WorldWideScience

Sample records for assessing genetic diversity

  1. Do species conservation assessments capture genetic diversity?

    Directory of Open Access Journals (Sweden)

    Malin C. Rivers

    2014-12-01

    Our results support the view that current threat thresholds of the IUCN Red List criteria reflect genetic diversity, and hence evolutionary potential; although the genetic diversity distinction between threatened categories was less evident. Thus, by supplementing conventional conservation assessments with genetic data, new insights into the biological robustness of IUCN Red List assessments for targeted conservation initiatives can be achieved.

  2. Genetic diversity assessed by microsatellite markers in sweet corn cultivars

    OpenAIRE

    Ana Daniela Lopes; Carlos Alberto Scapim; Maria de Fátima Pires da Silva Machado; Claudete Aparecida Mangolin; Tereza Aparecida Silva; Liriana Belizário Cantagali; Flávia França Teixeira; Freddy Mora

    2015-01-01

    Information on genetic diversity is essential to the characterization and utilization of germplasm. The genetic diversity of twenty-two sweet corn cultivars (seventeen open-pollinated varieties, OPV, and five hybrids, H) was investigated by applying simple sequence repeat markers. A total of 257 primers were tested, of which 160 were found to be usable in terms of high reproducibility for all the samples tested; 45 were polymorphic loci, of which 30 were used to assess the genetic diversity o...

  3. An assessment of the Central-China pig genetic diversity using Weitzman approach

    OpenAIRE

    Zhenzhen Liu; Xiuying Guo; Baoyu Li; Ming Wang; Xi Wang; Keliang Wu

    2010-01-01

    The genetic diversity of livestock breeds plays an important role in livestock production, but the significant loss of breeds is threatening genetic diversity of farm animal genetic resources (AnGR). The Weitzman approach which was accepted as a framework for assessment of genetic diversity on AnGR was exploited. In this study, several measurement indexes of genetic diversity, involving total genetic diversity, contributions of each breed to the total diversity, marginal diversities, conserva...

  4. Assessment of genetic diversity of sweet potato in Puerto Rico

    Science.gov (United States)

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  5. Genetic diversity assessed by microsatellite markers in sweet corn cultivars

    Directory of Open Access Journals (Sweden)

    Ana Daniela Lopes

    2015-12-01

    Full Text Available Information on genetic diversity is essential to the characterization and utilization of germplasm. The genetic diversity of twenty-two sweet corn cultivars (seventeen open-pollinated varieties, OPV, and five hybrids, H was investigated by applying simple sequence repeat markers. A total of 257 primers were tested, of which 160 were found to be usable in terms of high reproducibility for all the samples tested; 45 were polymorphic loci, of which 30 were used to assess the genetic diversity of sweet corn cultivars. We detected a total of 86 alleles using 30 microsatellite primers. The mean polymorphism was 82 %. The highest heterozygosity values (Ho = 0.20 were found in the PR030-Doce Flor da Serra and BR427 III OPVs, whereas the lowest values (0.14 were recorded in the MG161-Branco Doce and Doce Cubano OPVs. The polymorphism information content ranged from 0.19 (Umc2319 to 0.71 (Umc2205. The analysis of molecular variance revealed that most of the genetic variability was concentrated within the cultivars of sweet corn (75 %, with less variability between them (25 %. The consensus tree derived from the neighbor-joining (NJ algorithm using 1,000 bootstrapping replicates revealed seven genetically different groups. Nei’s diversity values varied between 0.103 (Doce do Hawai × CNPH-1 cultivars and 0.645 (Amarelo Doce × Lili cultivars, indicating a narrow genetic basis. The Lili hybrid was the most distant cultivar, as revealed by Principal Coordinates Analysis and the NJ tree. This study on genetic diversity will be useful for planning future studies on sweet corn genetic resources and can complement the breeding programs for this crop.

  6. Molecular assessment of genetic diversity in mung bean germplasm

    Indian Academy of Sciences (India)

    G. Roopa Lavanya; Jyoti Srivastava; Shirish A. Ranade

    2008-04-01

    RAPD profiles were used to identify the extent of diversity among 54 accessions of mung bean that included both improved and local land races. Out of the 40 primers screened, seven primers generated 174 amplification products with an average of 24.85 bands per primer. The RAPD profiles were analysed for Jaccard’s similarity coefficients that was found to be in the range from 0 to 0.48, indicating the presence of wide range of genetic diversity at molecular level. Cluster analysis was carried out based on distances (1-similarity coefficient) using neighbour-joining method in Free Tree package. The dendrogram resolved all the accessions into two major clusters, I (with 11 accessions) and II (with 43 accessions). However, the cluster was further divided into four subclusters (II A with six, II B with nine, II C with 15 and II D with 13 accessions). The distribution of the accessions in different clusters and subclusters appeares to be related to their performance in field conditions for 10 morphological traits that were scored. This study indicated that the RAPD profiles provide an easy and simple technique for preliminary genetic diversity assessment of mung bean accessions that may reflect morphological trait differences among them.

  7. Assessment of genetic diversity in Brazilian barley using SSR markers

    Directory of Open Access Journals (Sweden)

    Jéssica Rosset Ferreira

    2016-03-01

    Full Text Available Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC, with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs.

  8. Assessment of genetic diversity in Brazilian barley using SSR markers

    Science.gov (United States)

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  9. Genetic Diversity Of Plukenetia Volubilis L. Assessed By ISSR Markers*

    Directory of Open Access Journals (Sweden)

    Ocelák M.

    2015-12-01

    Full Text Available The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%, gene diversity (0.103, and Shannon’s information index (0.15 were exhibited by the Santa Lucia population, which was also geographically most distant. This fact may be attributed to a very small size of this group. In contrast, the Dos de Mayo population exhibited the highest percentage of polymorphic bands (78%, and the Santa Cruz population the highest Nei’s gene diversity index (0.238 and Shannon’s information index (0.357. The obtained level of genetic variability was 36% among tested populations and 64% within populations. Although the diversity indices were low, a cluster analysis revealed 8 clusters containing mainly samples belonging to individual populations. Principal coordinate analysis clearly distinguished Chumbaquihui, Pucallpa, Dos de Mayo, and Aguas de Oro populations, the others were intermixed. The obtained results indicated the level of genetic diversity present in this location of Peru, although it is influenced by anthropological aspects and independent on the geographical distances.

  10. Genetic Diversity Of Plukenetia Volubilis L. Assessed By ISSR Markers*

    OpenAIRE

    Ocelák M.; Čepková P. Hlásná; Viehmannová I.; Dvořáková Z.; Huansi D.C.; Lojka B.

    2015-01-01

    The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%), gene diversity (0.103), and Shannon’s information index (0.15) were exhibited by the Santa Lucia population, which was a...

  11. Genetic diversity of Cuban pineapple germplasm assessed by AFLP Markers

    Directory of Open Access Journals (Sweden)

    Ermis Yanes Paz

    2012-01-01

    Full Text Available The Cuban pineapple germplasm collection represents the genetic diversity of pineapple cultivated in that country and includes other important genotypes obtained from the germplasm collections in Brazil and Martinique. The collection has previously been characterized with morphological descriptors but a molecular characterization has been lacking. With this aim, 56 six genotypes of A. comosus and one of Bromelia pinguin were analyzed with a total of 191 AFLP markers. A dendrogram that represents the genetic relationships between these samples based on the AFLP results showed a low level of diversity in the Cuban pineapple collection. All Ananas comosus accessions, being the majority obtained from farmers in different regions in Cuba, are grouped at distances lower than 0.20. Molecular characterization was in line with morphological characterization. These results are useful for breeding and conservation purposes.

  12. Genetic diversity of Cuban pineapple germplasm assessed by AFLP Markers

    OpenAIRE

    Ermis Yanes Paz; Katia Gil; Laureano Rebolledo; Andrés Rebolledo; Daniel Uriza; Octavio Martínez; Miriam Isidrón; Leyanes Díaz; José Carlos Lorenzo; June Simpson

    2012-01-01

    The Cuban pineapple germplasm collection represents the genetic diversity of pineapple cultivated in that country and includes other important genotypes obtained from the germplasm collections in Brazil and Martinique. The collection has previously been characterized with morphological descriptors but a molecular characterization has been lacking. With this aim, 56 six genotypes of A. comosus and one of Bromelia pinguin were analyzed with a total of 191 AFLP markers. A dendrogram that represe...

  13. Genetic diversity assessment in brassica germplasm based on morphological attributes

    International Nuclear Information System (INIS)

    Genetic diversity of 28 Brassica genotypes was studied using different morphological attributes. Data were recorded on days to maturity (DM), plant height (PH), primary branches plant (PBPP), pod length (PL), seed pod (SP), 1000 - seed weight (1000 - SW), yield plant (YPP) and oil (percentage). Three checks (Pakola, CM and TA), were used to check the performance of collected materials with already available brassica varieties. significant statistical differences were observed among the tested genotypes based on the studied morphological traits. Among the tested genotypes, genotype keelboat proved to be superior as compared to other studied genotypes due to maximum level of studied traits like pod length (7.03 cm), seed pod (32.33), 1000 - seed weight (5.38 g), seed yield plant (110.8 g) and oil content (52.9 percentage. The highest level of performance recorded by kalabat in terms of branches plant, pod length (cm), number of seed pod, seed yield plant (g), 1000 - seed weight (g) and oil content (percentage), indicates that this genotype is genetically different and superior than the other studied genotype. Therefore, genotype kalabat can be either used as variety after adaptability trials over a larger area or included in Brassica breeding programmes as a good source of genetic variation. (author)

  14. Assessing the contribution of breeds to genetic diversity in conservation schemes

    Directory of Open Access Journals (Sweden)

    Groenen Martien AM

    2002-09-01

    Full Text Available Abstract The quantitative assessment of genetic diversity within and between populations is important for decision making in genetic conservation plans. In this paper we define the genetic diversity of a set of populations, S, as the maximum genetic variance that can be obtained in a random mating population that is bred from the set of populations S. First we calculated the relative contribution of populations to a core set of populations in which the overlap of genetic diversity was minimised. This implies that the mean kinship in the core set should be minimal. The above definition of diversity differs from Weitzman diversity in that it attempts to conserve the founder population (and thus minimises the loss of alleles, whereas Weitzman diversity favours the conservation of many inbred lines. The former is preferred in species where inbred lines suffer from inbreeding depression. The application of the method is illustrated by an example involving 45 Dutch poultry breeds. The calculations used were easy to implement and not computer intensive. The method gave a ranking of breeds according to their contributions to genetic diversity. Losses in genetic diversity ranged from 2.1% to 4.5% for different subsets relative to the entire set of breeds, while the loss of founder genome equivalents ranged from 22.9% to 39.3%.

  15. Assessment of genetic diversity in germplasm of linseed

    International Nuclear Information System (INIS)

    Abstract:- A set of 55 linseed accessions including a check variety (Chandni) were evaluated under rainfed conditions during three crop seasons i.e. 2008-09, 2009-10 and 2010-11. Data were recorded for days to flower initiation, flower completion, maturity, reproductive period, plant height, branches per plant, bolls per plant, plot biomass, harvest index and seed yield. Wide ranges between the mean values with high CV values were exhibited by plant height, bolls per plant, biomass and seed yield accompanied with maximum values of variances and standard deviation, revealed the existence of greater genetic diversity in the accessions for these traits. Dendrogram based on Euclidean distance coefficient using 10 quantitative traits, grouped all the linseed accessions into 13 clusters. Cluster II was the biggest and had 33 accessions followed by Cluster I having 11 accessions. For the development of high yielding varieties, best performing accessions of Clusters I and II could be used in hybridization programme by crossing with accessions of Clusters VII, VIII, IX and X followed by selection in segregating populations. (author)

  16. Assessment of genetic diversity in tomato landraces using ISSR markers

    Directory of Open Access Journals (Sweden)

    Henareh Mashhid

    2016-01-01

    Full Text Available Tomato is one of the most economically important vegetable crops in many parts of the world. Turkey and Iran are the main producers of tomatoes in the world. The objective of this study was to assess the genetic variation of 93 tomato landraces from East Anatolian region of Turkey and North-West of Iran, along with three commercial cultivars using 14 ISSR primers. The percentage of polymorphic loci (PPL for all primers was 100%. The mean of expected heterozygosity (He for the primers varied from 0.153 (UBC808 to 0.30 (UBC848. The dendrogram placed the landraces and commercial cultivars into nine groups. The genotypes originating from the same region, often located in the same group or two adjacent groups. The highest likelihood of the data was obtained when population were located into 2 sub-populations (K = 2. These sub-populations had Fst value of 0.16 and 0.21.

  17. Assessing Genetic Diversity Based on Gliadin Proteins in Aegilops cylindrica Populations from Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Toraj KHABIRI

    2013-02-01

    Full Text Available Wild wheat progenitors served as a valuable gene pool in breeding perspectives. In this respect, gliadins could be an important tool in assessing genetic variability as protein markers. Thus, genetic diversity of gliadin protein patterns in seventeen populations of Aegilops cylindrica collected from northwest of Iran were investigated using acid polyacrylamide gel electrophoresis. Results showed that the highest number of bands in the electrophoregrams were related to the ω type of geliadins. Conversely, the lowest number of bands were pertained to the β type of gliadins. Genetic diversity between populations was greater than within population variation. Assessment of total variation for the three gliadin types indicated that the highest total variation was related to β type while, the lowest one was belonged to ω type. Cluster analysis using complete linkage method divided populations into two separated groups in which genetic diversity does not follow from geographical distribution.

  18. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zong

    Full Text Available Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777. According to the coefficient of genetic differentiation (Fst = 0.1215, genetic variation within the populations (87.85% were remarkably higher than among populations (12.15%. The average gene flow (Nm = 1.8080 significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080 among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km among populations (r = 0.419, P = 0.005, suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic

  19. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    OpenAIRE

    Callahan, Colin M.; Rowe, Carol A.; Ryel, Ronald J.; Shaw, John D.; Madritch, Michael D.; Mock, Karen E.

    2013-01-01

    Aim: Quaking aspen (Populus tremuloides) has the largest natural distribution of any tree native to North America. The primary objectives of this study were to characterize range-wide genetic diversity and genetic structuring in quaking aspen, and to assess the influence of glacial history and rear-edge dynamics. Location: North America. Methods: Using a sample set representing the full longitudinal and latitudinal extent of the species’ distribution, we examined geographical patterns o...

  20. Assessment of genetic diversity in Saccharum using SSR markers and capillary electrophoresis

    Science.gov (United States)

    This study was conducted to assess the genetic diversity amongst 12 Saccharum clones from 3 species using SSR markers and CE (capillary electrophoresis). Genomic DNA of 12 sugarcane cultivars was amplified with 19 SSR primer pairs. A total of 229 bands generated with a size range between 100 and 26...

  1. Assessment of genetic diversity in Horse gram (Dolichos uniflorus

    Directory of Open Access Journals (Sweden)

    V Sandeep Varma, K Kanaka Durga and R Ankaiah

    2013-06-01

    Full Text Available Twenty three horse gram accessions were studied during spring seasons of 2008-09 and 2010-11. The results indicated significant differences among the 23 accessions for all characters studied, indicating the presence of sufficient genetic variation. Mahalanobis D2 statistics grouped all the 23 cultivars of horse gram into seven clusters. Cluster I had 11 genotypes, Cluster II had 7 genotypes while clusters III, IV, V, VI and VII contributed as solitary germplasms. Among the seed yield components, test weight (8.7 % followed by seed yield per plant (5.5 % and pod length (2.4 % contributed maximum towards the divergence. Among seed quality parameters, seedling dry weight (50.99 % contributed the maximum to the genetic divergence. The maximum intra cluster distance ranged from 0 (clusters III, IV, V, VI and VII to 8.15 (cluster IІ. The maximum inter cluster distance (24.89 was noticed between cluster V (HG 18 and cluster VII (AK 38 indicating that the genotypes included in these clusters had maximum divergence and may be used as promising parents for hybridization programme to obtain better segregants in hose gram.

  2. Genetic diversity and variability in two Italian autochthonous donkey genetic types assessed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Donato Matassino

    2014-01-01

    Full Text Available Since 13rd century, Italian domestic autochthonous donkey population has been characterised by Mediterranean grey mousy cruciate ancestral phenotype, currently typical of Amiata donkey (AD genetic type. This phenotype persisted up to the 16th century when a marked introduction of Hispanic and French big sized and dark bay or darkish coloured sires occurred. In the context of a safeguard programme of Latial Equide resources, the aim of this research was to evaluate the genetic diversity and similarity between the AD breed and an autochthonous donkey population native from Lazio, the Viterbese donkey (VD, using molecular markers. A total of 135 animals (50 AD and 85 VD were genetically characterised by using 16 short tandem repeat markers. A high genetic differentiation between populations (FST=0.158; P<0.01 and a low betweenbreeds genetic similarity (0.233±0.085 were observed. Correspondence analysis, the result of STRUCTURE software analysis and analysis of molecular variance would seem to indicate genetically different entities as well. It would be desirable to increase the number of comparison with other breeds to better understand the origin of VD. Moreover, results obtained in this study suggest that the loss of genetic variation observed in VD could mainly derive from unnoticed sub-population structuring (Wahlund effect, rather than to other factors such as inbreeding, null alleles or selection influence.

  3. Assessing genetic diversity of wild populations of Japanese flounder using AFLP markers

    Institute of Scientific and Technical Information of China (English)

    XU Xiaofei; ZHANG Quanqi; WANG Zhigang; QI Jie; ZHANG Zhifeng; BAO Zhenmin; Heisuke Nakagawa

    2006-01-01

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate the genetic diversity of four wild geographical populations of Japanese flounder (Paralichthys olivaceus). A total of 775 loci (58.32% of which was polymorphic) in the range between 100 and 1 300 base pairs were detected from 110 individuals using seven primer combinations. The percentage of polymorphic loci detected by single primer combination for each population was calculated, ranging from 19.59% to 53.33%. Genetic similarities within and among the populations were calculated from the binary matrices of presence - absence. Phylogenetic tree of four populations was constructed by using the UPGMA method using PHYLIP Version 3.5. According to intrapopulation genetic similarities, CW population displayed the highest genetic diversity value and KY population had the lowest genetic diversity value.The distance between CW and CF populations was the farthest, which was possibly resulted from the farthest distance of Weihai of Shandong and Fujian of China compared with the geographical distance between other locations of populations. The subpopulation differentiation value ( Gst ) is 0.356 5, showing a certain extent of differentiation among the four geographical populations. AFLP technology was confirmed to be an effective tool to assess within- and among-population genetic diversity of Japanese flounder. The present survey provided significant insights for research in the Japanese flounder breeding program.

  4. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rabinowicz Pablo D

    2010-01-01

    Full Text Available Abstract Background Castor bean (Ricinus communis is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale. We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74% followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity.

  5. Genetic Diversity Assessment of Acid Lime (Citrus Aurantifolia Swingle Landraces of Eastern Nepal Using RAPD Markers

    Directory of Open Access Journals (Sweden)

    NN Munankarmi

    2014-09-01

    Full Text Available Acid lime (Citrus aurantifolia Swingle is an important commercial fruit crop, cultivated from terai to high hill landscapes of Nepal. However, production and productivity is very low due to various reasons including infestations by various diseases and pests, lack of diseases and pests resistant and high yielding varieties. In this context, determination of genetic variation at molecular level is fundamental to citrus breeders for the development of elite cultivars with desirable traits. In the present study, Random Amplified Polymorphic DNA (RAPD marker technique has been employed to assess genetic diversity in 60 acid lime landraces representing different agro-ecological zones of eastern Nepal. Nine selected arbitrary primers generated 79 RAPD fragments of which 75 were polymorphic (94.94%. Phenogram was constructed by NTSYSPC ver. 2.21i using UPGMA cluster analysis based on Jaccard’s similarity coefficient to deduce overall genetic diversity and relationships of the acidlime genotypes under study. Sixty acid lime landraces formed seven clusters and similarity value ranged from 38% to 98% with an average of 72%. Genetic variation at different agro-ecological zones was assessed using Popgene ver. 1.32 and found 47% to 69.6% polymorphism. Shannon’s index and Nei’s gene diversity showed highest level of acid lime diversity in Terai zone (PPB, 69.62%; H, 0.213; I, 0.325 followed by mid-hill zone (PPB, 67.09%; H, 0.208; I, 0.317. The results obtained will be useful to citrus breeders for elite cultivar development. The RAPD-PCR technique is found to be the rapid and effective tool for genetic diversity assessment in acid lime landraces of Nepal.

  6. Genetic Diversity in Jatropha curcas L. Assessed with SSR and SNP Markers

    Directory of Open Access Journals (Sweden)

    Juan M. Montes

    2014-08-01

    Full Text Available Jatropha curcas L. (jatropha is an undomesticated plant that has recently received great attention for its utilization in biofuel production, rehabilitation of wasteland, and rural development. Knowledge of genetic diversity and marker-trait associations is urgently needed for the design of breeding strategies. The main goal of this study was to assess the genetic structure and diversity in jatropha germplasm with co-dominant markers (Simple Sequence Repeats (SSR and Single Nucleotide Polymorphism (SNP in a diverse, worldwide, germplasm panel of 70 accessions. We found a high level of homozygosis in the germplasm that does not correspond to the purely outcrossing mating system assumed to be present in jatropha. We hypothesize that the prevalent mating system of jatropha comprise a high level of self-fertilization and that the outcrossing rate is low. Genetic diversity in accessions from Central America and Mexico was higher than in accession from Africa, Asia, and South America. We identified makers associated with the presence of phorbol esters. We think that the utilization of molecular markers in breeding of jatropha will significantly accelerate the development of improved cultivars.

  7. ATPase 8/6 GENE BASED GENETIC DIVERSITY ASSESSMENT OF SNAKEHEAD MURREL, Channa striata (Perciformes, Channidae).

    Science.gov (United States)

    Baisvar, V S; Kumar, R; Singh, M; Singh, A K; Chauhan, U K; Nagpure, N S; Kushwaha, B

    2015-10-01

    The mitochondrial DNA (mtDNA) ATPase 8/6 gene has been used in phylogenetic as well as in phylogeographic studies along with other mtDNA markers. In this study, ATPase gene sequences were used to assess the genetic structuring and phylogeographic patterns in Channa striata. Out of 884 nucleotide positions generated in ATPase 8/6 genes, 76 were polymorphic. The study suggested 23 unique haplotypes from 67 individuals of nine populations collected from different riverine systems of India. The ATPase 8/6 sequence revealed highest haplotype as well as nucleotide diversities in Imphal River population and lowest diversities in Tapti River population. The pattern of genetic diversity and haplotype network indicated distinct mitochondrial lineages for Chaliyar population, whereas mismatch distribution strongly suggested a population expansion in mid pleistocene epoch (0.4 Mya) with distinct genetic structuring in C. striata. The baseline information on genetic variation and the population sub-structuring would facilitate conservation and management of this important snakehead murrel. PMID:27169232

  8. Assessment of sorghum genetic resources for genetic diversity and drought tolerance using molecular markers and agro-morphological traits

    International Nuclear Information System (INIS)

    Forty sorghum genotype were investigated for genetic diversity and drought tolerance. Diversity parameters were estimated using 16 simple sequence repeats markers. For assessment of drought tolerance, the genotype were field evaluated under normal and drought stress condition for two seasons in three environments, in Sudan. In total, 98 SSRs alleles were detected with an average of 6.1 alleles per locus. The estimated polymorphic information contents ranged from 0.33 to 0.86. The genetic similarity ranged from 0.00 to 0.88 with a low mean of 0.32. The dendrogram, generated from the UPGMA cluster analysis, showed two main clusters differentiated into nine sub-clusters with close relationship to morphological characters and pedigree information. Mantel statistics revealed a good fit of the cophenetic values to the original data set (r= 0.88). The overall mean genetic diversity was 0.67. Significant differences were detected among genotypes under both normal and drought stressed conditions for all measured traits. Based on the relative yield, the most drought-tolerant genotypes were Arfa Gadamak, Wad Ahmed, El-Najada, Korcola, ICSR 92003 And Sham Sham. Drought five days delay in flowering, and the earliest genotypes were PI 569695, PI 570446, PI 569953, Dwarf White Milo and PI 56995. (Author)

  9. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars

    Science.gov (United States)

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938–0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars. PMID:27379163

  10. Assessment of Genetic Diversity in Bamboo Accessions of India Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Bharat Gami

    2015-06-01

    Full Text Available Bamboo is an important grass with wide scale applications in paper industries, medicines, constructions industries. It is potential feedstock for advanced biofuel production due to its favourable characteristics, natural abundance, rapid growth, perennial nature and higher CO2 sequestration. The objective of this study is to understand genetic diversity between the bamboo accessions with respect to geographical origin to correlate molecular information with feedstock characterization and adaptation to abiotic stress. In this study, genomic DNA was extracted from twenty bamboo accessions collected from different regions of India and genetic variations were assessed by inter simple sequence repeat (ISSR based molecular marker approach using 8 primers. Maximum genetic distance was observed between Bambusa wamin-Itanagar & B. ventricosa-Durg (0.48221 & minimum genetic distance between Bambusa balcooa-Modasa & Bambusa balcooa-Tripura (0.00787. Bambusa balcooa and Bambusa vulgaris were genetically similar as compared to other accessions. The genetic distance is independent of geographical distance for the bamboo accessions considered in this study. The findings of this study will help to understand the degree of differences between bamboo accessions under the same environmental conditions and to identify the representative accessions that can be used for abiotic stress resistance studies. The information can be explored for screening of closely related bamboo accessions for abiotic stress resistance screening trials.

  11. RAPD Assessment of Genetic Diversity of Yunjie(Eruca sativa Mill.) in China

    Institute of Scientific and Technical Information of China (English)

    SUN Wan-cang; WANG He-lin; GUAN Chun-yun; MENG Ya-xiong; ZHANG Jin-wen; LIU Zi-gang; ZHANG Tao; LI Xun; CHEN She-yuan; ZENG Xiu-cong

    2003-01-01

    Genetic diversity of Yunjie (Eruca sativa Mill. ) in China was assessed by analyses of RAPD (randomly amplified polymorphic DNA) markers. Twenty native cultivars representing Yunjie-growing ecotypes in China were selected as material in this study. Twelve out of the 64 tested random decamer primers were able to identify 131 stable RAPD bands from these Yunjie cultivars. Of them 105 bands, or 80.15% of the total, were polymorphic. Most Yunjie cultivars from the same ecotype had their characteristic DNA bands.Cluster analysis by unweighted pair group method of arithmetic means (UPGMA) suggested that the 20 Yunjie genotypes could be divided into four groups. The genetic distances among the 20 cultivars varied from 0. 117 8between Shuozhou and Shenchi to 0. 499 4 between Hetian and Xiliang. Hetian alone could be a new type of Yunjie identified in China because it had the greatest genetic distance from all the other tested cultivars. These results indicate that Chinese Yunjie have abundant genetic diversity. Classification of Chinese Yunjie based on the RAPD information was in good agreement with the relationships between these Yunjie cultivars in their geographic origins and their plant morphology.

  12. Genetic Diversity Assessment of Portuguese Cultivated Vicia faba L. through IRAP Markers

    Directory of Open Access Journals (Sweden)

    Diana Tomás

    2016-03-01

    Full Text Available Faba bean have been grown in Portugal for a long time and locally adapted populations are still maintained on farm. The genetic diversity of four Portuguese faba bean populations that are still cultivated in some regions of the country was evaluated using the Inter Retrotransposons Amplified Polymorphism (IRAP technique. It was shown that molecular markers based on retrotransposons previously identified in other species can be efficiently used in the genetic variability assessment of Vicia faba. The IRAP experiment targeting Athila yielded the most informative banding patterns. Cluster analysis using the neighbor-joining algorithm generated a dendrogram that clearly shows the distribution pattern of V. faba samples. The four equina accessions are separated from each other and form two distinct clades while the two major faba bean accessions are not unequivocally separated by the IRAP. Fluorescent In Situ Hybridization (FISH analysis of sequences amplified by IRAP Athila revealed a wide distribution throughout V. faba chromosomes, confirming the whole-genome coverage of this molecular marker. Morphological characteristics were also assessed through cluster analysis of seed characters using the unweighted pair group method arithmetic average (UPGMA and principal component analysis (PCA, showing a clear discrimination between faba bean major and equina groups. It was also found that the seed character most relevant to distinguish accessions was 100 seed weight. Seed morphological traits and IRAP evaluation give similar results supporting the potential of IRAP analysis for genetic diversity studies.

  13. ASSESSMENT OF GENETIC DIVERSITY OF REHMANNIA GLUTINOSA LIBOSCH BASED ON ISSR MARKERS

    Directory of Open Access Journals (Sweden)

    YANQING ZHOU, WUJUN GAO, HONGYING DUAN, FENGPING GU

    2007-08-01

    Full Text Available In order to assess the genetic diversity of Rehmannia glutinosa Libosch cultivars ( lines in Huai zone, Inter-simple sequence repeat (ISSR was performed. Ten appropriate ISSR primers were selected from a total of 44 ISSR ones for ISSR PCR amplification. The ten primers could amplify one hundred and ten bands. Based on them, A Jaccard’s genetic similarity matrix and a dendrogram for these ten cultivars were established using SPSS 10.0 software. In this dendrogram, they could be divided into two groups : Group1 contained six individuals such as Zupei 85.5, Datian 85.5, Zupei 9302, Jinbai, Jinzhuangyuan and Datian9302; Group2 consisted of four ones such as Beijing No.1, Dahongpao, Dihuang9104 and wild dihuang. Furthermore, Principal coordinate analysis (PCA supported the above cluster analysis; Shannon\\'s Information index (I is 0.3577, effective number of alleles (Ne is 1.4037, the percentage of polymorphic loci is 71.82 % by means of POPGENE32 software; A DNA fingerprint was developed with a single primer, ISSR6, in which each of ten individuals tested had its unique fingerprint pattern and was distinguished from each other. The results revealed that ISSR method is suitable for DNA fingerprinting, identification and genetic diversity analysis of Rehmannia glutinosa in Huai zone.

  14. ASSESSMENT OF GENETIC DIVERSITY OF REHMANNIA GLUTINOSA LIBOSCH BASED ON ISSR MARKERS

    Directory of Open Access Journals (Sweden)

    Yangqing Zhou

    2007-03-01

    Full Text Available In order to assess the genetic diversity of Rehmannia glutinosa Libosch cultivars ( lines in Huai zone,Inter-simple sequence repeat (ISSR was performed. Ten appropriate ISSR primers were selected from a total of 44 ISSRones for ISSR PCR amplification. The ten primers could amplify one hundred and ten bands. Based on them, A Jaccard’sgenetic similarity matrix and a dendrogram for these ten cultivars were established using SPSS 10.0 software. In thisdendrogram, they could be divided into two groups : Group1 contained six individuals such as Zupei 85.5, Datian 85.5,Zupei 9302, Jinbai, Jinzhuangyuan and Datian9302; Group2 consisted of four ones such as Beijing No.1, Dahongpao,Dihuang9104 and wild dihuang. Furthermore, Principal coordinate analysis (PCA supported the above cluster analysis;Shannon's Information index (I is 0.3577, effective number of alleles (Ne is 1.4037, the percentage of polymorphic lociis 71.82 % by means of POPGENE32 software; A DNA fingerprint was developed with a single primer, ISSR6, in whicheach of ten individuals tested had its unique fingerprint pattern and was distinguished from each other. The resultsrevealed that ISSR method is suitable for DNA fingerprinting, identification and genetic diversity analysis of Rehmanniaglutinosa in Huai zone.

  15. Assessment of genetic diversity in pigeonpea germplasm collection using morphological characters

    OpenAIRE

    K. Rupika and J. R. Kannan Bapu

    2014-01-01

    An investigation was undertaken to ascertain the extent of genetic diversity present among 90 pigeonpea genotypes using D2 statistic. Cluster analysis grouped 90 germplasm into six clusters based on the degree of divergence between the genotypes. Clustering pattern revealed non parallelism between genetic diversity and geographic distribution. Inter cluster distance was least between cluster II and cluster III and cluster I and VI, indicating less divergence in these four clusters. Maximum in...

  16. Genetic diversity of the Brazilian Creole cattle Pé-duro assessed by microsatellites and mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Oliveira

    2012-11-01

    Full Text Available The objective of this study was to describe the genetic diversity and structure of the largest Pé-duro population by assessing variation at ten autosomal microsatellite (STR loci and mitochondrial DNA (mtDNA sequences. The mean expected heterozygosity was 0.755, the mean observed heterozygosity was 0.600 and significant inbreeding coefficient (Fis and deviations from the Hardy-Weinberg equilibrium in most of analyzed loci demonstrate the impact of inbreeding and homozygosis on this population. A more in-depth genetic analysis could be achieved by expanding the STR list. The analysis of mtDNA provided evidence of ancestral African taurine haplotypes in Pé-duro and excluded maternal Zebuine introgression. In this report, the main Pé-duro population is genetically portrayed by sampling approximately 40% of it. As this herd represents the core of the Pé-duro conservation program, these findings are of outstanding value for the management and preservation of this Brazilian 'native' cattle breed.

  17. Genetic Diversity of Landraces in Gossypium arboreum L. Race sinense Assessed with Simple Sequence Repeat Markers

    Institute of Scientific and Technical Information of China (English)

    Wang-Zhen Guo; Bao-Liang Zhou; Lu-Ming Yang; Wei Wang; Tian-Zhen Zhang

    2006-01-01

    Asiatic cotton (Gossypium arboreum L.) is an "Old World" cultivated cotton species, the sinense race of which is planted extensively in China. This species is still used in the current tetraploid cotton breeding program as an elite germplasm line, and is also used as a model for genomic research in Gossypium. In the present study, 60 cotton microsatellite markers, averaging 4.6 markers for each A-genome chromosome,were chosen to assess the genetic diversity of 109 accessions. These included 106 G. arboreum landraces,collected from 18 provinces throughout four Asiatic cotton-growing regions in China. A total of 128 alleles were detected, with an average of 2.13 alleles per locus. The largest number of alleles, as well as the maximum number of polymorphic loci, was detected in the A03 linkage group. No polymorphic alleles were detected on chromosome 10. The polymorphism information content for the 22 polymorphic microsatellite loci varied from 0.52 to 0.98, with an average of 0.89. Genetic diversity analysis revealed that the landraces in the Southern region had more genetic variability than those from the other two regions, and no significant difference was detected between landraces in the Yangtze and the Yellow River Valley regions. These findings are consistent with the history of sinense introduction, with the Southern region being the presumed center of origin for Chinese Asiatic cotton, and with subsequent northeastward extension to the Yangtze and Yellow River Valleys. Cluster analysis, based on simple sequence repeat data for 60 microsatellite loci, clearly differentiated Vietnamese and G. herbaceum landraces from the sinense landrace. No relationship between inter-variety similarity and geographical ecological region was observed. The present findings indicate that the Southern region landraces may have been directly introduced into the provinces in the middle and lower Yangtze River Valley, where Asiatic cotton was most extensively grown, and further race

  18. Assessment of Genetic Diversity in Seed Plants Based on a Uniform π Criterion

    Directory of Open Access Journals (Sweden)

    Bin Ai

    2014-12-01

    Full Text Available Despite substantial advances in genotyping techniques and massively accumulated data over the past half century, a uniform measurement of neutral genetic diversity derived by different molecular markers across a wide taxonomical range has not yet been formulated. We collected genetic diversity data on seed plants derived by AFLP, allozyme, ISSR, RAPD, SSR and nucleotide sequences, converted expected heterozygosity (He to nucleotide diversity (π, and reassessed the relationship between plant genetic diversity and life history traits or extinction risk. We successfully established a uniform π criterion and developed a comprehensive plant genetic diversity database. The mean population-level and species-level π values across seed plants were 0.00374 (966 taxa, 155 families, 47 orders and 0.00569 (728 taxa, 130 families, 46 orders, respectively. Significant differences were recovered for breeding system (p < 0.001 at the population level and geographic range (p = 0.023 at the species level. Selfing taxa had significantly lower π values than outcrossing and mixed-mating taxa, whereas narrowly distributed taxa had significantly lower π values than widely distributed taxa. Despite significant differences between the two extreme threat categories (critically endangered and least concern, the genetic diversity reduction on the way to extinction was difficult to detect in early stages.

  19. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton.

    Science.gov (United States)

    Egamberdiev, Sharof S; Saha, Sukumar; Salakhutdinov, Ilkhom; Jenkins, Johnie N; Deng, Dewayne; Y Abdurakhmonov, Ibrokhim

    2016-06-01

    The importance of the cytoplasmic genome for many economically important traits is well documented in several crop species, including cotton. There is no report on application of cotton chloroplast specific SSR markers as a diagnostic tool to study genetic diversity among improved Upland cotton lines. The complete plastome sequence information in GenBank provided us an opportunity to report on 17 chloroplast specific SSR markers using a cost-effective data mining strategy. Here we report the comparative analysis of genetic diversity among a set of 42 improved Upland cotton lines using SSR markers specific to chloroplast and nuclear genome, respectively. Our results revealed that low to moderate level of genetic diversity existed in both nuclear and cytoplasm genome among this set of cotton lines. However, the specific estimation suggested that genetic diversity is lower in cytoplasmic genome compared to the nuclear genome among this set of Upland cotton lines. In summary, this research is important from several perspectives. We detected a set of cytoplasm genome specific SSR primer pairs by using a cost-effective data mining strategy. We reported for the first time the genetic diversity in the cytoplasmic genome within a set of improved Upland cotton accessions. Results revealed that the genetic diversity in cytoplasmic genome is narrow, compared to the nuclear genome within this set of Upland cotton accessions. Our results suggested that most of these polymorphic chloroplast SSRs would be a valuable complementary tool in addition to the nuclear SSR in the study of evolution, gene flow and genetic diversity in Upland cotton. PMID:27155886

  20. Genetic effects of habitat restoration in the Laurentian Great Lakes: an assessment of lake sturgeon origin and genetic diversity

    Science.gov (United States)

    Jamie Marie Marranca; Amy Welsh; Roseman, Edward F.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron-Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron-Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.

  1. Assessment of genetic diversity in Indian rice germplasm (Oryza sativa L.): use of random versus trait-linked microsatellite markers

    Indian Academy of Sciences (India)

    Sheel Yadav; Ashutosh Singh; M. R. Singh; Nitika Goel; K. K. Vinod; T. Mohapatra; A. K. Singh

    2013-12-01

    Assessment of genetic diversity in a crop germplasm is a vital part of plant breeding. DNA markers such as microsatellite or simple sequence repeat markers have been widely used to estimate the genetic diversity in rice. The present study was carried out to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic variability, and to assess the efficiency of random vis-à-vis QTL linked/gene based simple sequence repeat markers in diversity estimation. A set of 88 rice accessions that included landraces, farmer’s varieties and popular Basmati lines were evaluated for agronomic traits and molecular diversity. The random set of SSR markers included 50 diversity panel markers developed under IRRI’s Generation Challenge Programme (GCP) and the trait-linked/gene based markers comprised of 50 SSR markers reportedly linked to yield and related components. For agronomic traits, significant variability was observed, ranging between the maximum for grains/panicle and the minimum for panicle length. The molecular diversity based grouping indicated that varieties from a common centre were genetically similar, with few exceptions. The trait-linked markers gave an average genetic dissimilarity of 0.45 as against that of 0.37 by random markers, along with an average polymorphic information constant value of 0.48 and 0.41 respectively. The correlation between the kinship matrix generated by trait-linked markers and the phenotype based distance matrix (0.29) was higher than that of random markers (0.19). This establishes the robustness of trait-linked markers over random markers in estimating genetic diversity of rice germplasm.

  2. Genetic diversity in populations

    Czech Academy of Sciences Publication Activity Database

    Martínková, Natália; Zemanová, Barbora

    Brno: Akademické nakladatelství CERM, 2011 - (Jarkovský, J.), s. 21-27 ISBN 978-80-7204-756-7. [International Summer School on Computational Biology /7./. Lednice (CZ), 15.09.2011-17.09.2011] Institutional research plan: CEZ:AV0Z60930519 Keywords : nucleotide diversity * haplotype diversity * heterozygosity * Hardy-Weinberg equilibrium Subject RIV: EB - Genetics ; Molecular Biology

  3. Using Random Amplified Polymorphic DNA to Assess Genetic Diversity and Structure of Natural Calophyllum brasiliense (Clusiaceae) Populations in Riparian Forests

    OpenAIRE

    Evânia Galvão Mendonça; Anderson Marcos de Souza; Fábio de Almeida Vieira; Regiane Abjaud Estopa; Cristiane Aparecida Fioravante Reis; Dulcinéia de Carvalho

    2014-01-01

    The objective of this study was to assess the genetic variability in two natural populations of Calophyllum brasiliense located along two different rivers in the state of Minas Gerais, Brazil, using RAPD molecular markers. Eighty-two polymorphic fragments were amplified using 27 primers. The values obtained for Shannon index (I) were 0.513 and 0.530 for the populations located on the margins of the Rio Grande and Rio das Mortes, respectively, demonstrating the high genetic diversity in the st...

  4. Morphological characterization and assessment of genetic diversity in minicore collection of pigeonpea [Cajanus Cajan (L.) Millsp.

    OpenAIRE

    Muniswamy, S., Lokesha, R. *, Dharmaraj, P.S., Yamanura1 and Diwan, J.R.

    2014-01-01

    An investigation was undertaken to ascertain the extent of genetic diversity present among 196 pigeon pea genotypes using D2 statistic. A wider genetic diversity was observed for nine characters as evidenced by formation of 13 clusters. Number of pods per plant contributed most (59.83%) towards divergence, followed by plant height ( 21.55 The highest inter cluster distance was observed between the cluster XIII and VII, followed by cluster V and XIII, II and XIII and cluster XII and VII, which...

  5. Development of EST-SSR Markers to Assess Genetic Diversity in Elettaria Cardamomum Maton

    Directory of Open Access Journals (Sweden)

    N Anjali

    2015-06-01

    Full Text Available Elettaria cardamomum Maton is one of the most ancient and valuable spice crops. Cardamom is cultivated following intensive pesticide usage where alleles present in the wild cardamom genotypes could positively contribute towards genetic improvement of the cultivars. However, the genetic map or whole-genome sequence of E. cardamomum is not available and very limited information on simple sequence repeat (SSR markers are publicly available. We have tested whether SSRs from Curcuma longa can be used to analyze genetic diversity E. cardamomum.

  6. Genetic diversity of Chilean and Brazilian Alstroemeria species assessed by AFLP analysis

    NARCIS (Netherlands)

    Han, T.H.; Jeu, de M.J.; Eck, van H.J.; Jacobsen, E.

    2000-01-01

    One to three accessions of 22 Alstroemeria species, an interspecific hybrid (A. aurea ́ A. inodora), and single accessions of Bomarea salsilla and Leontochir ovallei were evaluated using the AFLP-marker technique to estimate the genetic diversity within the genus Alstroemeria. Three primer combinati

  7. Genetic diversity and relationships among 177 public sunflower inbred lines assessed by TRAP markers

    Science.gov (United States)

    One hundred and seventy-seven public sunflower inbred lines released by the U.S. Department of Agriculture (USDA)-Agricultural Research Services (ARS) from the 1970s to 2005, were investigated for genetic diversity using the target region amplification polymorphism (TRAP) marker technique. A total ...

  8. Usefulness of WRKY gene-derived markers for assessing genetic diversity of Florida coconut cultivars

    Science.gov (United States)

    Analysis of the genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm representing eight cultivars was previously described using 15 microsatellite (simple sequence repeat, SSR) markers. Here we report on the analysis of the same genotypes using 13 markers d...

  9. Genetic diversity in mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs.

    Science.gov (United States)

    Gillies, A C; Navarro, C; Lowe, A J; Newton, A C; Hernández, M; Wilson, J; Cornelius, J P

    1999-12-01

    Swietenia macrophylla King, a timber species native to tropical America, is threatened by selective logging and deforestation. To quantify genetic diversity within the species and monitor the impact of selective logging, populations were sampled across Mesoamerica, from Mexico to Panama, and analysed for RAPD DNA variation. Ten decamer primers generated 102 polymorphic RAPD bands and pairwise distances were calculated between populations according to Nei, then used to construct a radial neighbour-joining dendrogram and examine intra- and interpopulation variance coefficients, by analysis of molecular variation (AMOVA). Populations from Mexico clustered closely together in the dendrogram and were distinct from the rest of the populations. Those from Belize also clustered closely together. Populations from Panama, Guatemala, Costa Rica, Nicaragua and Honduras, however, did not cluster closely by country but were more widely scattered throughout the dendrogram. This result was also reflected by an autocorrelation analysis of genetic and geographical distance. Genetic diversity estimates indicated that 80% of detected variation was maintained within populations and regression analysis demonstrated that logging significantly decreased population diversity (P = 0.034). This study represents one of the most wide-ranging surveys of molecular variation within a tropical tree species to date. It offers practical information for the future conservation of mahogany and highlights some factors that may have influenced the partitioning of genetic diversity in this species across Mesoamerica. PMID:10651917

  10. Genetic diversity among Juglans regia L. genotypes assessed by morphological traits and microsatellite markers

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, R.; Rahmani, F.; Rezaee, R.

    2013-06-01

    In this study, genetic diversity was assayed among 16 accessions and five cultivars of Persian walnut (Juglans regia L.) using morphological traits and nine simple sequence repeat (SSR) markers. Samples were collected from Agriculture Research Center of Urmia city (North West Iran). Study on important morphological traits revealed genetic similarity of -0.6 to 0.99 based on CORR coefficient. The microsatellite marker system produced 34 alleles in range of 160-290 bp. The minimum (2) and maximum (7) number of alleles were obtained from WGA71 and WGA202 genetic loci, respectively. The mean number of alleles per locus was 4.25. Jaccards similarity coefficient ranged from 0.13 to 0.76. The results of this paper indicate high diversity among these genotypes which could be used for breeding management. (Author) 28 refs.

  11. Genetic diversity and relationship of Mauremys mutica and M. annamensis assessed by DNA barcoding sequences.

    Science.gov (United States)

    Zhao, Jian; Li, Wei; Wen, Ping; Zhang, Dandan; Zhu, Xinping

    2016-09-01

    The mitochondrial DNA cytochrome c oxidase subunit I gene (COI) has been used as an efficient barcoding tool for species identification of animals. In this study, the barcoding sequences were used to assess the genetic diversity and relationship of Mauremy mutica and M. annamensis. Four currently recognized groups of M. mutica were classified into two groups in this study, with 6% intergroup distances, the S group and the N group, consistent to the calling of "southern turtle" and "northern turtle" in folk of China. The north population and Taiwan population formed the N group, and further, the Taiwan population was differentiated as a monophyly originated from the north population, consistent to the calling of "big green head" for the Taiwan population and "small green head" for the north population. The Vietnam, Hainan population, and M. annamensis formed the S group, and the barcoding sequences could not distinguish them from each other. Based on the molecular data and phenotypes of existing hybrids, hybrid origin of M. annamensis may be another possibility. PMID:26260182

  12. Genetic Diversity Assessment in Several Barley (Hordeum vulgare L. Cultivars Using Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Mohammad Reza BLORI-MOGHADAM

    2011-05-01

    Full Text Available In the present study, genetic diversity in seven cultivars of cultivated barley (Hordeum vulgare populations was evaluated using 10 microsatellite markers. Genomic DNA was extracted from fresh leaves and amplification reactions were done by PCR. The amplification products were separated on 6% denaturing polyacrylamide gels containing 7M urea and visualized via silver staining method. High level of polymorphism was observed among populations. Polymorphic bands ranged from 100 to 300 bp. Altogether 65 alleles were observed among all genotypes, with an average of 9.2 alleles per locus for all loci. Polymorphic information content (PIC ranged from 0.80 to 0.88 with an average of 0.84. �Sahand� populations showed the lowest mean of gene diversity whereas the highest mean of heterozygosity observed in Rayhan populations that can prepare a powerful resource of genetic diversity for breeding programs. The genotypes were clustered using unweight pair-group method on arithmetic average by POPGEN32 software. The dendrogram discriminated all the genotypes in several groups. The results showed that SSR markers have a high ability to reveal most of the information in a single locus and can be used for genetic analysis in molecular levels determination of genetic similarity and clustering barley cultivars.

  13. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers.

    Science.gov (United States)

    Smýkal, P; Bačová-Kerteszová, N; Kalendar, R; Corander, J; Schulman, A H; Pavelek, M

    2011-05-01

    Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70-100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics. PMID:21293839

  14. Genetic diversity among some currants (Ribes spp.) cultivars as assessed by AFLP markers

    International Nuclear Information System (INIS)

    Currants cultivation has increased its popularity in Turkey due to the use of more currants in Turkish cuisine. To provide farmers with well adapted currants cultivars, some currants cultivars have been planted in various geographical regions of Turkey. In this study, genetic diversity among some of these currants cultivars has been analyzed using AFLP markers. Our results indicated that red and black currants genotypes are genetically distinct, sharing very small proportion of AFLP markers. Selected currants genotypes from Turkey shared all AFLP markers suggesting that they might be the same genotype. (author)

  15. Morphological characterization and assessment of genetic diversity in minicore collection of pigeonpea [Cajanus Cajan (L. Millsp.

    Directory of Open Access Journals (Sweden)

    Muniswamy, S., Lokesha, R. *, Dharmaraj, P.S., Yamanura1 and Diwan, J.R.

    2014-06-01

    Full Text Available An investigation was undertaken to ascertain the extent of genetic diversity present among 196 pigeon pea genotypes using D2 statistic. A wider genetic diversity was observed for nine characters as evidenced by formation of 13 clusters. Number of pods per plant contributed most (59.83% towards divergence, followed by plant height ( 21.55 The highest inter cluster distance was observed between the cluster XIII and VII, followed by cluster V and XIII, II and XIII and cluster XII and VII, which indicates that the crosses among the genotypes between these clusters may result in better segregants and high heterotic combinations. Cluster mean analysis indicated that cluster V contains dwarf and early maturing genotypes and cluster XIII possess high yielding entries. Morphological characterization was also carried out for 15 traits can be used in varietal purification and seed production.

  16. Assessment of Genetic Diversity in Contrasting Sugarcane Varieties Using Inter-Simple Sequence Repeat (ISSR) Markers

    OpenAIRE

    Maria Lucília M. da Costa; Lidiane L. Barbosa Amorim; Onofre, Alberto V. C.; Luiz J. O. Tavares de Melo; Oliveira, Maria Betânia M.; Reginaldo de Carvalho; Ana M. Benko-Iseppon

    2011-01-01

    Sugarcane is an important tropical crop, responsible for two thirds of the world sugar production, gaining actually importance as a source of biofuel. Drought tolerance is a very important feature considering the actual climate change scenario throughout the world. This study aimed to determine the genetic diversity between sugarcane varieties with contrasting features under drought. For this purpose, twelve ISSR primers were used to characterize nine sugarcane varieties under cultivation in ...

  17. Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers

    OpenAIRE

    Ranjan Kumar Shaw; Laxmikanta Acharya; Arup Kumar Mukherjee

    2009-01-01

    Genetic diversity was evaluated among 14 cultivars of Catharanthus roseus using RAPD and ISSR markers.The RAPD primers resulted in the amplification of 56 bands, among which 46 (82%) bands were polymorphic Four ISSRprimers amplified 31 loci out of which 17 were polymorphic and 14 are monomorphic. The Jaccard's similarity derived fromthe combined marker system showed that the varieties First Kiss Coral and Cooler Orchid were the most closely relatedcultivars, with 98% similarity. In the dendro...

  18. Assessment of Genetic Diversity in Faba Bean Based on Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    Sukhjiwan Kaur

    2014-01-01

    Full Text Available Detection of genetic diversity is important for characterisation of crop plant collections in order to detect the presence of valuable trait variation for use in breeding programs. A collection of faba bean (Vicia faba L. genotypes was evaluated for intra- and inter-population diversity using a set of 768 genome-wide distributed single nucleotide polymorphism (SNP markers, of which 657 obtained successful amplification and detected polymorphisms. Gene diversity and polymorphism information content (PIC values varied between 0.022–0.500 and 0.023–1.00, with averages of 0.363 and 0.287, respectively. The genetic structure of the germplasm collection was analysed and a neighbour-joining (NJ dendrogram was constructed. The faba bean accessions grouped into two major groups, with several additional smaller sub-groups, predominantly on the basis of geographical origin. These results were further supported by principal co-ordinate analysis (PCoA, deriving two major groupings which were differentiated on the basis of site of origin and pedigree relationships. In general, high levels of heterozygosity were observed, presumably due to the partially allogamous nature of the species. The results will facilitate targeted crossing strategies in future faba bean breeding programs in order to achieve genetic gain.

