ambient levels and dependent upon building construction or the use of air-conditioning. Health-promotion efforts for vulnerable populations at the hospital and schools are under way to improve indoor air quality and respond to those affected by vog exposure. PMID:20010002

  9. COSIMA - A New Decision Support System for the Assessment of Large Transport Infrastructure Projects

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Jensen, Anders Vestergaard; Holvad, Torben;

    2005-01-01

    in a systematic and explicit way. The model applied is based on cost-benefit analysis (CBA) embedded in a wider multi-criteria analysis (MCA) and makes use of scenario analysis (SA) and Monte Carlo simulation (MCS). A particular concern of the model is the handling of varying information across the assessment......This paper presents a new proto-type decision support system named COSIMA-DSS for composite method for assessment - decision support system. This userfriendly system makes it possible for decision makers to assess large infrastructure projects and take special account of various uncertainties...... criteria and the application of SA to inform the MCS parameter setting. After the presentation of the modelling principles, some ex-post case calculations for the Øresund Fixed Link connecting Denmark and Sweden are presented. These illuminate different aspects of appraisal uncertainty and demonstrate...

  10. Development of methods for assessing the vulnerability of Australian residential building stock to severe wind

    International Nuclear Information System (INIS)

    Knowledge of the degree of damage to residential structures expected from severe wind is used to study the benefits from adaptation strategies developed in response to expected changes in wind severity due to climate change. This study will inform government, the insurance industry and provide emergency services with estimates of expected damage. A series of heuristic wind vulnerability curves for Australian residential structures has been developed. In order to provide rigor to the heuristic curves and to enable quantitative assessment to be made of adaptation strategies, work has commenced to produce a simulation tool to quantitatively assess damage to buildings from severe wind. The simulation tool accounts for variability in wind profile, shielding, structural strength, pressure coefficients, building orientation, component self weights, debris damage and water ingress via a Monte Carlo approach. The software takes a component-based approach to modelling building vulnerability. It is based on the premise that overall building damage is strongly related to the failure of key components (i.e. connections). If these failures can be ascertained, and associated damage from debris and water penetration reliably estimated, scenarios of complete building damage can be assessed. This approach has been developed with varying degrees of rigor by researchers around the world and is best practice for the insurance industry.

  11. Use of the NatureServe Climate Change Vulnerability Index as an Assessment Tool for Reptiles and Amphibians: Lessons Learned

    Science.gov (United States)

    Tuberville, Tracey D.; Andrews, Kimberly M.; Sperry, Jinelle H.; Grosse, Andrew M.

    2015-10-01

    Climate change threatens biodiversity globally, yet it can be challenging to predict which species may be most vulnerable. Given the scope of the problem, it is imperative to rapidly assess vulnerability and identify actions to decrease risk. Although a variety of tools have been developed to assess climate change vulnerability, few have been evaluated with regard to their suitability for certain taxonomic groups. Due to their ectothermic physiology, low vagility, and strong association with temporary wetlands, reptiles and amphibians may be particularly vulnerable relative to other groups. Here, we evaluate use of the NatureServe Climate Change Vulnerability Index (CCVI) to assess a large suite of herpetofauna from the Sand Hills Ecoregion of the southeastern United States. Although data were frequently lacking for certain variables (e.g., phenological response to climate change, genetic variation), sufficient data were available to evaluate all 117 species. Sensitivity analyses indicated that results were highly dependent on size of assessment area and climate scenario selection. In addition, several ecological traits common in, but relatively unique to, herpetofauna are likely to contribute to their vulnerability and need special consideration during the scoring process. Despite some limitations, the NatureServe CCVI was a useful tool for screening large numbers of reptile and amphibian species. We provide general recommendations as to how the CCVI tool's application to herpetofauna can be improved through more specific guidance to the user regarding how to incorporate unique physiological and behavioral traits into scoring existing sensitivity factors and through modification to the assessment tool itself.

  12. A vulnerability assessment of 300 species in Florida: threats from sea level rise, land use, and climate change.

    Directory of Open Access Journals (Sweden)

    Joshua Steven Reece

    Full Text Available Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri, Key tree cactus (Pilosocereus robinii, Florida duskywing butterfly (Ephyriades brunnea floridensis, and Key deer (Odocoileus virginianus clavium. We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida's biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments.

  13. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.

    Science.gov (United States)

    Foden, Wendy B; Butchart, Stuart H M; Stuart, Simon N; Vié, Jean-Christophe; Akçakaya, H Resit; Angulo, Ariadne; DeVantier, Lyndon M; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A; Hughes, Adrian F; O'Hanlon, Susannah E; Garnett, Stephen T; Sekercioğlu, Cagan H; Mace, Georgina M

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can

  14. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.

    Directory of Open Access Journals (Sweden)

    Wendy B Foden

    Full Text Available Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species. The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%, 670-933 amphibian (11-15%, and 47-73 coral species (6-9% are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability

  15. Mapping South African farming sector vulnerability to climate change and variability: A subnational assessment

    OpenAIRE

    Gbetibouo, Glwadys Aymone; Ringler, Claudia

    2009-01-01

    "This paper analyzes the vulnerability of South African farmers to climate change and variability by developing a vulnerability index and comparing vulnerability indicators across the nine provinces of the country. Nineteen environmental and socio-economic indicators are identified to reflect the three components of vulnerability: exposure, sensitivity, and adaptive capacity. The results of the study show that the region's most vulnerable to climate change and variability also have a higher c...

  16. A Multi-Hazard Vulnerability Assessment of Coastal Landmarks along Cape Hatteras National Seashore

    Science.gov (United States)

    Flynn, M. J.

    2015-12-01

    Cape Hatteras National Seashore is located along the Outer Banks, a narrow string of barrier islands in eastern North Carolina. The seashore was established to preserve cultural and natural resources of national significance, yet these islands have shoreline rates of change that are predominately erosional, frequently experience storm surge inundation driven by tropical and extra-tropical storm events, and are highly vulnerable to sea level rise. The National Park Service staff are concerned about the vulnerability of historic structures located within the park, and recognized the utility of a coastal hazard risk assessment to assist park managers with long-term planning. They formed a cooperative agreement with researchers at East Carolina University to conduct the assessment, which primarily used GIS to evaluate the susceptibility of 27 historical structures to coastal erosion, storm surge, and sea-level rise. The Digital Shoreline Analysis System was used to calculate a linear regression rate of shoreline movement based on historical shorelines. Those rates were used to simulate the future position of the shoreline along transects. The SLOSH model output was down scaled to a DEM generated from the 2014 NC QL2 LiDAR collection to determine the extent and depth of inundation that would occur from storm events. Sea level rise was modeled for various scenarios referenced to existing MHHW, and also added to each SLOSH model output to determine the effect of a storm event under those sea level rise scenarios. Risk maps were developed to include not only areal coverage for existing structures and districts, but also identify potential areas of relocation or retreat in the long-term. In addition to evaluating vulnerability, timelines for potential impacts provided scenarios for National Park Service staff to research adaption and mitigation strategies.

  17. A Data-Driven Approach to Assess Coastal Vulnerability: Machine Learning from Hurricane Sandy

    Science.gov (United States)

    Foti, R.; Miller, S. M.; Montalto, F. A.

    2015-12-01

    As climate changes and population living along the coastlines continues to increase, an understanding of coastal risk and vulnerability to extreme events becomes increasingly important. With as many as 700,000 people living less than 3 m above the high tide line, New York City (NYC) represents one of the most threatened among major world cities. Recent events, most notably Hurricane Sandy, have put a tremendous pressure on the mosaic of economic, environmental, and social activities occurring in NYC at the interface between land and water. Using information on property damages collected by the Civil Air Patrol (CAP) after Hurricane Sandy, we developed a machine-learning based model able to identify the primary factors determining the occurrence and the severity of damages and intended to both assess and predict coastal vulnerability. The available dataset consists of categorical classifications of damages, ranging from 0 (not damaged) to 5 (damaged and flooded), and available for a sample of buildings in the NYC area. A set of algorithms, such as Logistic Regression, Gradient Boosting and Random Forest, were trained on 75% of the available dataset and tested on the remaining 25%, both training and test sets being picked at random. A combination of factors, including elevation, distance from shore, surge depth, soil type and proximity to key topographic features, such as wetlands and parks, were used as predictors. Trained algorithms were able to achieve over 85% prediction accuracy on both the training set and, most notably, the test set, with as few as six predictors, allowing a realistic depiction of the field of damage. Given their accuracy and robustness, we believe that these algorithms can be successfully applied to provide fields of coastal vulnerability for future extreme events, as well as to assess the consequences of changes, whether intended (e.g. land use change) or contingent (e.g. sea level rise), in the physical layout of NYC.

  18. Uncertainty Management in Seismic Vulnerability Assessment Using Granular Computing Based on Covering of Universe

    Science.gov (United States)

    Khamespanah, F.; Delavar, M. R.; Zare, M.

    2013-05-01

    Earthquake is an abrupt displacement of the earth's crust caused by the discharge of strain collected along faults or by volcanic eruptions. Earthquake as a recurring natural cataclysm has always been a matter of concern in Tehran, capital of Iran, as a laying city on a number of known and unknown faults. Earthquakes can cause severe physical, psychological and financial damages. Consequently, some procedures should be developed to assist modelling the potential casualties and its spatial uncertainty. One of these procedures is production of seismic vulnerability maps to take preventive measures to mitigate corporeal and financial losses of future earthquakes. Since vulnerability assessment is a multi-criteria decision making problem depending on some parameters and expert's judgments, it undoubtedly is characterized by intrinsic uncertainties. In this study, it is attempted to use Granular computing (GrC) model based on covering of universe to handle the spatial uncertainty. Granular computing model concentrates on a general theory and methodology for problem solving as well as information processing by assuming multiple levels of granularity. Basic elements in granular computing are subsets, classes, and clusters of a universe called elements. In this research GrC is used for extracting classification rules based on seismic vulnerability with minimum entropy to handle uncertainty related to earthquake data. Tehran was selected as the study area. In our previous research, Granular computing model based on a partition model of universe was employed. The model has some kinds of limitations in defining similarity between elements of the universe and defining granules. In the model similarity between elements is defined based on an equivalence relation. According to this relation, two objects are similar based on some attributes, provided for each attribute the values of these objects are equal. In this research a general relation for defining similarity between

  19. IRIS guidelines. 2014 ed. Integrated Review of Infrastructure for Safety (IRIS) for self-assessment when establishing the safety infrastructure for a nuclear power programme

    International Nuclear Information System (INIS)

    The IAEA safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment, and therefore represent what all Member States should achieve, whilst recognizing the ultimate responsibility of each State to ensure safety when implementing a nuclear power programme. IAEA Safety Standards Series No. SSG-16, entitled Establishing the Safety Infrastructure for a Nuclear Power Programme was published in order to provide recommendations, presented in the form of sequential actions, on meeting safety requirements progressively during the initial three phases of the development of safety, as described in INSAG-22, Nuclear Safety Infrastructure for a National Nuclear Power Programme Supported by the IAEA Fundamental Safety Principles. To that end, the 200 safety related actions, which are proposed by SSG-16, constitute a roadmap to establish a foundation for promoting a high level of safety over the entire lifetime of the nuclear power plant. These actions reflect international consensus on good practice in order to achieve full implementation of IAEA safety standards. The IAEA has developed a methodology and tool, the Integrated Review of Infrastructure for Safety (IRIS), to assist States in undertaking self-assessment with respect to SSG-16 recommendations when establishing the safety infrastructure for a nuclear power programme, and to develop an action plan for improvement. The IRIS methodology and the associated tool are fully compatible with the IAEA safety standards and are also used, when appropriate, in the preparation of review missions, such as the Integrated Regulatory Review Service and advisory missions. The present guidelines describe the IRIS methodology for self-assessment against SSG-16 recommendations. Through IRIS implementation, every organization concerned with nuclear safety may gain proper awareness and engage in a continuous progressive process to develop the effective national

  20. Collaborative mobile sensing and computing for civil infrastructure condition assessment: framework and applications

    Science.gov (United States)

    Chen, Jianfei; Chen, ZhiQiang

    2012-04-01

    Multi-function sensing and imaging devices, GPS, communication and computing devices are being ubiquitously used in field by engineers in civil engineering and emergence response practice. Field engineers, however, still have difficulty to balance between ever-increasing data collection demand and capacity of real-time data processing and knowledge sharing. In addition, field engineers usually work collaboratively in a geospatially large area; however, the existing sensing and computing modalities used in the field are not designed to accommodate this condition. In this paper, we present a solution framework of collaborative mobile sensing and computing (CMSC) for civil infrastructure condition assessment, with the Android-based mobile devices as the basic nodes in the framework with a potential of adding other auxiliary imaging and sensing devices into the network. Difficulties in mixed C++ and Java code programming that are critical to realize the framework are discussed. With a few prototypes illustrated in this paper, we envisage that the proposed CMSC framework will enable seamless integration of sensing, imaging, real-time processing and knowledge discovery in future engineers-centered field reconnaissances and civil infrastructure condition assessment.

  1. A model for assessing habitat fragmentation caused by new infrastructures in extensive territories - evaluation of the impact of the Spanish strategic infrastructure and transport plan.

    Science.gov (United States)

    Mancebo Quintana, S; Martín Ramos, B; Casermeiro Martínez, M A; Otero Pastor, I

    2010-05-01

    The aim of the present work is to design a model for evaluating the impact of planned infrastructures on species survival at the territorial scale by calculating a connectivity index. The method developed involves determining the effective distance of displacement between patches of the same habitat, simplifying earlier models so that there is no dependence on specific variables for each species. A case study is presented in which the model was used to assess the impact of the forthcoming roads and railways included in the Spanish Strategic Infrastructure and Transport Plan (PEIT, in its Spanish initials). This study took into account the habitats of peninsular Spain, which occupies an area of some 500,000 km(2). In this territory, the areas deemed to provide natural habitats are defined by Directive 92/43/EEC. The impact of new infrastructures on connectivity was assessed by comparing two scenarios, with and without the plan, for the major new road and railway networks. The calculation of the connectivity index (CI) requires the use of a raster methodology based on the Arc/Info geographical information system (GIS). The actual calculation was performed using a program written in Arc/Info Macro Language (AML); this program is available in FragtULs (Mancebo Quintana, 2007), a set of tools for calculating indicators of fragmentation caused by transport infrastructure (http://topografia.montes.upm.es/fragtuls.html). The indicator of connectivity proposed allows the estimation of the connectivity between all the patches of a territory, with no artificial (non-ecologically based) boundaries imposed. The model proposed appears to be a useful tool for the analysis of fragmentation caused by plans for large territories. PMID:20096502

  2. A model for assessing habitat fragmentation caused by new infrastructures in extensive territories - evaluation of the impact of the Spanish strategic infrastructure and transport plan.

    Science.gov (United States)

    Mancebo Quintana, S; Martín Ramos, B; Casermeiro Martínez, M A; Otero Pastor, I

    2010-05-01

    The aim of the present work is to design a model for evaluating the impact of planned infrastructures on species survival at the territorial scale by calculating a connectivity index. The method developed involves determining the effective distance of displacement between patches of the same habitat, simplifying earlier models so that there is no dependence on specific variables for each species. A case study is presented in which the model was used to assess the impact of the forthcoming roads and railways included in the Spanish Strategic Infrastructure and Transport Plan (PEIT, in its Spanish initials). This study took into account the habitats of peninsular Spain, which occupies an area of some 500,000 km(2). In this territory, the areas deemed to provide natural habitats are defined by Directive 92/43/EEC. The impact of new infrastructures on connectivity was assessed by comparing two scenarios, with and without the plan, for the major new road and railway networks. The calculation of the connectivity index (CI) requires the use of a raster methodology based on the Arc/Info geographical information system (GIS). The actual calculation was performed using a program written in Arc/Info Macro Language (AML); this program is available in FragtULs (Mancebo Quintana, 2007), a set of tools for calculating indicators of fragmentation caused by transport infrastructure (http://topografia.montes.upm.es/fragtuls.html). The indicator of connectivity proposed allows the estimation of the connectivity between all the patches of a territory, with no artificial (non-ecologically based) boundaries imposed. The model proposed appears to be a useful tool for the analysis of fragmentation caused by plans for large territories.

  3. Groundwater Vulnerability to Seawater Intrusion along Coastal Urban Areas: A Quantitative Comparative Assessment of EPIK and DRASTIC

    Science.gov (United States)

    Momjian, Nanor; Abou Najm, Majdi; Alameddine, Ibrahim; El-Fadel, Mutasem

    2015-04-01

    Groundwater vulnerability assessment models are invariably coupled with Geographic Information Systems to provide decision makers with easier visualization of complex systems. In this study, we examine the uncertainty associated with such models (DRASTIC, EPIK) in assessing seawater intrusion, a growing threat along coastal urban cities due to overexploitation of groundwater resources associated with population growth and more recently, exacerbated by climate change impacts. For this purpose, a mapping of groundwater vulnerability was first conducted at a country level (Lebanon) and coupled with a groundwater quality monitoring program in three coastal cities for cross-validation. Then, six water quality categories were defined and mapped based on water quality standards ranging from drinking to seawater with weighted scores assigned for each category in both DRASTIC and EPIK for cross-validation. Finally, the results of groundwater quality tests were compared with vulnerability predictions at sampling points using two indicators (Chloride and TDS). While field measurements demonstrated the high vulnerability to seawater intrusion in coastal urbanized areas, the modelling results exhibited variations from field measurements reaching up to two water quality categories. Vertical-based vulnerability models demonstrated poor correlation when the anthropogenic impact was introduced through a process that depends on lateral groundwater flow thus highlighting (1) the limited ability of such models to capture vulnerability to lateral seawater intrusion induced primarily by vertical groundwater withdrawal, and (2) the need to incorporate depth and underlying lithology into the layers of groundwater vulnerability models when examining horizontally induced contamination such as seawater intrusion.

  4. Intrinsic vulnerability assessment of the aquifer in the Rižana spring chatcment by method SINTACS

    Directory of Open Access Journals (Sweden)

    2002-12-01

    Full Text Available In this paper is presented intrinsic vulnerability assessment of the aquifer in the Rižana spring chatcment by the method SINTACS. It is parametric method that takes into consideration seven parameters (depth to ground water, effective infiltration action, unsaturatedzone attenuation capacity, soil/overburden attenuation capacity, hydrogeological characteristics of the aquifer, hydraulic conductivity range of aquifer, hydrologic role of the topographic slope. Parameters are presented in grid information layers that wereelaborated on the basis of interpretation and GIS processing of geological, hydrogeological,speleological, topographical, meteorological and pedological data. According to the parametersimportance for vulnerability assessment, a multiplier (importance weight was assigned to each parameter. Final map of vulnerability is a result of overlaying (summing of weighted information layers (parameters and shows the catchment area of the Rižanaspring subdivided into six vulnerability classes.

  5. Feasibility Risk Assessment of Transport Infrastructure Projects: The CBA-DK Decision Support Model

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Banister, David

    2010-01-01

    This paper presents the final version of the CBA-DK decision support model for assessment of transport projects. The model makes use of conventional cost-benefit analysis resulting in aggregated single point estimates and quantitative risk analysis using Monte Carlo simulation resulting in interval...... results. Two special concerns in this paper is firstly the treatment of feasibility risk assessment adopted for evaluation of transport infrastructure projects, and secondly whether this can provide a more robust decision support model. This means moving away from a single point estimate to an interval...... result, and the determination of suitable probability distributions. Use is made of the reference class forecasting information, such as that developed in Optimism Bias for adjustments to investment decisions that relate to all modes of transport. The CBA-DK decision support model results in more...

  6. Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

    OpenAIRE

    Foden, Wendy B.; Stuart H M Butchart; Simon N Stuart; Jean-Christophe Vié; H Resit Akçakaya; Ariadne Angulo; DeVantier, Lyndon M.; Alexander Gutsche; Emre Turak; Long Cao; Donner, Simon D.; Vineet Katariya; Rodolphe Bernard; Holland, Robert A.; Hughes, Adrian F.

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on specie...

  7. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Jauregui, David Villegas (New Mexico State University, Las Cruces, NM); Daumueller, Andrew Nicholas (New Mexico State University, Las Cruces, NM)

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New

  8. Summarizing components of U.S. Department of the Interior vulnerability assessments to focus climate adaptation planning

    Science.gov (United States)

    Thompson, Laura M.; Staudinger, Michelle D.; Carter, Shawn L.

    2015-09-29

    A secretarial order identified climate adaptation as a critical performance objective for future management of U.S. Department of the Interior (DOI) lands and resources in response to global change. Vulnerability assessments can inform climate adaptation planning by providing insight into what natural resources are most at risk and why. Three components of vulnerability—exposure, sensitivity, and adaptive capacity—were defined by the Intergovernmental Panel on Climate Change (IPCC) as necessary for identifying climate adaptation strategies and actions. In 2011, the DOI requested all internal bureaus report ongoing or completed vulnerability assessments about a defined range of assessment targets or climate-related threats. Assessment targets were defined as freshwater resources, landscapes and wildlife habitat, native and cultural resources, and ocean health. Climate-related threats were defined as invasive species, wildfire risk, sea-level rise, and melting ice and permafrost. Four hundred and three projects were reported, but the original DOI survey did not specify that information be provided on exposure, sensitivity, and adaptive capacity collectively as part of the request, and it was unclear which projects adhered to the framework recommended by the IPCC. Therefore, the U.S. Geological Survey National Climate Change and Wildlife Science Center conducted a supplemental survey to determine how frequently each of the three vulnerability components was assessed. Information was categorized for 124 of the 403 reported projects (30.8 percent) based on the three vulnerability components, and it was discovered that exposure was the most common component assessed (87.9 percent), followed by sensitivity (68.5 percent) and adaptive capacity (33.1 percent). The majority of projects did not fully assess vulnerability; projects focused on landscapes/wildlife habitats and sea-level rise were among the minority that simultaneously addressed all three vulnerability

  9. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica.

    Science.gov (United States)

    Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oriana

    2014-01-01

    The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and

  10. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica.

    Directory of Open Access Journals (Sweden)

    María Baca

    Full Text Available The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of

  11. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica.

    Science.gov (United States)

    Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oriana

    2014-01-01

    The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and

  12. 'Rosatom' sites vulnerability analysis and assessment of their physical protection effectiveness. Methodology and 'tools'

    International Nuclear Information System (INIS)

    Full text: Enhancement of physical protection (PP) efficiency at nuclear sites (NS) of State Corporation (SC) 'Rosatom' is one of priorities. This issue is reflected in a series of international and Russian documents. PP enhancement at the sites can be achieved through upgrades of both administrative procedures and technical security system. However, in any case it is requisite to initially identify the so called 'objects of physical protection', that is, answer the question of what we need to protect and identify design basis threats (DBT) and adversary models. Answers to these questions constitute the contents of papers on vulnerability analysis (VA) for nuclear sites. Further, it is necessary to answer the question, to what extent we protect these 'objects of physical protection' and site as a whole; and this is the essence of assessment of physical protection effectiveness. In the process of effectiveness assessment at specific Rosatom sites we assess the effectiveness of the existing physical protection system (PPS) and the proposed options of its upgrades. Besides, there comes a possibility to select the optimal option based on 'cost-efficiency' criterion. Implementation of this work is a mandatory requirement as defined in federal level documents. In State Corporation 'Rosatom' there are methodologies in place for vulnerability analysis and effectiveness assessment as well as 'tools' (methods, regulations, computer software), that make it possible to put the above work into practice. There are corresponding regulations developed and approved by the Rosatom senior management. Special software for PPS effectiveness assessment called 'Vega-2' developed by a Rosatom specialized subsidiary - State Enterprise 'Eleron', is designed to assess PPS effectiveness at fixed nuclear sites. It was implemented practically at all the major Rosatom nuclear sites. As of now, this 'Vega-2' software has been certified and prepared for forwarding to corporation's nuclear sites so

  13. A toolkit for integrated deterministic and probabilistic assessment for hydrogen infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina M.; Tchouvelev, Andrei V.

    2014-03-01

    There has been increasing interest in using Quantitative Risk Assessment [QRA] to help improve the safety of hydrogen infrastructure and applications. Hydrogen infrastructure for transportation (e.g. fueling fuel cell vehicles) or stationary (e.g. back-up power) applications is a relatively new area for application of QRA vs. traditional industrial production and use, and as a result there are few tools designed to enable QRA for this emerging sector. There are few existing QRA tools containing models that have been developed and validated for use in small-scale hydrogen applications. However, in the past several years, there has been significant progress in developing and validating deterministic physical and engineering models for hydrogen dispersion, ignition, and flame behavior. In parallel, there has been progress in developing defensible probabilistic models for the occurrence of events such as hydrogen release and ignition. While models and data are available, using this information is difficult due to a lack of readily available tools for integrating deterministic and probabilistic components into a single analysis framework. This paper discusses the first steps in building an integrated toolkit for performing QRA on hydrogen transportation technologies and suggests directions for extending the toolkit.

  14. Assessment of climate change vulnerability at the local level: a case study on the Dniester River Basin (Moldova).

    Science.gov (United States)

    Corobov, Roman; Sîrodoev, Igor; Koeppel, Sonja; Denisov, Nickolai; Sîrodoev, Ghennadi

    2013-01-01

    Vulnerability to climate change of the Moldavian part of the Dniester river was assessed as the function of exposure, sensitivity, and adaptive capacity of its basin's natural and socioeconomic systems. As a spatial "scale" of the assessment, Moldova's administrative-territorial units (ATUs) were selected. The exposure assessment was based on the climatic analysis of baseline (1971-2000) temperature and precipitation and projections of their changes in 2021-2050, separately for cold and warm periods. The sensitivity assessment included physiographical and socioeconomic characteristics, described by a set of specific indicators. The adaptive capacity was expressed by general economic and agricultural indicators, taking into consideration the medical provision and housing conditions. Through a ranking approach, the relative vulnerability of each ATU was calculated by summing its sensitivity and adaptive capacity ranks; the latter were obtained as combinations of their primary indicator ranks, arranged in an increasing and decreasing order, respectively. Due to lack of sound knowledge on these components' importance in overall assessment of vulnerability, their weights were taken as conventionally equal. Mapping of vulnerability revealed that ATUs neighboring to municipalities are the most vulnerable and need special attention in climate change adaptation. The basin's "hotspots" were discussed with public participation.

  15. Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques.

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Jauhari, N.; Mehrotra, U.; Kotha, M.; Hursthouse, A.S.; Gagnon, A.S.

    (CVI) for the state of Goa and to use this index to examine the vulnerability of the different administrative units of the state, known as talukas. This is accomplished by using seven physical and geologic risk variables characterising the vulnerability...

  16. Coastal Vulnerability Index (CVI) Assessment for the National Park of American Samoa (npsa_shore)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within The National Park of American Samoa ....

  17. Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method

    Science.gov (United States)

    Mosuro, G. O.; Omosanya, K. O.; Bayewu, O. O.; Oloruntola, M. O.; Laniyan, T. A.; Atobi, O.; Okubena, M.; Popoola, E.; Adekoya, F.

    2016-02-01

    This aim of this work is to assess the degree of leachate infiltration at a dumpsite in Agbara industrial estate, Southwestern Nigeria using electrical resistivity techniques. Around the dumpsite were 45 vertical electrical sounding (VES) stations and 3 electrical resistivity tomography profiles. Current electrode spread varied from 300 to 600 m for the electrical sounding. Electrode configuration includes Schlumberger and Wenner array for sounding and profiling. The state of leachate contamination was tested using parameters such as aquifer vulnerability index, overburden protective capacity and longitudinal unit conductance (Si) derived from the apparent resistivity values. Four principal geoelectric layers inferred from the VES data include the topsoil, sand, clayey sand, and clay/shale. Resistivity values for these layers vary from 3 to 1688, 203 to 3642 123 to 388, and 67 to 2201 Ω m with corresponding thickness of 0.8-2.4, 2.5-140, 3-26 m and infinity, respectively. The leachate plume occurs at a maximum depth of 10 m on the 2-D inverse models of real electrical resistivity with an average depth of infiltration being 6 m in the study area. The correlation between longitudinal conductance and overburden protective capacity show that aquifers around the dumpsite have poor protective capacity and are vulnerable to leachate contamination. Leachate infiltration is favored by the absence of lithological barriers such as clay which in the study area are either mixed with sand or positioned away from the aquifer.

  18. Intrinsic vulnerability assessment of the south-eastern Murge (Apulia, southern Italy

    Directory of Open Access Journals (Sweden)

    A. Marsico

    2004-01-01

    Full Text Available Maps of areas with different vulnerability degrees are an integral part of environmental protection and management policies. It is difficult to assess the intrinsic vulnerability of karst areas since the stage and type of karst structure development and its related underground discharge behaviour are not easy to determine. Therefore, some improvements, which take into account dolines, caves and superficial lineament arrangement, have been integrated into the SINTACS R5 method and applied to a karst area of the south-eastern Murge (Apulia, southern Italy. The proposed approach integrates the SINTACS model giving more weight to morphological and structural data; in particular the following parameters have been modified: depth to groundwater, effective infiltration action, unsaturated zone attenuation capacity and soil/overburden attenuation capacity. Effective hydrogeological and impacting situations are also arranged using superficial lineaments and karst density. In order to verify the reliability of the modified procedure, a comparison is made with the original SINTACS R5 index evaluated in the same area. The results of both SINTACS index maps are compared with karst and structural features identified in the area and with groundwater nitrate concentrations recorded in wells. The best fitting SINTACS map is then overlaid by the layout of potential pollution centres providing a complete map of the pollution risk in the area.

  19. Assessment of Transport Infrastructure Projects by the use of Monte Carlo Simulation: The CBA-DK Model

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2006-01-01

    This paper presents the Danish CBA-DK software model for assessment of transport infrastructure projects. The as-sessment model is based on both a deterministic calcula-tion following the cost-benefit analysis (CBA) methodol-ogy in a Danish manual from the Ministry of Transport and on a stochastic...