  19. Genetic diversity of Chilean and Brazilian alstroemeria species assessed by AFLP analysis.

    Science.gov (United States)

    Han, T H; de Jeu, M; van Eck, H; Jacobsen, E

    2000-05-01

    One to three accessions of 22 Alstroemeria species, an interspecific hybrid (A. aurea x A. inodora), and single accessions of Bomarea salsilla and Leontochir ovallei were evaluated using the AFLP-marker technique to estimate the genetic diversity within the genus Alstroemeria. Three primer combinations generated 716 markers and discriminated all Alstroemeria species. The dendrogram inferred from the AFLP fingerprints supported the conjecture of the generic separation of the Chilean and Brazilian Alstroemeria species. The principal co-ordinate plot showed the separate allocation of the A. ligtu group and the allocation of A. aurea, which has a wide range of geographical distribution and genetic variation, in the middle of other Alstroemeria species. The genetic distances, based on AFLP markers, determined the genomic contribution of the parents to the interspecific hybrid. PMID:10849081

  20. Assessing genetic diversity of wild and hatchery samples of the Chinese sucker (Myxocyprinus asiaticus) by the mitochondrial DNA control region.

    Science.gov (United States)

    Wu, Jiayun; Wu, Bo; Hou, Feixia; Chen, Yongbai; Li, Chong; Song, Zhaobin

    2016-01-01

    To restore the natural populations of Chinese sucker (Myxocyprinus asiaticus), a hatchery release program has been underway for nearly 10 years. Using DNA sequences of the mitochondrial control region, we assessed the genetic diversity and genetic structure among samples collected from three sites of the wild population as well as from three hatcheries. The haplotype diversity of the wild samples (h = 0.899-0.975) was significantly higher than that of the hatchery ones (h = 0.296-0.666), but the nucleotide diversity was almost identical between them (π = 0.0170-0.0280). Relatively high gene flow was detected between the hatchery and wild samples. Analysis of effective population size indicated that M. asiaticus living in the Yangtze River has been expanding following a bottleneck in the recent past. Our results suggest the hatchery release programs for M. asiaticus have not reduced the genetic diversity, but have influenced the genetic structure of the species in the upper Yangtze River. PMID:25242190

  1. Sampling effects on the assessment of genetic diversity of rhizobia associated with soybean and common bean

    NARCIS (Netherlands)

    Alberton, O.; Kaschuk, G.; Hungria, M.

    2006-01-01

    Biological nitrogen fixation plays a key role in agriculture sustainability, and assessment of rhizobial diversity contributes to worldwide knowledge of biodiversity of soil microorganisms, to the usefulness of rhizobial collections and to the establishment of long-term strategies aimed at increasin

  2. Genetic Diversity Assessment and Identification of New Sour Cherry Genotypes Using Intersimple Sequence Repeat Markers

    Directory of Open Access Journals (Sweden)

    Roghayeh Najafzadeh

    2014-01-01

    Full Text Available Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars was investigated and identified using 23 intersimple sequence repeat (ISSR markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially ISSR-4, ISSR-6, ISSR-13, ISSR-14, ISSR-16, and ISSR-19 produced good and various levels of amplifications which can be effectively used in genetic studies of the sour cherry. The genetic similarity among genotypes showed a high diversity among the genotypes. Cluster analysis separated improved cultivars from promising Iranian genotypes, and the PCoA supported the cluster analysis results. Since the Iranian genotypes were superior to the improved cultivars and were separated from them in most groups, these genotypes can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that ISSR is a reliable DNA marker that can be used for exact genetic studies and in sour cherry breeding programs.

  3. Use of intron-exonic marker in assessment of genetic diversity of two subspecies of Thymus daenensis

    Directory of Open Access Journals (Sweden)

    Ahmad Ismaili

    2013-11-01

    Full Text Available Study of genetic diversity in medicinal plant is very important for improvement and evolutionary variations. In this study, assessment of genetic diversity in two subspecies of Thymus daenensis was evaluated, using intron-exonic markers. Thirty primers produced 633 polymorphic bands (98% polymorphism. The highest polymorphic information content (PIC included ISJ5 and ISJ9 primers and the lowest PIC also included IT15-32 primer. The highest marker index (MI produced by IT10-6 primer. Results of Analysis of Molecular Variance (AMOVA showed that intra-sub specific variation was more than inter-sub specific variation. Dendrogram obtained from Cluster analysis, using NTSYS-pc software and UPGMA method based on Dice's similarity matrix, divided accessions into 4 groups. The maximum range of genetic similarity was observed between two accessions of sub-species daenensis. Two accessions of Fars and Semnan formed a separate group. Results showed that clustering based on molecular data and principal coordinate analysis had a medium alignment. Grouping based on cluster analysis also could separate two subspecies of Thymus daenensis. Results obtained from this study showed that intron-exonic markers had an effective potential in assessment of genetic relationships between the two sub-species of daenensis.

  4. Assessing genetic diversity among six populations of Gossypium arboreum L. using microsatellites markers.

    Science.gov (United States)

    Sethi, Khushboo; Siwach, Priyanka; Verma, Surender Kumar

    2015-10-01

    Among the four cultivated cotton species, G. hirsutum (allotetraploid) presently holds a primary place in cultivation. Efforts to further improve this primary cotton face the constraints of its narrow genetic base due to repeated selective breeding and hence demands enrichment of diversity in the gene pool. G. arboreum (diploid species) is an invaluable genetic resource with great potential in this direction. Based on the dispersal and domestication in different directions from Indus valley, different races of G. arboreum have evolved, each having certain traits like drought and disease resistance, which the tetraploid cotton lack. Due to lack of systematic, race wise characterization of G. arboreum germplasm, it  has not been explored fully. During the present study, 100 polymorphic SSR loci were  used to genotype 95 accessions belonging to 6 races of G. arboreum producing 246 polymorphic alleles; mean number of effective alleles was 1.505. AMOVA showed 14 % of molecular variance among population groups, 34 % among individuals and remaining 52 % within individuals. UPGMA dendrogram, based on Nei's genetic distance, distributed the six populations in two major clusters of 3 populations each; race 'bengalense' was found more close to 'cernuum' than the others. The clustering of 95 genotypes by UPGMA tree generation as well as PCoA analysis clustered 'bengalense' genotypes into one group along with some genotypes of 'cernuum', while rest of the genotypes made separate clusters. Outcomes of this research should be helpful in identifying the genotypes for their further utilization in hybridization program to obtain high level of germplasm diversity. PMID:26600679

  5. Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm

    Directory of Open Access Journals (Sweden)

    Snoussi Hager

    2012-03-01

    Full Text Available Abstract Background Citrus represents a substantial income for farmers in the Mediterranean Basin. However, the Mediterranean citrus industry faces increasing biotic and abiotic constraints. Therefore the breeding and selection of new rootstocks are now of the utmost importance. In Tunisia, in addition to sour orange, the most widespread traditional rootstock of the Mediterranean area, other citrus rootstocks and well adapted to local environmental conditions, are traditionally used and should be important genetic resources for breeding. To characterize the diversity of Tunisian citrus rootstocks, two hundred and one local accessions belonging to four facultative apomictic species (C. aurantium, sour orange; C. sinensis, orange; C. limon, lemon; and C. aurantifolia, lime were collected and genotyped using 20 nuclear SSR markers and four indel mitochondrial markers. Multi-locus genotypes (MLGs were compared to references from French and Spanish collections. Results The differentiation of the four varietal groups was well-marked. The groups displayed a relatively high allelic diversity, primarily due to very high heterozygosity. Sixteen distinct MLGs were identified. Ten of these were noted in sour oranges. However, the majority of the analysed sour orange accessions corresponded with only two MLGs, differentiated by a single allele, likely due to a mutation. The most frequent MLG is shared with the reference sour oranges. No polymorphism was found within the sweet orange group. Two MLGs, differentiated by a single locus, were noted in lemon. The predominant MLG was shared with the reference lemons. Limes were represented by three genotypes. Two corresponded to the 'Mexican lime' and 'limonette de Marrakech' references. The MLG of 'Chiiri' lime was unique. Conclusions The Tunisian citrus rootstock genetic diversity is predominantly due to high heterozygosity and differentiation between the four varietal groups. The phenotypic diversity within the

  6. RAPD-based assessment of genetic diversity among annual caraway (Carum carvi populations

    Directory of Open Access Journals (Sweden)

    Bochra Laribi

    2011-06-01

    Full Text Available Genetic variability and differentiation among five annual caraway (Carum carvi populations originating from Tunisia, Germany and Egypt were examined for the first time. Random Amplified Polymorphic DNA (RAPD marker data were obtained and analysed with respect to genetic diversity, population structure and gene flow. Fourteen primers generated a total of 136 discernible and reproducible bands across the analyzed populations, out of which 56 were polymorphic. The UPGMA cluster analysis permitted the discrimination of all the genotypes and their sorting into 3 main groups. German and Egyptian caraway populations diverged significantly from Tunisian ones. Population clustering was made dependently from geographic origin. This has been further explained at the DNA level as we were able to select a set of RAPD fingerprints unique to each of the studied populations. Furthermore, dimensional graph derived from factorial analysis of RAPD frequency data, allowed significant grouping of the genotypes into five sub-plots, representing each one population. Shannon’s index values showed that variation ranks between rather than within populations. These results indicated that considerable genetic differences among C. carvi populations were registered.

  7. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    Directory of Open Access Journals (Sweden)

    M. Govindaraj

    2015-01-01

    Full Text Available The importance of plant genetic diversity (PGD is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i the significance of plant genetic diversity (PGD and PGR especially on agriculturally important crops (mostly field crops; (ii risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more

  8. Using SSR Markers For Assessment Genetic Diversity And Detection Drought Escape Candidate Genes In Barley Lines (Hordeum Vulgare L.

    Directory of Open Access Journals (Sweden)

    Gougerdchi Vahideh

    2014-12-01

    Full Text Available Assessment of genetic diversity using molecular markers is one of the primary and important steps in breeding programs. In this study, genetic diversity of 52 barley lines evaluated using 68 SSR primer pairs and 47 primer pairs produced clear and polymorphic banding pattern. In general, 153 polymorphic alleles detected. The number of observed polymorphic alleles varied from 2 to 9, with an average of 3.26 alleles per locus. Polymorphic Information Content (PIC ranged from 0.07 to 0.81, with an average of 0.45. In this research, SSR markers differentiated the studied lines efficiently. Using cluster analysis, studied barley lines divided into two groups. Genetic diversity was relatively corresponding with geographical origins, because the lines related to a country somewhat diverged from each other. Two-rowed Iranian and Chinese barleys classified in one subgroup. Also, most six-rowed barleys classified in one subgroup. Association mapping analysis was used to identify candidate genes for drought escape in barley lines and 16 informative markers were identified after which confirmation in other tests could be suitable for marker assisted breeding drought escape.

  9. Genetic diversity and structure of livestock breeds

    OpenAIRE

    Wilkinson, Samantha

    2012-01-01

    This thesis addresses the genetic characterisation of livestock breeds, a key aspect of the long-term future breed preservation and, thus, of primary interest for animal breeders and management in the industry. First, the genetic diversity and structure of breeds were investigated. The application of individual-based population genetic approaches at characterising genetic structure was assessed using the British pig breeds. All approaches, except for Principle Component Anal...

  10. Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Shaw

    2009-01-01

    Full Text Available Genetic diversity was evaluated among 14 cultivars of Catharanthus roseus using RAPD and ISSR markers.The RAPD primers resulted in the amplification of 56 bands, among which 46 (82% bands were polymorphic Four ISSRprimers amplified 31 loci out of which 17 were polymorphic and 14 are monomorphic. The Jaccard's similarity derived fromthe combined marker system showed that the varieties First Kiss Coral and Cooler Orchid were the most closely relatedcultivars, with 98% similarity. In the dendrogram constructed on the basis of both RAPD and ISSR data two clear clusterswere obtained. The smaller cluster included C. roseus Cv Blue Pearl and C. roseus Cv. Patricia White and the larger clusterwas subdivided into two sub clusters with C. roseus Cv. First Kiss Polka Dot isolated from the rest of the cultivars. This maybe useful for breeding for improved quality.

  11. Genetic diversity of the Bambara groundnut (Vigna subterranea (L.) Verdc.) as assessed by SSR markers.

    Science.gov (United States)

    Somta, P; Chankaew, S; Rungnoi, O; Srinives, P

    2011-11-01

    Bambara groundnut ( Vigna subterranea (L.) Verdc.) is an important African legume crop. In this study, a collection consisting of 240 accessions was analyzed using 22 simple sequence repeat (SSR) markers. In total, 166 alleles were detected, with a mean of 7.59 alleles per locus. Allelic and gene diversities were higher in the west African and Cameroon/Nigeria regions with 6.68 and 6.18 alleles per locus, and 0.601 and 0.571, respectively. The genetic distance showed high similarity between west African and Cameroon/Nigeria accessions. Principal coordinate analyses and neighbor-joining analysis consistently revealed that the majority of west African accessions were grouped with Cameroon/Nigeria accessions, but they were differentiated from east African, central African, and southeast Asian accessions. Population structure analysis showed that two subpopulations existed, and most of the east African accessions were restricted to one subpopulation with some Cameroon/Nigeria accessions, whereas most of the west African accessions were associated with most of the Cameroon/Nigeria accessions in the other subpopulation. Comparison with SSR analysis of other Vigna cultigens, i.e., cultivated azuki bean ( Vigna angularis ) and mungbean ( Vigna radiata ), reveals that the mean gene diversity of Bambara groundnut was lower than azuki bean but higher than mungbean. PMID:22017518

  12. Genetic diversity and population structure of 10 Chinese indigenous egg-type duck breeds assessed by microsatellite polymorphism

    Indian Academy of Sciences (India)

    Li Hui-Fang; Song Wei-Tao; Shu Jing-Ting; Chen Kuan-Wei; Zhu Wen-Qi; Han Wei; Xu Wen-Juan

    2010-04-01

    The genetic structure and diversity of 10 Chinese indigenous egg-type duck breeds were investigated using 29 microsatellite markers. The total number of animals examined were 569, on average 57 animals per breed were selected. The microsatellite marker set analysed provided 177 alleles (mean 6.1 alleles per locus, ranging from 3 to 10). All populations showed high levels of heterozygosity with the lowest estimate of 0.539 for the Jinding ducks, and the highest 0.609 observed for Jingjiang partridge ducks. The global heterozygote deficit across all populations ($F_{\\text{IT}}$) amounted to $-0.363$. About 10% of the total genetic variability originated from differences among breeds, with all loci contributing significantly. An unrooted consensus tree was constructed using the NeighborNet tree based on the Reynold’s genetic distance. The structure software was used to assess genetic clustering of these egg-type duck breeds. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. An integrated analysis was undertaken to obtain information on the population dynamics in Chinese indigenous egg-type duck breeds, and to better determine the conservation priorities.

  13. Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers

    Institute of Scientific and Technical Information of China (English)

    Zhikun LI; Xingfen WANG; Yan ZHANG; Guiyin ZHANG; Liqiang WU; Jina CHI; Zhiying MA

    2008-01-01

    Seventy-one glandless cotton germplasm resources were firstly evaluated genetically by using nine agronomic traits,33 simple sequence repeat (SSR) primers and ten amplified fragment length polymorphism (AFLP)primer combinations.Principal component analysis (PCA) of the agronomic traits showed that the first six principal components (PCs) explained a total of 86.352% of the phenotypic variation.A total of 329 alleles were amplified for 33 SSR primers,and 232 polymorphic bands in a total of 389 bands were obtained by using ten AFLP primer combinations.The average polymorphic information content (PIC) value was 0.80 and 0.18 for SSR primers and AFLP primer combinations,respectively.The DIST (average taxonomic distance) and DICE (Nei and Li's pairwise distance) coefficients ranged from 0.373 to 3.164 and 0.786 to 0.948,respectively,for agronomic traits and SSR & AFLP data based on UPGMA analysis.This suggested that there was a higher diversity in the evaluated population for both agronomic traits and molecular markers.The Mantel's test showed that the correlation between the dendrograms based on agronomic traits and SSR & AFLP data was non-significant.

  14. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds

    Science.gov (United States)

    Breed utilization, genetic improvement, and industry consolidation are predicted to have major impacts on the genetic composition of commercial chickens. Consequently, the question arises as to whether sufficient genetic diversity remains within industry stocks to address future needs. With the ch...

  15. Assessment of genetic diversity among rice (Oryza sativa L. landrace populations under traditional production using microsatellite (SSR markers

    Directory of Open Access Journals (Sweden)

    Santosh Kumar, I.S.Bisht and K.V.Bhat

    2010-07-01

    Full Text Available Despite the surge of support for on farm conservation of plant genetic resources on global scale, no agreed set of scientificprinciples yet exists for its effective implementation. Farming communities in traditional agroecosystem have been playingan important role in conserving agricultural diversity and assessment at genetic level is a prerequisite for understandingdetrimental evolutionary patterns and devising suitable strategies for their conservation and sustainable use. The presentinvestigation was undertaken with the objectives of understanding farmer management of population structure of ricelandraces in traditional farming systems as well as inter- and intra-population molecular diversity at microsatellite loci. Themicrosatellites (STMS markers were used for analysing selected eleven rice landrace populations from various parts ofUttarakhand state in north-western Himalayas. A total number of 98 alleles were recorded, of which 91 were common andseven were rare. The mean number of alleles per locus was 6.13 and for different groups of rice landrace populations, namelyeight populations of common landrace and three populations of rare landraces were 4.96 and 4.37, respectively. The studyalso compared genebank-conserved (ex situ and on-farm-managed (in situ landrace populations of same named commonlandraces Jaulia and Thapachini, and revealed greater number of alleles per locus for on-farm-managed populations ascompared to the populations under static management. Significant number of alleles specific to populations under dynamicmanagement could also be recorded. Changes in yield parameters also seemed affected under dynamic farmer managementfor same rice landrace populations. Further, the rare landraces included in the present study were more diverse than thecommon landrace populations. The rare landraces were distinct entities largely representing locally common alleles. Geneticdifferentiation results from the joint effects of various

  16. Assessing Genetic Diversity Cocoa (Theobroma cacaoL.) Collection Resistant to Cocoa Pod Borer Using Simple Sequence Repeat Markers

    OpenAIRE

    Agung Wahyu Susilo; Dapeng Zhang; Lambert Motilal

    2013-01-01

    Breeding  for  cocoa  pod  borer  (CPB)  resistance  on  cocoa  was  initiated  by selecting  the  resistant  genotypes  through  cocoa  farm  in  the  endemic  area.  For breeding  purpose  the  collected  genotypes  should  be  assessed  for  their  diversity  in  constructing  appropriate  mating  design.  This  research  has  objective  to assess  genetic  diversity  of  the  exploratory  collection  using  DNA  fingerprinting. The  tested  clones  were  25  exploratory  collections  comp...

  17. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Directory of Open Access Journals (Sweden)

    Zhang Yanxin

    2012-11-01

    Full Text Available Abstract Background Sesame (Sesamum indicum L. is one of the four major oil crops in China. A sesame core collection (CC was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC. Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525. The Shannon-Weaver diversity index (I and Nei genetic diversity index (h were higher (I = 0.9537, h = 0.5490 when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218. A mini-core collection (MC containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%, low variance difference percentage (VD, 22.58%, large variable rate of coefficient of variance (VR, 114.86%, and large coincidence rate of range (CR, 95.76%. For molecular data, the diversity indices and the polymorphism information content (PIC for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and

  18. Assessment of genetic diversity and estimation of genetic parameters for remobilization related traits of wheat under drought conditions

    Directory of Open Access Journals (Sweden)

    Farshadfar Ezatollah

    2016-01-01

    Full Text Available In order to evaluate genetic variability and estimation of remobilization related traits in wheat using biometrical genetic techniques an experiment was conducted in a randomized complete blocks design with three replicates under post-anthesis drought stress conditions in the Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran during 2011-2012 cropping season. The results of analysis of variance showed significant differences between the genotypes for all studied traits except current photosynthesis (CP and current photosynthesis share into kernel yield (CPSKY. High genetic gain and broad sense heritability estimates were observed for penultimate remobilization share into kernel yield (PenRSKY and internodes remobilization share into kernel yield (IRSKY indicating high genetic potential, low effect of environment and predominant role of additive gene effect on their expression. Spike dry matter remobilization (SDMR, spike dry matter remobilization efficiency (SDMRE and spike remobilization share into kernel yield (SRSKY exhibited the highest phenotypic and genetic positive correlation with kernel yield (KY. Moreover, the highest genotypic and phenotypic covariance was observed between kernel yield (KY and SDMR, CP, SDMRE and SRSKY, respectively. The highest environmental covariance was identified between kernel yield (KY, peduncle dry matter remobilization (PedDMR and penultimate dry matter remobilization (PenDMR, respectively. High co-heritability was detected between SDMRE and PedDMR, PedDMRE and PenDMR and between peduncle remobilization share into kernel yield (PedRSKY and internodes dry matter remobilization efficiency (IDMRE, suggesting that selection of either of the traits would simultaneously affect the others, positively.

  19. Assessment of genetic diversity and anthracnose disease response among Zimbabwe sorghum germplasm.

    Science.gov (United States)

    The USDA-ARS National Plant Germplasm System maintains a Zimbabwe sorghum collection of 1,235 accessions from different provinces. This germplasm has not been extensively employed in U.S. breeding programs due to the lack of phenotypic and genetic characterization. Therefore, 68 accessions from th...

  20. Genetic diversity in Entamoeba histolytica

    Indian Academy of Sciences (India)

    C Graham Clark; Mehreen Zaki; Ibne Karim Md Ali

    2002-11-01

    Genetic diversity within Entamoeba histolytica led to the re-description of the species 10 years ago. However, more recent investigation has revealed significant diversity within the re-defined species. Both protein-coding and non-coding sequences show variability, but the common feature in all cases is the presence of short tandem repeats of varying length and sequence. The ability to identify strains of E. histolytica may lead to insights into the population structure and epidemiology of the organism.

  1. Human Capital and Genetic Diversity

    OpenAIRE

    Sequeira, Tiago; Santos, Marcelo,; Ferreira-Lopes, Alexandra

    2013-01-01

    The determinants of human capital have been studied sparsely in the literature. Although there is a huge literature on the determinants of schooling linked with the quality of schooling, there are not many contributions that explore the deep determinants of investment in, quantity and quality of human capital. This paper investigates the relationship between human capital and the ancestral genetic diversity of populations. It highlights a strong hump-shaped relationship between genetic divers...

  2. Genetic diversity of wheat grain quality and determination the best clustering technique and data type for diversity assessment

    Directory of Open Access Journals (Sweden)

    Khodadadi Mostafa

    2014-01-01

    Full Text Available Wheat is an important staple in human nutrition and improvement of its grain quality characters will have high impact on population's health. The objectives of this study were assessing variation of some grain quality characteristics in the Iranian wheat genotypes and identify the best type of data and clustering method for grouping genotypes. In this study 30 spring wheat genotypes were cultivated through randomized complete block design with three replications in 2009 and 2010 years. High significant difference among genotypes for all traits except for Sulfate, K, Br and Cl content, also deference among two years mean for all traits were no significant. Meanwhile there were significant interaction between year and genotype for all traits except Sulfate and F content. Mean values for crude protein, Zn, Fe and Ca in Mahdavi, Falat, Star, Sistan genotypes were the highest. The Ca and Br content showed the highest and the lowest broadcast heritability respectively. In this study indicated that the Root Mean Square Standard Deviation is efficient than R Squared and R Squared efficient than Semi Partial R Squared criteria for determining the best clustering technique. Also Ward method and canonical scores identified as the best clustering method and data type for grouping genotypes, respectively. Genotypes were grouped into six completely separate clusters and Roshan, Niknejad and Star genotypes from the fourth, fifth and sixth clusters had high grain quality characters in overall.

  3. Assessment of genetic diversity in indigenous turmeric (Curcuma longa) germplasm from India using molecular markers

    OpenAIRE

    Verma, Sushma; Singh, Shweta; Sharma, Suresh,; Tewari, S. K.; Roy, R. K.; Goel, A. K.; Rana, T. S.

    2015-01-01

    Curcuma longa L., commonly known as turmeric, is one of the economically and medicinally important plant species. It is predominantly cultivated in the tropical and sub tropical countries. India is the largest producer, and exporter of turmeric in the world, followed by China, Indonesia, Bangladesh and Thailand. In the present study, Directed Amplification of Minisatellite DNA (DAMD) and Inter Simple Sequence Repeats (ISSR), methods were used to estimate the genetic variability in indigenous ...

  4. Genetic Diversity Assessment and Identification of New Sour Cherry Genotypes Using Intersimple Sequence Repeat Markers

    OpenAIRE

    Roghayeh Najafzadeh; Kazem Arzani; Naser Bouzari; Ali Saei

    2014-01-01

    Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars) was investigated and identified using 23 intersimple sequence repeat (ISSR) markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially IS...

  5. Assessment of genetic diversity in Dalbergia sissoo clones through RAPD profiling

    Institute of Scientific and Technical Information of China (English)

    Meena Bakshi; Arvind Sharma

    2011-01-01

    We studied the genetic polymorphism among 29 clones of shisham (Dalbergia sissoo Roxb) belonging to different geographic regions using random amplified polymorphic DNA (RAPD) markers. Out of 30 primers used, only 20 primers generated polymorphism in amplified product. In total 232 bands were amplified with 20 primers, of which 192 (82%) were polymorphic with an average of 9.6 bands/primer. The resolving power (Rp) ranged from 2.14 (Primer 5) to 11.93 (Primer 4). Primer 4 and Primer 3 possessed high Rp value. Polymorphism in- formation content (PIC) ranged from 0.15 (Primer 5) to 0.37 (Primer 4). Primer 4 amplified total 18 bands in 29 genotypes with PIC value of 0.37 hence; this set of primer was most informative. The similarity co- efficient analysis revealed two clusters. The first cluster comprised of only 10 clones and the second major cluster comprised of 19 clones. The genetic similarity among 29 clones ranged from 25.86% (clone 10 and 235) to 100% (clone 19 and 59), suggesting a wide genetic base in shisham clones.

  6. Genetic diversity in Trichomonas vaginalis.

    Science.gov (United States)

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations. PMID:23702460

  7. Assessing the genetic diversity of the vir genes in Indian Plasmodium vivax population.

    Science.gov (United States)

    Gupta, P; Das, A; Singh, O P; Ghosh, S K; Singh, V

    2012-11-01

    Variant surface antigens (VSAs) present on the surface of parasitized erythrocytes facilitate many Plasmodium spp. to escape the host immune system during infection. Multigene families coding for VSAs exist in several Plasmodium spp. and are located on telomeric and subtelomeric regions of the chromosomes. P. vivax genome also contains a multigene superfamily vir (variant interspersed repeats), present in the subtelomeric region with a possible role in immune evasion like the var gene in P. falciparum. Blood samples from 148 symptomatic malaria cases were collected from five different regions of India, viz. Mangalore, Rourkela, Goa, Delhi and Jabalpur. P. vivax isolates (74 single infections) were sequenced for four vir genes (viz. vir 27, vir 4, vir 12 and vir 21) and analyzed for the genetic variability existing in different populations of India. The results indicate that vir genes in different P. vivax populations in India are highly divergent both within and between the isolates. High levels of single nucleotide polymorphisms (SNPs) were observed attributing to the existing polymorphism for all the four vir genes studied across the population. Detailed knowledge of the genetic variation among the vir genes will help in understanding the evolutionary aspects of vir genes and may also provide basis for understanding the disease chronicity. PMID:22820026

  8. Genetic selection and conservation of genetic diversity*.

    Science.gov (United States)

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. PMID:22827378

  9. Genetic diversity of clones of acerola assessed by ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Eveline Nogueira Lima

    2015-07-01

    Full Text Available The Indian cherry (Malpighia emarginata is a tropical fruit originated from American continent. In Brazilian orchards, there was high variability among cultivated genotypes. On the order hand, high variability allows the identification of superior genotypes for cropping industry. This study aimed to evaluate the genetic variability among 56 genotypes using ISSR (Inter Simple Sequence Repeats primers. Leaf samples were collected in Pacajus-CE and taken to the laboratory of Molecular Biology postharvest, in Fortaleza. Altogether, 20 primers were used which yielded 148 polymorphic bands (79.57%, enabling the differentiation within the population study. As a result, this information may be used in future studies on breeding programs, such as choosing best combinations for parental crossings.

  10. Application of molecular markers in assessing genetic diversity in Indian mangroves

    International Nuclear Information System (INIS)

    Mangroves are one of the most complex and unique plant communities; they are salt tolerant and inhabit estuarine and intertidal regions in tropical an subtropical belts of the world. These are a specialized group of plants, since they have adapted well, both morphologically and physiologically, because of their constantly fluctuating growth conditions. The mangrove ecosystem is of great significance because, apart from forming a connecting link between terrestrial and aquatic ecosystems, it also protects coastlines by preventing sea water inundation and maintaining a coastal ecological balance. Because of the growing threat to this ecosystem, formulating plans of action that will ensure its restoration, conservation and sustainable utilization is of paramount importance. To this end, combined efforts have begun and a Genetic Resource Centre for assembling unique morphological and distinct genotypes capable of tolerance to sea water has been set up by our Centre at Pichavaram in Tamil Nadu State. It is hoped that these efforts will ensure long term conservation. They also form part of an anticipatory research programme to face the possible changes in growing conditions that may arise in the future from the rise in sea level as a result of global warming. 10 refs, 1 fig., 1 tab

  11. Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding*

    Science.gov (United States)

    Wang, Jun-mei; Yang, Jian-ming; Zhu, Jing-huan; Jia, Qiao-jun; Tao, Yue-zhi

    2010-01-01

    The genetic diversity and relationship among 40 elite barley varieties were analyzed based on simple sequence repeat (SSR) genotyping data. The amplified fragments from SSR primers were highly polymorphic in the barley accessions investigated. A total of 85 alleles were detected at 35 SSR loci, and allelic variations existed at 29 SSR loci. The allele number per locus ranged from 1 to 5 with an average of 2.4 alleles per locus detected from the 40 barley accessions. A cluster analysis based on the genetic similarity coefficients was conducted and the 40 varieties were classified into two groups. Seven malting barley varieties from China fell into the same subgroup. It was found that the genetic diversity within the Chinese malting barley varieties was narrower than that in other barley germplasm sources, suggesting the importance and feasibility of introducing elite genotypes from different origins for malting barley breeding in China. PMID:20872987

  12. Assessment of the genetic diversity of natural rubber tree clones of the SINCHI Institutes clone collection, using of morphological descriptors

    International Nuclear Information System (INIS)

    Genetic diversity of natural rubber clones of the in SINCHI Institute’s clone collection was assessed. Clones of Hevea brasiliensis (Willd. ex Adr. De Juss.) Muell.Arg., Hevea spp. (H. brasiliensis x H. benthamiana), and three more species of Hevea genus are a part of the collection. Seventy-two materials were characterized with twenty-eight morphological descriptors. They were later used to generate a similarity matrix through the analysis of multi-categorical variables, and to obtain clusters based on the matrix. A low variability between clones of H. brasiliensis and H. spp. was observed, presumably because of the direct descendants of most of the materials from crosses of parental PB 80, PB 5/51, PB 49 and Tjir, exception made of clone GU 1410. Clustering between some materials product of exclusive cross of PB series, a group between clones descendants of parental clones PB 86, and clustering between descendants of parental clones PB 5/51, were observed. Clones from other species of Hevea differ from this big group.

  13. Genetic diversity of Guangxi chicken breeds assessed with microsatellites and the mitochondrial DNA D-loop region.

    Science.gov (United States)

    Liao, Yuying; Mo, Guodong; Sun, Junli; Wei, Fengying; Liao, Dezhong Joshua

    2016-05-01

    The domestic chicken (Gallus gallus domesticus) is an excellent model for genetic studies of phenotypic diversity. The Guangxi Region of China possesses several native chicken breeds displaying a broad range of phenotypes well adapted to the extreme hot-and-wet environments in the region. We thus evaluated the genetic diversity and relationships among six native chicken populations of the Guangxi region and also evaluated two commercial breeds (Arbor Acres and Roman chickens). We analyzed the sequences of the D-loop region of the mitochondrial DNA (mtDNA) and 18 microsatellite loci of 280 blood samples from six Guangxi native chicken breeds and from Arbor Acres and Roman chickens, and used the neighbor-joining method to construct the phylogenetic tree of these eight breeds. Our results showed that the genetic diversity of Guangxi native breeds was relatively rich. The phylogenetic tree using the unweighed pair-group method with arithmetic means (UPGAM) on microsatellite marks revealed two main clusters. Arbor Acres chicken and Roman chicken were in one cluster, while the Guangxi breeds were in the other cluster. Moreover, the UPGAM tree of Guangxi native breeds based on microsatellite loci was more consistent with the genesis, breeding history, differentiation and location than the mtDNA D-loop region. STRUCTURE analysis further confirmed the genetic structure of Guangxi native breeds in the Neighbor-Net dendrogram. The nomenclature of mtDNA sequence polymorphisms suggests that the Guangxi native chickens are distributed across four clades, but most of them are clustered in two main clades (B and E), with the other haplotypes within the clades A and C. The Guangxi native breeds revealed abundant genetic diversity not only on microsatellite loci but also on mtDNA D-loop region, and contained multiple maternal lineages, including one from China and another from Europe or the Middle East. PMID:27038171

  14. AFLP markers for the assessment of genetic diversity in european and North American potato varieties cultivated in Iran

    Directory of Open Access Journals (Sweden)

    Saeed Tarkesh Esfahani

    2009-01-01

    Full Text Available Information about the genetic diversity of potato germplasm in Iran is important for variety identification andto enhance the classification of germplasm collections and exploit them in breeding programs and for the development andintroduction of new varieties. AFLP fingerprinting was applied to a group of cultivated potato varieties to find if there is anygeographical differentiation in potato diversity from Europe and North America. The high level of polymorphism within potatovarieties and the high number of variety-specific bands suggest that AFLPs are powerful markers for diversity analysis inpotato varieties. No region-specific AFLP markers were found (present in varieties from the same origin and absent inothers. The UPGMA dendrogram revealed four distinct clusters corresponding almost to the geographical origin of thevarieties. However, the bootstrap support for branches was rather weak. No clusters clearly distinguished varieties fromEurope and North America. Varieties from the same geographical origins however tended to group together within eachcluster. The mean similarity and the UPGMA dendrogram both suggest that North American varieties have nearly identicalgenetic diversity to European varieties. The results of AMOVA revealed large within-region variations which accounted for94.5% of the total molecular variance. The between-region variation, although accounting for only 5.5% of the total variation,was statistically significant. AFLP technology was successfully used to evaluate diversity between different geographicalgroups of potatoes and is recommended for potato genetic studies.

  15. Assessing the Genetic Diversity and Genealogical Reconstruction of Cypress (Cupressus funebris Endl. Breeding Parents Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Hanbo Yang

    2016-07-01

    Full Text Available To identify genetic diversity, genetic structure and the relationship among accessions, and further establish a core collection for the long-term breeding of cypress (Cupressus funebris Endl., the genealogy of breeding parents was reconstructed using simple sequence repeat (SSR molecular markers. Seventeen SSR markers were used to detect molecular polymorphisms among 290 cypress accessions from five provinces and 53 accessions with unknown origin in China. A total of 92 alleles (Na were detected with 5.412 alleles per locus and an average polymorphism information content (PIC of 0.593. The haplotype diversity (H ranged from 0.021 to 0.832, with an average of 0.406. The number of alleles (Na and the effective number of alleles (Ne ranged from 4.294 to 5.176 and from 2.488 to 2.817 among five populations, respectively. The pairwise population matrix of Nei’s genetic distance ranged from 0.008 to 0.023. Based on the results of unweighted pair group method average (UPGMA cluster and population structure analyses, 343 breeding parents were divided into two major groups. Lower genetic differentiation coefficients and closer genetic relationships were observed among cypress breeding parents, suggesting that the genetic basis was narrow, and the genetic relationship was confused by frequent introduction and wide cultivation. Moreover, we reconstructed the genealogy between breeding parents and 30 accessions of breeding parents from an identified core collection. According to the present study, not only geographic origin but also the relationship of the individuals should be considered in future crossbreeding work.

  16. RAPD analysis of genetic diversity and qualitative assessment of hydrolytic activities in a collection of Bacillus sp. isolate

    OpenAIRE

    Berić Tanja; Urdaci Maria C.; Stanković S.; Knežević-Vukčević Jelena

    2009-01-01

    Genetic diversity and production of hydrolytic enzymes of 205 Bacillus isolates from different geographical and ecological niches in Serbia were studied. Combining RAPD analysis and 16S DNA sequencing, we determined 13 different groups of RAPD profiles within four (five) species: B. subtilis, B. cereus/B. thuringiensis, B. pumilus, and B. firmus. Screening for production of hydrolytic enzymes showed that there was no correlation of enzyme production with species. Most of the isolates from all...

  17. Assessment of the Genetic Relationship and Diversity of Mango and Its Relatives by cpISSR Marker

    Institute of Scientific and Technical Information of China (English)

    HE Xin-hua; GUO Yong-ze; LI Yang-rui; OU Shi-jin

    2007-01-01

    Chloroplast inter-simple sequence repeat markers in mango were developed and used to analyze the genetic relationship and diversity of mango and its relatives. Thirty-six mango cultivars (Mangifera indica L.) and its relative species collected from the fruit germplasm collection in the Guangxi Academy of Agricultural Sciences, China, were examined by ISSR-PCR with chloroplast DNA (cpDNA). Eight better primers for chloroplast DNA that provided reproducible, polymorphic DNA amplification patterns were screened from 50 ISSR primers and used for UPGMA analysis. According to the band patterns with 8 primers for chloroplast DNA, all cultivars tested were distinguished from each other and these showed ample genetic diversity; the average percentage of polymorphism was 77.2%. The 36 samples could be clustered into four groups by UPGMA analysis at the coefficient 0.74. The results indicated that the cpISSR marker was a new powerful tool for the identification of mango cultivars or its relative species, and their genetic relationship analysis and diversity evaluation.

  18. The assessment of genetic diversity between and within brassica species and their wild relative (eruca sativa) using ssr markers

    International Nuclear Information System (INIS)

    Microsatellites markers were tested for their ability to distinguish genomic distribution of the Brassica species of the U Triangle and E. sativa. The objectives of the present study were to investigate the genetic diversity of six Brassica species from U-Triangle (representing three genomes, A, B, C) and one from genus Eruca and to identify promising sources of genetic variation for breeding purposes. A total of 54 SSR markers were analyzed in order to detect variation between and within the selected genomes. Three primer pairs depicted the greatest genetic diversity showing 97% polymorphism between Brassica and Eruca genomes (2.55 alleles per locus). Polymorphic Information Content (PIC) values ranged from 0.40 (SSR primer Na14-DO7) to 0.79 (NA10-G09). For comparison within Brassica genomes and Eruca, all the genomes were grouped in three modules i.e., ABE, ACE and BCE (Fig. 1). The tetraploid originating from their parental diploids along-with Eruca was considered in the same module. For the estimation of relatedness within and among genomes, dice coefficients were computed as a measure of genetic similarity matrix. On the basis of genetic distances, dendrogram was constructed through cluster analysis. Two major clusters at coefficient of similarity level (0.47) were observed. One cluster comprised of all Brassica genomes and their accessions, while another consisting of all accessions of Eruca genome. The cluster containing Brassica genomes was further subdivided into four sub-groups that contained diploid and tetraploid species in a way that tetraploid species were grouped in between their diploid parental species with varying genetic distances. Present findings confirmed the validity of SSR markers in genomic studies. (author)

  19. Genetic diversity increases insect herbivory on oak saplings.

    Science.gov (United States)

    Castagneyrol, Bastien; Lagache, Lélia; Giffard, Brice; Kremer, Antoine; Jactel, Hervé

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores. PMID:22937168

  20. Genetic diversity assessment of sub-samples of cacao, Theobroma cacao L. collections in West Africa using simple sequence repeats marker.

    Science.gov (United States)

    Knowledge of genetic diversity, particularly in an introduced crop species, is crucial to the management and utilization of the genetic resources available. Using capillary electrophoresis system, microsatellite markers were used to determine genetic diversity in 574 accessions of cacao, Theobroma c...

  1. Genetic Diversity and Population Structure in Vicia faba L. Landraces and Wild Related Species Assessed by Nuclear SSRs

    Science.gov (United States)

    Silva, Manuela; Lopes, Susana; Viegas, Wanda; Veloso, Maria Manuela

    2016-01-01

    Faba bean (Vicia faba L.) is a facultative cross-pollinating legume crop with a great importance for food and feed due to its high protein content as well as the important role in soil fertility and nitrogen fixation. In this work we evaluated genetic diversity and population structure of faba bean accessions from the Western Mediterranean basin and wild related species. For that purpose we screened 53 V. faba, 2 V. johannis and 7 V. narbonensis accessions from Portugal, Spain and Morocco with 28 faba bean Single Sequence Repeats (SSR). SSR genotyping showed that the number of alleles detected per locus for the polymorphic markers ranged between 2 and 10, with Polymorphic Information Content (PIC) values between 0.662 and 0.071, and heterozygosity (HO) between 0–0.467. Heterozygosity and inbreeding coefficient levels indicate a higher level of inbreeding in wild related species than in cultivated Vicia. The analysis of molecular variance (AMOVA) showed a superior genetic diversity within accessions than between accessions even from distant regions. These results are in accordance to population structure analysis showing that individuals from the same accession can be genetically more similar to individuals from far away accessions, than from individuals from the same accession. In all three levels of analysis (whole panel of cultivated and wild accessions, cultivated faba bean accessions and Portuguese accessions) no population structure was observed based on geography or climatic factors. Differences between V. narbonensis and V. johannis are undetectable although these wild taxa are clearly distinct from V. faba accessions. Thus, a limited gene flow occurred between cultivated accessions and wild relatives. Contrastingly, the lack of population structure seems to indicate a high degree of gene flow between V. faba accessions, possibly explained by the partially allogamous habit in association with frequent seed exchange/introduction. PMID:27168146

  2. Genetic Diversity and Societally Important Disparities.

    Science.gov (United States)

    Rosenberg, Noah A; Kang, Jonathan T L

    2015-09-01

    The magnitude of genetic diversity within human populations varies in a way that reflects the sequence of migrations by which people spread throughout the world. Beyond its use in human evolutionary genetics, worldwide variation in genetic diversity sometimes can interact with social processes to produce differences among populations in their relationship to modern societal problems. We review the consequences of genetic diversity differences in the settings of familial identification in forensic genetic testing, match probabilities in bone marrow transplantation, and representation in genome-wide association studies of disease. In each of these three cases, the contribution of genetic diversity to social differences follows from population-genetic principles. For a fourth setting that is not similarly grounded, we reanalyze with expanded genetic data a report that genetic diversity differences influence global patterns of human economic development, finding no support for the claim. The four examples describe a limit to the importance of genetic diversity for explaining societal differences while illustrating a distinction that certain biologically based scenarios do require consideration of genetic diversity for solving problems to which populations have been differentially predisposed by the unique history of human migrations. PMID:26354973

  3. Population genetic diversity and fitness in multiple environments

    Directory of Open Access Journals (Sweden)

    McGreevy Thomas J

    2010-07-01

    Full Text Available Abstract Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater and stressful conditions (diluted seawater. The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation

  4. Personalized medicine and human genetic diversity.

    Science.gov (United States)

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-09-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  5. Assessment of Worldwide Genetic Diversity of Siberian Wild Rye (Elymus sibiricus L. Germplasm Based on Gliadin Analysis

    Directory of Open Access Journals (Sweden)

    Changbing Zhang

    2012-04-01

    Full Text Available E. sibiricus L., the type species of the genus Elymus, is a perennial, self-pollinating and allotetraploid grass indigenous to Northern Asia, which in some countries can be cultivated as an important forage grass. In the present study, eighty-six Elymus sibiricus accessions, mostly from different parts of Asia, were assayed by gliadin markers based on Acid Polyacrylamide Gel Electrophoresis to differentiate and explore their genetic relationships. The genetic similarity matrix was calculated by 47 polymorphic bands, which ranged from 0.108 to 0.952 with an average of 0.373. The total Shannon diversity index (Ho and the Simpson index (He was 0.460 and 0.302, respectively. Cluster analysis showed a clear demarcation between accessions from Qinghai-Tibetan Plateau, China and the others as separate groups. The clustering pattern was probably dependent on geographic origin and ecological adaptability of the accessions. The population structure analysis based on Shannon indices showed that the proportion of variance within and among the five geographic regions of the Northern Hemisphere was 55.9 and 44.1%, respectively, or 63.4 and 36.6% within and among six Chinese provinces. This distinct geographical divergence was perhaps depended on ecogeographical conditions such as climate difference and mountain distribution. The results of gladin analysis in this study are useful for the collection and preservation of E. sibiricus germplasm resources.

  6. Use of microsatellite markers to assess the identity and genetic diversity of Vitis labrusca and Vitis rotundifolia cultivars

    Directory of Open Access Journals (Sweden)

    Mariane Ruzza Schuck

    2014-07-01

    Full Text Available Ten grapevine cultivars were genotyped at eight microsatellite loci to characterize their identity and genetic diversity. Of these, nine cultivar profiles matched with those of databases and ‘Magoon’ matched with ‘Regale’ in the present study and ‘Regale’ in the University of California (Davis database, implicating a likely error in planting. The number of alleles ranged from 5 (VVM5 to 9 (VVMD31, and the observed heterozygosity ranged from 37.14 (VVMD5 to 97.14% (VVMD27, with no significant differences in relation to the expected values for any of the loci, with the exception of VVMD5. The polymorphism information content values were observed to be above 0.25 in more than 85% of the loci analyzed, and VVMD31 was the most informative. The UPGMA analysis clustered the cultivars into two distinct groups. Within each group, the most divergent cultivars were ‘Bountiful’ (V. rotundifolia and ‘Goethe’ (V. labrusca, also exhibiting the largest number of private alleles, 4 and 7, respectively. When comparing the two groups, the most divergent accessions were ‘Bountiful’ and ‘Bordo’, with the highest Nei distance. It was demonstrated that there is sufficient genetic variability in the cultivars used in this study to support breeding programs.

  7. Assessment of genetic diversity and phylogenetic relationships of endangered endemic plant Barbarea integrifolia DC. (Brassicaceae) in Turkey

    OpenAIRE

    FİLİZ, ERTUĞRUL; Etem OSMA; KANDEMİR, Ali; TOMBULOĞLU, Hüseyin

    2014-01-01

    Barbarea integrifolia DC. (Brassicaceae) is an endangered and endemic species located in Erzincan and Gümüşhane provinces of Turkey. In total, 27 individuals from 2 natural populations were assessed using the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) method coupled with sequence analysis of the internal transcribed spacer (ITS1) rDNA region. Genetic accuracy of RAPD-PCR was tested with 25 RAPD primers, and it resulted in 115 clear and reproducible DNA fragments fro...

  8. Genetic diversity increases insect herbivory on oak saplings.

    Directory of Open Access Journals (Sweden)

    Bastien Castagneyrol

    Full Text Available A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect. Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.

  9. How does ecological disturbance influence genetic diversity?

    Science.gov (United States)

    Banks, Sam C; Cary, Geoffrey J; Smith, Annabel L; Davies, Ian D; Driscoll, Don A; Gill, A Malcolm; Lindenmayer, David B; Peakall, Rod

    2013-11-01

    Environmental disturbance underpins the dynamics and diversity of many of the ecosystems of the world, yet its influence on the patterns and distribution of genetic diversity is poorly appreciated. We argue here that disturbance history may be the major driver that shapes patterns of genetic diversity in many natural populations. We outline how disturbance influences genetic diversity through changes in both selective processes and demographically driven, selectively neutral processes. Our review highlights the opportunities and challenges presented by genetic approaches, such as landscape genomics, for better understanding and predicting the demographic and evolutionary responses of natural populations to disturbance. Developing this understanding is now critical because disturbance regimes are changing rapidly in a human-modified world. PMID:24054910

  10. Implications of recurrent disturbance for genetic diversity.

    Science.gov (United States)

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes. PMID:26839689

  11. Structural and genetic diversity in antibody repertoires from diverse species.

    Science.gov (United States)

    de los Rios, Miguel; Criscitiello, Michael F; Smider, Vaughn V

    2015-08-01

    The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes. PMID:26188469

  12. Integrating Fisheries Dependent and Independent Approaches to assess Fisheries, Abundance, Diversity, Distribution and Genetic Connectivity of Red Sea Elasmobranch Populations

    KAUST Repository

    Spaet, Julia L.

    2014-05-01

    The Red Sea has long been recognized as a global hotspot of marine biodiversity. Ongoing overfishing, however, is threatening this unique ecosystem, recently leading to the identification of the Red Sea as one of three major hotspots of extinction risk for sharks and rays worldwide. Elasmobranch catches in Saudi Arabian Red Sea waters are unregulated, often misidentified and unrecorded, resulting in a lack of species-specific landings information, which would be vital for the formulation of effective management strategies. Here we employed an integrated approach of fisheries dependent and independent survey methods combined with molecular tools to provide biological, ecological and fisheries data to aid in the assessment of the status of elasmobranch populations in the Red Sea. Over the course of two years, we conducted market surveys at the biggest Saudi Arabian fish market in Jeddah. Market landings were dominated by, mostly immature individuals - implying both recruitment and growth overfishing. Additionally, we employed baited remote underwater video (BRUVS) and longline surveys along almost the entire length of the Red Sea coast of Saudi Arabia as well as at selected reef systems in Sudan. The comparison of catch per unit effort (CPUE) data for Saudi Arabian Red Sea BRUVS and longline surveys to published data originating from non-Red Sea ocean systems revealed CPUE values several orders of magnitude lower for both survey methods in the Red Sea compared to other locations around the world. Finally, we infered the regional population structure of four commercially important shark species between the Red Sea and the Western Indian Ocean.We genotyped nearly 2000 individuals at the mitochondrial control region as well as a total of 20 microsatellite loci. Genetic homogeneity could not be rejected for any of the four species across the spatial comparison. Based on high levels of region-wide exploitation, we suggest that, for management purposes, the population

  13. Nephronophthisis: A Genetically Diverse Ciliopathy

    Directory of Open Access Journals (Sweden)

    Roslyn J. Simms

    2011-01-01

    Full Text Available Nephronophthisis (NPHP is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10–15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families.

  14. Single primer-based DNA amplification as a suitable and low-cost tool for assessing genetic diversity in mangrove crabs.

    Science.gov (United States)

    Britto, F B; Mendes, D S F; Ogawa, M; Cintra, I H A; Diniz, F M

    2011-01-01

    We used single primer-based DNA markers to assess genetic variability of the mangrove crab, Ucides cordatus, collected from four different localities from Pará to Santa Catarina States in Brazil (almost 5000 km distant). Five primers were chosen based on the consistency of the amplified bands and the polymorphism of each locus. A total of 78 loci were amplified in 76 samples; high polymorphism rates were detected in the entire sample (80.8%) and within each locality (73.5-79.5%). Analysis of molecular variance demonstrates significant differences between localities (P < 0.001); however, the Φ(ST) value (0.078) indicates a low level of genetic differentiation, which suggests that U. cordatus larvae can spread over large distances. The variation was distributed among the samples, and most of it was attributed to differences among individuals within localities. Cluster analysis, based on the Jaccard similarity coefficient, and the Mantel test gave similar results to the analysis of molecular variance data. Despite the low level of population structuring, these markers could be used for studying U. cordatus diversity, due to the high level of polymorphism. PMID:22095479

  15. Genetic erosion of diversity in cereals

    OpenAIRE

    Petrović Sofija; Dimitrijević Miodrag

    2012-01-01

    Cereals play an important role in human nutrition. Consequently, one of the main goals in breeding is to obtain varieties with high genetic potential for yield. Modern agricultural production includes the expansion of intensive varieties over large areas that lead to narrow selection criteria in breeding programs. The consequence is a drastic reduction in the number of species and genotypes (genetic erosion), or harming biological diversity of local populat...

  16. Genetic Diversity of Neisseria gonorrhoeae Housekeeping Genes

    OpenAIRE

    Viscidi, Raphael P.; Demma, James C.