  20. Vulnerability Assessment of Natural Disasters for Small and Mid-Sized Streams due to Climate Change and Stream Improvement

    Science.gov (United States)

    Choi, D.; Jun, H. D.; Kim, S.

    2012-04-01

    Vulnerability assessment plays an important role in drawing up climate change adaptation plans. Although there are some studies on broad vulnerability assessment in Korea, there have been very few studies to develop and apply locally focused and specific sector-oriented climate change vulnerability indicators. Especially, there has seldom been any study to investigate the effect of an adaptation project on assessing the vulnerability status to climate change for fundamental local governments. In order to relieve adverse effects of climate change, Korean government has performed the project of the Major Four Rivers (Han, Geum, Nakdong and Yeongsan river) Restoration since 2008. It is expected that water level in main stream of 4 rivers will be dropped through this project, but flood effect will be mainly occurred in small and mid-sized streams which flows in main stream. Hence, we examined how much the project of the major four rivers restoration relieves natural disasters. Conceptual framework of vulnerability-resilience index to climate change for the Korean fundamental local governments is defined as a function of climate exposure, sensitivity, and adaptive capacity. Then, statistical data on scores of proxy variables assumed to comprise climate change vulnerability for local governments are collected. Proxy variables and estimated temporary weights of them are selected by surveying a panel of experts using Delphi method, and final weights are determined by modified Entropy method. Developed vulnerability-resilience index was applied to Korean fundamental local governments and it is calculated under each scenario as follows. (1) Before the major four rivers restoration, (2) 100 years after represented climate change condition without the major four rivers restoration, (3) After the major four rivers restoration without representing climate change (this means present climate condition) and (4) After the major four rivers restoration and 100 years after represented

  1. Transport Infrastructure Planning: Assessment of Strategic Mobility by Use of the POINTER Impact Model

    DEFF Research Database (Denmark)

    Kronbak, Jacob; Leleur, Steen

    2002-01-01

    When evaluating large infrastructure projects one point to be made is the importance of supplementing the more traditional effects captured by a cost-benefit analysis as presented for example by use of the benefit cost ratio (BCR) with strategic effect modelling to obtain a more comprehensive view...... of the societal importance of the examined project. The focus of this paper is to present the first results of a comparison of the use of a strategic impact measurement (the POINTER index) for road traffic on the Great Belt Link, the Øresund Link and the proposed Fehmarn Belt link. Specifically a number...... of calculation scenarios have been made to assess the possibility of the POINTER approach to indicate the changes in strategic mobility (accessibility) associated with the implementing of one or more of the three fixed links. Finally, conclusions and a research perspective are outlined....

  2. Coastal vulnerability assessment of the Northern Gulf of Mexico to sea-level rise and coastal change

    Science.gov (United States)

    2010-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise along the Northern Gulf of Mexico from Galveston, TX, to Panama City, FL. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rate, mean tidal range, and mean significant wave height. The rankings for each variable are combined and an index value is calculated for 1-kilometer grid cells along the coast. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. The CVI assessment presented here builds on an earlier assessment conducted for the Gulf of Mexico. Recent higher resolution shoreline change, land loss, elevation, and subsidence data provide the foundation for a better assessment for the Northern Gulf of Mexico. The areas along the Northern Gulf of Mexico that are likely to be most vulnerable to sea-level rise are parts of the Louisiana Chenier Plain, Teche-Vermillion Basin, and the Mississippi barrier islands, as well as most of the Terrebonne and Barataria Bay region and the Chandeleur Islands. These very high vulnerability areas have the highest rates of relative sea-level rise and the highest rates of shoreline change or land area loss. The information provided by coastal vulnerability assessments can be used in long-term coastal management and policy decision making.

  3. Vulnerability of the Barents Sea environment to climate changes: a review of the current assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gelfan, A.; Danilov-Danilyan, V.

    2009-07-15

    Authors' conclusion: Climate change is not considered to be just 'one more stress' on the ecosystem, but rather it will create complex and dynamic changes in the environment that may alter the level of its vulnerability. Cumulative effects can be defined as changes to the environment that are caused by an action in combination with other past, present and future human actions (Environment Canada 2003). The magnitude and effects of multiple stresses can be equal to the sum of the individual effects (additive effects) or they may strengthen or weaken each other (positive or negative feedbacks). To understand complex interactions within the system atmosphere-land surface-ocean at regional scales and to assess influence of the environmental changes on the ecological conditions, sophisticated models should be developed allowing to account for regional peculiarities of these systems. Development of such models is considered as one of the main challenge of the Earth system science. (author)

  4. Spatially explicit groundwater vulnerability assessment to support the implementation of the Water Framework Directive – a practical approach with stakeholders

    Directory of Open Access Journals (Sweden)

    K. Berkhoff

    2008-01-01

    Full Text Available The main objective of the study presented in this paper was to develop an evaluation scheme which is suitable for spatially explicit groundwater vulnerability assessment according to the Water Framework Directive (WFD. Study area was the Hase river catchment, an area of about 3 000 km2 in north-west Germany which is dominated by livestock farming, in particular pig and poultry production. For the Hase river catchment, the first inventory of the WFD led to the conclusion that 98% of the catchment area is "unclear/unlikely" to reach a good groundwater status due to diffuse nitrogen emissions from agriculture. The groundwater vulnerability assessment was embedded in the PartizipA project ("Participative modelling, Actor and Ecosystem Analysis in Regions with Intensive Agriculture", www.partizipa.net, within which a so-called actors' platform was established in the study area. The objective of the participatory process was to investigate the effects of the WFD on agriculture as well as to discuss groundwater protection measures which are suitable for an integration in the programme of measures. The study was conducted according to the vulnerability assessment concept of the Intergovernmental Panel on Climate Change, considering sensitivity, exposure and adaptive capacity. Sensitivity was computed using the DRASTIC index of natural groundwater pollution potential. Exposure (for a reference scenario was computed using the STOFFBILANZ nutrient model. Several regional studies were analysed to evaluate the adaptive capacity. From these studies it was concluded that the adaptive capacity in the Hase river catchment is very low due to the economic importance of the agricultural sector which will be significantly affected by groundwater protection measures. As a consequence, the adaptive capacity was not considered any more in the vulnerability assessment. A groundwater vulnerability evaluation scheme is presented which enjoys the advantage that both

  5. Assessment of Groundwater Vulnerability for Antropogenic and Geogenic Contaminants in Subwatershed

    Science.gov (United States)

    Ko, K.; Koh, D.; Chae, G.; Cheong, B.

    2007-12-01

    Groundwater is an important natural resource that providing drinking water to more than five million people in Korea. Nonpoint source nitrate was frequently observed contaminant and the investigation result for small potable water supply system that mainly consisted of 70 percent groundwater showed that about 5 percent of water samples exceeded potable water quality standards of Korea. The geogenic contanminants such as arsenic and fluoride also frequently observed contaminants in Korea. In order to protect groundwater and to supply safe water to public, we need to assess groundwater vulnerability and to know the cause of occurrence of contaminants. To achieve this goal, we executed groundwater investigation and assessment study for Keumsan subwatershed with 600km2 in Keum-river watershed. The geostatistical and GIS technique were applied to map the spatial distribution of each contaminants and to calculate vulnerability index. The results of logistic regression for nitrate indicated the close relationship with land use. The results of hydrogeochemical analyses showed that nitrates in groundwater are largely influenced by land use and had high values in granitic region with dense agricultural field and resident. The high nitrates are closely related to groundwater of greenhouse area where large amount of manure and fertilizer were usually introduced in cultural land. The soil in granitic region had high contents of permeable sand of weathered products of granite that play as a role of pathway of contaminants in agricultural land and resident area. The high values of bicarbonate are originated from two sources, limestone dissolution of Ogcheon belt and biodegradation organic pollutants from municipal wastes in granitic region with dense agriculture and residence. It is considered that the anomalous distribution of arsenic and fluoride is related to limestone and metasedimentry rock of Ogcheon belt with high contents of sulfide minerals and F bearing minerals. The

  6. Assessment Of Slope Covers Vulnerability To Shallow Mass Movements Using Sinmap

    Science.gov (United States)

    Demczuk, Piotr; Zydroń, Tymoteusz; Franczak, Łukasz

    2014-06-01

    In Flysch Carpathians mass movements are a significant factor that causes changes in the morphology of slopes and, in many cases, causes also economic damage. A complicated geological structure of the area, high height differences and high rainfall, which is the main factor initiating mass movements, are mainly listed among the basic conditions for such type of processes to occur. Infiltration of rainfall in the soil profile can lead to a loss of stability in two ways (Crosta 1998). Infiltration process can cause an increase in the groundwater level when there are low intensity rainfalls. High intensity rainfalls can cause creating of perched water table in the area of moving quench front, therefore in many publications in the field of geotechnics and engineering geology (among others: Crosta 1998; Li et al. 2006; Rahardjo et al. 2007, 2010; Tu et al. 2009) assessment of vulnerability of slope covers to mass movements does not focus only on the strength parameters of the soil, but it also takes infiltration of rainfall into consideration. Because of a recent development of spatial information systems, slope stability evaluation is more often done in relation to large areas, comprising river basins or even regions (Montgomery and Dietrich 1994; Morrissey et al. 2001; Meisina and Scarabelli 2007). One of the generally used in GIS environment phy sical model of water distribution in the soil profile that allows to determine slope stability is SINMAP (Pack et al. 1999). An attempt to do a preliminary assessment of vulnerability of surface slope covers from the area of Nowy Wiśnicz commune to mass movements using SINMAP model was made and presented in the paper, along with the verification of modeling results with actual existing landslides

  7. Vulnerability assessment of karst aquifer feeding Pertuso Spring (Central Italy): comparison between different applications of COP method

    Science.gov (United States)

    Sappa, Giuseppe; Ferranti, Flavia; Luciani, Giulia

    2016-04-01

    Vulnerability assessment of karst aquifers and vulnerability mapping are important tools for improved sustainable management and protection of karst groundwater resources. In this paper, to estimate the vulnerability degree of the karst aquifer feeding Pertuso Spring in Central Italy, two different implementations of COP method, supported by an open source GIS, were tested and a comparison of the vulnerability maps is proposed. The study area is a highly karstified carbonate aquifer located in the Upper Valley of the Aniene River, in the south-east part of Latium Region. The hydrogeological basin covers about 50 km2 and the karst aquifer provides a water supply of about 120.000 m3d-1. The well-developed karst features in this hydrogeological system is responsible of the fast infiltration of rainfall in the saturated zone and, consequently, of the high discharge rate of Pertuso Spring (up to 3 m3/s). Thus, in the aim of emphasizing the presence of these karst features, due to which, there are limited attenuation processes in the unsaturated zone, in this work COP method has been applied by the implementation of a new discretization methodology of the hydrogeological basin using polygonal layer. Therefore, the hydrogeological catchment basin has been divided into 52 polygonal layer, representative of outcropping lithology and karst features, to which COP method has been applied. The intrinsic vulnerability maps, produced using a GIS approach, has been examinated and compared with the maps obtained using traditional vulnerability assessment method, which provides the discretization of the study area generating a grid map to which associate the Vulnerability Indexes. The results of this study highlight vulnerability from low to very high. The maximum vulnerability degree is due to karstic features responsible of high recharge and high hydraulic conductivity. The new proposed discretization of the hydrogeological basin using polygonal layer raise four vulnerability

  8. Application of the GEM Inventory Data Capture Tools for Dynamic Vulnerability Assessment and Recovery Modelling

    Science.gov (United States)

    Verrucci, Enrica; Bevington, John; Vicini, Alessandro

    2014-05-01

    A set of open-source tools to create building exposure datasets for seismic risk assessment was developed from 2010-13 by the Inventory Data Capture Tools (IDCT) Risk Global Component of the Global Earthquake Model (GEM). The tools were designed to integrate data derived from remotely-sensed imagery, statistically-sampled in-situ field data of buildings to generate per-building and regional exposure data. A number of software tools were created to aid the development of these data, including mobile data capture tools for in-field structural assessment, and the Spatial Inventory Data Developer (SIDD) for creating "mapping schemes" - statistically-inferred distributions of building stock applied to areas of homogeneous urban land use. These tools were made publically available in January 2014. Exemplar implementations in Europe and Central Asia during the IDCT project highlighted several potential application areas beyond the original scope of the project. These are investigated here. We describe and demonstrate how the GEM-IDCT suite can be used extensively within the framework proposed by the EC-FP7 project SENSUM (Framework to integrate Space-based and in-situ sENSing for dynamic vUlnerability and recovery Monitoring). Specifically, applications in the areas of 1) dynamic vulnerability assessment (pre-event), and 2) recovery monitoring and evaluation (post-event) are discussed. Strategies for using the IDC Tools for these purposes are discussed. The results demonstrate the benefits of using advanced technology tools for data capture, especially in a systematic fashion using the taxonomic standards set by GEM. Originally designed for seismic risk assessment, it is clear the IDCT tools have relevance for multi-hazard risk assessment. When combined with a suitable sampling framework and applied to multi-temporal recovery monitoring, data generated from the tools can reveal spatio-temporal patterns in the quality of recovery activities and resilience trends can be

  9. A network-based framework for assessing infrastructure resilience: a case study of the London metro system.

    Science.gov (United States)

    Chopra, Shauhrat S; Dillon, Trent; Bilec, Melissa M; Khanna, Vikas

    2016-05-01

    Modern society is increasingly dependent on the stability of a complex system of interdependent infrastructure sectors. It is imperative to build resilience of large-scale infrastructures like metro systems for addressing the threat of natural disasters and man-made attacks in urban areas. Analysis is needed to ensure that these systems are capable of withstanding and containing unexpected perturbations, and develop heuristic strategies for guiding the design of more resilient networks in the future. We present a comprehensive, multi-pronged framework that analyses information on network topology, spatial organization and passenger flow to understand the resilience of the London metro system. Topology of the London metro system is not fault tolerant in terms of maintaining connectivity at the periphery of the network since it does not exhibit small-world properties. The passenger strength distribution follows a power law, suggesting that while the London metro system is robust to random failures, it is vulnerable to disruptions on a few critical stations. The analysis further identifies particular sources of structural and functional vulnerabilities that need to be mitigated for improving the resilience of the London metro network. The insights from our framework provide useful strategies to build resilience for both existing and upcoming metro systems. PMID:27146689

  10. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, part 4: Savannah River Site working group assessment team report

    International Nuclear Information System (INIS)

    The purpose of this report is to present the results of a plutonium ES ampersand H vulnerability assessment at the Savannah River Site (SRS). The assessment at SRS is part of a broader plutonium ES ampersand H vulnerability assessment being made by the DOE, encompassing all DOE sites with plutonium holdings. Vulnerabilities across all the sites will be identified and prioritized as a basis for determining the necessity and schedule for taking corrective action

  11. A participatory approach of flood vulnerability assessment in the Banat Plain, Romania

    Science.gov (United States)

    Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines

    2014-05-01

    The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as

  12. A metric-based assessment of flood risk and vulnerability of rural communities in the Lower Shire Valley, Malawi

    Science.gov (United States)

    Adeloye, A. J.; Mwale, F. D.; Dulanya, Z.

    2015-06-01

    In response to the increasing frequency and economic damages of natural disasters globally, disaster risk management has evolved to incorporate risk assessments that are multi-dimensional, integrated and metric-based. This is to support knowledge-based decision making and hence sustainable risk reduction. In Malawi and most of Sub-Saharan Africa (SSA), however, flood risk studies remain focussed on understanding causation, impacts, perceptions and coping and adaptation measures. Using the IPCC Framework, this study has quantified and profiled risk to flooding of rural, subsistent communities in the Lower Shire Valley, Malawi. Flood risk was obtained by integrating hazard and vulnerability. Flood hazard was characterised in terms of flood depth and inundation area obtained through hydraulic modelling in the valley with Lisflood-FP, while the vulnerability was indexed through analysis of exposure, susceptibility and capacity that were linked to social, economic, environmental and physical perspectives. Data on these were collected through structured interviews of the communities. The implementation of the entire analysis within GIS enabled the visualisation of spatial variability in flood risk in the valley. The results show predominantly medium levels in hazardousness, vulnerability and risk. The vulnerability is dominated by a high to very high susceptibility. Economic and physical capacities tend to be predominantly low but social capacity is significantly high, resulting in overall medium levels of capacity-induced vulnerability. Exposure manifests as medium. The vulnerability and risk showed marginal spatial variability. The paper concludes with recommendations on how these outcomes could inform policy interventions in the Valley.

  13. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  14. Assessment of Coastal Vulnerability to Sea Level Rise of Bolinao, Pangasinan Using Remote Sensing and Geographic Information Systems

    Science.gov (United States)

    Reyes, S. R. C.; Blanco, A. C.

    2012-07-01

    A number of studies assessing the vulnerability of Southeast Asia to climate change have classified the Philippines as one of the vulnerable countries in the region. Bolinao, Pangasinan is a municipality located in northwestern Luzon, situated in the western part of the Lingayen Gulf and is bounded on the north and west by the South China Sea (West Philippine Sea). Recent studies have verified the varying trends in sea level across the South China Sea, which is considered as one of the largest, semi-enclosed marginal seas in the northwest Pacific Ocean. Three barangays (villages) were included in the study: (1) Luciente 1.0, (2) Concordia and (3) Germinal. The Socioeconomic Vulnerability Index (SVI) was computed based on population, age, gender, employment, source of income and household size, which were gathered through a qualitative survey in the selected barangays. The Coastal Vulnerability Index (CVI) described the physical vulnerability of these coastal communities based on recorded sea level anomalies and significant wave heights of multiple satellite altimetry missions, coastal topography derived from the 25-m SRTM digital elevation model (DEM), bathymetry from WorldView-2 and additional elevation data from terrestrial laser scanning surveys. The research utilized merged satellite altimetry data downloaded from the Radar Altimetry Database System (RADS), which covered the period from 1991-2010. The SVI and CVI were calculated and evaluated in ArcGIS. The SVI and CVI were integrated to determine the Total Vulnerability Index (TVI), which characterized the vulnerability of the three barangays in five classes, from very low to very high vulnerability.

  15. A Climate Change Vulnerability Assessment Report for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. [Abt Environmental Research, Boulder, CO (United States); O' Grady, M. [Abt Environmental Research, Boulder, CO (United States); Renfrow, S. [Abt Environmental Research, Boulder, CO (United States)

    2015-09-03

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), in Golden, Colorado, focuses on renewable energy and energy efficiency research. Its portfolio includes advancing renewable energy technologies that can help meet the nation's energy and environmental goals. NREL seeks to better understand the potential effects of climate change on the laboratory--and therefore on its mission--to ensure its ongoing success. Planning today for a changing climate can reduce NREL's risks and improve its resiliency to climate-related vulnerabilities. This report presents a vulnerability assessment for NREL. The assessment was conducted in fall 2014 to identify NREL's climate change vulnerabilities and the aspects of NREL's mission or operations that may be affected by a changing climate.

  16. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA

    Science.gov (United States)

    Mair, Alan; El-Kadi, Aly I.

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  17. Runup parameterization and beach vulnerability assessment on a barrier island: a downscaling approach

    Directory of Open Access Journals (Sweden)

    G. Medellín

    2015-05-01

    Full Text Available We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatan (Mexico. Wave information from a 30 year wave hindcast is validated with in situ measurements at 8 m water depth. The Maximum Dissimilarity Algorithm is employed for the selection of 600 representative cases, encompassing different wave characteristics and tidal level combinations. The selected cases are propagated from 8 m water depth till the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic Nonlinear Shallow Water Equations model. Extreme wave runup, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30 year period using an interpolation algorithm. Downscaling results show runup saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78, allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water level is conducted at the study area by employing the two approaches (reconstruction/parametrization and a storm impact scale. The 30 year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.

  18. Assessment of agricultural drought vulnerability in the Philippines using remote sensing and GIS-based techniques

    International Nuclear Information System (INIS)

    Drought is a recurrent extreme climate event that can cause crop damage and yield loss, thereby inflicting negative socioeconomic impacts all over the world. According to several climate studies, drought events may be more frequent and more severe as global warming progresses. As an agricultural country, the Philippines is highly susceptible to adverse impacts of drought using remotely sensed information and geographic processing techniques. An agricultural drought vulnerability map identifying croplands that are least vulnerable, moderately vulnerable, and most vulnerable to crop water-related stress, was developed. Vulnerability factors, including land use system, irrigation support. Available soil-water holding capacity, as well as satellite-derived evapotranspiration and rainfall, were taken into consideration in classifying and mapping agricultural drought vulnerability at a national level. (author)

  19. Assessing and mapping people's perceptions of vulnerability to landslides in Bududa, Uganda

    OpenAIRE

    Wanasolo, Isaac

    2012-01-01

    This study explores people’s vulnerability to landslides in Bududa, Uganda and how people perceive their vulnerability to such disasters in the face of a blatant government declaration that the area is risk prone and unsafe for human settlement. The study then explores GIS capabilities to map such perceptions and how ensuing maps can be used to communicate people’s perceptions of vulnerability to landslides. Specifically examined are people’s perceived causes of landslides, how people interpr...

  20. A methodology for risk assessment of municipal infrastructure due to climate change: a case study of London, Ontario

    Science.gov (United States)

    Bowering, E.; Peck, A.; Simonovic, S.

    2009-12-01

    Natural hazards are increasing in severity as a consequence of climate change. These hazards affect all aspects of municipal infrastructure. Thus a region must adapt its policies and procedures to mitigate the increasing risk to its infrastructure. The purpose of this study is to develop and test a methodology for engineering assessment of risk to municipal infrastructure due to climate change. Proposed methodology includes climate, hydrologic and hydraulic modeling as input for engineering risk assessment. Climate analysis uses Weather Generator as a tool to combine Global Circulation Models (GCMs) with regional historical data to output plausible climate scenarios. The present study focuses on flooding and temperature extremes which are relevant to the region under consideration. Hydrologic analysis uses the climate scenarios as input to the HEC-HMS model to determine streamflows. These streamflows are input to the HEC-RAS and GeoHEC-RAS as part of the hydraulic analysis to generate floodplain maps in a Geographic Information Systems (GIS) environment. The engineering risk assessment comprises of both quantitative and qualitative analyses. Water elevations and municipal infrastructure maps are combined using GIS to determine flood inundation levels. These loads are used in combination with infrastructure capacities to evaluate quantitative risk indices. Fuzzy set theory is used to address uncertainties associated with subjective criteria in qualitative analysis. This is accomplished by using membership functions to model ambiguity in various impact data interpretation. These membership functions are created through interviews held with experts in the fields of transportation, water supply and distribution, wastewater management and critical infrastructure management. Membership functions are used in qualitative fuzzy risk assessment. Quantitative and qualitative analysis are combined into risk indices which are spatially represented in GIS as risk maps for each

  1. Physical and institutional vulnerability assessment method applied in Alpine communities. Preliminary Results of the SAMCO-ANR Project in the Guil Valley (French Southern Alps)

    Science.gov (United States)

    Carlier, Benoit; Dujarric, Constance; Puissant, Anne; Lissak, Candide; Viel, Vincent; Bétard, François; Madelin, Malika; Fort, Monique; Arnaud-Fassetta, Gilles

    2015-04-01

    The Guil catchment is particularly prone to torrential and gravitational hazards such as floods, debris flows, landslides or avalanches due to several predisposing factors (bedrock supplying abundant debris, strong hillslope-channel connectivity) in a context of summer Mediterranean rainstorms as triggers. These hazards severely impact the local population (fatalities, destruction of buildings and infrastructures, loss of agricultural land, road closures). Since the second half of the 20th century, the progressive decline of agro-pastoralism and the development of tourism activities led to a concentration of human stakes on alluvial cones and valley bottom, therefore an increase of vulnerability for mountainous communities. Following the 1957 and 2000 catastrophic floods and the 1948 and 2008 avalanche episodes, some measures were taken to reduce exposure to risks (engineering works, standards of construction, rescue training…). Nevertheless, in front of urban expansion (land pressures and political pressures) and obsolescence of the existing protective measures, it is essential to reassess the vulnerability of the stakes exposed to hazards. Vulnerability analysis is, together with hazard evaluation, one of the major steps of risk assessment. In the frame of the SAMCO project designed for mountain risk assessment, our goal is to estimate specific form of vulnerability for communities living in the Upper Guil catchment in order to provide useful documentation for a better management of the valley bottom and the implementation of adequate mitigation measures. Here we present preliminary results on three municipalities of the upper Guil catchment: Aiguilles, Abriès, and Ristolas. We propose an empirical semi-quantitative indicator of potential hazards consequences on element at risk (based on GIS) with an application to different (local and regional scale) scales. This indicator, called Potential Damage Index, enable us to describe, quantify, and visualize direct

  2. Vulnerability Assessment of Participants in Lithuanian Criminal Proceedings in the Context of EU Regulations

    Directory of Open Access Journals (Sweden)

    Ažubalytė Rima

    2014-12-01

    Full Text Available Despite the applicable general principles and essential standards provided for in the law, the right of vulnerable persons (i.e. children under 18 years of age and vulnerable adults, for example, adults with mental disabilities to a fair hearing at different stages of criminal proceedings in the EU is not yet ensured to the full extent. Based on both EU and Lithuanian legal regulation, this article will review only the principal provisions concerning the allocation of victims, suspects, and accused persons to the category of “vulnerable persons”. Due to the scope of the article, the vulnerability identification procedure falls outside this research.

  3. Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit

    Science.gov (United States)

    Borgomeo, Edoardo; Pflug, Georg; Hall, Jim W.; Hochrainer-Stigler, Stefan

    2015-11-01

    Global climate models suggest an increase in evapotranspiration, changing storm tracks, and moisture delivery in many parts of the world, which are likely to cause more prolonged and severe drought, yet the weakness of climate models in modeling persistence of hydroclimatic variables and the uncertainties associated with regional climate projections mean that impact assessments based on climate model output may underestimate the risk of multiyear droughts. In this paper, we propose a vulnerability-based approach to test water resource system response to drought. We generate a large number of synthetic streamflow series with different drought durations and deficits and use them as input to a water resource system model. Marginal distributions of the streamflow for each month are generated by bootstrapping the historical data, while the joint probability distributions of consecutive months are constructed using a copula-based method. Droughts with longer durations and larger deficits than the observed record are generated by perturbing the copula parameter and by adopting an importance sampling strategy for low flows. In this way, potential climate-induced changes in monthly hydrological persistence are factored into the vulnerability analysis. The method is applied to the London water system (England) to investigate under which drought conditions severe water use restrictions would need to be imposed. Results indicate that the water system is vulnerable to drought conditions outside the range of historical events. The vulnerability assessment results were coupled with climate model information to compare alternative water management options with respect to their vulnerability to increasingly long and severe drought.

  4. Vulnerable Genders, Vulnerable Loves

    DEFF Research Database (Denmark)

    Schleicher, Marianne

    2015-01-01

    This chapter analyses religious reflections on vulnerable genders and vulnerable loves from the Hebrew Bible to early Rabbinic literature. It is based on theories by inter alia Donna Haraway on complex identities, Turner and Maryanski on love as a prerequisite for survival, Michel Foucault...

  5. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    Directory of Open Access Journals (Sweden)

    S. P. Bindra

    2014-12-01

    Full Text Available This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achieved in most area owing to precipitation variability’s and seasonality. It demonstrates that how large increases in water demand with very little recharge from precipitation have strained Libya’s groundwater resources resulting in declines of groundwater levels and its quality, especially on Libyan coastal areas where most of the agriculture, domestic and industrial activities are concentrated. Based on several research studies it demonstrates that how policy and decision making process using best practices for monitoring, analyzing and forecasting variation of climate is a way forward to cope with the impact of sea level rise, and combat some water supplies in vulnerable areas that are becoming unusable due to the penetration of salt water into coastal aquifers (Jifara Plain, Sirt, Jebal El-Akhdar.Finally, a number of Global Climate Models (GCM are reviewed to demonstrate that how better understanding of climate and climate change forecasting helps in devising appropriate adaptation strategies due to the impact of climate change.

  6. Integrated assessment of vulnerability to climate change and adaptation options in the Netherlands

    International Nuclear Information System (INIS)

    In recent decades, it has become increasingly clear that the global climate is becoming warmer and that regional climates are changing. This report summarizes the results of an integrated assessment of vulnerability to climate change and adaptation options in the Netherlands carried out between July 2000 and July 2001 within the framework of the Dutch National Research Program on Global Air Pollution and Climate Change (NRP-2). The project's main aims were: - to provide an overview of scientific insights, expert judgements and stakeholders' perceptions of current and future impacts (positive and negative) of climate change for several economic sectors, human health, and natural systems in the Netherlands, considering various cross-sectoral interactions, - to develop a set of adaptation options for these sectors through a participatory process with the main stakeholders, - to perform an integrated assessment of cross-sectoral interactions of climate change impacts and adaptation options. Climate change impacts and adaptation options have been investigated for several important economic sectors (including agriculture, forestry, fisheries, industry, energy, transport, insurance and recreation and tourism), human health and natural systems (including soils, water and biodiversity issues).The results of this study are based on literature survey, a dialogue with experts and stakeholders. We are convinced that the report represents the most essential and relevant aspects of the impacts and adaptation options for climate change in the Netherlands, given the scenario setting of this study, the state of the art of current scientific knowledge, and today's expert and stakeholders' perceptions of the issues at stake. 215 refs

  7. Assessing the Available ICT Infrastructure for Collaborative Web Technologies in a Blended Learning Environment in Tanzania: A Mixed Methods Research

    Science.gov (United States)

    Pima, John Marco; Odetayo, Michael; Iqbal, Rahat; Sedoyeka, Eliamani

    2016-01-01

    This paper is about the use of a Mixed Methods approach in an investigation that sought to assess the available Information and Communication Technologies (ICT) infrastructure capable of supporting Collaborative Web Technologies (CWTs) in a Blended Learning (BL) environment in Tanzanian Higher Education Institutions (HEIs). We first used…

  8. Integration of Life Cycle Assessment Into Agent-Based Modeling: Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikolić, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  9. A Vulnerability Assessment of the U.S. Small Business B2C E-Commerce Network Systems

    Science.gov (United States)

    Zhao, Jensen J.; Truell, Allen D.; Alexander, Melody W.; Woosley, Sherry A.