    2003-01-01

    Molecular typing of Neisseria gonorrhoeae strains is an important tool for epidemiological studies of gonococcal infection and transmission. The recently developed multilocus sequence typing (MLST) method is based on the genetic variation among housekeeping genes. As a preliminary investigation for the development of such a method, we characterized the genetic diversity at 18 gonococcal housekeeping gene loci. Approximately 17,500 nucleotides, spanning 18 loci, were sequenced from 24 isolates...

  17. Genetic Diversity Analysis of Lates calcarifer (Bloch 1790) in Captive and Wild Populations Using RAPD Markers

    OpenAIRE

    Muthusamy RAJASEKAR; Muthusamy THANGARAJ; Thathiredypalli R. BARATHKUMAR; Jayachandran SUBBURAJ; Kaliyan MUTHAZHAGAN

    2012-01-01

    Lates calcarifer (Bloch 1790) is one of the major economically important cultivable fish species in India. In this study, three populations of L. calcarifer was selected to assess the genetic diversity. Of which, two wild (Mudaslodai, Muthupettai) and one captive (Mutukadu) population. The genetic diversity of three populations of this species was studied using Random Amplified Polymorphic DNA (RAPD) markers. Ten random primers were used for the assessment of their genetic diversity and const...

  18. ASSESSMENT OF GENETIC DIVERSITY BASED ON POLYPEPTIDE BANDING PATTERN AMONG DIFFERENT ISOLATES OF ASPERGILLUS FLAVUS USING SDS-PAGE

    OpenAIRE

    2013-01-01

    A quantitative categorization of total storage proteins profile of 6 isolates of Aspergillus flavus was performed by sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE). This technique was used to explore the level of genetic discrepancy in A.  flavus isolates. Total soluble proteins were resolved on 10% resolving gel. A total of 27 polypeptide bands were obtained among which 20 bands were present in all isolates but other 7 bands of molecular weight (127.38, 110.14, 109.74...

  19. Genetic gain and gene diversity of seed orchard crops

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyu-Suk [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Genetics and Plant Physiology

    2001-07-01

    Seed orchards are the major tool for deploying the improvement generated by breeding programs and assuring the consistent supply of genetically improved seed. Attainment of genetic gain and monitoring of gene diversity through selection and breeding were studied considering the factors: selection intensity; genetic value; coancestry; fertility variation; and pollen contamination. The optimum goal of a seed orchard is achieved when the orchard population is under an idealized situation, i.e., panmixis, equal gamete contributions from all parental genotypes, non-relatedness and no pollen contamination. In practice, however, due to relatedness among parents, variation in clonal fertility and ramet number, and gene migration from outside, the realized genetic gain and gene diversity deviate from the expectation. In the present study, the genetic value of seed orchard crops (genetic gain, G) could be increased by selective harvest, genetic thinning and/or both. Status number (N{sub S}) was used to monitor the loss of gene diversity in the process of forest tree domestication, and calculated to be reasonably high in most seed orchards. Fertility of parents was estimated based on the assessment of flowering or seed production, which was shown to be under strong genetic control. Variation in fertility among orchard parents was a general feature and reduced the predicted gene diversity of the orchard crop. Fertility variation among parents could be described by the sibling coefficient ({psi}). {psi} was estimated to be 2 (CV = 100% for fertility). In calculating {psi}, it was possible to consider, besides fertility variation, the phenotypic correlation between maternal and parental fertilities, and pollen contamination. Status number was increased by controlling parental fertility, e.g., equal seed harvest, mixing seed in equal proportions and balancing parental contribution. By equalizing female fertility among over-represented parents, it was possible to effect a

  20. Managing genetic diversity and society needs

    Directory of Open Access Journals (Sweden)

    Arthur da Silva Mariante

    2008-07-01

    Full Text Available Most livestock are not indigenous to Brazil. Several animal species were considered domesticated in the pre-colonial period, since the indigenous people manage them as would be typical of European livestock production. For over 500 years there have been periodic introductions resulting in the wide range of genetic diversity that for centuries supported domestic animal production in the country. Even though these naturalized breeds have acquired adaptive traits after centuries of natural selection, they have been gradually replaced by exotic breeds, to such an extent, that today they are in danger of extinction To avoid further loss of this important genetic material, in 1983 Embrapa Genetic Resources and Biotechnology decided to include conservation of animal genetic resources among its priorities. In this paper we describe the effort to genetically characterize these populations, as a tool to ensure their genetic variability. To effectively save the threatened local breeds of livestock it is important to find a niche market for each one, reinserting them in production systems. They have to be utilized in order to be conserved. And there is no doubt that due to their adaptive traits, the Brazilian local breeds of livestock can play an important role in animal production, to meet society needs.

  1. Assessment of Functional EST-SSR Markers (Sugarcane) in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis

    Science.gov (United States)

    Ul Haq, Shamshad; Kumar, Pradeep; Singh, R. K.; Verma, Kumar Sambhav; Bhatt, Ritika; Sharma, Meenakshi; Kachhwaha, Sumita; Kothari, S. L.

    2016-01-01

    Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks. PMID:27340568

  2. Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers

    Institute of Scientific and Technical Information of China (English)

    WANG Xingfen; MA Jun; YANG Shuo; ZHANG Guiyin; MA Zhiying

    2007-01-01

    Genetic diversity among 95 Chinese upland cottons with Fusarium and/or Verticillium wilts resistance was estimated using Amplified Fragment Length Polymorphism (AFLP) and Simple Sequence Repeat (SSR) markers.Twenty EcoRI-MseI AFLP and 19 SSR primers with polymorphism were selected to perform the fingerprinting.The results showed that 20 AFLP primer pairs produced a total of 1 480 major bands among 95 genotypes,and 214 were polymorphic bands.The number of total bands per primer pair ranged from 47 to 109,with an average of 74.0.The polymorphism information content (PIC) values for the 20 primer pairs varied from 0.01 (E-ACT/M-CAT) to 0.24 (E-ACA/MCTA),and the average value was 0.09.Nineteen SSR primers generated 89 DNA bands,of which 61 were polymorphic.The total number of alleles per locus varied from 3 to 8,with an average of 4.7.The average PIC value for the SSR amplification products was 0.69.Genetic similarity estimates for the entire data set ranged from 0.978 to 0.998 based on AFLP and SSR bands.It was proved that the close genetic relationship and narrow genetic diversity existed in the tested cultivars.The clustering patterns could not be correlated to the geographic origin,the pedigree and common parentage of the cultivars.

  3. Assessment of Functional EST-SSR Markers (Sugarcane) in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis.

    Science.gov (United States)

    Ul Haq, Shamshad; Kumar, Pradeep; Singh, R K; Verma, Kumar Sambhav; Bhatt, Ritika; Sharma, Meenakshi; Kachhwaha, Sumita; Kothari, S L

    2016-01-01

    Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks. PMID:27340568

  4. Assessment of Functional EST-SSR Markers (Sugarcane in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis

    Directory of Open Access Journals (Sweden)

    Shamshad Ul Haq

    2016-01-01

    Full Text Available Expressed sequence tags (ESTs are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74% were the most abundant followed by di- (26.10%, tetra- (4.67%, penta- (1.5%, and hexanucleotide (1.2% repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA. Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks.

  5. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  6. Restoration of coral populations in light of genetic diversity estimates

    OpenAIRE

    Shearer, T. L.; Porto, I; Zubillaga, A. L.

    2009-01-01

    Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using ...

  7. Genetic diversity between human metapneumovirus subgroups

    International Nuclear Information System (INIS)

    Complete consensus nucleotide sequences were determined for human metapneumovirus (HMPV) isolates CAN97-83 and CAN98-75, representing the two proposed genotypes or genetic subgroups of HMPV. The overall level of genome nucleotide sequence identity and aggregate proteome amino acid sequence identity between the two HMPV subgroups were 80 and 90%, respectively, similar to the respective values of 81 and 88% between the two antigenic subgroups of human respiratory syncytial virus (HRSV). The diversity between HMPV subgroups was greatest for the SH and G proteins (59 and 37% identity, respectively), which were even more divergent than their HRSV counterparts (72 and 55% cross-subgroup identity, respectively). It is reasonable to anticipate that the two genetic subgroups of HMPV represent antigenic subgroups approximately comparable to those of HRSV

  8. Evaluation of genetic diversity in different Pakistani wheat land races

    International Nuclear Information System (INIS)

    Wheat is one of the main sources of nutrition worldwide. Genetic improvement of the seed makes wheat a source of high quality flour for human consumption and for other industrial uses. With the help of molecular markers, the available germplasm of wheat can be assessed for future breeding programs. Therefore, the aim of the present work was to analyze the genetic diversity among 15 Pakistani wheat land races based on Random Amplified Polymorphism DNA (RAPD) markers. A total of 284 DNA fragments were amplified, ranging in size from 200bp to 1100bp by using six primers. The number of DNA fragments for each primer varied from 2 (OPC-6) to 9 (OPC-8) with an average of 6 fragments per primer. Out of 284 amplified products, 120 were monomorphic and 137 were polymorphic showing an average of 7.8% polymorphism per primer. One specific marker was detected both for OPC-1 and OPC-8, two for OPC-5, while no RAPD specific marker was detected for the remaining primers. The genetic similarity index values ranged from 0.36 to 0.93, with an average of 0.64. Maximum genetic similarity (91%) was observed between Sur bej and Khushkawa. On the contrary, minimum genetic similarity (32%) was observed in Khushkaba-1 and Khushkawa. The dendrogram resulting from the NTSYS cluster analysis showed that the studied genotypes are divided into two main clusters from the same node. The first cluster contained 13 land races, while the second cluster contained only 2 land races. The dendrogram clustered the genotypes into 5 groups and showed efficiency in identifying genetic variability. These results indicated the usefulness of RAPD technique in estimating the genetic diversity among wheat genetic resources. (author)

  9. Conservation of Genetic Diversity in Culture Plants

    Directory of Open Access Journals (Sweden)

    MAXIM A.

    2010-08-01

    Full Text Available The most important international document relating to the conservation of biodiversity is one adopted by theUN in Rio de Janeiro (1992 that "Convention on Biodiversity". Based on this agreement, the EU has taken a series ofmeasures to reduce genetic erosion in agriculture, which grew with the expansion of industrialized agriculture.Throughout its existence, mankind has used some 10,000 growing plant species. According to FAO statistics, today,90% of food production is ensured by some 120 growing plant species. In addition to drastic reduction in specificdiversity, the advent of industrialized agriculture has generated a process of strong genetic erosion. Old varieties andlocal varieties of crops have mostly been affected, in favour of "modern" varieties. Landraces are characterized by highheterogenity. They have the advantage of being much better adapted to biotic and abiotic stress conditions (diseases,pests, drought, low in nutrients, etc. and have excellent taste qualities, which can justify a higher price recovery thancommercial varieties. Thanks to these features, these crops need small inputs, which correspond to the concept ofsustainable development. Landraces are an invaluable genetic potential for obtaining new varieties of plants and are bestsuited for crop cultivation in ecological systems, becoming more common. Also, for long term food security in thecontext of global warming, rich genetic diversity will be require. “In situ” and “ex situ” conservation are the two majorstrategies used in the conservation of plant genetic resources. There is a fundamental difference between these twostrategies: “ex situ” conservation involves sampling, transfer and storage of a particular species population away fromthe original location, while “in situ” conservation (in their natural habitat implies that the varieties of interest,management and monitoring their place of origin takes place in the community to which they belong. These

  10. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    E. SANTOS; M. MATOS; P. SILVA; A. M. FIGUEIRAS; C. BENITO; O. PINTO-CARNIDE

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale cerealeusing RAPDs, ISSRs and sequence analysis of six exons ofScMATE1gene.Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDsand 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primersgenerated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further,69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of theScMATE1gene also demonstrated a high genetic variability that subsists inSecalegenus. One difference observed in exon 1 sequencesfromS. vaviloviiseems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs,ISSRs and exons ofScMATE1gene were similar.S. ancestrale ,S. kuprijanoviiandS. cerealewere grouped in the same clusterandS. segetalewas in another cluster.S. vaviloviishowed evidences of not being clearly an isolate species and having greatintraspecific difference

  11. Low genetic diversity and high genetic differentiation in the critically endangered Omphalogramma souliei (Primulaceae):implications for its conservation

    Institute of Scientific and Technical Information of China (English)

    Yuan HUANG; Chang-Qin ZHANG; De-Zhu LI

    2009-01-01

    Omphalogramma souliei Franch. Is an endangered perennial herb only distributed in alpine areas of SW China. ISSR markers were applied to determine the genetic variation and genetic structure of 60 individuals of three populations of O. Souliei in NW Yunnan, China. The genetic diversity at the species level is low with P= 42.5% (percentage of polymorphic bands) and Hsp=0.1762 (total genetic diversity). However, a high level of genetic differentiation among populations was detected based on different measures (Nei's genetic diversity analysis: Gst=0.6038; AMOVA analysis: Fst=0.6797). Low level of genetic diversity within populations and significant genetic differentiation among populations might be due to the mixed mating system in which xenog-amy predominated and autogamy played an assistant role in O. Souliei. The genetic drift due to small population size and limited current gene flow also resulted in significant genetic differentiation. The assessment of genetic variation and differentiation of the endangered species provides important information for conservation on a genetic basis. Conservation strategies for this rare endemic species are proposed.

  12. Does population size affect genetic diversity? A test with sympatric lizard species.

    Science.gov (United States)

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations. PMID:26306730

  13. Pattern of genetic diversity among Fusarium wilt resistant castor germplasm accessions (Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    K. Anjani

    2010-03-01

    Full Text Available Wilt caused by Fusarium oxysporum f.sp. ricini (Wr Gordon is one of the major yield losing diseases in castor.Cultivating wilt resistant cultivars is an effective strategy to control the disease. Utilization of diverse sources ofstable resistance is a prerequisite for durable resistance breeding. The experiment was conducted to identifygenetically diverse resistant sources in castor germplasm. Genetic diversity among 20 identified wilt resistantgermplasm was assessed using multivariate classificatory methods. Wide genetic diversity was demonstratedamong these accessions. These accessions are valuable in wilt resistance breeding programme. They wouldserve as base diverse material for wilt resistance breeding, wilt resistant genepool construction and moleculartagging of resistant genes.

  14. Genetic and biological diversity among isolates of Neospora caninum.

    Science.gov (United States)

    Schock, A; Innes, E A; Yamane, I; Latham, S M; Wastling, J M

    2001-07-01

    Neospora caninum is a protozoan parasite that causes bovine abortion. The epidemiology of N. caninum is poorly understood and little is known about the genetic diversity of the parasite, or whether individual isolates differ in virulence. Such diversity may, among other factors, underlie the range of pathologies seen in cattle. In this study we analysed biological and genetic variation in 6 isolates of N. caninum originating from canine and bovine hosts by measurement of growth rate in vitro, Western blotting and random amplification of polymorphic DNA (RAPD). This comparative analysis of intra-species diversity demonstrated that heterogeneity exists within the species. The relative growth rate in vitro, as assessed by 3[H]uracil uptake, showed significant variation between isolates. However, no significant differences were detected between the antigenic profiles of each isolate by Western blotting. RAPD-PCR was performed on DNA from the 6 Neospora isolates; 3 strains of Toxoplasma gondii, Sarcocystis sp. and Cryptosporidium parvum were also analysed. Twenty-six RAPD primers gave rise to 434 markers of which 222 were conserved between all the Neospora isolates and distinguished them from the other Apicomplexa. An additional 54 markers were unique for Neospora but were polymorphic within the species and able to differentiate between the individual isolates. The RAPD data were subjected to pair-wise similarity and cluster analysis and showed that the Neospora isolates clustered together as a group, with T. gondii as their nearest neighbour. N. caninum isolates showed no clustering with respect either to host or geographical origin. The genetic similarity between Neospora isolates from cattle and dogs suggests that these hosts may be epidemiologically related, although further analysis of bovine and canine field samples are required. The genetic and biological diversity observed in this study may have important implications for our understanding of the pathology and

  15. Genetic diversity in the Yangtze finless porpoise by RAPD analysis

    Institute of Scientific and Technical Information of China (English)

    He Shunping; Wang Ding; Wang Wei; Chen Daoquan; Zhao Qingzhong; Gong Weiming

    2005-01-01

    To estimate the genetic diversity in the Yangtze finless porpoise (Neophocaenaphocaenoides asiaeorientalis), the randomly amplified polymorphic DNA techniquewas applied to examine ten animals captured from the Yangtze River. Out of 20 arbitrary primers used in the experiment, seventeen produced clearly reproducible bged from 0.0986 to 0.5634. Compared with other cetacean populations, this genetic distance is quite low. Such a low genetic diversity suggests that this population may be suffering from reduced genetic variation, and be very fragile. More studiesare needed for understanding the basis for this apparent low genetic diversity and to help protect this endangered, unique population.

  16. A preliminary examination of genetic diversity in the Indian false vampire bat Megaderma lyra

    Directory of Open Access Journals (Sweden)

    Emmanuvel Rajan, K.

    2006-12-01

    Full Text Available Habitat loss and fragmentation have serious consequences for species extinction as well as genetic diversity within a species. Random Amplified Polymorphic DNA (RAPD analysis was employed to assess the genetic diversity within and between four natural populations of M. lyra. Our results suggest that the genetic diversity varied from 0.21 to 0.26 with a mean of 0.11 to 0.13 (± SD. The mean Gst value of 0.15 was obtained from all four populations and estimated average Nm (1.41 showing gene flow between the populations. AMOVA analysis showed 88.96% within and 11.04% among the studied populations. Cluster analyses of RAPD phenotypes showed that specimens were not grouped by geographical origin. The genetic diversity found in the M. lyra population may be explained by its breeding behaviors. Though preliminary, the results indicate that all four populations should be considered to maintain the genetic diversity.

  17. Genetic diversity and maternal origin of Bangladeshi chicken.

    Science.gov (United States)

    Bhuiyan, M S A; Chen, Shanyuan; Faruque, S; Bhuiyan, A K F H; Beja-Pereira, Albano

    2013-06-01

    Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiST (ΦST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of

  18. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  19. Assessment of genetic diversity on a sample of cocoa accessions resistant to witches' broom disease based on RAPD and pedigree data Avaliação da diversidade genética em uma amostra de acessos de cacau resistentes à doença vassoura-de-bruxa, com base em dados de RAPD e pedigree

    OpenAIRE

    Ronaldo Carvalho dos Santos; José Luís Pires; Uilson Vanderley Lopes; Karina Peres G. Gramacho; Acassi Batista Flores; Rita de Cássia S. Bahia; Helaine C. Cristine Ramos; Ronan Xavier Corrêa; Dario Ahnert

    2005-01-01

    Genetic diversity in cocoa (Theobroma cacao L.) has been assessed based on morphological and molecular markers for germplasm management and breeding purposes. Pedigree data is available in cocoa but it has not been used for assessing genetic relatedness. The geneitic diversity of 30 clonal cocoa accessions resistant to witche´ broom disease, from the CEPEC series, were studied on the basis of RAPD data and pedigree information. Twenty of these accessions descend from the TSA-644 clone, ...

  20. Genetic Diversity of RAPD Mark for Natural Davidia involucrata Populations

    Institute of Scientific and Technical Information of China (English)

    Congwen Song; Manzhu Bao

    2006-01-01

    The genetic diversity and genetic variation within and among populations of five natural Davidia involucrata populations were studied from 13 primers based on random amplified polymorphic DNA (RAPD) analysis.The results show that natural D.involucrata population has a rich genetic diversity,and the differences among populations are significant.Twenty-six percent of genetic variation exists among D.involucrata populations,which is similar to that of the endangered tree species Liriodendron chinense and Cathaya argyrophylla in China,but different from more widely distributed tree species.The analysis of the impacts of sampling method on genetic diversity parameters shows that the number of sampled individuals has little effect on the effective number of alleles and genetic diversity,but has a marked effect on the genetic differentiation among populations and gene flows.This study divides the provenances of D.involucrata into two parts,namely,a southeast and a northwest provenance.

  1. Genetic diversity of noroviruses in Brazil

    Directory of Open Access Journals (Sweden)

    Julia Monassa Fioretti

    2011-12-01

    Full Text Available Norovirus (NoV infections are a major cause of acute gastroenteritis outbreaks around the world. In Brazil, the surveillance system for acute diarrhoea does not include the diagnosis of NoV, precluding the ability to assess its impact on public health. The present study assessed the circulation of NoV genotypes in different Brazilian states by partial nucleotide sequencing analysis of the genomic region coding for the major capsid viral protein. NoV genogroup II genotype 4 (GII.4 was the prevalent (78% followed by GII.6, GII.7, GII.12, GII.16 and GII.17, demonstrating the great diversity of NoV genotypes circulating in Brazil. Thus, this paper highlights the importance of a virological surveillance system to detect and characterize emerging strains of NoV and their spreading potential.

  2. Variabilidade genética de etnovariedades de mandioca, avaliada por marcadores de DNA Genetic diversity of cassava folk varieties assessed by DNA markers

    Directory of Open Access Journals (Sweden)

    Gilda Santos Mühlen

    2000-06-01

    Full Text Available O objetivo deste trabalho foi quantificar a variabilidade genética de etnovariedades ("folk varieties" de mandioca e examinar a distribuição desta variabilidade entre grupos de etnovariedades de diferentes locais de origem e tipos. Foram escolhidas 54 etnovariedades de mandioca originárias de quatro regiões brasileiras: 45 etnovariedades da Amazônia (23 do Rio Negro, 6 do Rio Branco e 16 do Rio Solimões e 9 do litoral sul do Estado de São Paulo. A variedade moderna Mantiqueira¹, de ampla distribuição mundial, também foi incluída. Destas, 38 variedades eram mandiocas bravas e 17 de mesa (aipins ou macaxeiras. Foram utilizados três tipos de marcador de DNA: RAPD, AFLP e microssatélites. A análise dos resultados consistiu na descrição do padrão de bandas, cálculo de índices de similaridade (Nei & Li; 1979 e análise de coordenadas principais (PCoA, para cada tipo de marcador. Para os locos de microssatélites foram calculados também: heterozigozidade, índices de diversidade (DI, de Weir e coeficientes de diferenciação genética (G ST. A variabilidade genética mostrou-se mais concentrada dentro de regiões do que entre regiões (G ST = 0,07. A heterozigozidade média foi de 56%. Os índices médios de similaridade entre variedades variaram em função do tipo de marcador: S = 0,89 para RAPD, S = 0, 85 para AFLP e S = 0,59 para microssatélites. Análises de coordenadas principais mostraram agrupamentos separando as variedades de mesa das bravas.The objective of this work was to quantify the genetic diversity among cassava folk varieties as well as to examine the distribution of the genetic diversity among varieties of different origin and type. Fifty-four cassava varieties were chosen from 4 Brasilian regions: 45 of the Amazon basin (23 from River Negro, 6 of the River Branco and 16 of the River Solimões and 9 of the south coast of the São Paulo State, Brazil. The modern variety Mantiqueira was also included as a

  3. Mapping genetic and phylogenetic diversity of a temperate forest using remote sensing based upscaling methods

    Science.gov (United States)

    Escriba, C. G.; Yamasaki, E.; Leiterer, R.; Tedder, A.; Shimizu, K.; Morsdorf, F.; Schaepman, M. E.

    2015-12-01

    Functioning and resilience of forest ecosystems under environmental pressures increases when biodiversity at genetic, species, canopy and ecosystem level is higher. Therefore mapping and monitoring diversity becomes a necessity to assess changes in ecosystems and understanding their consequences. Diversity can be assessed by using different metrics, such as diversity of functional traits or genetic diversity amongst others. In-situ approaches have provided useful, but usually spatially constrained information, often dependent on expert knowledge. We propose using remote sensing in combination with in-situ sampling at different spatial scales. We map phylogenetic and genetic diversity using airborne imaging spectroscopy in combination with terrestrial and airborne laser scanning, as well as exhaustive in-situ sampling schemes. To this end, we propose to link leaf optical properties using a taxonomic approach (spectranomics) to genetic and phylogenetic diversity. The test site is a managed mixed temperate forest on the south-facing slope of Laegern Mountain, Switzerland (47°28'42.0" N, 8°21'51.8" E, 682 m.a.s.l.). The intensive sampling area is roughly 300m x 300m and dominant species are European beech (Fagus sylvatica) and Ash (Fraxinus excelsior). We perform phylogenetic and intraspecific genetic variation analyses for the five most dominant tree species at the test site. For these species, information on functional biochemical and architectural plant traits diversity is retrieved from imaging spectroscopy and laser scanning data and validated with laboratory and in-situ measurements. To assess regional-scale genetic diversity, the phylogenetic and genetic signals are quantified using the remote sensing data, resulting in spatially distributed intra-specific genetic variation. We discuss the usefulness of combined remote sensing and in-situ sampling, to bridge diversity scales from genetic to canopy level.

  4. Genetic diversity of human RNase 8

    Directory of Open Access Journals (Sweden)

    Chan Calvin C

    2012-01-01

    Full Text Available Abstract Background Ribonuclease 8 is a member of the RNase A family of secretory ribonucleases; orthologs of this gene have been found only in primate genomes. RNase 8 is a divergent paralog of RNase 7, which is lysine-enriched, highly conserved, has prominent antimicrobial activity, and is expressed in both normal and diseased skin; in contrast, the physiologic function of RNase 8 remains uncertain. Here, we examine the genetic diversity of human RNase 8, a subject of significant interest given the existence of functional pseudogenes (coding sequences that are otherwise intact but with mutations in elements crucial for ribonucleolytic activity in non-human primate genomes. Results RNase 8 expression was detected in adult human lung, spleen and testis tissue by quantitative reverse-transcription PCR. Only two single-nucleotide polymorphisms and four unique alleles were identified within the RNase 8 coding sequence; nucleotide sequence diversity (π = 0.00122 ± 0.00009 per site was unremarkable for a human nuclear gene. We isolated transcripts encoding RNase 8 via rapid amplification of cDNA ends (RACE and RT-PCR which included a distal potential translational start site followed by sequence encoding an additional 30 amino acids that are conserved in the genomes of several higher primates. The distal translational start site is functional and promotes RNase 8 synthesis in transfected COS-7 cells. Conclusions These results suggest that RNase 8 may diverge considerably from typical RNase A family ribonucleases and may likewise exhibit unique function. This finding prompts a reconsideration of what we have previously termed functional pseudogenes, as RNase 8 may be responding to constraints that promote significant functional divergence from the canonical structure and enzymatic activity characteristic of the RNase A family.

  5. Endemic insular and coastal Tunisian date palm genetic diversity.

    Science.gov (United States)

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm. PMID:26895027

  6. Genetic risk assessment

    International Nuclear Information System (INIS)

    Based on the induction of germ cell mutations in mammals international and national committees developed concepts for quantifying radiation-induced genetic risk in humans. Genetic effects dominated the thinking o the UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation) Report in 1958, the BEAR (Biological Effects of Atomic Radiations) Report form the National Academy of Sciences, the National Research Council in 1956, and the British counterpart, the Medical Research Council , in 1956. an interesting personal account of the development of the work of the BEIR (Biological Effects of Ionizing Radiations) and UNSCEAR Committee was published recently by Russell. The quality of risk estimation depends on the data base and on the concepts used. The current status of both aspects for quantifying genetic risk is reviewed in this paper

  7. Beauveria bassiana: quercetinase production and genetic diversity

    Directory of Open Access Journals (Sweden)

    Eula Maria de M. B Costa

    2011-03-01

    Full Text Available Beauveria bassiana genetic diversity and ability to synthesize quercetin 2,3-dioxygenase (quercetinase were analyzed. B. bassiana isolates, obtained from Brazilian soil samples, produced quercetinase after induction using 0.5 g/L quercetin. B. bassiana ATCC 7159 (29.6 nmol/mL/min and isolate IP 11 (27.5 nmol/ml/min showed the best performances and IP 3a (9.5 nmol/mL/min presented the lowest level of quercetinase activity in the culture supernatant. A high level of polymorphism was detected by random amplified polymorphic DNA (RAPD analysis. The use of internal-transcribed-spacer ribosomal region restriction fragment length polymorphism (ITS-RFLP did not reveal characteristic markers to differentiate isolates. However, the ITS1-5.8S-ITS2 region sequence analysis provided more information on polymorphism among the isolates, allowing them to be clustered by relative similarity into three large groups. Correlation was tested according to the Person's correlation. Data of our studies showed, that lower associations among groups, level of quercetinase production, or geographical origin could be observed. This study presents the production of a novel biocatalyst by B. bassiana and suggests the possible industrial application of this fungal species in large-scale biotechnological manufacture of quercetinase.

  8. Indigenous cattle in Sri Lanka: production systems and genetic diversity

    International Nuclear Information System (INIS)

    Production status, farming systems and genetic diversity of indigenous cattle in Sri Lanka were evaluated using six geographically distinct populations. The indigenous cattle population of the country is considered as a nondescript mixture of genotypes, and represents more than half of the total cattle population of 1.2 million heads. Five distinct indigenous populations were investigated for morphological analysis, and four were included in evaluating genetic differences. Farming systems were analysed using a pre-tested structured questionnaire. The genetic variation was assessed within and between populations using 15 autosomal and two Y-specific microsatellite markers, and compared with two indigenous populations from the African region. Farming system analysis revealed that indigenous cattle rearing was based on traditional mixed-crop integration practices and operates under limited or no input basis. The contribution of indigenous cattle to total tangible income ranged from zero to 90% reflecting the high variation in the purpose of keeping. Morphometric measurements explained specific phenotypic characteristics arising from geographical isolation and selective breeding. Though varying according to the region, the compact body, narrow face, small horns and humps with shades of brown and black coat colour described the indigenous cattle phenotype in general. Genetic analysis indicated that indigenous cattle in Sri Lanka have high diversity with average number of alleles per locus ranging from 7.9 to 8.5. Average heterozygosity of different regions varied within a narrow range (0.72 ± 0.04 to 0.76 ± 0.03). Genetic distances between regions were low (0.085 and 0.066) suggesting a similar mixture of genotypes across regions. Y-specific analysis indicated a possible introgression of Taurine cattle in one of the cattle populations. (author)

  9. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Institute of Scientific and Technical Information of China (English)

    Jiandong YANG; Zhihe ZHANG; Fujun SHEN; Xuyu YANG; Liang ZHANG; Limin CHEN; Wenping ZHANG; Qing ZHU; Rong HOU

    2011-01-01

    Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species.Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China.Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation.Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population.The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve.Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations.All individuals from the same subpopulation were assigned to one cluster.This indicates high gene flow between subpopulations.F statistic analyses revealed a low Fls-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR.Additionally,our data show a high level of genetic diversity for the Tangjiahe population.Mean allele number (A),Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangiiahe population was 5.9,5.173 and 0.703,respectively.This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6):717-724,2011].

  10. 花生表型及SSR遗传多样性的研究%Phenotype and SSR-Based Genetic Diversity Assessment in Peanut

    Institute of Scientific and Technical Information of China (English)

    康红梅; 李保云; 孙毅

    2012-01-01

    The study had analyzed the Shannon-Weaver and Simpson indexes of phenotypic traits including plant type,presence or absence of hair,grain color,grain shape,leaf shape,habit of growth,flowering habit,particle size, particle color on 75 peanut cultivars(28 identified cultivars and 47 local cultivars) from Institute of Industrial Crops,Shanxi Academy of Agricultral Science. The results showed that genetic diversity index of 75 peanut cultivars were SWI =0. 924,SI =0.500 respectively,flowering habit was the lowest(SWI = 0. 139,SI =0. 014) .while Shannon-Weaver index of grain color was the highest with value of 1.841 ,and Simpson index was 0. 712. 48 pairs SSR markers of peanut were used to analyse genetic diversity of the tested materials, the results were as follows: (1) 35 pairs SSR markers(72. 9% )were polymorphic,and 215 polymorphic bands had been detected,6 polymorphic bands could be detected by each marker averagely. (2) On the basis of the results, the genetic similarity(GS) among 75 peanut cultivars were in a range from 0. 25 to 0. 85, with the mean of 0. 55 , and the average genetic similarity among the 28 identified cultivars were 0. 6 at a range of 0. 39 -0. 85.%对山西省农业科学院经济作物研究所保存的75份花生材料(包括28个已审定的花生品种和47个地方品种)进行了包括株型、茸毛的有无、叶色、粒形、叶形、生长习性、开花习性、粒大小、粒色等表型性状的Shannon-Weaver遗传多样性指数(简称SWI)和Simpson遗传多样性指数(简称SI)分析.结果表明:参试的75份花生品种遗传多样性指数分别为SWI=0.924,SI=0.500,其中以开花习性最低(SWI=0.139,SI =0.014),而Shannon-Weaver指数以粒色最高为1.841,Simpson指数为0.712.利用48对SSR引物对这些材料进行了遗传多样性分析,结果如下:(1)在48对花生的SSR引物中,有35对(占所用引物总数的72.9%)具有多态性,共检测到215条多态性条带,平均每对引物可扩增6

  11. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Understanding genetic variation in germplasm collection is essential for the conservation and their efficient use in plant breeding. Cucumber is an important vegetable crop worldwide. Previous studies revealed a low genetic diversity in cucumber, but detailed insights into the crop’s genetic structu...

  12. Genetic diversity of tropical-adapted onion germplasm assessed by RAPD markers Diversidade genética em germoplasma tropical de cebola estimada via marcadores RAPD

    Directory of Open Access Journals (Sweden)

    Maria do Desterro M dos Santos

    2012-03-01

    Full Text Available Onion is a crop of significant socioeconomic importance to Brazil. Onion germplasm with adaptation to tropical and sub-tropical conditions has played an important role in the development of this crop in the country. In this context, we studied the genetic diversity in a germplasm collection potentially useful for the development of cultivars for tropical and subtropical regions. The genetic variability of 21 accessions/cultivars that have been used as germplasm and/or were developed by onion breeding programs in Brazil was evaluated via RAPD markers. The following accessions were included in the study :'Red Creole', 'Roxa IPA-3', 'Valenciana 14', 'Beta Cristal', 'Diamante', 'Composto IPA-6', 'Aurora', 'Bojuda Rio Grande', 'Alfa Tropical', 'Pêra IPA-4', 'Primavera', 'Belém IPA-9', 'Crioula Alto Vale', 'Conquista', 'Pira-Ouro', 'Vale-Ouro IPA-11', 'Franciscana IPA-10', 'Serrana', 'CNPH 6400', 'Petroline', and 'Baia Periforme'. From the 520 primers used in the initial screening only 38 displayed stable polymorphisms. They produced 624 amplicons, of which 522 (83.7% were monomorphic and 102 (16.3% were polymorphic. An average similarity coefficient of 0.72 was calculated among accessions based upon this subgroup of polymorphic amplicons. This allowed the discrimination of this germplasm collection into six groups with only one of them comprising more than one accession. The main group was formed by 16 accessions ('Diamante', 'Composto IPA-6', 'Aurora', 'Bojuda Rio Grande', 'Conquista', 'Pira-Ouro', 'Serrana', 'Vale-Ouro IPA-11', 'Baia Periforme', 'Primavera', 'Franciscana IPA-10', 'Belém IPA-9', 'Crioula Alto Vale', 'Petroline', 'Pêra IPA-4' and 'Alfa Tropical', for which the genetic origin (with few exceptions can be traced back to the variety 'Baia Periforme'. The populations 'Red Creole', 'Roxa IPA-3', 'Beta Cristal', 'CNPH 6400', and 'Valenciana 14' comprised a set of five isolated groups, showing genetic divergence among them and in

  13. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests

    Science.gov (United States)

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  14. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    Science.gov (United States)

    Banhos, Aureo; Hrbek, Tomas; Sanaiotti, Tânia M; Farias, Izeni Pires

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  15. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Aureo Banhos

    Full Text Available Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest.

  16. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China

    NARCIS (Netherlands)

    Li, Yinghui; Guan, Rongxia; Liu, Zhangxiong; Ma, Yansong; Wang, Lixia; Li, Linhai; Lin, Fanyun; Luan, Weijiang; Chen, Pengyin; Yan, Zhe; Guan, Yuan; Zhu, Li; Ning, Xuecheng; Smulders, M.J.M.; Li, W.; Piao, Rihua; Cui, Yanhua; Yu, Zhongmei; Guan, Min; Chang, Ruzhen; Hou, Anfu; Shi, Ainong; Zhang, Bo; Zhu, Shenlong; Qiu, L.

    2008-01-01

    The Chinese genebank contains 23,587 soybean landraces collected from 29 provinces. In this study, a representative collection of 1,863 landraces were assessed for genetic diversity and genetic differentiation in order to provide useful information for effective management and utilization. A total o

  17. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci

    Science.gov (United States)

    In this work we evaluate a collection of 88 carrot cultivars and landraces for polymorphisms at SSR loci and use the obtained markers to assess the genetic diversity, and we show molecular evidence for divergence between Asiatic and Western carrot genetic pools. The use of primer pairs flanking repe...

  18. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    Science.gov (United States)

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures. PMID:26656801

  19. Extreme genetic diversity in asexual grass thrips populations.

    Science.gov (United States)

    Fontcuberta García-Cuenca, A; Dumas, Z; Schwander, T

    2016-05-01

    The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within-lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra- and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations. PMID:26864612

  20. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation

    Indian Academy of Sciences (India)

    Pradeep Singh; Akshay Nag; Rajni Parmar; Sneha Ghosh; Brijmohan Singh Bhau; Ram Kumar Sharma

    2015-12-01

    The endangered Aquilaria malaccensis, is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (m : 3.37), low genetic differentiation (ST : 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  1. The structural diversity of artificial genetic polymers

    OpenAIRE

    Anosova, Irina; Kowal, Ewa A.; Dunn, Matthew R.; Chaput, John C.; Van Horn, Wade D.; Egli, Martin

    2015-01-01

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeg...

  2. Genetic diversity demonstrated by pulsed field gel electrophoresis of Salmonella enterica isolates obtained from diverse sources in Mexico

    Science.gov (United States)

    This study was conducted to determine the genetic diversity of Salmonella isolates recovered from a variety of sources using pulsed-field gel electrophoresis (PFGE) to assess their possible relatedness. Salmonella was isolated from ca. 52% of samples from a pepper var. Bell production system. A to...

  3. Genetic diversity of Swiss sheep breeds in the focus of conservation research.

    Science.gov (United States)

    Glowatzki-Mullis, M-L; Muntwyler, J; Bäumle, E; Gaillard, C

    2009-04-01

    There is constant pressure to improve evaluation of animal genetic resources in order to prevent their erosion. Maintaining the integrity of livestock species as well as their genetic diversity is of paramount interest for long-term agricultural policies. One major use of DNA techniques in conservation is to reveal genetic diversity within and between populations. Forty-one microsatellites were analysed to assess genetic diversity in nine Swiss sheep breeds and to measure the loss of the overall diversity when one breed would become extinct. The expected heterozygosities varied from 0.65 to 0.74 and 10.8% of the total genetic diversity can be explained by the variation among breeds. Based on the proportion of shared alleles, each of the nine breeds were clearly defined in their own cluster in the neighbour-joining tree describing the relationships among the breeds. Bayesian clustering methods assign individuals to groups based on their genetic similarity and infer the number of populations. In STRUCTURE, this approach pooled the Valais Blacknose and the Valais Red. With BAPS method the two Valais sheep breeds could be separated. Caballero & Toro approach (2002) was used to calculate the loss or gain of genetic diversity when each of the breeds would be removed from the set. The changes in diversity based on between-breed variation ranged from -12.2% (Valais Blacknose) to 0% (Swiss Black Brown Mountain and Mirror Sheep); based on within-breed diversity the removal of a breed could also produce an increase in diversity (-0.6% to + 0.6%). Allelic richness ranged from 4.9 (Valais Red) to 6.7 (Brown Headed Meat sheep and Red Engadine Sheep). Breed conservation decisions cannot be limited to genetic diversity alone. In Switzerland, conservation goals are embedded in the desire to carry the cultural legacy over to future generations. PMID:19320774

  4. Genetic diversity in the SIR model of pathogen evolution.

    Directory of Open Access Journals (Sweden)

    Isabel Gordo

    Full Text Available We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR. We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts, where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R(0(1+s is higher than the fitness of the resident strain (R(0. We show that this invasion probability is given by the relative increment in R(0 of the new pathogen (s. By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A.

  5. Autism spectrum disorder genetics: diverse genes with diverse clinical outcomes.

    Science.gov (United States)

    Talkowski, Michael E; Minikel, Eric Vallabh; Gusella, James F

    2014-01-01

    The last several years have seen unprecedented advances in deciphering the genetic etiology of autism spectrum disorders (ASDs). Heritability studies have repeatedly affirmed a contribution of genetic factors to the overall disease risk. Technical breakthroughs have enabled the search for these genetic factors via genome-wide surveys of a spectrum of potential sequence variations, from common single-nucleotide polymorphisms to essentially private chromosomal abnormalities. Studies of copy-number variation have identified significant roles for both recurrent and nonrecurrent large dosage imbalances, although they have rarely revealed the individual genes responsible. More recently, discoveries of rare point mutations and characterization of balanced chromosomal abnormalities have pinpointed individual ASD genes of relatively strong effect, including both loci with strong a priori biological relevance and those that would have otherwise been unsuspected as high-priority biological targets. Evidence has also emerged for association with many common variants, each adding a small individual contribution to ASD risk. These findings collectively provide compelling empirical data that the genetic basis of ASD is highly heterogeneous, with hundreds of genes capable of conferring varying degrees of risk, depending on their nature and the predisposing genetic alteration. Moreover, many genes that have been implicated in ASD also appear to be risk factors for related neurodevelopmental disorders, as well as for a spectrum of psychiatric phenotypes. While some ASD genes have evident functional significance, like synaptic proteins such as the SHANKs, neuroligins, and neurexins, as well as fragile x mental retardation-associated proteins, ASD genes have also been discovered that do not present a clear mechanism of specific neurodevelopmental dysfunction, such as regulators of chromatin modification and global gene expression. In its sum, the progress from genetic studies to date

  6. Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers.

    Directory of Open Access Journals (Sweden)

    Tamar E Carter

    Full Text Available Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci. For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%, moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61, low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis, and moderate linkage disequilibrium (ISA = 0.05, P<0.0001. In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti's P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data.

  7. Inference of genetic diversity in popcorn S3 progenies.

    Science.gov (United States)

    Pena, G F; do Amaral, A T; Ribeiro, R M; Ramos, H C C; Boechat, M S B; Santos, J S; Mafra, G S; Kamphorst, S H; de Lima, V J; Vivas, M; de Souza Filho, G A

    2016-01-01

    Molecular markers are a useful tool for identification of complementary heterotic groups in breeding programs aimed at the production of superior hybrids, particularly for crops such as popcorn in which heterotic groups are not well-defined. The objective of the present study was to analyze the genetic diversity of 47 genotypes of tropical popcorn to identify possible heterotic groups for the development of superior hybrids. Four genotypes of high genetic value were studied: hybrid IAC 125, strain P2, and varieties UENF 14 and BRS Angela. In addition, 43 endogamous S3 progenies obtained from variety UENF 14 were used. Twenty-five polymorphic SSR-EST markers were analyzed. A genetic distance matrix was obtained and the following molecular diversity parameters were estimated: number of alleles, number of effective alleles, polymorphism information content (PIC), observed and expected heterozygosities, Shannon diversity index, and coefficient of inbreeding. We found a moderate PIC and high diversity index, indicating that the studied population presents both good discriminatory ability and high informativeness for the utilized markers. The dendrogram built based on the dissimilarity matrix indicated six distinct groups. Our findings demonstrate the genetic diversity among the evaluated genotypes and provide evidence for heterotic groups in popcorn. Furthermore, the functional genetic diversity indicates that there are informative genetic markers for popcorn. PMID:27173336

  8. Understanding Genetic Diversity of Sorghum Using Quantitative Traits

    Science.gov (United States)

    Sinha, Sweta; Kumaravadivel, N.

    2016-01-01

    Sorghum is the important cereal crop around the world and hence understanding and utilizing the genetic variation in sorghum accessions are essential for improving the crop. A good understanding of genetic variability among the accessions will enable precision breeding. So profiling the genetic diversity of sorghum is imminent. In the present investigation, forty sorghum accessions consisting of sweet sorghum, grain sorghum, forage sorghum, mutant lines, maintainer lines, and restorer lines were screened for genetic diversity using quantitative traits. Observations were recorded on 14 quantitative traits, out of which 9 diverse traits contributing to maximum variability were selected for genetic diversity analysis. The principle component analysis revealed that the panicle width, stem girth, and leaf breadth contributed maximum towards divergence. By using hierarchical cluster analysis, the 40 accessions were grouped under 6 clusters. Cluster I contained maximum number of accessions and cluster VI contained the minimum. The maximum intercluster distance was observed between cluster VI and cluster IV. Cluster III had the highest mean value for hundred-seed weight and yield. Hence the selection of parents must be based on the wider intercluster distance and superior mean performance for yield and yield components. Thus in the present investigation quantitative data were able to reveal the existence of a wide genetic diversity among the sorghum accessions used providing scope for further genetic improvement. PMID:27382499

  9. Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary.

    Science.gov (United States)

    Fazekas, Mónika; Madar, Anett; Sipiczki, Matthias; Miklós, Ida; Holb, Imre J

    2014-06-01

    The objectives of this study were firstly, to determine the genetic diversity of Monilinia laxa isolates from Hungary, using the PCR-based inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) technique; secondly, to prepare genetic diversity groups based on the dendrograms; and finally, to select some relevant isolates to study their fungicide sensitivity. 55 and 77 random amplified polymorphic ISSR and RAPD markers, of which 23 and 18 were polymorphic and 32 and 59 monomorphic, respectively, were used to assess the genetic diversity and to study the structure of M. laxa populations in Hungary. 27 isolates out of 57 ones were confirmed as M. laxa from several orchards (subpopulations) in three geographical regions, in various inoculum sources and in various hosts, were used. 10 fungicides and 12 isolates selected from genetic diversity groups based on the ISSR dendrograms were used to determine the fungicide sensitivity of the selected isolates. The analysis of population structure revealed that genetic diversity within locations, inoculum sources and host (H(S)) accounted for 99 % of the total genetic diversity (H(T)), while genetic diversity among locations, inoculum sources and host represented only 1 %. The relative magnitude of gene differentiation between subpopulations (G(ST)) and the estimate of the number of migrants per generation (Nm) averaged 0.005-0.009 and 53.9-99.2, respectively, for both ISSR and RAPD data set. The results obtained in dendrograms were in accordance with the gene diversity analysis. Grouping of isolates in the dendrograms was irrespective of whether they came from the same or different geographical locations. There was no relationship between clustering among isolates from inoculum sources and hosts. In the fungicide sensitivity tests, five isolates out of 12 were partly insensitive to boscalid+piraclostrobin, cyprodinil, fenhexamid or prochloraz. Obtained results in genetic diversity of M. laxa

  10. Genetic diversity among five T4-like bacteriophages

    Directory of Open Access Journals (Sweden)

    Bertrand Claire

    2006-05-01

    Full Text Available Abstract Background Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Results Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Conclusion Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4

  11. Genetic diversity of Toxoplama gondii isolates from Ethiopian feral cats

    Science.gov (United States)

    Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioa...

  12. Maintenance of genetic diversity through plant-herbivore interactions

    OpenAIRE

    Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.

    2013-01-01

    Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to ...

  13. Impacts of genetic bottlenecks on soybean genome diversity

    OpenAIRE

    Hyten, David L; Song, Qijian; Zhu, Youlin; Choi, Ik-Young; Nelson, Randall L.; Costa, Jose M.; Specht, James E; Shoemaker, Randy C.; Cregan, Perry B

    2006-01-01

    Soybean has undergone several genetic bottlenecks. These include domestication in Asia to produce numerous Asian landraces, introduction of relatively few landraces to North America, and then selective breeding over the past 75 years. It is presumed that these three human-mediated events have reduced genetic diversity. We sequenced 111 fragments from 102 genes in four soybean populations representing the populations before and after genetic bottlenecks. We show that soybean has lost many rare...

  14. Understanding Genetic Diversity of Sorghum Using Quantitative Traits

    OpenAIRE

    Sinha, Sweta; Kumaravadivel, N.

    2016-01-01

    Sorghum is the important cereal crop around the world and hence understanding and utilizing the genetic variation in sorghum accessions are essential for improving the crop. A good understanding of genetic variability among the accessions will enable precision breeding. So profiling the genetic diversity of sorghum is imminent. In the present investigation, forty sorghum accessions consisting of sweet sorghum, grain sorghum, forage sorghum, mutant lines, maintainer lines, and restorer lines w...

  15. Genetic diversity in farm animals - A review

    NARCIS (Netherlands)

    Groeneveld, L. F.; Lenstra, J. A.; Eding, H.; Toro, M. A.; Scherf, B.; Pilling, D.; Negrini, R.; Finlay, E. K.; Jianlin, H.; Groeneveld, E.; Weigend, S.

    2010-01-01

    Domestication of livestock species and a long history of migrations, selection and adaptation have created an enormous variety of breeds. Conservation of these genetic resources relies on demographic characterization, recording of production environments and effective data management. In addition, m

  16. The Host Genetic Diversity in Malaria Infection

    OpenAIRE

    Vitor R. R. de Mendonça; Marilda Souza Goncalves; Manoel Barral-Netto

    2012-01-01

    Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and...

  17. Hitchhiker's guide to genetic diversity in socially structured populations

    Institute of Scientific and Technical Information of China (English)

    L.S.PREMO

    2012-01-01

    When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking.A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration.Under conditions in which genetic and cultural variants are transmitted symmetrically,neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking.Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity,and it may be applicable to humans as well.This paper provides a critical review of recent models of both types of hitchhiking in socially structured populations.The models' assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species,and vice versa [Current Zoology 58 (1):287-297,2012].

  18. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation

    Science.gov (United States)

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  19. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-12-01

    Full Text Available In order to adopt strategies for forest conservation and development, it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in term of polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province. These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.  

  20. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-11-01

    Full Text Available In order to adopt strategies for forest conservation and development,it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in termof polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province.These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.

  1. Genetic diversity and genetic differentiation of natural populations of Pinus kesiya var. Langbinanensis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Genetic diversity and genetic differentiation of natural populations of Pinus kesiya var. Langbinanensis were examined by means of electrophoresis technique. Analysis of 9 enzyme systems including 16 loci showed that all the three natural populations of the pine were high in genetic diversity but low in inter -population genetic differentiation. The proportion of polymorphic loci is 0.667 , with eachlocus holding 2.13 alleles, averagely. The average expected and obse rved heterozygosity was 0.288 and 0.197, respectively. The gene differentiation among populations was 0.052, but the mean genetic distance was only 0.015.

  2. Radiation induced mutants in elite genetic background for the augmentation of genetic diversity

    International Nuclear Information System (INIS)

    Rice (Oryza sativa L.), an important food crop for India, shows large genetic diversity. However, despite the large genetic resource, high genetic similarity is reported in cultivated varieties indicating genetic erosion. Radiation induced mutations provide genetic variability in elite background. In the present study, twenty gamma ray induced mutants of rice variety WL112 (carrying sd-1 semi-dwarfing gene) were analysed for genetic diversity using microsatellite markers. The high range of genetic diversity among mutants indicated that the mutants possess potential for enhancing variability in rice. Cluster analysis showed presence of five clusters having small sub-clusters. Earliness, semi-dwarf stature or resistance to blast disease observed among the mutants showed that these will be useful in breeding programmes. (author)

  3. Thai pigs and cattle production, genetic diversity of livestock and strategies for preserving animal genetic resources

    OpenAIRE

    Kesinee Gatphayak

    2013-01-01

    This paper reviews the current situation of livestock production in Thailand, genetic diversity and evaluation, as well as management strategies for animal genetic resources focusing on pigs and cattle. Sustainable conservation of indigenous livestock as a genetic resource and vital components within the agricultural biodiversity domain is a great challenge as well as an asset for the future development of livestock production in Thailand.