    2011-01-01

    Objective: This study assessed the security vulnerability of the U.S. small companies' business-to-consumer (B2C) e-commerce network systems. Background: As the Internet technologies have been changing the way business is conducted, the U.S. small businesses are investing in such technologies and taking advantage of e-commerce to access global…

  10. Valuation of Risks And Vulnerabilities in the Oilfield Exploratiory Infrastructure Canto do Amaro, Municipality of Mossoró, State of Rio Grande Do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Costa Filho

    2010-04-01

    Full Text Available The work in the oilfield Canto do Amaro aimed to evaluate the risks and vulnerabilities of the oil exploration structures. For this, was made a detailed field work, and the majority of the exploratory wells was visited. Were collected seven soil samples for the oil infiltration risk analysis, and for which one were determined the values of DTA that for 57% of the soils is above the average of 1.41 mm/cm, presenting a franc-sand texture and sand-franc for the remaining 43%, whose DTA were smaller than 0.86 mm/cm. The tests of water/oil infiltration in these soils showed that the water VIB was high to very high and for oil was low to medium. The analysis of VIB showed that the soil with a higher risk to the oil spill are the Latossolos Vermelho Amarillo (AVL and of lowest risk are Neossolos Flúvicos (UK. Questionnaires were applied to 10% of families of the community to characterize the environmental and socioeconomic profile of the local population. The region is subject to intense human activities pressure as result of the oil and salt exploration and agriculture activities. The analyses of the diagnoses showed that the global vulnerability of the population is around 66%, index too high that show its high level of poverty. The vulnerability its caused by the fault of publics politics for development maintainable environmental, that’s seeks to the decrease of the risks, with social inclusion and environmental protection.

  11. National Water Infrastructure Adaptation Assessment, Part I: Climate Change Adaptation Readiness Analysis

    Science.gov (United States)

    The report “National Water Infrastructure Adaptation Assessment” is comprised of four parts (Part I to IV), each in an independent volume. The Part I report presented herein describes a preliminary regulatory and technical analysis of water infrastructure and regulations in the ...

  12. Assessing Gender Vulnerability within Post-earthquake Reconstruction: Case Study from Indonesia

    OpenAIRE

    Yumarni, Tri; Amaratunga, Dilanthi; Haigh, Richard

    2014-01-01

    Understanding types of gender vulnerability and its determinants within disaster management context is useful to protect women and men from greater destabilization, to achieve better process of disaster management, to enhance sustainability of reconstruction and to build community resilience. Using mixed method combining qualitative and quantitative data analysis, this study reveals various dimensions of gender vulnerability within post-earthquake reconstruction at Yogyakarta provinc...

  13. Vulnerability assessment in a participatory approach to design and implement community based adaptation to drought in the Peruvian Andes

    Science.gov (United States)

    Lasage, Ralph; Muis, Sanne; Sardella, Carolina; van Drunen, Michiel; Verburg, Peter; Aerts, Jeroen

    2015-04-01

    The livelihoods of people in the Andes are expected to be affected by climate change due to their dependence on glacier meltwater during the growing season. The observed decrease in glacier volume over the last few decades is likely to accelerate during the current century, which will affect water availability in the region. This paper presents the implementation of an approach for the participatory development of community-based adaptation measures to cope with the projected impacts of climate change, which was implemented jointly by the local community and by a team consisting of an NGO, Peruvian ministry of environment, research organisations and a private sector organisation. It bases participatory design on physical measurements, modelling and a vulnerability analysis. Vulnerability to drought is made operational for households in a catchment of the Ocoña river basin in Peru. On the basis of a household survey we explore how a vulnerability index (impacts divided by the households' perceived adaptive capacity) can be used to assess the distribution of vulnerability over households in a sub catchment. The socio-economic factors water entitlement, area of irrigated land, income and education are all significantly correlate with this vulnerability to drought. The index proved to be appropriate for communicating about vulnerability to climate change and its determining factors with different stakeholders. The water system research showed that the main source of spring water is local rainwater, and that water use efficiency in farming is low. The adaptation measures that were jointly selected by the communities and the project team aimed to increase water availability close to farmland, and increase water use efficiency, and these will help to reduce the communities vulnerability to drought.

  14. Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun spring using EPIK, COP, and travel time methods

    Science.gov (United States)

    Hamdan, Ibraheem; Sauter, Martin; Margane, Armin; Ptak, Thomas; Wiegand, Bettina

    2016-04-01

    Key words: Karst, groundwater vulnerability, EPIK, COP, travel time, Jordan. Karst aquifers are especially sensitive to short-lived contaminants because of fast water travel times and a low storage capacity in the conduit system. Tanour and Rasoun karst springs located around 75 km northwest of the city of Amman in Jordan represent the main domestic water supply for the surrounding villages. Both springs suffer from pollution events especially during the winter season, either by microbiological contamination due to wastewater leakage from septic tanks or by wastewater discharge from local olive oil presses. To assess the vulnerability of the karst aquifer of Tanour and Rasoun spring and its sensitivity for pollution, two different intrinsic groundwater vulnerability methods were applied: EPIK and COP. In addition, a travel time vulnerability method was applied to determine the time water travels from different points in the catchment to the streams, as a function of land surface gradients and presumed lateral flow within the epikarst. For the application of the COP and EPIK, a detailed geological survey was carried out to determine karst features and the karst network development within the catchment area. In addition, parameters, such as soil data, long term daily precipitation data, land use and topographical data were collected. For the application of the travel time vulnerability method, flow length, hydraulic conductivity, effective porosity, and slope gradient was used in order to determining the travel time in days. ArcGIS software was used for map preparation. The results of the combined vulnerability methods (COP, EPIK and travel time) show a high percentage of "very high" to "moderate" vulnerable areas within the catchment area of Tanour and Rasoun karst springs. Therefore, protection of the catchment area of Tanour and Rasoun springs from pollution and proper management of land use types is urgently needed to maintain the quality of drinking water in the

  15. Vulnerability assessment of small islands to tourism: The case of the Marine Tourism Park of the Gili Matra Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Fery Kurniawan

    2016-04-01

    Full Text Available The Indonesian government is currently directing its focus of development on the optimum uses of marine and coastal ecosystem services including the marine and coastal tourism. One of the main locus of coastal and marine tourism is the small islands tourism such as Gili Matra Islands among others. Small islands tourism is one of the favourite touristic activities because the destination provides beauty, exotism, aesthetic and a diversity of natural habitats including the warm, clear and attractive water. Tourism is being considered as a development instrument in order to boost a country’s economy and has become part of the global industry. However, tourism is also one of the actors that is responsible for environmental depletion, due to the constructions of buildings and tourism activities. This paper aims to study the level of vulnerability in small islands to tourism as a basis of integrated small islands management in Indonesian conservation area. The group of islands in this study consists of three islands namely Gili Ayer Island, Gili Meno Island and Gili Trawangan Island (known as Gili Matra Islands that were observed using Small Islands Vulnerability Index (SIVI. The results indicate that Gili Matra Islands have a vulnerability status from low into moderate, ranging from 2.25 to 2.75. Gili Ayer Island has the highest vulnerability with SIVI of 2.75 (Moderate, followed by Gili Meno Island with SIVI of 2.50 (Low and Gili Trawangan Island with SIVI of 2.25 (Low. The driving factor of vulnerability is the intensive utilization of marine tourism activities. Tourism is the sole stress to Gili Matra Island’s ecosystem due to its direct damaging impact and reducing its environmental quality. The vulnerability index which was built from the coastline, coral reef, live coral reef, and development area was applicable to assess the small island’s vulnerability in Indonesia, especially for coral island.

  16. Extracting features for power system vulnerability assessment from wide-area measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kamwa, I. [Hydro-Quebec, Varennes, PQ (Canada). IREQ; Pradhan, A.; Joos, G. [McGill Univ., Montreal, PQ (Canada)

    2006-07-01

    Many power systems now operate close to their stability limits as a result of deregulation. Some utilities have chosen to install phason measurement units (PMUs) to monitor power system dynamics. The synchronized phasors of different areas of power systems available through a wide-area measurement system (WAMS) are expected to provide an effective security assessment tool as well as a stabilizing control action for inter-area oscillations and a system protection scheme (SPS) to evade possible blackouts. This paper presented tool extracting features for vulnerability assessment from WAMS-data. A Fourier-transform based technique was proposed for monitoring inter-area oscillations. FFT, wavelet transform and curve fitting approaches were investigated to analyze oscillatory signals. A dynamic voltage stability prediction algorithm was proposed for control action. An integrated framework was then proposed to assess a power system through extracted features from WAMS-data on first swing stability, voltage stability and inter-area oscillations. The centre of inertia (COI) concept was applied to the angle of voltage phasor. Prony analysis was applied to filtered signals to extract the damping coefficients. The minimum post-fault voltage of an area was considered for voltage stability, and an algorithm was used to monitor voltage stability issues. A data clustering technique was applied to classify the features in a group for improved system visualization. The overall performance of the technique was examined using a 67-bus system with 38 PMUs. The method used to extract features from both frequency and time domain analysis was provided. The test power system was described. The results of 4 case studies indicated that adoption of the method will be beneficial for system operators. 13 refs., 2 tabs., 13 figs.

  17. Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model.

    Science.gov (United States)

    Rebolledo, Boris; Gil, Antonia; Flotats, Xavier; Sánchez, José Ángel

    2016-04-15

    In the present study an overlay method to assess groundwater vulnerability is proposed. This new method based on multicriteria decision analysis (MCDA) was developed and validated using an appropriate case study in Aragon area (NE Spain). The Vulnerability Index to Nitrates from Agricultural Sources (VINAS) incorporates a novel Logic Scoring of Preferences (LSP) approach, and it has been developed using public geographic information from the European Union. VINAS-LSP identifies areas with five categories of vulnerability, taking into account the hydrogeological and environmental characteristics of the territory as a whole. The resulting LSP map is a regional screening tool that can provide guidance on the potential risk of nitrate pollution, as well as highlight areas where specific research and farming planning policies are required. PMID:26874616

  18. Risk Assessment and Optimisation of Blast Mitigation Strategies for Design and Strengthening of Built Infrastructure

    Institute of Scientific and Technical Information of China (English)

    STEWART Mark G

    2006-01-01

    A probabilistic risk assessment procedure is developed which can predict risks of explosive blast damage to built infrastructure,and when combined with life-cycle cost analysis,the procedure can be used to optimise blastmitigation strategies.The paper focuses on window glazing since this is a load-capacity system which,when subjected to blast loading,has caused significant damage and injury to building occupants.Structural reliability techniques are used to derive blast reliability curves for annealed and toughened glazing subjected to explosive blast for a variety of threat scenarios.The probabilistic analyses include the uncertainties associated with blast modelling,glazing response and glazing failure criteria.Damage risks are calculated for an individual window and for windows in the facade of a multi-storey commercial building.The paper shows an illustrative exampie of how this information,when combined with risk-based decision-making criteria,can be used to optimise blast mitigation strategies.

  19. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multi-criteria decision analysis.

    Science.gov (United States)

    Vinhaes, Márcio Costa; de Oliveira, Stefan Vilges; Reis, Priscilleyne Ouverney; de Lacerda Sousa, Ana Carolina; Silva, Rafaella Albuquerque E; Obara, Marcos Takashi; Bezerra, Cláudia Mendonça; da Costa, Veruska Maia; Alves, Renato Vieira; Gurgel-Gonçalves, Rodrigo

    2014-09-01

    Despite the dramatic reduction in Trypanosoma cruzi vectorial transmission in Brazil, acute cases of Chagas disease (CD) continue to be recorded. The identification of areas with greater vulnerability to the occurrence of vector-borne CD is essential to prevention, control, and surveillance activities. In the current study, data on the occurrence of domiciliated triatomines in Brazil (non-Amazonian regions) between 2007 and 2011 were analyzed. Municipalities' vulnerability was assessed based on socioeconomic, demographic, entomological, and environmental indicators using multi-criteria decision analysis (MCDA). Overall, 2275 municipalities were positive for at least one of the six triatomine species analyzed (Panstrongylus megistus, Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma rubrovaria, and Triatoma sordida). The municipalities that were most vulnerable to vector-borne CD were mainly in the northeast region and exhibited a higher occurrence of domiciliated triatomines, lower socioeconomic levels, and more extensive anthropized areas. Most of the 39 new vector-borne CD cases confirmed between 2001 and 2012 in non-Amazonian regions occurred within the more vulnerable municipalities. Thus, MCDA can help to identify the states and municipalities that are most vulnerable to the transmission of T. cruzi by domiciliated triatomines, which is critical for directing adequate surveillance, prevention, and control activities. The methodological approach and results presented here can be used to enhance CD surveillance in Brazil.

  20. Aquifer Vulnerability Assessment Based on Sequence Stratigraphic and ³⁹Ar Transport Modeling.

    Science.gov (United States)

    Sonnenborg, Torben O; Scharling, Peter B; Hinsby, Klaus; Rasmussen, Erik S; Engesgaard, Peter

    2016-03-01

    A large-scale groundwater flow and transport model is developed for a deep-seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three-dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of (39)Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two-dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep-seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.

  1. Data driven approaches vs. qualitative approaches in climate change impact and vulnerability assessment.

    Science.gov (United States)

    Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello

    2015-04-01

    In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.

  2. Assessing the vulnerability of women to sexually transmitted diseases STDS/ HIV: construction and validation of markers

    Directory of Open Access Journals (Sweden)

    Mónica Cecilia De la Torre Ugarte Guanilo

    2014-08-01

    Full Text Available Objective To construct and validate markers of vulnerability of women to STDs/HIV, taking into consideration the importance of STDs/HIV. Method Methodological study carried out in three stages: 1 systematic review and identification of elements of vulnerability in the scientific production; 2 selection of elements of vulnerability, and development of markers; 3 establishment of the expert group and validation of the markers (content validity. Results Five markers were validated: no openness in the relationship to discuss aspects related to prevention of STDs/HIV; no perception of vulnerability to STDs/HIV; disregard of vulnerability to STDs/ HIV; not recognizing herself as the subject of sexual and reproductive rights; actions of health professionals that limit women’s access to prevention of STDs/HIV. Each marker contains three to eleven components. Conclusion The construction of such markers constituted an instrument, presented in another publication, which can contribute to support the identification of vulnerabilities of women in relation to STDs/HIV in the context of primary health care services. The markers constitute an important tool for the operationalization of the concept of vulnerability in primary health care and to promote inter/multidisciplinary and inter/multi-sectoral work processes.

  3. Literature Review for the Baseline Knowledge Assessment of the Hydrogen, Fuel Cells, and Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Truett, L.F.

    2003-12-10

    The purpose of the Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) Program Baseline Knowledge Assessment is to measure the current level of awareness and understanding of hydrogen and fuel cell technologies and the hydrogen economy. This information will be an asset to the HFCIT program in formulating an overall education plan. It will also provide a baseline for comparison with future knowledge and opinion surveys. To assess the current understanding and establish the baseline, the HFCIT program plans to conduct scientific surveys of four target audience groups--the general public, the educational community, governmental agencies, and potential large users. The purpose of the literature review is to examine the literature and summarize the results of surveys that have been conducted in the recent past concerning the existing knowledge and attitudes toward hydrogen. This literature review covers both scientific and, to a lesser extent, non-scientific polls. Seven primary data sources were reviewed, two of which were studies based in Europe. Studies involved both closed-end and open-end questions; surveys varied in length from three questions to multi-page interviews. Populations involved in the studies were primarily adults, although one study involved students. The number of participants ranged from 13 to over 16,000 per study. In addition to the primary surveys, additional related studies were mined for pertinent information. The primary conclusions of the surveys reviewed are that the public knows very little about hydrogen and fuel cell technologies but is generally accepting of the potential for hydrogen use. In general, respondents consider themselves as environmentally conscious. The public considers safety as the primary issue surrounding hydrogen as a fuel. Price, performance, and convenience are also considerations that will have major impacts on purchase decisions.

  4. Vulnerable bodies, vulnerable systems

    OpenAIRE

    Philippopoulos-Mihalopoulos, Andreas; Webb, Tom

    2015-01-01

    In this paper we examine the concept of vulnerability as it relates to the materiality of systems, the exclusion of human physical corporeality, and social exclusion in Luhmann’s theory of social autopoiesis. We ask whether a concept of vulnerability can be included in autopoiesis in order to better conceptualise social exclusion and the excluded, with a view to understanding how, if at all, the dangers posed by this exclusion are mitigated by autopoietic processes. We are emphatically not re...

  5. Extended defense systems :I. adversary-defender modeling grammar for vulnerability analysis and threat assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, Peter Benedict

    2006-03-01

    Vulnerability analysis and threat assessment require systematic treatments of adversary and defender characteristics. This work addresses the need for a formal grammar for the modeling and analysis of adversary and defender engagements of interest to the National Nuclear Security Administration (NNSA). Analytical methods treating both linguistic and numerical information should ensure that neither aspect has disproportionate influence on assessment outcomes. The adversary-defender modeling (ADM) grammar employs classical set theory and notation. It is designed to incorporate contributions from subject matter experts in all relevant disciplines, without bias. The Attack Scenario Space U{sub S} is the set universe of all scenarios possible under physical laws. An attack scenario is a postulated event consisting of the active engagement of at least one adversary with at least one defended target. Target Information Space I{sub S} is the universe of information about targets and defenders. Adversary and defender groups are described by their respective Character super-sets, (A){sub P} and (D){sub F}. Each super-set contains six elements: Objectives, Knowledge, Veracity, Plans, Resources, and Skills. The Objectives are the desired end-state outcomes. Knowledge is comprised of empirical and theoretical a priori knowledge and emergent knowledge (learned during an attack), while Veracity is the correspondence of Knowledge with fact or outcome. Plans are ordered activity-task sequences (tuples) with logical contingencies. Resources are the a priori and opportunistic physical assets and intangible attributes applied to the execution of associated Plans elements. Skills for both adversary and defender include the assumed general and task competencies for the associated plan set, the realized value of competence in execution or exercise, and the opponent's planning assumption of the task competence.

  6. Population vulnerability to storm surge flooding in coastal Virginia, USA.

    Science.gov (United States)

    Liu, Hua; Behr, Joshua G; Diaz, Rafael

    2016-07-01

    This study aims to assess the vulnerability of populations to storm surge flooding in 12 coastal localities of Virginia, USA. Population vulnerability is assessed by way of 3 physical factors (elevation, slope, and storm surge category), 3 built-up components (road availability, access to hospitals, and access to shelters), and 3 household conditions (storm preparedness, financial constraints to recovering from severe weather events, and health fragility). Fuzzy analysis is used to generate maps illustrating variation in several types of population vulnerability across the region. When considering physical factors and household conditions, the most vulnerable neighborhoods to sea level rise and storm surge flooding are largely found in urban areas. However, when considering access to critical infrastructure, we find rural residents to be more vulnerable than nonrural residents. These detailed assessments can inform both local and state governments in catastrophic planning. In addition, the methodology may be generalized to assess vulnerability in other coastal corridors and communities. The originality is highlighted by evaluating socioeconomic conditions at refined scale, incorporating a broader range of human perceptions and predispositions, and employing a geoinformatics approach combining physical, built-up, and socioeconomic conditions for population vulnerability assessment. Integr Environ Assess Manag 2016;12:500-509. © 2015 SETAC. PMID:26295749

  7. Physical Vulnerability Assessment Based on Fluid and Classical Mechanics to Support Cost-Benefit Analysis of Flood Risk Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Claudio Volcan

    2012-02-01

    Full Text Available The impacts of flood events that occurred in autumn 2011 in the Italian regions of Liguria and Tuscany revived the engagement of the public decision-maker to enhance the synergy of flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of the fixed and mobile elements exposed to flood hazard. In this paper we develop computation schemes enabling dynamic vulnerability and risk analyses for a broad typological variety of elements at risk. To show their applicability, a series of prime examples are discussed in detail, e.g. a bridge deck impacted by the flood and a car, first displaced and subsequently exposed to collision with fixed objects. We hold the view that it is essential that the derivation of the computational schemes to assess the vulnerability of endangered objects should be based on classical and fluid mechanics. In such a way, we aim to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches and to support the design of effective flood risk mitigation strategies by defusing the main criticalities within the systems prone to flood risk.

  8. Indicator-based model to assess vulnerability to landslides in urban areas. Case study of Husi city (Eastern Romania)

    Science.gov (United States)

    Grozavu, Adrian; Ciprian Margarint, Mihai; Catalin Stanga, Iulian

    2013-04-01

    In the last three or four decades, vulnerability evolved from physical fragility meanings to a more complex concept, being a key element of risk assessment. In landslide risk assessment, there are a large series of studies regarding landslide hazard, but far fewer researches focusing on vulnerability measurement. Furthermore, there is still no unitary understanding on the methodological framework, neither any internationally agreed standard for landslide vulnerability measurements. The omnipresent common element is the existence of elements at risk, but while some approaches are limited to exposure, other focus on the degree of losses (human injuries, material damages and monetary losses, structural dysfunctions etc.). These losses are differently assessed using both absolute and relative values on qualitative or quantitative scales and they are differently integrated to provide a final vulnerability value. This study aims to assess vulnerability to landslides at local level using an indicator-based model applied to urban areas and tested for Husi town (Eastern Romania). The study region is characterized by permeable and impermeable alternating sedimentary rocks, monoclinal geological structure and hilly relief with impressive cuestas, continental temperate climate, and precipitation of about 500 mm/year, rising to 700 m and even more in some rainy years. The town is a middle size one (25000 inhabitants) and it had an ascending evolution in the last centuries, followed by an increasing human pressure on lands. Methodologically, the first step was to assess the landslide susceptibility and to identify in this way those regions within which any asset would be exposed to landslide hazards. Landslide susceptibility was assessed using the logistic regression approach, taking into account several quantitative and qualitative factors (elements of geology, morphometry, rainfall, land use etc.). The spatial background consisted in the Digital Elevation Model and all derived

  9. Applying a statewide geospatial leaching tool for assessing soil vulnerability ratings for agrochemicals across the contiguous United States.

    Science.gov (United States)

    Ki, Seo Jin; Ray, Chittaranjan; Hantush, Mohamed M

    2015-06-15

    A large-scale leaching assessment tool not only illustrates soil (or groundwater) vulnerability in unmonitored areas, but also can identify areas of potential concern for agrochemical contamination. This study describes the methodology of how the statewide leaching tool in Hawaii modified recently for use with pesticides and volatile organic compounds can be extended to the national assessment of soil vulnerability ratings. For this study, the tool was updated by extending the soil and recharge maps to cover the lower 48 states in the United States (US). In addition, digital maps of annual pesticide use (at a national scale) as well as detailed soil properties and monthly recharge rates (at high spatial and temporal resolutions) were used to examine variations in the leaching (loads) of pesticides for the upper soil horizons. Results showed that the extended tool successfully delineated areas of high to low vulnerability to selected pesticides. The leaching potential was high for picloram, medium for simazine, and low to negligible for 2,4-D and glyphosate. The mass loadings of picloram moving below 0.5 m depth increased greatly in northwestern and central US that recorded its extensive use in agricultural crops. However, in addition to the amount of pesticide used, annual leaching load of atrazine was also affected by other factors that determined the intrinsic aquifer vulnerability such as soil and recharge properties. Spatial and temporal resolutions of digital maps had a great effect on the leaching potential of pesticides, requiring a trade-off between data availability and accuracy. Potential applications of this tool include the rapid, large-scale vulnerability assessments for emerging contaminants which are hard to quantify directly through vadose zone models due to lack of full environmental data.

  10. Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa

    OpenAIRE

    Isabella Zouh; Joanna C Ellison

    2012-01-01

    Intertidal mangrove ecosystems are sensitive to climate change impacts, particularly to associated relative sea level rise. Human stressors and low tidal range add to vulnerability, both characteristics of the Doula Estuary, Cameroon. To investigate vulnerability, spatial techniques were combined with ground surveys to map distributions of mangrove zones, and compare with historical spatial records to quantify change over the last few decades. Low technology techniques were used to establish ...

  11. Climate change impact and vulnerability assessment of forests in the Indian Western Himalayan region: A case study of Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Sujata Upgupta

    2015-01-01

    Full Text Available Climate change impact and vulnerability assessment at state and regional levels is necessary to develop adaptation strategies for forests in the biogeographically vital Himalayan region. The present study assesses forest ecosystem vulnerability to climate change across Himachal Pradesh and presents the priority districts for vulnerability reduction under ‘current climate’ and ‘future climate’ scenarios. Vulnerability of forests under ‘current climate’ scenario is assessed by adopting indicator-based approach, while the vulnerability under ‘future climate’ scenario is assessed using climate and vegetation impact models. Based on the vulnerability index estimated to present the vulnerability of forests under current and projected climate change impacts representing climate driven vulnerability, five districts – Chamba, Kangra, Kullu, Mandi and Shimla are identified as priority forest districts for adaptation planning. Identifying vulnerable forest districts and forests will help policy makers and forest managers to prioritize resource allocation and forest management interventions, to restore health and productivity of forests and to build long-term resilience to climate change.

  12. GIS Fuzzy Expert System for the assessment of ecosystems vulnerability to fire in managing Mediterranean natural protected areas.

    Science.gov (United States)

    Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene

    2016-03-01

    A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals.

  13. GIS Fuzzy Expert System for the assessment of ecosystems vulnerability to fire in managing Mediterranean natural protected areas.

    Science.gov (United States)

    Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene

    2016-03-01

    A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals. PMID:26696610

  14. Assessing Cost-effectiveness of Green Infrastructures in response to Large Storm Events at Household Scale

    Science.gov (United States)

    Chui, T. F. M.; Liu, X.; Zhan, W.

    2015-12-01

    Green infrastructures (GI) are becoming more important for urban stormwater control worldwide. However, relatively few studies focus on researching the specific designs of GI at household scale. This study assesses the hydrological performance and cost-effectiveness of different GI designs, namely green roofs, bioretention systems and porous pavements. It aims to generate generic insights by comparing the optimal designs of each GI in 2-year and 50-year storms of Hong Kong, China and Seattle, US. EPA SWMM is first used to simulate the hydrologic performance, in particular, the peak runoff reduction of thousands of GI designs. Then, life cycle costs of the designs are computed and their effectiveness, in terms of peak runoff reduction percentage per thousand dollars, is compared. The peak runoff reduction increases almost linearly with costs for green roofs. However, for bioretention systems and porous pavements, peak runoff reduction only increases significantly with costs in the mid values. For achieving the same peak runoff reduction percentage, the optimal soil depth of green roofs increases with the design storm, while surface area does not change significantly. On the other hand, for bioretention systems and porous pavements, the optimal surface area increases with the design storm, while thickness does not change significantly. In general, the cost effectiveness of porous pavements is highest, followed by bioretention systems and then green roofs. The cost effectiveness is higher for a smaller storm, and is thus higher for 2-year storm than 50-year storm, and is also higher for Seattle when compared to Hong Kong. This study allows us to better understand the hydrological performance and cost-effectiveness of different GI designs. It facilitates the implementation of optimal choice and design of each specific GI for stormwater mitigation.

  15. Sensitivity Assessment. Localization of Road Transport Infrastructures in the Province of Lucca

    Directory of Open Access Journals (Sweden)

    Luisa Santini

    2014-05-01

    Full Text Available The work, result of a research carried out in collaboration with the Chamber of Commerce of Lucca, aims to implement a tool for the evaluation of positive and negative effects arising by the “widening” or “new construction” of road transport infrastructures in the territory. In particular, with respect to the impacts generated by the project actions relating to the construction or widening of roads, the research has produced several sensitivity maps of the studied area and a graphical interface, accessible on the Internet and user friendly, allowing the synthetic evaluation of the impacts and the comparison of different scenarios The implemented methodology, through the use of advanced tools for data management and processing and for impacts quantification and assessment, has allowed us to define a very detailed database related to all components of study area, both natural and anthropic, and to build a "synthetic sensitivity index", obtained from the combination of thematic information about each component and from the relationships that involve each others. It’s therefore to consider an indispensable support tool for planners and evaluators (eg. SEA procedures, but also for others users (eg organizations representing businesses, consumer associations, etc.. In fact it allows to acquire a deep knowledge of the area (environmental and economic resources, to verify the sensitivity of each part of the area with respect to a series of project actions concerning both the construction of new roads that the widening of the existing ones and finally to evaluate different localization scenarios for the same type of project or different impact scenarios for the same localization.