  4. Indigenous cattle in Sri Lanka: Production systems and genetic diversity

    International Nuclear Information System (INIS)

    Full text: The production status, farming systems and genetic diversity of indigenous cattle in Sri Lanka were evaluated using six geographically distinct populations in Sri Lanka, which is a small island located below the southern tip of Indian subcontinent. The indigenous cattle population of the country is considered as a non-descript type mixture of genotypes, and represent more than the half of total cattle population of 1.2 million heads. Six distinct indigenous populations (NE, NC, So, No, TK and Th) were investigated for morphological and genetic differences. The respective farming systems were also evaluated to complete the requirement in developing conservation and utilization strategies. The sampling was carried out based on the non-existence of artificial insemination facilities to assure the target populations are indigenous. The six populations were assumed genetically isolated from each other in the absence of nomadic pattern of rearing and regular cattle migration. The farming systems were analyzed using a pre-tested structured questionnaire by single visits to each location. Single visits were practiced, as there is no variation in farming system according to the period of the year. Morphometric measurements were taken during the visit and the genetic variation was assessed within and between five populations using 15 autosomal and two Y-specific microsatellite markers. The farming system analysis revealed that indigenous cattle are reared as a traditional practice in all the regions of the country under limited or no input situations. Since the low productivity masks its real contribution to the rural livelihood, the level of utilization was confounded within the attributes of respective farming systems. The contribution of indigenous cattle to total tangible income ranged from 0% to 90% in different regions reflecting the high variation in the purpose of keeping indigenous cattle. Integration with crop, especially with paddy was the common

  5. The structural diversity of artificial genetic polymers.

    Science.gov (United States)

    Anosova, Irina; Kowal, Ewa A; Dunn, Matthew R; Chaput, John C; Van Horn, Wade D; Egli, Martin

    2016-02-18

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. PMID:26673703

  6. DEVELOPMENT OF EPIC GENETIC MARKERS AND THE UTILITY OF A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL APPROACH TO EXAMINING PATTERNS OF GENETIC DIVERSITY

    Science.gov (United States)

    Use of population genetic measures for assessing the structure of natural populations and the condition of biological resources has increased steadily since the 1970's. Traditionally, genetic diversity within and among geographic areas is assessed based on a one-time sampling of...

  7. Genetic Diversity of Cultivated Lentil (Lens culinaris Medik.) and Its Relation to the World's Agro-ecological Zones.

    Science.gov (United States)

    Khazaei, Hamid; Caron, Carolyn T; Fedoruk, Michael; Diapari, Marwan; Vandenberg, Albert; Coyne, Clarice J; McGee, Rebecca; Bett, Kirstin E

    2016-01-01

    Assessment of genetic diversity and population structure of germplasm collections plays a critical role in supporting conservation and crop genetic enhancement strategies. We used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions originating from 54 diverse countries to estimate genetic diversity and genetic structure using 1194 polymorphic single nucleotide polymorphism (SNP) markers which span the lentil genome. Using principal coordinate analysis, population structure analysis and UPGMA cluster analysis, the accessions were categorized into three major groups that prominently reflected geographical origin (world's agro-ecological zones). The three clusters complemented the origins, pedigrees, and breeding histories of the germplasm. The three groups were (a) South Asia (sub-tropical savannah), (b) Mediterranean, and (c) northern temperate. Based on the results from this study, it is also clear that breeding programs still have considerable genetic diversity to mine within the cultivated lentil, as surveyed South Asian and Canadian germplasm revealed narrow genetic diversity. PMID:27507980

  8. Genetic diversity and population structure of an important wild berry crop.

    Science.gov (United States)

    Zoratti, Laura; Palmieri, Luisa; Jaakola, Laura; Häggman, Hely

    2015-01-01

    The success of plant breeding in the coming years will be associated with access to new sources of variation, which will include landraces and wild relatives of crop species. In order to access the reservoir of favourable alleles within wild germplasm, knowledge about the genetic diversity and the population structure of wild species is needed. Bilberry (Vaccinium myrtillus) is one of the most important wild crops growing in the forests of Northern European countries, noted for its nutritional properties and its beneficial effects on human health. Assessment of the genetic diversity of wild bilberry germplasm is needed for efforts such as in situ conservation, on-farm management and development of plant breeding programmes. However, to date, only a few local (small-scale) genetic studies of this species have been performed. We therefore conducted a study of genetic variability within 32 individual samples collected from different locations in Iceland, Norway, Sweden, Finland and Germany, and analysed genetic diversity among geographic groups. Four selected inter-simple sequence repeat primers allowed the amplification of 127 polymorphic loci which, based on analysis of variance, made it possible to identify 85 % of the genetic diversity within studied bilberry populations, being in agreement with the mixed-mating system of bilberry. Significant correlations were obtained between geographic and genetic distances for the entire set of samples. The analyses also highlighted the presence of a north-south genetic gradient, which is in accordance with recent findings on phenotypic traits of bilberry. PMID:26483325

  9. Regional specificity of genetically diverse garlic varieties

    Science.gov (United States)

    Garlic is a profitable crop for small to medium-sized vegetable farmers. Despite the increasing market for specialty garlic, it is remarkable how little is known about the diverse types of garlic available. Farmers need to know which garlic types perform well under their growing conditions, and th...

  10. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests

    DEFF Research Database (Denmark)

    Graudal, Lars; Aravanopoulos, Filippos; Bennadji, Zohra;

    2014-01-01

    There is a general trend of biodiversity loss at global, regional, national and local levels. To monitor this trend, international policy processes have created a wealth of indicators over the last two decades. However, genetic diversity indicators are regrettably absent from comprehensive bio......-monitoring schemes. Here, we provide a review and an assessment of the different attempts made to provide such indicators for tree genetic diversity from the global level down to the level of the management unit. So far, no generally accepted indicators have been provided as international standards, nor tested for.......g., research, education, breeding, conservation, and regulation actions and programs are relatively straightforward. Only state indicators can reveal genetic patterns and processes, which are fundamental for maintaining genetic diversity. Indirect indicators of pressure, benefit, or response should therefore...

  11. The Host Genetic Diversity in Malaria Infection

    Directory of Open Access Journals (Sweden)

    Vitor R. R. de Mendonça

    2012-01-01

    Full Text Available Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.

  12. Great ape genetic diversity and population history

    DEFF Research Database (Denmark)

    Prado-Martinez, Javier; Sudmant, Peter H.; Kidd, Jeffrey M.;

    2013-01-01

    species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central...

  13. Genetic Diversity of Turf-Type Tall Fescue Using Diversity Arrays Technology

    Czech Academy of Sciences Publication Activity Database

    Baird, J. H.; Kopecký, David; Lukaszewski, A.J.; Green, R. J.; Bartoš, Jan; Doležel, Jaroslav

    2012-01-01

    Roč. 52, č. 1 (2012), s. 408-412. ISSN 0011-183X Institutional research plan: CEZ:AV0Z50380511 Keywords : Festuca arundinacea * Diversity Arrays Technology (DArT) * Low genetic polymorphism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.513, year: 2012

  14. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  15. Analysis of Genetic Diversity of Two Mangrove Species with Morphological Alterations in a Natural Environment

    Directory of Open Access Journals (Sweden)

    Catarina Fonseca Lira-Medeiros

    2015-04-01

    Full Text Available Mangrove is an ecosystem subjected to tide, salinity and nutrient variations. These conditions are stressful to most plants, except to mangrove plants that are well-adapted. However, many mangrove areas have extremely stressful conditions, such as salt marshes, and the plants nearby usually present morphological alterations. In Sepetiba Bay, two species of mangrove plants, Avicennia schaueriana and Laguncularia racemosa, have poor development near a salt marsh (SM compared to plants at the riverside (RS, which is considered a favorable habitat in mangroves. The level of genetic diversity and its possible correlation with the morphological divergence of SM and RS plants of both species were assessed by AFLP molecular markers. We found moderate genetic differentiation between A. schaueriana plants from SM and RS areas and depleted genetic diversity on SM plants. On the other hand, Laguncularia racemosa plants had no genetic differentiation between areas. It is possible that a limited gene flow among the studied areas might be acting more intensely on A. schaueriana plants, resulting in the observed genetic differentiation. The populations of Laguncularia racemosa appear to be well connected, as genetic differentiation was not significant between the SM and RS populations. Gene flow and genetic drift are acting on neutral genetic diversity of these two mangrove species in the studied areas, and the observed genetic differentiation of A. schaueriana plants might be correlated with its morphological variation. For L. racemosa, morphological alterations could be related to epigenetic phenomena or adaptive loci polymorphism that should be further investigated.

  16. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Directory of Open Access Journals (Sweden)

    Alexandra Erfmeier

    Full Text Available Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of

  17. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Science.gov (United States)

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear

  18. Conservation of Genetic Diversity in Culture Plants

    OpenAIRE

    A. Maxim

    2010-01-01

    The most important international document relating to the conservation of biodiversity is one adopted by theUN in Rio de Janeiro (1992) that "Convention on Biodiversity". Based on this agreement, the EU has taken a series ofmeasures to reduce genetic erosion in agriculture, which grew with the expansion of industrialized agriculture.Throughout its existence, mankind has used some 10,000 growing plant species. According to FAO statistics, today,90% of food production is ensured by some 120 gro...

  19. Low genetic diversity in Melanaphis sacchari aphid populations at the worldwide scale.

    Science.gov (United States)

    Nibouche, Samuel; Fartek, Benjamin; Mississipi, Stelly; Delatte, Hélène; Reynaud, Bernard; Costet, Laurent

    2014-01-01

    Numerous studies have examined the genetic diversity and genetic structure of invading species, with contrasting results concerning the relative roles of genetic diversity and phenotypic plasticity in the success of introduced populations. Increasing evidence shows that asexual lineages of aphids are able to occupy a wide geographical and ecological range of habitats despite low genetic diversity. The anholocyclic aphid Melanaphis sacchari is a pest of sugarcane and sorghum which originated in the old world, was introduced into the Americas, and is now distributed worldwide. Our purpose was to assess the genetic diversity and structuring of populations of this species according to host and locality. We used 10 microsatellite markers to genotype 1333 individuals (57 samples, 42 localities, 15 countries) collected mainly on sugarcane or sorghum. Five multilocus lineages (MLL) were defined, grouping multilocus genotypes (MLG) differing by only a few mutations or scoring errors. Analysis of a 658 bp sequence of mitochondrial COI gene on 96 individuals revealed five haplotypes, with a mean divergence of only 0.19 %. The distribution of MLL appeared to be strongly influenced by geography but not by host plant. Each of the five MLL grouped individuals from (A) Africa, (B) Australia, (C) South America, the Caribbean and the Indian Ocean including East Africa, (D) USA, and (E) China. The MLL A and C, with a wide geographic distribution, matched the definition of superclone. Among aphids, M. sacchari has one of the lowest known rates of genetic diversity for such a wide geographical distribution. PMID:25148510

  20. Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    TANG Sheng-xiang; WEI Xing-hua; JIANG Yun-zhu; D S Brar; G S Khush

    2007-01-01

    Genetic diversity was analyzed with 6 632 core rice cultivars selected from 60 282 Chinese rice accessions on the basis of 12 allozyme loci, Pgil, Pgi2, Ampl, Amp2, Amp3, Amp4, Sdh1, Adh1, Est1, Est2, Est5 and Est9, by starch gel electrophoresis. Among the materials examined, 52 alleles at 12 polymorphic loci were identified, which occupied 96.3% of 54 alleles found in cultivated germplasm of O.sativa L. The number of alleles per locus ranged from 2 to 7 with an average of 4.33. The gene diversity (He) each locus varied considerably from 0.017 for Amp4 to 0.583 for Est2 with an average gene diversity (Ht) 0.271, and Shannon-Wiener index from 0.055 to 0.946 with an average of 0.468. The degree of polymorphism (DP) was in a range from 0.9 to 46.9% with an average of 21.4%. It was found that the genetic diversity in japonica (Keng) subspecies was lower in terms of allele's number, Ht and S-W index, being 91.8, 66.2 and 75.7% of indica (Hsien) one, respectively. Significant genetic differentiation between indica and japonica rice has been appeared in the loci Pgil, Amp2, Pgi2, and Est2, with higher average coefficient of genetic differentiation (Gst) 0.635, 0.626, 0.322 and 0.282, respectively. Except less allele number per locus (3.33) for modern cultivars, being 76.9% of landraces, the Ht and S-W index showed in similar between the modern cultivars and the landraces detected. In terms of allozyme, the rice cultivars in the Southwest Plateau and Central China have richer genetic diversity. The present study reveals again that Chinese cultivated rice germplasm has rich genetic diversity, showed by the allozyme allele variation.

  1. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    Science.gov (United States)

    Noreen, Annika M E; Webb, Edward L

    2013-01-01

    Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter), 193 saplings (>1 yr), and 1,822 seedlings (consequences of habitat loss: (1) that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2) K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854), high allelic richness (R = 16.7-19.5), low inbreeding co-efficients (FIS = 0.013-0.076), and a large proportion (30.1%) of rare alleles (i.e. frequency cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961), calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss. PMID:24367531

  2. Genetic diversity among ancient Nordic populations.

    Directory of Open Access Journals (Sweden)

    Linea Melchior

    Full Text Available Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13% than among extant Danes and Scandinavians (approximately 2.5% as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  3. Genetic diversity and relationships of Vietnamese and European pig breeds

    International Nuclear Information System (INIS)

    Indigenous resources of the Asian pig population are less defined and only rarely compared with European breeds. In this study, five indigenous pig breeds from Viet Nam (Mong Cai, Muong Khuong, Co, Meo, Tap Na), two exotic breeds kept in Viet Nam (Large White, Landrace), three European commercial breeds (Pietrain, Landrace, Large White), and European Wild Boar were chosen for evaluation and comparison of genetic diversity. Samples and data from 317 animals were collected and ten polymorphic microsatellite loci were selected according to the recommendations of the FAO Domestic Animal Diversity Information System (DAD-IS; http://www.fao.org/dad-is/). Effective number of alleles, Polymorphism Information Content (PIC), within-breed diversity, estimated heterozygosities and tests for Hardy-Weinberg equilibrium were determined. Breed differentiation was evaluated using the fixation indices of Wright (1951). Genetic distances between breeds were estimated according to Nei (1972) and used for the construction of UPGMA dendrograms which were evaluated by bootstrapping. Heterozygosity was higher in indigenous Vietnamese breeds than in the other breeds. The Vietnamese indigenous breeds also showed higher genetic diversity than the European breeds and all genetic distances had a strong bootstrap support. The European commercial breeds, in contrast, were closely related and bootstrapping values for genetic distances among them were below 60%. European Wild Boar displayed closer relation with commercial breeds of European origin than with the native breeds from Viet Nam. This study is one of the first to contribute to a genetic characterization of autochthonous Vietnamese pig breeds and it clearly demonstrates that these breeds harbour a rich reservoir of genetic diversity. (author)

  4. Genetic diversity analysis in cuban traditional rice germplasm using micro satellite markers

    International Nuclear Information System (INIS)

    At the present study, the potential of micro satellite markers to assess the extent of genetic variability in Cuban traditional rice varieties was proved. The work was aimed at identifying alternative genetic diversity pools in this material in comparison to the most important commercial cultivars used in Cuban rice breeding program. For this, 52 traditional accessions, eleven cultivars representing the most planted Cuban material during the last decades and two parent cultivars were studied

  5. Genetic diversity measures of the Croatian Spotted goat

    Directory of Open Access Journals (Sweden)

    Pavić Vesna

    2011-01-01

    Full Text Available In the present study, microsatellite data of 20 loci were generated and utilized to evaluate genetic variability of the Croatian Spotted goat. Genetic variability was high, with means for expected gene diversity of 0.771, observed heterozygosity of 0.759, and 8.1 for the total number of alleles per locus. There are no indications for deviations from random breeding within the population. Level of inbreeding was only 2% and non-significant. The population was found to deviate significantly under infinitive allele model (IAM and two phase model (TPM, while stepwise mutation model (SMM and qualitative mode-shift test of allele frequencies indicate the absence of genetic bottleneck in the recent past in the population of the Croatian Spotted goat. High level of genetic diversity, as it is presented in this study, may be seen as an initial guide for conservation decisions in the future.

  6. Genetic diversity studies of Kherigarh cattle based on microsatellite markers

    Indian Academy of Sciences (India)

    A. K. Pandey; Rekha Sharma; Yatender Singh; B. B. Prakash; S. P. S. Ahlawat

    2006-08-01

    We report a genetic diversity study of Kherigarh cattle, a utility draught-purpose breed of India, currently declining at a startling rate, by use of microsatellite markers recommended by the Food and Agriculture Organization. Microsatellite genotypes were derived, and allelic and genotypic frequencies, heterozygosities and gene diversity were estimated. A total of 131 alleles were distinguished by the 21 microsatellite markers used. All the microsatellites were highly polymorphic, with mean (± s.e.) allelic number of 6.24 ± 1.7, ranging 4–10 per locus. The observed heterozygosity in the population ranged between 0.261 and 0.809, with mean (± s.e.) of 0.574 ± 0.131, indicating considerable genetic variation in this population. Genetic bottleneck hypotheses were also explored. Our data suggest that the Kherigarh breed has not experienced a genetic bottleneck in the recent past.

  7. The genetic diversity of Plasmodium vivax: a review

    Directory of Open Access Journals (Sweden)

    Wanessa Christina de Souza-Neiras

    2007-06-01

    Full Text Available The genetic diversity of Plasmodium vivax has been investigated in several malaria-endemic areas, including the Brazilian Amazon region, where this is currently the most prevalent species causing malaria in humans. This review summarizes current views on the use of molecular markers to examine P. vivax populations, with a focus on studies performed in Brazilian research laboratories. We emphasize the importance of phylogenetic studies on this parasite and discuss the perspectives created by our increasing understanding of genetic diversity and population structure of this parasite for the development of new control strategies, including vaccines, and more effective drugs for the treatment of P. vivax malaria.

  8. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    OpenAIRE

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived...

  9. Genetic characteristics of diversity of apple resistance to apple scab

    OpenAIRE

    Sikorskaitė-Gudžiūnienė, Sidona

    2014-01-01

    The aim of the research. To identify genes involved in V. inaequalis induced resistance response in Malus sp. and to develop apple hybrids with pyramidic resistance. Specific aims: 1. To characterize the genetic diversity and resistance to apple scab in the collection of apple genetic resources; 2. To develop apple hybrids of pyramidic resistance for apple breeding; 3. To characterize apple nuclear proteome and to perform a comparative genomic analysis of V. inaequalis induced Malus response;...

  10. Dynamic Change of Genetic Diversity in Conserved Populations with Different Initial Genetic Architectures

    Institute of Scientific and Technical Information of China (English)

    LU Yun-feng; LI Hong-wei; WU Ke-liang; WU Chang-xin

    2013-01-01

    Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity

  11. GENETIC DIVERSITY OF THE WILD AND REARED PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    王军; 苏永全; 全成干; 丁少雄; 张纹

    2001-01-01

    The genetic diversity of both wild and reared Pseudosciaena crocea (Richardson) col-lected from Guan-Jing-Yang in Ningde, China in May 1999 was investigated by random amplified poly-morphic DNA (RAPD) in the present study. The polymorphism and mean difference of the wild popula-tion as revealed by RAPD were 18.9% and 0.0960 respectively, and those of the reared stocks were rel-atively lower, with 16.7% in polymorphism and 0.0747 in mean difference. The genetic distance be-tween the two stocks was 0.0041. From the comprehensive investigation, the main reasons for the loss of genetic diversity were probably overilshing, small number of parents as broodstocks and the debatable arti-ficial ranching. Results from this study also showed that the large yellow croaker populations distributed along Fujian coastal waters including Guan-Jing-Yang still potentially wide genetic variability. It is sug-gested that genetic management and prevention should be scientifically conducted in order to maintain and improve the genetic diversity of the P. crocea population.

  12. GENETIC DIVERSITY OF THE WILD AND REARED PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genetic diversity of both wild and reared Pseudosciaena crocea (Richardson) collected from Guan-Jing-Yang in Ningde, China in May 1999 was investigated by random amplified polymorphic DNA (RAPD) in the present study. The polymorphism and mean difference of the wild population as revealed by RAPD were 18.9% and 0.0960 respectively, and those of the reared stocks were relatively lower, with 16.7% in polymorphism and 0.0747 in mean difference. The genetic distance between the two stocks was 0.0041. From the comprehensive investigation, the main reasons for the loss of genetic diversity were probably overfishing, small number of parents as broodstocks and the debatable artificial ranching. Results from this study also showed that the large yellow croaker populations distributed along Fujian coastal waters including Guan-Jing-Yang still potentially wide genetic variability. It is suggested that genetic management and prevention should be scientifically conducted in order to maintain and improve the genetic diversity of the P. crocea population.

  13. Genetic Diversity of Spanish Melons (Cucumis melo L.) of the Madrid Provenance

    Science.gov (United States)

    The genetic diversity of five Group Inodorus landraces having a historic presence in the town of Villaconejos, Spain (near Madrid) and four reference accessions (one accession Group Flexuosus) (Lopez-Sese et al, 2002), was assessed using the allelic variation at 19 SSR loci. Seventy-two polymorphic...

  14. Reducing the loss of genetic diversity associated with assisted colonization-like introductions of animals

    Institute of Scientific and Technical Information of China (English)

    Jaana KEKKONEN; Jon E BROMMER

    2015-01-01

    Translocations, especially assisted colonizations, of animals are increasingly used as a conservation management tool. In many cases, however, limited funding and other logistic challenges limit the number of individuals available for translocation. In conservation genetics, small populations are predicted to rapidly lose genetic diversity which can deteriorate population sur-vival. Thus, how worried should we be about the loss of genetic diversity when introducing small, isolated populations? Histori-cal species introductions provide a means to assess these issues. Here we review 13 studies of “assisted colonization-like” intro-ductions of animals, where only a small known number of founders established an isolated population without secondary contact to the source population. We test which factors could be important in retaining genetic diversity in these cases. In many cases, loss in heterozygosity (-12.1%) was detected, and more seriously the loss in allelic richness (-27.8 %). Number of founders seemed to have an effect but it also indicated that high population growth rate could help to retain genetic diversity, i.e. future management actions could be effective even with a limited number of founders if population growth would be enhanced. On the contrary, translocated organisms with longer generation times did not seem to retain more genetic diversity. We advocate that, where possible, future studies on translocated animals should report the loss of genetic diversity (both heterozygosity and allelic richness), which is essential for meta-analyses like this one for deepening our understanding of the genetic consequences of as-sisted colonization, and justifying management decisions [Current Zoology 61 (5): 827–834, 2015].

  15. Genetic Diversity among Ancient Nordic Populations

    DEFF Research Database (Denmark)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R;

    2010-01-01

    locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the...... ancient Danes (average 13%) than among extant Danes and Scandinavians ( approximately 2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic...... samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for...

  16. Genetic diversity of natural Hepatacodium miconioides populations in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    LI Junmin; JIN Zexin

    2006-01-01

    Hepatacodium miconioides is the Class Ⅱ protected plant species in China.This paper studies the genetic diversity and differentiation of its nine natural populations in Zhejiang Province by using random amplified polymorphic DNA (RAPD) technique.Twelve random primers were selected in the amplification,and 164 repetitive loci were produced.The percentage of polymorphic loci in each H.miconioides population ranged from 14.60% to 27.44%,with an average of 20.73%.Among the test populations,Kuochangshan had the highest percentage of polymorphic loci,Simingshan took the second place,and Guanyinping had the lowest percentage.As estimated by Shannon index,the genetic diversity within H.miconioides populations accounted for 27.28% of the total genetic diversity,while that among H.miconioides populations accounted for 72.72%.The genetic differentiation among H.miconioides populations as estimated by Nei index was 0.715,7.This figure was generally consistent with that estimated by Shannon index,i.e.,the genetic differentiation among populations was relatively high,but that within populations was relatively low.The gene flow among H.miconioides populations was relatively low (0.198,7),and the genetic similarity ranged from 0.655,7 to 0.811,9,with an average of 0.730,6.The highest genetic distance among populations was 0.422,9,while the lowest was 0.208,3.All the results showed that there was a distinct genetic differentiation among H.miconioides populations.The genetic distance matrix of nine test populations was calculated using this method,and the clustering analysis was made using the unweighted pair group method with arithmetic mean (UPGMA).The cluster analysis suggested that the ninepopulations of H.miconioides in Zhejiang Province could be divided into two groups,the eastern Zhejiang group and the western Zhejiang group.

  17. Diversity of albanian plant genetic resources inventory assesed by eurisco passport descriptors

    Directory of Open Access Journals (Sweden)

    Belul Gixhari

    2013-12-01

    Full Text Available Assessment of diversity of Albanian National Inventory is carried out using import statistics by passport descriptors from Plant Genetic Resources database. Flora of Albania identified more than 3 250 species of plants, but only 2% of them are included in the National Inventory (NI of Albania in EURISCO catalogue. Albanian National Inventory of Plant Genetic Resources in EURISCO (2% of Albanian Flora includes 33 genera, 62 species and 2111 accession, where 54% of them are collected genetic materials. Detailed analysis shows that collected genetic material is the principal source of diversity of Albanian NI in EURISCO. Principal component analysis and comparisons of diversity indices show the descriptors as TAXON, CROPNAME, COLLGEM, GEODATA, NOGEODATA, COLLDATE > Y.2000, COLLDATA Y.2000, COLLCODE-GB, SAMPSTAT-100, COLLSRC-10, COLLSRC-20 and COLLSRC-40 present higher range of diversity and were the principal source of variation that contribute more than other on diversity degree of Albanian NI of PGR in EURISCO. Multivariate correlation analysis show very high positive correlation among COLLGEM and GEODATA, NO-GEODATA, COLLDATE, COLLCODE, SAMPSTAT-100, and COLLSRC-10 passport descriptors. There were higher relationships between collected genetic materials and GEODATA descriptors (latitude, longitude, elevation, COLLDATA, COLLCODE and COLLSRC.

  18. Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants.

    Science.gov (United States)

    Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B

    2015-03-01

    Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere. PMID:26415663

  19. Detection of Genetic Variation and Genetic Diversity in Two Indian Mudskipper Species (Boleophthalmus boddarti, B. dussumieri using RAPD Marker

    Directory of Open Access Journals (Sweden)

    Vellaichamy RAMANADEVI

    2013-05-01

    Full Text Available Due to the environmental changes and habitat destruction the mudskipper fish population is decreasing in recent years. To predict the fish population structure, frequent manual survey and molecular methods are widely used. Molecular markers such as RAPD, microsatellite, allozyme, D-loop haplotype are frequently adopted to assess the population structure of an organism. In this study ten- arbitrary primers were screened to estimate the genetic relationships and diversity of two mudskipper species (Boleophthalmus boddarti and B. dussumieri in Vellar estuary, Tamilnadu, India. By this RAPD marker study, the genetic diversity (H in B. boddarti was more (0.0116 ± 0.0066 than in B. dussumieri (0.0056 ± 0.0024 in Vellar estuary (India. The genetic distance between B. boddarti and B. dussumieri was 1.7943. By observing the species specific bands and the phylogenetic analysis it is revealed that these two species clearly deviated into separate clusters emphasizing the distinct species status.

  20. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Science.gov (United States)

    Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.

    2011-01-01

    Background: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.

  1. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Directory of Open Access Journals (Sweden)

    Lutz Richard A

    2011-04-01

    Full Text Available Abstract Background Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. Results Genetic differentiation (FST among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (recolonization events.

  2. Does genetic diversity hinder parasite evolution in social insect colonies?

    DEFF Research Database (Denmark)

    Hughes, William Owen Hamar; Boomsma, Jacobus Jan

    2006-01-01

    of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host...

  3. Genetic diversity of Ascaris in southwestern Uganda

    DEFF Research Database (Denmark)

    Betson, Martha; Nejsum, Peter; Llewellyn-Hughes, Julia;

    2012-01-01

    Despite the common occurrence of ascariasis in southwestern Uganda, helminth control in the region has been limited. To gain further insights into the genetic diversity of Ascaris in this area, a parasitological survey in mothers (n=41) and children (n=74) living in two villages, Habutobere and M...

  4. Multi-objective Uniform-diversity Genetic Algorithm (MUGA)

    OpenAIRE

    Jamali, Ali; Nariman-zadeh, Nader; Atashkari, Kazem

    2008-01-01

    A new multi-objective uniform-diversity genetic algorithm (MUGA) has been proposed and successfully used for some test functions and for thermodynamic cycle optimization of ideal turbojet engines. It has been shown that the performance of this algorithm is superior to that

  5. Molecular Diversity and Genetic Structure of Durum Wheat Landraces

    Directory of Open Access Journals (Sweden)

    GULNAR SHIKHSEYIDOVA

    2015-06-01

    Full Text Available To determine the genetic diversity of durum wheat, 41 accessions from Morocco, Ethiopia, Turkey, Lebanon, Kazakhstan, China, and Mongolia were analyzed through Inter-Simple Sequence Repeats (ISSR molecular markers. Out of the used twenty primers, 15 primers that included a considerable polymorphism were selected for the analyses. Among the genotypes under study, 163 fragments (73.7% were polymorph. Several indexes were used to determine the most appropriate primers. While UBC812, UBC864, UBC840, and UBC808 primers were among those markers which produced the highest number of bands and polymorphic bands, they also dedicated the highest rate of polymorphic index content (PIC. These primers also possessed the highest amounts of effective multiplex ratio (EMR and marker index (MI. Therefore, these primers can be recommended for genetic evaluation of the durum wheat. The results of cluster analysis and principle component analysis indicated that the observed genetic diversity in wheat materials under study is geographically structured. The results also indicated that the genetic diversity index based on ISSR markers was higher for Turkey, Lebanon, Morocco, and Ethiopia accessions than for other countries. The high level of polymorphism in this collections durum wheat would agree with the suggestion that Fertile Crescent and parts of Africa are first possible diversity center of this crop.

  6. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.;

    2014-01-01

    alleles (MNA = 10.1), gene diversity (He = 0.82), allele richness (5.33) and number of private alleles (10). Thirteen percentage of the total genetic variation observed was due to differences among populations. The neighbour-joining dendrogram obtained from Nei's standard genetic distance differentiated...

  7. Population structure and genetic diversity of the orchid bee Eufriesea violacea (Hymenoptera, Apidae, Euglossini) from Atlantic Forest remnants in southern and southeastern Brazil

    OpenAIRE

    Freiria, Gabriele; Ruim, Juliana; Souza, Rogério; Sofia, Silvia

    2012-01-01

    In this study, both the genetic diversity and population genetic structure of Eufriesea violacea from six Atlantic Forest fragments, located in four Brazilian states, were assessed using microsatellite markers. The results showed that genetic diversity was high in all populations and the genetic differentiation (Φ ST), based on allelic frequency differences, for all population pairwise comparisons was found to be significantly different from zero, indicating from low to moderate genetic diffe...

  8. Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial.

    Science.gov (United States)

    Pacioni, Carlo; Hunt, Helen; Allentoft, Morten E; Vaughan, Timothy G; Wayne, Adrian F; Baynes, Alexander; Haouchar, Dalal; Dortch, Joe; Bunce, Michael

    2015-12-01

    The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (n = 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000-4000 years in association with a dramatic population decline. In addition, we obtained near-complete 11-loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of 'new' microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current-day conservation strategies. PMID:26497007

  9. Determination of genetic diversity among some almond accessions

    Directory of Open Access Journals (Sweden)

    Pinar Hasan

    2015-01-01

    Full Text Available More recently the use of different molecular markers in fruit species to determine particularly genetic diversity, genetic relationships and cultivar identification has been gained more importance. In the study, 13 randomly amplified polimorfic DNA (RAPD and 4 inter-simple sequence repeat (ISSR markers were used to evaluate genetic relationships among 95 almong accessions (26 foreign cultivars and 69 national cultivars and selections. The all plant material found in Almond Germplasm Repository in Gaziantep, Turkey. Both RAPD and ISSR markers distinguished the almond cultivars and selections in various levels. 17 RAPD and ISSR markers yielded a total of 73 scorable bands, which 51 are polymorphic. The two marker system exhibited variation with regard to average band sizes and polymorphism ratio. The average polymorphism was higher in ISSR (88% compared to RAPD (74%. RAPD and ISSR marker systems were found to be useful for determining genetic diversity among almong genotypes and cultivars. Combining of two dendrograms obtained through these markers show different clustering of 96 almond specimens without geographical isolation. These results supported that almonds in Turkey indicated considerable genetic diversity.

  10. Polyphenols in whole rice grain: genetic diversity and health benefits.

    Science.gov (United States)

    Shao, Yafang; Bao, Jinsong

    2015-08-01

    Polyphenols, such as phenolic acid, anthocyanin and proanthocyanidins, have both nutraceutical properties and functional significance for human health. Identification of polyphenolic compounds and investigation of their genetic basis among diverse rice genotypes provides the basis for the improvement of the nutraceutical properties of whole rice grain. This review focuses on current information on the identification, genetic diversity, formation and distribution patterns of the phenolic acid, anthocyanin, and proanthocyanidins in whole rice grain. The genetic analysis of polyphenol content and antioxidant capacity allows the identification of several candidate genes or quantitative trait loci (QTL) responsible for polyphenol variation, which may be useful in improvement of these phytochemicals by breeding. Future challenges such as how to mitigate the effects of climate change while improving nutraceutical properties in whole grain, and how to use new technology to develop new rice high in nutraceutical properties are also presented. PMID:25766805

  11. GENETIC RESOURCES AND DIVERSITY IN DAIRY BUFFALOES OF PAKISTAN

    Directory of Open Access Journals (Sweden)

    M. SAJJAD KHAN, NAZIR AHMAD1 AND MUQARRAB ALI KHAN2

    2007-10-01

    Full Text Available Buffalo is the main dairy animal in Pakistan. There are five known buffalo breeds in the country namely: Nili, Ravi, Nili-Ravi, Kundhi and Azi Kheli (or Azakhale. Population trend is available for Nili-Ravi and Kundhi breeds and is positive. Azi-Kheli breed was included in 2006 livestock census for the first time. General production system is low-input extensive system but high input intensive system prevails around most cities in the form of buffalo colonies for supplying fresh milk. Buffaloes are seasonal breeders. Vast diversity exits both at phenotypic and genetic level. Economic traits have a wide variation and genetic control is moderate for production traits but very low for reproduction traits. Inbreeding is inimical to genetic diversity and has been reported to deteriorate productivity. Efforts to improve productivity of the species are needed alongwith sustainable utilization of existing resources.

  12. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  13. Genetic diversity in Fusarium solani f. sp. pisi based on SSR markers

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    2012-11-01

    Full Text Available Pea root rot, caused by Fusarium solani f. sp. pisi (Fsp, is one of the most important diseases on pea (Pisum sativum. Assessing the genetic diversity of the pathogen isolates from different geographical regions is crucially important for understanding of the genetic background of this pathogen and intelligently deploying host resistance. We screened SSRs in complete genome sequence of Nectria haematococca MPVI, and 107 SSR loci were selected for designing markers, from which 24 polymorphic primer pairs were developed. The 24 primer pairs were used to assess genetic diversity of 96 Fsp isolates from different geographical regions. Among 24 SSR markers, a total of 132 alleles were detected among the 96 Fsp isolates, the number ofalleles for each of the loci ranged from 3 to 15 with an average of 5.5. The genetic diversity was estimated to range from 0.4855 to 0.8264 with the average value of 0.738. Using these markers, 93 genotypes were detected. When the genetic similarity coefficient was 0.8, 96 Fsp isolates were clustered into 10 groups by phylogeneticanalysis. There was no correlation between SSR profile and either geographic origin or pathogenicity. Analysis of AMOVA revealed that variation mainly presented within Fsp populations (86.14%, and genetic differentiation of Fsp was significantly affected by geographical conditions and ecological environment.

  14. [Genetic diversity of eukaryotic picoplankton of eight lakes in Nanjing].

    Science.gov (United States)

    Zhao, Bi-ying; Chen, Mei-jun; Sun, Ying; Chen, Fei-zhou; Yang, Jia-xin

    2010-05-01

    The method of terminal restriction fragment length polymorphism (T-RFLP) was used to study the genetic diversity of eukaryotic picoplankton (0.2-5.0 microm) in the pelagic and littoral zones in 8 lakes with different trophic status in Nanjing. The objectives of this study were to confirm the difference of the genetic diversity of eukaryotic picoplankton among lakes and the main factors affecting this difference. T-RFLP indicated that there were various fingerprints among lakes and zones. The average terminal restriction fragments (T-RFs) in the littoral and pelagic zones were 16.4 and 15.9, respectively. The littoral zone in Lake Nan and the pelagic zone in Lake Mochou had 30 T-RFs and 27 T-RFs, respectively. The T-RFs were the least abundant (10) in the pelagic zone in Lake Baijia with relatively low trophic status. The genetic diversity of eukaryotic picoplankton was higher in the littoral zone than that in the pelagic zone except Lake Pipa and Mochou. The cluster analysis indicated that the similarities of the littoral zones and the pelagic zones were very high except Lake Baijia, Qian and Nan. The canonical correspondence analysis between the genetic diversity of eukaryotic picoplankton and environmental factors revealed the concentration of chlorophyll a had the most important impact on the eukaryotic picoplankton communities (p = 0.004). The results indicated that the genetic diversity of eukaryotic picoplankton is affected by the trophic status and has the difference in the pelagic and littoral zones. PMID:20623867

  15. Genetic diversity and molecular genealogy of local silkworm varieties

    Directory of Open Access Journals (Sweden)

    Zhouhe Du

    2013-03-01

    Full Text Available In order to explore the genetic diversity and systematic differentiation pattern among silkworm varieties, aiming to guide hybridization breeding, we sequenced a total of 72 Bmamy2 gene fragments from local silkworm varieties. The analysis of nucleotide sequence diversity and systematic differentiation indicated that there was rich genovariation in the sequencing region of Bmamy2 gene, and the base mutation rate is 5.6–8.2%, the haplotype diversity is 0.8294, and the nucleotide diversity is 0.0236±0.00122, suggesting Bmamy2 being a better marking gene with rich nucleotide sequence diversity, based on which the genetic diversity among different local silkworm varieties can be identified. The same heredity population structure is proclaimed by several analysis methods that every clade consisting of varieties from different geosystems and ecological types, while the varieties from the same geosystem and ecotype belong to different clades in the phylogeny. There is no population structure pattern that different varieties claded together according to geosystem or ecotype. It can be speculated that the silkworm origins from mixture of kinds of several voltinism mulberry silkworm, Bombyx mandarina, while the domestication events took place in several regions, from which the domesticated mulberry silkworms are all devoting to the domesticated silkworm population of today.

  16. Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene.

    Science.gov (United States)

    Martin, Simon H; Möst, Markus; Palmer, William J; Salazar, Camilo; McMillan, W Owen; Jiggins, Francis M; Jiggins, Chris D

    2016-05-01

    A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects. PMID:27017626

  17. Genetic diversity among isolates of stemphylium solani from cotton

    Directory of Open Access Journals (Sweden)

    MEHTA Y.R.

    2001-01-01

    Full Text Available The fungus Stemphylium solani causes leaf blight of tomato (Lycopersicon esculentum in Brazil. In recent years, severe epidemics of a new leaf blight of cotton (Gossipium hyrsutum caused by S. solani occurred in three major cotton-growing Brazilian states (PR, MT and GO. Molecular analysis was performed to assess the genetic diversity among the S. solani isolates from cotton, and to verify their relationship with representative S. solani isolates from tomato. Random amplified polymorphic DNA (RAPD markers and internal transcribed spacers of ribosomal DNA (rDNA were used to compare 33 monosporic isolates of S. solani (28 from cotton and five from tomato. An isolate of Alternaria macrospora from cotton was also used for comparison. RAPD analysis showed the presence of polymorphism between the genera and the species. The A. macrospora and the S. solani isolates from cotton and tomato were distinct from each other, and fell into separate groups. Variation by geographic region was observed for the tomato isolates but not for the cotton isolates. Amplifications of the ITS region using the primer pair ITS4/ITS5 resulted in a single PCR product of approximately 600 bp for all the isolates. Similarly, when amplified fragments were digested with eight restriction enzymes, identical banding patterns were observed for all the isolates. Hence, rDNA analysis revealed no inter-generic or intra-specific variation. The genetic difference observed between the cotton and the tomato isolates provides evidence that S. solani attacking cotton in Brazil belongs to a distinct genotype.

  18. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers.

    Science.gov (United States)

    Ko, W R; Sa, K J; Roy, N S; Choi, H-J; Lee, J K

    2016-01-01

    In this study, we compared the efficiency of simple sequence repeat (SSR) and sequence specific amplified polymorphism (SSAP) markers for analyzing genetic diversity, genetic relationships, and population structure of 87 super sweet corn inbred lines from different origins. SSR markers showed higher average gene diversity and Shannon's information index than SSAP markers. To assess genetic relationships and characterize inbred lines using SSR and SSAP markers, genetic similarity (GS) matrices were constructed. The dendrogram using SSR marker data showed a complex pattern with nine clusters and a GS of 53.0%. For SSAP markers, three clusters were observed with a GS of 50.8%. Results of combined marker data showed six clusters with 53.5% GS. To analyze the genetic population structure of SSR and SSAP marker data, the 87 inbred lines were divided into groups I, II, and admixed based on the membership probability threshold of 0.8. Using combined marker data, the population structure was K = 3 and was divided into groups I, II, III, and admixed. This study represents a comparative analysis of SSR and SSAP marker data for the study of genetic diversity and genetic relationships in super sweet corn inbred lines. Our results would be useful for maize-breeding programs in Korea. PMID:26909914

  19. Allozymes Genetic Diversity of Quercus mongolica Fisch in China

    Institute of Scientific and Technical Information of China (English)

    LI Wenying; GU Wanchun

    2006-01-01

    A gel electrophoresis method was used to study the genetic diversity of 8 Quercus mongolica populations throughout its range in China.Eleven of 21 loci from 13 enzymes assayed were polymorphic.Q.mongolica maintained low level of genetic variation compared with the average Quercus species.At the species level,: the mean number of alleles per locus (A) was 1.905, the percentage of polymorphic loci (P) was 52.38%, the observed heterozygosity (He) was 0.092 and the expected heterozygosity (He) was 0.099.At the population level, the estimates were A =1.421, P =28.976%, Ho= 0.088, He =0.085.Genetic differentiation (Gst was high among populations, it was 0.107.According to the UPGMA cluster analysis based on the genetic distance, 4 populations located in northeast and 2 populations in southwest of the geographical distribution are classified into 2 subgroups, but there was no clear relationship between genetic distance and geographic distance among populations.The low level of genetic diversity of Q.mongolica might be related to the long-term exploitation as economic tree species in history are comparatively seriously disturbed and damaged by human beings, and most of the existing stands are secondary forests.

  20. Risk assessment of Genetically Modified Organisms (GMOs

    Directory of Open Access Journals (Sweden)

    Waigmann E

    2012-10-01

    Full Text Available

    EFSA’s remit in the risk assessment of GMOs is very broad encompassing genetically modified plants, microorganisms and animals and assessing their safety for humans, animals and the environment. The legal frame for GMOs is set by Directive 2001/18/EC on their release into the environment, and Regulation (EC No 1829/2003 on GM food and feed. The main focus of EFSA’s GMO Panel and GMO Unit lies in the evaluation of the scientific risk assessment of new applications for market authorisation of GMOs, and in the development of corresponding guidelines for the applicants. The EFSA GMO Panel has elaborated comprehensive guidance documents on GM plants, GM microorganisms and GM animals, as well as on specific aspects of risk assessment such as the selection of comparators. EFSA also provides special scientific advice upon request of the European Commission; examples are post-market environmental monitoring of GMOs, and consideration of potential risks of new plant breeding techniques. The GMO Panel regularly reviews its guidance documents in the light of experience gained with the evaluation of applications, technological progress in breeding technologies and scientific developments in the diverse areas of risk assessment.

  1. Detection of Genetic Variation and Genetic Diversity in Two Indian Mudskipper Species (Boleophthalmus boddarti, B. dussumieri) using RAPD Marker

    OpenAIRE

    Vellaichamy RAMANADEVI; Muthusamy THANGARAJ; Anbazhagan SURESHKUMAR; Jayachandran SUBBURAJ

    2013-01-01

    Due to the environmental changes and habitat destruction the mudskipper fish population is decreasing in recent years. To predict the fish population structure, frequent manual survey and molecular methods are widely used. Molecular markers such as RAPD, microsatellite, allozyme, D-loop haplotype are frequently adopted to assess the population structure of an organism. In this study ten- arbitrary primers were screened to estimate the genetic relationships and diversity of two mudskipper spec...

  2. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus.

    Science.gov (United States)

    Furlan, Elise; Stoklosa, J; Griffiths, J; Gust, N; Ellis, R; Huggins, R M; Weeks, A R

    2012-04-01

    Genetic diversity generally underpins population resilience and persistence. Reductions in population size and absence of gene flow can lead to reductions in genetic diversity, reproductive fitness, and a limited ability to adapt to environmental change increasing the risk of extinction. Island populations are typically small and isolated, and as a result, inbreeding and reduced genetic diversity elevate their extinction risk. Two island populations of the platypus, Ornithorhynchus anatinus, exist; a naturally occurring population on King Island in Bass Strait and a recently introduced population on Kangaroo Island off the coast of South Australia. Here we assessed the genetic diversity within these two island populations and contrasted these patterns with genetic diversity estimates in areas from which the populations are likely to have been founded. On Kangaroo Island, we also modeled live capture data to determine estimates of population size. Levels of genetic diversity in King Island platypuses are perilously low, with eight of 13 microsatellite loci fixed, likely reflecting their small population size and prolonged isolation. Estimates of heterozygosity detected by microsatellites (H(E)= 0.032) are among the lowest level of genetic diversity recorded by this method in a naturally outbreeding vertebrate population. In contrast, estimates of genetic diversity on Kangaroo Island are somewhat higher. However, estimates of small population size and the limited founders combined with genetic isolation are likely to lead to further losses of genetic diversity through time for the Kangaroo Island platypus population. Implications for the future of these and similarly isolated or genetically depauperate populations are discussed. PMID:22837830

  3. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  4. Personality assessments as a workforce diversity tool.

    Science.gov (United States)

    Collins, Sandra K; Sord, Brandy; Griffin, Caleigh; Borges, Lora

    2008-01-01

    * Employee recruitment, retention, and workforce diversity are essential ingredients in a successful radiology department. Since potential new hires and existing employees do not come with labels which accurately describe their innate characteristics, radiology managers need to use objective tools such as personality assessments in order to properly evaluate prospective employment candidates. * These tools have traditionally been under utilized in the healthcare industry, but when used as part of a complete employee selection program they have the potential of ensuring a cohesive radiology department filled with diverse and skilled professionals. * Legal concerns and time constraints withstanding, use of personality assessments as a workforce diversity tool will aid in building an integrated department culture which values the varying skills and attributes of every employee. The result is a radiology department with high levels of employee retention and satisfaction. PMID:18431938

  5. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  6. Genetic diversity and construction of core collection in Chinese wheat genetic resources

    Institute of Scientific and Technical Information of China (English)

    HAO ChenYang; DONG YuChen; WANG LanFen; YOU GuangXia; ZHANG HongNa; GE HongMei; JIA JiZeng; ZHANG XueYong

    2008-01-01

    Genetic diversity among 5029 accessions representing a proposed Chinese wheat core collection was analyzed using 78 pairs of fluorescent microsatellite (SSR) primers mapped to 21 chromosomes. A stepwise hierarchical sampling strategy with priority based on 4×105 SSR data-points was used to construct a core collection from the 23090 initial collections. The core collection consisted of 1160 accessions, including 762 landraces, 348 modern varieties and 50 introduced varieties. The core ac-counts for 23.1% of the 5029 candidate core accessions and 5% of the 23090 initial collections, but retains 94.9% of alleles from the candidate collections and captures 91.5% of the genetic variation in the initial collections. These data indicate that it is possible to maintain genetic diversity in a core col-lection while retaining fewer accessions than the accepted standard, i.e., 10% of the initial collections captured more than 70% of their genetic diversity. Estimated genetic representation of the core con-structed by preferred sampling (91.5%) is much higher than that by random sampling (79.8%). Both mean genetic richness and genetic diversity indices of the landraces were higher than those of the modern varieties in the core. Structure and principal coordinate analysis revealed that the landraces and the modern varieties were two relatively independent subpopulations. Strong genetic differentia-tion associated with ecological environments has occurred in the landraces, but was relatively weak in the modern cultivars. In addition, a mini-core collection was constructed, which consisted of 231 ac-cessions with an estimated 70% representation of the genetic variation from the initial collections. The mini-core has been distributed to various research and breeding institutes for detailed phenotyping and breeding of genetic introgression lines.

  7. Tuberculosis, genetic diversity and fitness in the red deer, Cervus elaphus.

    Science.gov (United States)

    Queirós, João; Vicente, Joaquín; Alves, Paulo C; de la Fuente, José; Gortazar, Christian

    2016-09-01

    Understanding how genetic diversity, infections and fitness interact in wild populations is a major challenge in ecology and management. These interactions were addressed through heterozygosity-fitness correlation analyses, by assessing the genetic diversity, tuberculosis (TB) and body size in adult red deer. Heterozygosity-fitness correlation models provided a better understanding of the link between genetic diversity and TB at individual and population levels. A single local effect was found for Ceh45 locus at individual level, enhancing the importance of its close functional genes in determining TB presence. At population level, the ability of the red deer to control TB progression correlated positively with population genetic diversity, indicating that inbred populations might represent more risk of deer TB severity. Statistical models also gained insights into the dynamics of multi-host interaction in natural environments. TB prevalence in neighbouring wild boar populations was positively associated with deer TB at both individual and population levels. Additionally, TB presence correlated positively with red deer body size, for which "general and local effect" hypotheses were found. Although body size might be correlated with age, an indirect genetic effect on TB presence could be implied. This study provides new insights towards understanding host-pathogen interactions in wild populations and their relation to fitness traits. PMID:27245150

  8. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis.

    Directory of Open Access Journals (Sweden)

    Harsh Kumar Dikshit

    Full Text Available Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations.

  9. Genetic Diversity Analysis of Lates calcarifer (Bloch 1790 in Captive and Wild Populations Using RAPD Markers

    Directory of Open Access Journals (Sweden)

    Muthusamy RAJASEKAR

    2012-08-01

    Full Text Available Lates calcarifer (Bloch 1790 is one of the major economically important cultivable fish species in India. In this study, three populations of L. calcarifer was selected to assess the genetic diversity. Of which, two wild (Mudaslodai, Muthupettai and one captive (Mutukadu population. The genetic diversity of three populations of this species was studied using Random Amplified Polymorphic DNA (RAPD markers. Ten random primers were used for the assessment of their genetic diversity and construction of the dendrogram. A total of 589 scorable bands were obtained, 93.12% of them were polymorphic. The Nei�s gene diversity (H of two wild populations were more (0.0504 � 0.0670 and 0.0519 � 0.0953 than the captive population (0.0489 � 0.0850. The clustering pattern obtained by UPGMA method emphasized the wild populations were clustered in one clade and captive population was deviated into another clade. This study proved that RAPD analysis has the ability to discriminate L. calcarifer populations. Further molecular studies, comprising a higher number of molecular tools are still required to precisely evaluate the genetic structure of all seabass populations along the Indian coast.

  10. Genetic diversity analysis of Cuban traditional rice (Oryza sativa L. varieties based on microsatellite markers

    Directory of Open Access Journals (Sweden)

    Alba Alvarez

    2007-01-01

    Full Text Available Microsatellite polymorphism was studied in a sample of 39 traditional rice (Oryza sativa L. varieties and 11 improved varieties widely planted in Cuba. The study was aimed at assessing the extent of genetic variation in traditional and improved varieties and to establish their genetic relationship for breeding purposes. Heterozygosity was analyzed at each microsatellite loci and for each genotype using 10 microsatellite primer pairs. Between varieties genetic relationship was estimated. The number of alleles per microsatellite loci was 4 to 8, averaging 6.6 alleles per locus. Higher heterozygosity (H was found in traditional varieties (H TV = 0.72 than in improved varieties (H IV = 0.42, and 68% of the total microsatellite alleles were found exclusively in the traditional varieties. Genetic diversity, represented by cluster analysis, indicated three different genetic groups based on their origin. Genetic relationship estimates based on the proportion of microsatellite loci with shared alleles indicated that the majority of traditional varieties were poorly related to the improved varieties. We also discuss the more efficient use of the available genetic diversity in future programs involving genetic crosses.

  11. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    Full Text Available BACKGROUND: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. CONCLUSIONS/SIGNIFICANCE: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  12. Characterization of the genetic diversity, structure and admixture of British chicken breeds.