  16. Hydrologic landscape classification assesses streamflow vulnerability to climate change in Oregon, USA

    Directory of Open Access Journals (Sweden)

    S. G. Leibowitz

    2014-03-01

    Full Text Available Classification can allow assessments of the hydrologic functions of landscapes and their responses to stressors. Here we demonstrate the use of a hydrologic landscape (HL approach to assess vulnerability to potential future climate change at statewide and basin scales. The HL classification has five components: climate, seasonality, aquifer permeability, terrain, and soil permeability. We evaluate changes when the 1971–2000 HL climate indices are recalculated using 2041–2070 simulation results from the ECHAM and PCM climate models with the A2, A1b, and B1 emission scenarios. Changes in climate class were modest (4–18% statewide. However, there were major changes in seasonality class for five of the six realizations (excluding PCM_B1: Oregon shifts from being 13% snow-dominated to 4–6% snow-dominated under these five realizations, representing a 56–68% reduction in snowmelt-dominated area. At the basin scale, projected changes for the Siletz basin, in Oregon's coast range, include a small switch from very wet to wet climate, with no change in seasonality. However, there is a modest increase in fall and winter water due to increased precipitation. For the Sandy basin, on the western slope of the Cascades, HL climate class does not change, but there are major changes in seasonality, especially for areas with low aquifer permeability, which experiences a 100% loss of spring seasonality. This would reduce summer baseflow, but impacts could potentially be mitigated by streamflow buffering effects provided by groundwater in the high aquifer permeability portions of the upper Sandy. The Middle Fork John Day basin (MFJD, in northeastern Oregon, is snowmelt-dominated. The basin experiences a net loss of wet and moist climate area, along with an increase in dry climate area. The MFJD also experiences major shifts from spring to winter seasonality, representing a 20–60% reduction in snowmelt-dominated area. Altered seasonality and/or magnitude

  17. Development of the efficient emergency preparedness system for the nuclear critical infrastructure

    International Nuclear Information System (INIS)

    The evaluation of the critical nuclear infrastructure vulnerability to threats like human occurrences, terrorist attacks and natural disasters and the preparation of emergency response plans with the estimation of optimized costs are of the vital importance for the assurance of a safe nuclear facilities operation and the national security. In the past national emergency systems did not include vulnerability assessments of the critical nuclear infrastructure as the important part of the comprehensive preparedness framework. The fundamental aims of the efficient emergency preparedness and response system are to provide a sustained emergency readiness and to prevent an emergency situation and accidents. But when an event happens the mission is to mitigate consequences and to protect the people and environment against the nuclear and radiological damage. The efficient emergency response system, which would be activated in the case of the nuclear and/or radiological emergency and release of the radioactivity to the environment, is an important element of a comprehensive system of the nuclear and radiation safety. In the article the new methodology for the critical nuclear infrastructure vulnerability assessment as a missing part of an efficient emergency preparedness system is presented. It can help the overall national energy sectors to identify and better understand the terrorist threats and vulnerabilities of their critical infrastructure. The presented methodology could also facilitate national agencies to develop and implement a vulnerability awareness and education programs for their critical assets to enhance the security, reliability and safe operation of the whole energy infrastructure. The vulnerability assessment methodology will also assist nuclear power plants to develop, validate, and disseminate the assessment and survey of new efficient countermeasures. The significant benefits of the new vulnerability assessment research are to increase nuclear power

  18. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume II, part 7: Mound working group assessment team report

    International Nuclear Information System (INIS)

    This is the report of a visit to the Mound site by the Working Group Assessment Team (WGAT) to assess plutonium vulnerabilities. Purposes of the visit were: to review results of the site's self assessment of current practices for handling and storing plutonium; to conduct an independent assessment of these practices; to reconcile differences and assemble a final list of vulnerabilities; to calculate consequences and probability for each vulnerability; and to issue a report to the Working Group. This report, representing completion of the Mound visit, will be compiled along with those from all other sites with plutonium inventories as part of a final report to the Secretary of Energy

  19. Eco-environmental vulnerability assessment for large drinking water resource: a case study of Qiandao Lake Area, China

    Science.gov (United States)

    Gu, Qing; Li, Jun; Deng, Jinsong; Lin, Yi; Ma, Ligang; Wu, Chaofan; Wang, Ke; Hong, Yang

    2015-09-01

    The Qiandao Lake Area (QLA) is of great significance in terms of drinking water supply in East Coast China as well as a nationally renowned tourist attraction. A series of laws and regulations regarding the QLA environment have been enacted and implemented throughout the past decade with the aim of negating the harmful effects associated with expanding urbanization and industrialization. In this research, an assessment framework was developed to analyze the eco-environmental vulnerability of the QLA from 1990-2010 by integrating fuzzy analytic hierarchy process (FAHP) and geographical information systems (GIS) in an attempt to gain insights into the status quo of the QLA so as to review and evaluate the effectiveness of the related policies. After processing and analyzing the temporal and spatial variation of eco-environmental vulnerability and major environmental issues in the QLA, we found that the state of eco-environmental vulnerability of the QLA was acceptable, though a moderate deterioration was detected during the study period. Furthermore, analysis of the combination of vulnerability and water quality indicated that the water quality showed signs of declination, though the overall status remained satisfactory. It was hence concluded that the collective protection and treatment actions were effective over the study period, whereas immediately stricter measures would be required for protecting the drinking water quality from domestic sewage and industrial wastewater. Finally, the spatial variation of the eco-environmental vulnerability assessment also implied that specifically more targeted measures should be adopted in respective regions for long-term sustainable development of the QLA.

  20. A probabilistic risk assessment for the vulnerability of the European carbon cycle to weather extremes: the ecosystem perspective

    Science.gov (United States)

    Rolinski, S.; Rammig, A.; Walz, A.; von Bloh, W.; van Oijen, M.; Thonicke, K.

    2015-03-01

    Extreme weather events are likely to occur more often under climate change and the resulting effects on ecosystems could lead to a further acceleration of climate change. But not all extreme weather events lead to extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions. We use a simple probabilistic risk assessment based on time series of ecosystem behaviour and climate conditions. Given the risk assessment terminology, vulnerability and risk for the previously defined hazard are estimated on the basis of observed hazardous ecosystem behaviour. We apply this approach to extreme responses of terrestrial ecosystems to drought, defining the hazard as a negative net biome productivity over a 12-month period. We show an application for two selected sites using data for 1981-2010 and then apply the method to the pan-European scale for the same period, based on numerical modelling results (LPJmL for ecosystem behaviour; ERA-Interim data for climate). Our site-specific results demonstrate the applicability of the proposed method, using the SPEI to describe the climate condition. The site in Spain provides an example of vulnerability to drought because the expected value of the SPEI is 0.4 lower for hazardous than for non-hazardous ecosystem behaviour. In northern Germany, on the contrary, the site is not vulnerable to drought because the SPEI expectation values imply wetter conditions in the hazard case than in the non-hazard case. At the pan-European scale, ecosystem vulnerability to drought is calculated in the Mediterranean and temperate region, whereas Scandinavian ecosystems are vulnerable under conditions without water shortages. These first model-based applications indicate the conceptual advantages of the proposed method by focusing on the identification of critical weather conditions for which we observe hazardous ecosystem behaviour in the analysed data set. Application of the method to empirical time

  1. Cyberwarfare on the Electricity Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, N.; Ramesh, V.C.

    2000-03-20

    The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.

  2. Environmental Life Cycle Assessment Model for Soil Bioengineering Measures on Infrastructure Slopes

    Science.gov (United States)

    Hoerbinger, Stephan; Obriejetan, Michael

    2015-04-01

    Soil bioengineering techniques can be a helpful instrument for civil engineers taking into account not only technical but also ecological, socio-economic and sustainability aspects. Environmental Life Cycle Assessment (LCA) models can serve as supplementary evaluation methods to economic analyses, taking into account the resource demand and environmental burdens of engineering structures. The presented LCA model includes the functional grade of structures in addition to environmental aspects. When using vegetation as living construction material, several factors have to be considered. There is the provision of ecosystem services of plants, such as the stabilization of the slope through its root-system, CO2 sequestration through biomass production et cetera. However, it must be noted that vegetation can cause security issues on infrastructure facilities and entail costs through the necessity of maintenance works. For this reason, it is necessary to already define the target systems during the planning phase of a soil bioengineering structure. In this way, necessary measures can be adapted in all life cycles of a structure. The objective of the presented LCA model is to serve as a basis for the definition of target systems. In the designed LCA model the soil bioengineering structures are divided into four life phases; construction phase, operational phase, end of life phase and subsequent use phase. A main objective of the LCA model is the understanding of the "Cumulative Energy Demand" (CED) and "Global Warming Potential" (GWP) of soil bioengineering structures during all life cycle phases. Additionally, the biomass production and the CO2 sequestration potential of the used plants are regarded as well as the functional integrity of the soil bioengineering system. In the life phase of soil bioengineering structures, a major part of the energy input is required during the construction phase. This is mainly due to the cumulative energy demand of the inert materials

  3. Groundwater vulnerability assessment in the vicinity of Ramtha wastewater treatment plant, North Jordan

    Science.gov (United States)

    Awawdeh, Muheeb; Obeidat, Mutewekil; Zaiter, Ghusun

    2015-12-01

    The main aim of this study was to evaluate the vulnerability of groundwater to contamination in the vicinity of Ramtha wastewater treatment plant using a modified DRASTIC method in a GIS environment. A groundwater pollution potential map was prepared using modified DRASTIC method by adding lineaments and land use/land cover parameters. The values of the modified DRASTIC index were classified into three categories: low, moderate and high. About 36.5 % of the study area is occupied by the high vulnerability class, 56.5 % is occupied by the moderate vulnerability class and 9 % is occupied by the low vulnerability class. Chemical analysis of the water samples collected from wells distributed in the study area and tapping Umm Rijam aquifer indicated that the nitrate concentration ranges from 20 to 193 mg/L with an average 65.5 mg/L. Nitrate exceeded the permissible limits of WHO and Jordanian standards in 69 and 54 % of the NO3 - samples, respectively. The modified DRASTIC model was validated using nitrate concentration. Results showed a good match between nitrate concentrations level and the groundwater vulnerability classes.

  4. Groundwater flooding vulnerability assessment in riverside alluviums of Nakdong River, South Korea

    Science.gov (United States)

    Chang, kwangsoo; Lee, Seunghyun; Kwon, Mijin; Kim, Deoggeun

    2016-04-01

    Soil wetting or inundation due to rising groundwater table can cause groundwater flooding in the riverside alluvium and also affect the scale of surface water flooding. There is possible to occur the flooding of lowland by falling the groundwater level at heavy rain and is important to evaluate the vulnerability and the prediction of groundwater problem. Three groups (safe, intermediate, and vulnerable) are classified by using groundwater flooding vulnerability index(FVI) which is calculated using groundwater level's time series measured at each monitoring well. A prediction model for the classification is developed by using a discriminant analysis based on the correlation between the original groups and physical features (topography, soil, sediment layer distribution, soil drainage, and groundwater level-related features). And we have created a groundwater flooding vulnerability GIS Map. This research results is possible to policy support of establishment of flooding providing the flooding vulnerability technique using the groundwater occurring the damage came from the fluctuation of groundwater level by the water level change of river and the effect of rainfall. Also, in conjunction with the existing flooding/drought map, it improve the accuracy of groundwater flooding/drought prediction, and it becomes possible to respond the water sources, water level down by using the evaluation system in flooding/drought.

  5. A GIS-based vulnerability assessment tool for the quantification of natural risk in mountain and coastal areas

    Science.gov (United States)

    Puissant, A.; Schlosser, A.; Gazo, A.; -P., Malet J.; Lissak, C.; Goutiere, M.; Peltier, A.; Houet, T.

    2015-04-01

    Decision-makers need friendly tools for estimating natural risk for different future scenarios and for designing risk reduction strategies. In this work, a flexible GIS-based tool is presented in order to estimate vulnerability indicators (physical, economical, social) over territories of different size and at different scales. The tool has been designed in order to meet the requests of several categories of users (e.g. risk managers, decision planners, scientists). The tool is dedicated to the assessment of the vulnerability from several natural hazards (rock fall, landslide, flood, coastal erosion). On the basis of a database on the elements at risk, the user first selects the analysis scale (micro at the scale of the element at risk; meso at the scale of the municipality; macro at the scale of the catchment). Then, the calculation of vulnerability indicators is performed from this selection. The functionalities of the tool will be presented, and example of vulnerability indicators for some communities exposed will be discussed. The tool is developed within the ANR Project SAMCO.

  6. An Assessment of the radiological vulnerability for Spanish soils; Estimacion de indices de vulnerabilidad radiologica para los suelos peninsulares espanoles

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, C.; Millan, R.; Schimid, T.; Lago, C.; Gutierrez, J. [Ciemat. Madrid (Spain)

    2000-07-01

    A methodology is presented to assess the radiological vulnerability of soils, based exclusively on their pedagogical properties. The radiological vulnerability defined as the potential capacity of soils to fix or transfer deposited radiocaesium and radiostrontium to plants, is represented in terms of vulnerability indexes. Two pathways are considered, the external irradiation and their transfer through the food chain, where the top horizon and a critical depth of 60 cm is taken into account, respectively, Partial vulnerability indexes are considered for each pathway, which allows a qualitative prediction of the behaviour of the contaminants in soils Global indexes have been obtained as the sum of the partial indexes. The methodology has been applied and validated using a data base consisting of more than 2000 soil profiles selected from all over Spain. This included a pedagogical characterisation and normalisation of the different soil profiles. Results have been obtained for individual soil profiles and with the aid of a GIS, the distribution of the partial and global indexes have been presented for the most representative soil types. (Author)

  7. D-dimer is useful in assessing the vulnerable blood in elderly patients with coronary disease

    Institute of Scientific and Technical Information of China (English)

    Yansong Zheng; Qiang Zeng; Liping Zhang; Liufa Duan; Kunlun He; Qiufu Zheng

    2008-01-01

    Background and objective The value of D-dimer in the risk stratification of patients with coronary artery diseas(CAD)and the relationship between D-dimer and the diseased coronary arteries remains controversial or unclear.especially in the elderly.Thisstudy was to evaluate the usefulness of D-djmer as a biomarker in assessing the vuinerable blood in the elderly patients with coronarydisease.Methods Sixty elderly (≥60 years old)male patients with suspected CAD were enrolled in this prospective study.Patients were divided into CAD group(n=41,10 with stable angina and 31 with unstable angina)and control group(n=19)according to their coronary angiography Results Clinicalinformation including age,body mass index(BMI),smoking index,and thecomplications of Primary hypertension or diabetes.and CAD family history was collected.Venous blood was sampled serially for thedetermination of total cholesterol,HDL cholesterol,LDL cholesterol,triglycerides,apoAl,apoB,glucose,uric acid,homocysteine(Hey),hs-CRP,soluble thrombomodulin(sTM),and marker of fibrinolytic system and hypercoagulability,such as D-dimer,fibrinogen,etc.The extent of coronary atherosclerosis was assessed.using the Gensini scoring system on the basis of coronary angiography.Results Compared with the controls.the patients with CAD had significantly higher levels of D-dimer.D-dimer level wassignificantly correlated to age.hs-CR P.Hcy,and PAI-1.Patients with D-dimer levels in the top triplicate of D-dimer level hadsignificantly higher prevalence of unstable angina compared with patients in the lowest triplicate(OR=4.8,Z=3.28,P=0.001).In anordinal logistic regression.the OR value ofdeveloping more serious CAD augmented 3.1-foid with each increasing triplicate of D-dimer.Patients with unstable angina had a significantly higher level of D-dimer than the controls(P=0.005),and an increasing trend comparedwith patients with stable angina (P=0.059).whereas there was no difference between the patients with stable angina and

  8. The method and index of sustainability assessment of infrastructure projects based on system dynamics in China

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2015-05-01

    Full Text Available Purpose: As one of the most important overhead capital of urban economics and social development, the sustainable development of urban infrastructure is becoming a key issue of prosperous society growing. The purpose of this paper is to establish a basic model to analysis certain infrastructure project’s sustainable construction and operation. Design/methodology/approach: System dynamics is an effective stimulation method and tool to deal with such complex, dynamics, nonlinear systems, which could be used in analyzing and evaluating all aspects of infrastructure sustainability internally and externally. In this paper, the system is divided into four subsystems and 12 main impact indicators. Through setting the boundary and other basic hypothesis, this paper designs the basic causal loop diagrams and stock & flow diagrams to describe the relationship between variables and establish a quantifiable structure for the system. Findings: Adopting a sewerage treatment in China as a case to test our model, we could conclude that the model of internal sustainable subsystem is reasonable. However, this model is a basic model, and it need to be specific designed for the certain project due to the diversity of infrastructure types and the unique conditions of each projects. Originality/value: System Dynamics (SD is widely used in the study of sustainable development and has plentiful research achievements from macro perspective but few studies in the microcosmic project systems. This paper focuses on the unique characteristics of urban infrastructure in China and selects infrastructure project which is based on micro-system discussion. The model we designed has certain practical significance in policy setting, operation monitoring and adjustment of the urban projects with high rationality and accuracy.