    Science.gov (United States)

    Wilkinson, S; Wiener, P; Teverson, D; Haley, C S; Hocking, P M

    2012-10-01

    The characterization of livestock genetic diversity can inform breed conservation initiatives. The genetic diversity and genetic structure were assessed in 685 individual genotypes sampled from 24 British chicken breeds. A total of 239 alleles were found across 30 microsatellite loci with a mean number of 7.97 alleles per locus. The breeds were highly differentiated, with an average F(ST) of 0.25, similar to that of European chicken breeds. The genetic diversity in British chicken breeds was comparable to that found in European chicken breeds, with an average number of alleles per locus of 3.59, ranging from 2.00 in Spanish to 4.40 in Maran, and an average expected heterozygosity of 0.49, ranging from 0.20 in Spanish to 0.62 in Araucana. However, the majority of breeds were not in Hardy-Weinberg Equilibrium, as indicated by heterozygote deficiency in the majority of breeds (average F(IS) of 0.20), with an average observed heterozygote frequency of 0.39, ranging from 0.15 in Spanish to 0.49 in Cochin. Individual-based clustering analyses revealed that most individuals clustered to breed origin. However, genetic subdivisions occurred in several breeds, and this was predominantly associated with flock supplier and occasionally by morphological type. The deficit of heterozygotes was likely owing to a Wahlund effect caused by sampling from different flocks, implying structure within breeds. It is proposed that gene flow amongst flocks within breeds should be enhanced to maintain the current levels of genetic diversity. Additionally, certain breeds had low levels of both genetic diversity and uniqueness. Consideration is required for the conservation and preservation of these potentially vulnerable breeds. PMID:22497565

  13. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Niko eBeerenwinkel

    2012-09-01

    Full Text Available Many viruses, including the clinically relevant RNA viruses HIV and HCV, exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different next-generation sequencing platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of next-generation sequencing to estimate viral diversity.

  14. Genetic diversity assessed using microsatellite DNA of spiny head croaker ( Collichthys lucidus) from the Zhoushan offshore waters%舟山近海棘头梅童鱼群体遗传多样性微卫星DNA分析

    Institute of Scientific and Technical Information of China (English)

    林能锋; 苏永全; 丁少雄; 王军

    2011-01-01

    应用6对可在棘头梅童鱼(Collichthy lucidels)中扩增的大黄鱼(Rseudosciaena Crocea)微卫星引物对浙江舟山近海的棘头梅童鱼群体进行PCR扩增,变性聚丙烯酰胺凝胶电泳分析扩增产物.6对引物在群体中共扩增出46个等位基因,平均每个位点得到5.308 0个有效等位基因.各位点的PIC值为0.4126~0.893 5(平均值0.670 8),PCIC4和PC8F5为中度多态性位点,PC4H12、PC5E11、PCIOF10及PC10G6为高度多态性位点,这些位点可以做为棘头梅童鱼群体遗传学研究的有效的分子遗传标记.6个位点的连锁分析显示,各位点间不存在明显的连锁关系.各位点在群体中的观测杂合度(Ho)为0.4545~0.9167(平均值0.6591),期望杂合度(He)为0.4680~0.9019(平均值0.6997),与其他海水鱼类比较,浙江近海的棘头梅童鱼群体遗传多样性偏低.对各位点进行Hardy-Weinberg平衡检测表明,PC4H12、PC10F10及PC10G6位点的等位基因频率偏离了平衡,综合现有的资源调查资料,遗传多样性的降低与近年来棘头梅童鱼资源的下降有关.%Spiny head croaker ( Collichthy lucidus) is a demersal and diminutive fish species, and was an abundant resource in the East China Sea until about 20 years ago. With the development of marine fisheries, much of the breeding stock of spiny head croaker and juvenile populations were overfished employing the traditional two-stick stow net method. To propose reasonable protection of the C. lucidus resource, it is important to understand the background of its population genetics. In this study, samples of spiny head croaker from Zhoushan offshore waters in Zhejiang province were collected and the genetic diversity analyzed. Six microsatellite loci developed from P.crocea were employed to assess the levels of allelic diversity and heterozygosity of the C. lucidus population. A total of 46 alleles were obtained from 24 individuals at six loci. The number of alleles per locus ranged from 4 to 13

  15. Genetic Diversity of Eurycoma longifolia Jack Based on Random Amplified Polymorphic DNA Marker

    Directory of Open Access Journals (Sweden)

    Rosmaina Rosmaina

    2013-08-01

    Full Text Available Eurycoma longifolia Jack is one of the extensively exploited medicinal plants in Indonesia. The objectives of this study were to obtain information on genetic diversity and population genetic structure of E. longifolia to formulate effective conservation plan. RAPD marker was used to assess the genetic diversity of E. longifolia collected from 5 natural populations in Riau Province. A total of 25 plants were analyzed using 5 RAPD primers, which amplified produced 44 scored DNA bands. The mean observed number of alleles per locus (No, number of effective alleles (Ne, and percentage of polymorphic loci (PPL of E. longifolia were 1.57, 1.34, and 56.80%, respectively. The degree of differentiation among populations of E. longifolia was 0.31 (Ht = 0.29; Hs = 0.20.  The mean value of estimated gene flow among populations of E. longifolia was 1.11 individual per generation. The UPGMA dendogram formed 2 significant clusters. The first cluster consisted of Pelalawan and Kampar populations, while the second cluster was formed from Kuansing, Rohul, and Rohil population. The genetic diversity information in this study is very important to perform efficient conservation and effective future management of its genetic resources.Keywords: Eurycoma longifolia, RAPD marker, genetic variation, conservation DOI: 10.7226/jtfm.19.2.138

  16. Genetic diversity in Isoetes yunguiensis,a rare and endangered endemic fern in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Jinming; Wahiti R.Gituru; LIU Xing; WANG Qingfeng

    2007-01-01

    Isoetes yunguiensis is an endangered and endemic fern in China.Field survey indicated that only one population and no more than 50 individuals occur in the wild.The genetic variation of 46 individuals from the population remaining at Pingha (Guizhou Province,China)was assessed by Random Amplified Polymorphic DNA (RAPD)fingerprinting.Twelve primers were screened from sixty ten-bp arbitrary primers,and a total of 95 DNA fragments were scored.Of these,62.1%were polymorphic loci,which indicated that high level genetic variation existed in the natural population.The accumulation of genetic variation in the history of the taxon and the apparent minimal reduction effect on genetic diversity following destruction of habitat might be responsible for the high level genetic diversity presently remaining in the I.yunguiensis population.However,with the continuing decrease of population size,the genetic diversity will gradually be lost.We suggest that the materials from the extant population should be used for re-establishment of the populations.

  17. Assessing functional diversity by program slicing

    International Nuclear Information System (INIS)

    A responsibility of the Nuclear Regulatory Commission auditors is to provide assessments of the quality of the safety systems. For software, the audit process as currently implemented is a slow, tedious, manual process prone to human errors. While auditors cannot possibly examine all components of the system in complete detail, they do check for implementation of specific principles like functional diversity. This paper describes an experimental prototype Computer Aided Software Engineering (CASE) tool, UNRAVEL, designed to enable auditors to check for functional diversity and aid an auditor in examining software by extracting all code relevant to a computation identified for detailed inspection

  18. Do hatchery-reared sea urchins pose a threat to genetic diversity in wild populations?

    Science.gov (United States)

    Segovia-Viadero, M; Serrão, E A; Canteras-Jordana, J C; Gonzalez-Wangüemert, M

    2016-04-01

    In salmonids, the release of hatchery-reared fish has been shown to cause irreversible genetic impacts on wild populations. However, although responsible practices for producing and releasing genetically diverse, hatchery-reared juveniles have been published widely, they are rarely implemented. Here, we investigated genetic differences between wild and early-generation hatchery-reared populations of the purple sea urchin Paracentrotus lividus (a commercially important species in Europe) to assess whether hatcheries were able to maintain natural levels of genetic diversity. To test the hypothesis that hatchery rearing would cause bottleneck effects (that is, a substantial reduction in genetic diversity and differentiation from wild populations), we compared the levels and patterns of genetic variation between two hatcheries and four nearby wild populations, using samples from both Spain and Ireland. We found that hatchery-reared populations were less diverse and had diverged significantly from the wild populations, with a very small effective population size and a high degree of relatedness between individuals. These results raise a number of concerns about the genetic impacts of their release into wild populations, particularly when such a degree of differentiation can occur in a single generation of hatchery rearing. Consequently, we suggest that caution should be taken when using hatchery-reared individuals to augment fisheries, even for marine species with high dispersal capacity, and we provide some recommendations to improve hatchery rearing and release practices. Our results further highlight the need to consider the genetic risks of releasing hatchery-reared juveniles into the wild during the establishment of restocking, stock enhancement and sea ranching programs. PMID:26758187

  19. Genetic diversity and population structure of Miscanthus sinensis germplasm in China.

    Directory of Open Access Journals (Sweden)

    Hua Zhao

    Full Text Available Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38, as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei's genetic diversity index (He of 0.32 and polymorphism information content (PIC of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83% was substantially greater than the between-subpopulation variation (17%. Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.

  20. A genomic scale map of genetic diversity in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ackermann Alejandro A

    2012-12-01

    Full Text Available Abstract Background Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. Results Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs: TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. Conclusions This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the

  1. Genetic Diversity Enhances Restoration Success by Augmenting Ecosystem Services

    OpenAIRE

    Reynolds, Laura K.; Karen J McGlathery; Waycott, Michelle

    2012-01-01

    Disturbance and habitat destruction due to human activities is a pervasive problem in near-shore marine ecosystems, and restoration is often used to mitigate losses. A common metric used to evaluate the success of restoration is the return of ecosystem services. Previous research has shown that biodiversity, including genetic diversity, is positively associated with the provision of ecosystem services. We conducted a restoration experiment using sources, techniques, and sites similar to actua...

  2. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    OpenAIRE

    Rivarola, Maximo; Foster, Jeffrey T.; Chan, Agnes P.; Williams, Amber L.; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J; Keim, Paul; Ravel, Jacques

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and for...

  3. Loss of Genetic Diversity of Jatropha curcas L. through Domestication: Implications for Its Genetic Improvement

    DEFF Research Database (Denmark)

    Sanou, Haby; Angel Angulo-Escalante, Miguel; Martinez-Herrera, Jorge; Kone, Souleymane; Nikiema, Albert; Kalinganire, Antoine; Hansen, Jon Kehlet; Kjaer, Erik Dahl; Graudal, Lars; Nielsen, Lene Rostgaard

    2015-01-01

    Jatropha curcas L. has been promoted as a “miracle” tree in many parts of the world, but recent studies have indicated very low levels of genetic diversity in various landraces. In this study, the genetic diversity of landrace collections of J. curcas was compared with the genetic diversity of the....... Mating system could not be estimated in the landraces from Mali and populations from Veracruz, Puebla, and Morelos (Mexico), as these were highly monomorphic. The observed low level of genetic diversity in some of the populations and landraces suggests that breeding programs should test for genetic...

  4. Mitochondrial genetic diversity of Eurasian red squirrels (Sciurus vulgaris) from Denmark

    DEFF Research Database (Denmark)

    Madsen, Corrie Lynne; Mouatt, Julia Thidamarth Vilstrup; Fernandez Garcia, Rut; Marchi, Nina; Håkansson, Bo; Krog, Mogens; Asferg, Tommy; Baagøe, Hans J.; Orlando, Ludovic Antoine Alexandre

    2015-01-01

    involves the translocation of melanistic squirrels from Funen to the squirrel-free island of Langeland. Using mitochondrial DNA of 101 historical and modern samples from throughout Denmark, we assess for the first time population structure and mitochondrial genetic diversity of Danish squirrels compared to...... its larger pan-Eurasian distribution. We find that Danish squirrels have low levels of genetic diversity, especially melanistic individuals. Bayesian skyline reconstructions show that Danish squirrels have most probably experienced a severe bottleneck within the last 200 years. Also, fine......-scale genetic structure was found between squirrels from the regions of Funen, Zealand and Jutland, which mimics the insular geography of Denmark. Additional nuclear DNA analyses will be required to determine the precise admixture levels between original Danish and introduced squirrels and to locate unmixed...

  5. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Angen, Øystein; Bisgaard, Magne

    2011-01-01

    strains isolated from horses and infected wounds of humans bitten by horses and another consisting of strains isolated from bovine and ovine hosts. The present data indicate a comparatively higher degree of genetic diversity among strains isolated from equine hosts and confirm the existence of a separate...... genomospecies for A. lignieresi-like isolates from horses. Among the isolates from bovine and ovine hosts some clonal lines appear to be genetically stable over time and could be detected at very distant geographic localities. Although all ovine strains investigated grouped in a single cluster, the existence of...... distinct genetic lineages that have evolved specificity for ovine hosts is not obvious and needs to be confirmed in other studies....

  6. Influence of ethnolinguistic diversity on the sorghum genetic patterns in subsistence farming systems in eastern Kenya.

    Directory of Open Access Journals (Sweden)

    Vanesse Labeyrie

    Full Text Available Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers' varieties and the

  7. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    Science.gov (United States)

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  8. Evaluation of the genetic diversity of microsatellite markers among four strains of Oreochromis niloticus.

    Science.gov (United States)

    Dias, M A D; de Freitas, R T F; Arranz, S E; Villanova, G V; Hilsdorf, A W S

    2016-06-01

    Different strains of Nile tilapia can be found worldwide. To successfully use them in breeding programs, they must be genetically characterized. In this study, four strains of Nile tilapia - UFLA, GIFT, Chitralada and Red-Stirling - were genetically characterized using 10 noncoding microsatellite loci and two microsatellites located in the promoter and first intron of the growth hormone gene (GH). The two microsatellites in the GH gene were identified at positions -693 to -679 in the promoter [motif (ATTCT)8 ] and in intron 1 at positions +140 to +168 [motif (CTGT)7 ]. Genetic diversity was measured as mean numbers of alleles and expected heterozygosity, which were 4 and 0.60 (GIFT), 3.5 and 0.71 (UFLA), 4.5 and 0.57 (Chitralada) and 2.5 and 0.42 (Red-Stirling) respectively. Genetic differentiation was estimated both separately and in combination for noncoding and GH microsatellites markers using Jost's DEST index. The UFLA and GIFT strains were the least genetically divergent (DEST  = 0.10), and Chitralada and Red-Stirling were the most (DEST  = 0.58). The UFLA strain was genetically characterized for the first time and, because of its unique origin and genetic distinctness, may prove to be an important resource for genetic improvement of Nile tilapia. This study shows that polymorphisms found in coding gene regions might be useful for assessing genetic differentiation among strains. PMID:26932188

  9. Characterisation of the genetic diversity of Brucella by multilocus sequencing

    Directory of Open Access Journals (Sweden)

    MacMillan Alastair P

    2007-04-01

    Full Text Available Abstract Background Brucella species include economically important zoonotic pathogens that can infect a wide range of animals. There are currently six classically recognised species of Brucella although, as yet unnamed, isolates from various marine mammal species have been reported. In order to investigate genetic relationships within the group and identify potential diagnostic markers we have sequenced multiple genetic loci from a large sample of Brucella isolates representing the known diversity of the genus. Results Nine discrete genomic loci corresponding to 4,396 bp of sequence were examined from 160 Brucella isolates. By assigning each distinct allele at a locus an arbitrary numerical designation the population was found to represent 27 distinct sequence types (STs. Diversity at each locus ranged from 1.03–2.45% while overall genetic diversity equated to 1.5%. Most loci examined represent housekeeping gene loci and, in all but one case, the ratio of non-synonymous to synonymous change was substantially Brucella species, B. abortus, B. melitensis, B. ovis and B. neotomae correspond to well-separated clusters. With the exception of biovar 5, B. suis isolates cluster together, although they form a more diverse group than other classical species with a number of distinct STs corresponding to the remaining four biovars. B. canis isolates are located on the same branch very closely related to, but distinguishable from, B. suis biovar 3 and 4 isolates. Marine mammal isolates represent a distinct, though rather weakly supported, cluster within which individual STs display one of three clear host preferences. Conclusion The sequence database provides a powerful dataset for addressing ongoing controversies in Brucella taxonomy and a tool for unambiguously placing atypical, phenotypically discordant or newly emerging Brucella isolates. Furthermore, by using the phylogenetic backbone described here, robust and rationally selected markers for use in

  10. Study of Genetic Diversity among Simmental Cross Cattle in West Sumatra Based on Microsatellite Markers.

    Science.gov (United States)

    Agung, Paskah Partogi; Saputra, Ferdy; Septian, Wike Andre; Lusiana; Zein, Moch Syamsul Arifin; Sulandari, Sri; Anwar, Saiful; Wulandari, Ari Sulistyo; Said, Syahruddin; Tappa, Baharuddin

    2016-02-01

    A study was conducted to assess the genetic diversity among Simmental Cross cattle in West Sumatra using microsatellite DNA markers. A total of 176 individual cattle blood samples was used for obtaining DNA samples. Twelve primers of microsatellite loci as recommended by FAO were used to identify the genetic diversity of the Simmental Cross cattle population. Multiplex DNA fragment analysis method was used for allele identification. All the microsatellite loci in this study were highly polymorphic and all of the identified alleles were able to classify the cattle population into several groups based on their genetic distance. The heterozygosity values of microsatellite loci in this study ranged from 0.556 to 0.782. The polymorphism information content (PIC) value of the 12 observed loci is high (PIC>0.5). The highest PIC value in the Simmental cattle population was 0.893 (locus TGLA53), while the lowest value was 0.529 (locus BM1818). Based on the genetic distance value, the subpopulation of the Simmental Cross-Agam and the Simmental Cross-Limapuluh Kota was exceptionally close to the Simmental Purebred thus indicating that a grading-up process has taken place with the Simmental Purebred. In view of the advantages possessed by the Simmental Cross cattle and the evaluation of the genetic diversity results, a number of subpopulations in this study can be considered as the initial (base) population for the Simmental Cross cattle breeding programs in West Sumatra, Indonesia. PMID:26732442

  11. Genetic diversity and bottleneck studies in the Marwari horse breed

    Indian Academy of Sciences (India)

    A. K. Gupta; M. Chauhan; S. N. Tandon; Sonia

    2005-12-01

    Genetic diversity within the Marwari breed of horses was evaluated using 26 different microsatellite pairs with 48 DNA samples from unrelated horses. This molecular characterisation was undertaken to evaluate the problem of genetic bottlenecks also, if any, in this breed. The estimated mean (± s.e.) allelic diversity was 5.9 (± 2.24), with a total of 133 alleles. A high level of genetic variability within this breed was observed in terms of high values of mean (± s.e.) effective number of alleles (3.3 ± 1.27), observed heterozygosity (0.5306 ± 0.22), expected Levene’s heterozygosity (0.6612 ± 0.15), expected Nei’s heterozygosity (0.6535 ± 0.14), and polymorphism information content (0.6120 ± 0.03). Low values of Wright’s fixation index, $F_{\\text{IS}}$ (0.2433 ± 0.05) indicated low levels of inbreeding. This basic study indicated the existence of substantial genetic diversity in the Marwari horse population. No significant genotypic linkage disequilibrium was detected across the population, suggesting no evidence of linkage between loci. A normal ‘L’ shaped distribution of mode–shift test, non-significant heterozygote excess on the basis of different models, as revealed from Sign, Standardized differences and Wilcoxon sign rank tests as well as non-significant ratio value suggested that there was no recent bottleneck in the existing Marwari breed population, which is important information for equine breeders. This study also revealed that the Marwari breed can be differentiated from some other exotic breeds of horses on the basis of three microsatellite primers.

  12. Genetic Diversity of White Sharks, Carcharodon carcharias, in the Northwest Atlantic and Southern Africa.

    Science.gov (United States)

    O'Leary, Shannon J; Feldheim, Kevin A; Fields, Andrew T; Natanson, Lisa J; Wintner, Sabine; Hussey, Nigel; Shivji, Mahmood S; Chapman, Demian D

    2015-01-01

    The white shark, Carcharodon carcharias, is both one of the largest apex predators in the world and among the most heavily protected marine fish. Population genetic diversity is in part shaped by recent demographic history and can thus provide information complementary to more traditional population assessments, which are difficult to obtain for white sharks and have at times been controversial. Here, we use the mitochondrial control region and 14 nuclear-encoded microsatellite loci to assess white shark genetic diversity in 2 regions: the Northwest Atlantic (NWA, N = 35) and southern Africa (SA, N = 131). We find that these 2 regions harbor genetically distinct white shark populations (Φ ST = 0.10, P < 0.00001; microsatellite F ST = 0.1057, P < 0.021). M-ratios were low and indicative of a genetic bottleneck in the NWA (M-ratio = 0.71, P < 0.004) but not SA (M-ratio = 0.85, P = 0.39). This is consistent with other evidence showing a steep population decline occurring in the mid to late 20th century in the NWA, whereas the SA population appears to have been relatively stable. Estimates of effective population size ranged from 22.6 to 66.3 (NWA) and 188 to 1998.3 (SA) and evidence of inbreeding was found (primarily in NWA). Overall, our findings indicate that white population dynamics within NWA and SA are determined more by intrinsic reproduction than immigration and there is genetic evidence of a population decline in the NWA, further justifying the strong domestic protective measures that have been taken for this species in this region. Our study also highlights how assessment of genetic diversity can complement other sources of information to better understand the status of threatened marine fish populations. PMID:25762777

  13. Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity

    OpenAIRE

    Burle, Marília Lobo; Fonseca, Jaime Roberto; Kami, James A.; Gepts, Paul

    2010-01-01

    Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the s...

  14. Genetic Analysis of Diversity within a Chinese Local Sugarcane Germplasm Based on Start Codon Targeted Polymorphism

    OpenAIRE

    Youxiong Que; Yongbao Pan; Yunhai Lu; Cui Yang; Yuting Yang; Ning Huang; Liping Xu

    2014-01-01

    In-depth information on sugarcane germplasm is the basis for its conservation and utilization. Data on sugarcane molecular markers are limited for the Chinese sugarcane germplasm collections. In the present study, 20 start codon targeted (SCoT) marker primers were designed to assess the genetic diversity among 107 sugarcane accessions within a local sugarcane germplasm collection. These primers amplified 176 DNA fragments, of which 163 were polymorphic (92.85%). Polymorphic information conten...

  15. Genetic diversity analysis in a set of Caricaceae accessions using resistance gene analogues

    OpenAIRE

    Sengupta, Samik; Das, Basabdatta; Acharyya, Pinaki; Prasad, Manoj; Ghose, Tapas Kumar

    2014-01-01

    Background In order to assess genetic diversity of a set of 41 Caricaceae accessions, this study used 34 primer pairs designed from the conserved domains of bacterial leaf blight resistance genes from rice, in a PCR based approach, to identify and analyse resistance gene analogues from various accessions of Carica papaya, Vasconcellea goudotiana, V. microcarpa, V. parviflora, V. pubescens, V. stipulata and, V. quercifolia and Jacaratia spinosa. Results Of the 34 primer pairs fourteen gave amp...

  16. Consumer Acceptance of Genetically Modified Foods: Traits, Labels and Diverse Information

    OpenAIRE

    Huffman, Wallace E

    2010-01-01

    New experimental economic methods are described and used to assess consumers' willingness to pay for food products that might be made from new transgenic and intragenic genetically modified (GM) traits. Participants in auctions are randomly chosen adult consumers in major US metropolitan areas and not college students. Food labels are kept simple and focus on key attributes of experimental goods. Diverse private information from the agricultural biotech industry (largely Monsanto and Syngenta...

  17. Using genetic diversity information to establish core collections of Stylosanthes capitata and Stylosanthes macrocephala

    OpenAIRE

    Melissa Oliveira Santos-Garcia; Guilherme Toledo-Silva; Rodrigo Possidonio Sassaki; Thais Helena Ferreira; Rosângela Maria Simeão Resende; Lucimara Chiari; Cláudio Takao Karia; Marcelo Ayres Carvalho; Fábio Gelape Faleiro; Maria Imaculada Zucchi; Anete Pereira Souza

    2012-01-01

    Stylosanthes species are important forage legumes in tropical and subtropical areas. S. macrocephala and S. capitata germplasm collections that consist of 134 and 192 accessions, respectively, are maintained at the Brazilian Agricultural Research Corporation Cerrados (Embrapa-Cerrados). Polymorphic microsatellite markers were used to assess genetic diversity and population structure with the aim to assemble a core collection. The mean values of H O and H E for S. macrocephala were 0.08 and 0....

  18. Genetic diversity of teak (Tectona grandis L.F.) from different provenances using microsatellite markers

    OpenAIRE

    Berenice Kussumoto Alcântara; Elizabeth Ann Veasey

    2013-01-01

    Teak (Tectona grandis) is one of the main timber species in the world with high economic value, famous for its beauty, strength and durability. The objective of this work was to characterize the genetic diversity of teak genotypes used in Brazilian plantations. Nine microsatellite primers were used to assess 60 teak genotypes, including 33 genotypes from seeds of plantations and 14 clones from Cáceres municipality, Mato Grosso State, Brazil, and 13 clones from Honduras, Malaysia, India, Indon...

  19. Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis

    OpenAIRE

    Rajesh, M. K.; Sabana, A. A.; Rachana, K. E.; Rahman, Shafeeq; Jerard, B. A.; Karun, Anitha

    2015-01-01

    Coconut (Cocos nucifera L.) is one of the important palms grown both as a homestead and plantation crop in countries and most island territories of tropical regions. Different DNA-based marker systems have been utilized to assess the extent of genetic diversity in coconut. Advances in genomics research have resulted in the development of novel gene-targeted markers. In the present study, we have used a simple and novel marker system, start codon targeted polymorphism (SCoT), for its evaluatio...

  20. The Wilhelmine E. Key 1994 invitational Lecture. Plant genetic diversity and the struggle to measure selection.

    Science.gov (United States)

    Clegg, M T

    1997-01-01

    The fundamental research program of population genetics has been to seek a quantitative assessment of the role of the various forces of evolution in shaping patterns of genetic variation. This goal has been pursued on both empirical and theoretical fronts. The introduction of biochemical and molecular techniques into population genetics more than 25 years ago revealed vast stores of genetic variation within populations. This level of genetic diversity is difficult to reconcile with balancing selection, and as a consequence, recent thinking has emphasized the role of mutation and genetic random drift as the primary determinants of genetic diversity. The resulting neutral theory of molecular evolution has dominated population genetic thought for more than 20 years. Nonadaptive theories have also emphasized the role of deleterious mutations in driving evolutionary change. New insights into the relative importance of selection and genetic random drift can now be obtained from samples of DNA sequences of genes drawn from within species. The elaboration of coalescence theory, together with the accumulation of data on gene genealogies, permits an integration over relatively long periods of evolutionary time. The ability to integrate over long periods of evolutionary time permits the detection of small selection intensities and it reveals some information about the mode of selection. When the genealogy is consistent with a neutral process, the effective population size can be estimated, as can the age of the coalescent, thus providing new empirical approaches to the estimation of these important parameters. Applications of these approaches in plant population genetics are still in their infancy, but they have already provided new insights into effective population sizes and they are beginning to illustrate how selection for domestication has affected plant genomes. PMID:9048442

  1. Genetic diversity in cattle of eight regions in Costa Rica.

    Directory of Open Access Journals (Sweden)

    Juan Miguel Cordero-Solórzano

    2015-06-01

    Full Text Available The aim of this study was to explore the extent of inter-regional genetic diversity present in the cattle of Costa Rica. 1498 DNA samples were collected (year 2013 from eight different regions within the country. Allelic frequencies and major population genetic parameters were determined for eighteen microsatellite markers. An analysis of molecular variance was also carried out and genetic distances were calculated between cattle from different regions. At the national level, a high allelic diversity was found, with an average of 14.6±1.01 observed alleles and 5.6+0.37 effective alleles per marker. Observed (Ho and expected (He heterozygosities were 0.76±0.01 and 0.81±01, respectively. Polymorphic Information Content (PIC and Coefficient of Inbreeding (FIS were 0.79±0.06 and 0.06±0.004, respectively. At the regional level, Ho ranged between 0.73±0.02 in the South Central region to 0.78±0.01 in the North Huetar region. The dendrogram showed three clearly distinct groups, Metropolitan Central and West Central regions in one group, Caribbean Huetar, South Central, Central Pacific and Chorotega regions in a second group; and North Huetar and Brunca regions in a third intermediate group. Estimates of genetic differentiation (RST were significant between regions from different groups and non-significant for regions within the same group. Genetic differences between regions are related to differential proliferation of breed groups based on their adaptability to the agro-ecological conditions and production systems prevailing in each region.

  2. On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity

    OpenAIRE

    Roullier, C; Kambouo, R; Paofa, J; McKey, D; Lebot, V.

    2013-01-01

    New Guinea is considered the most important secondary centre of diversity for sweet potato (Ipomoea batatas). We analysed nuclear and chloroplast genetic diversity of 417 New Guinea sweet potato landraces, representing agro-morphological diversity collected throughout the island, and compared this diversity with that in tropical America. The molecular data reveal moderate diversity across all accessions analysed, lower than that found in tropical America. Nuclear data confirm p...

  3. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil

    Directory of Open Access Journals (Sweden)

    Almeida Leonardo D

    2007-12-01

    Full Text Available Abstract Background Brazil holds the largest commercial cattle populations worldwide. Local cattle breeds can be classified according to their origin, as exotic or Creole. Exotic breeds imported in the last 100 years, both zebuine and taurine, currently make up the bulk of the intensively managed populations. Locally adapted Creole breeds, originated from cattle introduced by the European conquerors derive from natural selection and events of breed admixture. While historical knowledge exists on the Brazilian Creole breeds very little is known on their genetic composition. The objective of this study was to assess the levels of genetic diversity, phylogenetic relationships and patterns of taurine/zebuine admixture among ten cattle breeds raised in Brazil. Results Significant reduction of heterozygosity exists due both to within-population inbreeding and to breed differentiation in both subspecies (taurine and zebuine. For taurine breeds the number of markers that contribute to breed differentiation is larger than for zebuine. A consistently similar number of alleles was seen in both subspecies for all microsatellites. Four Creole breeds were the most genetically diverse followed by the zebuine breeds, the two specialized taurine breeds and the Creole Caracu. Pairwise genetic differentiation were all significant indicating that all breeds can be considered as genetically independent entities. A STRUCTURE based diagram indicated introgression of indicine genes in the local Creole breeds and suggested that occasional Creole introgression can be detected in some Zebuine animals. Conclusion This study reports on a comprehensive study of the genetic structure and diversity of cattle breeds in Brazil. A significant amount of genetic variation is maintained in the local cattle populations. The genetic data show that Brazilian Creole breeds constitute an important and diverse reservoir of genetic diversity for bovine breeding and conservation. The

  4. Genetic diversity Genetic diversity pattern in finger millet [Eleusine coracana (L. Gaertn

    Directory of Open Access Journals (Sweden)

    S. R. Shinde, S. V. Desai, and R. M. Pawar

    2013-09-01

    Full Text Available The genetic distance for 41 genotypes of finger millet collected from different geographical areas was estimated using D2 statistics. These genotypes were grouped into seven clusters. Cluster II, I, V, VI, and III comprised 17, 10, 7, 3 and 2 genotypes, respectively. The clusters IV and VII were mono-genotypic indicating wide divergence from other clusters. Most of the strains were from same origin and found to be one or more components of seven clusters indicating the presence of wide genetic variability among the material belonging to same geographical origin. The highest inter-cluster distance was observed between clusters II and VII followed by IV and VII suggesting the use of genotypes from these clusters to serve as potential parents for hybridization. The characters iron content (70.12% contributed maximum towards divergence followed by plant height (11.72% , days to physiological maturity (7.07% and days to 50% flowering (5.49%.

  5. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2014-06-01

    Full Text Available The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

  6. Limited genetic diversity preceded extinction of the Tasmanian tiger.

    Science.gov (United States)

    Menzies, Brandon R; Renfree, Marilyn B; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B; Pask, Andrew J

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  7. Estimation of Genetic Diversity in Genetic Stocks of Hexaploid Wheat Using Seed Storage Proteins

    Directory of Open Access Journals (Sweden)

    Tanweer Kumar

    2014-07-01

    Full Text Available Bread wheat (Triticum aestivum L. is an allohexaploid specie, consist of three genomes AABBDD having 2n = 6x = 42 chromosomes. The wheat is a staple food of human beings due to its bread making quality which is composed of seed storage proteins of wheat especially High Molecular Weight Glutenins (HMW-GS. During present research, HMW-GS were analyzed in genetic stocks of common wheat consist of Nullisomic- tetrasomic, ditelosomic and deletion lines of group 3 homoeologous chromosomes by Sodium Dodecyle Sulpahate Polyacrylamide Gel Electrophoresis (SDS-PAGE. Protocol for protein extraction and separation was optimized. The protein profiles were used to estimate genetic distances and Phylogenetic relationships among the genetic stocks were evaluated. Genetic stocks showed different banding patterns and each protein band was considered as a locus/allele. Alleles were scored as present (1 and absent (0 to generate bivariate 1-0 data matrix. A total of 45 alleles were amplified. Genetic distance among the genetic stocks ranged from 0-72%. A dendrogram was constructed using computer program Pop Gene version 3.2. Genetic stocks of wheat were clustered in 3group A, B and C comprising 4, 4 and 1 genotypes, respectively. Maximum differences were observed among Dit-3BS and NT-3B3D and hence it is recommended that these 2 genetic stocks should be crossed to obtain maximum genetic diversity in the segregating population of wheat.

  8. Genetic diversity of coronaviruses in Miniopterus fuliginosus bats.

    Science.gov (United States)

    Du, Jiang; Yang, Li; Ren, Xianwen; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Zhu, Yafang; Yang, Fan; Zhang, Shuyi; Wu, Zhiqiang; Jin, Qi

    2016-06-01

    Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011-2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus (Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases. PMID:27125516

  9. Sézary Syndrome: Translating Genetic Diversity into Personalized Medicine.

    Science.gov (United States)

    Chevret, Edith; Merlio, Jean-Philippe

    2016-07-01

    Sézary syndrome is probably the most studied cutaneous T-cell lymphoma subtype. Beyond the consensus criteria for Sézary syndrome diagnosis, Sézary cells display heterogeneous phenotypes and differentiation profiles. In the face of SS diversity, the great hope is to develop targeted therapies based on next-generation sequencing to define the genetic landscape of Sézary syndrome. Prasad et al. report on the use of exome sequencing and RNA sequencing to study selected CD4(+) blood cells from 15 patients with erythroderma Sézary syndrome, 14 of whom fulfilled the conventional criteria for diagnosis. The most common genetic abnormality, TP53 gene deletion on chromosome arm 17p and/or mutation, was observed in 58% of patients. However, mutations affecting PLCG1, STAT5B, GLI3, and CARD11 each were detected in only one individual. Nevertheless, Prasad et al. report single point mutations or copy number alterations in several new genes and in new fusion genes, with predicted biological relevance. This information underscores the diversity of genetic alterations and of the mechanisms of alterations of single genes. At the individual level, Sézary cells may combine alterations of genes involved in T-cell signaling, NF-kB and JAK-signal transducer and activator of transcription pathways, apoptosis control, chromatin remodeling, and DNA damage response. The therapeutic relevance of these potential targets needs to be evaluated with tests of function. PMID:27342034

  10. Genetic diversity of Colombian sheep by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Ricardo Ocampo

    2016-03-01

    Full Text Available In Colombia the sheep production systems are managed under extensive conditions and mainly correspond to peasant production systems so their genetic management has led to increased homozygosity and hence productivity loss. The aim of this study was to determine the genetic diversity in 549 individuals corresponding to 13 sheep breeds in Colombia, using a panel of 11 microsatellite molecular markers. One hundred and fifty seven alleles were found (average of 14.27 alleles/locus, with a range of observed and expected heterozygosity from 0.44 to 0.84 and 0.67 to 0.86, respectively. Thirty-three of 143 Hardy Weinberg tests performed showed significant deviations (p < 0.05 due to a general lack of heterozygous individuals. The Fis ranged from 0.01 in Corriedale to 0.15 for the Persian Black Head breed, suggesting that there are presenting low to moderate levels of inbreeding. Overall, Colombian sheep showed high levels of genetic diversity which is very important for future selection and animal breeding programs.

  11. Genetic diversity and population differentiation in the cockle Cerastoderma edule estimated by microsatellite markers

    Science.gov (United States)

    Martínez, L.; Méndez, J.; Insua, A.; Arias-Pérez, A.; Freire, R.

    2013-03-01

    The edible cockle Cerastoderma edule is a marine bivalve commercially fished in several European countries that have lately suffered a significant decrease in production. Despite its commercial importance, genetic studies in this species are scarce. In this work, genetic diversity and population differentiation of C. edule has been assessed using 11 microsatellite markers in eight locations from the European Atlantic coast. All localities showed similar observed and expected heterozygosity values, but displayed differences in allelic richness, with lowest values obtained for localities situated farther north. Global Fst value revealed the existence of significant genetic structure; all but one locality from the Iberian Peninsula were genetically homogeneous, while more remote localities from France, The Netherlands, and Scotland were significantly different from all other localities. A combined effect of isolation by distance and the existence of barriers that limit gene flow may explain the differentiation observed.

  12. Genetic diversity and differentiation of Mongolian indigenous cattle populations

    International Nuclear Information System (INIS)

    Livestock production plays an important role in Mongolian economy. Over the last decade it has contributed to around 80-90% of the gross domestic agricultural products and to 30% of the revenues generated from exportations. Cattle is one of the five traditional and most important livestock species of Mongolia together with horse, sheep, goat and camel. Out of a total of 1.57 millions Mongolian cattle, 1.55 millions supposedly belong to three indigenous Bos taurus cattle breeds, namely Mongol, Selenge and Khalkhun Golun, all herded under extensive pastoral systems. Indigenous Mongolian cattle are generally small but look sturdy and strong. They have a well-off coat of hair, solid forward looking shoulders and short stubby snouts, and they are used for meat, milk and transport. Beef production contributes to 30% of the total meat supply in Mongolia. The Mongol breed is by the far the commonest with 1.53 million animals and it is found almost throughout the country. The Selenge breed, found in Selenge province and numbering 9000 heads, was developed in middle of the 20th century by crossing the Kazakh Whiteheaded with the local Mongol cattle. The Khalkhun Golun breed was developed from local Mongol cattle and it is distributed in Eastern and Suhbaatar provinces with about 10,000 heads. Until now, to the best of our knowledge, only a single population of Mongolian cattle has been studied with microsatellite DNA markers and no information is available on the genetic relationship between the Mongolian indigenous cattle breeds. In this study, we collected samples from two populations of the Mongol cattle (sampled at Ikhtamir soum in North Hangay province and Tsogt soum in Govi Altay province) and one population of the Khalkhun Golun cattle (sampled at Tumentsogt soum in Suhbaatar province). Samples were characterised with nine microsatellite markers MGTG4B, ILSTS005, ILSTS006, ILSTS008, ILSTS023, ILSTS028, ILSTS036, ILSTS050 and ILSTS103. To assess the genetic diversity

  13. Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis

    Institute of Scientific and Technical Information of China (English)

    QIAO Hongjin; LIU Xiangquan; ZHANG Xijia; JIANG Haibin; WANG Jiying; ZHANG Limin

    2013-01-01

    Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa,Rhizostomatidae).One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations.The polymorphic ratio,Shannon's diversity index and average heterozygosity were 70.3%,0.346 and 0.228 for the white hatchery population,74.3%,0.313,and 0.201 for the red hatchery population,79.3%,0.349,and 0.224 for the Jiangsu wild population,and 74.9%,0.328 and 0.210 for the Penglai wild population,respectively.Thus,all populations had a relatively high level of genetic diversity.A specific band was identified that could separate the white from the red hatchery population.There was 84.85% genetic differentiation within populations.Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided.For the hatchery populations,the white and red populations clustered separately; however,for the wild populations,Penglai and Jiangsu populations clustered together.The genetic diversity at the clone level was also determined.Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations,which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing.These findings will benefit the artificial seeding and conservation of the germplasm resources.

  14. Genetic diversity of the cestode Echinococcus multilocularis in red foxes at a continental scale in Europe.

    Directory of Open Access Journals (Sweden)

    Jenny Knapp

    Full Text Available BACKGROUND: Alveolar echinococcosis (AE is a severe helminth disease affecting humans, which is caused by the fox tapeworm Echinococcus multilocularis. AE represents a serious public health issue in larger regions of China, Siberia, and other regions in Asia. In Europe, a significant increase in prevalence since the 1990s is not only affecting the historically documented endemic area north of the Alps but more recently also neighbouring regions previously not known to be endemic. The genetic diversity of the parasite population and respective distribution in Europe have now been investigated in view of generating a fine-tuned map of parasite variants occurring in Europe. This approach may serve as a model to study the parasite at a worldwide level. METHODOLOGY/PRINCIPAL FINDINGS: The genetic diversity of E. multilocularis was assessed based upon the tandemly repeated microsatellite marker EmsB in association with matching fox host geographical positions. Our study demonstrated a higher genetic diversity in the endemic areas north of the Alps when compared to other areas. CONCLUSIONS/SIGNIFICANCE: The study of the spatial distribution of E. multilocularis in Europe, based on 32 genetic clusters, suggests that Europe can be considered as a unique global focus of E. multilocularis, which can be schematically drawn as a central core located in Switzerland and Jura Swabe flanked by neighbouring regions where the parasite exhibits a lower genetic diversity. The transmission of the parasite into peripheral regions is governed by a "mainland-island" system. Moreover, the presence of similar genetic profiles in both zones indicated a founder event.

  15. Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis

    Science.gov (United States)

    Qiao, Hongjin; Liu, Xiangquan; Zhang, Xijia; Jiang, Haibin; Wang, Jiying; Zhang, Limin

    2013-03-01

    Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa, Rhizostomatidae). One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations. The polymorphic ratio, Shannon's diversity index and average heterozygosity were 70.3%, 0.346 and 0.228 for the white hatchery population, 74.3%, 0.313, and 0.201 for the red hatchery population, 79.3%, 0.349, and 0.224 for the Jiangsu wild population, and 74.9%, 0.328 and 0.210 for the Penglai wild population, respectively. Thus, all populations had a relatively high level of genetic diversity. A specific band was identified that could separate the white from the red hatchery population. There was 84.85% genetic differentiation within populations. Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided. For the hatchery populations, the white and red populations clustered separately; however, for the wild populations, Penglai and Jiangsu populations clustered together. The genetic diversity at the clone level was also determined. Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations, which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing. These findings will benefit the artificial seeding and conservation of the germplasm resources.

  16. Genetic diversity and relationships of Vietnamese and European pig breeds

    International Nuclear Information System (INIS)

    Full text: East Asia contains more than 50% of the world's pig population and Europe about 30% (according to FAO inventory. Both indigenous resources were domesticated from different sub-species and are assumed to be the basis of the world-wide genetic diversity in pig. Indigenous resources of Asia, however, are less defined and only rarely compared with European breeds. Taking advantage of DNA diagnostics, animals within as well as between breeds from Vietnam and Europe were analysed for numerous well defined markers in order to gain more knowledge about pig genetic biodiversity. The main objective was to investigate indigenous Vietnamese pig breeds from different local geographic regions. A set of pig breeds was chosen for this study of genetic diversity: five indigenous breeds from Vietnam (Mong Cai, Muong Khuong, Co, Meo, Tap Na), two exotic breeds kept in Vietnam (Large White, Landrace), three European commercial breeds (Pietrain, Landrace, Large White), and European Wild Boar. Samples and data from 317 animals (17 to 32 unrelated animals per breed) were collected. A panel of 27 polymorphic microsatellite loci was chosen according to FAO recommendations for diversity analyses and genetic distance studies. The loci were distributed evenly over the porcine genome with additional loci linked to immunological relevant genes (MHC, IFNG). Moreover, a few Type I loci (RYR1, FSH) were genotyped. DNA was isolated and PCR fragment lengths analysis were carried out on an ALF DNA sequencer (Pharmacia, Freiburg, Germany). Some of the RFLPs were analysed by agarose gel electrophoresis. Selected microsatellite alleles of equal lengths were sequenced for animals of different breeds. Within-breed diversity estimated heterozygosities and tests for Hardy-Weinberg equilibrium by taking into account sample sizes, tests per locus and breed as well as breed-locus combinations. Calculations were performed using the BIOSYS-1 software package. Breed differentiation was evaluated by the

  17. Origin and Genetic Diversity of Diploid Parthenogenetic Artemia in Eurasia

    Science.gov (United States)

    Maccari, Marta; Amat, Francisco; Gómez, Africa

    2013-01-01

    There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages. PMID:24376692

  18. Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-01-01

    Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.

  19. Low Genetic Diversity in Melanaphis sacchari Aphid Populations at the Worldwide Scale

    OpenAIRE

    Nibouche, Samuel; Fartek, Benjamin; Mississipi, Stelly; Delatte, Hélène; Reynaud, Bernard; Costet, Laurent

    2014-01-01

    Numerous studies have examined the genetic diversity and genetic structure of invading species, with contrasting results concerning the relative roles of genetic diversity and phenotypic plasticity in the success of introduced populations. Increasing evidence shows that asexual lineages of aphids are able to occupy a wide geographical and ecological range of habitats despite low genetic diversity. The anholocyclic aphid Melanaphis sacchari is a pest of sugarcane and sorghum which originated i...

  20. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    Directory of Open Access Journals (Sweden)

    Carolyn A. Young

    2015-04-01

    Full Text Available The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization. The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine.

  1. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    Science.gov (United States)

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  2. Genetic Diversity of Eight Domestic Goat Populations Raised in Turkey

    Science.gov (United States)

    Bulut, Zafer; Kurar, Ercan; Ozsensoy, Yusuf; Altunok, Vahdettin; Nizamlioglu, Mehmet

    2016-01-01

    The objective of this study was to determine the intra- and intergenetic diversities of eight different goat populations in Turkey including Hair, Angora, Kilis, Yayladag, Shami, Honamli, Saanen, and Alpine. A total of 244 DNA samples were genotyped using 11 microsatellites loci. The genetic differentiation between breeds was considerable as a result of the statistically significant (P 0.05). Heterozygosity values ranged between 0.62 and 0.73. According to the structure and assignment test, Angora and Yayladag goats were assigned to the breed they belong to, while other breeds were assigned to two or more different groups. Because this study for the first time presented genetic data on the Yayladag goat, results of structure analysis and assigned test suggest that further analyses are needed using additional and different molecular markers. PMID:27092309

  3. Genetic diversity analysis of Brassica oleracea L.by SSR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    SSR analysis on genetic diversity of 30 samples was carried out. Five primers selected from 36 primers were used to amplify 30 samples in this experiment, PCR products were separated by 6% polyacrylamide gel electrophoresis, silver staining and photographed. The results of SSR were analyzed by UPGMA clustering. The results showed that a total of 21 gene alleles were detected by 5 SSR primers. The number of alleles ranged from 2 to 5 with an average of 4.2.PIC range was 0.257-0.921, with an average of 0.543. The average coefficient of genetic similarity of SSR markers among materials was 0.432. Some of cabbage cultivars in the experiment were divided into four groups except cultivars which come from Japan.

  4. Genetic Diversity of Indonesian Snake Fruits as Food Diversification Resources

    Directory of Open Access Journals (Sweden)

    Tri Budiyanti

    2015-01-01

    Full Text Available Indonesia is one of the megabiodivesity, which is rich with germplasms including tropical fruit. Snake fruit (Salacca spp. is a native fruit of Indonesia with a scaly peel and sweet-tart taste. The genetic diversity of 17 accessions of Indonesian snake fruit was resolved using the Random Amplified Polymorphic DNA Polymerase Chain Reaction with 5 primers. The study demonstrated that the samples were grouped in six different clusters with coefficient of similarity ranged from 0.12 to 0.71. The value indicated the wide range of genetic variability among the tested plants. This variability was an important resources for the snake fruit breeding program in developing the consumer‘s preferred product which by the end supports the plant diversification program.

  5. Genetic cancer risk assessment in practice

    International Nuclear Information System (INIS)

    The advent of genetic testing has made a dramatic impact on the management of individuals with inherited susceptibility to cancer and their relatives. Genetic counsel ing, with or without testing, is warranted when clues to familial cancer are recognized. Today, genetic testing for classic cancer genetic syndromes is now the standard of care, and has been complemented by genetic testing for other situations commonly encountered in clinical practice. Genetic testing for colorectal cancer, breast cancer, kidney cancer, thyroid cancer, melanoma, and pancreatic cancer raise important issues about the parameters for testing. Genetic cancer risk assessment can lead to measurable reductions in morbidity and mortality through strategies that rely on surveillance, chemo prevention, and risk-reducing surgery

  6. Whole mitochondrial genome genetic diversity in an Estonian population sample.

    Science.gov (United States)

    Stoljarova, Monika; King, Jonathan L; Takahashi, Maiko; Aaspõllu, Anu; Budowle, Bruce

    2016-01-01

    Mitochondrial DNA is a useful marker for population studies, human identification, and forensic analysis. Commonly used hypervariable regions I and II (HVI/HVII) were reported to contain as little as 25% of mitochondrial DNA variants and therefore the majority of power of discrimination of mitochondrial DNA resides in the coding region. Massively parallel sequencing technology enables entire mitochondrial genome sequencing. In this study, buccal swabs were collected from 114 unrelated Estonians and whole mitochondrial genome sequences were generated using the Illumina MiSeq system. The results are concordant with previous mtDNA control region reports of high haplogroup HV and U frequencies (47.4 and 23.7% in this study, respectively) in the Estonian population. One sample with the Northern Asian haplogroup D was detected. The genetic diversity of the Estonian population sample was estimated to be 99.67 and 95.85%, for mtGenome and HVI/HVII data, respectively. The random match probability for mtGenome data was 1.20 versus 4.99% for HVI/HVII. The nucleotide mean pairwise difference was 27 ± 11 for mtGenome and 7 ± 3 for HVI/HVII data. These data describe the genetic diversity of the Estonian population sample and emphasize the power of discrimination of the entire mitochondrial genome over the hypervariable regions. PMID:26289416

  7. On the Biological and Genetic Diversity in Neospora caninum

    Directory of Open Access Journals (Sweden)

    John T. Ellis

    2010-03-01

    Full Text Available Neospora caninum is a parasite regarded a major cause of foetal loss in cattle. A key requirement to an understanding of the epidemiology and pathogenicity of N. caninum is knowledge of the biological characteristics of the species and the genetic diversity within it. Due to the broad intermediate host range of the species, worldwide geographical distribution and its capacity for sexual reproduction, significant biological and genetic differences might be expected to exist. N. caninum has now been isolated from a variety of different host species including dogs and cattle. Although isolates of this parasite show only minor differences in ultrastructure, considerable differences have been reported in pathogenicity using mainly mouse models. At the DNA level, marked levels of polymorphism between isolates were detected in mini- and microsatellites found in the genome of N. caninum. Knowledge of what drives the biological differences that have been observed between the various isolates at the molecular level is crucial in aiding our understanding of the epidemiology of this parasite and, in turn, the development of efficacious strategies, such as live vaccines, for controlling its impact. The purpose of this review is to document and discuss for the first time, the nature of the diversity found within the species Neospora caninum.

  8. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers

    Directory of Open Access Journals (Sweden)

    Jordana Jordi

    2001-07-01

    Full Text Available Abstract Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean heterozygosities were very similar among the Spanish donkey breeds. The unbiased expected heterozygosity (HE over all the populations varied between 0.637 and 0.684 in this study. The low GST value showed that only 3.6% of the diversity was between breeds (P A distance matrix showed little differentiation between Spanish breeds, but great differentiation between them and the Moroccan ass and also with the horse, used as an outgroup. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in domestic donkey populations, which could also be useful for conservation plans.

  9. Parallel responses of species and genetic diversity to El Nino Southern Oscillation-induced environmental destruction

    NARCIS (Netherlands)

    D.F.R. Cleary; C.Y. Fauvelot; J. Genner; S.B.J. Menken; A.O. Mooers

    2006-01-01

    Species diversity within communities and genetic diversity within species are two fundamental levels of biodiversity. Positive relationships between species richness and within-species genetic diversity have recently been documented across natural and semi-natural habitat islands, leading Vellend to

  10. Virulence and genetic diversity among isolates of Mycosphaerella fijiensis in two regions of Brazil.

    Science.gov (United States)

    Silva, G F; Santos, V S; Sousa, N R; Hanada, R E; Gasparotto, L

    2016-01-01

    Black sigatoka, caused by the fungus Mycosphaerella fijiensis (anamorphic stage: Paracercospora fijiensis), was first detected in Brazil in early 1998 in the Benjamin Constant and Tabatinga municipalities in the State of Amazonas, near to where the borders of Brazil, Colombia, and Peru converge. Understanding how cultivars react to the pathogen, and characterizing the genetic variability of isolates from two distant and distinct banana-producing regions, are important for determining the virulence of M. fijiensis. In the present study, the genetic diversity of 22 M. fijiensis isolates was assessed using simple sequence repeats (SSR) markers, and their virulence was determined following inoculation on three different banana tree cultivars. All 22 isolates caused symptoms of the disease in the Maçã and Prata Comum cultivars 45 days after inoculation, and at least two virulence groups were identified for the Maçã and Prata Comum cultivars. For the D'Angola cultivars, two virulence groups were observed only after 60 days post-inoculation, and three of the isolates were not virulent. Using SSR markers, the isolates from two different regions of Brazil were placed into two genetic groups, both genetically distant from the Mf 138 isolate collected in Leticia, Colombia. There was no evidence of correlation between the virulence groups and the genetic diversity groups. These results demonstrate variability in virulence between isolates as measured by the severity of black sigatoka in the analyzed cultivars. PMID:27173264

  11. Genetic diversity of neotropical Myotis (chiroptera: vespertilionidae with an emphasis on South American species.

    Directory of Open Access Journals (Sweden)

    Roxanne J Larsen

    Full Text Available BACKGROUND: Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America. METHODOLOGY AND PRINCIPAL FINDINGS: Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized. CONCLUSIONS: Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus.

  12. Genetic diversity in tef [Eragrostis tef (Zucc.) Trotter].

    Science.gov (United States)

    Assefa, Kebebew; Cannarozzi, Gina; Girma, Dejene; Kamies, Rizqah; Chanyalew, Solomon; Plaza-Wüthrich, Sonia; Blösch, Regula; Rindisbacher, Abiel; Rafudeen, Suhail; Tadele, Zerihun

    2015-01-01

    Tef [Eragrostis tef (Zucc.) Trotter] is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n = 4x = 40), belongs to the family Poaceae and, together with finger millet (Eleusine coracana Gaerth.), to the subfamily Chloridoideae. It was originated and domesticated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding. PMID:25859251

  13. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Science.gov (United States)

    Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel

    2016-01-01

    The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR. PMID:26915094

  14. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido-Sanz

    Full Text Available The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as

  15. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.

    Directory of Open Access Journals (Sweden)

    Jane E Stewart

    Full Text Available Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum, highbush blueberry (V. corymbosum, and southern highbush blueberry (V. corymbosum hybrids from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing

  16. Genetic Diversity and Identification of Chinese-Grown Pecan Using ISSR and SSR Markers

    Directory of Open Access Journals (Sweden)

    Zhong-Ren Guo

    2011-12-01

    Full Text Available Pecan is an important horticultural nut crop originally from North America and now widely cultivated in China for its high ecological, ornamental and economic value. Currently, there are over one hundred cultivars grown in China, including introduced American cultivars and Chinese seedling breeding cultivars. Molecular markers were used to assess the genetic diversity of these cultivars and to identify the pedigrees of fine pecan plants with good characteristics and no cultivar-related data. A total of 77 samples grown in China were studied, including 14 introduced cultivars, 12 domestic seedling breeding cultivars, and 49 fine pecan plants with no cultivar data, together with Carya cathayensis and Juglans nigra. A total of 77 ISSR and 19 SSR primers were prescreened; 10 ISSR and eight SSR primers were selected, yielding a total of 94 amplified bands (100% polymorphic in the range of 140–1,950 bp for the ISSR and 70 amplified bands (100% polymorphic in the range of 50–350 bp for SSR markers. Genetic diversity analyses indicated Chinese-grown pecan cultivars and fine plants had significant diversity at the DNA level. The dengrograms constructed with ISSR, SSR or combined data were very similar, but showed very weak grouping association with morphological characters. However, the progeny were always grouped with the parents. The great diversity found among the Chinese cultivars and the interesting germplasm of the fine pecan plants analyzed in this study are very useful for increasing the diversity of the pecan gene pool. All 77 accessions in this study could be separated based on the ISSR and SSR fingerprints produced by one or more primers. The results of our study also showed that ISSR and SSR techniques were both suitable for genetic diversity analyses and the identification of pecan resources.

  17. Genetic diversity revealed by AFLP markers in Albanian goat breeds

    Directory of Open Access Journals (Sweden)

    Hoda Anila

    2012-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP technique with three EcoRI/TaqI primer combinations was used in 185 unrelated individuals, representative of 6 local goat breeds of Albania, and 107 markers were generated. The mean Nei’s expected heterozygosity value for the whole population was 0.199 and the mean Shannon index was 0.249, indicating a high level of within-breed diversity. Wright’s FST index, Nei’s unbiased genetic distance and Reynolds’ genetic distance were calculated. Pairwise Fst values among the populations ranged from 0.019 to 0.047. A highly significant average FST of 0.031 was estimated, showing a low level of breed subdivision. Most of the variation is accounted for by differences among individuals. Cluster analysis based on Reynolds’ genetic distance between breeds and PCA were performed. An individual UPGMA tree based on Jaccard’s similarity index showed clusters with individuals from all goat breeds. Analysis of population structure points to a high level of admixture among breeds.

  18. The Nuclear DNA Content and Genetic Diversity of Lampetra morii

    Science.gov (United States)

    Yan, Xinyu; Meng, Wenbin; Wu, Fenfang; Xu, Anlong; Chen, Shangwu; Huang, Shengfeng

    2016-01-01

    We investigated the nuclear DNA content and genetic diversity of a river lamprey, the Korean lamprey Lampetra morii, which is distributed in the northeast of China. L. morii spends its whole life cycle in fresh water, and its adult size is relatively small (~160 mm long) compared with that of other lampreys. The haploid nuclear DNA content of L. morii is 1.618 pg (approximately 1.582 Gb) in germline cells, and there is ~15% germline DNA loss in somatic cells. These values are significantly smaller than those of Petromyzon marinus, a lamprey with a published draft genome. The chromosomes of L. morii are small and acrocentric, with a diploid modal number of 2n = 132, lower than some other lampreys. Sequence and AFLP analyses suggest that the allelic polymorphism rate (~0.14% based on examined nuclear and mitochondrial DNA sequences) of L. morii is much lower than that (~2%) of P. marinus. Phylogenetic analysis based on a mitochondrial DNA fragment confirms that L. morii belongs to the genus Lampetra, which, together with the genus Lethenteron, forms a sister group to P. marinus. These genetic background data are valuable for subsequent genetic and genomic research on L. morii. PMID:27388621

  19. Increased genetic diversity as a defence against parasites is undermined by social parasites: Microdon mutabilis hoverflies infesting Formica lemani ant colonies

    OpenAIRE

    Gardner, M. G.; Schönrogge, K.; Elmes, G. W.; Thomas, J A

    2006-01-01

    Genetic diversity can benefit social insects by providing variability in immune defences against parasites and pathogens. However, social parasites of ants infest colonies and not individuals, and for them a different relationship between genetic diversity and resistance may exist. Here, we investigate the genetic variation, assessed using up to 12 microsatellite loci, of workers in 91 Formica lemani colonies in relation to their infestation by the specialist social parasite Microdon mutabili...

  20. Genetic Diversity Analysis of the Natural Populations of Mediterra­nean Mussels [Mytilus galloprovincialis (Lmk.] in Agadir Bay: Assess­ment of the Molecular Polymorphism and Environmental Impact

    Directory of Open Access Journals (Sweden)

    Amal Korrida

    2010-07-01

    Full Text Available Mediterranean mussel (Mytilus galloprovincialis Lmk has a great environmental and economic importance for Morocco. This work studies the genetic structure and impact of chemical pollution on three different marine populations of Mytilus galloprovincialis that live within Agadir bay. Three collections were made at two clean sites (Cape Ghir and Cape Aglou and at an impacted site exposed to intense boating and industrial activities (Anza. A 300-bp portion of the mitochondrial DNA coding-region Cytochrome C Oxidase subunit 1 (COI was studied by polymerase chain reaction (PCR and DNA sequencing reactions to assess and evaluate amounts of polymorphism in each site. Genetic analysis using COI for 64 individuals showed no significant differentiation between the three subpopulations. AMOVA demonstrated that only 2.83% of variation exists between populations. Besides the genetic evidence presented herein, mussel’s adaptation mechanisms and strategies to marine pollution are also discussed.

  1. Analysis of Genetic Diversity and Development of SCAR Markers in a Mycogone perniciosa Population.

    Science.gov (United States)

    Wang, Wei; Li, Xiao; Chen, Bingzhi; Wang, Shuang; Li, Chenghuan; Wen, Zhiqiang

    2016-07-01

    The fungus Mycogone perniciosa is a major pathogen of the common button mushroom Agaricus bisporus. Analysis of genetic diversity in M. Perniciosa may assist in developing methods for prophylaxis and treatment of M. Perniciosa infections. For this, it is necessary to classify M. Perniciosa into relevant class groups quickly and efficiently. Random amplified polymorphic DNA (RAPD), inter-simple sequence repeats (ISSR), and sequence-related amplified polymorphism (SRAP) markers were used to obtain genetic fingerprints and assess the genetic variation among 49 strains of M. perniciosa collected from different areas of Fujian Province in China. Analysis of DNA sequence polymorphism revealed two major distinct groups (Group I and Group II). Specific DNA fragments that were identified through RAPD, ISSR, and SRAP markers were sequenced and used for the designing of stable sequence-characterized amplified region (SCAR) markers. The resulting SCAR markers were then validated against the classified groups of M. perniciosa. PMID:26960290

  2. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Francisco

    2013-01-01

    Full Text Available Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  3. Parallel declines in species and genetic diversity driven by anthropogenic disturbance: a multispecies approach in a French Atlantic dune system.

    Science.gov (United States)

    Frey, David; Arrigo, Nils; Granereau, Gilles; Sarr, Anouk; Felber, François; Kozlowski, Gregor

    2016-03-01

    Numerous studies assess the correlation between genetic and species diversities, but the processes underlying the observed patterns have only received limited attention. For instance, varying levels of habitat disturbance across a region may locally reduce both diversities due to extinctions, and increased genetic drift during population bottlenecks and founder events. We investigated the regional distribution of genetic and species diversities of a coastal sand dune plant community along 240 kilometers of coastline with the aim to test for a correlation between the two diversity levels. We further quantify and tease apart the respective contributions of natural and anthropogenic disturbance factors to the observed patterns. We detected significant positive correlation between both variables. We further revealed a negative impact of urbanization: Sites with a high amount of recreational infrastructure within 10 km coastline had significantly lowered genetic and species diversities. On the other hand, a measure of natural habitat disturbance had no effect. This study shows that parallel variation of genetic and species diversities across a region can be traced back to human landscape alteration, provides arguments for a more resolute dune protection, and may help to design priority conservation areas. PMID:26989439

  4. Genetic Diversity and Population Structure of Broomcorn Millet (Panicum miliaceum L.) Cultivars and Landraces in China Based on Microsatellite Markers.

    Science.gov (United States)

    Liu, Minxuan; Xu, Yue; He, Jihong; Zhang, Shuang; Wang, Yinyue; Lu, Ping

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet. PMID:26985894

  5. The DNA of coral reef biodiversity : predicting and protecting genetic diversity of reef assemblages

    OpenAIRE

    Selkoe, Kim; Gaggiotti, Oscar Eduardo; Treml, Eric; Wren, Johanna; Donovan, Marie; Consortium, Hawaii Reef Connectivity; Toonen, Robert

    2016-01-01

    O.E.G. was supported by the Marine Alliance for Science and Technology for Scotland (MASTS). Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here we use seascape genetic analysis of a diversity metric, allelic richness, for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbor the greatest genetic diversity on average. We found ...

  6. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth

    Science.gov (United States)

    Séraphin, Marie Nancy; Lauzardo, Michael; Morris, J. Glenn; Blackburn, Jason K.

    2016-01-01

    Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped using spoligotyping and 24-locus MIRU-VNTR. We mapped the genetic diversity to the centroid of patient residential zip codes using a geographic information system (GIS). We assessed transmission dynamics and the influence of immigration on genotype clustering using space-time permutation models adjusted for foreign-born population density and county-level HIV risk and multinomial models stratified by country of birth and timing of immigration in SaTScan. Principal Findings Among the 2,510 strains, 1,245 were reported among foreign-born persons; including 408 recent immigrants (immigrants are likely to impact TB control. Due to the monomorphic nature of available markers, whole genome sequencing is needed to conclusively delineate recent transmission events between U.S. and foreign-born persons. PMID:27093156

  7. Genetic diversity of flavonoid content in leaf of hawthorn resources

    International Nuclear Information System (INIS)

    Hawthorn (Cratageus spp.) are important medicinal plants. Flavonoids are the main active ingredient in hawthorn. With the help of hawthorn leaf flavonoids efficient detection system, vitexin, rhamnosylvitexin, hyperin, rutin and quercetin of 122 hawthorn resources was precisely measured.The flavonoid contents of 10 hawthorn species were explicited. The comparation of flavonoids revealed the abundant genetic diversity of hawthorn flavones. Large variable coefficient has been observed among 5 flavonoid monomer traits. The coefficients of variation were 44.17%, 132.2%, 157.08%, 113.91% and 31.05 for Vitexin, Rhamnosylvitexin, Hyperoside, Rutin and Quercetin respectively. The sum of these 5 flavonoid monomer contents represented the total flavonoids in hawthorn. The total coefficients of variation was 44.01%. Some high-content-flavone and valuable leaf resources were found. This research could provide accurate date for further production, breeding and the effective use of medicinal resources. (author)

  8. Genetic diversity in cyanobacterial symbionts of thalloid bryophytes.

    Science.gov (United States)

    Rikkinen, Jouko; Virtanen, Viivi

    2008-01-01

    Two species of thalloid liverworts, Blasia pusilla and Cavicularia densa, form stable symbioses with nitrogen-fixing cyanobacteria. Both bryophytes promote the persistence of their cyanobacterial associations by producing specialized gemmae, which facilitate the simultaneous dispersal of the host and its nitrogen-fixing symbionts. Here the genetic diversity of cyanobacterial symbionts of Blasia and Cavicularia is examined. The results indicate that the primary symbionts of both bryophytes are closely related and belong to a specific group of symbiotic Nostoc strains. Related strains have previously been reported from hornworts and cycads, and from many terricolous cyanolichens. The evolutionary origins of all these symbioses may trace back to pre-Permian times. While the laboratory strain Nostoc punctiforme PCC 73102 has been widely used in experimental studies of bryophyte-Nostoc associations, sequence-identical cyanobionts have not yet been identified from thalloid liverworts in the field. PMID:18325923

  9. Italian Common Bean Landraces: History, Genetic Diversity and Seed Quality

    Directory of Open Access Journals (Sweden)

    Angela R. Piergiovanni

    2010-05-01

    Full Text Available The long tradition of common bean cultivation in Italy has allowed the evolution of many landraces adapted to restricted areas. Nowadays, in response to market demands, old landraces are gradually being replaced by improved cultivars. However, landraces still survive in marginal areas of several Italian regions. Most of them appear severely endangered with risk of extinction due to the advanced age of the farmers and the socio-cultural context where they are cultivated. The present contribution is an overview of the state of the art about the knowledge of Italian common bean germplasm, describing the most important and recent progresses made in its characterization, including genetic diversity and nutritional aspects.

  10. Genetic diversity of rhizobia nodulating native Vicia spp. in Sweden.

    Science.gov (United States)

    Ampomah, Osei Yaw; Huss-Danell, Kerstin

    2016-05-01

    Despite the recognition that Rhizobium leguminosarum sv. viciae is the most common symbiont of Vicia species worldwide, there is no available information on rhizobia nodulating native Vicia species in Sweden. We have therefore studied the genetic diversity and phylogeny of root nodule bacteria isolated from V. cracca, V. hirsuta, V. sepium, V. tetrasperma and V. sylvatica growing in different locations in Sweden as well as an isolate each from V. cracca in Tromsø, Norway, and V. multicaulis in Siberia, Russia. Out of 25 isolates sampled from the six Vicia species in 12 different locations, there were 14 different genotypes based on the atpD, recA and nodA gene phylogenies. All isolates were classified into Rhizobium leguminosarum sv. viciae group based on the concatenated atpD and recA phylogeny and the nodA phylogeny. PMID:26924220

  11. [Genetic Diversity of Vitis vinifera L. in Azerbaijan].

    Science.gov (United States)

    Salayeva, S J; Ojaghi, J M; Pashayeva, A N; Izzatullayeva, V I; Akhundova, E M; Akperov, Z I

    2016-04-01

    To examine the genetic diversity of Vitis vinifera L., growing in the Republic of Azerbaijan in the region near the Caspian Sea, nuclear genomes of 31 cultivated and 34 wild grapevine accessions were studied at population and individual levels using five ISSR primers. In total, 51 fragments were amplified, of which 45 were found to be polymorphic. A high level of polymorphism was revealed (the mean PPF and PIC values constituted 87.69% and 0.94, respectively). High values of the EMR, MI, and RP indices showed the effectiveness of the application of ISSR primers and the possibility of their use in further investigations in this direction. Cluster analysis based on Nei's genetic distance values showed that all genotypes could be grouped into seven main clusters. Furthermore, no differences between the wild and cultivated grape wine accessions were revealed. For instance, there was no distinct distribution of the accessions according to their geographical localization. On the basis of the PIC values, the group of cultivars from Absheron Peninsula--was distinguished by the highest polymorphism level (PIC = 0.36). Natural populations from the Guba and Shabran regions were characterized by a relatively low polymorphism level (PIC = 0.31 and PIC = 0.28, respectively); and a wild population from Nabran demonstrated the lowest polymorphism level (PIC = 0.25). The data obtained confirmed paleontological and historical data of different periods, provide the supposition that Azerbaijan is the center of diversity of V. vinifera L. In addition, our data indicate that Azerbaijan grape landraces originated from local wild forms. PMID:27529978

  12. Genetic diversity of marine animals in China: a summary and prospectiveness

    OpenAIRE

    Zhaoxia Cui; Huan Zhang; Linsheng Song; Feng You

    2011-01-01

    Genetic diversity can reflect the origin and evolution of species. It can also inform the practices of genetic conservation, breeding and genetic improvement, even stabilization of marine ecosystem. In the past two decades, accumulating studies have focused on the genetic diversity of major marine fish and shellfish in China. Here we summarize the achievements of this area and its application to taxonomy, germplasm identification, phylogenetic evolutionary biology, analysis of population gene...

  13. Genetic diversity of teak (Tectona grandis L.F. from different provenances using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Berenice Kussumoto Alcântara

    2013-08-01

    Full Text Available Teak (Tectona grandis is one of the main timber species in the world with high economic value, famous for its beauty, strength and durability. The objective of this work was to characterize the genetic diversity of teak genotypes used in Brazilian plantations. Nine microsatellite primers were used to assess 60 teak genotypes, including 33 genotypes from seeds of plantations and 14 clones from Cáceres municipality, Mato Grosso State, Brazil, and 13 clones from Honduras, Malaysia, India, Indonesia, Ivory Coast and Solomon Islands. Two groups of genotypes were detected using the Bayesian Structure analysis: 80% were placed in group 1, represented by genotypes from Cáceres and one from Malaysia, and 20% allocated in group 2, composed of clones from India, Solomon Islands, Malaysia and Honduras and the clones from the Ivory Coast. Most of the genetic variability (73% was concentrated within groups according to AMOVA analysis. Genetic parameters were estimated for the two groups obtained in the analysis of Structure. Moderate genetic diversity was found, with 4.1 alleles per locus, on average, and an average heterozygosity of 0.329, which was lower than the expected heterozygosity (He = 0.492. Group 1 showed the lowest values for these parameters. Suggestions were made concerning the identification of contrasting genotypes to be used as parents in breeding programs.

  14. Genetic diversity of Chinese summer soybean germplasm revealed by SSR markers

    Institute of Scientific and Technical Information of China (English)

    XIE Hua; GUAN Rongxia; CHANG Ruzhen; QIU Lijuan

    2005-01-01

    There are abundant soybean germplasm in China. In order to assess genetic diversity of Chinese summer soybean germplasm, 158 Chinese summer soybean accessions from the primary core collection of G. max were used to analyze genetic variation at 67 SSR loci. A total of 460 alleles were detected, in which 414 and 419 alleles occurred in the 80 Huanghuai and the 78 Southern summer accessions, respectively. The average number of alleles per locus was 6.9 for all the summer accessions, and 6.2 for both Huanghuai and Southern summer accessions. Marker diversity (D) per locus ranged from 0.414 to 0.905 with an average of 0.735 for all the summer accessions, from 0.387 to 0.886 with an average of 0.708 for the Huanghuai summer accessions, and from 0.189 to 0.884 with an average of 0.687 for the Southern summer accessions. The Huanghuai and Southern summer germplasm were different in the specific alleles, allelic-frequencies and pairwise genetic similarities. UPGMA cluster analysis based on the similarity data clearly separated the Huanghuai from Southern summer soybean accessions, suggesting that they were different gene pools. The results indicate that Chinese Huanghuai and Southern summer soybean germplasm can be used to enlarge genetic basis for developing elite summer soybean cultivars by exchanging their germplasm.

  15. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Science.gov (United States)

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective. PMID:26881847

  16. Genetic diversity of natural and planted populations of Tsoongiodendron odorum from the Nanling Mountains

    Directory of Open Access Journals (Sweden)

    Xueqin Wu

    2013-01-01

    Full Text Available Ex situ conservation, complementary to in situ conservation, plays an important role in preservation and recovery of endangered species. Tsoongiodendron odorum is a relic species that was listed in the Second Grade of the List of Wild Plants Under State Protection (First Batch in China. For protection of its genetic diversity, ex situ conservation populations have been established and managed outside of natural habitats in several nature reserves since 1980. However, only dozens of individuals are currently saved from each planted population. To assess the actual protective effectiveness of these planted populations, we detected and compared the genetic diversity of three planted populations from Nanling Mountains with four natural populations using ISSR markers. Overall, we detected 362 total ISSR discernible bands with 16 ISSR primers, of which 301 were polymorphic. The percentage of polymorphic bands (P was 83.2%. At the populationlevel, the percent of polymorphic bands ranged from 37.9% to 62.2%, with an average value of 53.1%. This result showed that T. odorum had high genetic diversity both at population and species levels. However, the percentage of polymorphic bands and Shannon information index (I of ex situ conservation populations (66.6% and 0.2990 were much lower than those of natural populations (80.9% and 0.3629. We deduced that there was a narrow genetic base for plantations of T. odorum. Population structure analysis revealed that three planted populations could be collected from the same wild population (i.e., YK population. The genetic variation of four natural populations (GST=0.2495 showed that there was significant isolation among populations, which would limit gene flow and population differentiation among populations. We present suggestions on regulating seed collection from different natural habitats to establish planted populations and strengthening research on the reproductive biology of T. odorum.

  17. Genetic diversity among sea otter isolates of Toxoplasma gondii

    Science.gov (United States)

    Sundar, N.; Cole, R.A.; Thomas, N.J.; Majumdar, D.; Dubey, J.P.; Su, C.

    2008-01-01

    Sea otters (Enhydra lutris) have been reported to become infected with Toxoplasma gondii and at times succumb to clinical disease. Here, we determined genotypes of 39 T. gondii isolates from 37 sea otters in two geographically distant locations (25 from California and 12 from Washington). Six genotypes were identified using 10 PCR-RFLP genetic markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico, and by DNA sequencing of loci SAG1 and GRA6 in 13 isolates. Of these 39 isolates, 13 (33%) were clonal Type II which can be further divided into two groups at the locus Apico. Two of the 39 isolates had Type II alleles at all loci except a Type I allele at locus L358. One isolate had Type II alleles at all loci except the Type I alleles at loci L358 and Apico. One isolate had Type III alleles at all loci except Type II alleles at SAG2 and Apico. Two sea otter isolates had a mixed infection. Twenty-one (54%) isolates had an unique allele at SAG1 locus. Further genotyping or DNA sequence analysis for 18 of these 21 isolates at loci SAG1 and GRA6 revealed that there were two different genotypes, including the previously identified Type X (four isolates) and a new genotype named Type A (14 isolates). The results from this study suggest that the sea otter isolates are genetically diverse.

  18. Population structure and genetic diversity of moose in Alaska.

    Science.gov (United States)

    Schmidt, Jennifer I; Hundertmark, Kris J; Bowyer, R Terry; McCracken, Kevin G

    2009-01-01

    Moose (Alces alces) are highly mobile mammals that occur across arboreal regions of North America, Europe, and Asia. Alaskan moose (Alces alces gigas) range across much of Alaska and are primary herbivore consumers, exerting a prominent influence on ecosystem structure and functioning. Increased knowledge gained from population genetics provides insights into their population dynamics, history, and dispersal of these unique large herbivores and can aid in conservation efforts. We examined the genetic diversity and population structure of moose (n = 141) with 8 polymorphic microsatellites from 6 regions spanning much of Alaska. Expected heterozygosity was moderate (H(E) = 0.483-0.612), and private alleles ranged from 0 to 6. Both F(ST) and R(ST) indicated significant population structure (P moose from the Yakutat and Tetlin regions versus all other moose, with slight substructure observed among the second population. Estimates of dispersal differed between analytical approaches, indicating a high level of historical or current gene flow. Mantel tests indicated that isolation-by-distance partially explained observed structure among moose populations (R(2) = 0.45, P moose in Alaska with population expansion from interior Alaska westward toward the coast. PMID:18836148

  19. SSRs transferability and genetic diversity of three allogamous ryegrass species.

    Science.gov (United States)

    Guo, Zhi-Hui; Fu, Kai-Xin; Zhang, Xin-Quan; Zhang, Cheng-Lin; Sun, Ming; Huang, Ting; Peng, Yan; Huang, Lin-Kai; Yan, Yan-Hong; Ma, Xiao

    2016-02-01

    Simple sequence repeat (SSR) markers are widely applied in studies of plant molecular genetics due to their abundance in the genome, codominant nature, and high repeatability. However, microsatellites are not always available for the species to be studied and their isolation could be time- and cost-consuming. To investigate transferability in cross-species applications, 102 primer pairs previously developed in ryegrass and tall fescue were amplified across three allogamous ryegrass species including Lolium rigidum, Lolium perenne and Lolium multiflorum. Their highly transferability (100%) were evidenced. While, most of these markers were multiple loci, only 17 loci were selected for a robust, single-locus pattern, which may be due to the recentness of the genome duplication or duplicated genomic regions, as well as speciation. A total of 87 alleles were generated with an average of 5.1 per locus. The mean polymorphism information content (PIC) and observed heterozygosity (Ho) values at genus was 0.5532 and 0.5423, respectively. Besides, analysis of molecular variance (AMOVA) revealed that all three levels contributed significantly to the overall genetic variation, with the species level contributing the least (P<0.001). Also, the unweighted pair group method with arithmetic averaging dendrogram (UPGMA), Bayesian model-based STRUCTURE analysis and the principal coordinate analysis (PCoA) showed that accessions within species always tended to the same cluster firstly and then to related species. The results showed that these markers developed in related species are transferable efficiently across species, and likely to be useful in analyzing genetic diversity. PMID:26874459

  20. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.

    Science.gov (United States)

    Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

    2015-08-01

    The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations. PMID:24409897

  1. Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions

    Institute of Scientific and Technical Information of China (English)

    Yan-Wen Cai; Xin-Yue Cheng; Ru-Mei Xu; Dong-Hong Duan; Lawrence R. Kirkendall

    2008-01-01

    Sequences of 479 bp region of the mitochondrial COI gene were applied to detect population genetic diversity and structure of Dendroctonus valens populations. By comparing the genetic diversity between native and invasive populations, it was shown that the genetic diversity of Chinese populations was obviously lower than that of native populations with both indices of haplotype diversity and Nei's genetic diversity, suggesting genetic bottleneck occurred in the invasive process of D. valens, and was then followed by a relatively quick population buildup. According to phylogenetic analyses of haplotypes, we suggested that the origin of the Chinese population was from California, USA. Phylogenetic and network analysis of native populations of D. valens revealed strong genetic structure at two distinct spatial and temporal scales in North America. The main cause resulting in current biogeographic pattern was supposedly due to recycled glacial events. Meanwhile, a cryptic species might exist in the Mexican and Guatemalan populations.

  2. Can we assess genetic risks

    International Nuclear Information System (INIS)

    In recent years, somatic considerations have been weighed more heavily than genetic risks in determining radiation standards, although the genetic risks cannot be ignored. Familiar generalizations about mutations may be that almost all mutants, chromosomal or point mutations, are harmful or at best neutral. At any one time, population is to some extent impaired by recurrent mutation. The extent of impairment depends on many things, but particularly it depends on the mutation rate. If population is at equilibrium, there is a standing number of mutant genes, determined by the balance between recurrent mutation and the elimination of mutants by selection and other factors. Doubling of mutation and halving of individual mutant damage have essentially the same effect. If a mutant reduces the Darwinian fitness of its bearer by 1%, it will affect on the average 100 individuals before it is eliminated. The data obtained from the experiments with Drosophila suggest that the ratio of mutants, whose homozygous effect is lethal to those whose effect is mild, is higher in radiation-induced mutants than in spontaneous ones. Chemically-induced mutants may be more like spontaneous mutants. All measures of congenital defects, morphology, survival, and sex-ratio have shown no difference between the children of exposed parents and those of control groups, as observed in the Hiroshima-Nagasaki studies. The heterozygous effects of recessive mutants, minor deleterious mutants and the expression of recessive condition spread out over a long time, and are diluted so that the impact on a single generation is very slight. (Yamashita, S.)

  3. Impact of Mutation Type and Amplicon Characteristics on Genetic Diversity Measures Generated Using a High-Resolution Melting Diversity Assay

    OpenAIRE

    Cousins, Matthew M.; Donnell, Deborah; Eshleman, Susan H.

    2013-01-01

    We adapted high-resolution melting (HRM) technology to measure genetic diversity without sequencing. Diversity is measured as a single numeric HRM score. Herein, we determined the impact of mutation types and amplicon characteristics on HRM diversity scores. Plasmids were generated with single-base changes, insertions, and deletions. Different primer sets were used to vary the position of mutations within amplicons. Plasmids and plasmid mixtures were analyzed to determine the impact of mutati...

  4. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Ming-Cheng Luo

    2013-03-01

    Full Text Available Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  5. Genetic diversity revealed by genomic-SSR and EST-SSR markers among common wheat, spelt and compactum

    Institute of Scientific and Technical Information of China (English)

    YANG Xinquan; LIU Peng; HAN Zongfu; NI Zhongfu; SUN Qixin

    2005-01-01

    In this study, two SSR molecular markers, named genomic-SSR and EST-SSR, are used to measure the genetic diversity among three hexaploid wheat populations, which include 28 common wheat ( Triticum aestivum L. ), 13 spelt ( Triticum spelta L. ),and 11 compactum ( Triticum compactum Host. ). The results show that common wheat has the highest genetic polymorphism, followed by spelt and then compactum. The mean genetic distance between the populations is higher than that within a population, and similar tendency is detected for individual genomes A, B and D. Therefore, spelt and compactum can be used as potential germplasms for wheat breeding, especially for enriching the genetic variation in genome D. As compared with spelt, the genetic diversity between common wheat and compactum is much smaller, indicating a closer consanguine relationship between these two species. Although the polymorphism revealed by EST-SSR is lower than that by genomic-SSR, it can effectively differentiate diverse genotypes as well. Together with our present results, it is concluded that EST-SSR marker is an ideal marker for assessing the genetic diversity in wheat. Meanwhile, the origin and evolution of hexaploid wheat is also analyzed and discussed.

  6. Genetic diversity of soybean accessions using seed storage proteins

    International Nuclear Information System (INIS)

    Soybean, Glycine max (L) Merrill, is the most important grain legume in the world that has a fairly wide range of adaptations to different climatic conditions. The present study was conducted to assess genetic variations on 139 Soybean genotypes collected from different countries including Australia, Brazil, India, Japan, Pakistan, Tiwan, USA, Yugoslavia and China. A total of 17 bands have been identified for 139 Soybean genotypes which include 9 monomorphic bands and 8 polymorphic bands. Total number of bands was found highest for India (215) while these were lowest for Yugoslavia (33). Cluster analysis, clustered these accessions into 10 clusters without having any indication of grouping on the basis of their relationships to their regions. Pairwise comparisons based on Nei and Li similarities for inter-population genetic distances of soybean accessions ranged from 0.14 to 1.12. Genetic distances for soybean germplasm from different countries were found highest for Brazil (0.97+-0.03) while it was lowest for Taiwan (0.91+-0.02). Clustering for Soybean groups was clustered into three clusters including Korea, Taiwan in the first group while Yugoslavia and Japan were clustered in the second group. The third cluster was comprised of Soybean genotypes from China, Pakistan, USA, India Brazil and Australia. Total seed storage protein variation was partitioned by AMOVA on the basis of their origins into within-population and among-population components which revealed 10.00% of the total variation resided among countries and 90.0% within countries. Genetic patterns obtained from this study can help soybean breeders to make better plan for selecting germplasm from wide sources for a specific purposes. (author)

  7. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    Science.gov (United States)

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. PMID:26663614

  8. Use of SNP markers to conserve genome-wide genetic diversity in livestock

    NARCIS (Netherlands)

    Engelsma, K.A.

    2012-01-01

    Conservation of genetic diversity in livestock breeds is important since it is, both within and between breeds, under threat. The availability of large numbers of SNP markers has resulted in new opportunities to estimate genetic diversity in more detail, and to improve prioritization of animals for

  9. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    Science.gov (United States)

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. PMID:27021167

  10. Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K K; Smith, T J; Helma, C H; Ticknor, L O; Foley, B T; Svennson, R T; Brown, J L; Johnson, E A; Smith, L A; Okinaka, R T; Jackson, P J; Marks, J D

    2006-07-06

    Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earlier reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.

  11. Pulsed Field Gel Electrophoresis and Genetic Diversity in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mohammad Poyeede

    2013-07-01

    Full Text Available AbstractBackground and objective: Tuberculosis is a considerable public health problem due to its high risk of person-to-person transmission, morbidity, and mortality especially in developing countries. According to the World Health Organization there is the emergence of multi-drug resistant M. tuberculosis and the association of TB with HIV has led to TB being declared. Molecular genotyping methods are important in detecting the dominance of transmission or reinfection in a population. During one year study genotyping of 100 of M. tuberculosis (M.t. isolates from patients referred to Pasteur Institute of Iran were accomplished with PFGE method. Material and methods: After identification of M.t. isolates and performing of antibiotic susceptibility test using standard methods, Melted Incert agarose and lysozyme were mixed with bacterial suspension to prepare PFGE plaques. After lyses and washing process the plaques digested with XbaI restriction enzyme. Finally the digested DNA fragments on 1% agarose with PFGE method were stained with ethidium bromide and analyzed with GelcomparII software.Results: Dendrogram of genetic diversity among 100 M.t. isolates were obtained in comparison of molecular weight marker and revealed two common types. Pulsotype A with 71 isolates and just one MDR and pulsotype B included 29 isolates and 3 MDR cases. No correlation between antibiotypes and pulsotypes were observed.Conclusion: It is very important to know about the existence of any clonal expansion of special M.t. genotypes with resistant strains. Our research shows 3 MDR isolates into the low incidence pulsotype B which could be an alarm for more accurate MDR-TB surveillance program. Probably such observed limited polymorphism may be due to conservation of restriction sites of XbaI enzyme. In order to investigate the genetic relatedness of isolates using other restriction enzymes and different molecular typing methods simultaneously were recommended.

  12. Genetic diversity of Phytophthora infestans in the Northern Andean region

    Directory of Open Access Journals (Sweden)

    Grünwald Niklaus J

    2011-02-01

    Full Text Available Abstract Background Phytophthora infestans (Mont. de Bary, the causal agent of potato late blight, is responsible for tremendous crop losses worldwide. Countries in the northern part of the Andes dedicate a large proportion of the highlands to the production of potato, and more recently, solanaceous fruits such as cape gooseberry (Physalis peruviana and tree tomato (Solanum betaceum, all of which are hosts of this oomycete. In the Andean region, P. infestans populations have been well characterized in Ecuador and Peru, but are poorly understood in Colombia and Venezuela. To understand the P. infestans population structure in the Northern part of the Andes, four nuclear regions (ITS, Ras, β-tubulin and Avr3a and one mitochondrial (Cox1 region were analyzed in isolates of P. infestans sampled from different hosts in Colombia and Venezuela. Results Low genetic diversity was found within this sample of P. infestans isolates from crops within several regions of Colombia and Venezuela, revealing the presence of clonal populations of the pathogen in this region. We detected low frequency heterozygotes, and their distribution patterns might be a consequence of a high migration rate among populations with poor effective gene flow. Consistent genetic differentiation exists among isolates from different regions. Conclusions The results here suggest that in the Northern Andean region P. infestans is a clonal population with some within-clone variation. P. infestans populations in Venezuela reflect historic isolation that is being reinforced by a recent self-sufficiency of potato seeds. In summary, the P. infestans population is mainly shaped by migration and probably by the appearance of variants of key effectors such as Avr3a.

  13. Genetic Diversity in A Core Subset of Wild Barley Germplasm

    Directory of Open Access Journals (Sweden)

    Yong-Bi Fu

    2012-06-01

    Full Text Available Wild barley [Hordeum vulgare ssp. spontaneum (C. Koch Thell.] is a part of the primary gene pool with valuable sources of beneficial genes for barley improvement. This study attempted to develop a core subset of 269 accessions representing 16 countries from the Plant Gene Resources of Canada (PGRC collection of 3,782 accessions, and to characterize them using barley simple sequence repeat (SSR markers. Twenty-five informative primer pairs were applied to screen all samples and 359 alleles were detected over seven barley chromosomes. Analyses of the SSR data showed the effectiveness of the stratified sampling applied in capturing country-wise SSR variation. The frequencies of polymorphic alleles ranged from 0.004 to 0.708 and averaged 0.072. More than 24% or 7% SSR variation resided among accessions of 16 countries or two regions, respectively. Accessions from Israel and Jordan were genetically most diverse, while accessions from Lebanon and Greece were most differentiated. Four and five optimal clusters of accessions were obtained using STRUCTURE and BAPS programs and partitioned 16.3% and 20.3% SSR variations, respectively. The five optimal clusters varied in size from 15 to 104 and two clusters had only country-specific accessions. A genetic separation was detected between the accessions east and west of the Zagros Mountains only at the country, not the individual, level. These SSR patterns enhance our understanding of the wild barley gene pool, and are significant for conserving wild barley germplasm and exploring new sources of useful genes for barley improvement.

  14. Genetic structure and diversity of Oryza sativa L.in Guizhou, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongLing; CAO YongSheng; WANG XiangKun; LI ZiChao; ZHANG HongLiang; WEI XingHua; QI YongWen; WANG MeiXing; SUN JunLi; DING Li; TANG ShengXiang; QIU Zong'En

    2007-01-01

    Preserving many kinds of rice resources and rich variations, Guizhou Province is one of the districts with the highest genetic diversity of cultivated rice (Oryza sativa L.) in China. In the current research, genetic diversity and structure of 537 accessions of cultivated rice from Guizhou were studied using 36 microsatellite markers and 39 phenotypic characters. The results showed that the model-based genetic structure was the same as genetic-distance-based one using SSRs but somewhat different from the documented classification (mainly based on phenotype) of two subspecies. The accessions being classified into indica by phenotype but japonica by genetic structure were much more than that being classified into japonica by phenotype but indica by genetic structure. Like Ding Ying's taxonomic system of cultivated rice, the subspecific differentiation was the most distinct differentiation within cultivated rice. But the differentiation within indica or japonica population was different: japonica presented clearer differentiation between soil-watery ecotypes than indica, and indica presented clearer differentiation between seasonal ecotypes than japonica. Cultivated rices in Guizhou revealed high genetic diversity at both DNA and phenotypic levels. Possessing the highest genetic diversity and all the necessary conditions as a center of genetic diversity, region Southwestern of Guizhou was suggested as the center of genetic diversity of O. sativa L. from Guizhou.

  15. Genetic Diversity of Acacia mangium Seed Orchard in Wonogiri Indonesia Using Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    VIVI YUSKIANTI

    2012-09-01

    Full Text Available Genetic diversity is important in tree improvement programs. To evaluate levels of genetic diversity of first generation Acacia mangium seedling seed orchard in Wonogiri, Central Java, Indonesia, three populations from each region of Papua New Guinea (PNG and Queensland, Australia (QLD were selected and analyzed using 25 microsatellite markers. Statistical analysis showed that PNG populations have higher number of detected alleles and level of genetic diversity than QLD populations. This study provides a basic information about the genetic background of the populations used in the development of an A. mangium seed orchard in Indonesia.

  16. Exploring Genetic Diversity in Plants Using High-Throughput Sequencing Techniques.

    Science.gov (United States)

    Onda, Yoshihiko; Mochida, Keiichi

    2016-08-01

    Food security has emerged as an urgent concern because of the rising world population. To meet the food demands of the near future, it is required to improve the productivity of various crops, not just of staple food crops. The genetic diversity among plant populations in a given species allows the plants to adapt to various environmental conditions. Such diversity could therefore yield valuable traits that could overcome the food-security challenges. To explore genetic diversity comprehensively and to rapidly identify useful genes and/or allele, advanced high-throughput sequencing techniques, also called next-generation sequencing (NGS) technologies, have been developed. These provide practical solutions to the challenges in crop genomics. Here, we review various sources of genetic diversity in plants, newly developed genetic diversity-mining tools synergized with NGS techniques, and related genetic approaches such as quantitative trait locus analysis and genome-wide association study. PMID:27499684

  17. Genetic Diversity in Southeast European Soybean Germplasm Revealed by SSR Markers

    Directory of Open Access Journals (Sweden)

    Daniela Ristova

    2010-03-01

    The objective of this study was to assess genetic diversity and relationships of 23 soybean genotypes representing several independent breeding sources from Southeastern Europe and five plant introductions from Western Europe and Canada using 20 SSR markers. In total 80 alleles were detected among 28 genotypes with an average of four alleles per locus and an average marker diversity of 0.585. Allele frequency distribution was characterised with a high proportion of alleles at very low frequencies with 11 % of unique alleles. Cluster analysis clearly separated all genotypes from each other assigning them into three major clusters, which largely corresponded to their origin. Results of clustering were mainly in accordance with the known pedigrees.

  18. Aquatic beetles of the alpine lakes: diversity, ecology and small-scale population genetics

    Directory of Open Access Journals (Sweden)

    Čiamporová-Zaovičová Z.

    2011-11-01

    Full Text Available In this study, we summarize water beetle fauna of the alpine lakes and ponds of the Tatra Mountains. The literature and recent data were used to assess species diversity. Out of around 95 studied alpine water bodies, beetles were found in 61. Altogether, 54 taxa from six families were identified. The different altitudinal zones and lake areas were compared with species richness and species incidence concerning the sites sampled. Besides faunistics, some ecological notes on Agabus bipustulatus are provided. The seasonal dynamics of this species is influenced by its life cycle. The larvae and adults comprised a regular part of the samples during the whole period of the study with a decrease in density from June to the late fall. During the summer and the early fall, fast growth of the larvae was observed. The adults reached their abundance peak in September–October. For the first time, analysis is provided of the genetic diversity of the macroinvertebrate species of the alpine lakes. We used a 345bp fragment of cytochrome b in two dytiscids, Agabus bipustulatus and A. guttatus. Seven and eight haplotypes were identified, respectively, with slightly different distribution patterns of genetic diversity across the study area in both species. A high proportion of the lakes was characterized by a single haplotype and the majority of the haplotypes were restricted to only one of the sampled valleys.

  19. Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations.

    Science.gov (United States)

    Magalhães, Vanessa; Abrantes, Joana; Munõz-Pajares, Antonio Jesús; Esteves, Pedro J

    2015-10-01

    The European rabbit (Oryctolagus cuniculus) natural populations within the species native region, the Iberian Peninsula, are considered a reservoir of genetic diversity. Indeed, the Iberia was a Pleistocene refuge to the species and currently two subspecies are found in the peninsula (Oryctolagus cuniculus cuniculus and Oryctolagus cuniculus algirus). The genes of the major histocompatibility complex (MHC) have been substantially studied in wild populations due to their exceptional variability, believed to be pathogen driven. They play an important function as part of the adaptive immune system affecting the individual fitness and population viability. In this study, the MHC variability was assessed by analysing the exon 2 of the DQA gene in several European rabbit populations from Portugal, Spain and France and in domestic breeds. Twenty-eight DQA alleles were detected, among which 18 are described for the first time. The Iberian rabbit populations are well differentiated from the French population and domestic breeds. The Iberian populations retained the higher allelic diversity with the domestic breeds harbouring the lowest; in contrast, the DQA nucleotide diversity was higher in the French population. Signatures of positive selection were detected in four codons which are putative peptide-binding sites and have been previously detected in other mammals. The evolutionary relationships showed instances of trans-species polymorphism. Overall, our results suggest that the DQA in European rabbits is evolving under selection and genetic drift. PMID:26307416

  20. Safety assessment of genetically modified foods

    NARCIS (Netherlands)

    Kleter, G.A.; Noordam, M.Y.

    2016-01-01

    The cultivation of genetically modified (GM) crops has steadily increased since their introduction to the market in the mid-1990s. Before these crops can be grown and sold they have to obtain regulatory approval in many countries, the process of which includes a pre-market safety assessment. The foo

  1. Mitochondrial Genetic Diversity of Eurasian Red Squirrels (Sciurus vulgaris) from Denmark.

    Science.gov (United States)

    Madsen, Corrie L; Vilstrup, Julia T; Fernández, Ruth; Marchi, Nina; Håkansson, Bo; Krog, Mogens; Asferg, Tommy; Baagøe, Hans; Orlando, Ludovic

    2015-01-01

    Melanistic Eurasian red squirrels Sciurus vulgaris are commonly found on the Danish island of Funen. They are thought to represent native Danish squirrel types and are presently under threat from admixture with introduced red squirrels. In response, a conservation program was started in 2009 that involves the translocation of melanistic squirrels from Funen to the squirrel-free island of Langeland. Using mitochondrial DNA of 101 historical and modern samples from throughout Denmark, we assess for the first time population structure and mitochondrial genetic diversity of Danish squirrels compared to its larger pan-Eurasian distribution. We find that Danish squirrels have low levels of genetic diversity, especially melanistic individuals. Bayesian skyline reconstructions show that Danish squirrels have most probably experienced a severe bottleneck within the last 200 years. Also, fine-scale genetic structure was found between squirrels from the regions of Funen, Zealand and Jutland, which mimics the insular geography of Denmark. Additional nuclear DNA analyses will be required to determine the precise admixture levels between original Danish and introduced squirrels and to locate unmixed candidate populations for specific conservation efforts. PMID:26519513

  2. Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers

    Directory of Open Access Journals (Sweden)

    Ndèye Penda Ndiaye

    2015-08-01

    Full Text Available Aim: In Senegal, uncontrolled cross-breeding of cattle breeds and changes in production systems are assumed to lead to an increase of gene flow between populations. This might constitute a relevant threat to livestock improvement. Therewith, this study was carried out to assess the current genetic diversity and the phylogenetic relationships of the four native Senegalese cattle breeds (Gobra zebu, Maure zebu, Djakoré, and N’Dama. Methods: Genomic DNA was isolated from blood samples of 120 unrelated animals collected from three agro-ecological areas of Senegal according to their phenotypic traits. Genotyping was done using 11 specific highly polymorphic microsatellite makers recommended by Food and Agriculture Organization. The basic measures of genetic variation and phylogenetic trees were computed using bioinformatics’ software. Results: A total of 115 alleles were identified with a number of alleles (Na at one locus ranging from 6 to 16. All loci were polymorphic with a mean polymorphic information content of 0.76. The mean allelic richness (Rs lay within the narrow range of 5.14 in N’Dama taurine to 6.10 in Gobra zebu. While, the expected heterozygosity (HE per breed was high in general with an overall mean of 0.76±0.04. Generally, the heterozygote deficiency (FIS of 0.073±0.026 was relatively due to inbreeding among these cattle breeds or the occurrence of population substructure. The high values of allelic and gene diversity showed that Senegalese native cattle breeds represented an important reservoir of genetic variation. The genetic distances and clustering trees concluded that the N’Dama cattle were most distinct among the investigated cattle populations. So, the principal component analyses showed qualitatively that there was an intensive genetic admixture between the Gobra zebu and Maure zebu breeds. Conclusions: The broad genetic diversity in Senegalese cattle breeds will allow for greater opportunities for improvement of

  3. New insights into the genetic diversity of zooxanthellae in Mediterranean anthozoans

    OpenAIRE

    Casado-Amezúa, Pilar; Machordom, Annie; Bernardo, João; González-Wangüemert, Mercedes

    2014-01-01

    Symbiotic dinoflagellates of the genus Symbiodinium, also called zooxanthellae, are found in association with a wide diversity of shallow-water anthozoans. The Symbiodinium genus includes numerous lineages, also referred to as clades or phylotypes, as well as a wide diversity of genetic sub-clades and sub-phylotypes. There are few studies characterizing the genetic diversity of zooxanthellae in Mediterranean anthozoans. In this study, we included anthozoans from the We...

  4. Exhaustive search for conservation networks of populations representing genetic diversity.

    Science.gov (United States)

    Diniz-Filho, J A F; Diniz, J V B P L; Telles, M P C

    2016-01-01

    Conservation strategies routinely use optimization methods to identify the smallest number of units required to represent a set of features that need to be conserved, including biomes, species, and populations. In this study, we provide R scripts to facilitate exhaustive search for solutions that represent all of the alleles in networks with the smallest possible number of populations. The script also allows other variables to be added to describe the populations, thereby providing the basis for multi-objective optimization and the construction of Pareto curves by averaging the values in the solutions. We applied this algorithm to an empirical dataset that comprised 23 populations of Eugenia dysenterica, which is a tree species with a widespread distribution in the Cerrado biome. We observed that 15 populations would be necessary to represent all 249 alleles based on 11 microsatellite loci, and that the likelihood of representing all of the alleles with random networks is less than 0.0001. We selected the solution (from two with the smallest number of populations) obtained for the populations with a higher level of climatic stability as the best strategy for in situ conservation of genetic diversity of E. dysenterica. The scripts provided in this study are a simple and efficient alternative to more complex optimization methods, especially when the number of populations is relatively small (i.e., <25 populations). PMID:26909939

  5. Genetic diversity of bovine Neospora caninum determined by microsatellite markers.

    Science.gov (United States)

    Salehi, N; Gottstein, B; Haddadzadeh, H R

    2015-10-01

    Neospora caninum is one of the most significant parasitic organisms causing bovine abortion worldwide. Despite the economic impact of this infection, relatively little is known about the genetic diversity of this parasite. In this study, using Nc5 and ITS1 nested PCR, N. caninum has been detected in 12 brain samples of aborted fetuses from 298 seropositive dairy cattle collected from four different regions in Tehran, Iran. These specimen (Nc-Iran) were genotyped in multilocus using 9 different microsatellite markers previously described (MS4, MS5, MS6A, MS6B, MS7, MS8, MS10, MS12 and MS21). Microsatellite amplification was completely feasible in 2 samples, semi-completely in 8 samples, and failed in 2 samples. Within the two completely performed allelic profiles of Nc-Iran strains, unique multilocus profiles were obtained for both and novel allelic patterns were found in the MS8 and MS10 microsatellite markers. The Jaccard's similarity index showed significant difference between these two strains and from other standard isolates derived from GenBank such as Nc-Liv, Nc-SweB1, Nc-GER1, KBA1, and KBA2. All samples originating from the same area showed identical allelic numbers and a correlation between the number of repeats and geographic districts was observed. PMID:25988829

  6. Genetic diversity of some chili (Capsicum annuum L. genotypes

    Directory of Open Access Journals (Sweden)

    M.J. Hasan

    2014-06-01

    Full Text Available A study on genetic diversity was conducted with 54 Chili (Capsicum annuum L. genotypes through Mohalanobis’s D2 and principal component analysis for twelve quantitative characters viz. plant height, number of secondary branch/plant, canopy breadth , days to first flowering, days to 50% flowering, fruits/plant, 5 fruits weight, fruit length, fruit diameter, seeds/fruit, 1000 seed weight and yield/plant were taken into consideration. Cluster analysis was used for grouping of 54 chili genotypes and the genotypes were fallen into seven clusters. Cluster II had maximum (13 and cluster III had the minimum number (1 of genotypes. The highest inter-cluster distance was observed between cluster I and III and the lowest between cluster II and VII. The characters yield/plant, canopy breadth, secondary branches/plant, plant height and seeds/fruit contributed most for divergence in the studied genotypes. Considering group distance, mean performance and variability the inter genotypic crosses between cluster I and cluster III, cluster III and cluster VI, cluster II and cluster III and cluster III and cluster VII may be suggested to use for future hybridization program.

  7. Genetic Diversity in Gorkhas: an Autosomal STR Study.

    Science.gov (United States)

    Preet, Kiran; Malhotra, Seema; Shrivastava, Pankaj; Jain, Toshi; Rawat, Shweta; Varte, L Robert; Singh, Sayar; Singh, Inderjeet; Sarkar, Soma

    2016-01-01

    Genotyping of highly polymorphic autosomal short tandem repeat (STR) markers is a potent tool for elucidating genetic diversity. In the present study, fifteen autosomal STR markers were analyzed in unrelated healthy male Gorkha individuals (n = 98) serving in the Indian Army by using AmpFlSTR Identifiler Plus PCR Amplification Kit. In total, 138 alleles were observed with corresponding allele frequencies ranging from 0.005 to 0.469. The studied loci were in Hardy-Weinberg Equilibrium (HWE). Heterozygosity ranged from 0.602 to 0.867. The most polymorphic locus was Fibrinogen Alpha (FGA) chain which was also the most discriminating locus as expected. Neighbor Joining (NJ) tree and principal component analysis (PCA) plot clustered the Gorkhas with those of Nepal and other Tibeto-Burman population while lowlander Indian population formed separate cluster substantiating the closeness of the Gorkhas with the Tibeto-Burman linguistic phyla. Furthermore, the dataset of STR markers obtained in the study presents a valuable information source of STR DNA profiles from personnel for usage in disaster victim identification in military exigencies and adds to the Indian database of military soldiers and military hospital repository. PMID:27580933

  8. High Genetic Diversity in Geographically Remote Populations of Endemic and Widespread Coral Reef Angelfishes (genus: Centropyge)

    OpenAIRE

    Munday, Philip L.; Jones, Geoffrey P.; Hobbs, Jean-Paul A.; Lynne van Herwerden; Jerry, Dean R.

    2013-01-01

    In the terrestrial environment, endemic species and isolated populations of widespread species have the highest rates of extinction partly due to their low genetic diversity. To determine if this pattern holds in the marine environment, we examined genetic diversity in endemic coral reef angelfishes and isolated populations of widespread species. Specifically, this study tested the prediction that angelfish (genus: Centropyge) populations at Christmas and Cocos Islands have low genetic divers...

  9. Genetic Divergence, Implication of Diversity, and Conservation of Silkworm, Bombyx mori

    OpenAIRE

    Bindroo, Bharat Bhusan; Manthira Moorthy, Shunmugam

    2014-01-01

    Genetic diversity is critical to success in any crop breeding and it provides information about the quantum of genetic divergence and serves a platform for specific breeding objectives. It is one of the three forms of biodiversity recognized by the World Conservation Union (IUCN) as deserving conservation. Silkworm Bombyx mori, an economically important insect, reported to be domesticated over 5000 years ago by human to meet his requirements. Genetic diversity is a particular concern because ...

  10. Genetic Diversity of Hexaploid Wheat Based on Polymorphism in Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Sarwat Afshan

    2011-07-01

    Full Text Available High Molecular Weight Glutenin Subunits (HMW-GS were used as markers to assess the genetic diversity among 52 local wheat genotypes and their yield producing capacity with the object of exploiting diversity in the commercial varieties and landraces grown in different regions of Pakistan. HMW-GS profiling of wheat genotypes was done through SDS-PAGE; polymorphism was revealed at HMW-GS encoding loci; Glu-A1, Glu-B1 and Glu-D1; alleles 3, 6 and 4 were identified, respectively. The most common composition of HMW-GS in the population was 2*, 17+18, and 2+12. ANOVA revealed significant variation among the varieties for yield parameters and also there is correlation found between these parameters. The average intrapopulation heterozygosity for the three Glu-1 loci was high in Punjab (60.36% compared to the other populations that is Sindh (48.88%, Baluchistan (33.33%, Azad Jammu Kashmir (30.36% and Khyber Pakhtunkhwa (55.98%. Among populations Punjab had maximum genetic similarity of 93.04% with Sindh thus a small genetic distance of 7.21% which showed that the two populations are more identical. Genetic distance was large between the population of Azad Jammu Kashmir and Khyber Pakhtunkhwa. Though the bread-making quality of wheat is good but the heterogeneity is low among the wheat varieties of Pakistan showing a need for improving the genetic pool of the local genotypes for the future breeding programs.

  11. Intracolonial genetic diversity in honey bee (Apis mellifera) colonies increases pollen foraging efficiency

    Science.gov (United States)

    Multiple mating by honey bee queens results in colonies of genotypically diverse workers. Recent studies have demonstrated that increased genetic diversity within a honey bee colony increases the variation in the frequency of tasks performed by workers. We show that genotypically diverse colonies, ...

  12. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    Science.gov (United States)

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  13. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    Science.gov (United States)

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  14. Single-Cell Analysis of RNA Virus Infection Identifies Multiple Genetically Diverse Viral Genomes within Single Infectious Units

    Science.gov (United States)

    Combe, Marine; Garijo, Raquel; Geller, Ron; Cuevas, José M.; Sanjuán, Rafael

    2015-01-01

    Summary Genetic diversity enables a virus to colonize novel hosts, evade immunity, and evolve drug resistance. However, viral diversity is typically assessed at the population level. Given the existence of cell-to-cell variation, it is critical to understand viral genetic structure at the single-cell level. By combining single-cell isolation with ultra-deep sequencing, we characterized the genetic structure and diversity of a RNA virus shortly after single-cell bottlenecks. Full-length sequences from 881 viral plaques derived from 90 individual cells reveal that sequence variants pre-existing in different viral genomes can be co-transmitted within the same infectious unit to individual cells. Further, the rate of spontaneous virus mutation varies across individual cells, and early production of diversity depends on the viral yield of the very first infected cell. These results unravel genetic and structural features of a virus at the single-cell level, with implications for viral diversity and evolution. PMID:26468746

  15. Restoration of genetic diversity in the dry forest tree Swietenia macrophylla (Meliaceae) after pasture abandonment in Costa Rica.

    Science.gov (United States)

    Céspedes, M; Gutierrez, M V; Holbrook, N M; J Rocha, O

    2003-12-01

    We studied the levels of genetic diversity of Swietenia macrophylla (big leaf mahogany) in five successional plots in the Santa Rosa National Park, Guanacaste, Costa Rica. We selected sites with different lengths of time since the last major disturbance (typically fire): 6, 9, 15 and 20 years. In addition, we also included a patch of mature forest that had experienced selective logging and other human activity in the past 100 years. Genetic diversity was assessed using five polymorphic DNA microsatellite loci. We found a total of 21 alleles in the five loci examined, in which the number of alleles present varied among the five sites studied. Allelic diversity varied between sites ranging from 20 to 14 alleles, and our data revealed that earlier successional sites have more alleles than older sites. There was significant heterogeneity in allele frequencies between sites; however, genetic differentiation between populations was low (FST = 0.063) indicating that most of the variation was found within sites and extensive gene flow between sites. In addition, our analysis also showed that genetic diversity of adult trees does not solely determine the diversity of seedlings and saplings found around them, also supporting the existence of extensive gene flow. The impact of these findings for the design of conservation strategies for tropical dry forests trees is discussed. PMID:14629338

  16. Genetic diversity studies in twenty accessions of hot pepper (Capsicum spp L.) in Ghana

    International Nuclear Information System (INIS)

    Twenty (20) accessions of hot pepper (Capsicum spp L.) were collected from eight geographical regions of Ghana for genetic diversity studies. The objective was to assess genetic relationship among them using phenotypic and molecular traits and to evaluate their elemental composition. A replicated field experiment was conducted to assess their genetic diversity based on 13 quantitative traits and 22 qualitative traits using the IBPGR descriptor list for Capsicum. Confirmation of their identities was done using 10 SSR markers. The accessions were also evaluated for macro, micro and trace elements in their fresh fruits using the Instrumental Neutron Activation Analysis (INAA). Five essential macro elements (Ca, Cl, K, Mg and Na), two micro elements (Al and Mn) and one trace element (Br) were detected by INAA. Results from the agromorphological study revealed that accession Wes 01 had the widest stem width, matured leaf width, high fruit set but late maturing. Nor 03 was early maturing and had high fruit set, but also possessed the highest number of seeds per fruit. Fruit weight, fruit width, fruit length and plant canopy width, recorded the highest variabilities with 66.191; 53.24; 49.32; and 32.42 coefficients of variation (CVs), respectively. Few traits such as plant canopy width, plant height, fruit length, mature leaf length and number of seeds per fruit contributed substantially to total genetic variance as revealed by the principal component analysis (PCA). A dendrogram generated using morphological traits grouped accessions into cultivated and wild genotypes of pepper and all the accessions were identified as separate entities with no duplications. Strong correlation was recorded between plant canopy width and plant height, mature leaf length and mature leaf width, and also fruit weight and fruit width and fruit length. Negative correlation was however, observed between fruit length and days to 50% fruiting and flowering. All three accessions from the Northern

  17. Analyzing Deoxyribose Nucleic Acid from Malaria Rapid Diagnostic Tests to Study Plasmodium falciparum Genetic Diversity in Mali.

    Science.gov (United States)

    Nabet, Cécile; Doumbo, Safiatou; Jeddi, Fakhri; Sagara, Issaka; Manciulli, Tommaso; Tapily, Amadou; L'Ollivier, Coralie; Djimde, Abdoulaye; Doumbo, Ogobara K; Piarroux, Renaud

    2016-06-01

    We evaluated the use of positive malaria rapid diagnostic tests (mRDTs) to determine genetic diversity of Plasmodium falciparum in Mali. Genetic diversity was assessed via multiple loci variable number of tandem repeats analysis (MLVA). We performed DNA extraction from 104 positive and 30 negative used mRDTs that had been stored at ambient temperature for up to 14 months. Extracted DNA was analyzed via quantitative polymerase chain reaction (qPCR), and MLVA genotyping was then assessed on positive qPCR samples. Eighty-three of the positive mRDTs (83/104, 79.8%) and none of the negative mRDTs were confirmed P. falciparum positive via qPCR. We achieved complete genotyping of 90.4% (75/83) of the qPCR-positive samples. Genotyping revealed high genetic diversity among P. falciparum populations in Mali and an absence of population clustering. We show that mRDTs are useful to monitor P. falciparum genetic diversity and thereby can provide essential data to guide malaria control programs. PMID:27001760

  18. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops

    Science.gov (United States)

    Bailleul, Diane; Ollier, Sébastien; Lecomte, Jane

    2016-01-01

    Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops. PMID:27359342

  19. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops.

    Science.gov (United States)

    Bailleul, Diane; Ollier, Sébastien; Lecomte, Jane

    2016-01-01

    Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops. PMID:27359342

  20. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops.

    Directory of Open Access Journals (Sweden)

    Diane Bailleul

    Full Text Available Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field. Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops.

  1. Risk assessment of Genetically Modified Organisms (GMOs)

    OpenAIRE

    Waigmann E; Paoletti C; Davies H; Perry J; Kärenlampi S; Kuiper H

    2012-01-01

    EFSA’s remit in the risk assessment of GMOs is very broad encompassing genetically modified plants, microorganisms and animals and assessing their safety for humans, animals and the environment. The legal frame for GMOs is set by Directive 2001/18/EC on their release into the environment, and Regulation (EC) No 1829/2003 on GM food and feed. The main focus of EFSA’s GMO Panel and GMO Unit lies in the evaluation of the scientific risk assessment of new applications for market authoris...

  2. Genetic Diversity of the Critically Endangered Thuja sutchuenensis Revealed by ISSR Markers and the Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Zeping Jiang

    2013-07-01

    Full Text Available Thuja sutchuenensis Franch. is a critically endangered plant endemic to the North-East Chongqing, China. Genetic variation was studied to assess the distribution of genetic diversity within and among seven populations from the single remnant locations, using inter-simple sequence repeat (ISSR markers. A total of 15 primers generated 310 well defined bands, with an average of 20.7 bands per primer. The seven populations revealed a relatively high level of genetic diversity in the species. The percentage of polymorphic bands, Nei’s gene diversity and Shannon’s information index at the population and species level were 76.1%, 0.155, 0.252 and 100%, 0.165, 0.295, respectively. A low level of genetic differentiation among populations (GST = 0.102, in line with the results of Analyses of Molecular Variance (AMOVA, and a high level of gene flow (Nm = 4.407 were observed. Both the Unweighted Pair Group Method with Arithmatic Mean (UPGMA cluster analysis and Principal Coordinates Analysis (PCoA supported the grouping of all seven populations into two groups. In addition, Mantel test revealed no significant correlation between genetic and geographical distances (r = 0.329, p = 0.100. The low genetic differentiation among populations implies that the conservation efforts should aim to preserve all the extant populations of this endangered species.

  3. Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong; ZHAO Ru; GU Senchang; YAN Wen; CHENG Zhou; CHEN Muhong; LU Weifeng; WANG Shuhong; LU Baorong; LU Jun; ZHANG Fan; XIANG Rong; XIAO Shangbin; YAN Pin

    2006-01-01

    Genetic diversity is the basic and most important component of biodiversity. It is essential for the effective conservation and utilization of genetic resources to accurately estimate genetic diversity of the targeted species and populations. This paper reports analyses of genetic diversity of a wild soybean population using three molecular marker technologies (AFLP, ISSR and SSR), and computer simulation studies of randomly selected subsets with different sample size (5-90 individuals) drawn 50 times from a total of 100 wild soybean individuals. The variation patterns of genetic diversity indices, including expected heterozygosity (He), Shannon diversity index (/), and percentage of polymorphic loci (P), were analyzed to evaluate changes of genetic diversity associated with the increase of individuals in each subset. The results demonstrated that (1) values of genetic diversity indices of the same wild soybean population were considerably different when estimated by different molecular marker techniques; (2) genetic diversity indices obtained from subsets with different sample sizes also diverged considerably; (3) P values were relatively more reliable for comparing genetic diversity detected by different molecular marker techniques; and (4) different diversity indices reached 90% of the total genetic diversity of the soybean population quite differently in terms of the sample size (number of individuals) analyzed.When using the P value as a determinator, 30-40individuals could capture over 90% of the total genetic diversity of the wild soybean population. Results from this study provide a strong scientific basis for estimating genetic diversity and for strategic conservation of plant species.

  4. Evaluation of the Genetic Diversity of several Corylus avellana Accessions from the Romanian National Hazelnut Collection

    Directory of Open Access Journals (Sweden)

    Iulia Francesca POP

    2010-09-01

    Full Text Available Romanian hazelnut (Corylus avellana germplasm is held in a national collection at SCDP Valcea. A clear situation of the held accessions is necessary for an efficient management of the germplasm collection. In order to achieve this, the genetic variability of 43 accessions was assessed using 23 RAPD primers. The RAPD analysis was carried out as a screening test to confirm the genetic identity of some accessions. Based on the screening results, 12 accessions were selected for analysis using nine SSR primers. A high level of genetic diversity was observed (He=0.75, Ho=0.81, F=-0.061 among the analyzed samples. A genetic similarity matrix was constructed and the resulting UPGMA dendrogram revealed three major groups, corresponding to the geographical origin of the accessions. In order to increase the effectiveness of genebank management, the identification of duplicate and mislabeled accessions with the aid of molecular markers is of high interest, especially being the first one of this kind in a Romanian hazelnut germplasm collection.

  5. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiyue; ZHOU Taoying; ZHONG Ming; LU Baorong

    2007-01-01

    A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.

  6. An adaptive genetic algorithm with diversity-guided mutation and its global convergence property

    Institute of Scientific and Technical Information of China (English)

    李枚毅; 蔡自兴; 孙国荣

    2004-01-01

    An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of adaptive genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.

  7. Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.

    2013-01-01

    In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.

  8. Genetic diversity of Prochilodus lineatus stocks using in the stocking program of Tietê River, Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Ribeiro

    2013-11-01

    Full Text Available Objective. Assess the genetic diversity in four brood stocks and one juvenile stock of curimba Prochilodus lineatus in a Hydropower plant in São Paulo - Brazil, using the Tietê River stocking program. Materials and methods. Five RAPD primers were used to amplify the extracted DNA from 150 fin-clip samples. Results. Fifty-nine fragments were polymorphic, 52 had frequencies with significant differences (p<0.05, 45 had low frequencies, 54 were excluded, and two were fixed fragments. High values for polymorphic fragments (71.19% to 91.53% and Shannon index (0.327 to 0.428 were observed. The genetic divergence values within each stock were greater than 50%. Most of the genetic variation was found within the groups through the AMOVA analysis, which was confirmed by the results of the identity and genetic distance. High ancestry levels (FST among the groups value indicated high and moderate genetic differentiation. The estimates of number of migrants by generation (Nm indicated low levels of gene flow. High and moderate genetic divergence between groups (0.58 to 0.83 was observed. Conclusions. The results indicate high variability within the stocks, and genetic differentiation among them. The fish stocks analyzed represent a large genetic base that will allow the fish technicians to release juveniles without genetic risks to wild populations present in the river. These genetic procedures may be used as models for other migratory species, including those threatened by extinction.

  9. Population structure and genetic diversity of the perennial medicinal shrub Plumbago

    OpenAIRE

    Panda, Sayantan; Naik, Dhiraj; Kamble, Avinash

    2015-01-01

    Knowledge of the natural genetic variation and structure in a species is important for developing appropriate conservation strategies. As genetic diversity analysis among and within populations of Plumbago zeylanica remains unknown, we aimed (i) to examine the patterns and levels of morphological and genetic variability within/among populations and ascertain whether these variations are dependent on geographical conditions; and (ii) to evaluate genetic differentiation and population structure...

  10. Gene Flow and Genetic Diversity of a Broadcast-Spawning Coral in Northern Peripheral Populations

    OpenAIRE

    Yuichi Nakajima; Akira Nishikawa; Akira Iguchi; Kazuhiko Sakai

    2010-01-01

    Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadca...

  11. Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers

    Institute of Scientific and Technical Information of China (English)

    HAO; Chenyang; WANG; Lanfen; ZHANG; Xueyong; YOU; Guangxia; DONG; Yushen; JIA; Jizeng; LIU; Xu; SHANG; Xunwu; LIU; Sancai; CAO; Yongsheng

    2006-01-01

    Genetic diversity of 1680 modern varieties in Chinese candidate core collections was analyzed at 78 SSR loci by fluorescence detection system. A total of 1336 alleles were detected, of which 1253 alleles could be annotated into 71 loci. For these 71 loci, the alleles ranged from 4 to 44 with an average of 17.6, and the PIC values changed from 0.19 to 0.89 with an average of 0.69. (1) In the three genomes of wheat, the average genetic richness was B>A>D, and the genetic diversity indexes were B>D>A. (2) Among the seven homoeologous groups, the average genetic richness was 2=7>3>4>6>5>1, and the genetic diversity indexes were 7>3>2>4>6>5>1. As a whole, group 7 possessed the highest genetic diversity, while groups 1 and 5 were the lowest. (3) In the 21 wheat chromosomes, 7A, 3B and 2D possessed much higher genetic diversity, while 2A, 1B, 4D, 5D and 1D were the lowest. (4) The highest average genetic diversity index existed in varieties bred in the 1950s, and then it declined continually. However, the change tendency of genetic diversity among decades was not greatly sharp. This was further illustrated by changes of the average genetic distance between varieties. In the 1950s it was the largest (0.731). Since the 1960s, it has decreased gradually (0.711, 0.706, 0.696, 0.695). The genetic base of modern varieties is becoming narrower and narrower. This should be given enough attention by breeders and policy makers.

  12. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    Science.gov (United States)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  13. Genetic molecular diversity, production and resistance to witches’ broom in cacao clones

    Directory of Open Access Journals (Sweden)

    José Luis Pires

    2013-06-01

    Full Text Available The 32 cacao clones selected as being resistant following the witches’ broom epidemic and for having distinct productivitywere characterized according to their genetic diversity and were submitted to a new selection. These plants were assessed for eightyears at the Oceania Farm (FO in Itagibá, Bahia, Brazil. The 13 microsatellite primers generated an average of 11.7 amplicons perlocus, and based on them it was demonstrated that the 32 clones distribute themselves in groups apart from the nine clones used ascontrols. The 32 materials displayed significant differences in relation to the characters assessed in the field. Two criteria were formedfrom the classification of the most productive and resistant plants, and then used to select plants within the clusters. The selected plantsdisplayed potential for the cacao improvement program, that they have a high production and high resistance to witches’ broom.

  14. Hybrid origin of a cichlid population in Lake Malawi: implications for genetic variation and species diversity.

    Science.gov (United States)

    Smith, Peter F; Konings, Ad; Kornfield, Irv

    2003-09-01

    The importance of species recognition to taxonomic diversity among Lake Malawi cichlids has been frequently discussed. Hybridization - the apparent breakdown of species recognition - has been observed sporadically among cichlids and has been viewed as both a constructive and a destructive force with respect to species diversity. Here we provide genetic evidence of a natural hybrid cichlid population with a unique colour phenotype and elevated levels of genetic variation. We discuss the potential evolutionary consequences of interspecific hybridization in Lake Malawi cichlids and propose that the role of hybridization in generating both genetic variability and species diversity of Lake Malawi cichlids warrants further consideration. PMID:12919487

  15. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake.

    Science.gov (United States)

    Faulks, Leanne; Östman, Örjan

    2016-01-01

    Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H'T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species. PMID:27032100

  16. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China.

    Science.gov (United States)

    Dou, Hailong; Yang, Haitao; Feng, Limin; Mou, Pu; Wang, Tianming; Ge, Jianping

    2016-01-01

    Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9-11 tigers during the winter of 2014-2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations. PMID:27100387

  17. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China

    Science.gov (United States)

    Dou, Hailong; Yang, Haitao; Feng, Limin; Mou, Pu; Wang, Tianming; Ge, Jianping

    2016-01-01

    Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9–11 tigers during the winter of 2014–2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations. PMID:27100387

  18. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake.

    Directory of Open Access Journals (Sweden)

    Leanne Faulks

    Full Text Available Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta and one introduced (brook charr, Salvelinus fontinalis, from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H'T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144 and brook charr (GIS = 0.129 although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species.

  19. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake

    Science.gov (United States)

    Faulks, Leanne; Östman, Örjan

    2016-01-01

    Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H’T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species. PMID:27032100

  20. Assessing Extinction Risk: Integrating Genetic Information

    OpenAIRE

    Gary Vinyard; Jennifer Nielsen; C. Richard Tracy; Mary Peacock; Jason Dunham

    1999-01-01

    Risks of population extinction have been estimated using a variety of methods incorporating information from different spatial and temporal scales. We briefly consider how several broad classes of extinction risk assessments, including population viability analysis, incidence functions, and ranking methods integrate information on different temporal and spatial scales. In many circumstances, data from surveys of neutral genetic variability within, and among, populations can provide informatio...

  1. Assessment of genetic diversity on a sample of cocoa accessions resistant to witches' broom disease based on RAPD and pedigree data Avaliação da diversidade genética em uma amostra de acessos de cacau resistentes à doença vassoura-de-bruxa, com base em dados de RAPD e pedigree

    Directory of Open Access Journals (Sweden)

    Ronaldo Carvalho dos Santos

    2005-01-01

    Full Text Available Genetic diversity in cocoa (Theobroma cacao L. has been assessed based on morphological and molecular markers for germplasm management and breeding purposes. Pedigree data is available in cocoa but it has not been used for assessing genetic relatedness. The geneitic diversity of 30 clonal cocoa accessions resistant to witche´ broom disease, from the CEPEC series, were studied on the basis of RAPD data and pedigree information. Twenty of these accessions descend from the TSA-644 clone, originated from a cross between the Upper Amazon germplasm called Scavina-6, the main source of resistance to witches' broom disease, and IMC-67. The ten remaining clones come from different sources including Amazon and Trinitario germplasm. RAPD data was collected using 16 primers and pedigree information was obtained from the International Cocoa Germplasm Database. Genetic similarities, genetic distances and coefficient of parentage were calculated using available software. Relatively low genetic diversity was observed in this germplasm set, probably because of great genetic relatedness amongst accessions studied and the poor representation of the germplasm. The TSA-644 descendants were more diverse than the other accessions used in the study. This might be due to the origin of the TSA clone, which was derived from highly divergent genotypes. Association between genetic similarities based on RAPD data and coefficient of parentage, based on pedigree data, was very low, probably due to the homogeneity of the breeding stocks and poor pedigree information. These findings are useful to cocoa breeders in planning crosses for the development of hybrid and clonal cultivars.A diversidade genética em cacau (Theobroma cacao L., embasada em dados morfológicos e em marcadores moleculares, tem sido avaliada com fins de manejo de germoplasma e uso no melhoramento genético. Dados de genealogia de cacau, embora disponíveis, não têm sido utilizados. Foi analisada a

  2. Risk Assessment of Genetically Modified Microorganisms

    DEFF Research Database (Denmark)

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the......The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...

  3. Genetic diversity measures of local European beef cattle breeds for conservation purposes

    Directory of Open Access Journals (Sweden)

    Pereira Albano

    2001-05-01

    Full Text Available Abstract This study was undertaken to determine the genetic structure, evolutionary relationships, and the genetic diversity among 18 local cattle breeds from Spain, Portugal, and France using 16 microsatellites. Heterozygosities, estimates of Fst, genetic distances, multivariate and diversity analyses, and assignment tests were performed. Heterozygosities ranged from 0.54 in the Pirenaica breed to 0.72 in the Barrosã breed. Seven percent of the total genetic variability can be attributed to differences among breeds (mean Fst = 0.07; P

  4. An introduction to the freshwater animal diversity assessment (FADA) project

    OpenAIRE

    Balian, E. V.; Segers, H.; Lévêque, Christian; Martens, K.

    2008-01-01

    The Freshwater Animal Diversity Assessment (FADA) project aims at compiling an overview of genus- and species-level diversity of animals in the continental, aquatic ecosystems of the world. It is a collective effort of 163 experts, and presents 59 articles treating the diversity and endemism of different animal taxa, ranging from microscopic worms to mammals, at global and regional scales. Given their structural importance, an article on macrophytes is also added. Here, we give an overview of...

  5. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth.

    Directory of Open Access Journals (Sweden)

    Marie Nancy Séraphin

    Full Text Available Tuberculosis (TB is caused by members of the Mycobacterium tuberculosis complex (MTBC. Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts.We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped using spoligotyping and 24-locus MIRU-VNTR. We mapped the genetic diversity to the centroid of patient residential zip codes using a geographic information system (GIS. We assessed transmission dynamics and the influence of immigration on genotype clustering using space-time permutation models adjusted for foreign-born population density and county-level HIV risk and multinomial models stratified by country of birth and timing of immigration in SaTScan.Among the 2,510 strains, 1,245 were reported among foreign-born persons; including 408 recent immigrants (<5 years. Strain allelic diversity (h ranged from low to medium in most locations and was most diverse in urban centers where foreign-born population density was also high. Overall, 21.5% of cases among U.S.-born persons and 4.6% among foreign-born persons clustered genotypically and spatiotemporally and involved strains of the Haarlem family. One Haarlem space-time cluster identified in the mostly rural northern region of Florida included US/Canada-born individuals incarcerated at the time of diagnosis; two clusters in the mostly urban southern region of Florida were composed predominantly of foreign-born persons. Both groups had HIV prevalence above twenty percent.Almost five percent of TB cases reported in Florida during 2009-2013 were potentially due to recent transmission. Improvements to TB screening practices among the prison population and recent immigrants are likely to impact TB control. Due to the monomorphic nature

  6. Species history masks the effects of human-induced range loss - unexpected genetic diversity in the endangered giant mayfly Palingenia longicauda

    OpenAIRE

    Miklós Bálint; Kristóf Málnás; Carsten Nowak; Jutta Geismar; Eva Váncsa; László Polyák; Szabolcs Lengyel; Peter Haase

    2012-01-01

    Freshwater biodiversity has declined dramatically in Europe in recent decades. Because of massive habitat pollution and morphological degradation of water bodies, many once widespread species persist in small fractions of their original range. These range contractions are generally believed to be accompanied by loss of intraspecific genetic diversity, due to the reduction of effective population sizes and the extinction of regional genetic lineages. We aimed to assess the loss of genetic dive...

  7. Genetic diversity and population structure of Bretschneidera sinensis, an endangered species

    Directory of Open Access Journals (Sweden)

    Gangbiao Xu

    2013-11-01

    Full Text Available Amounts and distribution of intraspecific genetic variation provide benchmarks for developing conservation strategies. Bretschneidera sinensis is a monotypic relic species listed in the First Grade of the List of Wild Plants Under State Protection (First Batch in China. We examined the genetic diversity and genetic structure of 219 B. sinensis individuals sampled from 15 natural populations distributed in Hunan, Jiangxi, Guangdong, Guangxi, and Guizhou using inter-simple sequence repeat (ISSR markers generated by seven ISSR primers. The percentage of polymorphic bands (PPB at the species and population level was 74.42% and 38.06%, respectively. Shannon’s index (I of phenotypic diversity at the species and population level was 0.3630 and 0.2081, respectively, and Nei’s genetic diversity (He at the species and population level was 0.2397 and 0.1405, respectively. These results indicate that B. sinensis contains relatively high levels of genetic diversity. Analysis of molecular variance (AMOVA and estimates of the coefficient of genetic differentiation based on phenotypic diversity index also indicated high levels of population subdivision (GST = 0.2973; FST = 0.4267 in the species. Analysis of the ISSR data using UPGMA further revealed that populations were genetically clustered into two groups, while a Mantel test showed that genetic divergence was significantly correlated with geographical distance among populations (Mantel test; r = 0.3096, P = 0.008. We conclude from our results that B. sinensis is not endangered due to low evolutionary potential stemming from low genetic diversity, but by habitat destruction coupled with a low reproductive capacity, poor adaptability and weak competitiveness. The Mt. Yangming, Mt. Mangshan, Ruyang, and Mt. Bamianshan populations of the species with higher genetic diversity should be given priority for conservation, and inbreeding depression monitoring should be conducted.

  8. Characterization of type and genetic diversity among soybean cyst nematode differentiators

    Directory of Open Access Journals (Sweden)

    Éder Matsuo

    2012-04-01

    Full Text Available The development of soybean cyst nematode, Heterodera glycines Ichinohe, resistant genotypes with high yields has been one of the objectives of soybean (Glycine max (L. Merrill breeding programs. The objective of this study was to characterize the pathotype of soybean cyst nematodes and analyze the genetic diversity of ten differentiator lines ('Lee 74', Peking, Pickett, PI 88788, PI 90763, PI 437654, PI 209332, PI 89772, PI 548316 and 'Hartwig'. Inoculum was obtained from plants cultivated in field soil in Viçosa, state of Minas Gerais, Brazil. Thirty-four days after inoculating each plant with 4,000 eggs, the number of females, female index, total number of eggs, number of eggs per female, reproduction factor, plant height, number of nodes, fresh and dry matter weights were assessed. The differential lines were first grouped with Scott-Knott test. Subsequently, the genetic diversity was evaluated using dendrograms, graphic analysis and the Tocher grouping method. The inoculum of H. glycines obtained from NBSGBP-UFV was characterized as HG Type 0. The differentiating lines were divergent, and PI 89772, PI 437654, 'Hartwig' and 'Peking' had the greatest potential for use in breeding programs.

  9. Analysis of genetic diversity identified by amplified fragment length polymorphism marker in hybrid wheat.

    Science.gov (United States)

    Ejaz, M; Qidi, Z; Gaisheng, Z; Na, N; Huiyan, Z; Qunzhu, W

    2015-01-01

    Amplified fragment length polymorphism markers were used to assess genetic diversity in 10 male sterile wheat crop lines (hetero-cytoplasm with the same nucleus) in relation to a restorer wheat line. These male sterile lines were evaluated using 64 amplified fragment length polymorphism primer combinations, and 13 primers produced polymorphic bands, generating a total 682 fragments. Of the 682 fragments, 113 were polymorphic. The polymorphic information content and marker index values demonstrated the utility of the primer combinations used in the present study. Unweighted pair group method with arithmetic mean and principal coordinate analysis of the genotypic data revealed clustering of accessions based on genetic relationships, and accessions were separated into 2 groups with their restorer line. Jaccard's similarity coefficient values suggested good variability among the male sterile lines, indicating their utility in breeding programs. The fallouts of analysis of molecular variance showed large within-group population variation, accounting for 77% of variation, while among-group comparison accounted for 23% of the total molecular variation, which was statistically significant. The molecular diversity observed in this study will be useful for selecting appropriate accessions for plant improvement and hybridization through molecular-breeding approaches and for developing suitable conservation strategies. PMID:26345825

  10. Application of restriction site amplified polymorphism (RSAP) to genetic diversity in Saccharina japonica

    Science.gov (United States)

    Zhao, Cui; Liu, Cui; Li, Wei; Chi, Shan; Feng, Rongfang; Liu, Tao

    2013-07-01

    Restriction site amplified polymorphism (RSAP) was used, for the first time, to analyze the genetic structure and diversity of four, mainly cultivated, varieties of the brown alga, Saccharina japonica. Eighty-eight samples from varieties " Rongfu ", " Fujian ", " Ailunwan " and " Shengchanzhong " were used for the genetic analyses. One hundred and ninety-eight bands were obtained using eight combinations of primers. One hundred and ninety-one (96.46%) were polymorphic bands. Nei's genetic diversity was 0.360, and the coefficient of genetic differentiation was 0.357. No inbreeding-type recession was found in the four brown alga varieties and the results of the " Ailunwan " variety using samples from 2 years showed that the variety was becoming less diverse during the selection inherent in the breeding program. Genetic diversity and cluster analyses results were consistent with these genetic relationships. The results show the RSAP method is suitable for genetic analysis. Continuous inbreeding and selection could reduce the genetic diversity effectively; therefore periodical supervision is required.

  11. Application of restriction site amplified polymorphism (RSAP) to genetic diversity in Saccharina japonica

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cui; LIU Cui; LI Wei; CHI Shan; FENG Rongfang; LIU Tao

    2013-01-01

    Restriction site amplified polymorphism (RSAP) was used,for the first time,to analyze the genetic structure and diversity of four,mainly cultivated,varieties of the brown alga,Saccharinajaponica.Eighty-eight samples from varieties "Rongfu","Fujian","Ailunwan" and "Shengchanzhong" were used for the genetic analyses.One hundred and ninety-eight bands were obtained using eight combinations of primers.One hundred and ninety-one (96.46%) were polymorphic bands.Nei's genetic diversity was 0.360,and the coefficient of genetic differentiation was 0.357.No inbreeding-type recession was found in the four brown alga varieties and the results of the "Ailunwan" variety using samples from 2 years showed that the variety was becoming less diverse during the selection inherent in the breeding program.Genetic diversity and cluster analyses results were consistent with these genetic relationships.The results show the RSAP method is suitable for genetic analysis.Continuous inbreeding and selection could reduce the genetic diversity effectively; therefore periodical supervision is required.

  12. Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying.

    Science.gov (United States)

    Liu, W; Wang, J; Yin, D X; Yang, M; Wang, P; Han, Q S; Ma, Q Q; Liu, J J; Wang, J X

    2016-01-01

    Sinopodophyllum hexandrum is an important medicinal plant that has been listed as an endangered species, making the conservation of its genetic diversity a priority. Therefore, the genetic diversity and population structure of S. hexandrum was investigated through inter-simple sequence repeat analysis of eight natural populations. Eleven selected primers generated 141 discernible fragments. The percentage of polymorphic bands was 37.59% at the species level, and 7.66-24.32% at the population level. Genetic diversity of S. hexandrum was low within populations (average HE = 0.0366), but higher at the species level (HE = 0.0963). Clear structure and high genetic differentiation were detected between populations using unweighted pair groups mean arithmetic and principle coordinate analysis. Clustering approaches clustered the eight sampled populations into three major groups, and AMOVA confirmed there to be significant variation between populations (63.27%). Genetic differentiation may have arisen through limited gene flow (Nm = 0.3317) in this species. Isolation by distance among populations was determined by comparing genetic distance versus geographical distance using the Mantel test. The results revealed no correlation between spatial pattern and geographic location. Given the low within-population genetic diversity, high differentiation among populations, and the increasing anthropogenic pressure on this species, in situ conservation measures, in addition to sampling and ex situ preservation, are recommended to preserve S. hexandrum populations and to retain their genetic diversity. PMID:27323174

  13. Genetic diversity and relationship of chicory (Cichorium intybus L.) using sequence-related amplified polymorphism markers.

    Science.gov (United States)

    Liang, X Y; Zhang, X Q; Bai, S Q; Huang, L K; Luo, X M; Ji, Y; Jiang, L F

    2014-01-01

    Chicory is a crop with economically important roles and is cultivated worldwide. The genetic diversity and relationship of 80 accessions of chicories and endives were evaluated by sequence-related amplified polymorphism (SRAP) markers to provide a theoretical basis for future breeding programs in China. The polymorphic rate was 96.83%, and the average polymorphic information content was 0.323, suggesting the rich genetic diversity of chicory. The genetic diversity degree of chicory was higher (GS = 0.677) than that of endive (GS = 0.701). The accessions with the highest genetic diversity (effective number of alleles, NE = 1.609; Nei's genetic diversity, H = 0.372; Shannon information index, I = 0.556) were from Italy. The richest genetic diversity was revealed in a chicory line (NE = 1.478, H = 0.289, I = 0.443) among the 3 types (line, wild, and cultivar). The chicory genetic structure of 8 geographical groups showed that the genetic differentiation coefficient (GST) was 14.20% and the number of immigrants per generation (Nm) was 3.020. A GST of 6.80% and an Nm of 6.853 were obtained from different types. This observation suggests that these chicory lines, especially those from the Mediterranean region, have potential for providing rich genetic resources for further breeding programs, that the chicory genetic structure among different countries obviously differs with a certain amount of gene flow, and that SRAP markers could be applied to analyze genetic relationships and classifications of Cichorium intybus and C. endivia. PMID:25299087

  14. Genetic diversity in rosewood saplings (Aniba rosaeodora ducke, Lauraceae): an ecological approach Diversidade genética em plantas jovens de Pau-rosa (Aniba rosaeodora Ducke, Lauraceae): uma abordagem ecológica

    OpenAIRE

    Ronaldo Pereira Santos; Wilson Roberto Spironello; Paulo de Tarso Barbosa Sampaio

    2008-01-01

    This article takes an ecological approach to the genetic diversity of Rosewood (Aniba rosaeodora Ducke) in a central Amazonian terra firme forest north of Manaus. Planted Rosewood setting, under partial shaded canopy, were assessed in terms of fruiting production, frugivory, and seed dispersal. Using RAPD molecular analysis procedures, the influence of the spatial distribution of adult trees on the genetic diversity (polymorphism) of saplings was assessed with genetic samples from 34 reproduc...

  15. Potential of Start Codon Targeted (SCoT Markers to Estimate Genetic Diversity and Relationships among Chinese Elymus sibiricus Accessions

    Directory of Open Access Journals (Sweden)

    Junchao Zhang

    2015-04-01

    Full Text Available Elymus sibiricus as an important forage grass and gene pool for improving cereal crops, that is widely distributed in West and North China. Information on its genetic diversity and relationships is limited but necessary for germplasm collection, conservation and future breeding. Start Codon Targeted (SCoT markers were used for studying the genetic diversity and relationships among 53 E. sibiricus accessions from its primary distribution area in China. A total of 173 bands were generated from 16 SCoT primers, 159 bands of which were polymorphic with the percentage of polymorphic bands (PPB of 91.91%. Based upon population structure analysis five groups were formed. The cluster analysis separated the accessions into two major clusters and three sub-clusters, similar to results of principal coordinate analysis (PCoA. The molecular variance analysis (AMOVA showed that genetic variation was greater within geographical regions (50.99% than between them (49.01%. Furthermore, the study also suggested that collecting and evaluating E. sibiricus germplasm for major geographic regions and special environments broadens the available genetic base and illustrates the range of variation. The results of the present study showed that SCoT markers were efficient in assessing the genetic diversity among E. sibiricus accessions.

  16. Use of Population Genetics to Assess the Ecology, Evolution, and Population Structure of Coccidioides

    Science.gov (United States)

    Teixeira, Marcus M.

    2016-01-01

    During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589

  17. Use of Population Genetics to Assess the Ecology, Evolution, and Population Structure of Coccidioides.

    Science.gov (United States)

    Teixeira, Marcus M; Barker, Bridget M

    2016-06-01

    During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589

  18. Genetic Structure and Molecular Diversity of Cacao Plants Established as Local Varieties for More than Two Centuries: The Genetic History of Cacao Plantations in Bahia, Brazil.

    Science.gov (United States)

    Santos, Elisa S L; Cerqueira-Silva, Carlos Bernard M; Mori, Gustavo M; Ahnert, Dário; Mello, Durval L N; Pires, José Luis; Corrêa, Ronan X; de Souza, Anete P

    2015-01-01

    Bahia is the most important cacao-producing state in Brazil, which is currently the sixth-largest country worldwide to produce cacao seeds. In the eighteenth century, the Comum, Pará and Maranhão varieties of cacao were introduced into southern Bahia, and their descendants, which are called 'Bahian cacao' or local Bahian varieties, have been cultivated for over 200 years. Comum plants have been used to start plantations in African countries and extended as far as countries in South Asia and Oceania. In Brazil, two sets of clones selected from Bahian varieties and their mutants, the Agronomic Institute of East (SIAL) and Bahian Cacao Institute (SIC) series, represent the diversity of Bahian cacao in germplasm banks. Because the genetic diversity of Bahian varieties, which is essential for breeding programs, remains unknown, the objective of this work was to assess the genetic structure and diversity of local Bahian varieties collected from farms and germplasm banks. To this end, 30 simple sequence repeat (SSR) markers were used to genotype 279 cacao plants from germplasm and local farms. The results facilitated the identification of 219 cacao plants of Bahian origin, and 51 of these were SIAL or SIC clones. Bahian cacao showed low genetic diversity. It could be verified that SIC and SIAL clones do not represent the true diversity of Bahian cacao, with the greatest amount of diversity found in cacao trees on the farms. Thus, a core collection to aid in prioritizing the plants to be sampled for Bahian cacao diversity is suggested. These results provide information that can be used to conserve Bahian cacao plants and applied in breeding programs to obtain more productive Bahian cacao with superior quality and tolerance to major diseases in tropical cacao plantations worldwide. PMID:26675449

  19. Assessing the molecular genetics of attention networks

    Directory of Open Access Journals (Sweden)

    Pfaff Donald W

    2002-10-01

    Full Text Available Abstract Background Current efforts to study the genetic underpinnings of higher brain functions have been lacking appropriate phenotypes to describe cognition. One of the problems is that many cognitive concepts for which there is a single word (e.g. attention have been shown to be related to several anatomical networks. Recently, we have developed an Attention Network Test (ANT that provides a separate measure for each of three anatomically defined attention networks. Results In this study we have measured the efficiency of neural networks related to aspects of attention using the ANT in a population of 200 adult subjects. We then examined genetic polymorphisms in four candidate genes (DRD4, DAT, COMT and MAOA that have been shown to contribute to the risk of developing various psychiatric disorders where attention is disrupted. We find modest associations of several polymorphisms with the efficiency of executive attention but not with overall performance measures such as reaction time. Conclusions These results suggest that genetic variation may underlie inter-subject variation in the efficiency of executive attention. This study also shows that genetic influences on executive attention may be specific to certain anatomical networks rather than affecting performance in a global or non-specific manner. Lastly, this study further validates the ANT as an endophenotypic assay suitable for assessing how genes influence certain anatomical networks that may be disrupted in various psychiatric disorders.

  20. Genetic diversity and combining abilities for root traits of sugar beet pollinators

    OpenAIRE

    Ćurčić Živko; Nagl Nevena; Taški-Ajduković Ksenija; Danojević Dario; Stojaković Željka; Kovačev Lazar

    2013-01-01

    Information about genetic diversity and combining abilities of sugar beet parental components are of a great importance for hybrid creation. The aim of this research was to evaluate genetic diversity among sugar beet pollinators from different breeding programs and their combining abilities for main root traits of sugar beet, root weight, sugar content and sugar yield. As plant material were used eight pollinators originating from three different USDA-ARS b...

  1. Rapid anti-pathogen response in ant societies relies on high genetic diversity

    OpenAIRE

    Ugelvig, Line V.; Kronauer, Daniel J. C.; Schrempf, Alexandra; Heinze, Jürgen; Cremer, Sylvia

    2010-01-01

    Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the ind...

  2. The benefits of genetic diversity outweigh those of kin association in a territorial animal.

    OpenAIRE

    Griffiths, S. W.; Armstrong, J. D.

    2001-01-01

    The theories of kin selection and heterogeneous advantage have been central to studies of altruistic behaviour and the evolution of sex over the last 35 years. Yet they predict diametrically opposite effects of genetic diversity on population density. Close relatives gain inclusive fitness advantages by preferentially associating with and behaving altruistically towards one another. However, heterogeneous advantage, which predicts competition to be highest when genetic diversity is low, sugge...

  3. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, caviidae) in Colombia

    OpenAIRE

    William Burgos-Paz; Mario Cerón-Muñoz; Carlos Solarte-Portilla

    2011-01-01

    The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p < 0.05), genetic differen...

  4. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth

    OpenAIRE

    Marie Nancy Séraphin; Michael Lauzardo; Richard T Doggett; Jose Zabala; J. Glenn Morris; Blackburn, Jason K.

    2016-01-01

    Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped...

  5. Characterization of genetic diversity of native 'Ancho' chili populations of Mexico using microsatellite markers

    OpenAIRE

    Rocío Toledo-Aguilar; Higinio López-Sánchez; Amalio Santacruz-Varela; Ernestina Valadez-Moctezuma; Pedro A López; Víctor H Aguilar-Rincón; Víctor A González-Hernández; Humberto Vaquera-Huerta

    2016-01-01

    'Ancho' type chilis (Capsicum annuum L. var. annuum) are an important ingredient in the traditional cuisine of Mexico and so are in high demand. It includes six native sub-types with morphological and fruit color differences. However, the genetic diversity of the set of these sub­types has not been determined. The objective of this study was to characterize the genetic diversity of native Mexican ancho chili populations using microsatellites and to determine the relationship among these popul...

  6. Evaluation of the population structure and genetic diversity of Plasmodium falciparum in southern China

    OpenAIRE

    Wei, Guiying; Zhang, Lili; Yan, He; Zhao, Yuemeng; Hu, Jingying; Pan, Weiqing

    2015-01-01

    Background Yunnan and Hainan provinces are the two major endemic regions for Plasmodium falciparum malaria in China. However, few studies have investigated the characteristics of this parasite. Therefore, this study aimed to evaluate the genetic diversity and population structure of P. falciparum to predict the geographic origin of falciparum malaria. Methods Thirteen highly polymorphic microsatellite loci were studied to estimate the genetic diversity and population structure of 425 P. falci...

  7. Genetic Diversity and Population Structure of Rice Pathogen Ustilaginoidea virens in China

    OpenAIRE

    Sun, Xianyun; Kang, Shu; Zhang, Yongjie; Tan, Xinqiu; Yu, Yufei; He, Haiyong; Zhang, Xinyu; Liu, Yongfeng; Wang, Shu; Sun, Wenxian; Cai, Lei; Li, Shaojie

    2013-01-01

    Rice false smut caused by the fungal pathogen Ustilaginoidea virens is becoming a destructive disease throughout major rice-growing countries. Information about its genetic diversity and population structure is essential for rice breeding and efficient control of the disease. This study compared the genome sequences of two U . virens isolates. Three SNP-rich genomic regions were identified as molecular markers that could be used to analyze the genetic diversity and population structure of U ....

  8. Old-Growth Platycladus orientalis as a Resource for Reproductive Capacity and Genetic Diversity

    OpenAIRE

    ZHU Lin; Lou, Anru

    2013-01-01

    Aims Platycladus orientalis (Cupressaceae) is an old-growth tree species which distributed in the imperial parks and ancient temples in Beijing, China. We aim to (1) examine the genetic diversity and reproductive traits of old-growth and young populations of P. orientalis to ascertain whether the older populations contain a higher genetic diversity, more private alleles and a higher reproductive output compared with younger populations; (2) determine the relationships between the age of the p...

  9. Genetic diversity among Salvia miltiorrhiza Bunge and related species inferred from nrDNA ITS sequences

    OpenAIRE

    ZHANG Li; Zhao, Hong-Xia; Fan, Xing; WANG, Meng; Ding, Chun-Bang; Yang, Rui-Wu

    2012-01-01

    To investigate the genetic diversity and phylogenetic relationships of Salvia miltiorrhiza and related species, we analyzed the nuclear ribosomal DNA internal transcribed spacer (ITS) region for 7 accessions of Salvia miltiorrhiza and another 23 samples from other taxa within the genus Salvia by maximum parsimony and Bayesian inference analyses. There were 257 variation sites amounting to 40.8% of the total base pairs. All of the data revealed abundant genetic diversity in the genus Salvia. T...

  10. On the Consequences of Purging and Linkage on Fitness and Genetic Diversity

    OpenAIRE

    Diego Bersabé; Armando Caballero; Andrés Pérez-Figueroa; Aurora García-Dorado

    2016-01-01

    Using computer simulation we explore the consequences of linkage on the inbreeding load of an equilibrium population, and on the efficiency of purging and the loss of genetic diversity after a reduction in population size. We find that linkage tends to cause increased inbreeding load due to the build up of coupling groups of (partially) recessive deleterious alleles. It also induces associative overdominance at neutral sites but rarely causes increased neutral genetic diversity in equilibrium...

  11. Genetic diversity characterization of cassava cultivars (Manihot esculenta Crantz.: I RAPD markers

    Directory of Open Access Journals (Sweden)

    Colombo Carlos

    1998-01-01

    Full Text Available RAPD markers were used to investigate the genetic diversity of 31 Brazilian cassava clones. The results were compared with the genetic diversity revealed by botanical descriptors. Both sets of variates revealed identical relationships among the cultivars. Multivariate analysis of genetic similarities placed genotypes destinated for consumption "in nature" in one group, and cultivars useful for flour production in another. Brazil?s abundance of landraces presents a broad dispersion and is consequently an important resource of genetic variability. The botanical descriptors were not able to differentiate thirteen pairs of cultivars compared two-by-two, while only one was not differentiated by RAPD markers. These results showed the power of RAPD markers over botanical descriptors in studying genetic diversity, identifying duplicates, as well as validating, or improving a core collection. The latter is particularly important in this vegetatively propagated crop.

  12. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Directory of Open Access Journals (Sweden)

    Jurado Juan J

    2009-09-01

    Full Text Available Abstract Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008 consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08 mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will

  13. Genetic diversity of Prochilodus lineatus stocks using in the stocking program of Tietê River, Brazil

    OpenAIRE

    Ricardo Ribeiro; Silvio C. Alves dos Santos; Maria Rodriguez-Rodriguez; Darci C. Fornari; Jayme Povh; Nelson Lopera-Barrero

    2013-01-01

    ABSTRACTObjective. Assess the genetic diversity in four brood stocks and one juvenile stock of curimba Prochilodus lineatus in a Hydropower plant in São Paulo - Brazil, using the Tietê River stocking program. Materials and methods. Five RAPD primers were used to amplify the extracted DNA from 150 fin-clip samples. Results. Fifty-nine fragments were polymorphic, 52 had frequencies with significant differences (p<0.05), 45 had low frequencies, 54 were excluded, and two were fixed fragments. ...

  14. Enterobacterial repetitive intergenic consensus (ERIC) PCR based genetic diversity of Xanthomonas spp. and its relation to xanthan production

    OpenAIRE

    Ezat Asgarani; Tahereh Ghashghaei; MohammadReza Soudi; Nayyereh Alimadadi

    2015-01-01

    Background and Objective: The genus Xanthomonas is composed of phytopathogenic bacterial species. In addition to causing crops diseases, most of the Xanthomonas species especially Xanthomonas campestris produce xanthan gum via an aerobic fermentation process. Xanthan gum is, an important exopolysaccharide from Xanthomonas campestris, mainlyused in the food, petroleum and other industries. the purpose of this study was assessment of relationship between genetic diversity and xanthan production...

  15. Analysis of dsDNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity.

    Science.gov (United States)

    Calusinska, Magdalena; Marynowska, Martyna; Goux, Xavier; Lentzen, Esther; Delfosse, Philippe

    2016-04-01

    Although viruses are not the key players of the anaerobic digestion process, they may affect the dynamics of bacterial and archaeal populations involved in biogas production. Until now viruses have received very little attention in this specific habitat; therefore, as a first step towards their characterization, we optimized a virus filtration protocol from anaerobic sludge. Afterwards, to assess dsDNA and RNA viral diversity in sludge samples from nine different reactors fed either with waste water, agricultural residues or solid municipal waste plus agro-food residues, we performed metagenomic analyses. As a result we showed that, while the dsDNA viromes (21 assigned families in total) were dominated by dsDNA phages of the order Caudovirales, RNA viruses (14 assigned families in total) were less diverse and were for the main part plant-infecting viruses. Interestingly, less than 2% of annotated contigs were assigned as putative human and animal pathogens. Our study greatly extends the existing view of viral genetic diversity in methanogenic reactors and shows that these viral assemblages are distinct not only among the reactor types but also from nearly 30 other environments already studied, including the human gut, fermented food, deep sea sediments and other aquatic habitats. PMID:26568175

  16. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    Science.gov (United States)

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  17. Paradox of Genetic Diversity in the Case of Prionic Diseases in Sheep Breeds from Romania

    Directory of Open Access Journals (Sweden)

    Gheorghe Hrinca

    2016-05-01

    Full Text Available The main target of this debate is the revaluation of the biodiversity concept and especially of its significance in the animal husbandry field. The paper analyzes the genetic diversity at the determinant locus of scrapie (PrP in the sheep breeds from Romania: Palas Merino, Tsigai, Tsurcana, Botosani Karakul, Palas Meat Breed and Palas Milk Breed. The prionic genetic diversity (d has been quantified by means of informational energy (e. This study highlights the impact of increasing the genetic diversity from the PrP locus level on the health status of ovine species and especially on human food safety. The informational statistics processing shows that the resistance / susceptibility to scrapie is in relation to the degree of prionic genetic diversity. The limitation of genetic diversity by selecting the individuals possessing the ARR allele in both homozygous status and in combination with alleles ARQ, ARH AHQ confers to sheep herds certain levels of resistance to contamination with scrapie disease. Instead, promoting to reproduction also individuals possessing the VRQ allele in all possible genotypic combinations (including ARR allele increases genetic diversity but also has as effect increasing the susceptibility of sheep to prion disease onset. From the point of view of morbid phenomenon, the Botosani Karakul breed is clearly advantaged compared to all other indigenous sheep breeds from Romania. For methodological coherency in the interpretative context of this issue, the genetic diversity was analyzed in association with the heterozygosity degree of breeds and their Hardy-Weinberg genetic equilibrium at the PrP locus level. Finally, the paper refers to decisions that the improvers must take to achieve the genetic prophylaxis in the scrapie case taking into account the polymorphism degree of prion protein.

  18. Risk assessment of genetically modified crops for nutrition and health.

    Science.gov (United States)

    Magaña-Gómez, Javier A; de la Barca, Ana M Calderón

    2009-01-01

    The risk assessment of genetically modified (GM) crops for human nutrition and health has not been systematic. Evaluations for each GM crop or trait have been conducted using different feeding periods, animal models, and parameters. The most common result is that GM and conventional sources induce similar nutritional performance and growth in animals. However, adverse microscopic and molecular effects of some GM foods in different organs or tissues have been reported. Diversity among the methods and results of the risk assessments reflects the complexity of the subject. While there are currently no standardized methods to evaluate the safety of GM foods, attempts towards harmonization are on the way. More scientific effort is necessary in order to build confidence in the evaluation and acceptance of GM foods. PMID:19146501

  19. Levels of Biological Diversity: a Spatial Approach to Assessment Methods

    Directory of Open Access Journals (Sweden)

    ALEXANDRU-IONUŢ PETRIŞOR

    2008-01-01

    Full Text Available Biological diversity, interpreted as a variety of natural and man-dominated biological and ecological systems, plays an important role in assuring their stability and can be interpreted at different spatial scales, based on the hierarchical level of the system (biocoenose/ ecosystem, biome/complex of ecosystem, biosphere/ecosphere. Literature distinguishes six levels of biodiversity, namely alpha, beta, gamma, delta, epsilon, and omega. The current paper lists methodologies appropriate for assessing diversity at each of these levels, with a particular focus on regional diversity (gamma, delta, and epsilon diversities, i.e. CORINE land cover classification and the biogeographical regions of the European Union.

  20. Floristic inventory and diversity assessment - a critical review

    Directory of Open Access Journals (Sweden)

    S. Jayakumar

    2011-12-01

    Full Text Available Floristic inventory and diversity assessments are necessary to understand the present diversity status and conservation of forest biodiversity. Although, inventory and diversity studies are taken up at different levels all over the world by various research groups with available resources and to fill the gap in the biodiversity knowledge, there are variations in sampling methods/techniques, sample size, measurements taken in the field that hinder the compilation and comparison of results. This review discusses the problems and pitfalls in different sampling techniques, which are being followed in floristic inventory and diversity measurements.

  1. The loss of genetic diversity during captive breeding of the endangered sculpin, Trachidermus fasciatus, based on ISSR markers: implications for its conservation

    Institute of Scientific and Technical Information of China (English)

    BI Xiaoxiao; YANG Qiaoli; GAO Tianxiang; LI Chuangju

    2011-01-01

    Inter-simple sequence repeat (ISSR) markers were used to determine the genetic variation and genetic differentiation of cultured and wild populations of Trachidermus fasciatus,an endangered catadromous fish species in China.Six selected primers were used to amplify DNA samples from 85 individuals,and 353 loci were detected.Relatively low genetic diversity was detected in the cultured population (the percentage of polymorphic loci PPL=73.80%,Nei's gene diversity h=0.178 2,Shannon information index I=0.276 9).However,the genetic diversity at the species level was relatively high (PPL=91.78%; h=0.258 3,I=0.398 6).The UPGMA tree grouped together the genotypes almost according to their cultured and wild origin,showing distinct differences in genetic structure between wild and cultured populations.The pairwise Fst values confirmed significant genetic differentiation between wild and cultured samples.The cultivated population seems to be low in genetic diversity as a result of detrimental genetic effects in the captive population.The results suggest that ISSR markers are effective for rapid assessment of the degree of diversity of a population,thus giving important topical information relevant to preserving endangered species.

  2. Genetic diversity analysis of Croton antisyphiliticus Mart. using AFLP molecular markers.

    Science.gov (United States)

    Oliveira, T G; Pereira, A M S; Coppede, J S; França, S C; Ming, L C; Bertoni, B W

    2016-01-01

    Croton antisyphiliticus Mart. is a medicinal plant native to Cerrado vegetation in Brazil, and it is popularly used to treat urogenital tract infections. The objective of the present study was to assess the genetic variability of natural C. antisyphiliticus populations using AFLP molecular markers. Accessions were collected in the states of Minas Gerais, São Paulo, and Goiás. The genotyping of individuals was performed using a LI-COR® DNA Analyzer 4300. The variability within populations was found to be greater than the variability between them. The F(ST) value was 0.3830, which indicated that the populations were highly structured. A higher percentage of polymorphic loci (92.16%) and greater genetic diversity were found in the population accessions from Pratinha-MG. Gene flow was considered restricted (N(m) = 1.18), and there was no correlation between genetic and geographic distances. The populations of C. antisyphiliticus exhibited an island-model structure, which demonstrates the vulnerability of the species. PMID:26909989

  3. Genetic diversity in sugar apple (Annona squamosa L. by using RAPD markers

    Directory of Open Access Journals (Sweden)

    João Filipi Rodrigues Guimarães

    2013-06-01

    Full Text Available Genetic diversity in a collection of 64 sugar apple accessions collected from different municipalities in northern Minas Gerais was assessed by RAPD analysis. Using 20 selected RAPD primers 167 fragments were generated, of which 48 were polymorphic (28.7% producing an average of 2.4 polymorphic fragments per primer. Low percentage of polymorphism (< 29% was observed by using the set of primers indicating low level of genetic variation among the 64 accessions evaluated. Genetic relationships were estimated using Jaccard's coefficient of similarity. Accessions from different municipalities clustered together indicating no correlation between molecular grouping and geographical origin. The dendrogram revealed five clusters. The first cluster grouped C19 and G29 accessions collected from the municipalities of Verdelândia and Monte Azul, respectively. The second cluster grouped G16 and B11 accessions collected from the municipalities of Monte Azul and Coração de Jesus, respectively. The remaining accessions were grouped in three clusters, with 8, 15 and 37 accessions, respectively. In summary, RAPD showed a low percentage of polymorphism in the germplasm collection.

  4. Genetic diversity within lichen photobionts of the Lecanora varia group (Lichenes, Ascomycota)

    DEFF Research Database (Denmark)

    Pérez-Ortega, S.; Søchting, Ulrik; Printzen, C.

    Lichens are symbiotic organisms, where a fungus–generally a member of the Ascomycota – and a photobiont – generally a green algae – interact closely in a widespread life form strategy. Recently, numerous studies have focused on the genetic diversity and phylogenetic relationships of the fungal...... the nuclear ribosomal DNA to assess the degree of genetic variability within the phobobionts present. A high degree of variability was found among the photobionts of sampled specimens. Not only different lineages but also different photobiont species were detected. No correlation between lichen...

  5. Genetic diversity and parentage in farmer selections of cacao from Southern Sulawesi, Indonesia revealed by microsatellite markers.

    Science.gov (United States)

    Dinarti, Diny; Susilo, Agung W; Meinhardt, Lyndel W; Ji, Kun; Motilal, Lambert A; Mischke, Sue; Zhang, Dapeng

    2015-12-01

    Indonesia is the third largest cocoa-producing country in the world. Knowledge of genetic diversity and parentage of farmer selections is important for effective selection and rational deployment of superior cacao clones in farmers' fields. We assessed genetic diversity and parentage of 53 farmer selections of cacao in Sulawesi, Indonesia, using 152 international clones as references. Cluster analysis, based on 15 microsatellite markers, showed that these Sulawesi farmer selections are mainly comprised of hybrids derived from Trinitario and two Upper Amazon Forastero groups. Bayesian assignment and likelihood-based parentage analysis further demonstrated that only a small number of germplasm groups, dominantly Trinitario and Parinari, contributed to these farmer selections, in spite of diverse parental clones having been used in the breeding program and seed gardens in Indonesia since the 1950s. The narrow parentage predicts a less durable host resistance to cacao diseases. Limited access of the farmers to diverse planting materials or the strong preference for large pods and large bean size by local farmers, may have affected the selection outcome. Diverse sources of resistance, harbored in different cacao germplasm groups, need to be effectively incorporated to broaden the on-farm diversity and ensure sustainable cacao production in Sulawesi. PMID:26719747

  6. GENETIC DIVERSITY OF TOXOPLASMA GONDII ISOLATES FROM CHICKENS FROM BRAZIL

    Science.gov (United States)

    Until recently, Toxoplasma gondii was considered clonal with very little genetic variability. Recent studies indicate that T. gondii isolates from Brazil are genetically and biologically different from T. gondii isolates from USA and Europe. In the present study, we retyped 151 free range chicken is...

  7. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds

    DEFF Research Database (Denmark)

    Bakal, Chris; Linding, Rune; Llense, Flora;

    2008-01-01

    Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have suc...

  8. Articles selected by Faculty of 1000 Biology: genetically identical SNPs; detailed histone modification mapping; plant gene-expression diversity; photosynthesis gene evolution; ε-Proteobacteria diversity.

    OpenAIRE

    2005-01-01

    A selection of evaluations from Faculty of 1000 Biology covering genetically identical SNPs; detailed histone modification mapping; plant gene-expression diversity; photosynthesis gene evolution; ε-Proteobacteria diversity

  9. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Treml, Eric A; Wren, Johanna L K; Donovan, Mary K; Toonen, Robert J

    2016-04-27

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. PMID:27122569

  10. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages

    Science.gov (United States)

    Gaggiotti, Oscar E.; Treml, Eric A.; Wren, Johanna L. K.; Donovan, Mary K.; Toonen, Robert J.

    2016-01-01

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. PMID:27122569

  11. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).

    Science.gov (United States)

    Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine

    2015-08-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. PMID:26119928

  12. Jaguar taxonomy and genetic diversity for southern Arizona, United States, and Sonora, Mexico

    Science.gov (United States)

    Culver, Melanie; Hein, Alexander Ochoa

    2016-01-01

    Executive SummaryThe jaguar is the largest Neotropical felid and the only extant representative of the genus Panthera in the Americas. In recorded history, the jaguars range has extended from the Southern United States, throughout Mexico, to Central and South America, and they occupy a wide variety of habitats. A previous jaguar genetic study found high historical levels of gene flow among jaguar populations over broad areas but did not include any samples of jaguar from the States of Arizona, United States, or Sonora, Mexico. Arizona and Sonora have been part of the historical distribution of jaguars; however, poaching and habitat fragmentation have limited their distribution until they were declared extinct in the United States and endangered in Sonora. Therefore, a need was apparent to have this northernmost (Arizona/Sonora) jaguar population included in an overall jaguar molecular taxonomy and genetic diversity analyses. In this study, we used molecular genetic markers to examine diversity and taxonomy for jaguars in the Northwestern Jaguar Recovery Unit (NJRU; Sonora, Sinaloa, and Jalisco, Mexico; and southern Arizona and New Mexico, United States) relative to jaguars in other parts of the jaguar range (Central and South America). The objectives of this study were to:Collect opportunistic jaguar samples (hide, blood, hair, saliva, and scat), from historical and current individuals, that originated in NJRU areas of Arizona, New Mexico, and Sonora;Use these samples to assess molecular taxonomy of NJRU jaguars compared to data from a previous study of jaguars rangewide; andDevelop suggestions for conservation of NJRU jaguars based on the results.

  13. GENETIC DIVERSITY OF WILD AND FARMED KALIBAUS (Labeo calbasu, Hamilton, 1822 BY RAPD ANALYSIS OF THE GENOMIC DNA

    Directory of Open Access Journals (Sweden)

    M.G. Mostafa

    2009-04-01

    Full Text Available Genetic diversity of two wild Kalibaus, Labeo calbasu populations and one hatchery stock was studied using random amplified polymorphic DNA (RAPD method. The three 10–mer random primers (OPA01, OPB02 and OPC03 yielded a total of 26 reproducible and consistently scorable RAPD bands of which 15 (57.69% were considered as polymorphic (P95 indicating a high level of genetic variation in all the studied populations. Among the three populations, Padma population shows low level of genetic diversity (0.1238 compared to other two and it might be caused by habitat degradation in many ways which ultimately affects the genetic variation of Kalibaus. The UPGMA dendrogram based on Nei’s (1972 original measures of genetic distance (D indicated the segregation of two wild and hatchery populations of L. calbasu into two distinct clusters: the Hatchery and Padma populations produced one cluster whereas the Jamuna population belonged to another cluster. This indicates that hatchery brood stock is derived from Padma River. Nevertheless, the preliminary study revealed that RAPD technique could be an effective tool in the assessment of population genetic structure of Kalibaus.

  14. Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis

    NARCIS (Netherlands)

    Pang, W.; Li, X.; Choi, S.R.; Dhandapani, V.; Im, S.; Park, M.Y.; Jang, C.S.; Yang, M.S.; Ham, I.K.; Lee, E.M.; Kim, W.; Lee, S.S.; Bonnema, A.B.; Park, S.; Piao, Z.; Lim, Y.P.

    2015-01-01

    Brassica rapa is an economically important crop with a wide range of morphologies. Developing a set of fixed lines and understanding their diversity has been challenging, but facilitates resource conservation. We investigated the genetic diversity and population structure of 238 fixed lines of leafy

  15. Genetic Diversity through the Looking Glass: Effect of Enrichment Bias

    OpenAIRE

    Dunbar, J.; White, S.; Forney, L

    1997-01-01

    The effect of enrichment bias on the diversity of 2,4-dichlorophenoxyacetate (2,4-D)-degrading (2,4-D(sup+)) bacteria recovered from soil was evaluated by comparing the diversity of isolates obtained by direct plating to the diversity of isolates obtained from 85 liquid batch cultures. By the two methods, a total of 159 isolates were purified from 1 g of soil and divided into populations based on repeated extragenic palindromic sequence PCR (rep-PCR) genomic fingerprints. Approximately 42% of...

  16. Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution

    Directory of Open Access Journals (Sweden)

    Albrecht Elena

    2012-08-01

    Full Text Available Abstract Background The exotic pepper species Capsicum baccatum, also known as the aji or Peruvian hot pepper, is comprised of wild and domesticated botanical forms. The species is a valuable source of new genes useful for improving fruit quality and disease resistance in C. annuum sweet bell and hot chile pepper. However, relatively little research has been conducted to characterize the species, thus limiting its utilization. The structure of genetic diversity in a plant germplasm collection is significantly influenced by its ecogeographical distribution. Together with DNA fingerprints derived from AFLP markers, we evaluated variation in fruit and plant morphology of plants collected across the species native range in South America and evaluated these characters in combination with the unique geography, climate and ecology at different sites where plants originated. Results The present study mapped the ecogeographic distribution, analyzed the spatial genetic structure, and assessed the relationship between the spatial genetic pattern and the variation of morphological traits in a diverse C. baccatum germplasm collection spanning the species distribution. A combined diversity analysis was carried out on the USDA-ARS C. baccatum germplasm collection using data from GIS, morphological traits and AFLP markers. The results demonstrate that the C. baccatum collection covers wide geographic areas and is adapted to divergent ecological conditions in South America ranging from cool Andean highland to Amazonia rainforest. A high level of morphological diversity was evident in the collection, with fruit weight the leading variable. The fruit weight distribution pattern was compatible to AFLP-based clustering analysis for the collection. A significant spatial structure was observed in the C. baccatum gene pool. Division of the domesticated germplasm into two major regional groups (Western and Eastern was further supported by the pattern of spatial

  17. Genetic diversity and population structure of Korean and Chinese soybean [Glycine max (L.) Merr.] accessions

    Science.gov (United States)

    Korean and Chinese cultivated soybean [Glycine max (L.) Merr.] populations are major soybean gene pools. Information has been reported comparing genetic diversity between soybeans from the two countries using an unequal number of accessions and only 6 to 35 genetic markers. This study compares diffe...

  18. Genetic diversity and structure found in samples of Eritrean bread wheat

    DEFF Research Database (Denmark)

    Desta, Zeratsion Abera; Orabi, Jihad; Jahoor, Ahmed; Backes, Gunter

    2014-01-01

    sequence repeat markers. A total of 539 alleles were detected. The allele number per locus ranged from 2 to 21, with a mean allele number of 9.2. The average genetic diversity index was 0.66, with values ranging from 0.01 to 0.89. Comparing the three genomes of wheat, the B genome had the highest genetic...

  19. Genetic diversity of grayling (Thymallus thymallus L.) populations in the Czech Republic inferred from microsatellite markers

    Czech Academy of Sciences Publication Activity Database

    Papoušek, Ivo; Halačka, Karel; Kohout, Jan; Šlechta, Vlastimil; Vetešník, Lukáš; Mendel, Jan

    Klaipeda : Klaipedos Universitetas, 2009. s. 80. ISBN 978-9955-18-452-2. [European Congress of Ichthyology /13./. 06.09.2009-12.09.2009, Klaipeda] R&D Projects: GA AV ČR 1QS500450513 Institutional research plan: CEZ:AV0Z60930519 Keywords : genetic diversity * grayling * microsatellites Subject RIV: EB - Genetics ; Molecular Biology

  20. Genetic Diversity, Population Structure, and Resistance to Phytophthora capsici of a Worldwide Collection of Eggplant Germplasm

    OpenAIRE

    Naegele, Rachel P.; Boyle, Samantha; Quesada-Ocampo, Lina M.; Hausbeck, Mary K.

    2014-01-01

    Eggplant (Solanum melongena L.) is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo), landraces and heirloom cultivars) from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluate...

  1. Social Organization of Crop Genetic Diversity. The G × E × S Interaction Model

    OpenAIRE

    Geo Coppens d’Eeckenbrugge; Christian Leclerc

    2011-01-01

    A better knowledge of factors organizing crop genetic diversity in situ increases the efficiency of diversity analyses and conservation strategies, and requires collaboration between social and biological disciplines. Four areas of anthropology may contribute to our understanding of the impact of social factors on crop diversity: ethnobotany, cultural, cognitive and social anthropology. So far, most collaborative studies have been based on ethnobotanical methods, focusing on farmers’ individu...

  2. The Relationship between Species Diversity and Genetic Structure in the Rare Picea chihuahuana Tree Species Community, Mexico

    OpenAIRE

    Sergio Leonel Simental-Rodríguez; Carmen Zulema Quiñones-Pérez; Daniel Moya; Enrique Hernández-Tecles; Carlos Antonio López-Sánchez; Christian Wehenkel

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is ...

  3. High and distinct range-edge genetic diversity despite local bottlenecks.

    Science.gov (United States)

    Assis, Jorge; Castilho Coelho, Nelson; Alberto, Filipe; Valero, Myriam; Raimondi, Pete; Reed, Dan; Serrão, Ester Alvares

    2013-01-01

    The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge) are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines. PMID:23967038

  4. Safety assessment of genetically modified crops

    International Nuclear Information System (INIS)

    The development of genetically modified (GM) crops has prompted widespread debate regarding both human safety and environmental issues. Food crops produced by modern biotechnology using recombinant techniques usually differ from their conventional counterparts only in respect of one or a few desirable genes, as opposed to the use of traditional breeding methods which mix thousands of genes and require considerable efforts to select acceptable and robust hybrid offspring. The difficulties of applying traditional toxicological testing and risk assessment procedures to whole foods are discussed along with the evaluation strategies that are used for these new food products to ensure the safety of these products for the consumer

  5. Evaluation of a Diverse, Worldwide Collection of Wild, Cultivated, and Landrace Pepper (Capsicum annuum) for Resistance to Phytophthora Fruit Rot, Genetic Diversity, and Population Structure.

    Science.gov (United States)

    Naegele, R P; Tomlinson, A J; Hausbeck, M K

    2015-01-01

    Pepper is the third most important solanaceous crop in the United States and fourth most important worldwide. To identify sources of resistance for commercial breeding, 170 pepper genotypes from five continents and 45 countries were evaluated for Phytophthora fruit rot resistance using two isolates of Phytophthora capsici. Genetic diversity and population structure were assessed on a subset of 157 genotypes using 23 polymorphic simple sequence repeats. Partial resistance and isolate-specific interactions were identified in the population at both 3 and 5 days postinoculation (dpi). Plant introductions (PIs) 640833 and 566811 were the most resistant lines evaluated at 5 dpi to isolates 12889 and OP97, with mean lesion areas less than Criollo de Morelos. Genetic diversity was moderate (0.44) in the population. The program STRUCTURE inferred four genetic clusters with moderate to very great differentiation among clusters. Most lines evaluated were susceptible or moderately susceptible at 5 dpi, and no lines evaluated were completely resistant to Phytophthora fruit rot. Significant population structure was detected when pepper varieties were grouped by predefined categories of disease resistance, continent, and country of origin. Moderately resistant or resistant PIs to both isolates of P. capsici at 5 dpi were in genetic clusters one and two. PMID:25054617

  6. Genetic diversity and selective breeding of red common carps in China

    OpenAIRE

    Li, S. F.; C. H. Wang

    2001-01-01

    China has a very rich genetic diversity in common carp (Cyprinus carpio) and the red common carp plays an important role in Chinese aquaculture and genetic studies. Selective breeding, particularly crossbreeding has been applied successfully to red common carps in China, and the products of these efforts have been in commercial use since the 1970s. However, knowledge of the quantitative and molecular genetics of these carps is limited. Studies were therefore undertaken to: (1) understand the ...

  7. Comparative Analysis of Genetic Diversity in Landraces of Waxy Maize from Yunnan and Guizhou Using SSR Markers

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-jian; HUANG Yu-bi; RONG Ting-zhao; TIAN Meng-liang; YANG Jun-pin

    2005-01-01

    Waxy maize landraces are abundant in Yunnan and Guizhou of China. Genetic diversity of waxy maize landraces from Yunnan and Guizhou were analyzed using SSR markers. We screened 38 landraces with 50 primers that generated 3 to 6 polymorphic bands, with an average of 4.13 bands. Shannon's information indices for genetic diversity of the 14 waxy maize landraces from Yunnan varied from 4.9571 to 42.1138 and averaged 26.5252; Shannon's information indices for genetic diversity of the 24 waxy maize landraces from Guizhou varied from 22.0066 to 40.6320 and averaged 32.3156. For the 14 waxy maize landraces from Yunnan, the within-landrace genetic diversity accounted for 45.40% and the among-landrace genetic diversity accounted for 54.60% of the total genetic diversity observed. For the 24 waxy maize landraces from Guizhou, the within-landrace genetic diversity accounted for 50.76% and the among-landrace genetic diversity accounted for 49.24% of the total observed. Some individual landraces possessed as much as 96.86% of the total genetic diversity occurring among landraces within origins. Differentiation between geographic origins accounted for only 3.14% of the total genetic diversity. Both Yunnan and Guizhou would be the diversity centers and the original centers of waxy maize.

  8. Genetic diversity of Sardinian goat population based on microsatellites

    Directory of Open Access Journals (Sweden)

    A. Carta

    2010-01-01

    Full Text Available During the last century, the selection for production traits of the main livestock species has led to a reduction in number of local populations with consequent loss of genetic variability. In Sardinia, the genetic improvement strategy has been based on selection for the local pure breed in sheep, whereas in the other species (cattle, swine and goat, an often unplanned crossbreeding with improved breeds has been applied.

  9. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Melissa D Conrad

    Full Text Available Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes.Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2 differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages.Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  10. A comparison of the genetic diversity in Dipteronia sinensis Oliv.and Dipteronia dyeriana Henry

    Institute of Scientific and Technical Information of China (English)

    LI Shan; QIAN Zengqiang; CAI Yuliang; ZHAO Guifang

    2006-01-01

    Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D.dyeriana.Based on random amplified polymorphic DNA (RAPD) markers,a comparative study of the genetic diversity and genetic structure of Dipteronia was performed.In total,128 and 103 loci were detected in 17 D.sinensis populations and 4 D.dyeriana populations,respectively,using 18 random primers.These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%,respectively,indicating that the genetic diversity of D.sinensis was higher than that of D.dyeriana.Analysis,based on similarity coefficients,Shannon diversity index and Nei gene diversity index,also confirmed this result.AMOVA analysis demonstrated that the genetic variation of D.sinensis within and among populations accounted for 56.89% and 43.11% of the total variation,respectively,and that of D.dyeriana was 57.86% and 42.14%,respectively.The Shannon diversity index and Nei gene diversity index showed similar results.The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high.Analysis of the genetic distance among populations also supported this conclusion.Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon.The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D.sinensis (p<0.01),while no significant correlation was found between genetic and geographical distances among populations of D.dyeriana.This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale.This result may be related to differences in the

  11. Genetic diversity in mazandaranian native cattle: a comparison with Holstein cattle, using ISSR marker.

    Science.gov (United States)

    Pashaei, S; Azari, M A; Hasani, S; Khanahmadi, A; Rostamzadeh, J

    2009-05-01

    This study was carried out to investigate genetic diversity in Mazandaranian native cattle population comparised to the Holstein breed, using Inter Simple Sequence Repeats (ISSR) marker. A total of 175 animals, including 71 native and 104 cattle of Holstein breed were screened. The extraction of DNA samples were carried out, using modified salting out method. A 19-mer oligonucleotide, (GA)9C, was used as primer in PCR reactions. The PCR products showed 15 different fragments with length ranged from 120 to 1600 bp in the two breeds.. Genetic variation indexes, including effective number of alleles, Shannon index, Nei's gene diversity and standard genetic distance were estimated, using POPGene software. Generally, the estimated genetic variation indexes showed low levels of diversity in the two breeds. However, Nei's gene diversity and Shannon index estimation was observed almost two folds in native cattle compared to Holstein breed. Less levels of diversity in Holstein cattle may be because of applying intensive selection programs. Conversely, native cattle have been less affected by selection. Therefore, it seems that Mazandaranian native cattle probably are better for breeding programs than Holstein cattle. Results showed that ISSR Markers are reliable and can be used in genetic diversity investigations. PMID:19634477

  12. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    Science.gov (United States)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  13. Utilization of Genetic Diversity on Establishing Chinese Soybean (G.max0 Core Collection

    Institute of Scientific and Technical Information of China (English)

    QiuLijuan; XieHua; ChangRuzhen; LiWei; WangWenhui; ZhangBo; ZhangMinghui; FengZhongfu

    2002-01-01

    Genetic diversity plays a very important role in establishing core collection.In this study,A total of 405 Chinese soybean accessions was selected from the preliminary core collection,which had 5 different ecotypes from three cultivation regions,including northeastern spring sowing soybean(NSpSS),huanghuai summer sowing soybean(HSuSS),southern spring sowing soybean(SSpSS),southern summer sowing soybean(SSuSS),southern autumn sowing soybean(SAuSS).The genetic diversities and genetic relationship of five ecotypes were analyzed at DNA level by using SSR markers in order to provide information for establishemnt of Chinese soybean core collection.A set of 67 SSR primers were used to analyze these accessions,and detected 502 alleles with averaged 7.49 alleles per locus.SAuSS appeared to be the highest number of alleles,HSuSS had the biggest genetic diversity indexes and NSpSS were lowest for both numbers of alleles and genetic diversity indexes among 5 ecotypes.Since five ecotypes differentiated obviously,various sampling strategy for establishing core collection should be adaped for different ecotypes based on the number of alleles and genetic diversity indexes.

  14. Stress-related hormones and genetic diversity in sea otters (Enhydra lutris)

    Science.gov (United States)

    Larson, S.; Monson, D.; Ballachey, B.; Jameson, R.; Wasser, S.K.

    2009-01-01

    Sea otters (Enhydra lutris) once ranged throughout the coastal regions of the north Pacific, but were extirpated throughout their range during the fur trade of the 18th and 19th centuries, leaving only small, widely scattered, remnant populations. All extant sea otter populations are believed to have experienced a population bottleneck and thus have lost genetic variation. Populations that undergo severe population reduction and associated inbreeding may suffer from a general reduction in fitness termed inbreeding depression. Inbreeding depression may result in decreased testosterone levels in males, and reduced ability to respond to stressful stimuli associated with an increase in the stress-related adrenal glucocorticoid hormones, cortisol and corticosterone. We investigated correlations of testosterone, cortisol, and corticosterone with genetic diversity in sea otters from five populations. We found a significant negative correlation between genetic diversity and both mean population-level (r2 = 0.27, P < 0.001) and individual-level (r2 = 0.54, P < 0.001) corticosterone values, as well as a negative correlation between genetic diversity and cortisol at the individual level (r2 = 0.17, P = 0.04). No relationship was found between genetic diversity and testosterone (P = 0.57). The strength of the correlations, especially with corticosterone, suggests potential negative consequences for overall population health, particularly for populations with the lowest genetic diversity. ?? 2009 by the Society for Marine Mammalogy.

  15. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    Science.gov (United States)

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. PMID:26494844

  16. Hitchhiker’s guide to genetic diversity in socially structured populations

    Directory of Open Access Journals (Sweden)

    L. S. PREMO

    2012-02-01

    Full Text Available When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking. A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration. Under conditions in which genetic and cultural variants are transmitted symmetrically, neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking. Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity, and it may be applicable to humans as well. This paper provides a critical review of recent models of both types of hitch­­hi­king in socially structured populations. The models’ assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species, and vice versa [Current Zoology 58 (1: 287-297, 2012].

  17. Molecular phylogeny of mangroves IV. nature and extent of intra-specific genetic variation and species diversity in mangroves

    International Nuclear Information System (INIS)

    Mangroves occupy estuarine ecosystems in the tropical regions of the world. Despite their highly productive nature and the protective roles they play in the coastal region, the ecosystem as a whole is under severe threat due to various climatic and anthropogenic factors. Therefore, the need for conservation of mangroves is widely emphasised. However, information on existing genetic diversity based on which a strategy for genetic conservation is to be drawn is not available for mangroves. This is primarily because conventional genetic analysis is difficult in these species for various reasons. Therefore, as an aid to our on-going conservation programme, efforts were made to assess the nature and extent of diversity in a number of mangrove species of the Indian coast using molecular markers. The nature and extent of intra-population diversity in sixteen mangrove species and detailed analysis of inter-population genetic polymorphism in four species, Acanthus ilicifolius, Excoecaria agallocha, Avicennia spp and Rhizophora (species and hybrid), is reported in the present communication. (author)

  18. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-01-01

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients. PMID:26345916

  19. The genetic diversity of the mangrove kandelia obovata in China revealed by ISSR analysis

    International Nuclear Information System (INIS)

    The genetic diversity of 7 populations of Kandelia obovata in China was characterized using inter simple sequence repeats (ISSR) technique. A total of 50 primers were screened, of which 9 polymorphic and informative patterns were selected to determine genetic relationships. ISSR amplification was conducted on 140 individuals from 7 populations, and 88 polymorphic loci were detected from 106 total loci. The total percentage of polymorphic loci (PPL) was 83.02%. The percentage of PPL at the population level ranged from 32.08% to 47.17%, with an average of 39.89%. Nei's gene diversity (H) and Shannon's information index (I) of K. obovata at the species level were 0.3631 and 0.5203, respectively. The genetic differentiation coefficient (Gst) among populations was 0.5548. Among populations component accounted for 55.48% of the total variation, whereas the within populations component accounted for 44.52%, suggesting that genetic differentiation among K. obovata populations was relatively high. The gene flow among populations was 0.4012, indicating that gene flow was low among geographically diverse populations of K. obovata. The results of the genetic diversity and cluster analysis suggest that geographical isolation of K. obovata populations mainly results in low gene flow and random genetic drift, leading to genetic differentiation. (author)

  20. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.).

    Science.gov (United States)

    Li, Pirui; Zhang, Fei; Chen, Sumei; Jiang, Jiafu; Wang, Haibin; Su, Jiangshuo; Fang, Weimin; Guan, Zhiyong; Chen, Fadi

    2016-06-01

    Characterizing the genetic diversity present in a working set of plant germplasm can contribute to its effective management and genetic improvement. The cut flower chrysanthemum (Chrysanthemum morifolium Ramat.) is an economically important ornamental species. With the repeated germplasm exchange and intensive breeding activities, it remains a major task in genetic research. The purpose of the present study was to characterize the genetic diversity and the population structure of a worldwide collection of 159 varieties, and to apply an association mapping approach to identify DNA-based markers linked to five plant architecture traits and six inflorescence traits. The genotyping demonstrated that there was no lack of genetic diversity in the collection and that pair-wise kinship values were relatively low. The clustering based on a Bayesian model of population structure did not reflect known variation in either provenance or inflorescence type. A principal coordinate analysis was, however, able to discriminate most of the varieties according to both of these criteria. About 1 in 100 marker pairs exhibited a degree of linkage disequilibrium. The association analysis identified a number of markers putatively linked to one or more of the traits. Some of these associations were robust over two seasons. The findings provide an in-depth understanding of genetic diversity and population structure present in cut flower chrysanthemum varieties, and an insight into the genetic control of plant architecture and inflorescence-related traits. PMID:26780102

  1. Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation

    Science.gov (United States)

    Tucker, Kimberly Pause; Hunter, Margaret E.; Bonde, Robert K.; Austin, James D.; Clark, Ann Marie; Beck, Cathy A.; McGuire, Peter M.; Oli, Madan K.

    2012-01-01

    Species of management concern that have been affected by human activities typically are characterized by low genetic diversity, which can adversely affect their ability to adapt to environmental changes. We used 18 microsatellite markers to genotype 362 Florida manatees (Trichechus manatus latirostris), and investigated genetic diversity, population structure, and estimated genetically effective population size (Ne). The observed and expected heterozygosity and average number of alleles were 0.455 ± 0.04, 0.479 ± 0.04, and 4.77 ± 0.51, respectively. All measures of Florida manatee genetic diversity were less than averages reported for placental mammals, including fragmented or nonideal populations. Overall estimates of differentiation were low, though significantly greater than zero, and analysis of molecular variance revealed that over 95% of the total variance was among individuals within predefined management units or among individuals along the coastal subpopulations, with only minor portions of variance explained by between group variance. Although genetic issues, as inferred by neutral genetic markers, appear not to be critical at present, the Florida manatee continues to face demographic challenges due to anthropogenic activities and stochastic factors such as red tides, oil spills, and disease outbreaks; these can further reduce genetic diversity of the manatee population.

  2. Application of resistance gene analog markers to analyses of genetic structure and diversity in rice.

    Science.gov (United States)

    Ren, Juansheng; Yu, Yuchao; Gao, Fangyuan; Zeng, Lihua; Lu, Xianjun; Wu, Xianting; Yan, Wengui; Ren, Guangjun

    2013-07-01

    Plant disease resistance gene analog (RGA) markers were designed according to the conserved sequence of known RGAs and used to map resistance genes. We used genome-wide RGA markers for genetic analyses of structure and diversity in a global rice germplasm collection. Of the 472 RGA markers, 138 were polymorphic and these were applied to 178 entries selected from the USDA rice core collection. Results from the RGA markers were similar between two methods, UPGMA and STRUCTURE. Additionally, the results from RGA markers in our study were agreeable with those previously reported from SSR markers, including cluster of ancestral classification, genetic diversity estimates, genetic relatedness, and cluster of geographic origins. These results suggest that RGA markers are applicable for analyses of genetic structure and diversity in rice. However, unlike SSR markers, the RGA markers failed to differentiate temperate japonica, tropical japonica, and aromatic subgroups. The restricted way for developing RGA markers from the cDNA sequence might limit the polymorphism of RGA markers in the genome, thus limiting the discriminatory power in comparison with SSR markers. Genetic differentiation obtained using RGA markers may be useful for defining genetic diversity of a suite of random R genes in plants, as many studies show a differentiation of resistance to a wide array of pathogens. They could also help to characterize the genetic structure and geographic distribution in crops, including rice, wheat, barley, and banana. PMID:24099390

  3. Genetic diversity and population structure of Sitodiplosis mosellana in Northern China.

    Directory of Open Access Journals (Sweden)

    Yun Duan

    Full Text Available The wheat midge, Sitodiplosis mosellana, is an important pest in Northern China. We tested the hypothesis that the population structure of this species arises during a range expansion over the past 30 years. This study used microsatellite and mitochondrial loci to conduct population genetic analysis of S. mosellana across its distribution range in China. We found strong genetic structure among the 16 studied populations, including two genetically distinct groups (the eastern and western groups, broadly consistent with the geography and habitat fragmentation. These results underline the importance of natural barriers in impeding dispersal and gene flow of S. mosellana populations. Low to moderate genetic diversity among the populations and moderate genetic differentiation (F ST = 0.117 between the two groups were also found. The populations in the western group had lower genetic diversity, higher genetic differentiation and lower gene flow (F ST = 0.116, Nm = 1.89 than those in the eastern group (F ST = 0.049, Nm = 4.91. Genetic distance between populations was positively and significantly correlated with geographic distance (r = 0.56, P<0.001. The population history of this species provided no evidence for population expansion or bottlenecks in any of these populations. Our data suggest that the distribution of genetic diversity, genetic differentiation and population structure of S. mosellana have resulted from a historical event, reflecting its adaptation to diverse habitats and forming two different gene pools. These results may be the outcome of a combination of restricted gene flow due to geographical and environmental factors, population history, random processes of genetic drift and individual dispersal patterns. Given the current risk status of this species in China, this study can offer useful information for forecasting outbreaks and designing effective pest management programs.

  4. Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using simple sequence repeat markers.

    Science.gov (United States)

    Wang, Hui; Khera, Pawan; Huang, Bingyan; Yuan, Mei; Katam, Ramesh; Zhuang, Weijian; Harris-Shultz, Karen; Moore, Kim M; Culbreath, Albert K; Zhang, Xinyou; Varshney, Rajeev K; Xie, Lianhui; Guo, Baozhu

    2016-05-01

    Cultivated peanut is grown worldwide as rich-source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and population structure of peanut cultivars and breeding lines from different breeding programs in China, India and the US. A total of 111 SSR markers were selected for this study, resulting in a total of 472 alleles. The mean values of gene diversity and polymorphic information content (PIC) were 0.480 and 0.429, respectively. Country-wise analysis revealed that alleles per locus in three countries were similar. The mean gene diversity in the US, China and India was 0.363, 0.489 and 0.47 with an average PIC of 0.323, 0.43 and 0.412, respectively. Genetic analysis using the STRUCTURE divided these peanut lines into two populations (P1, P2), which was consistent with the dendrogram based on genetic distance (G1, G2) and the clustering of principal component analysis. The groupings were related to peanut market types and the geographic origin with a few admixtures. The results could be used by breeding programs to assess the genetic diversity of breeding materials to broaden the genetic base and for molecular genetics studies. PMID:26178804

  5. Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using simple sequence repeat markers

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Xinyou Zhang; Rajeev K. Varshney; Lianhui Xie; Baozhu Guo; Pawan Khera; Bingyan Huang; Mei Yuan; Ramesh Katam; Weijian Zhuang; Karen Harris-Shultz; Kim M. Moore; Albert K. Culbreath

    2016-01-01

    Cultivated peanut is grown worldwide as rich-source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and population structure of peanut cultivars and breeding lines from different breeding programs in China, India and the US. A total of 111 SSR markers were selected for this study, resulting in a total of 472 alleles. The mean values of gene diversity and polymorphic information content (PIC) were 0.480 and 0.429, respectively. Country-wise analysis revealed that alleles per locus in three countries were similar. The mean gene diversity in the US, China and India was 0.363, 0.489 and 0.47 with an average PIC of 0.323, 0.43 and 0.412, respectively. Genetic analysis using the STRUCTURE divided these peanut lines into two populations (P1, P2), which was consistent with the dendro-gram based on genetic distance (G1, G2) and the clustering of principal component analysis. The groupings were related to peanut market types and the geographic origin with a few admixtures. The results could be used by breeding programs to assess the genetic diversity of breeding materials to broaden the genetic base and for molecular genetics studies.

  6. ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Eriksson Nicholas

    2011-04-01

    Full Text Available Abstract Background With next-generation sequencing technologies, experiments that were considered prohibitive only a few years ago are now possible. However, while these technologies have the ability to produce enormous volumes of data, the sequence reads are prone to error. This poses fundamental hurdles when genetic diversity is investigated. Results We developed ShoRAH, a computational method for quantifying genetic diversity in a mixed sample and for identifying the individual clones in the population, while accounting for sequencing errors. The software was run on simulated data and on real data obtained in wet lab experiments to assess its reliability. Conclusions ShoRAH is implemented in C++, Python, and Perl and has been tested under Linux and Mac OS X. Source code is available under the GNU General Public License at http://www.cbg.ethz.ch/software/shorah.

  7. Evaluation of genetic diversity in Piper spp using RAPD and SRAP markers.

    Science.gov (United States)

    Jiang, Y; Liu, J-P

    2011-01-01

    Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) analysis were applied to 74 individual plants of Piper spp in Hainan Island. The results showed that the SRAP technique may be more informative and more efficient and effective for studying genetic diversity of Piper spp than the RAPD technique. The overall level of genetic diversity among Piper spp in Hainan was relatively high, with the mean Shannon diversity index being 0.2822 and 0.2909, and the mean Nei's genetic diversity being 0.1880 and 0.1947, calculated with RAPD and SRAP data, respectively. The ranges of the genetic similarity coefficient were 0.486-0.991 and 0.520-1.000 for 74 individual plants of Piper spp (the mean genetic distance was 0.505 and 0.480) and the within-species genetic distance ranged from 0.063 to 0.291 and from 0.096 to 0.234, estimated with RAPD and SRAP data, respectively. These genetic indices indicated that these species are closely related genetically. The dendrogram generated with the RAPD markers was topologically different from the dendrogram based on SRAP markers, but the SRAP technique clearly distinguished all Piper spp from each other. Evaluation of genetic variation levels of six populations showed that the effective number of alleles, Nei's gene diversity and the Shannon information index within Jianfengling and Diaoluoshan populations are higher than those elsewhere; consequently conservation of wild resources of Piper in these two regions should have priority. PMID:22179965

  8. Genetic diversity of Plantago ovata Forsk. through RAPD markers

    Directory of Open Access Journals (Sweden)

    Ashish G Vala1*, R.S.Fougat1 and G.C.Jadeja

    2011-12-01

    Full Text Available Genetic variability of 15 sets of Plantago ovata Forsk. studied using 11 arbitrary oligonucleotide primers. Among the 90 DNAfragments produced 71 fragments were found to be polymorphic. The mean number of polymorphic bands per primer among 15Plantago ovata genotypes was 6.45 . The higher polymorphism (90.00 % was exhibited by primer OPF-17, while the lowerpolymorphism (60.00 % was detected by OPF-2. The genetic similarity matrix from RAPD data for 15 genotypes was calculatedbased on Jaccard’s coefficients of similarity ranged from 0.45 to 0.80. UPGMA cluster analysis reveals that the 15 genotypeswere clustered in to three clusters. Genetically distinct genotypes identified using RAPD markers could be potential sources ofgermplasm for Isabgol improvement.

  9. Enhancing genetic diversity through induced mutagenesis in vegetatively propagated plants

    International Nuclear Information System (INIS)

    Conventionally, crop improvement strategies rely not only on the availability of heritable genetic variations within utilisable genetic backgrounds but also on the transferability of the traits they control through hybridizations between the parental stocks. Procedures for producing hybrids of sexually reproducing plants are routine while for vegetatively propagated plants, hybridizations are usually impractical. The improvement of crops that lack botanical seeds necessitate therefore alternative strategies for generating and utilizing genetic variations. Induced mutagenesis generates allelic variants of genes that modulate the expression of traits. Some of the major drawbacks to the widespread use of induced mutations for vegetatively propagated plants include the difficulties of heterozygosity of the genetic backgrounds; the incidence of chimeras; and the confounding effects of linkage drags in putative mutants. In general, the inherent inefficiencies of the economies of time and space associated with induced mutagenesis are further exacerbated in vegetatively propagated crops mostly on account of the need for continual propagation. We highlight the mitigating roles on these drawbacks of the judicious integration of validated biotechnologies and other high throughput forward genetics assays in induced mutagenesis pipelines. Using cassava and banana as models, we demonstrate the use of cellular and tissue biology to achieve homozygosity, minimise or eliminate chimeras, and significantly shorten the duration of the generation of mutants. Additionally, the use of these biotechnologies to attain significantly reduced propagation footprints while evaluating putative mutants without compromising population size is also presented. We also posit that molecular biology approaches, especially reverse genetics and transcriptome assays, contributes significantly to enhancing the efficiency levels of the induced mutagenesis processes. The implications for crop improvement and

  10. Enhancing Genetic Diversity Through Induced Mutagenesis in Vegetatively Propagated Plants

    International Nuclear Information System (INIS)

    Conventionally, crop improvement strategies rely not only on the availability of heritable genetic variations within utilizable genetic backgrounds, but also on the transferability of the traits they control through hybridizations between the parental stocks. Procedures for producing hybrids of sexually reproducing plants are routine, while for vegetatively propagated plants, hybridizations are usually impractical. Therefore, the improvement of crops that lack botanical seeds necessitates alternative strategies for generating and utilizing genetic variations. Induced mutagenesis generates allelic variants of genes that modulate the expression of traits. Some of the major drawbacks to the widespread use of induced mutations for vegetatively propagated plants include the difficulties of heterozygosity of the genetic backgrounds, the incidence of chimeras and the confounding effects of linkage drags in putative mutants. In general, the inherent inefficiencies of time and space economies associated with induced mutagenesis are further exacerbated in vegetatively propagated crops mostly on account of the need for continual propagation. We highlight the mitigating roles on these drawbacks of judicious integration of validated biotechnologies and other high throughput forward genetics assays in induced mutagenesis pipelines. Using cassava and banana as models, we demonstrate the use of cell and tissue biology to achieve homozygosity, minimize or eliminate chimeras, and significantly shorten the duration of the generation of mutants. Additionally, use of these biotechnologies to attain significantly reduced propagation footprints while evaluating putative mutants without compromising population size is also presented. We also posit that molecular biology approaches, especially reverse genetics and transcriptome assays, contribute significantly to enhancing the efficiency levels of the induced mutagenesis processes. The implications for crop improvement and functional

  11. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujuba Mill. var. jujuba accessions using microsatellite markers

    Science.gov (United States)

    Xu, Chaoqun; Gao, Jiao; Du, Zengfeng; Li, Dengke; Wang, Zhe; Li, Yingyue; Pang, Xiaoming

    2016-01-01

    Ziziphus is a genus of spiny shrubs and small trees in the Rhamnaceae family. This group has a controversial taxonomy, with more than 200 species described, including Chinese jujube (Ziziphus jujuba Mill. var. jujuba) and Indian jujube (Z. mauritiana), as well as several other important cultivated fruit crops. Using 24 SSR markers distributed across the Chinese jujube genome, 962 jujube accessions from the two largest germplasm repositories were genotyped with the aim of analyzing the genetic diversity and structure and constructing a core collection that retain high genetic diversity. A molecular profile comparison revealed 622 unique genotypes, among which 123 genotypes were genetically identical to at least one other accessions. STRUCTURE analysis and multivariate analyses (Cluster and PCoA) roughly divided the accessions into three major groups, with some admixture among groups. A simulated annealing algorithm and a heuristic algorithm were chosen to construct the core collection. A final core of 150 accessions was selected, comprising 15.6% of the analyzed accessions and retaining more than 99.5% of the total alleles detected. We found no significant differences in allele frequency distributions or in genetic diversity parameters between the chosen core accessions and the 622 genetically unique accessions. This work contributes to the understanding of Chinese jujube diversification and the protection of important germplasm resources. PMID:27531220

  12. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow.

    Science.gov (United States)

    Markwith, Scott H; Scanlon, Michael J

    2007-02-01

    Understanding gene movement patterns in unidirectional flow environments and their effect on patterns of genetic diversity and genetic structure is necessary to manage these systems. Hypotheses and models to explain genetic patterns in streams are rare, and the results of macrophyte studies are inconsistent. This study addresses Ritland's (Canadian Journal of Botany 67: 2017-2024) unidirectional diversity hypothesis, the one-dimensional stepping stone model, and the metapopulation model within and among populations. Hymenocallis coronaria, an aquatic macrophyte of rocky river shoals of the SE USA, was sampled in four river basins. Within populations and among populations <16.2 km apart had significant isolation by distance. However, the rate of gene flow decay was not consistent with a one-dimensional stepping stone model, nor was evidence strong or consistent for Ritland's hypothesis. Some evidence indicates that localized metapopulation processes may be affecting genetic diversity and structure; however, gene flow patterns inconsistent with the assumptions of the linear and unidirectional models are also a possible influence. We discuss three variants on the one-dimensional stepping stone model. Future research in linear environments should examine the expectations of these models. This study is also one of the first efforts to calculate population genetic parameters using a new program, TETRASAT. PMID:21642217

  13. Genetic diversity in Algerian sheep breeds, using microsatellite markers

    International Nuclear Information System (INIS)

    Two breeds - Ouled-Djellal and Hamra (85 animals) - were genotyped for 12 microsatellites using PCR and sequencing. Allele number and frequency were calculated, and 141 different alleles were found for these microsatellites, reflecting high genetic variability within these breeds. This study is being extended to other Algerian breeds to estimate variability and genetic distances between them. In parallel, blood samples from the various breeds are being collected to build up a DNA bank. The results should support establishment of a strategy to promote the use and development of locally adapted sheep resources. (author)

  14. Analysis of the genetic diversity and differentiation of Fenneropenaeus penicillatus populations using AFLP technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guiling; CAO Yuanyu; LI Zhongbao; CHEN Jin; ZHAO Binli; LEI Guanggao; WANG Zhanlin

    2012-01-01

    Fenneropenaeus penicillatus (redtail shrimp) is an important marine commercial animal in China.Recently,its resources have been depleted rapidly as a result of,for example,over-exploitation and environmental degradation of spawning grounds.Therefore,we analyzed the genetic diversity and differentiation of nine wild populations of F.penicillatus of China (Ningde,Lianjiang,Putian,Xiamen,Quanzhou,Zhangpu,Dongshan,Nanao,and Shenzhen populations) by amplified fragment length polymorphism (AFLP) technology,to provide genetic information necessary for resource protection,rejuvenation,artificial breeding,and sustainable use of the resource.Eight AFLP primer pairs were used for amplification,and 508 bands were detected among the populations.The results show that the percentage of polymorphic loci (P) ranged from 41.34% to 63.58%; the Nei's gene diversity (H) of the populations was 0.119 4-0.230 5; and Sharnon's Information Index (I) was 0.184 1-0.342 5.These genetic data indicate that the genetic diversity of F.penicillatus was high.The genetic differentiation coefficient (Gsr=0.216 2) and gene flow (Nm=1.812 4) show that there was a high level of genetic differentiation and a moderate level of gene flow among populations.More studies on the genetic differentiation mechanism of F.penicillatus along the south-eastern coast of China need to be conducted to find more effective scientific protection strategies for the conservation ofF.penicillatus genetic resources.