  9. Spatial Climate Justice and Green Infrastructure Assessment: A case study for the Huron River watershed, Michigan, USA. GI_Forum|GI_Forum 2016, Volume 1 – open:spatial:interfaces|

    OpenAIRE

    Cheng, Chingwen

    2016-01-01

    Green infrastructure serves as a critical no-regret strategy to address climate change mitigation and adaptation in climate action plans. Climate justice refers to the distribution of climate change-induced environmental hazards (e.g., increased frequency and intensity of floods) among socially vulnerable groups. Yet no index has addressed both climate justice and green infrastructure planning jointly in the USA. This paper proposes a spatial climate justice and green infrastructure assessmen...

  10. ANALYSIS AND ASSESSMENT OF RISKS ASSOCIATED WITH CONSTRUCTION OF THE ROAD INFRASTRUCTURE IN SLOVAKIA

    Directory of Open Access Journals (Sweden)

    Dávid Šimko

    2014-06-01

    Full Text Available The article analyzes the risks associated with the process of constructing the road infrastructure. It´s showing us how many different types of risks threats this process and what can happen if we ignore them. In the article are these risks divided in different groups according to the place in this process where they arise, they are also singly defined and described. In the end of the article is possible to find different proposals for the elimination of these risks and also there are mentioned a few reasons why is building of the road infrastructure in Slovakia so slow.

  11. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    Science.gov (United States)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  12. Open Source Vulnerability Database Project

    Directory of Open Access Journals (Sweden)

    Jake Kouns

    2008-06-01

    Full Text Available This article introduces the Open Source Vulnerability Database (OSVDB project which manages a global collection of computer security vulnerabilities, available for free use by the information security community. This collection contains information on known security weaknesses in operating systems, software products, protocols, hardware devices, and other infrastructure elements of information technology. The OSVDB project is intended to be the centralized global open source vulnerability collection on the Internet.

  13. Assessing the vulnerability to pollution in the aquifer’s Charf El Akab (Tangier, Morocco)

    OpenAIRE

    Achagra, Laila; Messari, Jamal Stitou El; Draoui, Mohamed

    2013-01-01

    Abstract The application of the DRASTIC’s method on Charf El Akab's aquifer situated in the northwest of Morocco, precisely in the coastal plain between Tangiers and Asila, was made in this study. The mapping of the index DRASTIC allows us to delineate zones with various degrees of pollution vulnerability. The obtained results show that: i) the high˗vulnerability zones extend over the entire free part of the lower ground˗water (in the South of the aquifer), and ii) These zones lack natural pr...

  14. The Neglect of Governance in Forest Sector Vulnerability Assessments: Structural-Functionalism and “Black Box” Problems in Climate Change Adaptation Planning

    OpenAIRE

    Adam M. Wellstead; Michael Howlett; Jeremy Rayner

    2013-01-01

    Efforts to develop extensive forest-based climate change vulnerability assessments have informed proposed management and policy options intended to promote improved on-the-ground policy outcomes. These assessments are derived from a rich vulnerability literature and are helpful in modeling complex ecosystem interactions, yet their policy relevance and impact has been limited. We argue this is due to structural-functional logic underpinning these assessments in which governance is treated as a...

  15. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume II, part 1: Rocky Flats working group assessment team report

    International Nuclear Information System (INIS)

    The objective of the Plutonium Environment, Safety, and Health (ES ampersand H) Vulnerability Assessment Project was to conduct a comprehensive assessment of the ES ampersand H vulnerabilities arising from the Department of Energy (DOE) storage and handling of its current plutonium holdings. The purpose of this assessment was to identify and prioritize ES ampersand H vulnerabilities that could lead to unnecessary or increased radiation exposure of workers, release of radioactive materials to the environment, or radiation exposure of the public. The results will serve as an information base for identifying interim corrective actions and options for the safe management of fissile materials

  16. Research Proposal: Methodology for Assessment Frameworks in Large-scale Infrastructural Water Projects

    NARCIS (Netherlands)

    Hommes, Saskia

    2005-01-01

    Water management is a central and ongoing issue in the Netherlands. Large infrastructural projects are being carried out and planned in a number of water systems. These initiatives operate within a complex web of interactions, between short- and long-term, economic costs and benefits, technical feas

  17. Assessing Factors Affecting Implementation of Information Technology Infrastructure Library Process Measurements

    Science.gov (United States)

    Peterson, Kristy

    2010-01-01

    The capability of organizations to operate on the Information Technology Infrastructure Library (ITIL) framework is reliant on ITIL process measurements. Appropriate ITIL process measurements help ensure desired outcomes, enable corrective actions to take place prior to process failure, and direct process activities towards continuous improvement.…

  18. Development of best practice in nanosafety assessment via the QualityNano Research Infrastructure

    NARCIS (Netherlands)

    Nelissen, Inge; Haase, Andrea; Salvati, Anna

    2015-01-01

    Quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation and subsequent competitive economic advantage. In the FP7 QualityNano Research Infrastructure training modules have been organized and best practices in nan

  19. TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment

    Science.gov (United States)

    Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano

    2016-04-01

    Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an

  20. sUAS for Rapid Pre-Storm Coastal Characterization and Vulnerability Assessment

    Science.gov (United States)

    Brodie, K. L.; Slocum, R. K.; Spore, N.

    2015-12-01

    Open coast beaches and surf-zones are dynamic three-dimensional environments that can evolve rapidly on the time-scale of hours in response to changing environmental conditions. Up-to-date knowledge about the pre-storm morphology of the coast can be instrumental in making accurate predictions about coastal change and damage during large storms like Hurricanes and Nor'Easters. For example, alongshore variations in the shape of ephemeral sandbars along the coastline can focus wave energy, subjecting different stretches of coastline to significantly higher waves. Variations in beach slope and width can also alter wave runup, causing higher wave-induced water levels which can cause overwash or inlet breaching. Small Unmanned Aerial Systems (sUAS) offer a new capability to rapidly and inexpensively map vulnerable coastlines in advance of approaching storms. Here we present results from a prototype system that maps coastal topography and surf-zone morphology utilizing a multi-camera sensor. Structure-from-motion algorithms are used to generate topography and also constrain the trajectory of the sUAS. These data, in combination with mount boresight information, are used to rectify images from ocean-facing cameras. Images from all cameras are merged to generate a wide field of view allowing up to 5 minutes of continuous imagery time-series to be collected as the sUAS transits the coastline. Water imagery is then analyzed using wave-kinematics algorithms to provide information on surf-zone bathymetry. To assess this methodology, the absolute and relative accuracy of topographic data are evaluated in relation to simultaneously collected terrestrial lidar data. Ortho-rectification of water imagery is investigated using visible fixed targets installed in the surf-zone, and through comparison to stationary tower-based imagery. Future work will focus on evaluating how topographic and bathymetric data from this sUAS approach can be used to update forcing parameters in both

  1. Soil depth mapping using seismic surface waves for the assessment of soil vulnerability to erosion.

    Science.gov (United States)

    Samyn, K.; Cerdan, O.; Grandjean, G.; Bitri, A.; Bernardie, S.; Ouvry, J. F.

    2009-04-01

    The purposes of the multidisciplinary DIGISOIL project are the integration and improvement of in situ and proximal technologies for the assessment of soil properties and soil degradation indicators. Foreseen developments concern sensor technologies, data processing and their integration to applications of (digital) soil mapping (DSM). Among available techniques, the seismic one is, in this study, particularly tested for characterising soil vulnerability to erosion. The spectral analysis of surface waves (SASW) method is an in situ seismic technique used for evaluation of the stiffnesses (G) and associated depth in layered systems. The method is based on the propagation of mechanically induced Rayleigh waves. By striking the ground surface with a hammer, seismic waves are generated, including surface Rayleigh waves. During their propagation, they are recorded by seismic receivers (geophone sensors) regularly spaced along a profile to produce a seismogram. The particularity of Rayleigh waves lies in the dependence of their velocity with frequency, a phenomenon called dispersion. A profile of Rayleigh wave velocity versus frequency, i.e., the dispersion curve, is calculated from each recorded seismogram before to be inverted to obtain the vertical profile of shear waves velocity. Then, the soil stiffness can easily be calculated from the shear velocity if the material density is estimated, and the soil stiffness as a function of depth can be obtained. This last information can be a good indicator to identify the soil bedrock limit. From a geometrical point of view, a SASW system adapted to soil characterisation is proposed in the DIGISOIL project. This system was tested for the digital mapping of the depth of loamy material in a catchment of the European loess belt. Parametric penetrometric studies are also conducted for the purpose of verifying the accuracy of the procedure and evaluating its limitations. The depth to bedrock determined by this procedure can then be

  2. Applying the Flood Vulnerability Index as a Knowledge base for flood risk assessment

    NARCIS (Netherlands)

    Balica, S-F.

    2012-01-01

    Floods are one of the most common and widely distributed natural risks to life and property worldwide. An important part of modern flood risk management is to evaluate vulnerability to floods. This evaluation can be done only by using a parametric approach. Worldwide there is a need to enhance our

  3. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    2015-01-01

    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...... for engineering decision-making for flood risk management for residential buildings....

  4. Coastal vulnerability assessment of Dry Tortugas National Park (DRTO) to sea-level rise

    Science.gov (United States)

    Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress

    2005-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Dry Tortugas National Park in Florida. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range and mean significant wave height. The rankings for each input variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Dry Tortugas National Park (DRTO) consists of relatively stable to washover-dominated portions of carbonate beach and man-made fortification. The areas within Dry Tortugas that are likely to be most vulnerable to sea-level rise are those with the highest rates of shoreline erosion and the highest wave energy.

  5. Coastal vulnerability assessment of Gulf Islands National Seashore (GUIS) to sea-level rise

    Science.gov (United States)

    Pendleton, Elizabeth A.; Hammar-Klose, Erika S.; Thieler, E. Robert; Williams, S. Jeffress

    2004-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Gulf Islands National Seashore (GUIS) in Mississippi and Florida. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean wave height. The rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The Gulf Islands in Mississippi and Florida consist of stable and washover dominated portions of barrier beach backed by wetland and marsh. The areas likely to be most vulnerable to sea-level rise are those with the highest occurrence of overwash, the highest rates of shoreline change, the gentlest regional coastal slope, and the highest rates of relative sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers.

  6. Coastal vulnerability assessment of Cumberland Island National Seashore (CUIS) to sea-level rise

    Science.gov (United States)

    Pendleton, Elizabeth A.; Thieler, E. Robert; Jeffress Williams, S.

    2004-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Cumberland Island National Seashore in Georgia. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range and mean significant wave height. The rankings for each input variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Cumberland Island National Seashore consists of stable to washover-dominated portions of barrier beach backed by wetland, marsh, mudflat and tidal creek. The areas within Cumberland that are likely to be most vulnerable to sea-level rise are those with the lowest foredune ridge and highest rates of shoreline erosion.

  7. Coastal vulnerability assessment of Olympic National Park to sea-level rise

    Science.gov (United States)

    Pendleton, Elizabeth A.; Hammar-Klose, Erika S.; Thieler, E. Robert; Williams, S. Jeffress

    2004-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Olympic National Park (OLYM), Washington. The CVI scores the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean wave height. The rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. The Olympic National Park coast consists of rocky headlands, pocket beaches, glacial-fluvial features, and sand and gravel beaches. The Olympic coastline that is most vulnerable to sea-level rise are beaches in gently sloping areas.

  8. Coastal vulnerability assessment of Point Reyes National Seashore (PORE) to sea-level rise

    Science.gov (United States)

    Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress

    2006-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Point Reyes National Seashore in Northern California. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range and mean significant wave height. The rankings for each input variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Point Reyes National Seashore consists of sand and gravel beaches, rock cliffs, sand dune cliffs, and pocket beaches. The areas within Point Reyes that are likely to be most vulnerable to sea-level rise are areas of unconsolidated sediment where the coastal slope is lowest and wave energy is high.

  9. Coastal vulnerability assessment of Assateague Island National Seashore (ASIS) to sea-level rise

    Science.gov (United States)

    Pendleton, Elizabeth A.; Williams, S. Jeffress; Thieler, E. Robert

    2004-01-01

    A coastal vulnerability index (CVI, http://pubs.usgs.gov/of/2004/1020/html/cvi.htm) was used to map relative vulnerability of the coast to future sea-level rise within Assateague Island National Seashore (ASIS) in Maryland and Virginia. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean wave height. Rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Assateague Island consists of stable and washover dominated portions of barrier beach backed by wetland and marsh. The areas within Assateague that are likely to be most vulnerable to sea-level rise are those with the highest occurrence of overwash and the highest rates of shoreline change.

  10. Coastal vulnerability assessment of Cape Hatteras National Seashore (CAHA) to sea-level rise

    Science.gov (United States)

    Pendleton, Elizabeth A.; Theiler, E. Robert; Williams, S. Jeffress

    2005-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Cape Hatteras National Seashore (CAHA) in North Carolina. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range, and mean significant wave height. The rankings for each variable were combined and an index value was calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Cape Hatteras National Seashore consists of stable and washover dominated segments of barrier beach backed by wetland and marsh. The areas within Cape Hatteras that are likely to be most vulnerable to sea-level rise are those with the highest occurrence of overwash and the highest rates of shoreline change.

  11. Coastal vulnerability assessment of Fire Island National Seashore to sea-level rise

    Science.gov (United States)

    Pendleton, Elizabeth A.; Williams, S. Jeffress; Thieler, E. Robert

    2004-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Fire Island National Seashore (FIIS), New York. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean wave height. The rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. Fire Island consists of stable and washover dominated portions of barrier beach backed by lagoons, tidal wetlands and marsh. The areas most vulnerable to sea-level rise are those with the highest historic occurrence of overwash and the highest rates of shoreline change. Implementation of large-scale beach nourishment and other coastal engineering alternatives being considered for Fire Island could alter the CVI computed here. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers.

  12. Vulnerability Assessment of the nuclear power plant Vandellos II before a tornado

    International Nuclear Information System (INIS)

    The purpose of this work was the study of vulnerability to tornado event Vandellos II NPP. To do this, we have evaluated all structures (buildings), security systems and components to the installation of wind stresses, depression and impact of projectiles, generated by a tornado on the site.

  13. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas M; Day, Richard H; Gabler, Christopher A; Stagg, Camille L; Grace, James B

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnera