WorldWideScience

Sample records for assessing biofuel crop

  1. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    A life cycle assessment of different cropping systems emphasizing corn and soybean production was performed, assuming that biomass from the cropping systems is utilized for producing biofuels (i.e., ethanol and biodiesel). The functional unit is defined as 1 ha of arable land producing biomass for biofuels to compare the environmental performance of the different cropping systems. The external functions are allocated by introducing alternative product systems (the system expansion allocation approach). Nonrenewable energy consumption, global warming impact, acidification and eutrophication are considered as potential environmental impacts and estimated by characterization factors given by the United States Environmental Protection Agency (EPA-TRACI). The benefits of corn stover removal are (1) lower nitrogen related environmental burdens from the soil, (2) higher ethanol production rate per unit arable land, and (3) energy recovery from lignin-rich fermentation residues, while the disadvantages of corn stover removal are a lower accumulation rate of soil organic carbon and higher fuel consumption in harvesting corn stover. Planting winter cover crops can compensate for some disadvantages (i.e., soil organic carbon levels and soil erosion) of removing corn stover. Cover crops also permit more corn stover to be harvested. Thus, utilization of corn stover and winter cover crops can improve the eco-efficiency of the cropping systems. When biomass from the cropping systems is utilized for biofuel production, all the cropping systems studied here offer environmental benefits in terms of nonrenewable energy consumption and global warming impact. Therefore utilizing biomass for biofuels would save nonrenewable energy, and reduce greenhouse gases. However, unless additional measures such as planting cover crops were taken, utilization of biomass for biofuels would also tend to increase acidification and eutrophication, primarily because large nitrogen (and phosphorus

  2. Life cycle assessment of first-generation biofuels using a nitrogen crop model.

    Science.gov (United States)

    Gallejones, P; Pardo, G; Aizpurua, A; del Prado, A

    2015-02-01

    This paper presents an alternative approach to assess the impacts of biofuel production using a method integrating the simulated values of a new semi-empirical model at the crop production stage within a life cycle assessment (LCA). This new approach enabled us to capture some of the effects that climatic conditions and crop management have on soil nitrous oxide (N₂O) emissions, crop yields and other nitrogen (N) losses. This analysis considered the whole system to produce 1 MJ of biofuel (bioethanol from wheat and biodiesel from rapeseed). Non-renewable energy use, global warming potential (GWP), acidification, eutrophication and land competition are considered as potential environmental impacts. Different co-products were handled by system expansion. The aim of this study was (i) to evaluate the variability due to site-specific conditions of climate and fertiliser management of the LCA of two different products: biodiesel from rapeseed and bioethanol from wheat produced in the Basque Country (Northern Spain), and (ii) to improve the estimations of the LCA impacts due to N losses (N₂O, NO₃, NH₃), normally estimated with unspecific emission factors (EFs), that contribute to the impact categories analysed in the LCA of biofuels at local scale. Using biodiesel and bioethanol derived from rapeseed and wheat instead of conventional diesel and gasoline, respectively, would reduce non-renewable energy dependence (-55%) and GWP (-40%), on average, but would increase eutrophication (42 times more potential). An uncertainty analysis for GWP impact showed that the variability associated with the prediction of the major contributor to global warming potential (soil N₂O) can significantly affect the results from the LCA. Therefore the use of a model to account for local factors will improve the precision of the assessment and reduce the uncertainty associated with the convenience of the use of biofuels. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  4. Biofuels barometer: Crops pending

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The actors and production capacities have changed only little in the biofuel sector from year to another. Nevertheless, it is interesting to take stock of the development of this sector at the end of 2002, so as to update the more complete barometer published in issue 144 of Systemes Solaires. Indeed, European ethanol production grew by 13% and that of bio-diesel by more than 20% in 2001. (authors)

  5. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  6. Water for Food, Energy, and the Environment: Assessing Streamflow Impacts of Increasing Cellulosic Biofuel Crop Production in the Corn Belt

    Science.gov (United States)

    Yaeger, M. A.; Housh, M.; Ng, T.; Cai, X.; Sivapalan, M.

    2012-12-01

    hypothesis: what may benefit the human system (farms, refineries, cities) may damage the environment. The hydrological and optimization models will be run interactively, with the optimization model run for 10 years and the resulting land use solution then used in the SWAT hydrologic model to provide more detailed information on river/ecosystem impacts, which are assessed using low flow analysis. Problem areas highlighted by this analysis can be targeted by implementing flow requirements at different locations in the watershed; these constraints are then added to the optimization model which is run for another 10 years, and the new solution again analyzed in more detail to assess the effectiveness of the imposed environmental measures. Preliminary results show that under proposed subsidies and current crop prices, the percentage of land planted with Miscanthus will increase to environmentally unsustainable levels, but that implementing flow and water quality constraints can mitigate the damage to some extent. Moreover, tributary and mainstem subwatersheds in the Sangamon do not respond equally, even in this very homogenous region, and thus the spatial context is important for understanding the tradeoffs between economic and hydrologic benefits, which become increasingly important in creating sustainable biofuel production.

  7. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  8. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  9. Assessment of pelletized biofuels

    International Nuclear Information System (INIS)

    Samson, R.; Duxbury, P.; Drisdelle, M.; Lapointe, C.

    2000-04-01

    There has been an increased interest in the development of economical and convenient renewable energy fuels, resulting from concerns about climate change and rising oil prices. An opportunity to use agricultural land as a means of producing renewable fuels in large quantities, relying on wood and agricultural residues only has come up with recent advances in biomass feedstock development and conversion technologies. Increasing carbon storage in the landscape and displacing fossil fuels in combustion applications can be accomplished by using switchgrass and short rotation willow which abate greenhouse gas emissions. The potential of switchgrass and short rotation willow, as well as other biomass residues as new feedstocks for the pellet industry is studied in this document. Higher throughput rates are facilitated by using switchgrass, which shows potential as a pelleting feedstock. In addition, crop drying requires less energy than wood. By taking into consideration energy for switchgrass production, transportation to the conversion facility, preprocessing, pelleting, and marketing, the overall energy balance of switchgrass is 14.5:1. Research on alfalfa pelleting can be applied to switchgrass, as both exhibit a similar behaviour. The length of chop, the application of high temperature steam and the use of a die with a suitable length/diameter ratio are all factors that contribute to the successful pelleting of switchgrass. Switchgrass has a similar combustion efficiency (82 to 84 per cent) to wood (84 to 86 per cent), as determined by combustion trials conducted by the Canada Centre for Mineral and Energy Technology (CANMET) in the Dell-Point close coupled gasifier. The energy content is 96 per cent of the energy of wood pellets on a per tonne basis. Clinker formation was observed, which necessitated some adjustments of the cleaner grate settings. While stimulating rural development and export market opportunities, the high yielding closed loop biofuels show

  10. Crop residues for advanced biofuels workshop: A synposis

    Science.gov (United States)

    Crop residues are being harvested for a variety of purposes including their use as livestock feed and to produce advanced biofuels. Crop residue harvesting, by definition, reduces the potential annual carbon input to the soil from aboveground biomass but does not affect input from plant roots. The m...

  11. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

    International Nuclear Information System (INIS)

    Swinton, Scott M.; Babcock, Bruce A.; James, Laura K.; Bandaru, Varaprasad

    2011-01-01

    By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. - Highlights: → Biofuel crops on cropland can displace food crops, reducing food supply and triggering indirect land use. → Growing biofuel crops on non-crop marginal land avoids these problems. → But US farmers expanded cropland by only 2% when crop profitability jumped 64% during 2006-09. → So medium-term availability of marginal lands for biofuel crops is limited and costly.

  13. The biofuel potential of crop based biomass in Denmark in 2020; Danmarks potentiale for afgroedebaseret biobraendstofproduktion i aar 2020

    Energy Technology Data Exchange (ETDEWEB)

    Bertelsen Blume, S

    2008-02-15

    According to climate change observations and foresights several countries including Denmark have committed to reduce GHGemissions. However, the transport sector is still increasing its GHGemissions. Substitution of fossil fuels with biofuels seems to be the best way to reduce CO{sub 2}-emission from this sector on the shorter term. This project evaluates how Denmark can produce enough biofuels to fulfil the political goal of 10 % substitution of the fossil fuel consumption in the year of 2020. This project also approaches the suitability of different crop species to the biofuel industry. Maize and sugar beet are the most suitable crops for biofuel production when only focusing on maximum biofuel yield. Alfalfa is likewise showings great potential and is the most suitable crop in terms of sustainable biofuel production, because of low energy requirements (diesel, fertilizer, pesticide and irrigation) during cropping. Even though maize has higher needs for energy during cropping, it will still be suitable for sustainable biofuel production because of the high biofuel yield. Present calculations show that it is possible to meet the required amount of biofuels by using domestic biomass, which is currently exported (cereal grain) or not utilized (eg. straw). However, these calculations assume that it will become possible to convert the whole amount of carbohydrates into biofuel before 2020. In terms of assessing the biofuel production potential three storylines are defined for the development until 2020. Changes in land use and crop composition are suggested for each storyline to adjust the biofuel production to Danish agriculture. The biofuel production potential is also assessed for two regions in Denmark. Here the region of Storstroem shows greater potential than the region of Soenderjylland because of low density of domestic animals. (au)

  14. Experimental approaches for evaluating the invasion risk of biofuel crops

    International Nuclear Information System (INIS)

    Luke Flory, S; Sollenberger, Lynn E; Lorentz, Kimberly A; Gordon, Doria R

    2012-01-01

    There is growing concern that non-native plants cultivated for bioenergy production might escape and result in harmful invasions in natural areas. Literature-derived assessment tools used to evaluate invasion risk are beneficial for screening, but cannot be used to assess novel cultivars or genotypes. Experimental approaches are needed to help quantify invasion risk but protocols for such tools are lacking. We review current methods for evaluating invasion risk and make recommendations for incremental tests from small-scale experiments to widespread, controlled introductions. First, local experiments should be performed to identify conditions that are favorable for germination, survival, and growth of candidate biofuel crops. Subsequently, experimental introductions in semi-natural areas can be used to assess factors important for establishment and performance such as disturbance, founder population size, and timing of introduction across variable habitats. Finally, to fully characterize invasion risk, experimental introductions should be conducted across the expected geographic range of cultivation over multiple years. Any field-based testing should be accompanied by safeguards and monitoring for early detection of spread. Despite the costs of conducting experimental tests of invasion risk, empirical screening will greatly improve our ability to determine if the benefits of a proposed biofuel species outweigh the projected risks of invasions. (letter)

  15. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  16. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  17. Spatio-temporal availability of field crop residues for biofuel production in Northwest and Southwest China

    NARCIS (Netherlands)

    Han, L.; Wang, X.; Spiertz, J.H.J.; Yang, L.; Zhou, Y.; Liu, J.; Xie, G.

    2015-01-01

    Developing bioenergy from plant feedstocks is considered an opportunity to reduce greenhouse gas emissions and secure biofuel supply. This study is an assessment of the availability of field crop residues for bioenergy feedstocks in northwest China (NWC) and southwest China (SWC). The amount of

  18. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  19. Can biofuel crops alleviate tribal poverty in India's drylands?

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Hsu, Minna J.; Chaudhary, Sunita; Shieh, Po-Chuen

    2009-01-01

    The on-going climate change concerns have stimulated heavy interest in biofuels, and supporters of biofuels hail that they are considered naturally carbon-neutral. Critiques on the other hand cry that the large-scale production of biofuels can not only strain agricultural resources, but also threaten future food security. People who live in the drylands of India are often faced with challenges and constraints of poverty. Foremost among the challenges are the marginal environmental conditions for agriculture, often influenced by low and erratic rainfall, frequent droughts, poor soil condition, unreliable irrigation water supply, and rural migration to urban areas in search of work. In this paper, we have analyzed a case study of community lift irrigation practiced in India and its impact in boosting agricultural productivity and enhancing local food security. The lift-irrigation model practiced in the drylands of India to grow food crops can be adopted for the expansion of biofuel crops that has the potential to eradicate poverty among farming communities if appropriate sustainable development measures are carefully implemented. (author)

  20. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  1. Water Use and Quality Footprints of Biofuel Crops in Florida

    Science.gov (United States)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  2. Biofuel crops with CAM photosynthesis: Economic potential on moisture-limited lands

    Science.gov (United States)

    Bartlett, Mark; Hartzell, Samantha; Porporato, Amilcare

    2017-04-01

    As the demand for food and renewable energy increases, the intelligent utilization of marginal lands is becoming increasingly critical. In marginal lands classified by limited rainfall or soil salinity, the cultivation of traditional C3 and C4 photosynthesis crops often is economically infeasible. However, in such lands, nontraditional crops with crassulacean acid metabolism (CAM) photosynthesis show great economic potential for cultivation. CAM crops including Opuntia (prickly pear) and Ananas (pineapple) achieve a water use efficiency which is three fold higher than C4 crops such as corn and 6-fold higher than C3 crops such as wheat, leading to a comparable annual productivity with only 20% of the water demand. This feature, combined with a shallow rooting depth and a high water storage capacity, allows CAM plants to take advantage of small, infrequent rainfall amounts in shallow, quickly draining soils. Furthermore, CAM plants typically have properties (e.g., high content of non-structural carbohydrates) that are favorable for biofuel production. Here, for marginal lands characterized by low soil moisture availability and/or high salinity, we assess the potential productivity and economic benefits of CAM plants. CAM productivity is estimated using a recently developed model which simulates CAM photosynthesis under a range of soil and climate conditions. From these results, we compare the energy and water resource inputs required by CAM plants to those required by more traditional C3 and C4 crops (corn, wheat, sorghum), and we evaluate the economic potential of CAM crops as sources of food, fodder, or biofuel in marginal soils. As precipitation events become more intense and infrequent, we show that even though marginal land area may increase, CAM crop cultivation shows great promise for maintaining high productivity with minimal water inputs. Our analysis indicates that on marginal lands, widespread cultivation of CAM crops as biofuel feedstock may help

  3. Sustainable Biofuel Crops Project, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Juhn, Daniel [Conservation International, Arlington, VA (United States). Moore Center for Science and Oceans. Integrated Assessment and Planning; Grantham, Hedley [Conservation International, Arlington, VA (United States). Moore Center for Science and Oceans. Integrated Assessment and Planning

    2014-05-28

    Over the last six years, the Food and Agriculture Organization of the United Nations (FAO) has developed the Bioenergy and Food Security (BEFS) Approach to help countries design and implement sustainable bioenergy policies and strategies. The BEFS Approach consists of two sets of multidisciplinary and integrated tools and guidance (the BEFS Rapid Appraisal and the BEFS Detailed Analysis) to facilitate better decision on bioenergy development which should foster both food and energy security, and contribute to agricultural and rural development. The development of the BEFS Approach was for the most part funded by the German Federal Ministry of Food and Agriculture. Recognizing the need to provide support to countries that wanted an initial assessment of their sustainable bioenergy potential, and of the associated opportunities, risks and trade offs, FAO began developing the BEFS-RA (Rapid Appraisal). The BEFS RA is a spreadsheet–based assessment and analysis tool designed to outline the country's basic energy, agriculture and food security context, the natural resources potential, the bioenergy end use options, including initial financial and economic implications, and the identification of issues that might require fuller investigation with the BEFS Detailed Analysis.

  4. An Assessment of Thailand’s Biofuel Development

    Directory of Open Access Journals (Sweden)

    Pujan Shrestha

    2013-04-01

    Full Text Available The paper provides an assessment of first generation biofuel (ethanol and biodiesel development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues—environmental, socio-economic and food security aspects. The policies, measures and incentives for the development of biofuel include targets, blending mandates and favorable tax schemes to encourage production and consumption of biofuels. Biofuel development improves energy security, rural income and reduces greenhouse gas (GHG emissions, but issues related to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources. The authors estimate that sustainably-derived agricultural crop residues alone could amount to 10.4 × 106 bone dry tonnes per year. This has the technical potential of producing 1.14–3.12 billion liters per year of ethanol to possibly displace between 25%–69% of Thailand’s 2011 gasoline consumption as transportation fuel. Alternatively, the same amount of residue could provide 0.8–2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel to potentially offset 6%–15% of national diesel consumption in the transportation sector.

  5. Spatial analysis of the potential crops for the production of biofuels in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Carballo, Stella; Marco, Noelia Flores; Anschau, Alicia [Centro de Investigaciones de Recursos Naturales (CIRN/INTA), Buenos Aires (Argentina). Inst. de Tecnologia Agropecuaria. Inst. de Clima y Agua], E-mail: scarballo@cnia.inta.gov.ar; Hilbert, Jorge [Instiuto de Ingenieria Rural (CIA/INTA), Buenos Aires (Argentina)], E-mail: hilbert@cnia.inta.gov.ar

    2008-07-01

    The increase in biofuels production has been rising in the last ten years at a high rate. Argentina as one of the main crop producers in the world has a great potential to contribute with high volumes of biofuels. At present time common crops are used for large scale production but new alternatives are under study in different regions of the country. The increase in pressure for expansion also raises concerns on the impact on ecology issues such as soil erosion and biodiversity. Looking at a national level INTA has been working on the construction of a GIS were different crops were placed. The purpose is to identify critical information, to raise a methodology to obtain accurate and up-to date thematic maps using satellite images, to feed a GIS and to integrate the different layers to estimate biomass potentials for energy supply in our country, assessing potential land availability for biofuel crops or plantations to be made with ecological, economic and social sustainability bases. (author)

  6. Assessment of Peruvian biofuel resources and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regional production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.

  7. SMALLHOLDER FARMERS’ WILLINGNESS TO INCORPORATE BIOFUEL CROPS INTO CROPPING SYSTEMS IN MALAWI

    Directory of Open Access Journals (Sweden)

    Beston Bille Maonga

    2015-01-01

    Full Text Available Using cross-sectional data, this study analysed the critical and significant socioeconomic factors with high likelihood to determine smallholder farmers’ decision and willingness to adopt jatropha into cropping systems in Malawi. Employing desk study and multi-stage random sampling technique a sample of 592 households was drawn from across the country for analysis. A probit model was used for the analysis of determinants of jatropha adoption by smallholder farmers. Empirical findings show that education, access to loan, bicycle ownership and farmers’ expectation of raising socioeconomic status are major significant factors that would positively determine probability of smallholder farmers’ willingness to adopt jatropha as a biofuel crop on the farm. Furthermore, keeping of ruminant herds of livestock, long distance to market and fears of market unavailability have been revealed to have significant negative influence on farmers’ decision and willingness to adopt jatropha. Policy implications for sustainable crop diversification drive are drawn and discussed.

  8. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    Science.gov (United States)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  9. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    Science.gov (United States)

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-04-15

    Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without

  10. An assessment of Thailand's biofuel development

    DEFF Research Database (Denmark)

    Kumar, S.; Salam, P. Abdul; Shrestha, Pujan

    2013-01-01

    The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects. The pol......The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects...... to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources...... as transportation fuel. Alternatively, the same amount of residue could provide 0.8-2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel) to potentially offset 6%-15% of national diesel consumption in the transportation sector....

  11. Effects of elevated temperature on growth and reproduction of biofuels crops

    Science.gov (United States)

    Background/Questions/Methods Cellulosic biofuels crops have considerable potential to reduce our carbon footprint , and to be at least neutral in terms of carbon production. However, their widespread cultivation may result in unintended ecological and health effects. We report...

  12. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine; Lal, Rattan [The Ohio State Univ., School of Environment and Natural Resources, Carbon Management and Sequestration Center, Columbus, OH (United States); Schmitz, Matthias [Rheinische Friedrich/Wilhelms-Universitaet Bonn, Steinmann Institut fuer Geologie, Mineralogie und Palaeontologie, Bonn (Germany); Wullschleger, S. [The Oakridge National Lab., Oakridge, TN (United States)

    2012-10-15

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60 % lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  13. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine [Ohio State University; Lal, Dr. Rattan [Ohio State University; Schmitz, Matthias [Rheinsche Friedrich/Wilhelms Universitaet Boon; Wullschleger, Stan D [ORNL

    2012-01-01

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  14. Switchgrass as a biofuels crop for the upper Southeast

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Wolf, D.D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-12-31

    Switchgrass (Panicum virgatum) has been identified in DOE-sponsored studies as a widely adapted, productive herbaceous candidate for biofuels cropping. It is a perennial that has been planted using no-till procedures, and it appears to have positive effects on the soils in which it grows. We have been looking at this species as a potential fuelcrop (as well as a valuable forage) for several years. In this presentation, we note several {open_quotes}lessons learned{close_quotes} about switchgrass establishment and management as an energy crop. Data include results from recent plantings in the upper Southeast USA and from cutting management studies. Six varieties of switchgrass (Alamo, Cave-in-Rock, Kanlow, Shelter, and two breeder`s lines) varied markedly in the success of their no-till establishment at eight locations across the upper Southeast. Better weed control, which was achieved at later planting dates, seemed to be the key. Yields obtained in the establishment stands revealed that two harvests per season are more productive (by 2 to 3 Mg/ha) than one, but the date of first cutting is crucial. First cutting should be from late-June to mid-July. A two-cut system may not be economically advantageous, however. Another cutting-management study detected losses of standing biomass at the end of the growing season. As much as 15% of the above-ground biomass present in early-September was no longer harvestable in early-November. We think this loss results from translocation of dry matter to below-ground parts.

  15. Ecological effects of feral biofuel crops in constructed oak ...

    Science.gov (United States)

    The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesocosm held three tubs. One had six native plant species; one had five native species with the annual crop Sorghum bicolor and one had five native species along with the weedy perennial Sorghum halepense. The experimental treatments were ambient (control), elevated temperature, drought, or a combination of elevated temperature and drought. Total aboveground biomass of the community was greatest in the control and drought treatments, lowest with elevated temperature + drought, and intermediate in high temperature treatments (Pbacterial biomass. Active bacterial biomass was lowest in the drought and elevated temperature and drought treatments (P<0.05). Active soil fungal biomass was highest in the tubs containing S. bicolor. Percent total carbon in the soil increased between 2010 and 2011 (P=0.0054); it was lowest in the elevated temperature and drought mesocosms (P<0.05). Longer term studi

  16. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  17. Livelihood implications of biofuel crop production: Implications for governance

    DEFF Research Database (Denmark)

    Hunsberger, Carol; Bolwig, Simon; Corbera, Esteve

    2014-01-01

    While much attention has focused on the climate change mitigation potential of biofuels, research from the social sciences increasingly highlights the social and livelihood impacts of their expanded production. Policy and governance measures aimed at improving the social effects of biofuels have...... by their cultivation in the global South – income, food security, access to land-based resources, and social assets – revealing that distributional effects are crucial to evaluating the outcomes of biofuel production across these dimensions. Second, we ask how well selected biofuel governance mechanisms address...

  18. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  19. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  20. Integrating future scenario‐based crop expansion and crop conditions to map switchgrass biofuel potential in eastern Nebraska, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2018-01-01

    Switchgrass (Panicum virgatum) has been evaluated as one potential source for cellulosic biofuel feedstocks. Planting switchgrass in marginal croplands and waterway buffers can reduce soil erosion, improve water quality, and improve regional ecosystem services (i.e. it serves as a potential carbon sink). In previous studies, we mapped high risk marginal croplands and highly erodible cropland buffers that are potentially suitable for switchgrass development, which would improve ecosystem services and minimally impact food production. In this study, we advance our previous study results and integrate future crop expansion information to develop a switchgrass biofuel potential ensemble map for current and future croplands in eastern Nebraska. The switchgrass biomass productivity and carbon benefits (i.e. NEP: net ecosystem production) for the identified biofuel potential ensemble areas were quantified. The future scenario‐based (‘A1B’) land use and land cover map for 2050, the US Geological Survey crop type and Compound Topographic Index (CTI) maps, and long‐term (1981–2010) averaged annual precipitation data were used to identify future crop expansion regions that are suitable for switchgrass development. Results show that 2528 km2 of future crop expansion regions (~3.6% of the study area) are potentially suitable for switchgrass development. The total estimated biofuel potential ensemble area (including cropland buffers, marginal croplands, and future crop expansion regions) is 4232 km2 (~6% of the study area), potentially producing 3.52 million metric tons of switchgrass biomass per year. Converting biofuel ensemble regions to switchgrass leads to potential carbon sinks (the total NEP for biofuel potential areas is 0.45 million metric tons C) and is environmentally sustainable. Results from this study improve our understanding of environmental conditions and ecosystem services of current and future cropland systems in eastern Nebraska and provide

  1. Crop diversification can contribute to disease risk control in sustainable biofuels production

    OpenAIRE

    Smith, VH; McBride, RC; Shurin, JB; Bever, JD; Crews, TE; Tilman, GD

    2015-01-01

    © The Ecological Society of America. Global demand for transportation fuels will increase rapidly during the upcoming decades, and concerns about fossil-fuel consumption have stimulated research on renewable biofuels that can be sustainably produced from biological feedstocks. However, if unchecked, pathogens and parasites are likely to infect these cultivated biofuel feedstocks, greatly reducing crop yields and potentially threatening the sustainability of renewable bioenergy production effo...

  2. Smallholder farmers’ awareness of biofuel crops in the Eastern Cape Province, South Africa

    OpenAIRE

    Cheteni, Priviledge

    2016-01-01

    In this study, 157 smallholder farmers from the OR Tambo and Chris Hani district municipality in South Africa were purposively sampled to participate in a survey. The objective was to identify the factors that influence smallholder farmers’ awareness of biofuel crops. Using a binary logistic model it was found that the variables; gender, household income, membership in association; land utilisation and qualification were statistically significant in influencing farmers’ awareness of biofuel c...

  3. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    will be lower than indicated by our data. We obtained the greatest net reduction in greenhouse gas emissions by co-production of bioethanol and biogas or by biogas alone produced from either fresh grass-clover or whole crop maize. Here the net reduction corresponded to about 8 tons CO2 per hectare per year...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel-derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye-vetch, vetch and grass......-clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co-production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  4. Transport biofuel yields from food and lignocellulosic C{sub 4} crops

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, L. [IBED University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2010-01-15

    In the near future, the lignocellulosic C{sub 4} crops Miscanthus and switchgrass (Panicum virgatum) are unlikely to outcompete sugarcane (Saccharum officinarum) in net energetic yearly yield of transport biofuel ha{sup -1}. This holds both for the thermochemical conversion into liquid hydrocarbons and the enzymatic conversion into ethanol. Currently, Miscanthus and switchgrass would also not seem able to outcompete corn (Zea mays) in net energetic yearly yield of liquid transport biofuel ha{sup -1}, but further development of these lignocellulosic crops may gradually lead to a different outcome. (author)

  5. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Science.gov (United States)

    Frouz, Jan; Hedenec, Petr

    2016-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native

  6. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.

    Science.gov (United States)

    Sesmero, Juan P

    2014-11-01

    This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Why do smallholders plant biofuel crops? The ‘politics of consent’ in Mexico

    NARCIS (Netherlands)

    Castellanos-Navarrete, Antonio; Jansen, Kees

    2017-01-01

    Recent studies have addressed the social and environmental impacts of biofuel crops but seldom the question as to why rural producers engage in their production. It is particularly unclear how governments worldwide, especially in middle-income countries such as Brazil, Thailand, and Mexico, could

  8. Jatropha: A Promising Crop for Africa's Biofuel Production?

    NARCIS (Netherlands)

    Eijck, J.A.J. van; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Jatropha has often been proposed as a miracle crop for the production of oil, because of the high yields and low requirements in terms of land quality, climate and crop management. A large number of companies have started with jatropha production in Africa which is projected to increase rapidly.

  9. Advancing environmental risk assessment for transgenic biofeedstock crops

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2009-11-01

    Full Text Available Abstract Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization.

  10. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  11. Analyzing the effect of biofuel expansion on land use in major producing countries: evidence of increased multiple cropping

    NARCIS (Netherlands)

    Langeveld, J.W.A.; Dixon, J.; Keulen, van H.; Quist-Wessel, P.M.F.

    2014-01-01

    Estimates on impacts of biofuel production often use models with limited ability to incorporate changes in land use, notably cropping intensity. This review studies biofuel expansion between 2000 and 2010 in Brazil, the USA, Indonesia, Malaysia, China, Mozambique, South Africa plus 27 EU member

  12. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    Science.gov (United States)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  13. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  14. Life Cycle Assessment of Biofuels in Sweden; Livscykelanalys av svenska biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal; Tufvesson, Linda; Lantz, Mikael

    2009-05-15

    The purpose with this study is to carry out updated and developed life cycle assessments of biofuels produced and used in Sweden today. The focuses are on making the assessments as relevant and transparent as possible and identify hot spots having significant impacts on the environmental performance of the specific biofuel production chains. The study includes sensitivity analyses showing the impact on changed future conditions. The results should be seen as actual and average environmental performance based on updated calculation methods, thus individual systems developed by specific companies may have somewhat different performance. Biofuels analysed are ethanol from wheat, sugar beet and sugar cane (imported from Brazil), RME from rape seed, biogas from sugar beet, ley crops, maize and organic residues, such as municipal waste, food industry waste and liquor manure. The study also includes co-production of ethanol and biogas from wheat. Final use in both light and heavy duty vehicles, and related emissions, are assessed. Environmental impact categories considered are climate change, eutrophication, acidification, photochemical oxidants, particles and energy balances. The calculations include emissions from technical systems, e.g. energy input in various operations and processes, and biogenic emissions of nitrous oxide and carbon dioxide from direct land use changes (LUC). The potential risk of indirect land use changes (ILUC) is also assessed. By-products are included by three different calculation methods, system expansion, energy allocation and economic allocation. The results are presented per MJ biofuel, but the alternative functional unit per hectare cropland is also used regarding the greenhouse gas performance of crop-based biofuels. Finally, estimations are carried out regarding the current environmental performance of the actual various biofuel systems based on system expansion, recommended by the ISO-standardisation of LCA, and energy allocation

  15. What is the future for biofuels and bio-energy crops

    International Nuclear Information System (INIS)

    2005-01-01

    This seminar is part of the Ifri research program on agricultural policies. It aims to evaluate the future prospects for the development of bio-energy crops in light of the new energetic and environmental order. Within one generation the hydrocarbon market will likely be under great pressure. The prospect of a lasting high oil price will lead to the use of renewable resources like biofuels. Moreover growing environmental concern about global warming give one more credibility to the development of biofuels. These fuels emit a limited amount of greenhouse gas compared to standard fuels. We have to therefore examine the development possibility of these fuels taking into account the agronomic features of the crops used, the technology of the transformation process and existing initiative policies with respect to the regions studied. Also, we have to evaluate the impact of the energy crisis on food supply via the substitution effect in land allocation. (author)

  16. Allelopathic effect of new introduced biofuel crops on the soil biota: A comparative study

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Novotný, D.; Usťak, S.; Honzík, R.; Kovářová, M.; Šimáčková, H.; Frouz, J.

    2014-01-01

    Roč. 63, July (2014), s. 14-20 ISSN 1164-5563 R&D Projects: GA MŠk(CZ) 7E08081 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : allelopathic effect * biofuel crops * invasive plant species * plant biomass chemistry * seedling germination Subject RIV: EH - Ecology, Behaviour Impact factor: 1.719, year: 2014

  17. A strategic assessment of biofuels development in the Western States

    Science.gov (United States)

    Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle

    2009-01-01

    The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...

  18. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  19. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  20. Screening boreal energy crops and crop residues for methane biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.; Rintala, J.A. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Viinikainen, T.A. [Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-06-15

    The purpose of the study was to screen potential boreal energy crops and crop residues for their suitability in methane production and to investigate the effect of harvest time on the methane production potential of different crops. The specific methane yields of crops, determined in 100-200 d methane potential assays, varied from 0.17 to 0.49 m{sup 3} CH{sub 4} kg{sup -1} VS{sub added} (volatile solids added) and from 25 to 260 m{sup 3} CH{sub 4} t{sub ww}{sup -1} (tonnes of wet weight). Jerusalem artichoke, timothy-clover grass and reed canary grass gave the highest potential methane yields of 2900-5400 m{sup 3} CH{sub 4} ha{sup -1}, corresponding to a gross energy yield of 28-53 MWh ha{sup -1} and ca. 40,000-60,000 km ha{sup -1} in passenger car transport. The effect of harvest time on specific methane yields per VS of crops varied a lot, whereas the specific methane yields per t{sub ww} increased with most crops as the crops matured. (author)

  1. Allelopathic effect of new introduced biofuel crops on the soil biota: A comparative study

    Science.gov (United States)

    Heděnec, Petr; Frouz, Jan; Ustak, Sergej; Novotny, David

    2015-04-01

    Biofuel crops as an alternative to fossil fuels are a component of the energy mix in many countries. Many of them are introduced plants, so they pose a serious threat of biological invasions. Production of allelopathic compounds can increase invasion success by limiting co-occurring species in the invaded environment (novel weapons hypothesis). In this study, we focused on plant chemistry and production of allelopathic compounds by biofuel crops (hybrid sorrel Rumex tianschanicus x Rumex patientia and miscanthus Miscanthus sinensis) in comparison with invasive knotweed (Fallopia sachalinensis) and cultural meadow species. First, we tested the impact of leachates isolated from hybrid sorrel, miscanthus, knotweed and cultural meadow species compared to deionized water, used as a control, on seed germination of mustard (Sinapis arvensis) and wheat (Triticum aestivum) cultivated on sand and soil. Secondly, we studied the effect of leachates on the growth of soil fungal pathogens Fusarium culmorum, Rhizoctonia solani, Sclerotinia solani and Cochliobolus sativus. Finally, we tested the effect of litter of hybrid sorrel, miscanthus, knotweed and cultural meadow litter mixed with soil on population growth of Enchytraeus crypticus and Folsomia candida. Miscanthus and knotweed litter had a higher C:N ratio than the control meadow and hybrid sorrel litter. Miscanthus and hybrid sorrel litter had a higher content of phenols than knotweed and cultural meadow litter. Leachates from hybrid sorrel, miscanthus and knotweed biomass significantly decreased seed germination of wheat and mustard in both substrates. Soil fungal pathogens grew less vigorously on agar enriched by leachates from both biofuel crops than on agar enriched by knotweed and leachates. Litter from hybrid sorrel, miscanthus and knotweed significantly altered (both ways) the population growth of the soil mesofauna.

  2. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels.

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-11-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group.

  3. Soil water infiltration affected by biofuel and grain crop production systems in claypan landscape

    Science.gov (United States)

    The effect of soil management systems on water infiltration is very crucial within claypan landscapes to maximize production as well as minimize environmental risks. The objective of this study was to assess the effect of topsoil thickness on water infiltration in claypan soils for grain and biofuel...

  4. Assessing the biofuel options for Southern Africa

    CSIR Research Space (South Africa)

    Von Malititz, GP

    2008-11-01

    Full Text Available with nested levels of resource use rights. Despite the fact that this land is under-producing from a commercial agricultural perspective, this does not automatically translate into this land being available for biofuels. Due to the complex nature... the Biofuel yield in l/ha used in table one, using sugar cane and Jatropha as feedstock. These values are therefore not linked to specific country level growth conditions and assume suitable land is available. 3 It is very difficult to estimate total job...

  5. New feedstocks for biofuels. Alternative 1st generation of energy crops; Nieuwe Grondstoffen voor Biobrandstoffen. Alternatieve 1e Generatie Energiegewassen

    Energy Technology Data Exchange (ETDEWEB)

    Elbersen, W. [Agrotechnology and Food Sciences Group, WUR-AFSG, Wageningen (Netherlands); Oyen, L. [Plant Resources of Tropical Africa, WUR-PROTA, Wageningen (Netherlands)

    2009-08-15

    A brief overview is provided of a number of alternative crops that can supply feedstocks for 1st generation biofuels and a brief analysis is conducted of the option for renewable biofuel production. [Dutch] Er wordt een kort overzicht gegeven van een aantal alternatieve gewassen die grondstoffen voor 1e generatie biobrandstoffen kunnen leveren en wordt er een korte analyse gegeven van de mogelijkheid voor duurzame biobrandstofproductie.

  6. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  7. Nitrous Oxide Emissions from Biofuel Crops and Atmospheric Aerosols: Associations with Air Quality and Regional Climate

    Science.gov (United States)

    Pillai, Priya Ramachandran

    Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the

  8. Assessing soil and groundwater contamination from biofuel spills.

    Science.gov (United States)

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  9. An assessment of biofuel use and burning of agricultural waste in the developing world

    Science.gov (United States)

    Yevich, Rosemarie; Logan, Jennifer A.

    2003-12-01

    We present an assessment of biofuel use and agricultural field burning in the developing world. We used information from government statistics, energy assessments from the World Bank, and many technical reports, as well as from discussions with experts in agronomy, forestry, and agro-industries. We estimate that 2060 Tg biomass fuel was used in the developing world in 1985; of this, 66% was burned in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use in India and China. We find that 400 Tg of crop residues are burned in the fields, with the fraction of available residue burned in 1985 ranging from 1% in China, 16-30% in the Middle East and India, to about 70% in Indonesia; in Africa about 1% residue is burned in the fields of the northern drylands, but up to 50% in the humid tropics. We distributed this biomass burning on a spatial grid with resolution of 1° × 1°, and applied emission factors to the amount of dry matter burned to give maps of trace gas emissions in the developing world. The emissions of CO from biofuel use in the developing world, 156 Tg, are about 50% of the estimated global CO emissions from fossil fuel use and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small, but nonnegligible when compared with the emissions of CO2 from fossil fuel use and industry, 5.3 Pg C. The biomass burning source of 10 Tg/yr for CH4 and 2.2 Tg N/yr of NOx are relatively small when compared with total CH4 and NOx sources; this source of NOx may be important on a regional basis.

  10. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    Science.gov (United States)

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sugar Release and Growth of Biofuel Crops are Improved by Downregulation of Pectin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Donohoe, Bryon S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sykes, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gjersing, Erica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ziebell, Angela [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turner, Geoffrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davis, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biswal, Ajaya K. [University of Georgia; Oak Ridge National Laboratory; Atmodjo, Melani A. [University of Georgia; Oak Ridge National Laboratory; Li, Mi [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Baxter, Holly L. [Oak Ridge National Laboratory; University of Tennessee; Yoo, Chang Geun [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Pu, Yunqiao [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Lee, Yi-Ching [Oak Ridge National Laboratory; Noble Research Institute; Mazarei, Mitra [Oak Ridge National Laboratory; University of Tennessee; Black, Ian M. [University of Georgia; Zhang, Ji-Yi [Oak Ridge National Laboratory; Noble Research Institute; Ramanna, Hema [Oak Ridge National Laboratory; Noble Research Institute; Bray, Adam L. [Oak Ridge National Laboratory; University of Georgia; King, Zachary R. [Oak Ridge National Laboratory; University of Georgia; LaFayette, Peter R. [Oak Ridge National Laboratory; University of Georgia; Pattathil, Sivakumar [University of Georgia; Oak Ridge National Laboratory; Mohanty, Sushree S. [University of Georgia; Oak Ridge National Laboratory; Ryno, David [University of Georgia; Oak Ridge National Laboratory; Yee, Kelsey [Oak Ridge National Laboratory; Thompson, Olivia A. [Oak Ridge National Laboratory; Rodriguez Jr., Miguel [Oak Ridge National Laboratory; Dumitrache, Alexandru [Oak Ridge National Laboratory; Natzke, Jace [Oak Ridge National Laboratory; Winkeler, Kim [Oak Ridge National Laboratory; ArborGen, Inc.; Collins, Cassandra [Oak Ridge National Laboratory; ArborGen, Inc.; Yang, Xiaohan [Oak Ridge National Laboratory; Tan, Li [University of Georgia; Oak Ridge National Laboratory; Hahn, Michael G. [University of Georgia; Oak Ridge National Laboratory; Davison, Brian H. [Oak Ridge National Laboratory; Udvardi, Michael K. [Oak Ridge National Laboratory; Noble Research Institute; Mielenz, Jonathan R. [Oak Ridge National Laboratory; Nelson, Richard S. [Oak Ridge National Laboratory; Noble Research Institute; Parrott, Wayne A. [Oak Ridge National Laboratory; University of Georgia; Ragauskas, Arthur J. [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; University of Tennessee; Stewart Jr., C. Neal [Oak Ridge National Laboratory; University of Tennessee; Mohnen, Debra [University of Georgia; Oak Ridge National Laboratory

    2018-02-12

    Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an a-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.

  12. Energy performance and efficiency of two sugar crops for the biofuel supply chain. Perspectives for sustainable field management in southern Italy

    International Nuclear Information System (INIS)

    Garofalo, Pasquale; D'Andrea, Laura; Vonella, A. Vittorio; Rinaldi, Michele; Palumbo, A. Domenico

    2015-01-01

    Improvement of the energy balance and efficiency for reduced input of cropping systems is one of the main goals for the cultivation of energy crops. In this field study, two sugar crops for bioethanol production were cultivated under different soil tillage management (conventional; no tillage) and mineral nitrogen application (0, 75, 150 kg N ha"−"1): sweet sorghum and sugar beet. The energy performance and efficiency along the bioethanol supply chain were analysed and compared. Both of these crops showed good growth adaptation to the different soil and nitrogen management, and thus the energy return, resource and energy efficiencies were significantly improved in the low-input system. Sweet sorghum provided better responses in terms of water and nitrogen use efficiency for biomass accumulation, as well as its energy yield and net gain, compared to sugar beet, whereas sugar beet showed higher energy efficiency than sorghum. According to these data, both of these crops can be cultivated in a Mediterranean environment with low energy input, which guarantees good crop and energy performances for biofuel strategy planning. - Highlights: • Two sugar crops for the bioethanol supply chain were evaluated. • Energy performances and efficiencies were assessed under different energy input. • Sugar yield resulted not compromised by the different crop management. • The energy gain was improved with low energy input at field level. • Sweet sorghum gave the highest energy yield, sugar beet the energy efficiency.

  13. Sustainability development: Biofuels in agriculture

    OpenAIRE

    Cheteni, Priviledge

    2017-01-01

    Biofuels are socially and politically accepted as a form of sustainable energy in numerous countries. However, cases of environmental degradation and land grabs have highlighted the negative effects to their adoption. Smallholder farmers are vital in the development of a biofuel industry. The study sort to assess the implications in the adoption of biofuel crops by smallholder farmers. A semi-structured questionnaire was administered to 129 smallholder farmers who were sampled from the Easter...

  14. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum under abiotic stress.

    Directory of Open Access Journals (Sweden)

    Guiling Sun

    Full Text Available Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology.

  15. Modelling Global Land Use and Social Implications in the Sustainability Assessment of Biofuels

    DEFF Research Database (Denmark)

    Kløverpris, Jesper; Wenzel, Henrik

    2007-01-01

    Cross-fertilising environmental, economic and geographical modelling to improve the environmental assessment of biofuel......Cross-fertilising environmental, economic and geographical modelling to improve the environmental assessment of biofuel...

  16. An integrated modeling framework for exploring flow regime and water quality changes with increasing biofuel crop production in the U.S. Corn Belt

    Science.gov (United States)

    Yaeger, Mary A.; Housh, Mashor; Cai, Ximing; Sivapalan, Murugesu

    2014-12-01

    To better address the dynamic interactions between human and hydrologic systems, we develop an integrated modeling framework that employs a System of Systems optimization model to emulate human development decisions which are then incorporated into a watershed model to estimate the resulting hydrologic impacts. The two models are run interactively to simulate the coevolution of coupled human-nature systems, such that reciprocal feedbacks between hydrologic processes and human decisions (i.e., human impacts on critical low flows and hydrologic impacts on human decisions on land and water use) can be assessed. The framework is applied to a Midwestern U.S. agricultural watershed, in the context of proposed biofuels development. This operation is illustrated by projecting three possible future coevolution trajectories, two of which use dedicated biofuel crops to reduce annual watershed nitrate export while meeting ethanol production targets. Imposition of a primary external driver (biofuel mandate) combined with different secondary drivers (water quality targets) results in highly nonlinear and multiscale responses of both the human and hydrologic systems, including multiple tradeoffs, impacting the future coevolution of the system in complex, heterogeneous ways. The strength of the hydrologic response is sensitive to the magnitude of the secondary driver; 45% nitrate reduction target leads to noticeable impacts at the outlet, while a 30% reduction leads to noticeable impacts that are mainly local. The local responses are conditioned by previous human-hydrologic modifications and their spatial relationship to the new biofuel development, highlighting the importance of past coevolutionary history in predicting future trajectories of change.

  17. Assessment of biofuels supporting policies using the BioTrans model

    International Nuclear Information System (INIS)

    Lensink, Sander; Londo, Marc

    2010-01-01

    The introduction of advanced, 2nd generation biofuels is a difficult to forecast process. Policies may impact the timing of their introduction and the future biofuels mix. The least-cost optimization model BioTrans supports policy analyses on these issues. It includes costs for all parts of the supply chain, and endogenous learning for all biofuels technologies, including cost reductions through scale. BioTrans shows that there are significant lock-in effects favouring traditional biofuels, and that the optimal biofuels mix by 2030 is path dependent. The model captures important barriers for the introduction of emerging technologies, thereby providing valuable quantitative information that can be used in analyses of biofuels supporting policies. It is shown that biodiesel from oil crops will remain a cost effective way of producing biofuels in the medium term at moderate target levels. Aiming solely at least-cost biofuel production is in conflict with a longer term portfolio approach on biofuels, and the desire to come to biofuels with the lowest greenhouse gas emissions. Lowering the targets because of environmental constraints delays the development of 2nd generation biofuels, unless additional policy measures (such as specific sub targets for these fuels) are implemented.

  18. Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS

    Directory of Open Access Journals (Sweden)

    Serafin Corral

    2016-05-01

    Full Text Available This paper discusses the assessment of various biofuel crop production alternatives on the island of Fuerteventura using Jatropha crops. It adopts an integrated approach by carrying out a multi-criteria assessment with the support of participatory techniques and geographical information systems. Sixteen production alternatives were analyzed for growing Jatropha, and the results suggest that the best alternative involves using typical torrifluvent soils irrigated with recycled urban wastewater using surface drip irrigation covering 100% evapotranspiration. It was also determined that a potential area of 2546 ha could be used for cultivation within a radius of 10 km from a wastewater treatment plant. This level of production would supply 27.56% of the biofuel needs of Fuerteventura, thereby contributing to the 2020 target of the European Commission regarding biofuels for land transport.

  19. Barriers and Incentives to Potential Adoption of Biofuels Crops by Smallholder Farmers in the Eastern Cape Province, South Africa

    OpenAIRE

    Cheteni, Priviledge; Mushunje, Abbyssinia; Taruvinga, Amon

    2014-01-01

    The main objective of this study was to identify barriers and incentives that influence the potential adoption of biofuel crops by smallholder farmers. The study utilized a semi-structured questionnaire to record responses from 129 smallholder farmers that were identified through a snowballing sampling technique. The respondents were from the Oliver Tambo and Chris Hani District Municipalities in the Eastern Cape Province, South Africa. A Heckman two-step model was applied to analyze the dat...

  20. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    Science.gov (United States)

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  1. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    Directory of Open Access Journals (Sweden)

    BB Marvey

    2009-04-01

    Full Text Available Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decades after discontinuing its large scale production of bioethanol for use as en- gine fuel, South Africa (SA is again on its way to resuscitating its biofuel industry. Herein an overview is presented on South Africa’s oilseed and biofuel production, biofuels industrial strategy, industry readiness, chal- lenges in switching to biofuels and the strategies to overcome potential obstacles.

  2. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops.

    Science.gov (United States)

    Slattery, Rebecca A; Ort, Donald R

    2015-06-01

    The conversion efficiency (ε(c)) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve ε(c), but a statistical analysis to establish baseline ε(c) levels across different crop functional types is lacking. Data from 164 published ε(c) studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in ε(c )across important food and biofuel crop species. ε(c) was greatest in biofuel crops (0.049-0.066), followed by C4 food crops (0.046-0.049), C3 nonlegumes (0.036-0.041), and finally C3 legumes (0.028-0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of ε(c) variability. Genetic improvements in ε(c), when present, were less than 0.7% per year, revealing the unrealized potential of improving ε(c) as a promising contributing strategy to meet projected future agricultural demand. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Sander C.; van de Ven, Gerrie W.J.; van Ittersum, Martin K.; Giller, Ken E. [Plant Production Systems Group, Wageningen University, P.O. Box 430, 6700 AK Wageningen (Netherlands)

    2010-05-15

    We compared the production-ecological sustainability of biofuel production from several major crops that are also commonly used for production of food or feed, based on current production practices in major production areas. The set of nine sustainability indicators focused on resource use efficiency, soil quality, net energy production and greenhouse gas emissions, disregarding socio-economic or biodiversity aspects and land use change. Based on these nine production-ecological indicators and attributing equal importance to each indicator, biofuel produced from oil palm (South East Asia), sugarcane (Brazil) and sweet sorghum (China) appeared most sustainable: these crops make the most efficient use of land, water, nitrogen and energy resources, while pesticide applications are relatively low in relation to the net energy produced. Provided there is no land use change, greenhouse gas emissions of these three biofuels are substantially reduced compared with fossil fuels. Oil palm was most sustainable with respect to the maintenance of soil quality. Maize (USA) and wheat (Northwest Europe) as feedstock for ethanol perform poorly for nearly all indicators. Sugar beet (Northwest Europe), cassava (Thailand), rapeseed (Northwest Europe) and soybean (USA) take an intermediate position. (author)

  4. Using The Corngrass1 Gene To Enhance The Biofuel Properties Of Crop Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA Agricultural Research Service, Washington DC (United States); Chuck, George [USDA Agricultural Research Service, Washington DC (United States)

    2015-10-29

    The development of novel plant germplasm is vital to addressing our increasing bioenergy demands. The major hurdle to digesting plant biomass is the complex structure of the cell walls, the substrate of fermentation. Plant cell walls are inaccessible matrices of macromolecules that are polymerized with lignin, making fermentation difficult. Overcoming this hurdle is a major goal toward developing usable bioenergy crop plants. Our project seeks to enhance the biofuel properties of perennial grass species using the Corngrass1 (Cg1) gene and its targets. Dominant maize Cg1 mutants produce increased biomass by continuously initiating extra axillary meristems and leaves. We cloned Cg1 and showed that its phenotype is caused by over expression of a unique miR156 microRNA gene that negatively regulates SPL transcription factors. We transferred the Cg1 phenotype to other plants by expressing the gene behind constitutive promoters in four different species, including the monocots, Brachypodium and switchgrass, and dicots, Arabidopsis and poplar. All transformants displayed a similar range of phenotypes, including increased biomass from extended leaf production, and increased vegetative branching. Field grown switchgrass transformants showed that overall lignin content was reduced, the ratio of glucans to xylans was increased, and surprisingly, that starch levels were greatly increased. The goals of this project are to control the tissue and temporal expression of Cg1 by using different promoters to drive its expression, elucidate the function of the SPL targets of Cg1 by generating gain and loss of function alleles, and isolate downstream targets of select SPL genes using deep sequencing and chromatin immunoprecipitation. We believe it is possible to control biomass accumulation, cell wall properties, and sugar levels through manipulation of either the Cg1 gene and/or its SPL targets.

  5. Estimating Soil and Root Parameters of Biofuel Crops using a Hydrogeophysical Inversion

    Science.gov (United States)

    Kuhl, A.; Kendall, A. D.; Van Dam, R. L.; Hyndman, D. W.

    2017-12-01

    Transpiration is the dominant pathway for continental water exchange to the atmosphere, and therefore a crucial aspect of modeling water balances at many scales. The root water uptake dynamics that control transpiration are dependent on soil water availability, as well as the root distribution. However, the root distribution is determined by many factors beyond the plant species alone, including climate conditions and soil texture. Despite the significant contribution of transpiration to global water fluxes, modelling the complex critical zone processes that drive root water uptake remains a challenge. Geophysical tools such as electrical resistivity (ER), have been shown to be highly sensitive to water dynamics in the unsaturated zone. ER data can be temporally and spatially robust, covering large areas or long time periods non-invasively, which is an advantage over in-situ methods. Previous studies have shown the value of using hydrogeophysical inversions to estimate soil properties. Others have used hydrological inversions to estimate both soil properties and root distribution parameters. In this study, we combine these two approaches to create a coupled hydrogeophysical inversion that estimates root and retention curve parameters for a HYDRUS model. To test the feasibility of this new approach, we estimated daily water fluxes and root growth for several biofuel crops at a long-term ecological research site in Southwest Michigan, using monthly ER data from 2009 through 2011. Time domain reflectometry data at seven depths was used to validate modeled soil moisture estimates throughout the model period. This hydrogeophysical inversion method shows promise for improving root distribution and transpiration estimates across a wide variety of settings.

  6. Global Warming Potential and Eutrophication Potential of Biofuel Feedstock Crops Produced in Florida, Measured Under Different Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-15

    The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.

  7. Assessing the social impacts of the biofuel lifecycle

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Hauschild, Michael Zwicky

    In order to assess the social impacts of the biofuel lifecycle, Social Life Cycle Assessment (SLCA) may be a promising tool. However, as this review study points out, several problems are still to be solved. SLCA can be defined as a tool for assessing a product’s or service’s total impact on human...... health and well-being throughout its life cycle. During the recent years several different approaches towards SLCA have been developing. This review reveals a broad variety in how the SLCAs address all methodological steps. One of the main differences is in the choice and formulation of social indicators....... The indicators address a wide variety of issues; some approaches focus on impacts created in the very close proximity of the processes included in the product system, whereas others focus on the more remote societal consequences. The perception of social impacts is thus very varying. An assessment focussing...

  8. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    OpenAIRE

    Marvey, B B

    2009-01-01

    Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decade...

  9. Unintended consequences of biofuels production?The effects of large-scale crop conversion on water quality and quantity

    Science.gov (United States)

    Welch, Heather L.; Green, Christopher T.; Rebich, Richard A.; Barlow, Jeannie R.B.; Hicks, Matthew B.

    2010-01-01

    In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The Biofuels Initiative in the Mississippi Delta resulted in a 47-percent decrease in cotton acreage with a concurrent 288-percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation than for cotton, this widespread shift in crop type has implications for water quantity and water quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged because of concerns about sustainability of the groundwater resource. Results from a mathematical model calibrated to existing conditions in the Delta indicate that increased fertilizer application on corn also likely will increase the extent of nitrate-nitrogen movement into the alluvial aquifer. Preliminary estimates based on surface-water modeling results indicate that higher application rates of nitrogen increase the nitrogen exported from the Yazoo River Basin to the Mississippi River by about 7 percent. Thus, the shift from cotton to corn may further contribute to hypoxic (low dissolved oxygen) conditions in the Gulf of Mexico.

  10. Can biofuels be sustainable by 2020? An assessment for an obligatory blending target of 10% in the Netherlands

    International Nuclear Information System (INIS)

    Bindraban, P.; Bulte, E.; Conijn, S.; Eickhout B; Hoogwijk M; Londo, M.

    2009-06-01

    The expectation is that globally more land will be needed for agriculture for food and feed during the coming decade or more. The rate of productivity increase is not likely to keep up with the strongly increasing demand for food and feed. Moreover, in addition to the demand for food as projected by economic models, higher supply rates are needed to adequately feed food insecure people. An additional demand for biofuels before 2020 will increase this pressure on land, with negative impacts on biodiversity. Direct greenhouse gas savings of biofuels are generally positive within the production chain, provided good agronomic management. As the agricultural acreage for food production will increase in the coming decade, production of food and non-food based feedstock for biofuels will put a direct or indirect claim on natural lands. The land clearing for the production of biofuels can cause land use changes, anywhere in the world. Depending on the carbon stocks of the land taken into production, chosen crops and agronomic management, this can lead to substantial greenhouse gas emissions, offsetting the direct greenhouse gains in the production chain. The use of marginal land for biofuels can deliver beneficiary results, but it is uncertain that much feedstock will be produced on these marginal lands by 2020. Since additional policies are not analysed in this study, performed within the framework of the Netherlands Research Programme on Scientific Assessment and Policy Analysis for Climate Change (WAB), two perspectives have been described how these negative aspects can be handled until 2020. One perspective assumes that even significant changes within the coming decade will not be able to reduce the expected negative implications of biofuels. The other perspective assumes that major efforts should be taken to reduce negative effects

  11. Wonder crop could pave the way for bio-fuel revolution

    CSIR Research Space (South Africa)

    Gush, Mark B

    2005-03-01

    Full Text Available are some of the pressures that are influencing the quest for alternative, cleaner forms of energy. Some would suggest that the bio-fuel revolution has begun. Because of these trends a recent business initiative has proposed the introduction of the so...

  12. Sustainability of biofuels and bioproducts: socio-economic impact assessment

    NARCIS (Netherlands)

    Rutz, D.; van Eijck, J.A.J.|info:eu-repo/dai/nl/297954296; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    Many countries worldwide are increasingly engaging in the promotion of biomass production for industrial uses such as biofuels and bioproducts (chemicals, bioplastics, etc.). Until today, mainly biofuels were supported by European policies, but support for bioproducts is still lacking behind. Thus,

  13. Transport biofuels - a life-cycle assessment approach

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil

  14. White paper report from working groups attending the international conference on research and educational opportunities in bio-fuel crop production

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, K.T. [University of Florida, Soil and Water Science Dep., Southwest Florida Res. and Educ. Center, Immokalee, FL 34142 (United States); Gilbert, R.A. [University of Florida, Agronomy Dep., Everglades Res. and Educ. Center, Belle Glade, FL 33430 (United States); Helsel, Z.A. [Rutgers University, Plant Biology and Pathology Dep., New Brunswick, NJ 08901-8520 (United States); Buacum, L. [University of Florida, Hendry County Extension, LaBelle, FL 33935 (United States); Leon, R.; Perret, J. [EARTH University, Apto. 4442-1000, San Jose (Costa Rica)

    2010-12-15

    A conference on current research and educational programs in production of crops for bio-fuel was sponsored and organized by the EARTH University and the University of Florida in November, 2008. The meeting addressed current research on crops for bio-fuel production with discussions of research alternatives for future crop production systems, land use issues, ethics of food vs. fuel production, and carbon sequestration in environmentally sensitive tropical and sub-tropical regions of the Americas. The need and potential for development of graduate and undergraduate curricula and inter-institutional cooperation among educational institutions in the region were also discussed. Delegations from Belize, Brazil, Columbia, Costa Rica, Cuba, Honduras, Panama, The Dominican Republic, and the United States including ministers of Agriculture and Energy attended this meeting. Over a two-day period, four working groups provided a framework to facilitate networking, motivate task oriented creative thinking, and maintain a timely accomplishment of assigned duties in the context of the conference themes. Participants in the conference were assigned to one of four working groups, each following given topics: Agronomy, Environment, Socio-Economics and Education/Extension. It was the consensus of representatives of industry, academic and regulatory community assembled in Costa Rica that significant research, education and socio-economic information is needed to make production of bio-fuel crops sustainable. Agronomic research should include better crop selection based on local conditions, improved production techniques, pest and disease management, and mechanical cultivation and harvesting. Another conclusion was that tailoring of production systems to local soil characteristics and use of bio-fuel by-products to improve nutrient use efficiency and reduction of environmental impact on water quantity and quality is critical to sustainability of bio-fuel crop production. (author)

  15. Biofuel use assessments in Africa. Implications for greenhouse gas emissions and mitigation strategies

    International Nuclear Information System (INIS)

    Kgathi, D.L.; Zhou, P.

    1995-01-01

    The energy balances of most African countries suggest that biofuels (wood fuel, crop and wood dues, and dung) constitute the largest share of total energy consumption (up to 97% in some sub-Saharan African countries). There is, however an increasing scarcity of wood fuel (fuel wood and charcoal), the major biofuel, and a feared increase in greenhouse gas (GHG) emissions associated with biofuel combustion. The extent of GHG emissions is estimated from biofuel consumption levels that are in turn based on methodologies that might be inaccurate. A questionnaire, supplemented by informal interviews, are used to collect data, yielding information regarding end-uses, technologies used, scale of consumption, determinants of fuel consumption, and interfuel substitution (among other parameters). The survey revealed that cooking is the major end-use, with other common uses, such as space and water heating. Improved stoves that provide better combustion efficiency and, thus, reduce wood fuel consumption have not been widely disseminated and are associated with higher methane emissions than open fires. More than 90% of the households in Africa use open fires. Consumption is presented as per capita for households and as products and quantity of fuel in the small scale industries, commercial, and public sectors. Among the determinants for biofuel consumption are affordability, availability of the fuel, and interfuel substitutions. Flaws in estimating biofuel consumption yield large uncertainties in GHG emissions, with implications for the development of policies on energy planning and environmental protection. However, the application of scenarios can guide policy formulation. 5 tabs., 42 refs

  16. Local Social and Environmental Impacts of Biofuels: Global Comparative Assessment and Implications for Governance

    Directory of Open Access Journals (Sweden)

    Laura German

    2011-12-01

    Full Text Available The 2000s witnessed the rapid expansion of biofuel plantations in the global South in the context of a growing trend of crop plantation expansion. This trend has been spurred by policies in the European Union, United States, Brazil, and other countries favoring the use of biofuels in the transport sector to enhance energy security and reduce carbon emissions, as well as by the desire of governments in developing countries to harness the stimulus that new commercial investments provide to the agricultural sector and to national economies. Despite these potential benefits, a number of concerns have been raised about the local social and environmental impacts of biofuel feedstock expansion. We shed light on this debate through a synthesis of findings from case studies in six biofuel producer countries of Asia, Africa, and Latin America, and a seventh paper exploring the implications of the land-use changes observed in these case studies for the climate mitigation potential of biofuels. We also explore the implications for governing the environmental impacts of biofuel feedstock production, protecting the rights of customary land users, and enabling smallholder-inclusive business models. Our analysis suggests that better governance of the sector's impacts is not the exclusive preserve of unitary sets of actors, but instead requires concerted and coordinated efforts by governments of producer and consumer countries, investors, civil society, and the financial sector to better capture the sector's potential while minimizing its social and environmental costs.

  17. Biofuel use assessments in Africa: Implications for greenhouse gas emissions and mitigation strategies.

    Science.gov (United States)

    Kgathi, D L; Zhou, P

    1995-01-01

    The energy balances of most African countries suggest that biofuels (woodfuel, crop and wood residues, and dung) constitute the largest share of total energy consumption (up to 97% in some sub-Saharan Africa countries). There is, however, an increasing scarcity of woodfuel (fuelwood and charcoal), the major biofuel, and a feared increase in greenhouse gas (GHG) emissions associated with biofuel combustion. The extent of GHG emissions is estimated from biofuel consumption levels that are in turn based on methodologies that might be inaccurate. A questionnaire, supplemented by informal interviews, are used to collect data, yielding information regarding end-uses, technologies used, scale of consumption, determinants of fuel consumption, and interfuel substitution (among other parameters). The survey revealed that cooking is the major end-use, with other common uses, such as space and water heating. Improved stoves that provide better combustion efficiency and, thus, reduce woodfuel consumption have not been widely disseminated and are associated with higher methane emissions than open fires. More than 90% of the households in Africa use open fires. Consumption is presented as per capita for households and as products and quantity of fuel in the small scale industries, commercial, and public sectors. Among the determinants for biofuel consumption are affordability, availability of the fuel, and interfuel substitutions. Flaws in estimating biofuel consumption yield large uncertainties in GHG emissions, with implications for the development of policies on energy planning and environmental protection. However, the application of scenarios can guide policy formulation.

  18. Strategic environmental assessment for sustainable expansion of palm oil biofuels in Brazilian north region

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Carolina

    2010-09-15

    Biofuels development in Brazil is a key factor for the environment and sustainable development of the country. Brazil has great potential of available areas and has favourable climate and geography for biofuel production, such as palm oil, soy, sugar cane, etc. This research aims to evaluate palm oil production and expansion in Para state, in the north of Brazil and also Amazonian territory. Degraded land will be evaluated through remote sensing, because palm oil crops should be placed in these lands, and secondly, expansion scenarios would be created. This PhD research will be a decision support tool for public policies.

  19. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.

    Directory of Open Access Journals (Sweden)

    Joseph L Spencer

    Full Text Available BACKGROUND: Interest in the cultivation of biomass crops like the C4 grass Miscanthus x giganteus (Miscanthus is increasing as global demand for biofuel grows. In the US, Miscanthus is promoted as a crop well-suited to the Corn Belt where it could be cultivated on marginal land interposed with maize and soybean. Interactions (direct and indirect of Miscanthus, maize, and the major Corn Belt pest of maize, the western corn rootworm, (Diabrotica virgifera virgifera LeConte, WCR are unknown. Adding a perennial grass/biomass crop to this system is concerning since WCR is adapted to the continuous availability of its grass host, maize (Zea mays. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse and field study, we investigated WCR development and oviposition on Miscanthus. The suitability of Miscanthus for WCR development varied across different WCR populations. Data trends indicate that WCR populations that express behavioural resistance to crop rotation performed as well on Miscanthus as on maize. Over the entire study, total adult WCR emergence from Miscanthus (212 WCR was 29.6% of that from maize (717 WCR. Adult dry weight was 75-80% that of WCR from maize; female emergence patterns on Miscanthus were similar to females developing on maize. There was no difference in the mean no. of WCR eggs laid at the base of Miscanthus and maize in the field. CONCLUSIONS/SIGNIFICANCE: Field oviposition and significant WCR emergence from Miscanthus raises many questions about the nature of likely interactions between Miscanthus, maize and WCR and the potential for Miscanthus to act as a refuge or reservoir for Corn Belt WCR. Responsible consideration of the benefits and risks associated with Corn Belt Miscanthus are critical to protecting an agroecosystem that we depend on for food, feed, and increasingly, fuel. Implications for European agroecosystems in which Miscanthus is being proposed are also discussed in light of the WCR's recent invasion into Europe.

  20. Nitrous Oxide Emissions from Biofuel Crops and Parameterization in the EPIC Biogeochemical Model

    Science.gov (United States)

    This presentation describes year 1 field measurements of N2O fluxes and crop yields which are used to parameterize the EPIC biogeochemical model for the corresponding field site. Initial model simulations are also presented.

  1. Safety assessment of genetically modified crops

    International Nuclear Information System (INIS)

    Atherton, Keith T.

    2002-01-01

    The development of genetically modified (GM) crops has prompted widespread debate regarding both human safety and environmental issues. Food crops produced by modern biotechnology using recombinant techniques usually differ from their conventional counterparts only in respect of one or a few desirable genes, as opposed to the use of traditional breeding methods which mix thousands of genes and require considerable efforts to select acceptable and robust hybrid offspring. The difficulties of applying traditional toxicological testing and risk assessment procedures to whole foods are discussed along with the evaluation strategies that are used for these new food products to ensure the safety of these products for the consumer

  2. Energy valuation methods for biofuels in South Florida: Introduction to life cycle assessment and emergy approaches

    Energy Technology Data Exchange (ETDEWEB)

    Treese II, J. Van [Southwest Florida Research and Education Center, Immokalee, FL (United States); Hanlon, Edward A. [Southwest Florida Research and Education Center, Immokalee, FL (United States); Amponsah, Nana [Intelligentsia International, LaBelle, FL (United States); Izursa, Jose -Luis [Intelligentsia International, LaBelle, FL (United States); Capece, John C. [Univ. of Florida, Gainesville, FL (United States)

    2013-03-01

    Here, recent changes in the United States requiring the use of ethanol in gasoline for most vehicular transportation have created discussion about important issues, such as shifting the use of certain plants from food production to energy supply, related federal subsidies, effects on soil, water and atmosphere resources, tradeoffs between food production and energy production, speculation about biofuels as a possible means for energy security, potential reduction of greenhouse gas (GHG) emissions or development and expansion of biofuels industry. A sustainable approach to biofuel production requires understanding inputs (i.e., energy required to carry out a process, both natural and anthropogenic) and outputs (i.e., energy produced by that process) and cover the entire process, as well as environmental considerations that can be overlooked in a more traditional approach. This publication gives an overview of two methods for evaluating energy transformations in biofuels production: (1) Life Cycle Assessment (LCA) and (2) Emergy Assessment (EA). The LCA approach involves measurements affecting greenhouse gases (GHG), which can be linked to the energy considerations used in the EA. Although these two methods have their basis in energy or GHG evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. Using these two methods can ensure that the energy components are well understood and can help to evaluate the economic environmental component of a biofuel process. In turn, using these two evaluative tools will allow for decisions about biofuel processes that favor sustainability

  3. Environmental impact assessment of biofuel production on contaminated land - Swedish case studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Suer, Pascal [Swedish Geotechnical Institute, Linkoeping (Sweden); Blom, Sonja [FB Engineering AB, Goeteborg (Sweden); Bardos, Paul [r3 Environmental Technology Ltd, Reading (United Kingdom); Track, Thomas; Polland, Marcel [DECHEMA e. V., Frankfurt am Main (Germany)

    2009-07-01

    This report studies the (possible) cultivation of short rotation wood (Salix Vinimalis) on two contaminated sites from an environmental perspective, through a life cycle analysis (LCA) and carbon footprint, with an outlook towards an overarching method for a qualitative or semi-quantitative analysis based on a life cycle framework. Two areas were selected as case studies: a small site where short rotation crop (Salix Vinimalis) cultivation is in progress and a large site where biofuel production is hypothetical. For the selection of suitable sites, the following aspects were considered: Site location and size, so that biofuel cultivation might be economically viable without a remediation bonus, Topography and soil conditions, so that machinery could be used for cultivation, Time, so that the site was not in urgent need of remediation due to environmental or human health risks, or acute exploitation requirements, Contamination degree, which should not be plant-toxic, Contamination depth, Assessment of optimum crop and its use. For doubtful areas, it is especially important to analyse what the most viable option for the contaminated site is, and what bio-product could be used. For a more comprehensive analysis, which also incorporates local economic and social aspects, the decision support matrix, inter alia, described in the main report of the project Rejuvenate, is recommended. The calculation of emissions for the LCA and the carbon footprint used a German software tool for LCA of soil remediation. The software includes equipment emission data published in 1995. The module 'landfarming' has been used in this study to calculate emissions from herbicide application, fertilisation, ploughing and deep-ploughing, Salix harvest, harrowing etc. Since production of herbicide and Salix Vinimalis shoots were not included in the software, they were not included in the study. The conclusions for the two sites were very similar, in spite of the large differences between the

  4. Environmental impact assessment of biofuel production on contaminated land - Swedish case studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Suer, Pascal (Swedish Geotechnical Institute, Linkoeping (Sweden)); Blom, Sonja (FB Engineering AB, Goeteborg (Sweden)); Bardos, Paul (r3 Environmental Technology Ltd, Reading (United Kingdom)); Track, Thomas; Polland, Marcel (DECHEMA e. V., Frankfurt am Main (Germany))

    2009-07-01

    This report studies the (possible) cultivation of short rotation wood (Salix Vinimalis) on two contaminated sites from an environmental perspective, through a life cycle analysis (LCA) and carbon footprint, with an outlook towards an overarching method for a qualitative or semi-quantitative analysis based on a life cycle framework. Two areas were selected as case studies: a small site where short rotation crop (Salix Vinimalis) cultivation is in progress and a large site where biofuel production is hypothetical. For the selection of suitable sites, the following aspects were considered: Site location and size, so that biofuel cultivation might be economically viable without a remediation bonus, Topography and soil conditions, so that machinery could be used for cultivation, Time, so that the site was not in urgent need of remediation due to environmental or human health risks, or acute exploitation requirements, Contamination degree, which should not be plant-toxic, Contamination depth, Assessment of optimum crop and its use. For doubtful areas, it is especially important to analyse what the most viable option for the contaminated site is, and what bio-product could be used. For a more comprehensive analysis, which also incorporates local economic and social aspects, the decision support matrix, inter alia, described in the main report of the project Rejuvenate, is recommended. The calculation of emissions for the LCA and the carbon footprint used a German software tool for LCA of soil remediation. The software includes equipment emission data published in 1995. The module 'landfarming' has been used in this study to calculate emissions from herbicide application, fertilisation, ploughing and deep-ploughing, Salix harvest, harrowing etc. Since production of herbicide and Salix Vinimalis shoots were not included in the software, they were not included in the study. The conclusions for the two sites were very similar, in spite of the large differences

  5. Life cycle assessment of energy products: environmental impact assessment of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  6. The biofuel support policy. Public thematic report. Assessing a public policy

    International Nuclear Information System (INIS)

    2012-01-01

    In its first part, this detailed report gives an overview of some key facts regarding biofuels: energy context, biofuels and energy, biofuels and agriculture, multiple and superimposed regulation levels, financial data, and international comparisons. The second part analyses the positions of the different actors (oil industry and dealers, car manufacturers, bio-diesel producers, ethanol producers, farmers producing raw materials, consumer associations, defenders of the environment, public bodies). The third part reports the assessment of the French public policy in terms of efficiency. Some recommendations are made

  7. Impact of climate variability on N and C flux within the life cycle of biofuels produced from crop residues

    Science.gov (United States)

    Pourhashem, G.; Block, P. J.; Adler, P. R.; Spatari, S.

    2013-12-01

    Biofuels from agricultural feedstocks (lignocellulose) are under development to meet national policy objectives for producing domestic renewable fuels. Using crop residues such as corn stover as feedstock for biofuel production can minimize the risks associated with food market disruption; however, it demands managing residue removal to minimize soil carbon loss, erosion, and to ensure nutrient replacement. Emissions of nitrous oxide and changes to soil organic carbon (SOC) are subject to variability in time due to local climate conditions and cultivation practices. Our objective is to investigate the effect of climate inputs (precipitation and temperature) on biogeochemical greenhouse gas (GHG) emissions (N2O and SOC expressed as CO2) within the life cycle of biofuels produced from agricultural residues. Specifically, we investigate the impact of local climate variability on soil carbon and nitrogen fluxes over a 20-year biorefinery lifetime where biomass residue is used for lignocellulosic ethanol production. We investigate two cases studied previously (Pourhashem et al, 2013) where the fermentable sugars in the agricultural residue are converted to ethanol (biofuel) and the lignin byproduct is used in one of two ways: 1) power co-generation; or 2) application to land as a carbon/nutrient-rich amendment to soil. In the second case SOC losses are mitigated through returning the lignin component to land while the need for fertilizer addition is also eliminated, however in both cases N2O and SOC are subject to variability due to variable climate conditions. We used the biogeochemical model DayCent to predict soil carbon and nitrogen fluxes considering soil characteristics, tillage practices and local climate (e.g. temperature and rainfall). We address the impact of climate variability on the soil carbon and nitrogen fluxes by implementing a statistical bootstrap resampling method based on a historic data set (1980 to 2000). The ensuing probabilistic outputs from the

  8. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Novotný, D.; Usťak, S.; Cajthaml, Tomáš; Slejška, A.; Šimáčková, H.; Honzík, R.; Kovářová, M.; Frouz, Jan

    2014-01-01

    Roč. 60, January (2014), s. 137-146 ISSN 0961-9534 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : soil fauna * energy crops * composition of soil fungi * microbial biomass * basal soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.394, year: 2014

  9. Assessment of biofuel potential of dead neem leaves ( Azadirachta ...

    African Journals Online (AJOL)

    Unfortunately, the lack of information on the biomass and energy potentials of these wastes empedes any initiative for its industrial biomethanization. This study was investigated with the aim of evaluating the biofuel potentials of dead neem leaves in Maroua town. The number of neem trees, as well as biomass produced by ...

  10. Benefits versus risks of growing biofuel crops: the case of Miscanthus

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2011-01-01

    The giant C4 grasses of the genus Miscanthus holds promise as candidates for the optimal bioenergy crop in the temperate zone with their high yield, cold tolerance, low environmental impact, resistance to pests and diseases, ease of harvesting and handling, and non-invasiveness. The latter is......, further development of the production chain, and stewardship programmes to avoid potential risks are still needed if Miscanthus is to compete with fossil fuel use and be widely produced....

  11. Bioenergy from crops and biomass residues: a consequential life-cycle assessment including land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    Biofuels are promising means to reduce fossil fuel depletion and mitigate greenhouse-gas (GHG) emissions. However, recent studies questioned the environmental benefits earlier attributed to biofuels, when these involve land-use changes (direct/indirect, i.e., dLUC/iLUC) (1-5). Yet, second...... to represent the actual environmental impacts. This study quantified the GHG emissions associated with a number of scenarios involving bioenergy production (as combined-heat-and-power, heating, and transport biofuel) from energy crops, industrial/agricultural residues, algae, and the organic fraction...... of municipal solid waste. Four conversion pathways were considered: combustion, fermentation-to-ethanol, fermentation-to-biogas, and thermal gasification. A total of 80 bioenergy scenarios were assessed. Consequential life-cycle assessment (CLCA) was used to quantify the environmental impacts. CLCA aimed...

  12. Algal biofuels: key issues, sustainability and life cycle assessment

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2011-01-01

    wastewater. Algae capture CO2 from atmosphere and industrial flue gases and transform it in to organic biomass that can be used for the production of biofuels. Like other biomass, algal biomass is also a carbon neutral source for the production of bioenergy. Therefore cultivation of algal biomass provides......In recent years research activities are intensively focused on renewable fuels in order to fulfill the increasing energy demand and to reduce the fossil fuels consumption and external oil dependency either in order to provide local energetic resources and or as a means for reducing greenhouse gases...... (GHG) emissions to reduce the climate change effects. Among the various renewable energy sources algal biofuels is a very promising source of biomass as algae sequester huge quantities of carbon from atmosphere and are very efficient in utilizing the nutrients from the industrial effluent and municipal...

  13. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  14. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  15. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop

    Science.gov (United States)

    Ng, Tze Ling; Eheart, J. Wayland; Cai, Ximing; Braden, John B.

    2011-09-01

    An agent-based model of farmers' crop and best management practice (BMP) decisions is developed and linked to a hydrologic-agronomic model of a watershed, to examine farmer behavior, and the attendant effects on stream nitrate load, under the influence of markets for conventional crops, carbon allowances, and a second-generation biofuel crop. The agent-based approach introduces interactions among farmers about new technologies and market opportunities, and includes the updating of forecast expectations and uncertainties using Bayesian inference. The model is applied to a semi-hypothetical example case of farmers in the Salt Creek Watershed in Central Illinois, and a sensitivity analysis is performed to effect a first-order assessment of the plausibility of the results. The results show that the most influential factors affecting farmers' decisions are crop prices, production costs, and yields. The results also show that different farmer behavioral profiles can lead to different predictions of farmer decisions. The farmers who are predicted to be more likely to adopt new practices are those who interact more with other farmers, are less risk averse, quick to adjust their expectations, and slow to reduce their forecast confidence. The decisions of farmers have direct water quality consequences, especially those pertaining to the adoption of the second-generation biofuel crop, which are estimated to lead to reductions in stream nitrate load. The results, though empirically untested, appear plausible and consistent with general farmer behavior. The results demonstrate the usefulness of the coupled agent-based and hydrologic-agronomic models for normative research on watershed management on the water-energy nexus.

  16. Biofuel or excavation? - Life cycle assessment (LCA) of soil remediation options

    Energy Technology Data Exchange (ETDEWEB)

    Suer, Pascal; Andersson-Skoeld, Yvonne [Swedish Geotechnical Institute, 58193 Linkoeping (Sweden)

    2011-02-15

    The environmental consequences of soil remediation through biofuel or through dig-and-dump were compared using life cycle assessment (LCA). Willow (Salix viminalis) was actually grown in-situ on a discontinued oil depot, as a phytoremediation treatment. These data were used for the biofuel remediation, while excavation-and-refill data were estimated from experience. The biofuel remediation had great environmental advantages compared to the ex situ excavation remediation. With the ReCiPe impact assessment method, which included biodiversity, the net environmental effect was even positive, in spite of the fact that the wood harvest was not utilised for biofuel production, but left on the contaminated site. Impact from the Salix viminalis cultivation was mainly through land use for the short rotation coppice, and through journeys of control personnel. The latter may be reduced when familiarity with biofuel as a soil treatment method increases. The excavation-and-refill remediation was dominated by the landfill and the transport of contaminated soil and backfill. (author)

  17. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  18. A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA

    International Nuclear Information System (INIS)

    Krohn, Brian J.; Fripp, Matthias

    2012-01-01

    Highlights: ► We conducted a life cycle analysis of biodiesel derived from Camelina sativa. ► Camelina biodiesel reduced GHG emissions and fossil fuel use by 40–60%. ► As a “niche filling” crop camelina can avoid land use change emissions. ► Low fertilizer use and yields >800 kg/ha are necessary for environmental viability. -- Abstract: Camelina sativa (L.) is a promising crop for biodiesel production that avoids many of the potential pitfalls of traditional biofuel crops, such as land use change (LUC) and food versus fuel. In this study the environmental viability of camelina biodiesel was assessed using life cycle analysis (LCA) methodology. The LCA was conducted using the spreadsheet model dubbed KABAM. KABAM found that camelina grown as a niche filling crop (in rotation with wheat or as a double crop) reduces greenhouse gas (GHG) emissions and fossil fuel use by 40–60% when compared to petroleum diesel. Furthermore, by avoiding LUC emissions, camelina biodiesel emits fewer GHGs than traditional soybean and canola biodiesel. Finally, a sensitivity analysis concluded that in order to maintain and increase the environmental viability of camelina and other niche filling biofuel crops, researchers and policy makers should focus their efforts on achieving satisfactory yields (1000–2000 kg/ha) while reducing nitrogen fertilizer inputs.

  19. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    Science.gov (United States)

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  20. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    Science.gov (United States)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  1. Will EU Biofuel Policies affect Global Agricultural Markets?

    International Nuclear Information System (INIS)

    Banse, M.; Vvan Meijl, H.; Tabeau, A.; Woltjer, G.

    2008-04-01

    This paper assesses the global and sectoral implications of the European Union Biofuels Directive (BFD) in a multi-region computable general equilibrium framework with endogenous determination of land supply. The results show that, without mandatory blending policies or subsidies to stimulate the use of biofuel crops in the petroleum sector, the targets of the BFD will not be met in 2010 and 2020. With a mandatory blending policy, the enhanced demand for biofuel crops has a strong impact on agriculture at the global and European levels. The additional demand from the energy sector leads to an increase in global land use and, ultimately, a decrease in biodiversity. The development, on the other hand, might slow or reverse the long-term process of declining real agricultural prices. Moreover, assuming a further liberalization of the European agricultural market imports of biofuels are expected to increase to more than 50% of the total biofuel demand in Europe

  2. Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth

    International Nuclear Information System (INIS)

    Mosnier, A.; Havlík, P.; Valin, H.; Baker, J.; Murray, B.; Feng, S.; Obersteiner, M.; McCarl, B.A.; Rose, S.K.; Schneider, U.A.

    2013-01-01

    We investigate the impacts of the U.S. renewable fuel standard (RFS2) and several alternative biofuel policy designs on global GHG emissions from land use change and agriculture over the 2010–2030 horizon. Analysis of the scenarios relies on GLOBIOM, a global, multi-sectoral economic model based on a detailed representation of land use. Our results reveal that RFS2 would substantially increase the portion of agricultural land needed for biofuel feedstock production. U.S. exports of most agricultural products would decrease as long as the biofuel target would increase leading to higher land conversion and nitrogen use globally. In fact, higher levels of the mandate mean lower net emissions within the U.S. but when the emissions from the rest of the world are considered, the US biofuel policy results in almost no change on GHG emissions for the RFS2 level and higher global GHG emissions for higher levels of the mandate or higher share of conventional corn-ethanol in the mandate. Finally, we show that if the projected crop productivity would be lower globally, the imbalance between domestic U.S. GHG savings and additional GHG emissions in the rest of the world would increase, thus deteriorating the net global impact of U.S. biofuel policies. - Highlights: ► We model the impact of the U.S. renewable fuel standard (RFS2). ► RFS2 would require more agricultural land and nitrogen globally. ► Increasing the mandates reduce GHG emissions within the U.S. ► Increasing the mandates increase GHG emissions in the rest of the world. ► Total GHG emissions increase with higher levels of mandate; higher share of corn-ethanol; lower productivity growth

  3. Applying Bayesian modelling to assess climate change effects on biofuel production

    CSIR Research Space (South Africa)

    Peter, C

    2009-12-01

    Full Text Available the resilience of a strategy that meets the new South African national biofuel production target can be assessed in relation to climate change. Cross-disciplinary consideration of variables may be enhanced through the sensitivity analysis enabled by Bayesian...

  4. Sustainable alternatives for land-based biofuels in the European Union. Assessment of options and development of a policy strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Van Grinsven, A.; Croezen, H.

    2012-12-15

    It is feasible for EU member states to meet their commitments regarding transport fuels under the Renewable Energy Directive (RED) and the Fuel Quality Directive (FQD) without resorting to biofuels from food crops. The RED target (10% renewable transport energy in 2020) can be met by a mix of measures aimed at improving energy efficiency, combined with a strong focus on growth of renewable electricity use and biofuels and biomethane from waste and residues. These measures also contribute to the FQD target (6% reduction in carbon intensity of fuels by 2020), but will need to be complemented by other measures such as reduced flaring and venting during oil production. The report shows how EU transport energy policy could reduce its reliance on biofuels from food crops that are likely to cause land use change. This alternative vision for the transport sector in 2020 would cut CO2 emissions by 205 million tonnes.

  5. Performance of Jatropha curcas: A biofuel crop in wasteland of Madhya Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A.K.; Bhargava, Pankaj; Gupta, Nivedika; Sharma, Dhanshree [Non Wood Forest Produce Division, Tropical Forest Research Institute, P.O. RFRC, Jabalpur 482021 (India)

    2010-07-01

    In India vast tracts of land (20.17% of total geographical area) exists as wastelands accounting for about 63.85 million hectares. Wastelands are degraded lands that lack their life sustaining potential as a result of inherent or imposed disabilities such as by location, environment, chemical and physical properties of the soil or financial or management constraints. In recent years, the central government and many of the state governments have expressed their support for bringing wastelands, under cultivation. Jatropha curcas has been found most promising for this purpose due to the use of its seed oil as biodiesel and other favorable attributes like hardy nature, short gestation period and adaptability in a wide range of agro-climatic conditions etc. Jatropha plantation helps in restoration of vast stretches of wastelands into green oil fields and can address major issues of developing countries like energy security, environmental amelioration, rural employment generation and conservation of foreign exchange reserves. With the objective to evaluate the performance of Jatropha plants in wasteland conditions, Tropical Forest Research Institute, Jabalpur has initiated a study in 2006. Progeny trial was laid out in Barha (Jabalpur) locality comprising of 20 superior genotypes of Jatropha. Among them, Gessani Shivpuri 3, Gessani Shivpuri 2, Bilara Pohiri Shivpuri 2, Parsoria Damoh Sagar, Bizouli Janarpura Gwalior 3, Bizouli Janarpura Gwalior 2 and Dewari Sagar 1 genotype are performing better as compared to other genotypes. This information will be helpful in assessing of the potential of locally adapted accessions and provide baseline information for future Jatropha plantation and wasteland reclammation programmes.

  6. The Next Generation Feedstock of Biofuel: Jatropha or Chlorella as Assessed by Their Life-Cycle Inventories

    Directory of Open Access Journals (Sweden)

    Pu Peng

    2014-07-01

    Full Text Available Promising energy crops such as Jatropha curcas Linnaeus (JCL, which are planted on marginal lands, or microalgae such as Chlorella, which are cultivated in ponds located on mudflats or deserts, have been regarded with high hopes to solve the shortage of food crops and increase the amount of biodiesel (Fatty Acid Methyl Ester, FAME production. However, the annual yields of biomass and transport fuels (t/ha of both are still unclear and often exaggerated in the literature. Large portions of JCL biomass, including tree trunks and leaves, can also be used to generate electricity along with FAME, which is produced from seed lipids. Meanwhile, lipid extracted algae (LEA are composed of proteins, polysaccharides, and lipids other than glycerides which are unable to be esterified to form FAME and much more abundant in the microalgae than oil cake in the oil crops. Therefore, it has been strongly suggested that not only transesterification or esterification but also Fischer-Tropsch (FT process and bio-electricity generation should be considered as routes to produce biofuels. Otherwise, the yield of biofuel would be extremely low using either JCL or Chlorella as feedstock. The Life-Cycle Inventories (LCI of the biofuel processes with whole biomass of JCL and Chlorella were compared based on their net energy ratio (NER and CO2 emission saving (CES. It was shown that the technological improvement of irrigation, cultivation, and processing for either economic-crops or microalgae were all necessary to meet the requirements of commercial biofuel production.

  7. A trial of the suitability of switchgrass and reed canary grass as biofuel crops under UK conditions. 5th interim report March 2005

    Energy Technology Data Exchange (ETDEWEB)

    Richie, A.B.

    2005-07-01

    The Topgrass Project, established in 2002, investigated the potential of miscanthus, switchgrass and reed canary grass as biofuel crops at various sites in the UK. This interim report covers the period from the harvesting in winter 2003/04 to the harvesting in winter 2004/05. The report gives details on (i) pest and weed control and (ii) yields and associated costs per species per unit area. It was concluded that maximum potential yield has not been reached at some sites. The study was funded by the DTI and carried out by IACR Rothamstead with ADAS Consulting, Duchy College Cornwall and SCRI Invergowrie as collaborators. The project has now terminated.

  8. Health effects of biofuel exhaust

    OpenAIRE

    Vugt, M.A.T.M. van; Mulderij, M.; Usta, M.; Kadijk, G.; Kooter, I.M.; Krul, C.A.M.

    2009-01-01

    Alternatives to fossil fuels receive a lot of attention. In particular, oil derived of specific crops forms a promising fuel. In order to warrant global expectance of such novel fuels, safety issues associated with combustion of these fuels needs to be assessed. Although only a few public reports exist, recently potential toxic effects associated with biofuels has been published. Here, we report the analysis of a comprehensive study, comparing the toxic effects of conventional diesel, biodies...

  9. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains

    Science.gov (United States)

    Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P.; Edwards, Robert; Liska, Adam J.; Malpas, Rick

    2012-01-01

    The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid ‘combined model’ of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause–effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided. PMID:22467143

  10. Accounting for indirect land-use change in the life cycle assessment of biofuel supply chains.

    Science.gov (United States)

    Sanchez, Susan Tarka; Woods, Jeremy; Akhurst, Mark; Brander, Matthew; O'Hare, Michael; Dawson, Terence P; Edwards, Robert; Liska, Adam J; Malpas, Rick

    2012-06-07

    The expansion of land used for crop production causes variable direct and indirect greenhouse gas emissions, and other economic, social and environmental effects. We analyse the use of life cycle analysis (LCA) for estimating the carbon intensity of biofuel production from indirect land-use change (ILUC). Two approaches are critiqued: direct, attributional life cycle analysis and consequential life cycle analysis (CLCA). A proposed hybrid 'combined model' of the two approaches for ILUC analysis relies on first defining the system boundary of the resulting full LCA. Choices are then made as to the modelling methodology (economic equilibrium or cause-effect), data inputs, land area analysis, carbon stock accounting and uncertainty analysis to be included. We conclude that CLCA is applicable for estimating the historic emissions from ILUC, although improvements to the hybrid approach proposed, coupled with regular updating, are required, and uncertainly values must be adequately represented; however, the scope and the depth of the expansion of the system boundaries required for CLCA remain controversial. In addition, robust prediction, monitoring and accounting frameworks for the dynamic and highly uncertain nature of future crop yields and the effectiveness of policies to reduce deforestation and encourage afforestation remain elusive. Finally, establishing compatible and comparable accounting frameworks for ILUC between the USA, the European Union, South East Asia, Africa, Brazil and other major biofuel trading blocs is urgently needed if substantial distortions between these markets, which would reduce its application in policy outcomes, are to be avoided.

  11. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  12. The life cycle emission of greenhouse gases associated with plant oils used as biofuel

    NARCIS (Netherlands)

    Reijnders, L.

    2011-01-01

    Life cycle assessment of greenhouse gas emissions associated with biofuels should not only consider fossil fuel inputs, but also N2O emissions and changes in carbon stocks of (agro) ecosystems linked to the cultivation of biofuel crops. When this is done, current plant oils such as European rapeseed

  13. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries

    International Nuclear Information System (INIS)

    Adenle, Ademola A.; Haslam, Gareth E.; Lee, Lisa

    2013-01-01

    The possibility of economically deriving fuel from cultivating algae biomass is an attractive addition to the range of measures to relieve the current reliance on fossil fuels. Algae biofuels avoid some of the previous drawbacks associated with crop-based biofuels as the algae do not compete with food crops. The favourable growing conditions found in many developing countries has led to a great deal of speculation about their potentials for reducing oil imports, stimulating rural economies, and even tackling hunger and poverty. By reviewing the status of this technology we suggest that the large uncertainties make it currently unsuitable as a priority for many developing countries. Using bibliometric and patent data analysis, we indicate that many developing countries lack the human capital to develop their own algae industry or adequately prepare policies to support imported technology. Also, we discuss the potential of modern biotechnology, especially genetic modification (GM) to produce new algal strains that are easier to harvest and yield more oil. Controversy surrounding the use of GM and weak biosafety regulatory system represents a significant challenge to adoption of GM technology in developing countries. A range of policy measures are also suggested to ensure that future progress in algae biofuels can contribute to sustainable development. - Highlights: • Algae biofuels can make positive contribution to sustainable development in developing countries. • Bibliometric and patent data indicate that many lack the human capital to develop their own algae industry. • Large uncertainties make algae biofuels currently unsuitable as a priority for many developing countries

  14. Development of a decision support tool for the assessment of biofuels

    International Nuclear Information System (INIS)

    Perimenis, Anastasios; Walimwipi, Hartley; Zinoviev, Sergey; Mueller-Langer, Franziska; Miertus, Stanislav

    2011-01-01

    Alternative fuels for the transport sector are gaining growing attention as a means against fossil fuel dependence and towards greener forms of energy. At the same time, however, they are surrounded with doubts concerning sustainability of their production. This work presents the basic framework for a decision support tool to evaluate biofuel production pathways, with the purpose of providing the decision maker with a structured methodology that will lead him to the final decision. The tool integrates the most important aspects along the entire value chain (i.e. from biomass production to biofuel end-use), namely the technical, economic, environmental and social aspect. The tool consists of a computational part, which can be combined with the personal preferences of the user. The analysis provides a score for the respective pathway that can be used to rank different options and select among them the optimal solution. The functionality of the tool has been tested for the case of biodiesel from rapeseed in Germany. - Research highlights: → Structure and framework of a decision support tool for the assessment of biofuels. → Inclusion of economic, environmental and social aspects along the biofuel production chain. → Development of an internal database with relevant information along the chain. → Multi-criteria analysis for the consideration of all relevant criteria. → Incorporation of personal preferences and priorities in the final result.

  15. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    International Nuclear Information System (INIS)

    Jumbe, Charles B.L.; Msiska, Frederick B.M.; Madjera, Michael

    2009-01-01

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  16. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L., E-mail: charlesjumbe@bunda.unima.m [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M., E-mail: frederickmsiska@yahoo.co [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael, E-mail: michael.madjera@onlinehome.d [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  17. Biofuels development in Sub-Saharan Africa. Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L. [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M. [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops. (author)

  18. Using "EC-Assess" to Assess a Small Biofuels Project in Honduras

    Science.gov (United States)

    Ngassa, Franklin Chamda

    2010-01-01

    Biofuels may contribute to both rural economic development and climate change mitigation and adaptation. The Gota Verde Project in Yoro, Honduras, attempts to demonstrate the technical and economic feasibility of small-scale biofuel production for local use by implementing a distinctive approach to feedstock production that encourages small farm…

  19. Water use implications of biofuel scenarios

    Science.gov (United States)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  20. Life Cycle Assessments Applied to First Generation Biofuels Used in France. Final report

    International Nuclear Information System (INIS)

    2010-01-01

    Climatic concerns become more substantial each day. Proofs of climatic change of man-made origin accumulate. Even if the consequences of such change remain difficult to foresee for most, this major environmental problem is now the subject of great attention by governments and public opinion. In this context, biofuels have known a growing interest over the last years. This enthusiasm is essentially based on their potential to reduce non-renewable energy consumption, notably petroleum, and to reduce greenhouse gas emissions (GHG) for the transportation sector. Indeed, the transportation sector currently generates about 14% of the world's GHG at a growth rate of about 2% per year that is particularly difficult to reduce. The issue of biofuel balances on these two criteria (GHG emission and non-renewable energy consumption) is therefore fundamental because it justifies largely the different forms of public financial support devoted to ensure the development of these pathways. Thus, numerous studies are aimed at comparing biofuels to equivalent petroleum fuels (gasoline and diesel) in order to assess GHG emission reduction potential associated with using biofuels in transportation. The Directive 2009/28/CE of April 29, 2009 dedicated to Renewable Energies promotion (RE Directive) sets forth a compelling objective, asking each Member State to make sure that the portion of energy produced from renewable sources in all forms of transportation will be at least equal to 10% of its final energy consumption in the transportation sector by 2020. This objective is set subject to a production of sustainable nature and to second generation biofuel availability on the market. The RE Directive introduces several criteria for qualifying biofuels' sustainability. Thus, biofuels should not be produced from land recognized as of great value in terms of biological diversity: forest undisturbed by important human activity, zone assigned to nature conservation, meadows presenting a great

  1. (Hordeum Vulgare) Crop Coefficient and Comparative Assessment

    African Journals Online (AJOL)

    Bheema

    The second prerequisite for sustainable use of water was developing/ ... Following the construction of .... pond capacity, the irrigation method, soil type, major crops grown in the area, and the ... determines the viability of any irrigation project. .... lack of awareness, lack of skill, technology and lack of adequate knowledge in ...

  2. A quantitative assessment of the determinants of the net energy value of biofuels

    International Nuclear Information System (INIS)

    Bureau, Jean-Christophe; Disdier, Anne-Celia; Gauroy, Christine; Treguer, David

    2010-01-01

    Many studies have investigated the net energy balance of biofuel products (in terms of savings on fossil fuels) and assessed the reductions in greenhouse gas emissions from substituting biofuels for fossil fuel. These studies provide very different results, with net balance ranging from highly positive to negative. Our study analyses a large sample of these studies by retrieving the main parameters used and converting them into units of measurement that are comparable. This information is used to unravel the main determinants of the differences in net energy value across studies. Our approach relies on descriptive statistics and econometric estimates based on a meta-analysis methodology. Our results suggest that the large variability across studies can be explained by the degree to which particular inputs (i.e. nitrogen, farm labor) are controlled for, and the way fossil energy consumption is allocated to the various co-products.

  3. Environmental risk assessments for transgenic crops producing output trait enzymes

    Science.gov (United States)

    Tuttle, Ann; Shore, Scott; Stone, Terry

    2009-01-01

    The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the agronomic performance and nutritional quality of the crop made during product development, and information from the scientific literature on the mode-of-action, taxonomic distribution and environmental fate of the enzyme. Few, if any, specific ecotoxicology or environmental fate studies are needed. The effective use of existing data means that regulatory decision-making, to which an environmental risk assessment provides essential information, is not unnecessarily complicated by evaluation of large amounts of new data that provide negligible improvement in the characterization of risk, and that may delay environmental benefits offered by transgenic crops containing output trait enzymes. PMID:19924556

  4. Environmental assessment of mild bisulfite pretreatment of forest residues into fermentable sugars for biofuel production.

    Science.gov (United States)

    Nwaneshiudu, Ikechukwu C; Ganguly, Indroneil; Pierobon, Francesca; Bowers, Tait; Eastin, Ivan

    2016-01-01

    Sugar production via pretreatment and enzymatic hydrolysis of cellulosic feedstock, in this case softwood harvest residues, is a critical step in the biochemical conversion pathway towards drop-in biofuels. Mild bisulfite (MBS) pretreatment is an emerging option for the breakdown and subsequent processing of biomass towards fermentable sugars. An environmental assessment of this process is critical to discern its future sustainability in the ever-changing biofuels landscape. The subsequent cradle-to-gate assessment of a proposed sugar production facility analyzes sugar made from woody biomass using MBS pretreatment across all seven impact categories (functional unit 1 kg dry mass sugar), with a specific focus on potential global warming and eutrophication impacts. The study found that the eutrophication impact (0.000201 kg N equivalent) is less than the impacts from conventional beet and cane sugars, while the global warming impact (0.353 kg CO2 equivalent) falls within the range of conventional processes. This work discusses some of the environmental impacts of designing and operating a sugar production facility that uses MBS as a method of treating cellulosic forest residuals. The impacts of each unit process in the proposed facility are highlighted. A comparison to other sugar-making process is detailed and will inform the growing biofuels literature.

  5. An overview of biofuels

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Ahmad, S.

    2007-01-01

    Biofuels for transport have received considerable attention due to rising oil prices and growing concern about greenhouse gas emissions. Biofuels namely ethanol and esters of fatty acids have the potential to displace a substantial amount of petroleum fuel in the next few decades which will help to conserve fossil fuel resources. Life cycle analyses show that biofuels release lesser amount of greenhouse gases and other air pollutants. Thus biofuels are seen as a pragmatic step towards reducing carbon dioxide emission from transport sector. Biofuels are compatible with petroleum and combustion engines can easily operate with 10% ethanol and 20% biodiesel blended fuel with no modification. However higher concentrations require 'flex-fuel' engines which automatically adjust fuel injection depending upon fuel mix. Biofuels are derived from renewable biomass and can be produced from a variety of feedstocks. The only limiting factors are the availability of cropland, growth of plants and the climate. Countries with warmer climate can get about five times more biofuel crops from each acre of land than cold climate countries. Genetically modified crops and fast growing trees are being developed increase the production of energy crops. (author)

  6. Sustainability assessment of straight vegetable oil used as self-supply biofuel in agriculture

    OpenAIRE

    Baquero Armans, Grau; Esteban Dalmau, Bernat; Puig Vidal, Rita; Riba Ruiz, Jordi-Roger; Rius Carrasco, Antoni

    2011-01-01

    This work proposes and analyses a model for an agricultural fuel self-supply exploitation. The model is based on the current extended crop rotation of wheat and barley in Anoia region (Catalonia, Spain). The introduction of rapeseed to the current crop rotation and its conversion into oil to be used as agricultural fuel is presented. Life cycle assessment methodology is used to carry out an environmental and an economic assessment. Environmental results show a preference for the vegetable oil...

  7. An operational fluorescence system for crop assessment

    Science.gov (United States)

    Belzile, Charles; Belanger, Marie-Christine; Viau, Alain A.; Chamberland, Martin; Roy, Simon

    2004-03-01

    The development of precision farming requires new tools for plant nutritional stress monitoring. An operational fluorescence system has been designed for vegetation status mapping and stress detection at plant and field scale. The instrument gives relative values of fluorescence at different wavelengths induced by the two-excitation sources. Lightinduced fluorescence has demonstrated successful crop health monitoring and plant nutritional stress detection capabilities. The spectral response of the plants has first been measured with an hyperspectral imager using laser-induced fluorescence. A tabletop imaging fluorometer based on flash lamp technology has also been designed to study the spatial distribution of fluorescence on plant leaves. For field based non-imaging system, LED technology is used as light source to induce fluorescence of the plant. The operational fluorescence system is based on ultraviolet and blue LED to induce fluorescence. Four narrow fluorescence bands centered on 440, 520, 690 and 740nm are detected. The instrument design includes a modular approach for light source and detector. It can accommodate as many as four different light sources and six bands of fluorescence detection. As part of the design for field application, the instrument is compatible with a mobile platform equipped with a GPS and data acquisition system. The current system developed by Telops/GAAP is configured for potato crops fluorescence measurement but can easily be adapted for other crops. This new instrument offers an effective and affordable solution for precision farming.

  8. Fuelling biofuel

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    The Canadian government has recently committed to legislation ensuring that all transportation fuels will be supplemented with biofuels by 2010. This article provided details of a position paper written by the Canadian Renewable Fuels Association in response to the legislation. Details of new research to optimize the future biodiesel industry were also presented. Guiding principles of the paper included the creation of open markets across provincial boundaries; the manipulation of tax structures to make products competitive in the United States; and establishing quality standards via the Canadian General Standards Board. It is expected that the principles will reassure petroleum producers and retailers, as ethanol behaves differently than gasoline in storage tanks. As ethanol is water-absorbing, retailers must flush and vacuum their tanks to remove water, then install 10 micron filters to protect fuel lines and dispenser filters from accumulated gasoline residue loosened by the ethanol. Refineries are concerned that the average content of ethanol remains consistent across the country, as refiners will be reluctant to make different blends for different provinces. Critics of biodiesel claim that it is not energy-intensive enough to meet demand, and biodiesel crops are not an efficient use of soils that could otherwise be used to grow food crops. However, researchers in Saskatchewan are committed to using a variety of methods such as reduced tillage systems to make biodiesel production more efficient. Laboratory research has resulted in improved refining processes and genetic manipulation of potential biodiesel crops. Membrane technology is now being used to select water from ethanol. A process developed by the Ottawa company Iogen Corporation uses enzymatic hydrolysis to break down the tough fibres found in corn stalks, leaves, wood and other biomass into sugars. Scientists are also continuing to improve oil content yields in canola and soybean crops. It was

  9. Life cycle assessment of energy products: environmental impact assessment of biofuels; Oekobilanz von Energieprodukten: Oekologische Bewertung von Biotreibstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  10. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    Full text: As the twentieth century drew to a close, there was considerable support for the use of biofuels as a source of renewable energy. To many people, they offered significant savings in greenhouse gas emissions compared to fossil fuels, an opportunity for reduced dependency on oil for transport, and potential as a counter weight to increasing oil prices. They also promised an opportunity for rural economies to benefit from a new market for their products and a chance of narrowing the gap between rich and poor nations. Biofuel development was encouraged by government subsidies, and rapid growth occurred in many parts of the world. Forty per cent of Brazilian sugar cane is used for biofuel production, for example, as is almost a quarter of maize grown in the United States. Although only around 1 per cent of arable land is cultivated to grow feedstock for biofuels, there has been increasing concern over the way a largely unchecked market has developed, and about its social and environmental consequences. Recent research has confirmed that food prices have been driven significantly higher by competition for prime agricultural land and that savings in greenhouse gas emissions are much smaller - and in some cases entirely eliminated - when environmentally important land, such as rainforest, is destroyed to grow biofuels. As a result, many now believe that the economic benefits of biofuels have been obtained at too high a social and environmental price, and they question whether they can be a truly sustainable source of energy. The United Kingdom has always had sustainability at the heart of its biofuel policies and set up the Renewable Fuels Agency to ensure that this goal was met. The direct effects of biofuel production are already being assessed through five measures of environmental performance and two measures of social performance, as well as measures of the energy efficiency of the production processes used and of the greenhouse gas savings achieved

  11. REFUEL. Potential and realizable cost reduction of 2nd generation biofuels

    International Nuclear Information System (INIS)

    Londo, H.M.; Deurwaarder, E.P.; Lensink, S.M.; Junginer, H.M.; De Wit, M.

    2007-05-01

    In the REFUEL project steering possibilities for and impacts of a greater market penetration of biofuels are assessed. Several benefits are attributed to second generation biofuels, fuels made from lignocellulosic feedstock, such as higher productivity, less impacts on land use and food markets and improved greenhouse gas emission reductions. The chances of second generation biofuels entering the market autonomously are assessed and several policy measures enhancing those changes are evaluated. It shows that most second generation biofuels might become competitive in the biofuel market, if the production of biodiesel from oil crops becomes limited by land availability. Setting high biofuel targets, setting greenhouse gas emissions caps on biofuel and setting subtargets for second generation biofuels, all have a similar impact of stimulating second generation's entrance into the biofuel market. Contrary, low biofuel targets and high imports can have a discouraging impact on second generation biofuel development, and thereby on overall greenhouse gas performance. Since this paper shows preliminary results from the REFUEL study, one is advised to contact the authors before quantitatively referring to this paper

  12. Assessing the ecological and economic sustainability of energy crops

    International Nuclear Information System (INIS)

    Hanegraaf, M.C.; Biewinga, E.E.; Bijl, G. van der

    1998-01-01

    The production and use of biomass for energy has both positive and negative impacts on the environment. The environmental impacts of energy crops should be clarified before political choices concerning energy are made. An important aid to policy-making would be a systematic methodology to assess the environmental sustainability of energy crops. So far, most studies on the environmental aspects of energy crops deal mainly with the energy production of the crops and the possible consequences for CO 2 mitigation. The Dutch Centre for Agriculture and Environment (CLM) has developed a systematic methodology to assess the ecological and socio-economic sustainability of biomass crops. The method is best described as a multicriteria analysis of process chains and is very much related to Life Cycle Assessment (LCA). Characteristics of our methodology are the use of: definition of functional units; analysis of the entire lifecycle; definition of yield levels and corresponding agricultural practices; analysis of both ecological and economic criteria; definition of reference systems; definition of procedures for normalisation and weighting. CLM has applied the method to assess the sustainability of ten potentially interesting energy crops in four European regions. The results are used to outline the perspectives for large scale production of biomass crops with regard to the medium and long term land availability in Europe. For the crops considered, net energy budget ranges from 85 GJ net avoided energy per ha for rape seed for fuel to 248 GJ net avoided fossil energy per ha for silage maize for electricity from gasification. The methodology of the tool and its results were discussed at the concerted action ''Environmental aspects of biomass production and routes for European energy supply'' (AIR3-94-2455), organised by CLM in 1996. Major conclusions of the research: multicriteria analyhsis of process lifecycles is at present the best available option to assess the ecological

  13. Biofuels: which interest, which perspectives?

    International Nuclear Information System (INIS)

    2006-01-01

    This paper is a synthesis of several studies concerning the production and utilization of bio-fuels: energy balance and greenhouse effect of the various bio-fuel systems; economical analysis and profitability of bio-fuel production; is the valorization of bio-fuel residues and by-products in animal feeding a realistic hypothesis?; assessment of the cost for the community due to tax exemption for bio-fuels

  14. Safety assessment of foods derived from genetically modified crops

    NARCIS (Netherlands)

    Kleter, G.A.; Kuiper, H.A.

    2003-01-01

    The pre-market safety assessment of foods derived from genetically modified crops is carried out according to the consensus approach of "substantial equivalence", in other words: the comparative safety assessment. Currently, the safety assessment of genetically modified foods is harmonized at the

  15. Assessing the value of transgenic crops.

    Science.gov (United States)

    Lacey, Hugh

    2002-10-01

    In the current controversy about the value of transgenic crops, matters open to empirical inquiry are centrally at issue. One such matter is a key premise in a common argument (that I summarize) that transgenic crops should be considered to have universal value. The premise is that there are no alternative forms of agriculture available to enable the production of sufficient food to feed the world. The proponents of agroecology challenge it, claiming that agroecology provides an alternative, and they deny the claim that it is well founded on empirical evidence. It is, therefore, a matter of both social and scientific importance that this premise and the criticisms of it be investigated rigorously and empirically, so that the benefits and disadvantages of transgenic-intensive agriculture and agroecology can be compared in a reliable way. Conducting adequate investigation about the potential contribution of agroecology requires that the cultural conditions of its practice (and, thus, of the practices and movements of small-scale farmers in the "third world") be strengthened--and this puts the interests of investigation into tension with the socio-economic interests driving the development of transgenics. General issues about relationship between ethical argument and empirical (scientific) investigation are raised throughout the article.

  16. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    International Nuclear Information System (INIS)

    Cheng, Dan; He, Qingfang

    2014-01-01

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  17. Assessment of environmental stresses for enhanced microalgal biofuel production-an overview

    Directory of Open Access Journals (Sweden)

    Dan eCheng

    2014-07-01

    Full Text Available Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  18. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Dan, E-mail: dxcheng@ualr.edu; He, Qingfang, E-mail: dxcheng@ualr.edu [Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR (United States)

    2014-07-07

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  19. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    International Nuclear Information System (INIS)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01

    Highlights: • Well to pump environmental assessment of two thermochemical processing pathways. • NER of 1.23 and GHG emissions of −11.4 g CO 2-eq (MJ) −1 for HTL pathway. • HTL represents promising conversion pathway based on use of wet biomass. • NER of 2.27 and GHG emissions of 210 g CO 2-eq (MJ) −1 for pyrolysis pathway. • Pyrolysis pathway: drying microalgae feedstock dominates environmental impact. - Abstract: Microalgae is being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the environmental impact of two different thermochemical conversion technologies for the microalgae-to-biofuel process through life cycle assessment. A system boundary of “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of −11.4 g CO 2-eq (MJ renewable diesel) −1 . Biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO 2-eq (MJ renewable diesel) −1 . The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying

  20. Assessment of energy return on energy investment (EROEI of oil bearing crops for renewable fuel production

    Directory of Open Access Journals (Sweden)

    A. Restuccia

    2013-09-01

    Full Text Available As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested has been used. At this aim, an experimental field was realised in the south-eastern Sicilian land. During the autumn-winter crop cycle, no irrigation was carried out and some suitable agricultural practices have been carried out taking into account the peculiarity of each type of used seeds. The total energy consumed for the cultivation of oil bearing crops from sowing to the production of biodiesel represents the Input of the process. In particular, this concerned the energy embodied in machinery and tools utilized, in seed, chemical fertilizer and herbicide but also the energy embodied in diesel fuels and lubricant oils. In addition, the energy consumption relating to machines and reagents required for the processes of extraction and transesterification of the vegetable oil into biodiesel have been calculated for each crops. The energy obtainable from biodiesel production, taking into account the energy used for seed pressing and for vegetable oil transesterification into biodiesel, represents the Output of the process. The ratio Output/Input gets the EROEI index which in the case of Camelina sativa and Linum usatissimum is greater than one. These results show that the cultivation of these crops for biofuels production is convenient in terms of energy return on energy investment. The EROEI index for Brassica carinata is lower than one. This could means that some factors, concerning mechanisation and climatic

  1. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    Science.gov (United States)

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  2. Assessing biofuels: Aiming for sustainable development or complying with the market?

    International Nuclear Information System (INIS)

    Diaz-Chavez, Rocio A.

    2011-01-01

    The growing interest in biofuels has led to increasing concern about their wider implications, particularly if grown for transport use in large scale. Such concerns include environmental, social and economic issues. To counterbalance the possible negative effects, a series of measures are being put in place to help their sustainability. Nevertheless, considering the different meanings of sustainability in different parts of the world and the need to expand productive rural activities, the differences between trying to assure a commodity and the benefits or impacts at local level raise the questions between the aims of sustainability and the need to comply with a market. The ideal situation would be to reconcile both aspects, which in practise represent a major challenge for governments and industry. This paper provides an overview on the sustainability assessment of biofuels to consider a possible way forward. - Highlights: → Multi-interactions in biomass production for bioenergy are a new paradigm to develop policies. → Certification and verification schemes are limited to assess broader sustainability issues. → Improved agricultural and forestry systems for biomass use will boost policies and investment.

  3. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  4. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Science.gov (United States)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  5. Identification, Characterization and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L. Moench, a Food, Fodder and Biofuel Crop

    Directory of Open Access Journals (Sweden)

    KRISHAN MOHAN RAI

    2016-08-01

    Full Text Available Biomass based alternative fuels offer a solution to the world’s ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification. It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4. Further, 53 tandem duplication events involving 146 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publicly available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.

  6. Impacts of Past Land Use Changes on Water Resources: An Analog for Assessing Effects of Proposed Bioenergy Crops

    Science.gov (United States)

    Scanlon, B. R.; Schilling, K.; Young, M.; Duncan, I. J.; Gerbens-Leenes, P.

    2011-12-01

    Interest is increasing in renewable energy sources, including bioenergy. However, potential impacts of bioenergy crops on water resources need to be better understood before large scale expansion occurs. This study evaluates the potential for using past land use change impacts on water resources as an analog for assessing future bioenergy crop effects. Impacts were assessed for two cases and methods: (1) changes from perennial to annual crops in the Midwest U.S. using stream hydrograph separation; and (2) changes from perennial grasses and shrubs to annual crops in the Southwest U.S. using unsaturated zone and groundwater data. Results from the Midwest show that expanding the soybean production area by 80,000 km2 increased stream flow by 32%, based on data from Keokuk station in the Upper Mississippi River Basin. Using these relationships, further expansion of annual corn production for biofuels by 10 - 50% would increase streamflow by up to 40%, with related increases in nitrate, phosphate, and sediment pollutant transport to the Gulf of Mexico. The changes in water partitioning are attributed to reducing evapotranspiration, increasing recharge and baseflow discharge to streams. Similar results were found in the southwestern US, where changes from native perennial grasses and shrubs to annual crops increased recharge from ~0.0 to 24 mm/yr, raising water tables by up to 7 m in some regions and flushing accumulated salts into underlying aquifers in the southern High Plains. The changes in water partitioning are related to changes in rooting depth from deep rooted native vegetation to shallow rooted crops and growing season length. Further expansion of annual bioenergy crops, such as changes from Conservation Reserve Program to corn in the Midwest, will continue the trajectory of reducing ET, thereby increasing recharge and baseflow to streams and nutrient export. We hypothesize that changing bioenergy crops from annual crops to perennial grasses, such as switchgrass

  7. New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India

    Science.gov (United States)

    Habib, Gazala; Venkataraman, Chandra; Shrivastava, Manish; Banerjee, Rangan; Stehr, J. W.; Dickerson, Russell R.

    2004-09-01

    The dominance of biofuel combustion emissions in the Indian region, and the inherently large uncertainty in biofuel use estimates based on cooking energy surveys, prompted the current work, which develops a new methodology for estimating biofuel consumption for cooking. This is based on food consumption statistics, and the specific energy for food cooking. Estimated biofuel consumption in India was 379 (247-584) Tg yr-1. New information on the user population of different biofuels was compiled at a state level, to derive the biofuel mix, which varied regionally and was 74:16:10%, respectively, of fuelwood, dung cake and crop waste, at a national level. Importantly, the uncertainty in biofuel use from quantitative error assessment using the new methodology is around 50%, giving a narrower bound than in previous works. From this new activity data and currently used black carbon emission factors, the black carbon (BC) emissions from biofuel combustion were estimated as 220 (65-760) Gg yr-1. The largest BC emissions were from fuelwood (75%), with lower contributions from dung cake (16%) and crop waste (9%). The uncertainty of 245% in the BC emissions estimate is now governed by the large spread in BC emission factors from biofuel combustion (122%), implying the need for reducing this uncertainty through measurements. Emission factors of SO2 from combustion of biofuels widely used in India were measured, and ranged 0.03-0.08 g kg-1 from combustion of two wood species, 0.05-0.20 g kg-1 from 10 crop waste types, and 0.88 g kg-1 from dung cake, significantly lower than currently used emission factors for wood and crop waste. Estimated SO2 emissions from biofuels of 75 (36-160) Gg yr-1 were about a factor of 3 lower than that in recent studies, with a large contribution from dung cake (73%), followed by fuelwood (21%) and crop waste (6%).

  8. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  9. An assessment on performance, emission and combustion characteristics of single cylinder diesel engine powered by Cymbopogon flexuosus biofuel

    International Nuclear Information System (INIS)

    Dhinesh, B.; Isaac JoshuaRamesh Lalvani, J.; Parthasarathy, M.; Annamalai, K.

    2016-01-01

    Highlights: • Cymbopogon Flexuosus biofuel is used as an alternative energy source. • Cymbopogon flexuosus biofuel 20% + Diesel 80% blend profile stayed close to diesel. • Resulting in higher thermal efficiency and reduced fuel consumption. • Reduced hydrocarbon, carbon monoxide and smoke emission. • Oxides of nitrogen and carbon di-oxide emission was marginally higher. - Abstract: The novelty of this manuscript is that it discusses about the experimental analysis of a new biofuel feedstock as an alternative fuel that has not drawn much attention among the researchers. An exploration for a new biofuel feedstock resulted in Cymbopogon flexuosus as an alternative energy source. Raw oil of Cymbopogon flexuosus was obtained through steam distillation process. Cymbopogon flexuosus biofuel was blended with diesel fuel in various proportions on volume basis, namely 10, 20, 30, 40, and 100 percent and its properties were assessed according to American Society for Testing and Materials standards. The considered test fuel was experimentally analysed in a single cylinder diesel engine at 1500 rpm for its performance, emission and combustion characteristics. Among various blends, Fuel blend of Cymbopogon flexuosus biofuel 20% + diesel 80% fuel profile stayed close to diesel fuel resulting in higher thermal efficiency and lower hydrocarbon, carbon monoxide, and smoke emission. However, oxides of nitrogen and carbon dioxide emission was marginally higher for the test fuel considered. Cylinder pressure and heat release rate curves were lower at full load condition as compared with diesel fuel. Against the grim background of fossil fuel depletion, Fuel blend of Cymbopogon flexuosus biofuel 20% + diesel 80% fuel acts as a promising alternative fuel and brings hope to the nation as well as the research world.

  10. Social assessment for the Colville National Forest CROP program.

    Science.gov (United States)

    Angela J. Findley; Matthew S. Carroll; Keith A. Blatner

    2000-01-01

    A qualitative social assessment targeted salient issues connected to the Colville National Forest creating opportunities (CROP) research program that examines forest management alternatives for small-diameter stands in northeastern Washington. Research spanned various communities in three counties and investigated the diversity of fundamental values people attach to...

  11. [Assessment of allergenicity of genetically modified food crops].

    Science.gov (United States)

    Schauzu, M; Pöting, A; Rubin, D; Lampen, A

    2012-03-01

    The placing on the European Union's market of genetically modified crops requires authorization by the European Commission which is based on the proof that the derived foods are as safe as their conventional counterparts. The assessment of potential allergenicity is part of the necessary investigations recommended in the updated Guidance Document of the Scientific Panel on Genetically Modified Organisms (GMO) of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. All genetically modified crops which so far have been authorized in the European Union were evaluated by the EFSA GMO Panel which considered it unlikely that their overall allergenicity has been altered.

  12. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States.

    Science.gov (United States)

    Venteris, Erik R; Skaggs, Richard L; Coleman, Andre M; Wigmosta, Mark S

    2013-05-07

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a partial techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply (constrained to less than 5% of mean annual flow per watershed) and costs, and cost-distance models for supplying seawater and saline groundwater. We estimate that, combined, these resources can support 9.46 × 10(7) m(3) yr(-1) (25 billion gallons yr(-1)) of renewable biodiesel production in the coterminous United States. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Despite the addition of freshwater supply constraints and saline water resources, the geographic conclusions are similar to our previous results. Freshwater availability and saline water delivery costs are most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate. As a whole, the barren and scrub lands of the southwestern U.S. have limited freshwater supplies, and large net evaporation rates greatly increase the cost of saline alternatives due to the added makeup water required to maintain pond salinity. However, this and similar analyses are particularly sensitive to knowledge gaps in algae growth/lipid production performance and the proportion of freshwater resources available, key topics for future investigation.

  13. Anticipating potential biodiversity conflicts for future biofuel crops in South Africa: Incorporating land cover information with Species Distribution Models

    CSIR Research Space (South Africa)

    Blanchard, R

    2012-10-01

    Full Text Available stream_source_info Blanchard_2012.pdf.txt stream_content_type text/plain stream_size 8098 Content-Encoding ISO-8859-1 stream_name Blanchard_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 K-10032 [www..., conservation areas have often been proclaimed in areas with poor agricultural potential, thereby avoiding likely trade-offs with agriculture or other potential land uses. However, energy crop cultivation threatens to bring a wider range of land types...

  14. Anticipating potential biodiversity conflicts for future biofuel crops in South Africa: incorporating spatial filters with species distribution models

    CSIR Research Space (South Africa)

    Blanchard, R

    2014-04-01

    Full Text Available @csir.co.za; 14 15 Keywords: Bioenergy crops, Land suitability, Biodiversity, Spatial analysis, MaxEnt, 16 Conflict, Agricultural land, Spatial filters 17 18 Primary research article 19 Page 1 of 48 GCB Bioenergy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17... habitat transformation and provides 21 an objective means of mitigating potential conflict with existing land use and biodiversity. 22 23 Page 2 of 48GCB Bioenergy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32...

  15. A geographical assessment of vegetation carbon stocks and greenhouse gas emissions on potential microalgae-based biofuel facilities in the United States.

    Science.gov (United States)

    Quiroz Arita, Carlos; Yilmaz, Özge; Barlak, Semin; Catton, Kimberly B; Quinn, Jason C; Bradley, Thomas H

    2016-12-01

    The microalgae biofuels life cycle assessments (LCA) present in the literature have excluded the effects of direct land use change (DLUC) from facility construction under the assumption that DLUC effects are negligible. This study seeks to model the greenhouse gas (GHG) emissions of microalgae biofuels including DLUC by quantifying the CO 2 equivalence of carbon released to the atmosphere through the construction of microalgae facilities. The locations and types of biomass and Soil Organic Carbon that are disturbed through microalgae cultivation facility construction are quantified using geographical models of microalgae productivity potential including consideration of land availability. The results of this study demonstrate that previous LCA of microalgae to biofuel processes have overestimated GHG benefits of microalgae-based biofuels production by failing to include the effect of DLUC. Previous estimations of microalgae biofuel production potential have correspondingly overestimated the volume of biofuels that can be produced in compliance with U.S. environmental goals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Meyer-Aurich, A; Olesen, Jørgen E

    2014-01-01

    Many current organic arable agriculture systems are challenged by a dependency on imported livestock manure from conventional agriculture. At the same time organic agriculture aims at being climate friendly. A life cycle assessment is used in this paper to compare the carbon footprints of different....... The results showed significantly lower carbon footprint of the crops from the ‘Biogas’ rotation (assuming that biogas replaces fossil gas) whereas the remaining crop rotations had comparable carbon footprints per kg cash crop. The study showed considerable contributions caused by the green manure crop (grass......-clover) and highlights the importance of analysing the whole crop rotation and including soil carbon changes when estimating carbon footprints of organic crops especially where green manure crops are included....

  17. Assessment of material and technical resources of crop production technologies

    Directory of Open Access Journals (Sweden)

    V. M. Beylis

    2017-01-01

    Full Text Available The author explains the general principles of influence of the material and technical resources (MTR on performance and efficiency of the main technological operations in crop production. Various technologies from the point of view of MTR expenses were estimated. The general tendencies in development of crop production technologies were revealed. The distribution of costs of materials and equipment to perform a variety of agricultural activities was determined. Cost indicators should be a guide in the search of innovative technological processes and working elements of agricultural machins. The greatest values of expenses of work, fuel, metal, and also, money where found. The concepts allowing to provide costs production reduction were formulated. To achieve the maximum productivity with the minimum expenses, the perspective calculations shoul be based on «progressive» agrotechnologies. When determining progressive agrotechnology it is necessary on reasonable grounds to approach indicators of crop productivity in various agrozones and regions of the country. For an assessment of efficiency of MTR by crop production and ensuring decrease in resource intensity of agricultural products by search and use of essentially new technologies for energy saving when performing agricultural operations, an integrated percentage indicator of comparison of progressive technologies with the applied ones was developed. MTR at application of new progressive crop production technologies by integrated percentage index were estimated. This indicator can be used for definition of efficiency of MTR. Application of the offered technique will promote an effective assessment of MTR, decrease in resource intensity by search and developments of essentially new technologies of performance of operations in crop production.

  18. Reconciling biofuels, sustainability and commodities demand. Pitfalls and policy options

    International Nuclear Information System (INIS)

    Uslu, A.; Bole, T.; Londo, M.; Pelkmans, L.; Berndes, G.; Prieler, S.; Fischer, G.; Cueste Cabal, H.

    2010-06-01

    Increasing fossil fuel prices, energy security considerations and environmental concerns, particularly concerning climate change, have motivated countries to explore alternative energy sources including biofuels. Global demand for biofuels has been rising rapidly due to biofuel support policies established in many countries. However, proposed strong links between biofuels demand and recent years' high food commodity prices, and notions that increasing biofuels production might bring about serious negative environmental impacts, in particularly associated with the land use change to biofuel crops, have shifted public enthusiasm about biofuels. In this context, the ELOBIO project aims at shedding further light to these aspects of biofuel expansion by collecting and reviewing the available data, and also developing strategies to decrease negative effects of biofuels while enabling their positive contribution to climate change, security of supply and rural development. ELOBIO considers aspects associated with both 1st and 2nd generation biofuels, hence analyses effects on both agricultural commodity markets and lignocellulosic markets. This project, funded by the Intelligent Energy Europe programme, consists of a review of current experiences with biofuels and other renewable energy policies and their impacts on other markets, iterative stakeholder-supported development of low-disturbing biofuels policies, model supported assessment of these policies' impacts on food, feed and lignocellulosic markets, and finally an assessment of the effects of selected optimal policies on biofuels costs and potentials. Results of the ELOBIO study show that rapid biofuel deployment without careful monitoring of consequences and implementation of mitigating measures risks leading to negative consequences. Implementing ambitious global biofuel targets for 2020, based on current 1st generation technologies, can push international agricultural commodity prices upwards and increase crop

  19. Biofuel seeks endorsement

    NARCIS (Netherlands)

    Jongeneel, C.; Rentmeester, S.

    2015-01-01

    Biofuels such as ethanol from sugar cane and cellulose ‘waste’ are theoretically sustainable, as their combustion releases no more CO2 than is absorbed during production. Even so, they are also controversial, because they are believed to be grown at the expense of food crops, or because areas of

  20. The French biofuels mandates under cost uncertainty - an assessment based on robust optimization

    International Nuclear Information System (INIS)

    Lorne, Daphne; Tchung-Ming, Stephane

    2012-01-01

    This paper investigates the impact of primary energy and technology cost uncertainty on the achievement of renewable and especially biofuel policies - mandates and norms - in France by 2030. A robust optimization technique that allows to deal with uncertainty sets of high dimensionality is implemented in a TIMES-based long-term planning model of the French energy transport and electricity sectors. The energy system costs and potential benefits (GHG emissions abatements, diversification) of the French renewable mandates are assessed within this framework. The results of this systemic analysis highlight how setting norms and mandates allows to reduce the variability of CO 2 emissions reductions and supply mix diversification when the costs of technological progress and prices are uncertain. Beyond that, we discuss the usefulness of robust optimization in complement of other techniques to integrate uncertainty in large-scale energy models. (authors)

  1. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  2. Positive and negative impacts of agricultural production of liquid biofuels

    NARCIS (Netherlands)

    Reijnders, L.; Hester, R.E.; Harrison, R.M.

    2012-01-01

    Agricultural production of liquid biofuels can have positive effects. It can decrease dependence on fossil fuels and increase farmers’ incomes. Agricultural production of mixed perennial biofuel crops may increase pollinator and avian richness. Most types of agricultural crop-based liquid biofuel

  3. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be

  4. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K; McGill, R [Sentech, Inc. (United States); Van Walwijk, M [Independent Consultant (France)

    2011-05-15

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel

  5. International Global Crop Condition Assessments in the framework of GEOGLAM

    Science.gov (United States)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.; Whitcraft, A. K.; Claverie, M.

    2013-12-01

    The Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative in response to the growing calls for improved agricultural information. The goal of GEOGLAM is to strengthen the international community's capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of Earth observations. This initiative is designed to build on existing agricultural monitoring initiatives at national, regional and global levels and to enhance and strengthen them through international networking, operationally focused research, and data/method sharing. GEOGLAM was adopted by the G20 as part of the action plan on food price volatility and agriculture and is being implemented through building on the extensive GEO Agricultural Community of Practice (CoP) that was initiated in 2007 and includes key national and international agencies, organizations, and universities involved in agricultural monitoring. One of the early GEOGLAM activities is to provide harmonized global crop outlooks that offer timely qualitative consensus information on crop status and prospects. This activity is being developed in response to a request from the G-20 Agricultural Market Information System (AMIS) and is implemented within the global monitoring systems component of GEOGLAM. The goal is to develop a transparent, international, multi-source, consensus assessment of crop growing conditions, status, and agro-climatic conditions, likely to impact global production. These assessments are focused on the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world. The GEOGLAM approach is to bring together international experts from global, regional and national monitoring systems that can share and discuss information from a variety of independent complementary sources in

  6. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  7. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.

    Science.gov (United States)

    Zhang, Shuping; Su, Yinhai; Xu, Dan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi

    2018-06-01

    Two kinds of biofuels were produced and compared from hydrothermal carbonization (HTC) and coupling washing with torrefaction (CWT) processes of bamboo sawdust in this study. The mass and energy yields, mass energy density, fuel properties, structural characterizations, combustion behavior and ash behavior during combustion process were investigated. Significant increases in the carbon contents resulted in the improvement of mass energy density and fuel properties of biofuels obtained. Both HTC and CWT improved the safety of the biofuels during the process of handling, storing and transportation. The ash-related issues of the biofuels were significantly mitigated and combustion behavior was remarkably improved after HTC and CWT processes of bamboo sawdust. In general, both HTC and CWT processes are suitable to produce biofuels with high fuel quality from bamboo sawdust. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. EXPERT MODEL OF LAND SUITABILITY ASSESSMENT FOR CROPS

    Directory of Open Access Journals (Sweden)

    Boris Đurđević

    2010-12-01

    Full Text Available A total of 17404 soil samples (2003rd-2009th year were analysed in the eastern Croatia. The largest number of soil samples belongs to the Osijek-Baranya county, which together with both Eastern sugar beet Factories (Osijek and Županja, conduct the soil fertility control (~4200 samples/yr.. Computer model suitability assessment for crops, supported by GIS, proved to be fast, efficient enough reliable in terms of the number of analyzed soil samples. It allows the visualization of the agricultural area and prediction of its production properties for the purposes of analysis, planning and rationalization of agricultural production. With more precise data about the soil (soil, climate and reliable Digital Soil Map of Croatia, the model could be an acceptable, not only to evaluate the suitability for growing different crops but also their need for fertilizer, necessary machinery, repairs (liming, and other measures of organic matter input. The abovementioned aims to eliminate or reduce effects of limiting factors in primary agricultural production. Assessment of the relative benefits of soil presented by computer model for the crops production and geostatistical method kriging in the Osijek-Baranya county showed: 1 Average soil suitability being 60.06 percent. 2 Kriging predicted that 51751 ha (17.16% are of limited resources (N1 for growing crops whereas a 86142 ha (28.57% of land is limited suitably (S3, b 132789 ha (44.04% are moderately suitable (S2 and c 30772 ha (10.28% are of excellent fertility (S1. A large number of eastern Croatian land data showed that the computer-geostatistical model for determination of soil benefits for growing crops was automated, fast and simple to use and suitable for the implementation of GIS and automatically downloading the necessary benefit indicators from the input base (land, analytical and climate as well as data from the digital soil maps able to: a visualize the suitability for soil tillage, b predict the

  9. Sustainability assessment of GM crops in a Swiss agricultural context

    OpenAIRE

    Speiser , Bernhard; Stolze , Matthias; Oehen , Bernadette; Gessler , Cesare; Weibel , Franco; Bravin , Esther; Kilchenmann , Adeline; Widmer , Albert; Charles , Raffael; Lang , Andreas; Stamm , Christian; Triloff , Peter; Tamm , Lucius

    2012-01-01

    International audience; The aim of this study was to provide an ex ante assessment of the sustainability of genetically modified (GM) crops under the agricultural conditions prevailing in Switzerland. The study addressed the gaps in our knowledge relating to (1) the agronomic risks/benefits in production systems under Swiss conditions (at field and rotation/orchard level), (2) the economic and socio-economic impacts associated with altered farming systems, and (3) the agro-ecological risks/be...

  10. The water-land-food nexus of first-generation biofuels

    Science.gov (United States)

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; de Carolis, Giulia; D'Odorico, Paolo

    2016-03-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

  11. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    crops for biofuel production is research in biorefineries using a whole-crop approach with the aim of having an optimal use of all the components of the specific crop. Looking at rape as a model crop, the components can be used for i.e. bioethanol, biodiesel, biogas, biohydrogen, feed, food and plant...

  12. Spatio-Temporal Impacts of Biofuel Production and Climate Variability on Water Quantity and Quality in Upper Mississippi River Basin

    Directory of Open Access Journals (Sweden)

    Debjani Deb

    2015-06-01

    Full Text Available Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider: (a how climate change would alter both water supply and demand; and (b in turn, how related changes in water availability will impact the production of biofuel crops; and (c the environmental implications of large scale biofuel productions. Understanding the role of biofuels in the water cycle is the key to understanding many of the environmental impacts of biofuels. Therefore, the focus of this study is to model the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems. Results from this study will help explore the impacts of the US biofuel policy and climate change on water and agricultural resources. We used the Soil and Water Assessment Tool (SWAT to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g., more use of marginal lands, greater residue harvest, increased yields, plus management practices due to biofuel crops to meet the Renewable Fuel Standard target on water quality and quantity.

  13. biofuel development in California

    Directory of Open Access Journals (Sweden)

    Varaprasad Bandaru

    2015-07-01

    Full Text Available Biofuels are expected to play a major role in meeting California's long-term energy needs, but many factors influence the commercial viability of the various feedstock and production technology options. We developed a spatially explicit analytic framework that integrates models of plant growth, crop adoption, feedstock location, transportation logistics, economic impact, biorefinery costs and biorefinery energy use and emissions. We used this framework to assess the economic potential of hybrid poplar as a feedstock for jet fuel production in Northern California. Results suggest that the region has sufficient suitable croplands (2.3 million acres and nonarable lands (1.5 million acres for poplar cultivation to produce as much as 2.26 billion gallons of jet fuel annually. However, there are major obstacles to such large-scale production, including, on nonarable lands, low poplar yields and broad spatial distribution and, on croplands, competition with existing crops. We estimated the production cost of jet fuel to be $4.40 to $5.40 per gallon for poplar biomass grown on nonarable lands and $3.60 to $4.50 per gallon for biomass grown on irrigated cropland; the current market price is $2.12 per gallon. Improved poplar yields, use of supplementary feedstocks at the biorefinery and economic supports such as carbon credits could help to overcome these barriers.

  14. Life cycle assessment of a willow bioenergy cropping system

    International Nuclear Information System (INIS)

    Heller, M.C.; Keoleian, G.A.; Volk, Timothy A.

    2003-01-01

    The environmental performance of willow biomass crop production systems in New York (NY) is analyzed using life cycle assessment (LCA) methodology. The base-case, which represents current practices in NY, produces 55 units of biomass energy per unit of fossil energy consumed over the biomass crop's 23-year lifetime. Inorganic nitrogen fertilizer inputs have a strong influence on overall system performance, accounting for 37% of the non-renewable fossil energy input into the system. Net energy ratio varies from 58 to below 40 as a function of fertilizer application rate, but application rate also has implications on the system nutrient balance. Substituting inorganic N fertilizer with sewage sludge biosolids increases the net energy ratio of the willow biomass crop production system by more than 40%. While CO 2 emitted in combusting dedicated biomass is balanced by CO 2 adsorbed in the growing biomass, production processes contribute to the system's net global warming potential. Taking into account direct and indirect fuel use, N 2 O emissions from applied fertilizer and leaf litter, and carbon sequestration in below ground biomass and soil carbon, the net greenhouse gas emissions total 0.68 g CO 2 eq. MJ biomassproduced -1 . Site specific parameters such as soil carbon sequestration could easily offset these emissions resulting in a net reduction of greenhouse gases. Assuming reasonable biomass transportation distance and energy conversion efficiencies, this study implies that generating electricity from willow biomass crops could produce 11 units of electricity per unit of fossil energy consumed. Results form the LCA support the assertion that willow biomass crops are sustainable from an energy balance perspective and contribute additional environmental benefits

  15. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    Science.gov (United States)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  16. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    Directory of Open Access Journals (Sweden)

    Dong Jiang

    2014-01-01

    Full Text Available The main purpose for developing biofuel is to reduce GHG (greenhouse gas emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA, as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  17. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...... Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor...

  18. Assessing meteorological key factors influencing crop invasion by pollen beetle (

    Directory of Open Access Journals (Sweden)

    Jürgen Junk

    2016-09-01

    Full Text Available The pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae, is a severe pest of winter oilseed rape. A phenological model to forecast the first spring invasion of crops in Luxembourg by M. aeneus was developed in order to provide a tool for improving pest management and for assessing the potential effects of climate change on this pest. The model was derived using long-term, multi-site observational datasets of pollen beetle migration and meteorological data, as the timing of crop invasion is determined mainly by meteorological variables. Daily values of mean air and soil temperature, accumulated sunshine duration and precipitation were used to create a threshold-based model to forecast crop invasion. Minimising of the root mean squared error (RMSE of predicted versus observed migration dates was used as the quality criterion for selecting the optimum combination of threshold values for meteorological variables. We identified mean air temperature 8.0 °C, mean soil temperature 4.6 °C, and sunshine duration of 3.4 h as the best threshold values, with a cut-off of 1 mm precipitation and with no need for persistence of those conditions for more than one day (RMSE=9.3days$RMSE=9.3\\,\\text{days}$. Only in six out of 30 cases, differences between observed and predicted immigration dates were >5$>5$ days. In the future, crop invasion by pollen beetles will probably be strongly affected by changes in air temperature and precipitation related to climate change. We used a multi-model ensemble of 15 regional climate models driven by the A1B emission scenario to assess meteorological changes in two 30‑year future periods, near future (2021–2050 and far future (2069–2098 in comparison with the reference period (1971–2000. Air temperature and precipitation were predicted to increase in the first three months of each year, both in the near future and the far future. The pollen beetle migration model indicated that this change would

  19. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  20. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  1. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Science.gov (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  2. Holistic Assessment and Ethical Disputation on a New Trend in Solid Biofuels.

    Science.gov (United States)

    Hašková, Simona

    2017-04-01

    A new trend in the production technology of solid biof uels has appeared. There is a wide consensus that most solid biofuels will be produced according to the new production methods within a few years. Numerous samples were manufactured from agro-residues according to conventional methods as well as new methods. Robust analyses that reviewed the hygienic, environmental, financial and ethical aspects were performed. The hygienic and environmental aspect was assessed by robust chemical and technical analyses. The financial aspect was assessed by energy cost breakdown. The ethical point of view was built on the above stated findings, the survey questionnaire and critical discussion with the literature. It is concluded that the new production methods are significantly favourable from both the hygienic and environmental points of view. Financial indicators do not allow the expressing of any preference. Regarding the ethical aspect, it is concluded that the new methods are beneficial in terms of environmental responsibility. However, it showed that most of the customers that took part in the survey are price oriented and therefore they tend to prefer the cheaper-conventional alternative. In the long term it can be assumed that expansion of the new technology and competition among manufacturers will reduce the costs.

  3. Assessing climate change effects on European crop yields using the Crop Growth

    NARCIS (Netherlands)

    Supit, I.; Diepen, van C.A.; Wit, de A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F.

    2012-01-01

    Climate change impacts on potential and rainfed crop yields on the European continent were studied using output of three General Circulation Models and the Crop Growth Monitoring System in combination with a weather generator. Climate change impacts differ per crop type and per CO2 emission

  4. A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium

    International Nuclear Information System (INIS)

    Turcksin, Laurence; Macharis, Cathy; Lebeau, Kenneth; Boureima, Faycal; Van Mierlo, Joeri; Bram, Svend; De Ruyck, Jacques; Mertens, Lara; Jossart, Jean-Marc; Gorissen, Leen; Pelkmans, Luc

    2011-01-01

    The multi-actor multi-criteria analysis (MAMCA) is a methodology to evaluate different policy measures, whereby different stakeholders' opinions are explicitly taken into account. In this paper, the framework is used to assess several biofuel options for Belgium that can contribute to the binding target of 10% renewable fuels in transport by 2020, issued by the Renewable Energy Directive (RED). Four biofuel options (biodiesel, ethanol, biogas and synthetic biodiesel (also referred to as 'biomass-to-liquid' or BTL)) together with a reference fossil fuel option, are evaluated on the aims and objectives of the different stakeholders involved in the biofuel supply chain (feedstock producers, biofuel producers, fuel distributors, end users, vehicle manufacturers, government, NGOs and North-South organizations). Overall, the MAMCA provided insights in the stakeholder's position and possible implementation problems for every biofuel option. As such, it helps decision makers in establishing a supportive policy framework to facilitate implementation and to ensure market success, once they have decided on which biofuel option (or combination of options) to implement. - Research Highlights: → Stakeholder support is an indispensable factor for market success of biofuels. → A MAMCA explicitly includes stakeholder visions in the decision-making process. → The MAMCA shows strengths and weaknesses of alternatives for different stakeholders. →Information on stakeholder's position helps to establish implementation pathways. → Policy makers should focus on combination of biofuel options to reach EU 2020 target.

  5. Integrated well-to-wheel assessment on biofuels, analysing energy, emission and welfare economic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Slentoe, E.; Moeller, F.; Frederiksen, P.; Jepsen, M.R.

    2011-07-15

    Various biofuel evaluation methods exist, with different analytical framework setup and different scopes. The scope of this study is to develop an integrated method to evaluate the consequences of producing biofuels. The consequences should include energy consumption, emission and welfare economic changes within the well-to-wheel (WTW) flow chain focusing on the production of biomass, and the subsequent conversion into bio fuel and combustion in vehicles. This method (Moeller and Slentoe, 2010) is applied to a Danish case, implementing policy targets for biofuel use in the transport sector and also developing an alternative scenario of higher biofuel shares. This paper presents the results of three interlinked parallel running analyses, of energy consumption, emissions and welfare economics (Slentoe, Moeller and Winther, 2010), and discusses the feasibility of those analyses, which are based on the same consequential analysis method, comparing a scenario situation to a reference situation. As will be shown, the results are not univocal; example given, what is an energy gain is not necessarily a welfare economic gain. The study is conducted as part of the Danish REBECa project. Within this, two main scenarios, HS1 and HS2, for biofuel mixture in fossil diesel fuel and gasoline are established. The biofuel rape diesel (RME) stems from rape seeds and bioethanol stems from either wheat grains (1st generation) or straw (2nd generation) - all cultivated in Denmark. The share of 2nd generation bioethanol exceeds 1st generation bioethanol towards 2030. Both scenarios initiate at a 5.75% mixture in 2010 and reach 10% and 25% in 2030 for HS1 and HS2, such that the low mixture scenario reflects the Danish Act on sustainable biofuels (June 2009), implementing the EU renewable energy directive (2009/29/EC), using biofuels as energy carrier. The two scenarios are computed in two variants each, reflecting oil prices at 65$ and 100$ per barrel. (Author)

  6. Too difficult to govern? An assessment of the governability of transport biofuels in the EU

    International Nuclear Information System (INIS)

    Di Lucia, Lorenzo

    2013-01-01

    Transport biofuels are currently the subject of heated debate in the EU. In the past decade the deployment of these technologies has been justified by claims of attractive environmental, geopolitical and rural development benefits. However, expectations have rapidly turned into deep criticism regarding the sustainability of these technologies and the desirability of pursuing the biofuel path. This situation has generated an on-going controversy and policy deadlock at EU level. This study explores these issues from a governance perspective. Employing the concept of system governability, derived from interactive governance theory, it attempts to shed some light on the problems facing the governance of biofuels and on how the quality of the governance system could be improved. The analysis showed that the governability of the system decreased substantially in the period 2003–2012 due to increasing governing needs and decreasing governing capacity. The quality of the governance system can be improved by (i) improving governing capacity by reducing conflicts among governing actors, advancing consistency among institutions and creating capacity at international and global level; and (ii) promoting advanced technologies and adjusting societal ambitions and expectations regarding biofuels. - highlights: • Biofuels in the EU are significantly more difficult to govern today than in 2003. • This is due to the qualities of the system to be governed and the governing system. • Sustainable biofuel systems are inherently difficult to govern

  7. Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Huang, Jikun; Qiu, Huanguang [Center for Chinese Agricultural Policy, Chinese Academy of Sciences and Institute of Geographical Sciences and Natural Resources Research, Jia 11, Datun Road, Beijing 100101 (China); Rozelle, Scott [Freeman Spogli Institute of International Studies, Stanford University, East Encina Hall, Stanford, CA 94305 (United States); Sombilla, Mercy A. [Southeast Asian Regional Center for Graduate Study and Research in Agriculture, College, Laguna 4031 (Philippines)

    2009-11-15

    Similar to many other countries, all nations in the Greater Mekong Subregion (GMS) have planned or are planning to develop strong national biofuel programs. The overall goal of this paper is to better understand the impacts of global and regional biofuels on agriculture and the rest of the economy, with a specific focus on the GMS. Based on a modified multi-country, multi-sector computable general equilibrium model, this study reveals that global biofuel development will significantly increase agricultural prices and production and change trade in agricultural commodities in the GMS and the rest of world. While biofuel in the GMS will have little impacts on global prices, it will have significant effects on domestic agricultural production, land use, trade, and food security. The results also show that the extent of impacts from biofuel is highly dependent on international oil prices and the degree of substitution between biofuel and gasoline. The findings of this study have important policy implications for the GMS countries and the rest of world. (author)

  8. Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade

    International Nuclear Information System (INIS)

    Yang, Jun; Huang, Jikun; Qiu, Huanguang; Rozelle, Scott; Sombilla, Mercy A.

    2009-01-01

    Similar to many other countries, all nations in the Greater Mekong Subregion (GMS) have planned or are planning to develop strong national biofuel programs. The overall goal of this paper is to better understand the impacts of global and regional biofuels on agriculture and the rest of the economy, with a specific focus on the GMS. Based on a modified multi-country, multi-sector computable general equilibrium model, this study reveals that global biofuel development will significantly increase agricultural prices and production and change trade in agricultural commodities in the GMS and the rest of world. While biofuel in the GMS will have little impacts on global prices, it will have significant effects on domestic agricultural production, land use, trade, and food security. The results also show that the extent of impacts from biofuel is highly dependent on international oil prices and the degree of substitution between biofuel and gasoline. The findings of this study have important policy implications for the GMS countries and the rest of world. (author)

  9. A comparison of land use change accounting methods: seeking common grounds for key modeling choices in biofuel assessments

    DEFF Research Database (Denmark)

    de Bikuna Salinas, Koldo Saez; Hamelin, Lorie; Hauschild, Michael Zwicky

    2018-01-01

    Five currently used methods to account for the global warming (GW) impact of the induced land-use change (LUC) greenhouse gas (GHG) emissions have been applied to four biofuel case studies. Two of the investigated methods attempt to avoid the need of considering a definite occupation -thus...... amortization period by considering ongoing LUC trends as a dynamic baseline. This leads to the accounting of a small fraction (0.8%) of the related emissions from the assessed LUC, thus their validity is disputed. The comparison of methods and contrasting case studies illustrated the need of clearly...... distinguishing between the different time horizons involved in life cycle assessments (LCA) of land-demanding products like biofuels. Absent in ISO standards, and giving rise to several confusions, definitions for the following time horizons have been proposed: technological scope, inventory model, impact...

  10. Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets

    International Nuclear Information System (INIS)

    Ozdemir, Enver Doruk; Haerdtlein, Marlies; Eltrop, Ludger

    2009-01-01

    The provision of biofuels today is based on energy crops rather than residual biomass, which results in the requirement of agricultural land area. The side products may serve as animal feed and thus prevent cultivation of other feedstock and the use of corresponding land area. These effects of biofuel provision have to be taken into account for a comprising assessment of land area requirement for biofuel provision. Between 18.5 and 21.1 Mio. hectares (ha) of land area is needed to meet the EU 2020 biofuel target depending on the biofuel portfolio when substitution effects are neglected. The utilization of the bioethanol side products distiller's dried grain and solubles (DDGS) and pressed beet slices may save up to 0.7 Mio. ha of maize cultivation area in the EU. The substitution effect due to the utilization of biodiesel side products (oil cakes of rape, palm and soy) as animal feed may account for up to 7.1 Mio. ha of soy cultivation area in Brazil. The results show that the substitution of land area due to use of side products might ease the pressures on land area requirement considerably and should therefore not be neglected in assessing the impacts of biofuel provision worldwide.

  11. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  12. Life Cycle Assessment of Bioenergy from Lignocellulosic Crops Cultivated on Marginal Land in Europe

    Science.gov (United States)

    Rettenmaier, Nils; Schmidt, Tobias; Gärtner, Sven; Reinhardt, Guido

    2017-04-01

    Population growth and changing diets due to economic development lead to an additional demand for land for food and feed production. Slowly but surely turning into a mass market, also the cultivation of non-food biomass crops for fibre (bio-based products) and fuel (biofuels and bioenergy) is increasingly contributing to the pressure on global agricultural land. As a consequence, the already prevailing competition for land might even intensify over the next decades. Against this background, the possibilities of shifting the cultivation of non-food biomass crops to so-called 'marginal lands' are investigated. The EC-funded project 'Sustainable exploitation of biomass for bioenergy from marginal lands in Europe' (SEEMLA) aims at the establishment of suitable innovative land-use strategies for a sustainable production of bioenergy from lignocellulosic crops on marginal lands while improving general ecosystem services. For a complete understanding of the environmental benefits and drawbacks of the envisioned cultivation of bioenergy crops on marginal land, life cycle assessments (LCA) have proven to be a suitable and valuable tool. Thus, embedded into a comprehensive sustainability assessment, a screening LCA is carried out for the entire life cycles of the bioenergy carriers researched in SEEMLA. Investigated systems, on the one hand, include the specific field trials carried out by the SEEMLA partners in Ukraine, Greece and Germany. On the other hand, generic scenarios are investigated in order to derive reliable general statements on the environmental impacts of bioenergy from marginal lands in Europe. Investigated crops include woody and herbaceous species such as black locust, poplar, pine, willow and Miscanthus. Conversion technologies cover the use in a domestic or a district heating plant, power plant, CHP as well as the production of Fischer-Tropsch diesel (FT diesel) and lignocellulosic ethanol. Environmental impacts are compared to conventional reference

  13. Development of a biorefinery optimized biofuel supply curve for the western United States

    Science.gov (United States)

    Nathan Parker; Peter Tittmann; Quinn Hart; Richard Nelson; Ken Skog; Anneliese Schmidt; Edward Gray; Bryan Jenkins

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed...

  14. The Assessment of Biofuel Utilization Policy on the Total Output and CO2 Emissions in Thailand

    Directory of Open Access Journals (Sweden)

    Suthathip Suanmali

    2013-07-01

    Full Text Available The transport sector is the largest energy-consuming sector in Thailand. Its primary energy supply is heavily depended on imported oil. Since 2005, world crude oil price has been rising and had reached a record of 147 $/barrel. Therefore the policy on promotion of biofuel utilization was initiated in 2005 by the Ministry of Energy; however, the economy-wide impacts have been rarely assessed. This paper presents the energy Input-Output Analysis (IO of the economy-wide impacts on the promotion policy, in particular, the change in Greenhouse Gas (GHG emissions. In order to measure the total GHG emission from different economic sectors, the contribution of emissions has to be considered. In this paper, the focus is placed on CO2 emissions. To calculate the amount of CO2 emissions, the emission amount of various final consumptions in the economy evaluated by the IO must be applied. The direct CO2 emissions in final energy consumptions in Thailand are evaluated by using conversion factors from Guidelines to Defra's GHG conversion factors, Annexes updated in June 2007. The CO2 emissions in various economic sectors will be calculated and compared with the figures in 2015 when the policy is fully implemented.

  15. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems.

    Science.gov (United States)

    Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S

    2018-06-01

    The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.

    Science.gov (United States)

    Ng, Tze Ling; Eheart, J Wayland; Cai, Ximing; Miguez, Fernando

    2010-09-15

    There is increasing interest in perennial grasses as a renewable source of bioenergy and feedstock for second-generation cellulosic biofuels. The primary objective of this study is to estimate the potential effects on riverine nitrate load of cultivating Miscanthus x giganteus in place of conventional crops. In this study, the Soil and Water Assessment Tool (SWAT) is used to model miscanthus growth and streamwater quality in the Salt Creek watershed in Illinois. SWAT has a built-in crop growth component, but, as miscanthus is relatively new as a potentially commercial crop, data on the SWAT crop growth parameters for the crop are lacking. This leads to the second objective of this study, which is to estimate those parameters to facilitate the modeling of miscanthus in SWAT. Results show a decrease in nitrate load that depends on the percent land use change to miscanthus and the amount of nitrogen fertilizer applied to the miscanthus. Specifically, assuming a nitrogen fertilization rate for miscanthus of 90 kg-N/ha, a 10%, 25%, and 50% land use change to miscanthus will lead to decreases in nitrate load of about 6.4%, 16.5%, and 29.6% at the watershed outlet, respectively. Likewise, nitrate load may be reduced by lowering the fertilizer application rate, but not proportionately. When fertilization drops from 90 to 30 kg-N/ha the difference in nitrate load decrease is less than 1% when 10% of the watershed is miscanthus and less than 6% when 50% of the watershed is miscanthus. It is also found that the nitrate load decrease from converting less than half the watershed to miscanthus from corn and soybean in 1:1 rotation surpasses that from converting the whole watershed to just soybean.

  17. Biofuels and food security: Micro-evidence from Ethiopia

    International Nuclear Information System (INIS)

    Negash, Martha; Swinnen, Johan F.M.

    2013-01-01

    There is considerable controversy about the impact of biofuels on food security in developing countries. A major concern is that biofuels reduce food security by increasing food prices. In this paper we use survey evidence to assess the impact of castor production on poor and food insecure rural households in Ethiopia. About 1/3 of poor farmers have allocated on average 15% of their land to the production of castor beans under contract in biofuel supply chains. Castor production significantly improves their food security: they have fewer months without food and the amount of food they consume increases. Castor cultivation is beneficial for participating households’ food security in several ways: by generating cash income from castor contracts, they can store food for the lean season; castor beans preserve well on the field which allows sales when farmers are in need of cash (or food); spillover effects of castor contracts increases the productivity of food crops. Increased food crop productivity offsets the amount of land used for castor so that the total local food supply is not affected. - Highlights: • We evaluate the impact of biofuel production contracts on farmers’ food security. • We apply endogenous switching regression method on survey data from Ethiopia. • Impact is heterogeneous across groups. • Food security significantly improved for contract participants by 25%. • Spillover effects improve food productivity that offsets the amount of land diverted to biofuel

  18. Biofuel and Bioenergy implementation scenarios. Final report of VIEWLS WP5, modelling studies

    International Nuclear Information System (INIS)

    Wakker, A.; Egging, R.; Van Thuijl, E.; Van Tilburg, X.; Deurwaarder, E.P.; De Lange, T.J.; Berndes, G.; Hansson, J.

    2005-11-01

    This report is published within the framework of the European Commission-supported project 'Clear Views on Clean Fuels' or VIEWLS. The overall objectives of this project are to provide structured and clear data on the availability and performance of biofuel and to identify the possibilities and strategies towards large-scale sustainable production, use and trading of biofuels for the transport sector in Europe, including Central and Eastern European Countries (CEEC). This reports constitutes the outcome of the Work Package 5 (WP5) of the VIEWLS project. In WP5 the EU biofuels and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costs of biofuels and on the resulting market structure and supply chains. In a bigger context, where possible, WP5 aims also to provide insight into larger socio-economic impacts of bioenergy trade within Europe. The objective of this research is to develop a cost efficient biofuel strategy for Europe in terms of biofuel production, cost and trade, and to assess its larger impact on bioenergy markets and trade up to 2030. Based on the biomass availability and associated costs within EU25, under different conditions, scenarios for biofuels production and cost can be constructed using quantitative modelling tools. Combining this with (cost) data on biofuel conversion technologies and transport of biomass and biofuels, the lowest cost biofuel supply chain given a certain demand predetermined by the biofuels Directive can be designed. In a broader context, this is supplemented by a design of a sustainable bioenergy supply chain in view of the fact that biomass-heat, biomass-electricity and biofuels are competing for the same biomass resources. In other words, the scarcity of bioenergy crops, as manifested through overall bioenergy demand, is an essential variable in bioenergy scenarios

  19. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels

  20. Biofuels worldwide

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    After over 20 years of industrial development, the outlook for biofuels now looks bright. Recent developments indicate that the use of biofuels, previously confined to a handful of countries including Brazil and the United States, is 'going global' and a world market may emerge. However, these prospects could eventually be limited by constraints relative to resources and costs. The future of biofuels probably depends on the development of new technologies to valorize lignocellulosic substances such as wood and straw. (author)

  1. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  2. Assessment of global grey water footprint of major food crops

    Science.gov (United States)

    Yang, Hong; Liu, Wenfeng; Antonelli, Marta

    2016-04-01

    Agricultural production is one of the major sources of water pollution in the world. This is closely related to the excess application of fertilizers. Leaching of N and P to water bodies has caused serious degradation of water quality in many places. With the persistent increase in the demand for agricultural products, agricultural intensification evident during the past decades will continue in the future. This will lead to further increase in fertilizer application and consequently water pollution. Grey water footprint is a measure of the intensity of water pollution caused by water use for human activities. It is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater body, based on natural background concentrations and water quality standards. This study conducts a global assessment of grey water footprint for major cereal crops, wheat, maize and rice. A crop model, Python-based EPIC (PEPIT), is applied to quantify the leaching of N and P from the fertilizer application in the three crops on a global scale with 0.5 degree spatial resolution. The hotspots of leaching are identified. The results suggest that, based on the definition and method of grey water footprint proposed by the World Water Footprint Network, the grey water footprint in many parts of the world has exceeded their total water resources availability. This indicates the seriousness of water pollution caused by agricultural production. However, the situation may also call for the development of a realistic measurement of grey water footprint which is more pertinent to water resources management. This paper proposes some alternatives in measuring grey water footprint and also discusses incorporation of grey water footprint assessment into water policy formulation and river basins plan development.

  3. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  4. Biofuels for transport

    International Nuclear Information System (INIS)

    2004-01-01

    In the absence of strong government policies, the IEA projects that the worldwide use of oil in transport will nearly double between 2000 and 2030, leading to a similar increase in greenhouse gas emissions. Biofuels, such as ethanol, bio-diesel, and other liquid and gaseous fuels, could offer an important alternative to petroleum over this time frame and help reduce atmospheric pollution. This book looks at recent trends in biofuel production and considers what the future might hold if such alternatives were to displace petroleum in transport. The report takes a global perspective on the nascent biofuels industry, assessing regional similarities and differences as well as the cost and benefits of the various initiatives being undertaken around the world. In the short term, conventional biofuel production processes in IEA countries could help reduce oil use and thence greenhouse gas emissions, although the costs may be high. In the longer term, possibly within the next decade, advances in biofuel production and the use of new feedstocks could lead to greater, more cost-effective reductions. Countries such as Brazil are already producing relatively low-cost biofuels with substantial reductions in fossil energy use and greenhouse gas emissions. This book explores the range of options on offer and asks whether a global trade in biofuels should be more rigorously pursued

  5. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L.

    Science.gov (United States)

    2013-01-01

    Background Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. Results In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. Conclusion This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA

  6. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  7. Biofuels and WTO Disciplines

    OpenAIRE

    Brühwiler, Claudia Franziska; Hauser, Heinz

    2008-01-01

    Given the sharp rise in crude oil prices and growing awareness of climate change, the potential of biofuels, particularly of bioethanol, has become an ubiquitous topic of public debate and has induced ambitious policy initiatives. The latter are mostly paired with protectionist measures as the examples of the European Union and the United States show, where domestic producers of energy crops are put at an advantage thanks to subsidisation, direct payments and/or favourable tax schemes.Moreove...

  8. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  9. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    OpenAIRE

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality a...

  11. Techno-economic assessment of biorefinery technologies for aviation biofuels supply chains in Brazil

    NARCIS (Netherlands)

    Alves, Catarina; Valk, Misha; de Jong, S.A.; Bonomi, Antonio; van der Wielen, Luuk; Mussatto, Solange

    2017-01-01

    Abstract: Production of aviation biofuels has been strongly encouraged by the volatility of oil prices and environmental concerns. Brazilian society, companies, and government are taking a step forward in the production of renewable jet fuel from biomass feedstocks largely available in the

  12. Potential impacts of biofuel development on food security in Botswana: A contribution to energy policy

    International Nuclear Information System (INIS)

    Kgathi, Donald L.; Mfundisi, K.B.; Mmopelwa, G.; Mosepele, K.

    2012-01-01

    Biofuel development continues to be a critical development strategy in Africa because it promises to be an important part of the emerging bio-economy. However, there is a growing concern that the pattern of biofuel development is not always consistent with the principles of sustainable development. This paper assesses the potential of the impacts of biofuel development on food security in Botswana. Drawing on informal and semi-structured interviews, the paper concludes that there is potential for the development of biofuels in Botswana without adverse effects on food security due mainly to availability of idle land which accounted for 72% of agricultural land in the eastern part of the country in 2008. It is suggested that farmers could be incentivized to produce energy crops and more food from such land. Although it is hypothesized that the implementation of biofuel development programmes in other countries had an impact on local commodity prices during the period 2005–2008 in Botswana, it is argued that local biofuel production may not necessarily lead to a substantial increase in commodity food prices because land availability is not a major issue. The paper makes policy recommendations for sustainable biofuel development in Botswana. - Highlights: ► Biofuel development in Botswana can be pursued without harming food security. ► There is plenty idle land which could be used for biofuel and food production. ► Biofuel production will not lead to significant increases in food prices. ► There is need to define land for biofuels to avoid future scarcity of land for food production.

  13. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  14. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  15. Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy

    Directory of Open Access Journals (Sweden)

    Giuseppe Pulighe

    2016-10-01

    Full Text Available In the context of environmental sustainability there has been an increasing interest in bioenergy production from renewable resources, and is expected that European biofuel production from energy crops will increase as a consequence of the achievement of policy targets. The aim of this paper is to assess the agronomic feasibility of biomass crop cultivation to provide profitable renewable feedstocks in a marginal and heavy-metal polluted area located in the Sulcis district, Sardinia (Italy. Results from literature review and unpublished data from field trials carried out in Sardinia were analysed to establish the main agronomic traits of crops (e.g., yield potential and input requirements. A Geographical Information System (GIS-based procedure with remotely sensed data is also used to evaluate the land suitability and the actual land use/cover, considering a future scenario of expansion of energy crops on these marginal areas avoiding potential conflicts with food production. The results of the review suggests that giant reed, native perennial grasses and milk thistle are the most suitable energy crops for this area. The land suitability analysis shows that about 5700 ha and 1000 ha could be available for feedstock cultivation in the study area and in the most polluted area, respectively. The results obtained from land suitability process and agronomic evaluation will serve as a base to support technical and economical feasibility studies, as well as for the evaluation of environmental sustainability of the cultivation in the study area.

  16. Life cycle assessment of energy products: environmental impact assessment of biofuels; Ecobilan d'agents energetiques. Evaluation ecologique de biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  17. Biofuel production and implications for land use, food production and environment in India

    International Nuclear Information System (INIS)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra; Balachandra, P.

    2011-01-01

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  18. Biofuel production and implications for land use, food production and environment in India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India); Balachandra, P., E-mail: patilb@mgmt.iisc.ernet.in [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-15

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  19. Crop Condition Assessment with Adjusted NDVI Using the Uncropped Arable Land Ratio

    Directory of Open Access Journals (Sweden)

    Miao Zhang

    2014-06-01

    Full Text Available Crop condition assessment in the early growing stage is essential for crop monitoring and crop yield prediction. A normalized difference vegetation index (NDVI-based method is employed to evaluate crop condition by inter-annual comparisons of both spatial variability (using NDVI images and seasonal dynamics (based on crop condition profiles. Since this type of method will generate false information if there are changes in crop rotation, cropping area or crop phenology, information on cropped/uncropped arable land is integrated to improve the accuracy of crop condition monitoring. The study proposes a new method to retrieve adjusted NDVI for cropped arable land during the growing season of winter crops by integrating 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS reflectance data at 250-m resolution with a cropped and uncropped arable land map derived from the multi-temporal China Environmental Satellite (Huan Jing Satellite charge-coupled device (HJ-1 CCD images at 30-m resolution. Using the land map’s data on cropped and uncropped arable land, a pixel-based uncropped arable land ratio (UALR at 250-m resolution was generated. Next, the UALR-adjusted NDVI was produced by assuming that the MODIS reflectance value for each pixel is a linear mixed signal composed of the proportional reflectance of cropped and uncropped arable land. When UALR-adjusted NDVI data are used for crop condition assessment, results are expected to be more accurate, because: (i pixels with only uncropped arable land are not included in the assessment; and (ii the adjusted NDVI corrects for interannual variation in cropping area. On the provincial level, crop growing profiles based on the two kinds of NDVI data illustrate the difference between the regular and the adjusted NDVI, with the difference depending on the total area of uncropped arable land in the region. The results suggested that the proposed method can be used to improve the assessment of

  20. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.

    Science.gov (United States)

    López Barreiro, Diego; Samorì, Chiara; Terranella, Giuseppe; Hornung, Ursel; Kruse, Andrea; Prins, Wolter

    2014-12-01

    The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe

    International Nuclear Information System (INIS)

    Gasol, Carles M.; Rieradevall, Joan; Gabarrell, Xavier; Brun, Filippo; Mosso, Angela

    2010-01-01

    In several policy documents bioenergy is recognized as an important renewable energy source in Italy. The increase in energy prices represents an opportunity for lignocellulosic energy crops such as acacia and poplar. However, for Short Rotation Coppice (SRC) and Short Rotation Forestry (SRF) to be adopted by farmers, these crops must be perceived to be at least as profitable as crops that normally compete with these plantations for land use. The purpose of this paper is to evaluate the economic feasibility of acacia (Robinia pseudoacacia) as an energy crop in a low input production regime in Italy and, in particular, to consider its competitiveness with wheat. Our results show that neither SRC and SRF techniques using assumed production costs (EUR3820 and EUR5285 ha -1 yr -1 ) nor biomass productions are able to obtain a positive profit (-EUR184 and -EUR172 ha -1 yr -1 ) that can convince farmers to invest in biomass plantations on their land. The results demonstrate that wheat is a more economically secure option than SRC or SRF. The viability of local biomass production in Italy and Southern Europe depends on the active support of the governments; without them, biomass is not economically competitive for the farmers when compared to crops such as wheat. (author)

  2. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  3. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  4. Assessing opportunities and constraints for biofuel development in sub-Saharan Africa

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2011-01-01

    Full Text Available , the development of sustainability principles, criteria and indicators for biofuel development, and constraints to imports in the EU, have been some key responses to reduce unsustainable practices (Harrison et al. 2010a, Vis et al. 2008). �ough the adoption... FSC Forest Stewardship Council GAIA Movement Trust Living Earth Green World Action GAP Good Agricultural Practices GHG Greenhouse gas GIZ Gesellscha� f?r Internationale Zusammenarbeit Ha Hectare HCV High Conservation Value HDI Human Development...

  5. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  6. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  7. Biofuel market and carbon modeling to analyse French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2007-01-01

    In order to comply with European Union objectives, France has set up an ambitious biofuel plan. This plan is evaluated on the basis of two criteria: tax exemption on fossil fuels and greenhouse gases (GHG) emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and an oil refining optimization model. Thus, we determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducting the biofuel long-run marginal revenue of refiners from the agro-industrial marginal cost of biofuel production. With a clear view of the refiner's economic choices, total pollutant emissions along the biofuel production chains are quantified and used to feed an LCA. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and demand for petroleum products and consequently these parameters should be taken into account by authorities to modulate biofuel tax exemption. LCA results show that biofuel production and use, from 'seed to wheel', would facilitate the French Government's compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010

  8. Biofuel market and carbon modeling to evaluate French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2006-10-01

    In order to comply with European objectives, France has set up an ambitious biofuel plan. This plan is evaluated considering two criteria: tax exemption need and GHG emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and a refining optimization model. Thus, we are able to determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducing the agro-industrial marginal cost of biofuel production to the biofuel refining long-run marginal revenue. In parallel, a biofuels LCA is carried out using model outputs. Such a method avoid common allocation problems between joint products. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and petroleum products demands. Consequently, biofuel tax exemption does not always appear to be necessary. LCA results show that biofuels production and use, from 'seed to wheel', would facilitate the French Government's to compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010. (authors)

  9. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  10. Assessment of selenium mineralization and availability from catch crops

    DEFF Research Database (Denmark)

    Stavridou, Eleftheria; Thorup-Kristensen, Kristian; Young, S.D.

    2011-01-01

    Selenium (Se) release from four plant species (Indian mustard, fodder radish, Italian ryegrass and hairy vetch) was measured under controlled leaching conditions and in a pot incubation experiment as part of a study of the potential for using these plant species as Se catch crops. Catch crops may...

  11. An Outlook on Microalgal Biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.

    2010-01-01

    Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing

  12. Employment effects of biofuels development

    International Nuclear Information System (INIS)

    Danielsson, B.O.; Hektor, B.

    1992-01-01

    Effects on employment - national and regional - from an expanding market for biofuels in Sweden are estimated in this article. The fuels considered are: Peat, straw, energy crops, silviculture, forestry waste, wood waste, by-products from paper/wood industry and processed fuels from these sources. (22 refs., tabs.)

  13. Safety assessment of foods from genetically modified crops in countries with developing economies.

    Science.gov (United States)

    Delaney, Bryan

    2015-12-01

    Population growth particularly in countries with developing economies will result in a need to increase food production by 70% by the year 2050. Biotechnology has been utilized to produce genetically modified (GM) crops for insect and weed control with benefits including increased crop yield and will also be used in emerging countries. A multicomponent safety assessment paradigm has been applied to individual GM crops to determine whether they as safe as foods from non-GM crops. This paper reviews methods to assess the safety of foods from GM crops for safe consumption from the first generation of GM crops. The methods can readily be applied to new products developed within country and this paper will emphasize the concept of data portability; that safety data produced in one geographic location is suitable for safety assessment regardless of where it is utilized. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Assessment of the safety of foods derived from genetically modified (GM) crops

    DEFF Research Database (Denmark)

    Konig, A.; Cockburn, A.; Crewel, R. W. R.

    2004-01-01

    of the modified crop and the introduced trait, and assessing potential unintended effects from the genetic modification. The proposed approach to safety assessment starts with the comparison of the new GM crop with a traditional counterpart that is generally accepted as safe based on a history of human food use......This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group I of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics...... (the concept of substantial equivalence). This case-focused approach ensures that foods derived from GM crops that have passed this extensive test-regime are as safe and nutritious as currently consumed plant-derived foods. The approach is suitable for current and future GM crops with more complex...

  15. Crop modelling for integrated assessment of risk to food production from climate change

    NARCIS (Netherlands)

    Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, Heidi; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; Ittersum, van M.K.; Janssen, S.J.C.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartosová, L.; Asseng, S.

    2015-01-01

    The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess

  16. Current status: biomass valorisation and biofuels in Singapore

    International Nuclear Information System (INIS)

    Guermont, C.; Barbi, A.P.

    2010-05-01

    After having briefly presented the main types of biofuels (bio-ethanol, bio-diesel) and their first, second and third generation technologies to produce them (from food crops, from non food crops, and from algae), this report presents Singapore public R and D centres working in the field of biofuels development, and their activities. It also presents actors belonging to the private sector, and various realized and announced projects on biofuels

  17. Environmental assessment of two different crop systems in terms of biomethane potential production

    International Nuclear Information System (INIS)

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  18. Environmental assessment of two different crop systems in terms of biomethane potential production

    Energy Technology Data Exchange (ETDEWEB)

    Bacenetti, Jacopo; Fusi, Alessandra, E-mail: alessandra.fusi@unimi.it; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  19. Assessing the quality of a deliberative democracy mini-public event about advanced biofuel production and development in Canada.

    Science.gov (United States)

    Longstaff, Holly; Secko, David M

    2016-02-01

    The importance of evaluating deliberative public engagement events is well recognized, but such activities are rarely conducted for a variety of theoretical, political and practical reasons. In this article, we provide an assessment of the criteria presented in the 2008 National Research Council report on Public Participation in Environmental Assessment and Decision Making (NRC report) as explicit indicators of quality for the 2012 'Advanced Biofuels' deliberative democracy event. The National Research Council's criteria were selected to evaluate this event because they are decision oriented, are the products of an exhaustive review of similar past events, are intended specifically for environmental processes and encompass many of the criteria presented in other evaluation frameworks. It is our hope that the results of our study may encourage others to employ and assess the National Research Council's criteria as a generalizable benchmark that may justifiably be used in forthcoming deliberative events exploring different topics with different audiences. © The Author(s) 2014.

  20. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using combined biochemical and thermochemical processes in a multi-stage biorefinery concept

    Science.gov (United States)

    The environmental impact of agricultural waste from processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the...

  1. Land Clearing and the Biofuel Carbon Debt

    Science.gov (United States)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  2. The Giant Reed as an energy crop: assessing the energy requirements within its supply chain

    DEFF Research Database (Denmark)

    Rodias, Efthymis; Busato, P.; Bochtis, Dionysis

    2013-01-01

    Biomass energy is one form of renewable energy sources that are in the core of interesting for many researchers. There many different biomass sources that can be exploited for energy production, such as crop residues, waste materials, forestry residues and energy crops. Regarding energy crops......, there are many different types of crops significantly varies in terms of energy potential yields, production and provision methods, etc. To this end, a thoroughly assessment of the energy inputs and outputs of each potential energy crop is necessary. In this paper, the Giant Reed is evaluated energetically...... as a potential energy crop. The assessment regards a 10 year period. The considered energy elements include direct inputs (e.g. fuel consumption) as well as indirect inputs (e.g. embodied energy of materials and machinery). According to the results, the balance between the estimated total energy input...

  3. Space for innovation for sustainable community-based biofuel production and use: Lessons learned for policy from Nhambita community, Mozambique

    International Nuclear Information System (INIS)

    Schut, Marc; Paassen, Annemarie van; Leeuwis, Cees; Bos, Sandra; Leonardo, Wilson; Lerner, Anna

    2011-01-01

    This paper provides insights and recommendations for policy on the opportunities and constrains that influence the space for innovation for sustainable community-based biofuel production and use. Promoted by the Mozambican government, Nhambita community established jatropha trials in 2005. Initial results were promising, but crop failure and the absence of organized markets led to scepticism amongst farmers. We start from the idea that the promotion of community-based biofuel production and use requires taking interactions between social-cultural, biophysical, economic, political and legal subsystems across different scales and levels of analysis through time into account. Our analysis demonstrates that heterogeneous farming strategies and their synergies at community level should be carefully assessed. Furthermore, national and international political and legal developments, such as the development of biofuel sustainability criteria, influence the local space in which community-based biofuel developments take place. We conclude that ex-ante integrated assessment and creating an enabling environment can enhance space for sustainable community-based biofuel production and use. It may provide insights into the opportunities and constraints for different types of smallholders, and promote the development of adequate policy mechanisms to prevent biofuels from becoming a threat rather than an opportunity for smallholders. - Highlights: → This paper explores space for innovation for community-based biofuel production and use. → Heterogeneous farming strategies and their synergies at community level are key. → Farmers have little trust in jatropha due to crop failure and absence of markets. → (Inter)national biofuel policies influence space for local biofuel production and use. → Policies should focus on ex-ante integrated assessment and creating an enabling environment.

  4. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    OpenAIRE

    Carmen Alice Teacă; Ruxanda Bodîrlău

    2008-01-01

    Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests). Experimental data regarding the germination process of wheat (from two cultivars) and rye seed...

  5. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  7. Assessment of agro-ecological service crop managements combined with organic fertilisation strategies in organic melon crop

    Directory of Open Access Journals (Sweden)

    Mariangela Diacono

    2018-05-01

    Full Text Available In organic horticultural systems, cover crops could provide several ecological services, therefore, they can be defined agroecological service crops (ASCs. The objective of this two-year research was to study the suitability on melon production of different ASC termination strategies, in combination with organic fertilisers application. In a split-block design, the main-plot was the ASC management, comparing: i green manure, in which the vetch was chopped and plowed into the soil; and ii roller-crimper (RC, in which the vetch was flattened by a roller-crimper; with iii fallow control, without vetch. The subplot consisted of offfarm organic inputs: i commercial humified fertiliser; ii anaerobic digestate fertiliser; iii composted municipal solid wastes; which were compared to iv unfertilised control (N0. At vetch termination, above soil biomass and nitrogen (N content were determined. At harvesting, crop yield performance and quality, N status and N efficiency were investigated. Also, main soil characteristics were assessed at the end of the trial. Among the ASC managements, the slightly reduced yield in the RC plots particularly in combination with N0 might have been the result of less N supplied by the vetch during the melon cycle. Anyway, no negative effects were observed for yield quality. The use of the RC showed a great potential in enhancing soil fertility. Our study suggests the suitability in organic farming of properly matching management of ASC and fertilisation strategies on melon crop.

  8. Assessing nutritional diversity of cropping systems in African villages.

    Directory of Open Access Journals (Sweden)

    Roseline Remans

    Full Text Available BACKGROUND: In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD, has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. METHODS AND FINDINGS: Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. CONCLUSION: This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are

  9. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  10. Crop modelling for integrated assessment of risk to food production from climate change

    DEFF Research Database (Denmark)

    Ewert, F.; Rötter, R.P.; Bindi, M.

    2015-01-01

    . However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming...... climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables...

  11. Topgrass. A trial of the suitability of switchgrass and reed canary grass as biofuel crops under UK conditions. 4th interim report

    Energy Technology Data Exchange (ETDEWEB)

    Riche, A.B.

    2004-04-01

    This report summarises the results of the Topgrass project growing miscanthus, switchgrass and reed canary grass at nine UK sites and covers a one year period between the winter harvesting of the plots in 2002/3 and 2003/4. Details are given of the rainfall, air temperature and solar radiation; crop monitoring for pests, diseases and weeds; crop measurements; and a comparison of all sites. Appendices present individual site diaries and individual site operations and costs.

  12. The assessment of traffic emissions impacts on crops pollution and contamination

    OpenAIRE

    Scientific Committee on Phytosanitary and Environment

    2009-01-01

    Impact of traffic emissions on contamination of soils and consequently of crops is usualy mentioned, but not many studies providing real and valid data were published in the CR. This is a pilot study for specific area. The aim of it is to assess potential influence of the Prague Airport on fruits and crops pollution grown around it.

  13. Sample Size Requirements for Assessing Statistical Moments of Simulated Crop Yield Distributions

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.

    2013-01-01

    Mechanistic crop growth models are becoming increasingly important in agricultural research and are extensively used in climate change impact assessments. In such studies, statistics of crop yields are usually evaluated without the explicit consideration of sample size requirements. The purpose of

  14. Assessment of the safety of foods derived from genetically modified (GM) crops

    NARCIS (Netherlands)

    König, A.; Cockburn, A.; Crevel, R.W.R.; Debruyne, E.; Grafstroem, R.; Hammerling, U.; Kimber, I.; Knudsen, I.; Kuiper, H.A.; Peijnenburg, A.A.C.M.; Penninks, A.H.; Poulsen, M.; Schauzu, M.; Wal, J.M.

    2004-01-01

    This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group 1 of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics of

  15. Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation

    NARCIS (Netherlands)

    Moeller, C.; Pala, M.; Manschadi, A.M.; Meinke, H.B.; Sauerborn, J.

    2007-01-01

    Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was

  16. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.

    Science.gov (United States)

    Dubey, Swatantra Kumar; Sharma, Devesh

    2018-09-01

    Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Assessment of the safety of foods derived from genetically modified (GM) crops.

    Science.gov (United States)

    König, A; Cockburn, A; Crevel, R W R; Debruyne, E; Grafstroem, R; Hammerling, U; Kimber, I; Knudsen, I; Kuiper, H A; Peijnenburg, A A C M; Penninks, A H; Poulsen, M; Schauzu, M; Wal, J M

    2004-07-01

    This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group 1 of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics of the modified crop and the introduced trait, and assessing potential unintended effects from the genetic modification. The proposed approach to safety assessment starts with the comparison of the new GM crop with a traditional counterpart that is generally accepted as safe based on a history of human food use (the concept of substantial equivalence). This case-focused approach ensures that foods derived from GM crops that have passed this extensive test-regime are as safe and nutritious as currently consumed plant-derived foods. The approach is suitable for current and future GM crops with more complex modifications. First, the paper reviews test methods developed for the risk assessment of chemicals, including food additives and pesticides, discussing which of these methods are suitable for the assessment of recombinant proteins and whole foods. Second, the paper presents a systematic approach to combine test methods for the safety assessment of foods derived from a specific GM crop. Third, the paper provides an overview on developments in this area that may prove of use in the safety assessment of GM crops, and recommendations for research priorities. It is concluded that the combination of existing test methods provides a sound test-regime to assess the safety of GM crops. Advances in our understanding of molecular biology, biochemistry, and nutrition may in future allow further improvement of test methods that will over time render the safety assessment of foods even more effective and informative. Copryright 2004 Elsevier Ltd.

  18. Assessing methods for developing crop forecasting in the Iberian Peninsula

    Science.gov (United States)

    Ines, A. V. M.; Capa Morocho, M. I.; Baethgen, W.; Rodriguez-Fonseca, B.; Han, E.; Ruiz Ramos, M.

    2015-12-01

    Seasonal climate prediction may allow predicting crop yield to reduce the vulnerability of agricultural production to climate variability and its extremes. It has been already demonstrated that seasonal climate predictions at European (or Iberian) scale from ensembles of global coupled climate models have some skill (Palmer et al., 2004). The limited predictability that exhibits the atmosphere in mid-latitudes, and therefore de Iberian Peninsula (PI), can be managed by a probabilistic approach based in terciles. This study presents an application for the IP of two methods for linking tercile-based seasonal climate forecasts with crop models to improve crop predictability. Two methods were evaluated and applied for disaggregating seasonal rainfall forecasts into daily weather realizations: 1) a stochastic weather generator and 2) a forecast tercile resampler. Both methods were evaluated in a case study where the impacts of two seasonal rainfall forecasts (wet and dry forecast for 1998 and 2015 respectively) on rainfed wheat yield and irrigation requirements of maize in IP were analyzed. Simulated wheat yield and irrigation requirements of maize were computed with the crop models CERES-wheat and CERES-maize which are included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at several locations in Spain where the crop model was calibrated and validated with independent field data. These methodologies would allow quantifying the benefits and risks of a seasonal climate forecast to potential users as farmers, agroindustry and insurance companies in the IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse ones. ReferencesPalmer, T. et al., 2004. Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bulletin of the

  19. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  20. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Jason D.

    2006-07-15

    A strong biofuel industry in Australia has the potential to provide numerous benefits to the nation and its peoples. The benefits include; reduced emissions of greenhouse gases and harmful particulate matter, a boost to rural development goals, enhanced fuel security and a lower balance of payments. For biofuels to be seriously considered as alternatives to traditional petroleum based automotive fuels they must be economically viable. The findings from a series of Australian Bureau of Agricultural and Resource Economics (ABARE) investigations suggest that ethanol and biodiesel production would be economically viable, in the Australian context, with oil prices in the range of 30-40 USD a barrel. Despite the price of oil being in or above this range for over two years a strong home grown biofuel industry has failed to develop in Australia. The purpose of this master's thesis therefore is to identify the critical issues facing biofuel industry development in Australian and to propose possible policy and private sector strategies for dealing with them. The analysis was done in the following three steps; the first was to map the development of the ethanol and biodiesel industries, the second was to analyse the performance of the industries overtime and the third was to identify the mechanisms which have either induced or blocked their growth. The strategies proposed by this thesis were derived from analysing the inducing and blocking mechanisms and the related issues. The innovation systems approach was chosen because of its ability to provide insights into key industry players, their network interactions and the institutional setup within which they work together to develop, diffuse and use their products. The data needed for the analysis stated above included information related to the development, diffusion and use of ethanol and biodiesel; that is, details about the industry actors and their activities, industry networks, product standards, excise arrangements

  2. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Jason D

    2006-07-15

    A strong biofuel industry in Australia has the potential to provide numerous benefits to the nation and its peoples. The benefits include; reduced emissions of greenhouse gases and harmful particulate matter, a boost to rural development goals, enhanced fuel security and a lower balance of payments. For biofuels to be seriously considered as alternatives to traditional petroleum based automotive fuels they must be economically viable. The findings from a series of Australian Bureau of Agricultural and Resource Economics (ABARE) investigations suggest that ethanol and biodiesel production would be economically viable, in the Australian context, with oil prices in the range of 30-40 USD a barrel. Despite the price of oil being in or above this range for over two years a strong home grown biofuel industry has failed to develop in Australia. The purpose of this master's thesis therefore is to identify the critical issues facing biofuel industry development in Australian and to propose possible policy and private sector strategies for dealing with them. The analysis was done in the following three steps; the first was to map the development of the ethanol and biodiesel industries, the second was to analyse the performance of the industries overtime and the third was to identify the mechanisms which have either induced or blocked their growth. The strategies proposed by this thesis were derived from analysing the inducing and blocking mechanisms and the related issues. The innovation systems approach was chosen because of its ability to provide insights into key industry players, their network interactions and the institutional setup within which they work together to develop, diffuse and use their products. The data needed for the analysis stated above included information related to the development, diffusion and use of ethanol and biodiesel; that is, details about the industry actors and their activities, industry networks, product standards, excise arrangements

  3. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    International Nuclear Information System (INIS)

    Nielsen, Jason D.

    2006-07-01

    A strong biofuel industry in Australia has the potential to provide numerous benefits to the nation and its peoples. The benefits include; reduced emissions of greenhouse gases and harmful particulate matter, a boost to rural development goals, enhanced fuel security and a lower balance of payments. For biofuels to be seriously considered as alternatives to traditional petroleum based automotive fuels they must be economically viable. The findings from a series of Australian Bureau of Agricultural and Resource Economics (ABARE) investigations suggest that ethanol and biodiesel production would be economically viable, in the Australian context, with oil prices in the range of 30-40 USD a barrel. Despite the price of oil being in or above this range for over two years a strong home grown biofuel industry has failed to develop in Australia. The purpose of this master's thesis therefore is to identify the critical issues facing biofuel industry development in Australian and to propose possible policy and private sector strategies for dealing with them. The analysis was done in the following three steps; the first was to map the development of the ethanol and biodiesel industries, the second was to analyse the performance of the industries overtime and the third was to identify the mechanisms which have either induced or blocked their growth. The strategies proposed by this thesis were derived from analysing the inducing and blocking mechanisms and the related issues. The innovation systems approach was chosen because of its ability to provide insights into key industry players, their network interactions and the institutional setup within which they work together to develop, diffuse and use their products. The data needed for the analysis stated above included information related to the development, diffusion and use of ethanol and biodiesel; that is, details about the industry actors and their activities, industry networks, product standards, excise arrangements

  4. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  5. Sustainability of biofuels in Latin America: Risks and opportunities

    International Nuclear Information System (INIS)

    Janssen, Rainer; Rutz, Dominik Damian

    2011-01-01

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: → This study investigates risks and opportunities of biofuels in Latin America. → Latin American countries are setting up programmes to promote biofuel development. → Strong biofuel sectors provide opportunities for economic development. → Potential negative impact includes deforestation and effects on food security. → Sustainability initiatives exist to minimise negative impact.

  6. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, D.R. [The Nature Conservancy, PO Box 118526, University of Florida, Gainesville, FL 32611 (United States); Department of Biology, PO Box 118526, University of Florida, Gainesville, FL 32611 (United States); Tancig, K.J. [PO Box 116455, University of Florida, Gainesville, FL 32611 (United States); Onderdonk, D.A.; Gantz, C.A. [Department of Biology, PO Box 118526, University of Florida, Gainesville, FL 32611 (United States)

    2011-01-15

    Twelve taxa under exploration as bioenergy crops in Florida and the U.S. were evaluated for potential invasiveness using the Australian Weed Risk Assessment system (WRA) modified for separate assessment at the state and national scales. When tested across a range of geographies, this system correctly identifies invaders 90%, and non-invaders 70% of the time, on average. Predictions for Florida were the same as for the U.S. Arundo donax, Eucalyptus camaldulensis, Eucalyptus grandis, Jatropha curcas, Leucaena leucocephala, Pennisetum purpureum, and Ricinus communis were found to have a high probability of becoming invasive, while Miscanthus x giganteus, Saccharum arundinaceum, Saccharum officinarum, and the sweet variety of Sorghum bicolor have a low probability of becoming invasive. Eucalyptus amplifolia requires further evaluation before a prediction is possible. These results are consistent with reports on other tests of these taxa. Given the economic and ecological impacts of invasive species, including the carbon expended for mechanical and chemical control efforts, cultivation of taxa likely to become invasive should be avoided. (author)

  7. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects Using LCA: Ethanol Biofuel as a Case Study

    DEFF Research Database (Denmark)

    Courchesne, Alexandre; Becaert, Valerie; Rosenbaum, Ralph K.

    2010-01-01

    and comparison of different carbon mitigation projects (e.g. biofuel use, sequestering plant, afforestation project, etc.). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability of characterizing all types...... of carbon mitigation projects. It calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg-year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed...... framework is demonstrated with a case study of tree ethanol pathways (maize, sugarcane and willow). Study shows that carbon mitigation assessment through LCA is possible and that it could be a useful tool for decision makers as it can compare different projects regardless of their original context. Case...

  8. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    Science.gov (United States)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  9. Biofuels: 1995 project summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  10. Outlook for advanced biofuels

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N; Faaij, Andre P.C.

    2006-01-01

    To assess which biofuels have the better potential for the short-term or the longer term (2030), and what developments are necessary to improve the performance of biofuels, the production of four promising biofuels-methanol, ethanol, hydrogen, and synthetic diesel-is systematically analysed. This present paper summarises, normalises and compares earlier reported work. First, the key technologies for the production of these fuels, such as gasification, gas processing, synthesis, hydrolysis, and fermentation, and their improvement options are studied and modelled. Then, the production facility's technological and economic performance is analysed, applying variations in technology and scale. Finally, likely biofuels chains (including distribution to cars, and end-use) are compared on an equal economic basis, such as costs per kilometre driven. Production costs of these fuels range 16-22 Euro /GJ HHV now, down to 9-13 Euro /GJ HHV in future (2030). This performance assumes both certain technological developments as well as the availability of biomass at 3 Euro /GJ HHV . The feedstock costs strongly influence the resulting biofuel costs by 2-3 Euro /GJ fuel for each Euro /GJ HHV feedstock difference. In biomass producing regions such as Latin America or the former USSR, the four fuels could be produced at 7-11 Euro /GJ HHV compared to diesel and gasoline costs of 7 and 8 Euro /GJ (excluding distribution, excise and VAT; at crude oil prices of ∼35 Euro /bbl or 5.7 Euro /GJ). The uncertainties in the biofuels production costs of the four selected biofuels are 15-30%. When applied in cars, biofuels have driving costs in ICEVs of about 0.18-0.24 Euro /km now (fuel excise duty and VAT excluded) and may be about 0.18 in future. The cars' contribution to these costs is much larger than the fuels' contribution. Large-scale gasification, thorough gas cleaning, and micro-biological processes for hydrolysis and fermentation are key major fields for RD and D efforts, next to

  11. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Crop water-stress assessment using an airborne thermal scanner

    Science.gov (United States)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  13. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    OpenAIRE

    Grazia Zulian; Joachim Maes; Maria Luisa Paracchini

    2013-01-01

    Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems t...

  14. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    Science.gov (United States)

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  15. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    Directory of Open Access Journals (Sweden)

    Carmen Alice Teacă

    2008-11-01

    Full Text Available Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests. Experimental data regarding the germination process of wheat (from two cultivars and rye seeds in the presence of industrial wastes (thermal power station ash, effluents from a pre-bleaching stage performed on a Kraft cellulose – chlorinated lignin products or chlorolignin, along with use of an excess of some heavy metals (Zn and Cu are presented here. Relative seed germination, relative root elongation, and germination index (a factor of relative seed germination and relative root elongation were determined. Relative root elongation and germination index were more sensitive indicators of toxicity than seed germination. The toxic effects were also evaluated in hydroponics experiments, the sensitivity of three crop plant species, namely Triticum aestivum L. (wheat, Secale cereale (rye, and Zea mays (corn being compared. Physiological aspects, evidenced both by visual observation and biometric measurements (mean root, aerial part and plant length, as well as the cellulose and lignin content were examined.

  16. Global economic-biophysical assessment of midterm scenarios for agricultural markets—biofuel policies, dietary patterns, cropland expansion, and productivity growth

    Science.gov (United States)

    Delzeit, Ruth; Klepper, Gernot; Zabel, Florian; Mauser, Wolfram

    2018-02-01

    Land-use decisions are made at the local level. They are influenced both by local factors and by global drivers and trends. These will most likely change over time e.g. due to political shocks, market developments or climate change. Hence, their influence should be taken into account when analysing and projecting local land-use decisions. We provide a set of mid-term scenarios of global drivers (until 2030) for use in regional and local studies on agriculture and land-use. In a participatory process, four important drivers are identified by experts from globally distributed regional studies: biofuel policies, increase in preferences for meat and dairy products in Asia, cropland expansion into uncultivated areas, and changes in agricultural productivity growth. Their impact on possible future developments of global and regional agricultural markets are analysed with a modelling framework consisting of a global computable general equilibrium model and a crop growth model. The business as usual (BAU) scenario causes production and prices of crops to rise over time. It also leads to a conversion of pasture land to cropland. Under different scenarios, global price changes range between -42 and +4% in 2030 compared to the BAU. An abolishment of biofuel targets does not significantly improve food security while an increased agricultural productivity and cropland expansion have a stronger impact on changes in food production and prices.

  17. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  18. Panorama 2011: Water and bio-fuels

    International Nuclear Information System (INIS)

    Lorne, D.

    2011-01-01

    Nowadays, water is seen as a major sustainability criterion for bio-energies. Although the biofuels being produced by food crops are subject to the same risks as the farming sector as far as water resources are concerned, future sectors have a significant potential to reduce these risks, and this potential needs to be better understood in order for biofuels as a resource and their related technologies to develop properly. (authors)

  19. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    Science.gov (United States)

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently

  20. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  1. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  2. Greenhouse gas emission curves for advanced biofuel supply chains

    Science.gov (United States)

    Daioglou, Vassilis; Doelman, Jonathan C.; Stehfest, Elke; Müller, Christoph; Wicke, Birka; Faaij, Andre; van Vuuren, Detlef P.

    2017-12-01

    Most climate change mitigation scenarios that are consistent with the 1.5-2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr-1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr-1 for emission factors less than 60 kgCO2e GJBiofuel-1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.

  3. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  4. Using the CLM Crop Model to assess the impacts of changes in Climate, Atmospheric CO2, Irrigation, Fertilizer and Geographic Distribution on Historical and Future Crop Yields

    Science.gov (United States)

    Lawrence, P.

    2015-12-01

    Since the start of the green revolution global crop yields have increased linearly for most major cereal crops, so that present day global values are around twice those of the 1960s. The increase in crop yields have allowed for large increases in global agricultural production without correspondingly large increases in cropping area. Future projections under the Shared Socio-economic Pathways (SSP) framework and other assessments result in increases of global crop production of greater than 100% by the year 2050. In order to meet this increased agricultural demand within the available arable land, future production gains need to be understood in terms of the yield changes due to changes in climate, atmospheric CO2, and adaptive management such as irrigation and fertilizer application. In addition to the changes in crop yield, future agricultural demand will need to be met through increasing cropping areas into what are currently marginal lands at the cost of existing forests and other natural ecosystems. In this study we assess the utility of the crop model within the Community Land Model (CLM Crop) to provide both historical and future guidance on changes in crop yields under a range of global idealized crop modeling experiments. The idealized experiments follow the experimental design of the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) in which CLM Crop is a participating model. The idealized experiments consist of global crop simulations for Cotton, Maize, Rice, Soy, Sugarcane, and Wheat under various climate, atmospheric CO2 levels, irrigation prescription, and nitrogen fertilizer application. The time periods simulated for the experiments are for the Historical period (1901 - 2005), and for the two Representative Concentration Pathways of RCP 4.5 and RCP 8.5 (2006 - 2100). Each crop is simulated on all land grid cells globally for each time period with atmospheric forcing that is a combination of: 1. transient climate and CO2; 2. transient climate

  5. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    Directory of Open Access Journals (Sweden)

    Maria Luisa Paracchini

    2013-09-01

    Full Text Available Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems to support crop pollination. The model for relative pollination potential is based on the assumption that different habitats, but in particular forest edges, grasslands rich in flowers and riparian areas, offer suitable sites for wild pollinator insects. Using data of the foraging range of wild bees with short flight distances, we linked relative pollination potential to regional statistics of crop production. At aggregated EU level, the absence of insect pollination would result in a reduction of between 25% and 32% of the total production of crops which are partially dependent on insect pollination, depending on the data source used for the assessment. This production deficit decreases to 2.5% if only the relative pollination potential of a single guild of pollinators is considered. A strength of our approach is the spatially-explicit link between land cover based relative pollination potential and crop yield which enables a general assessment of the benefits that are derived from pollination services in Europe while providing insight where pollination gaps in the landscape occur.

  6. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  7. Assessing the impact of climate variability on cropping patterns in Kenya

    Science.gov (United States)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm

  8. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    International Nuclear Information System (INIS)

    Manatt, Robert K; Schulte, Lisa A; Hall, Richard B; Hallam, Arne; Heaton, Emily A; Gunther, Theo; Moore, Ken J

    2013-01-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn–soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn–switchgrass system. A novel triticale–hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops. (letter)

  9. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    Science.gov (United States)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  10. Biofuels: policies, standards and technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Skyrocketing prices of crude oil in the middle of the first decade of the 21st century accompanied by rising prices for food focused political and public attention on the role of biofuels. On the one hand, biofuels were considered as a potential automotive fuel with a bright future, on the other hand, biofuels were accused of competing with food production for land. The truth must lie somewhere in-between and is strongly dependent on the individual circumstance in different countries and regions. As food and energy are closely interconnected and often compete with each other for other resources, such as water, the World Energy Council - following numerous requests of its Member Committees - decided to undertake an independent assessment of biofuels policies, technologies and standards.

  11. Development of a biorefinery optimized biofuel supply curve for the Western United States

    International Nuclear Information System (INIS)

    Parker, Nathan; Tittmann, Peter; Hart, Quinn; Nelson, Richard; Skog, Ken; Schmidt, Anneliese; Gray, Edward; Jenkins, Bryan

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed integer-linear optimization model that determines the optimal locations, technology types and sizes of biorefineries to satisfy a maximum profit objective function applied across the biofuel supply and demand chain from site of feedstock production to the product fuel terminal. The resource basis includes preliminary considerations of crop and residue sustainability. Sensitivity analyses explore possible effects of policy and technology changes. At a target market price of 19.6 $ GJ -1 , the model predicts a feasible production level of 610-1098 PJ, enough to supply up to 15% of current regional liquid transportation fuel demand. (author)

  12. Sugar concentration in nectar: a quantitative metric of crop attractiveness for refined pollinator risk assessments.

    Science.gov (United States)

    Knopper, Loren D; Dan, Tereza; Reisig, Dominic D; Johnson, Josephine D; Bowers, Lisa M

    2016-10-01

    Those involved with pollinator risk assessment know that agricultural crops vary in attractiveness to bees. Intuitively, this means that exposure to agricultural pesticides is likely greatest for attractive plants and lowest for unattractive plants. While crop attractiveness in the risk assessment process has been qualitatively remarked on by some authorities, absent is direction on how to refine the process with quantitative metrics of attractiveness. At a high level, attractiveness of crops to bees appears to depend on several key variables, including but not limited to: floral, olfactory, visual and tactile cues; seasonal availability; physical and behavioral characteristics of the bee; plant and nectar rewards. Notwithstanding the complexities and interactions among these variables, sugar content in nectar stands out as a suitable quantitative metric by which to refine pollinator risk assessments for attractiveness. Provided herein is a proposed way to use sugar nectar concentration to adjust the exposure parameter (with what is called a crop attractiveness factor) in the calculation of risk quotients in order to derive crop-specific tier I assessments. This Perspective is meant to invite discussion on incorporating such changes in the risk assessment process. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  13. Baseline health conditions in selected communities of northern Sierra Leone as revealed by the health impact assessment of a biofuel project.

    Science.gov (United States)

    Winkler, Mirko S; Knoblauch, Astrid M; Righetti, Aurélie A; Divall, Mark J; Koroma, Manso M; Fofanah, Ibrahim; Turay, Hamid; Hodges, Mary H; Utzinger, Jürg

    2014-09-01

    As biofuel projects may be associated with positive and negative effects on people's health and wellbeing, a health impact assessment was performed for the Addax Bioenergy Sierra Leone (ABSL) project. We present data from the baseline health survey, which will provide a point of departure for future monitoring and evaluation activities. In December 2010, a cross-sectional survey was carried out in eight potentially affected communities. A broad set of clinical and parasitological indicators were assessed using standardised, quality-controlled procedures, including anthropometry and prevalence of anaemia, Plasmodium falciparum and helminth infections. Complete datasets were obtained from 1221 individuals of 194 households and eight schools. Of children aged biofuel project impacts on community health in a rural setting in sub-Saharan Africa. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Estimation of un-used land potential for biofuels development in China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yishui [Chinese Academy of Agricultural Engineering, Beijing 100026 (China); Maelardalen University, Vaesteraas SE-721 23 (Sweden); Zhao, Lixin; Meng, Haibo; Sun, Liying [Chinese Academy of Agricultural Engineering, Beijing 100026 (China); Yan, Jinyue [Maelardalen University, Vaesteraas SE-721 23 (Sweden); Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2009-11-15

    This paper presents the current status of biofuel development and estimates the potential of un-used land for biofuel development. The potential of crops including cassava, sweet potato, sweet sorghum, sugarcane, sugar beet and Jerusalem artichoke were assessed and discussed for different regions considering the geographical conditions and features of agricultural production. If reserved land resources are explored together with substitute planting implemented and unit area yield improved, potential production of ethanol fuel will be 22 million ton in 2020. The study also recommends the use of winter idle lands for rapeseed plantation for biofuel production. The potential for production of biodiesel by rapeseed and cottonseed can reach to 3.59 million ton. (author)

  15. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  16. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations

    Directory of Open Access Journals (Sweden)

    Chiara Corbari

    2017-11-01

    Full Text Available The Food and Agricultural Organization (FAO method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  17. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations.

    Science.gov (United States)

    Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco

    2017-11-18

    The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  18. Crop modelling for integrated assessment of risk to food production from climate change

    Czech Academy of Sciences Publication Activity Database

    Ewert, F.; Rötter, R. P.; Bindi, M.; Weber, H.; Trnka, Miroslav; Kersebaum, K. C.; Olesen, J. E.; van Ittersum, M. K.; Janssen, S.; Rivingtom, M.; Semenov, M. A.; Wallach, D.; Porter, J. R.; Stewart, D.; Vegahen, J.; Gaiser, T.; Palouso, T.; Tao, F.; Nendel, C.; Roggero, P. P.; Bartošová, Lenka; Asseng, S.

    2015-01-01

    Roč. 72, oct (2015), s. 287-303 ISSN 1364-8152 R&D Projects: GA MZe QJ1310123; GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : uncertainty * scaling * integrated assessment * risk assessment * adaptation * crop models Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.207, year: 2015

  19. Ecological assessment and economic feasibility to utilize first generation biofuels in cogeneration output cycle - The case of Lithuania

    International Nuclear Information System (INIS)

    Raslavicius, Laurencas; Bazaras, Zilvinas

    2010-01-01

    In this article, diverse liquid biofuels of the first generation were compared as partial or infant substitutes for fossil diesel fuel applied in cogeneration plant of the average capacity of 340 kW. The study concentrates on agricultural and economic conditions as well as legislative basis distinctive to Lithuania. At the laboratory of the Lithuanian University of Agriculture Institute of Agro-Engineering an experimental diesel engine powered generator was fuelled with rapeseed oil methyl ester (pure and in the blend with fossil diesel and dyed diesel fuels) and rapeseed oil with excellent energy balances and emissions characteristics more favorable than fossil diesel. Detailed estimations were proposed in order to assess the economic feasibility of complementing renewable electricity and heat generated in the final output cycle. The carried out analysis showed, that good perspectives are forecasted for using diesel engines in cogeneration plants, if they run on rapeseed oil produced by farmers themselves. The operation of such a plant would realize 184960 EUR of annual income for sold electricity, allowing to pay annual depreciation expenses and exceed the production cost for thermal energy to be 0.033 EUR/kW h. This price lies under the established one by the centralized energy suppliers, accordingly 0.058 EUR/kW h. (author)

  20. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  1. Assessment of the phytoextraction potential of high biomass crop plants

    International Nuclear Information System (INIS)

    Hernandez-Allica, Javier; Becerril, Jose M.; Garbisu, Carlos

    2008-01-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg -1 ), Zn (10 916 mg kg -1 ), and Cd (242 mg kg -1 ), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot -1 . We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used

  2. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  3. Assessing Uncertainties of Water Footprints Using an Ensemble of Crop Growth Models on Winter Wheat

    Directory of Open Access Journals (Sweden)

    Kurt Christian Kersebaum

    2016-12-01

    Full Text Available Crop productivity and water consumption form the basis to calculate the water footprint (WF of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration.

  4. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  5. Assessment of possible allergenicity of hypothetical ORFs in common food crops using current bioinformatic guidelines and its implications for the safety assessment of GM crops.

    Science.gov (United States)

    Young, Gregory J; Zhang, Shiping; Mirsky, Henry P; Cressman, Robert F; Cong, Bin; Ladics, Gregory S; Zhong, Cathy X

    2012-10-01

    Before a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins. Some regulatory authorities have broadened the scope of the assessment to include all DNA reading frames between stop codons across the insert and spanning the insert/genomic DNA junctions. To investigate the utility of this bioinformatic assessment, all naturally occurring stop-to-stop frames in the non-transgenic genomes of maize, rice, and soybean, as well as the human genome, were compared against the AllergenOnline (www.allergenonline.org) database using the Codex criteria. We discovered thousands of frames that exceeded the Codex defined threshold for potential cross-reactivity suggesting that evaluating hypothetical ORFs (stop-to-stop frames) has questionable value for making decisions on the safety of GM crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective

    International Nuclear Information System (INIS)

    Yang, Jin; Chen, Bin

    2014-01-01

    Highlights: • A dynamic LCA is proposed considering time-varying factors. • Dynamic LCA is used to highlight GHG emission hotspots of gasification projects. • Indicators are proposed to reflect GHG emission performance. • Dynamic LCA alters the static LCA results. • Crop residue gasification project has high GHG abatement potential. - Abstract: Bioenergy from crop residues is one of the prevailing sustainable energy sources owing to the abundant reserves worldwide. Amongst a wide variety of energy conversion technologies, crop residue gasification has been regarded as promising owing to its higher energy efficiency than that of direct combustion. However, prior to large-scale application of crop residue gasification, the lifetime environmental performance should be investigated to shed light on sustainable strategies. As traditional static life cycle assessment (LCA) does not include temporal information for dynamic processes, we proposed a dynamic life cycle assessment approach, which improves the static LCA approach by considering time-varying factors, e.g., greenhouse gas characterization factors and energy intensity. As the gasification project can reduce greenhouse gas (GHG) discharge compared with traditional direct fuel combustion, trade-offs between the benefits of global warming mitigation and the impact on global warming of crop residue gasification should be considered. Therefore, indicators of net global warming mitigation benefit and global warming impact mitigation period are put forward to justify the feasibility of the crop residue gasification project. The proposed dynamic LCA and indicators were then applied to estimate the life cycle global warming impact of a crop residue gasification system in China. Results show that the crop residue gasification project has high net global warming mitigation benefit and a short global warming impact mitigation period, indicating its prominent potential in alleviating global warming impact. During

  7. A Spatial Allocation Procedure to Downscale Regional Crop Production Estimates from an Integrated Assessment Model

    Science.gov (United States)

    Moulds, S.; Djordjevic, S.; Savic, D.

    2017-12-01

    The Global Change Assessment Model (GCAM), an integrated assessment model, provides insight into the interactions and feedbacks between physical and human systems. The land system component of GCAM, which simulates land use activities and the production of major crops, produces output at the subregional level which must be spatially downscaled in order to use with gridded impact assessment models. However, existing downscaling routines typically consider cropland as a homogeneous class and do not provide information about land use intensity or specific management practices such as irrigation and multiple cropping. This paper presents a spatial allocation procedure to downscale crop production data from GCAM to a spatial grid, producing a time series of maps which show the spatial distribution of specific crops (e.g. rice, wheat, maize) at four input levels (subsistence, low input rainfed, high input rainfed and high input irrigated). The model algorithm is constrained by available cropland at each time point and therefore implicitly balances extensification and intensification processes in order to meet global food demand. It utilises a stochastic approach such that an increase in production of a particular crop is more likely to occur in grid cells with a high biophysical suitability and neighbourhood influence, while a fall in production will occur more often in cells with lower suitability. User-supplied rules define the order in which specific crops are downscaled as well as allowable transitions. A regional case study demonstrates the ability of the model to reproduce historical trends in India by comparing the model output with district-level agricultural inventory data. Lastly, the model is used to predict the spatial distribution of crops globally under various GCAM scenarios.

  8. Crop to wild gene flow: Does more sophisticated research provide better risk assessment?

    International Nuclear Information System (INIS)

    Jong, Tom J. de; Rong, Jun

    2013-01-01

    Highlights: ► Genes can sometimes flow from genetically modified crops to wild plants. ► The probability can be predicted from seed production of hybrids and backcrosses. ► Nevertheless predictions about introgression remain uncertain. ► One should be reluctant to ask too much detail in Environmental Risk Assessment. ► Instead possible harm should have a more central place. -- Abstract: Research into introgression, the permanent incorporation of alleles of one species into another, is flourishing and gives new insights into evolution and speciation. The possible transfer of transgenes from crop species to wild relatives is of major concern for regulators. Applicants that want to introduce a genetically modified (GM) crop on the European market need to indicate the likelihood of introgression and its anticipated effects in an Environmental Risk Analysis (ERA). The European Food Safety Association (EFSA) and competent authorities of different countries evaluate the ERA. Predicting which crop alleles will or will not be permanently incorporated into wild populations requires, apart from information on seed production of hybrids, information on how these crop alleles are associated with fitness. Advances in genetics open new avenues to address this question in more detail. We argue, however, that, even with the best techniques, predicting introgression from crop to wild species will always have a considerable margin of uncertainty. One must therefore be prudent to demand more detailed research for the ERA, especially since the possible harm of transgenes in natural populations remains so poorly defined by regulators

  9. Land and agronomic potential for biofuel production in Southern Africa

    OpenAIRE

    von Maltitz, Graham; van der Merwe, Marna

    2017-01-01

    The Southern African region, from a purely biophysical perspective, has huge potential for biofuel production, especially in Mozambique and Zambia. Although many of the soils are sandy and acidic, with careful management and correct fertilization, they should be highly productive. We suggest that sugarcane is the crop most easily mobilized for biofuel. A number of other crops, such as sweet sorghum, cassava, and tropical sugar beet, have good potential but will need further agronomic and proc...

  10. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Curtis D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Zhang, Xuesong [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Reddy, Ashwan D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Robertson, G. Philip [Great Lakes Bioenergy Research Center, Michigan State University, East Lansing MI 48824 USA; W.K. Kellogg Biological Station, Michigan State University, Hickory Corners MI 49060 USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824 USA; Izaurralde, Roberto César [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Texas A& M AgriLife Research & Extension Center, Temple TX 76502 USA

    2017-08-11

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic

  11. Potentials of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Munack, A.; Schroder, O. [Johann Heinrich von Thunen Inst., Braunschweig (Germany); Krahl, J. [Coburg Univ. of Applied Sciences, Coburg (Germany); Bunger, J. [Inst. for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Univ. Inst., Bochum (Germany)

    2010-07-01

    This paper discussed the potential of biofuels with particular reference to the situation in Germany and Europe. Emphasis was on technical potential, such as biofuel production, utilization and environmental aspects. The Institute of Agricultural Technology and Biosystems Engineering ran vTI emission tests on diesel engines to evaluate the environmental impacts of biofuels. This testing facility is able to drive heavy-duty diesel engines in both stationary and dynamic test cycles, such as the European ESC and ETC. Additional analyses were conducted to determine the fine and ultra-fine particles, polycyclic aromatic hydrocarbons (PAH), aldehydes, ketones, and the usual regulated exhaust gas compounds. Ames tests were conducted to assess the mutagenic potential of tailpipe emissions. Previous study results showed that neat vegetable oils can render the exhaust high in mutagenic potency. Some of the non-regulated exhaust gas compounds were found to vary nonlinearly with the blend composition. B20 was found to have high mutagenic potential and was subject to sedimentation.

  12. Assessing the MODIS crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil.

    Science.gov (United States)

    Gusso, Anibal; Arvor, Damien; Ducati, Jorge Ricardo; Veronez, Mauricio Roberto; da Silveira, Luiz Gonzaga

    2014-01-01

    Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.

  13. Adapting crop rotations to climate change in regional impact modelling assessments.

    Science.gov (United States)

    Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank

    2018-03-01

    The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used

  14. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  15. Biofuels securing the planet's future energy needs

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment.

  16. A comprehensive review of biomass resources and biofuels potential in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Duku, Moses Hensley [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana); Gu, Sai [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Hagan, Essel Ben [Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana)

    2011-01-15

    Biomass is the major energy source in Ghana contributing about 64% of Ghana's primary energy supply. In this paper, an assessment of biomass resources and biofuels production potential in Ghana is given. The broad areas of energy crops, agricultural crop residues, forest products residues, urban wastes and animal wastes are included. Animal wastes are limited to those produced by domesticated livestock. Agricultural residues included those generated from sugarcane, maize, rice, cocoa, oil palm, coconut, sorghum and millet processing. The urban category is subdivided into municipal solid waste, food waste, sewage sludge or bio-solids and waste grease. The availability of these types of biomass, together with a brief description of possible biomass conversion routes, sustainability measures, and current research and development activities in Ghana is given. It is concluded that a large availability of biomass in Ghana gives a great potential for biofuels production from these biomass resources. (author)

  17. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  18. Will biofuel projects in Southeast Asia become white elephants?

    International Nuclear Information System (INIS)

    Goh, Chun Sheng; Lee, Keat Teong

    2010-01-01

    Southeast Asia's attempt to join the global biofuel development has not been very successful, despite the large amount of subsidies and incentives allotted for biofuel projects. The outcome of these projects has failed to meet expectation due to overrated assumptions and shortsighted policies. Utilization of edible feedstock such as palm oil and sugar cane for biofuel has disrupted the fragile industry due to the fluctuations of feedstock prices. The appropriate research on jatropha to prove its economic and environmental feasibility as energy crop has not been performed. Biofuel development in Southeast Asia remains at an early stage of development and requires highly intensive monitoring and strict legal enforcement to ensure future success.

  19. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  20. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  1. Implications of the Biofuels Boom for the Global Livestock Industry: A Computable General Equilibrium Analysis

    OpenAIRE

    Taheripour, Farzad; Hertel, Thomas W.; Tyner, Wallace E.

    2009-01-01

    In this paper, we offer a general equilibrium analysis of the impacts of US and EU biofuel mandates for the global livestock sector. Our simulation boosts biofuel production in the US and EU from 2006 levels to mandated 2015 levels. We show that mandates will encourage crop production in both biofuel and non biofuel producing regions, while reducing livestock and livestock production in most regions of the world. The non-ruminant industry curtails its production more than other livestock indu...

  2. Assessment of health care services on crop farmers' activities in Oke ...

    African Journals Online (AJOL)

    Assessment of health care services on crop farmers' activities in Oke-Ero Local Government Area of Kwara State, Nigeria. ... It is concluded that, malaria was the most common sickness experienced by the farmers and they usually received healthcare services mainly on malaria and child delivery. It is therefore ...

  3. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  4. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  5. Humans as Sensors: Assessing the Information Value of Qualitative Farmer's Crop Condition Surveys for Crop Yield Monitoring and Forecasting

    Science.gov (United States)

    Beguería, S.

    2017-12-01

    While large efforts are devoted to developing crop status monitoring and yield forecasting systems trough the use of Earth observation data (mostly remotely sensed satellite imagery) and observational and modeled weather data, here we focus on the information value of qualitative data on crop status from direct observations made by humans. This kind of data has a high value as it reflects the expert opinion of individuals directly involved in the development of the crop. However, they have issues that prevent their direct use in crop monitoring and yield forecasting systems, such as their non-spatially explicit nature, or most importantly their qualitative nature. Indeed, while the human brain is good at categorizing the status of physical systems in terms of qualitative scales (`very good', `good', `fair', etcetera), it has difficulties in quantifying it in physical units. This has prevented the incorporation of this kind of data into systems that make extensive use of numerical information. Here we show an example of using qualitative crop condition data to estimate yields of the most important crops in the US early in the season. We use USDA weekly crop condition reports, which are based on a sample of thousands of reporters including mostly farmers and people in direct contact with them. These reporters provide subjective evaluations of crop conditions, in a scale including five levels ranging from `very poor' to `excellent'. The USDA report indicates, for each state, the proportion of reporters fort each condition level. We show how is it possible to model the underlying non-observed quantitative variable that reflects the crop status on each state, and how this model is consistent across states and years. Furthermore, we show how this information can be used to monitor the status of the crops and to produce yield forecasts early in the season. Finally, we discuss approaches for blending this information source with other, more classical earth data sources

  6. Peculiarities of ecotoxicological assessment nanoagrochemicals used in crop production

    Directory of Open Access Journals (Sweden)

    N. Makarenko

    2016-06-01

    Full Text Available The article presents the results of studying the toxic effect of nanoagrochemicals on the processes of a plant's cell division, growth and development of plants at the early stages of ontogeny. It can be assume that the toxic effect of nanoagrochemicals depends on the size and structure of the nanoparticles, which are included in their composition: the toxic effect is stronger, the smaller the size of the nanoparticles is; nanocomposites of crystal structure are more toxic compared to nanocomposites of amorphous structure. Nanoagrochemicals ecotoxicological risk assessment should not be based only on the study of the dependence “dose-effect” on the level of the organism and population; it should include the research of the toxic process, starting from the level of the cell and its organelles.

  7. Socio-Environmental Impact Assessment of Oleaginous Crops for Biodiesel Production in Brazil

    Directory of Open Access Journals (Sweden)

    Geraldo Stachetti Rodrigues

    2007-06-01

    Full Text Available Socio-environmental impact assessments were carried out on oleaginous crops for biodiesel production under the context of expanding demand in five regions of Brazil. The study brought together representatives of the main interest groups in Delphi-type workshops. Major impacts are related with increases in demand for inputs, resources, and energy, with potential risks on water quality and habitat conservation. In some instances, management practices may improve soil quality, favoring habitats recovery. Crop intensification is expected to bring important contributions for farmer capacitation, income generation and sources diversity, as well as improved management and administration. Institutional especially designed local productive arrangements offer the best options for fostering sustainable development and avoiding environmental degradation risks, under the scenario of expanding demand on oleaginous crops for biodiesel production.

  8. Development of a construct-based risk assessment framework for genetic engineered crops.

    Science.gov (United States)

    Beker, M P; Boari, P; Burachik, M; Cuadrado, V; Junco, M; Lede, S; Lema, M A; Lewi, D; Maggi, A; Meoniz, I; Noé, G; Roca, C; Robredo, C; Rubinstein, C; Vicien, C; Whelan, A

    2016-10-01

    Experience gained in the risk assessment (RA) of genetically engineered (GE) crops since their first experimental introductions in the early nineties, has increased the level of familiarity with these breeding methodologies and has motivated several agencies and expert groups worldwide to revisit the scientific criteria underlying the RA process. Along these lines, the need to engage in a scientific discussion for the case of GE crops transformed with similar constructs was recently identified in Argentina. In response to this need, the Argentine branch of the International Life Sciences Institute (ILSI Argentina) convened a tripartite working group to discuss a science-based evaluation approach for transformation events developed with genetic constructs which are identical or similar to those used in previously evaluated or approved GE crops. This discussion considered new transformation events within the same or different species and covered both environmental and food safety aspects. A construct similarity concept was defined, considering the biological function of the introduced genes. Factors like environmental and dietary exposure, familiarity with both the crop and the trait as well as the crop biology, were identified as key to inform a construct-based RA process.

  9. Alternative spatial allocation of suitable land for biofuel production in China

    DEFF Research Database (Denmark)

    Zhang, Jianjun; Chen, Yang; Rao, Yongheng

    2017-01-01

    How to select locations for biofuel production is still a critical consideration for balance of crop and biofuel productions as well as of energy consumption and environmental conservation. Biofuels are widely produced all over the world, but this practice in China is still at the initial stage....... Based on China's current stage on food security and changing biofuel demands, this paper selected agro-environmental and socio-economic factors of biofuel production, and simulated and spatially allocated areas suited for biofuel production under the two scenarios of planning-oriented scenario (Po......S) and biofuel-oriented scenario (BoS) by the target year 2020. It also estimated biofuel production potentials and zones across China's provinces. The results show that land suited for biofuel production is primarily located in Northwestern, Northern, Northeastern, Central and Southwestern China...

  10. Liquid biofuels - can they meet our expectations?

    Science.gov (United States)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  11. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    Directory of Open Access Journals (Sweden)

    Ana Susmozas

    2015-06-01

    Full Text Available Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion, global warming, ozone layer depletion, photochemical oxidant formation, land competition, acidification and eutrophication. Furthermore, the cumulative (total and non-renewable energy demand is calculated, as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected relevance of the feedstock and impact categories considered, results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming, in contrast to first-generation bioglycerol.

  12. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops

    Science.gov (United States)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2018-06-01

    The use of canopy thermography is an innovative approach for salinity stress detection in plants. But its applicability for landscape scale studies using satellite sensors is still not well investigated. The aim of this research is to test the satellite thermography soil salinity assessment approach on a study area with different crops, grown both in irrigated and rainfed conditions, to evaluate whether the approach has general applicability. Four study areas in four different states of Australia were selected to give broad representation of different crops cultivated under irrigated and rainfed conditions. The soil salinity map was prepared by the staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough soil sampling together with environmental modelling. Remote sensing data was captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices and brightness temperature as an indicator for canopy temperature. Applying analysis of variance and time series we have investigated the applicability of satellite remote sensing of canopy temperature as an approach of soil salinity assessment for different crops grown under irrigated and rainfed conditions. We concluded that in all cases average canopy temperatures were significantly correlated with soil salinity of the area. This relation is valid for all investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the strength of the relations. In our case cotton shows only minor temperature difference compared to other vegetation classes. The strongest relations between canopy temperature and soil salinity were observed at the moment of a maximum green biomass of the crops which is thus considered to be the best time for application of the approach.

  13. Assessing UAVs in Monitoring Crop Evapotranspiration within a Heterogeneous Soil

    Science.gov (United States)

    Rouze, G.; Neely, H.; Morgan, C.; Kustas, W. P.; McKee, L.; Prueger, J. H.; Cope, D.; Yang, C.; Thomasson, A.; Jung, J.

    2017-12-01

    Airborne and satellite remote sensing methods have been developed to provide ET estimates across entire management fields. However, airborne-based ET is not particularly cost-effective and satellite-based ET provides insufficient spatial/temporal information. ET estimations through remote sensing are also problematic where soils are highly variable within a given management field. Unlike airborne/satellite-based ET, Unmanned Aerial Vehicle (UAV)-based ET has the potential to increase the spatial and temporal detail of these measurements, particularly within a heterogeneous soil landscape. However, it is unclear to what extent UAVs can model ET. The overall goal of this project was to assess the capability of UAVs in modeling ET across a heterogeneous landscape. Within a 20-ha irrigated cotton field in Central Texas, low-altitude UAV surveys were conducted throughout the growing season over two soil types. UAVs were equipped with thermal and multispectral cameras to obtain canopy temperature and NDVI, respectively. UAV data were supplemented simultaneously with ground-truth measurements such as Leaf Area Index (LAI) and plant height. Both remote sensing and ground-truth parameters were used to model ET using a Two-Source Energy Balance (TSEB) model. UAV-based estimations of ET and other energy balance components were validated against energy balance measurements obtained from nearby eddy covariance towers that were installed within each soil type. UAV-based ET fluxes were also compared with airborne and satellite (Landsat 8)-based ET fluxes collected near the time of the UAV survey.

  14. Perspectives of microalgal biofuels as a renewable source of energy

    International Nuclear Information System (INIS)

    Kiran, Bala; Kumar, Ritunesh; Deshmukh, Devendra

    2014-01-01

    Highlights: • Microalgae offer solution of wastewater treatment, CO 2 sequestration, and energy crises. • Microalgal biofuel is renewable, nontoxic and environmentally friendly option. • Integration of wastewater treatment with biofuels production has made them more cost effective. • This article details out the potential production process and benefits of microalgal biofuels. - Abstract: Excessive use of fossil fuels to satisfy our rapidly increasing energy demand has created severe environmental problems, such as air pollution, acid rain and global warming. Biofuels are a potential alternative to fossil fuels. First- and second-generation biofuels face criticism due to food security and biodiversity issues. Third-generation biofuels, based on microalgae, seem to be a plausible solution to the current energy crisis, as their oil-producing capability is many times higher than that of various oil crops. Microalgae are the fastest-growing plants and can serve as a sustainable energy source for the production of biodiesel and several other biofuels by conversion of sunlight into chemical energy. Biofuels produced from microalgae are renewable, non-toxic, biodegradable and environment friendly. Microalgae can be grown in open pond systems or closed photobioreactors. Microalgal biofuels are a potential means to keep the development of human activities in synchronization with the environment. The integration of wastewater treatment with biofuel production using microalgae has made microalgal biofuels more attractive and cost effective. A biorefinery approach can also be used to improve the economics of biofuel production, in which all components of microalgal biomass (i.e., proteins, lipids and carbohydrates) are used to produce useful products. The integration of various processes for maximum economic and environmental benefits minimizes the amount of waste produced and the pollution level. This paper presents an overview of various aspects associated with

  15. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  16. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  17. Biofuels and Land use in Sweden - An overview of land-use change effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, J. [IVL Swedish Environmental Research Inst., Stockholm (Sweden); Ahlgren, S. [Lund Univ., Lund (Sweden); Grahn, M. [Chalmers Univ. of Technology, Goeteborg (Sweden); Sundberg, C. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); and others

    2013-09-01

    Supported by policies, biofuel production has been continuously increasing worldwide during recent years owing to a scientific consensus that human-induced global warming is a reality and the need to reduce import dependency of fossil fuels. However, concerns have been raised that bio-fuels, often advocated as the future substitute for greenhouse gas (GHG) intensive fossil fuels, may cause negative effects on the climate and the environment. When assessing GHG emissions from biofuels, the production phase of the biofuel crop is essential since this is the phase in which most of the GHG emissions occur during the life cycle of the fuel (not accounting for biogenic CO{sub 2} from the tailpipe). Much research has been focusing on the GHG performance of biofuels, but there are also a range of other possible environmental effects of biofuel production, often linked to land use and land management. Changes in land use can result from a wide range of anthropogenic activities including agriculture and forestry management, livestock and biofuel production. Direct effects of land-use change (LUC) range from changes of carbon stock in standing biomass to biodiversity impacts and nutrient leakage. Beside the direct effects, indirect effects can influence other uses of land through market forces across countries and continents. These indirect effects are complex to measure and observe. This report provides an overview of a much debated issue: the connection between LUC and bio-fuel production and associated potential impacts on a wide range of aspects (i.e., soil chemistry, biodiversity, socio economics, climate change, and policy). The main purpose of the report is to give a broad overview of the literature on LUC impacts from biofuel production, not only taking into account the link between LUC and GHG, which has been addressed in many other studies. The report first presents a review of the literature in the different scientific areas related to LUC and biofuel production

  18. Parameters on the radionuclide transfer in crop plants for Korean food chain dose assessment

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lim, K. M.; Cho, Y. H.

    2001-12-01

    For more realistic assessment of Korean food chain radiation doses due to the operation of nuclear facilities, it is required to use domestically produced data for radionuclide transfer parameters in crop plants. In this report, results of last about 15 years' studies on radionuclide transfer parameters in major crop plants by the Korea Atomic Energy Research Institute, were summarized and put together. Soil-to-plant transfer factors, parameters quantifying the root uptake of radionuclides, were measured through greenhouse experiments and field studies. In addition to traditional transfer factors, which are based on the activity in unit weight of soil, those based on the activity applied to unit area of soil surface were also investigated. Interception factors, translocation factors and weathering half lives, parameters in relation to direct plant contamination, were investigated through greenhouse experiments. The levels of initial plant contamination with HTO and I2 vapor were described with absorption factors. Especially for HTO vapor, 3H levels in crop plants at harvest were expressed with TFWT (tissue free water tritium) reduction factors and OBT (organically bound tritium) production factors. The above-mentioned parameters generally showed great variations with soils, crops and radionuclide species and application times. On the basis of summarized results, the points to be amended or improved in food chain dose assessment models were discussed both for normal operation and for accidental release

  19. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  20. Streamflow impacts of biofuel policy-driven landscape change.

    Directory of Open Access Journals (Sweden)

    Sami Khanal

    Full Text Available Likely changes in precipitation (P and potential evapotranspiration (PET resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979-2004 using the Weather Research Forecast (WRF model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity.

  1. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-03-01

    Full Text Available Agricultural biodiversity usually leads to greater sustainability in production practices. To understand the environmental implications of the development of village-level multi-cropping in rural China, we compared the environmental impact of a highly diverse vegetable multi-cropping system to a conventional wheat/maize rotation system based on the method of life cycle assessment (LCA. Using household level cultivation data, this study examined the gate-to-gate environmental impacts of on-site cultivation practices relating to the production of 10,000 nutrient equivalent units. Results show that vegetable multi-cropping resulted in decreased average land requirement, and diesel, water and electricity usage by 69.8%, 62.2%, 71.7%, and 63.4%, respectively, while average nitrogen (Total N, phosphorus (P2O5, and potassium (K2O usage in vegetable multi-cropping systems decreased by 16.3%, 42.1%, and 75.8%, respectively. Additional corresponding effects led to a decrease in the total global warming, eutrophication, and acidification potentials from external inputs by 21.6%, 16.7%, and 16.2% of the entire system, respectively. Moreover, the midpoint human toxicity potential from pesticide usage of the vegetable multi-cropping system was lower than that of the conventional system. However, the midpoint eco-toxicity potential from pesticide usage was higher due to certain highly toxic substances, and both human and eco-toxicity potentials from heavy metals were all higher by a few orders of magnitudes. Thus, to mitigate these detrimental consequences, some related measures are proposed for sustainable practices in the future implementation of multi-cropping systems.

  2. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  3. An assessment of the usefulness of the cyanobacterium Synechococcus subsalsus as a source of biomass for biofuel production

    Directory of Open Access Journals (Sweden)

    Bruno R.S. Setta

    2014-05-01

    Full Text Available Nowadays algal biofuels are considered one of the most promising solutions of global energy crisis and climate change for the years to come. By manipulation of the culture conditions, many algal species can be induced to accumulate high concentrations of particular biomolecules and can be directed to the desired output for each fuel. In this context, the present study involved the assessment of the effects of CO2 availability and nitrogen starvation on growth and chemical composition of the cyanobacterium Synechococcus subsalsus, testing a fast-growing native strain. The control experiments were performed with Conway culture medium in 12-day batch cultures, in 6-liter flasks and 12 h photoperiod, with addition of 2 L min-1 filtered air to each flask. Other two experimental conditions were also tested: (i the placement into the cultures of additional dissolved nutrients except nitrogen, one week after the start of growth (N-, and (ii the input of pure CO2 into the flasks from the 5th day of growth (C+. In all cultures, daily cell counts were done throughout the cultivation, as well as measurements of pH and cell biovolumes. Maximum cell yield were found in N-experiments, while cell yields of C+ and control were similar. Dissolved nitrogen was exhausted before the end of the experiments, but dissolved phosphorus was not totally consumed. Protein and chlorophyll-a concentrations decreased from the exponential to the stationary growth phase of all experiments, except for protein in the control. In all experiments, carbohydrate, lipid and total carotenoid increased from the exponential to the stationary growth phase, as an effect of nitrogen limitation. Increments in carbohydrate concentrations were remarkable, achieving more than 42% of the dry weight (dw, but concentrations of lipid were always lower than 13% dw. The addition of pure CO2 did not cause a significant increase in biomass of S. subsalsus nor generated more lipid and carbohydrate than

  4. Improving the use of crop models for risk assessment and climate change adaptation.

    Science.gov (United States)

    Challinor, Andrew J; Müller, Christoph; Asseng, Senthold; Deva, Chetan; Nicklin, Kathryn Jane; Wallach, Daniel; Vanuytrecht, Eline; Whitfield, Stephen; Ramirez-Villegas, Julian; Koehler, Ann-Kristin

    2018-01-01

    Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1.Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk?2.Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output.3.Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions

  5. Environmental and energy aspects of liquid biofuels

    International Nuclear Information System (INIS)

    De Boo, W.

    1993-02-01

    When spending public money to reduce CO 2 emissions, it is necessary to establish which alternative energy source results in the largest reduction of CO 2 emission per unit cost. Comparison of different biofuels with other energy resources is therefore important. Bioethanol is compared with leadfree gasoline, and rapeseed oil methylester (RME) is compared with diesel. Subsequently, biofuel production as a method to reduce CO 2 emission will be compared with other sustainable energy resources. This comparison is based on the energy balance in chapter two and the final costs of biofuels in chapter six. The comparison of biofuels and current fossil fuels is based on emissions to the atmosphere of greenhouse gases and acidifying pollutants in chapter three. Pollution to soil and water by arable cropping is a specific characteristic of biofuel production and is difficult to compare with fossil fuels. On this subject biofuels are compared with other land uses in chapter four. This also applies to other adverse environmental aspects of agricultural production such as competition for land use with natural areas and recreation purposes. To explore future technological developments, a comparison is made in energy balances with estimated results after the year 2000. The overall conclusion is that there are far better options to achieve CO 2 reduction. 2 figs., 9 tabs., 14 appendices, 28 refs

  6. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    Science.gov (United States)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  7. Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe

    International Nuclear Information System (INIS)

    Gasol, Carles M.; Gabarrell, Xavier; Rieradevall, Joan; Anton, Assumpcio; Rigola, Miquel; Carrasco, Juan; Ciria, Pilar; Solano, M.L.

    2007-01-01

    The energetic and environmental performance of production and distribution of the Brassica carinata biomass crop in Soria (Spain) is analysed using life cycle assessment (LCA) methodology in order to demonstrate the major potential that the crop has in southern Europe as a lignocellulosic fuel for use as a renewable energy source. The Life Cycle Impact Assessment (LCIA) including midpoint impact analysis that was performed shows that the use of fertilizers is the action with the highest impact in six of the 10 environmental categories considered, representing between 51% and 68% of the impact in these categories. The second most important impact is produced when the diesel is used in tractors and transport vehicles which represents between 48% and 77%. The contribution of the B. carinata cropping system to the global warming category is 12.7 g CO 2 eq. MJ -1 biomass produced. Assuming a preliminary estimation of the B. carinata capacity of translocated CO 2 (631 kg CO 2 ha -1 ) from below-ground biomass into the soil, the emissions are reduced by up to 5.2 g CO 2 eq. MJ -1 . The production and transport are as far as a thermoelectric plant of the B. carinata biomass used as a solid fuel consumes 0.12 MJ of primary energy per 1 MJ of biomass energy stored. In comparison with other fossil fuels such as natural gas, it reduces primary energy consumption by 33.2% and greenhouse gas emission from 33.1% to 71.2% depending on whether the capacity of translocated CO 2 is considered or not. The results of the analysis support the assertion that B. carinata crops are viable from an energy balance and environmental perspective for producing lignocellulosic solid fuel destined for the production of energy in southern Europe. Furthermore, the performance of the crop could be improved, thus increasing the energy and environmental benefits. (author)

  8. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  9. Contrasts and synergies in different biofuel reports.

    Science.gov (United States)

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-06

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  10. Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Isaque Daniel Rocha Eberhardt

    2016-03-01

    Full Text Available The potential of optical remote sensing data to identify, map and monitor croplands is well recognized. However, clouds strongly limit the usefulness of optical imagery for these applications. This paper aims at assessing cloud cover conditions over four states in the tropical and sub-tropical Center-South region of Brazil to guide the development of an appropriate agricultural monitoring system based on Landsat-like imagery. Cloudiness was assessed during overlapping four months periods to match the typical length of crop cycles in the study area. The percentage of clear sky occurrence was computed from the 1 km resolution MODIS Cloud Mask product (MOD35 considering 14 years of data between July 2000 and June 2014. Results showed high seasonality of cloud occurrence within the crop year with strong variations across the study area. The maximum seasonality was observed for the two states in the northern part of the study area (i.e., the ones closer to the Equator line, which also presented the lowest averaged values (15% of clear sky occurrence during the main (summer cropping period (November to February. In these locations, optical data faces severe constraints for mapping summer crops. On the other hand, relatively favorable conditions were found in the southern part of the study region. In the South, clear sky values of around 45% were found and no significant clear sky seasonality was observed. Results underpin the challenges to implement an operational crop monitoring system based solely on optical remote sensing imagery in tropical and sub-tropical regions, in particular if short-cycle crops have to be monitored during the cloudy summer months. To cope with cloudiness issues, we recommend the use of new systems with higher repetition rates such as Sentinel-2. For local studies, Unmanned Aircraft Vehicles (UAVs might be used to augment the observing capability. Multi-sensor approaches combining optical and microwave data can be another

  11. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  12. Assessment of potential greenhouse gas mitigation from changes to crop root mass and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Paustian, Keith [Booz Allen Hamiltion Inc., McLean, VA (United States); Campbell, Nell [Booz Allen Hamiltion Inc., McLean, VA (United States); Dorich, Chris [Booz Allen Hamiltion Inc., McLean, VA (United States); Marx, Ernest [Booz Allen Hamiltion Inc., McLean, VA (United States); Swan, Amy [Booz Allen Hamiltion Inc., McLean, VA (United States)

    2016-01-29

    Reducing (and eventually reversing) the increase in greenhouse gases (GHGs) in the atmosphere due to human activities, and thus reducing the extent and severity of anthropogenic climate change, is one of the great challenges facing humanity. While most of the man-caused increase in GHGs has been due to fossil fuel use, land use (including agriculture) currently accounts for about 25% of total GHG emissions and thus there is a need to include emission reductions from the land use sector as part of an effective climate change mitigation strategy. In addition, analyses included in the recent IPCC 5th Climate Change Assessment report suggests that it may not be possible to achieve large enough emissions reductions in the energy, transport and industrial sectors alone to stabilize GHG concentrations at a level commensurate with a less than 2°C global average temperature increase, without the help of a substantial CO2 sink (i.e., atmospheric CO2 removal) from the land use sector. One of the potential carbon sinks that could contribute to this goal is increasing C storage in soil organic matter on managed lands. This report details a preliminary scoping analysis, to assess the potential agricultural area in the US – where appropriate soil, climate and land use conditions exist – to determine the land area on which ‘improved root phenotype’ crops could be deployed and to evaluate the potential long-term soil C storage, given a set of ‘bounding scenarios’ of increased crop root input and/or rooting depth for major crop species (e.g., row crops (corn, sorghum, soybeans), small grains (wheat, barley, oats), and hay and pasture perennial forages). The enhanced root phenotype scenarios assumed 25, 50 and 100% increase in total root C inputs, in combination with five levels of modifying crop root distributions (i.e., no change and four scenarios with increasing downward shift in root distributions). We also analyzed impacts of greater root

  13. Assessing the sustainability of Brazilian oleaginous crops - possible raw material to produce biodiesel

    International Nuclear Information System (INIS)

    Takahashi, Fabio; Ortega, Enrique

    2010-01-01

    The aim of this paper is to make an emergy assessment of oleaginous crops cultivated in Brazil, available to produce biodiesel, in order to determine which crop is the most sustainable. This study evaluates conventional agro-chemical farms that produce rapeseed (canola), oil palm, soybean, sunflower and cotton. Rapeseed (canola) crop uses 40.41% of renewable energy and it is the most sustainable conventional oil crop; on the other hand, it is not widely produced in Brazil, probably due to climate restrictions or low market demand. The oil palm emergy indicators are contradictory: its emergy exchange ratio (EER) value is the lower, showing the possibility of fair exchange, and the low transformity value indicates high efficiency; however, it also has low renewability (28.31%), indicating a high dependency on agro-chemicals (basically fertilizers). Oil palm is a potential energy source due to its high agricultural productivity, but appropriate management is necessary to increase its sustainability and reduce the use of non-renewable resources.

  14. Assessing the sustainability of Brazilian oleaginous crops - possible raw material to produce biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Fabio, E-mail: fabiotak@fea.unicamp.b [FEA - College of Food Engineering - Unicamp, CP 6121, CEP 13083-862 Campinas, SP (Brazil); Ortega, Enrique, E-mail: fabiotak@gmail.co [FEA - College of Food Engineering - Unicamp, CP 6121, CEP 13083-862 Campinas, SP (Brazil)

    2010-05-15

    The aim of this paper is to make an emergy assessment of oleaginous crops cultivated in Brazil, available to produce biodiesel, in order to determine which crop is the most sustainable. This study evaluates conventional agro-chemical farms that produce rapeseed (canola), oil palm, soybean, sunflower and cotton. Rapeseed (canola) crop uses 40.41% of renewable energy and it is the most sustainable conventional oil crop; on the other hand, it is not widely produced in Brazil, probably due to climate restrictions or low market demand. The oil palm emergy indicators are contradictory: its emergy exchange ratio (EER) value is the lower, showing the possibility of fair exchange, and the low transformity value indicates high efficiency; however, it also has low renewability (28.31%), indicating a high dependency on agro-chemicals (basically fertilizers). Oil palm is a potential energy source due to its high agricultural productivity, but appropriate management is necessary to increase its sustainability and reduce the use of non-renewable resources.

  15. Biofuels. Environment, technology and food security

    International Nuclear Information System (INIS)

    Escobar, Jose C.; Lora, Electo S.; Venturini, Osvaldo J.; Yanez, Edgar E.; Castillo, Edgar F.; Almazan, Oscar

    2009-01-01

    The imminent decline of the world's oil production, its high market prices and environmental impacts have made the production of biofuels to reach unprecedent volumes over the last 10 years. This is why there have been intense debates among international organizations and political leaders in order to discuss the impacts of the biofuel use intensification. Besides assessing the causes of the rise in the demand and production of biofuels, this paper also shows the state of the art of their world's current production. It is also discussed different vegetable raw materials sources and technological paths to produce biofuels, as well as issues regarding production cost and the relation of their economic feasibility with oil international prices. The environmental impacts of programs that encourage biofuel production, farmland land requirements and the impacts on food production are also discussed, considering the life cycle analysis (LCA) as a tool. It is concluded that the rise in the use of biofuels is inevitable and that international cooperation, regulations and certification mechanisms must be established regarding the use of land, the mitigation of environmental and social impacts caused by biofuel production. It is also mandatory to establish appropriate working conditions and decent remuneration for workers of the biofuels production chain. (author)

  16. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  17. Biofuels – On the way to sustainability?: Opinion

    Directory of Open Access Journals (Sweden)

    Martin Kaltschmitt

    2016-12-01

    stabilizing element because biofuels and conventional fossil fuels can be exchanged completely and immediately. They can help to level out price variations of biomass by taking up agricultural products in case of a global production exceeding the demand from the food and feed market. Vice versa, biofuel production could be reduced in case of low yields and a resulting shortage of biomass to alleviate pressure on the food and feed market. One precondition for creating such a harmonized or stabilized market is that sustainability criteria, which are already mandatorily applied to biomass feedstocks used for biofuel production, are applied to all traded agricultural products regardless of their use. Consequently, such a concept could boost a more sustainable agricultural and forestry primary productionFurthermore, the following targets need to be achieved in the years to come in order to increase competitiveness, reduce negative environmental consequences and to promote acceptance of biofuels:Widening of the biomass resource basis; this includes better crops, the use of organic wastes as well as "new" biomass feedstocks (e.g. algae;Technological advances in biomass production and downstream processing in order to increase efficiencies throughout the overall provision chain;Better combination of biomass production and processing for the various markets to exploit synergy effects and minimize losses (e.g. promotion of the bio-refinery concept;Improved assessment of sustainability criteria throughout the overall provision chain; this includes also aspects like impacts on biodiversity and soil properties, iLUC, child labor etc. Such aspects are essential to cope with an increasing demand for biomass driven by a growing world population, changing consumption patterns as well as an increasing demand for renewable energy provision and industrial purposes. All over, tremendous progress has been made in recent years in increasing sustainability and efficiency of biofuel production

  18. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems.

    Science.gov (United States)

    Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse

    2017-11-01

    For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.

  19. Energy balance of solid biofuels

    International Nuclear Information System (INIS)

    Scholz, V.; Berg, W.; Kaulfuss, P.

    1998-01-01

    The input and output of energy are two important factors used to determine the energetic and ecological usefulness of a fuel or its production technology. In this paper, a number of different methods for the production of five biofuels which can be produced in agriculture and forestry are analysed and energetic balances are presented. The results show that the energetic input is relatively low compared to the output, especially for by-products and residual substances such as cereal straw and forest pruning timber (thinning). Whenever fuel crops are cultivated, the energetic efficiency is critically determined by the quantity of nitrogen applied. Depending on the crop and technology, each gigajoule of energy input can provide 7-30 GJ or with by-products up to 50 GJ of thermally utilizable energy without any additional CO 2 pollution. (author)

  20. Assessing COSMO-SkyMed capability for crops identification and monitoring

    Science.gov (United States)

    Guarini, R.; Dini, L.

    2015-12-01

    In the last decade, it has been possible to better understand the impact of agricultural human practices on the global environmental change at different spatial (from local to global) and time (from seasonal to decadal) scales. This has been achieved thanks to: big dataset continuously acquired by Earth Observation (EO) satellites; the improved capabilities of remote sensing techniques in extracting valuable information from the EO datasets; the new EO data policy which allowed unrestricted data usage; the net technologies which allowed to quickly and easily share national, international and market-derived information; an increasingly performing computing technology which allows to massively process large amount of data easier and at decreasing costs. To better understand the environmental impacts of agriculture and to monitor the consequences of human agricultural activities on the biosphere, scientists require to better identify crops and monitor crop conditions over time and space. Traditionally, NDVI time series maps derived from optical sensors have been used to this aim. As well-known this important source of information is conditioned by cloud cover. Unlike passive systems, synthetic aperture radar (SAR) ones are almost insensitive to atmospheric influences; thus, they are especially suitable for crop identification and condition monitoring. Among the other SAR systems currently in orbit, the Italian Space Agency (ASI) COSMO Sky-Med® (CSK®) constellation (X-band, frequency 9.6 GHz, wavelength 3.1 cm), especially for its peculiar high revisit capability (up to four images in 16 days with same acquisition geometry) seems to be particular suitable for providing information in addition and/or in alternative to other optical EO systems. To assess the capability of the CSK® constellation in identifying crops and in monitoring crops condition in 2013 ASI started the "AGRICIDOT" project. Some of the main project achievements will be presented at the congress.

  1. setting sustainable standards for biofuel production

    African Journals Online (AJOL)

    OLAWUYI

    Director for Research, Training and International Development, Institute for Oil, Gas, ..... Table 3 presents the five stages in the product lifecycle for biofuel production ..... Principles on Human Rights Impact Assessments of Trade and Investment.

  2. Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2013-01-01

    Nigeria's economy is largely dependent on petroleum, yet the country is suffering from fuel supply shortages. In response to the transportation fuel supply difficulties in Nigeria, the country released the Nigerian Biofuel Policy and Incentives in 2007 to create favorable investment climate for the entrance of Nigeria into the biofuel sector. The paper assessed the progress made thus far by Nigeria, 4 years after the Nigerian biofuel was released in an attempt to answer the question whether the policy is adequate to transform Nigeria into a biofuel economy. The study found that little progress has been made, which includes commencement of the construction of 20 bioethanol factories, installation of biofuel handling facilities at two depots (Mosimi and Atlas Cove), and selection of retail outlets for biofuel/conventional fuel mix. The site construction of the announced biofuel projects is now slow and other progress is marginal. We therefore conclude that the Nigerian biofuel policy is unlikely to transform Nigeria into a biofuel economy unless the Government revert and refocus on biofuel and include additional financial incentives such as grants and subsidy to complement the tax waivers (income, import duty, VAT), loans, and insurance cover contained in the policy. - Highlights: ► Nigeria's economy is dependent on petroleum, yet the country is suffering from fuel shortages. ► The Nigerian Biofuel Policy and Incentives was released in 2007. ► Little progress has been made since the policy was released 4 years ago. ► Hence, the policy is unlikely to transform Nigeria into a biofuel economy

  3. Biofuels cost developments in the EU27+ until 2030. Full-chain cost assessment and implications of policy options. REFUEL WP4 final report

    International Nuclear Information System (INIS)

    Londo, H.M.; Lensink, S.M.; Deurwaarder, E.P.; Wakker, A.; De Wit, M.; Junginger, M.; Koenighofer, K; Jungmeier, G.

    2008-02-01

    With the rapid developments in the biofuels domain comes the need for biofuel policies that spur their introduction in a responsible way. The REFUEL project, supported by the EU Intelligent Energy Europe programme, develops a road map for biofuels in the EU27+ up to 2030. This WP4 report shows the results of a full-chain analysis of the costs of different biofuels. Effects of different levels of biofuel target setting were analysed, and also the impact of different additional policy measures, such as the introduction of a CO2 pricing mechanism and specific subsidies

  4. Genomic regions under selection in crop-wild hybrids of lettuce: implications for crop breeding and environmental risk assessment

    NARCIS (Netherlands)

    Hartman, Y.

    2012-01-01

    The results of this thesis show that the probability of introgression of a putative transgene to wild relatives indeed depends strongly on the insertion location of the transgene. The study of genomic selection patterns can identify crop genomic regions under negative selection in multiple

  5. Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

    International Nuclear Information System (INIS)

    Clark, Christopher M; Bierwagen, Britta G; Morefield, Philip E; Ridley, Caroline E; Lin, Yolanda; Vimmerstedt, Laura; Bush, Brian W; Eaton, Laurence M; Langholtz, Matthew H; Peterson, Steve

    2013-01-01

    Biofuels are expected to be a major contributor to renewable energy in the coming decades under the Renewable Fuel Standard (RFS). These fuels have many attractive properties including the promotion of energy independence, rural development, and the reduction of national carbon emissions. However, several unresolved environmental and economic concerns remain. Environmentally, much of the biomass is expected to come from agricultural expansion and/or intensification, which may greatly affect the net environmental impact, and economically, the lack of a developed infrastructure and bottlenecks along the supply chain may affect the industry’s economic vitality. The approximately 30 million acres (12 million hectares) under the Conservation Reserve Program (CRP) represent one land base for possible expansion. Here, we examine the potential role of the CRP in biofuels industry development, by (1) assessing the range of environmental effects on six end points of concern, and (2) simulating differences in potential industry growth nationally using a systems dynamics model. The model examines seven land-use scenarios (various percentages of CRP cultivation for biofuel) and five economic scenarios (subsidy schemes) to explore the benefits of using the CRP. The environmental assessment revealed wide variation in potential impacts. Lignocellulosic feedstocks had the greatest potential to improve the environmental condition relative to row crops, but the most plausible impacts were considered to be neutral or slightly negative. Model simulations revealed that industry growth was much more sensitive to economic scenarios than land-use scenarios—similar volumes of biofuels could be produced with no CRP as with 100% utilization. The range of responses to economic policy was substantial, including long-term market stagnation at current levels of first-generation biofuels under minimal policy intervention, or RFS-scale quantities of biofuels if policy or market conditions were

  6. Assessing compositional variability through graphical analysis and Bayesian statistical approaches: case studies on transgenic crops.

    Science.gov (United States)

    Harrigan, George G; Harrison, Jay M

    2012-01-01

    New transgenic (GM) crops are subjected to extensive safety assessments that include compositional comparisons with conventional counterparts as a cornerstone of the process. The influence of germplasm, location, environment, and agronomic treatments on compositional variability is, however, often obscured in these pair-wise comparisons. Furthermore, classical statistical significance testing can often provide an incomplete and over-simplified summary of highly responsive variables such as crop composition. In order to more clearly describe the influence of the numerous sources of compositional variation we present an introduction to two alternative but complementary approaches to data analysis and interpretation. These include i) exploratory data analysis (EDA) with its emphasis on visualization and graphics-based approaches and ii) Bayesian statistical methodology that provides easily interpretable and meaningful evaluations of data in terms of probability distributions. The EDA case-studies include analyses of herbicide-tolerant GM soybean and insect-protected GM maize and soybean. Bayesian approaches are presented in an analysis of herbicide-tolerant GM soybean. Advantages of these approaches over classical frequentist significance testing include the more direct interpretation of results in terms of probabilities pertaining to quantities of interest and no confusion over the application of corrections for multiple comparisons. It is concluded that a standardized framework for these methodologies could provide specific advantages through enhanced clarity of presentation and interpretation in comparative assessments of crop composition.

  7. Energy technology impacts on agriculture with a bibliography of models for impact assessment on crop ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, E.M.; Luxmoore, R.J.; Parzyck, D.C.

    1979-09-01

    Possible impacts of energy technologies on agriculture are evaluated, and some of the available simulation models that can be used for predictive purposes are identified. An overview of energy technologies and impacts on the environment is presented to provide a framework for the commentary on the models. Coal combustion is shown to have major impacts on the environment and these will continue into the next century according to current Department of Energy projections. Air pollution effects will thus remain as the major impacts on crop ecosystems. Two hundred reports were evaluated, representing a wide range of models increasing in complexity from mathematical functions (fitted to data) through parametric models (which represent phenomena without describing the mechanisms) to mechanistic models (based on physical, chemical, and physiological principles). Many models were viewed as suitable for adaptation to technology assessment through the incorporation of representative dose-response relationships. It is clear that in many cases available models cannot be taken and directly applied in technology assessment. Very few models of air pollutant-crop interactions were identified, even though there is a considerable data base of pollutant effects on crops.

  8. Assessment of the phenology impact on SVAT modelling through a crop growth model over a Mediterranean crop site : Consequences on the water balance under climate change conditions.

    Science.gov (United States)

    Moulin, S.; Garrigues, S.; Olioso, A.; Ruget, F.; Desfonds, V.; Bertrand, N.; Lecharpentier, P.; Ripoche, D.; Launay, M.; Brisson, N.

    2012-04-01

    project, Brisson et al, 2010), we show that the range of phenology simulated by ISBA is much wider than the one simulated by STICS. The large variability obtained with ISBA is not realistic and does not match with the genetic characteristics of the studied crops. In a second step, STICS and ISBA-a-gs are run over the same field of durum wheat cultivated during 5 years on a well instrumented site (Avignon crop observatory site). Their simulations are compared, in terms of LAI (driven by phenology), biomass (crop production), and evapotranspiration (water balance). The last step consists in forcing the SVAT model with the LAI simulated by STICS and assess the impact on the water and energy balance simulation accuracy.

  9. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2 O emissions.

    Science.gov (United States)

    Ehrhardt, Fiona; Soussana, Jean-François; Bellocchi, Gianni; Grace, Peter; McAuliffe, Russel; Recous, Sylvie; Sándor, Renáta; Smith, Pete; Snow, Val; de Antoni Migliorati, Massimiliano; Basso, Bruno; Bhatia, Arti; Brilli, Lorenzo; Doltra, Jordi; Dorich, Christopher D; Doro, Luca; Fitton, Nuala; Giacomini, Sandro J; Grant, Brian; Harrison, Matthew T; Jones, Stephanie K; Kirschbaum, Miko U F; Klumpp, Katja; Laville, Patricia; Léonard, Joël; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; Massad, Raia S; Meier, Elizabeth; Merbold, Lutz; Moore, Andrew D; Myrgiotis, Vasileios; Newton, Paul; Pattey, Elizabeth; Rolinski, Susanne; Sharp, Joanna; Smith, Ward N; Wu, Lianhai; Zhang, Qing

    2018-02-01

    Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N 2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N 2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N 2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N 2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N 2 O emissions. Yield-scaled N 2 O emissions (N 2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly

  10. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  11. Next generation biofuel engineering in prokaryotes

    Science.gov (United States)

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  12. Old Dog New Tricks: Use of Point-based Crop Models in Grid-based Regional Assessment of Crop Management Technologies Impact on Future Food Security

    Science.gov (United States)

    Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.

    2012-12-01

    HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published

  13. Assessing the Challenges in Successful Implementation and Adoption of Crop Insurance in Thailand

    Directory of Open Access Journals (Sweden)

    Shweta Sinha

    2016-12-01

    Full Text Available The purpose of this paper is to assess the gaps in the adoption of crop insurance in Thailand and suggest possible solutions relating to policy support and framework, implementation mechanisms, technology adoption, and awareness amongst farmers. The methodology includes a literature review, interaction with officials, rice experts and insurance experts, and discussion with farmers. A study was undertaken at province level to assess the impact of using rainfall index as a threshold. Additionally, focused group discussions (FGD were conducted with rice farmers at the village level. Key issues targeted in the FGD were to understand the behavior and practices during droughts, impact of drought on crop yield, methods already in use to reduce the impact, such as plantation of drought-resistant rice, and the adoption of crop insurance. Data availability is a challenge and has led to withdrawal of Weather Index Insurance (WII in 2015. WII have threshold levels based on historical rainfall. Adoption of coping mechanisms, such as drought-resistant rice and irrigation increases the chances of adverse selection. In absence of ground based weather data, a combination of satellite agriculture drought information can be used to make crop insurance more attractive as it would help in reducing basis risk and improving insurers and farmers’ confidence in the product. Discussion with farmers, insurance companies, and the Bank of Agriculture and Agricultural Cooperatives (BAAC in Thailand suggested low awareness among farmers about the potential benefits of weather index insurance products. Relatively low compensation is also an obstacle. Proper marketing and awareness raising campaigns should also accompany the introduction of index-based insurance products.

  14. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture

    Science.gov (United States)

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; http://www.cropwatch.com.cn, Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  15. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture.

    Science.gov (United States)

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; www.cropwatch.com.cn , Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  16. Time for commercializing non-food biofuel in China

    International Nuclear Information System (INIS)

    Wang, Qiang

    2011-01-01

    The booming automobile in China has added additional pressure on the country that needs to import almost 50% of its oil. Non-food-based biofuel is a viable fuel alternative for cars. China already has the required-foundation to commercialize non-food-based biofuel. Chinese crop straw and stock, energy crop, and woody biomass that could potentially be converted into energy are projected to be 700 million toe (ton of oil equivalent) in the near future. Meanwhile, Chinese food-based ethanol fuel industry ranks as the world's third after United States and Brazil. Several non-food-based ethanol plants are constructed or under constructed, one of which has been licensed. However, more efforts should be directed to commercializing non-food-based biofuel, including industrialized feedstock, strengthening key technology research, supporting private enterprise, and E10 upgrading to E20. The enormous increase in private ownership of car must compel China to commercialize biofuel. (author)

  17. Assessing Climate Risk on Agricultural Production: Insights Using Retrospective Analysis of Crop Insurance and Climatic Trends

    Science.gov (United States)

    Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.

    2017-12-01

    The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical

  18. Biomass, biogas and biofuels

    International Nuclear Information System (INIS)

    Colonna, P.

    2011-01-01

    This article reviews the different ways to produce biofuels. It appears that there are 3 generations of biofuels. The first generation was based on the use of the energetic reserves of the plants for instance sugar from beetroot or starch from cereals or oil from oleaginous plants. The second generation is based on a more complete use of the plant, the main constituents of the plant: cellulose and lignin are turned into energy. The third generation of biofuels relies on the use of energy plants and algae. The second generation of biofuels reduces drastically the competition between an alimentary use and a non-alimentary use of plants. In 2008 the production of biofuels reached 43 Mtep which represents only 2% of all the energy used in the transport sector. The international agency for energy expects that the production of biofuels would be multiplied by a factor 6 (even 10 if inciting measures are taken) by 2030. (A.C.)

  19. Rainfall and crop modeling-based water stress assessment for rainfed maize cultivation in peninsular India

    Science.gov (United States)

    Manivasagam, V. S.; Nagarajan, R.

    2018-04-01

    Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with

  20. Allies in Biofuels. Opportunities in the Dutch - Argentinean biofuels trade relation

    International Nuclear Information System (INIS)

    Verhagen, M.

    2007-01-01

    focuses on first generation biofuels and has only little experience with rapeseed, and second generation fuels. It is in both these areas that Dutch and European experience can play a role to develop Argentina's biofuels sector. Argentina, on the other hand can produce the amounts of biofuels that Europe and the Netherlands are demanding for in the short run. The outcome of research shows several recommendations to change biofuels policies for both countries. Furthermore, areas for cooperation were defined. In short: Dutch biofuels policy regarding international research and cooperation projects is too narrow. Argentina is an excellent partner but until now completely unnoticed. Teaming up with Brazil and making use of the same financial structures would be a possibility for the incorporation of Argentina in Dutch foreign biofuels activities; The Dutch initiative on criteria for sustainable production of biofuels appears overachieving, and hardly workable for producing countries. The dialogue with those countries - such as Argentina - should be intensified, in order to develop at least voluntary agreements, and to guarantee that both producer and consumer country are on the same team. The process is a two-way street; Argentina needs to stabilize policy development in order to bring stability to the biofuels sector and promote investments. Also, Argentina needs to develop a long-term strategy on biofuels and more actively pursue its national interests in the international arena specifically in terms of trade issues (WTO, normalization); Argentina's policy needs diversification. Brainstorming with experienced Dutch and European counterparts can distill instruments that are suitable for Argentina. Combined projects between Dutch and Argentinean institutes (SenterNovem, ECN, WUR, INTA) would be profitable in this area, as well as on more practical research regarding crop's life cycles, energy balances, technologies, etc. Modifications to policy and cooperation as described

  1. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  2. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    Energy Technology Data Exchange (ETDEWEB)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  3. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  4. The Danish Biofuel Debate

    DEFF Research Database (Denmark)

    Hansen, Janus

    2014-01-01

    of biofuels enrol scientific authority to support their positions? The sociological theory of functional differentiation combined with the concept of advocacy coalition can help in exploring this relationship between scientific claims-making and the policy stance of different actors in public debates about...... biofuels. In Denmark two distinct scientific perspectives about biofuels map onto the policy debates through articulation by two competing advocacy coalitions. One is a reductionist biorefinery perspective originating in biochemistry and neighbouring disciplines. This perspective works upwards from...

  5. Biofuels in China.

    Science.gov (United States)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  6. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    Science.gov (United States)

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  7. Algae as a Feedstock for Biofuels. An Assessment of the Current Status and Potential for Algal Biofuels Production. Joint Summary report of IEA-AMF Annex XXXIV-2 and IEA Bioenergy Task 39

    Energy Technology Data Exchange (ETDEWEB)

    O' Conner, D. [S and T2 Consultants, Inc. (Canada)

    2011-09-15

    In 2010, the IEA Advanced Motor Fuels Implementing Agreement and the IEA Bioenergy Task 39 both commissioned reports on the status and potential opportunities for Algal Biofuels. While there were substantial similarities in the findings of the two reports, each report provides unique perspectives on different aspects of the technology and the opportunities. This summary draws on both of those reports. The Task 39 report (Bioenergy Algal Biofuels.pdf) was authored by Al Darzins and Philip Pienkos (NREL, US) and Les Edye (BioIndustry Partners, Australia). The IEA AMF report was prepared by Karen Sikes and Ralph McGill (Sentech, Inc. US) and Martijn Van Walwijk (Independent Researcher).

  8. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  9. Forecast for biofuel trade in Europe

    International Nuclear Information System (INIS)

    Hektor, B.; Vinterbaeck, J.; Toro, A.de; Nilsson, Daniel

    1993-01-01

    One principal general conclusion is that the European biofuel market for the period up to the year 2000 will be competitive, dynamic and affected by technical development and innovations. That leads to the conclusion that prices will go down, which will increase the ability of biofuels to compete in the market. Still, biofuels will generally not be able to compete at the price level of fossil fuels in the world market, but will need support or protection to reach a competitive position. There are several reasons for support, e.g. offsetting the green-house effect and acid rain, conservation of the limited fossil fuel deposits, utilisation of local and domestic energy resources, etc. As energy crops in Europe are at an introductory stage, no large international trade can be expected within the next ten years. In this study it is assumed that some limited protective measures are imposed, which is a possible result of the energy and environmental policy currently discussed for the European Community, EC. The study implies that in the year 2000 it is possible to transport large quantities of biofuels to large energy consumers if taxes and other incentives now under discussion in the EC and national governments are introduced. The study also implies that in the year 2000 it is possible to utilise biofuels primarily in local and national markets. In the latter case, international trade will be reduced to minor spot quantities

  10. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel

    International Nuclear Information System (INIS)

    Annamalai, M.; Dhinesh, B.; Nanthagopal, K.; SivaramaKrishnan, P.; Isaac JoshuaRamesh Lalvani, J.; Parthasarathy, M.; Annamalai, K.

    2016-01-01

    Highlights: • A novel biofuel, lemongrass is used as a renewable energy source. • Emulsion prepared using 5% of water, 93% of lemongrass oil and 2% of surfactant. • Emulsified nano biofuel performance profile stayed closer to diesel fuel. • Drastic reduction in HC, CO, NO_X and marginal decrease of smoke compared with diesel. - Abstract: The consequence of using cerium oxide (CeO_2) nanoparticle as additive in Lemongrass Oil (LGO) emulsion fuel was experimentally investigated in a single cylinder, constant speed diesel engine. A novel biofuel plant was introduced in this project, namely lemongrass whose binomial name is Cymbopogon flexuosus. The main objective of the project is to reduce the level of harmful pollutants in the exhaust such as unburned hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NO_X), and smoke. The engine performance could also be increased due to the addition of CeO_2 nanoparticle. The LGO emulsion fuel was prepared in the proportion of 5% of water, 93% of LGO and 2% of span80 by volume basis. Span80 acted as surfactant and it would reduce surface tension between the liquids with a hydrophilic-lipophilic balance (HLB) value of 4.2. The ceria nanoparticle was dispersed with the LGO emulsion fuel in the dosage of 30 ppm (ppm). The diesel engine performance, combustion behavior and emission magnitude were compared with diesel and LGO as the base fuels. The whole investigation was conducted with a single cylinder diesel engine using the following fuels, namely neat diesel, neat LGO, LGO emulsion and LGO nano emulsion fuels respectively. The LGO emulsion fuel could reduce smoke and NO_X emissions and could improve Brake Thermal Efficiency (BTE), Brake Specific Energy Consumption (BSEC) compared with neat LGO despite the marginal increase in HC and CO emissions. For ceria nanoparticle blended test fuel, the drastic reduction of carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen (NO_X) and marginal decrease of

  11. Assessing Natural Isothiocyanate Air Emissions after Field Incorporation of Mustard Cover Crop

    Energy Technology Data Exchange (ETDEWEB)

    Trott, Donna M.; LePage, Jane; Hebert, Vincent

    2012-01-01

    A regional air assessment was performed to characterize volatile natural isothiocyanate (NITC) compounds in air during soil incorporation of mustard cover crops in Washington State. Field air sampling and analytical methods were developed specific to three NITCs known to be present in air at appreciable concentrations during/after field incorporation. The maximum observed concentrations in air for the allyl, benzyl, and phenethyl isothiocyanates were respectively 188, 6.1, and 0.7 lg m-3 during mustard incorporation. Based on limited inhalation toxicity information, airborne NITC concentrations did not appear to pose an acute human inhalation exposure concern to field operators and bystanders.

  12. The use of whole food animal studies in the safety assessment of genetically modified crops: Limitations and recommendations

    Science.gov (United States)

    Bartholomaeus, Andrew; Parrott, Wayne; Bondy, Genevieve

    2013-01-01

    There is disagreement internationally across major regulatory jurisdictions on the relevance and utility of whole food (WF) toxicity studies on GM crops, with no harmonization of data or regulatory requirements. The scientific value, and therefore animal ethics, of WF studies on GM crops is a matter addressable from the wealth of data available on commercialized GM crops and WF studies on irradiated foods. We reviewed available GM crop WF studies and considered the extent to which they add to the information from agronomic and compositional analyses. No WF toxicity study was identified that convincingly demonstrated toxicological concern or that called into question the adequacy, sufficiency, and reliability of safety assessments based on crop molecular characterization, transgene source, agronomic characteristics, and/or compositional analysis of the GM crop and its near-isogenic line. Predictions of safety based on crop genetics and compositional analyses have provided complete concordance with the results of well-conducted animal testing. However, this concordance is primarily due to the improbability of de novo generation of toxic substances in crop plants using genetic engineering practices and due to the weakness of WF toxicity studies in general. Thus, based on the comparative robustness and reliability of compositional and agronomic considerations and on the absence of any scientific basis for a significant potential for de novo generation of toxicologically significant compositional alterations as a sole result of transgene insertion, the conclusion of this review is that WF animal toxicity studies are unnecessary and scientifically unjustifiable. PMID:24164514

  13. Phytoextraction of heavy metals from contaminated soil by co-cropping with chelator application and assessment of associated leaching risk.

    Science.gov (United States)

    Wei, Z B; Guo, X F; Wu, Q T; Long, X X; Penn, C J

    2011-08-01

    Phytoextraction using hyperaccumulating plants is generally time-consuming and requires the cessation of agriculture. We coupled chelators and a co-cropping system to enhance phytoextraction rates, while allowing for agricultural production. An experiment on I m3 lysimeter beds was conducted with a co-cropping system consisting of the hyperaccumulator Sedum alfredii and low-accumulating corn (Zea Mays, cv. Huidan-4), with addition ofa mixture of chelators (MC), to assess the efficiency of chelator enhanced co-crop phytoextraction and the leaching risk caused by the chelator. The results showed that the addition of MC promoted the growth of S. alfredii in the first crop (spring-summer season) and significantly increased the metal phytoextraction. The DTPA-extractable and total metal concentrations in the topsoil were also reduced more significantly with the addition of MC compared with the control treatments. However, mono-cropped S. alfredii without MC was more suitable for maximizing S. alfredii growth and therefore phytoextraction of Zn and Cd during the autumn-winter seasons. No adverse impact to groundwater due to MC application was observed during the experiments with three crops and three MC applications. But elevated total Cd and Pb concentrations among subsoils compared to the initial subsoil concentrations were found for the co-crop + MC treatment after the third crop.

  14. The use of whole food animal studies in the safety assessment of genetically modified crops: limitations and recommendations.

    Science.gov (United States)

    Bartholomaeus, Andrew; Parrott, Wayne; Bondy, Genevieve; Walker, Kate

    2013-11-01

    There is disagreement internationally across major regulatory jurisdictions on the relevance and utility of whole food (WF) toxicity studies on GM crops, with no harmonization of data or regulatory requirements. The scientific value, and therefore animal ethics, of WF studies on GM crops is a matter addressable from the wealth of data available on commercialized GM crops and WF studies on irradiated foods. We reviewed available GM crop WF studies and considered the extent to which they add to the information from agronomic and compositional analyses. No WF toxicity study was identified that convincingly demonstrated toxicological concern or that called into question the adequacy, sufficiency, and reliability of safety assessments based on crop molecular characterization, transgene source, agronomic characteristics, and/or compositional analysis of the GM crop and its near-isogenic line. Predictions of safety based on crop genetics and compositional analyses have provided complete concordance with the results of well-conducted animal testing. However, this concordance is primarily due to the improbability of de novo generation of toxic substances in crop plants using genetic engineering practices and due to the weakness of WF toxicity studies in general. Thus, based on the comparative robustness and reliability of compositional and agronomic considerations and on the absence of any scientific basis for a significant potential for de novo generation of toxicologically significant compositional alterations as a sole result of transgene insertion, the conclusion of this review is that WF animal toxicity studies are unnecessary and scientifically unjustifiable.

  15. Monetary assessments of carbon dioxide emissions - Comparison between biofuels and fossil fuels; Monetaera vaerderingar av koldioxidutslaepp - jaemfoerelser mellan biobraenslen och fossila braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, C.; Kierkegaard, G. [Vattenfall Utveckling AB, Stockholm (Sweden)] Borgstroem, T. [Swedpower AB (Sweden)

    1999-10-01

    The Swedish tax and subsidy system results in that municipal heat and combined heat and power often can be produced from biofuels at the same as or at lower costs than from fossil fuels. A considerable part of the Swedish municipal district heat is nowadays produced from biofuels. It has been questioned, whether this is justifiable from a national economic point of view, considering realistic estimates of the possible future costs, caused by increased carbon dioxide emissions, that will be avoided this way. There are however large differences between the monetary assessments of carbon dioxide emissions presented in various studies. According to neoclassic national economy, various energy production options should be valued based on their total costs from a national economic point of view. Such total costs include the production costs (`private costs`) as well as `external costs`, i.e. costs that will be brought down upon other parties than the plant owners and the energy buyers. This study illustrates how such total costs for power and heat production from biofuels relative to from natural gas, oil and coal, would be affected if various monetary assessments of carbon dioxide emissions would be treated as external costs and internalised, i.a. charged upon the production costs. The calculations are made for assumed new production plants. The order of precedence (with respect to the lowest total costs) between the studied fuels is affected in favour of biofuels only for high monetary assessments of carbon dioxide emissions. For heat as well as combined heat and power production, an order of precedence corresponding to the carbon dioxide emissions for the respective fuels, will be achieved only for the highest carbon dioxide monetary assessments based on a low discount rate. For condensing power production, the calculated production costs for biofuels are so high that natural gas will get the lowest total costs for all the studied carbon dioxide monetary assessments

  16. Water use impacts of future transport fuels: role of California's climate policy & National biofuel policies (Invited)

    Science.gov (United States)

    Teter, J.; Yeh, S.; Mishra, G. S.; Tiedeman, K.; Yang, C.

    2013-12-01

    -hydrologic model EPIC to capture both green water (GW) and blue water (BW) use at a ~10 square km resolution among three scenarios: (1) a counterfactual scenario with no national biofuel policy, (2) current Renewable Fuels Standard (RFS) mandates, and (3) a proposed national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. Inputs to EPIC are spatially explicit: (a) cropping areas and yields as projected by a partial equilibrium economic model, (b) daily weather data, (c) soil properties (d) N fertilizer application, and (e) irrigation sources and volumes, by crop (Fig 4-5). We assess the differences among biofuel scenarios from 2007-2035 along the following metrics: (1) crop area expansion on prime & marginal lands (Fig 6), (2) Crop-specific & overall annual/seasonal water balances including (2a) water inflows (irrigation & precipitation), (2b) crop-atmosphere interactions: (evaporation & transpiration) and (2c) soil-water flows (runoff & soil infiltration), in mm3 /acre. We found differential water use impacts among biofuel scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes (2) irrigation practices, (3) feedstock water use efficiency, and (4) the longer growing season and a predominance of rainfed cultivation of dedicated biofuel feedstocks. Fig 1-6 available at the linked urls.

  17. On the future prospects and limits of biofuels in Brazil, the US and EU

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2014-01-01

    Highlights: • Market prospects of biofuels are investigated up to 2030 for Brazil, the US and EU. • 1st generation biofuels are cost-effective under current tax policies. • Their potentials are restricted especially due to limited crops areas. • R and D especially for second generation biofuels has to be intensified. - Abstract: In the early 2000s high expectations existed regarding the potential contribution of biofuels to the reduction of greenhouse gas emissions and substitution of fossil fuels in transport. In recent years sobering judgments prevailed. The major barriers for a further expansion of biofuels are their high costs (compared to fossil fuels), moderate ecological performances, limited feedstocks for biofuel production and their competition with food production. The objective of this paper is to investigate the market prospects of biofuels up to the year 2030. It focuses on the three currently most important regions for biofuels production and use: the US, EU and Brazil which in 2010 accounted together for almost three-quarters of global biofuel supply. Our method of approach is based on a dynamic economic framework considering the major cost components of biofuels and corresponding technological learning with respect to capital costs. Moreover, for the analysis of the competitiveness of biofuels with fossil fuels also taxes are considered. The most important result is that under existing tax policies biofuels are cost-effective today and also for the next decades in the regions investigated. However, their potentials are restricted especially due to limited crops areas, and their environmental performance is currently rather modest. The major final conclusions are: (i) To reveal the real future market value of biofuels, a CO 2 based tax system should be implemented for all types of fuels providing a neutral environmental incentive for competition between all types of fossil and renewable fuels; (ii) Moreover, the research and development for

  18. Assessing the impacts of climate change on winter crop production in Uruguay and Argentina using crop simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Baethgen, W.E. [International Fertilizer Development Center, Muscle Shoals, AL (United States); Magrin, G.O. [Inst. Nacional de Tecnologia Agropecuaria Castelar, Buenos Aires (Argentina). Inst. de Clima y Agua

    1995-12-31

    Enhanced greenhouse effect caused by the increase in atmospheric concentration of CO{sub 2} and other trace gases could lead to higher global surface temperature and altered hydrological cycles. Most possible climate change scenarios include higher atmospheric CO{sub 2} concentrations, higher temperatures, and changes in precipitation. Three global climate models (GCMs) were applied to generate climate change scenarios for the Pampas region in southern South America. The generated scenarios were then used with crop simulation models to study the possible impact of climate change on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) production in the Pampas. The authors evaluated the impact of possible climate change scenarios on wheat and barley production in Uruguay for a wide range of soil and crop management strategies including planting dates, cultivar types, fertilizer management, and tillage practices. They also studied the impact of climate change on wheat production across two transects of the Pampas: north to south transect with decreasing temperature, and east to west transect with decreasing precipitation. Finally, sensitivity analyses were conducted for both, the Uruguayan site and the transects, by increasing daily maximum and minimum temperature by 0, 2, and 4 C, and changing the precipitation by {minus}20, 0, and +20%.

  19. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  20. Assessments of Future Maize Yield Potential Changes in the Korean Peninsula Using Multiple Crop Models

    Science.gov (United States)

    Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.

    2016-12-01

    The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas

  1. Assessments of Maize Yield Potential in the Korean Peninsula Using Multiple Crop Models

    Science.gov (United States)

    Kim, S. H.; Myoung, B.; Lim, C. H.; Lee, S. G.; Lee, W. K.; Kafatos, M.

    2015-12-01

    The Korean Peninsular has unique agricultural environments due to the differences in the political and socio-economical systems between the Republic of Korea (SK, hereafter) and the Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering from the lack of food supplies caused by natural disasters, land degradation and failed political system. The neighboring developed country SK has a better agricultural system but very low food self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we have utilized multiple process-based crop models capable of regional-scale assessments to evaluate maize Yp over the Korean Peninsula - the GIS version of EPIC model (GEPIC) and APSIM model that can be expanded to regional scales (APSIM regions). First we evaluated model performance and skill for 20 years from 1991 to 2010 using reanalysis data (Local Data Assimilation and Prediction System (LDAPS); 1.5km resolution) and observed data. Each model's performances were compared over different regions within the Korean Peninsula of different regional climate characteristics. To quantify the major influence of individual climate variables, we also conducted a sensitivity test using 20 years of climatology. Lastly, a multi-model ensemble analysis was performed to reduce crop model uncertainties. The results will provide valuable information for estimating the climate change or variability impacts on Yp over the Korean Peninsula.

  2. Biofuels and Biotechnology: Cassava (Manihot esculenta) as a Research Model

    International Nuclear Information System (INIS)

    Cortes S, Simon; Chavarriaga, Paul; Lopez, Camilo

    2010-01-01

    Fuels such as ethanol and biodiesel, obtained from plants and their constituents, have recently received the world's attention as a true alternative to the global energy supply, mainly because they are cheaper and less contaminant of the environment than the currently used, non-renewable fossil fuels. Due to the pushing biofuel market, the world is currently experiencing an increase of agricultural land devoted to grow crops used to obtain them, like maize and sugar cane, as well as crops that have the potential to become new sources of biofuels. Similarly, this emerging market is boosting the basic research oriented towards obtaining better quality and yield in these crops. Plants that store high quantities of starch, simple sugars or oils, are the target of the biofuel industry, although the newest technologies use also cellulose as raw material to produce fuels. Cassava (Manihot esculenta) is widely grown in the tropics and constitutes a staple food for approximately 10% of the world population. The high starch content of its storage roots, together with the use of conventional and non-conventional breeding turn this crop into an option to obtain better adapted varieties for ethanol production. This manuscript reviews the current state of biofuels worldwide and at the national level,and discusses the benefits and challenges faced in terms of effect on the environment and the human food chain. Finally, it discusses the potential of cassava as a source of raw material for obtaining biofuels in Colombia.

  3. A roadmap for biofuels...

    NARCIS (Netherlands)

    Faaij, A.P.C.; Londo, H.M.

    2009-01-01

    Biofuels have been in the eye of the storm, in particular since 2008, when the food crisis was considered by many to be caused by the increased production of biofuels. Heavy criticism in public media made various governments, including the European Commission, reconsider their targets and ambitions

  4. Biofuels for sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, S.

    2000-05-23

    Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

  5. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  6. Recent Inventions and Trends in Algal Biofuels Research.

    Science.gov (United States)

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  7. A spatial modeling framework to evaluate domestic biofuel-induced potential land use changed and emissions

    Science.gov (United States)

    Elliot, Joshua; Sharma, Bhavna; Best, Neil; Glotter, Michael; Dunn, Jennifer B.; Foster, Ian; Miguez, Fernando; Mueller, Steffen; Wang, Michael

    2014-01-01

    We present a novel bottom-up approach to estimate biofuel-induced land-use change (LUC) and resulting CO2 emissions in the U.S. from 2010 to 2022, based on a consistent methodology across four essential components: land availability, land suitability, LUC decision-making, and induced CO2 emissions. Using highresolution geospatial data and modeling, we construct probabilistic assessments of county-, state-, and national-level LUC and emissions for macroeconomic scenarios. We use the Cropland Data Layer and the Protected Areas Database to characterize availability of land for biofuel crop cultivation, and the CERES-Maize and BioCro biophysical crop growth models to estimate the suitability (yield potential) of available lands for biofuel crops. For LUC decisionmaking, we use a county-level stochastic partial-equilibrium modeling framework and consider five scenarios involving annual ethanol production scaling to 15, 22, and 29 BG, respectively, in 2022, with corn providing feedstock for the first 15 BG and the remainder coming from one of two dedicated energy crops. Finally, we derive high-resolution above-ground carbon factors from the National Biomass and Carbon Data set to estimate emissions from each LUC pathway. Based on these inputs, we obtain estimates for average total LUC emissions of 6.1, 2.2, 1.0, 2.2, and 2.4 gCO2e/MJ for Corn-15 Billion gallons (BG), Miscanthus × giganteus (MxG)-7 BG, Switchgrass (SG)-7 BG, MxG-14 BG, and SG-14 BG scenarios, respectively.

  8. Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy

    International Nuclear Information System (INIS)

    Buratti, C.; Barbanera, M.; Fantozzi, F.

    2013-01-01

    Highlights: • GHG emissions of biomethane from energy crops cultivated in a central Italian farm were investigated. • Electricity consumption of the biogas plant was monitored. • Current scenario does not allow to achieve a GHG saving according to Renewable Energy Directive. • GHG emissions could be reduced by covering the storage tanks of digestate and installing a CHP plant. - Abstract: Biomethane from energy crops is a renewable energy carrier and therefore it potentially contributes to climate change mitigation. However, significant greenhouse gas (GHG) emissions resulting from cultivation and processing must be considered. Among those, the production and use of nitrogen fertilizers, the resulting nitrous oxide (N 2 O) emissions, the methane emissions from digestate storage and the energy consumption of the biogas plant are crucial factors. In the present paper an integrated life cycle assessment (LCA) of GHG emissions from biomethane production is carried out, taking into account own measurements and experience data from a modern biogas plant located in Umbria, Italy. The study is also focused on the electricity consumption of the biogas plant, assessing the specific absorption power of each machinery. The analysis is based on the methodology defined by the European Union Renewable Energy Directive 2009/28/EC (RED). The main result is that the biomethane chain exceeds the minimum value of GHG saving (35%) mainly due to the open storage of digestate. However by varying the system, using heat and electricity from a biogas CHP plant and covering digestate storage tank, a reduction of 68.9% could be obtained

  9. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling.

    Science.gov (United States)

    Quinn, Jason C; Davis, Ryan

    2015-05-01

    Microalgae biofuel production has been extensively evaluated through resource, economic and life cycle assessments. Resource assessments consistently identify land as non-limiting and highlight the need to consider siting based on combined geographical constraints of land and other critical resources such as water and carbon dioxide. Economic assessments report a selling cost of fuel that ranges between $1.64 and over $30 gal(-1) consistent with large variability reported in the life cycle literature, -75 to 534 gCO2-eq MJ(-1). Large drivers behind such variability stem from differences in productivity assumptions, pathway technologies, and system boundaries. Productivity represents foundational units in these assessments with current assumed yields in various assessments varying by a factor of 60. A review of the literature in these areas highlights the need for harmonized assessments such that direct comparisons of alternative processing technologies can be made on the metrics of resource requirements, economic feasibility, and environmental impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Biofuels in Central America, a real potential for commercial production

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O.L. (Regional Coordinator Energy and Environmental Partnership with Central America EEP (El Salvador))

    2007-07-01

    The purpose of this paper is to show the current capabilities of the Central American countries regarding the production of biofuels, and the real potential in increasing the volumes produced and the impacts that can be generated if a non sustainable policy is followed for achieving the targets of biofuel production. Due to the world oil price crisis, and the fact that Central American counties are fully dependant on oil imports (just Guatemala and Belize produce little amounts of oil), just to mention, in some countries the imports of oil is equivalent to the 40% of the total exports, the region started to look for massive production of biofuels, something that it is not new for us. The countries have started with programs for producing ethanol from sugar cane, because it is one of the most strongest industries in Central America and they have all the infrastructure and financial sources to develop this project. The ethanol is a biofuel that can be mixed with gasoline or a complete substitute. Another biofuel that is currently under develop, is the production of biodiesel, and the main source for it nowadays is the Palm oil, where Costa Rica, Honduras and Guatemala have already commercial productions of crude palm oil, but the principal use of it is for the food industry, but now it is under assessment for using part of it for biodiesel. EEP is now developing pilot programs for production of biodiesel from a native plant named Jatropha curcas, and up to now we have a commercial plantation in Guatemala, and we started as well in Honduras for start spreading this plantations. In El Salvador we installed a pilot processing plant for biodiesel that can be operated with multiple feed stock, such as Jatropha, palm oil, castor oil, vegetable used oil and others. Currently we have interesting and good results regarding the production of Jatropha, we have developed a methodology for its cropping, harvesting and processing. All the vehicles and equipment involved in the

  11. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing.

    Science.gov (United States)

    Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel

    2012-08-01

    Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.

  12. Tools and methodologies to support more sustainable biofuel feedstock production.

    Science.gov (United States)

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  13. The role of biochemical engineering in the production of biofuels from microalgae.

    Science.gov (United States)

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Biofuel, land and water: maize, switchgrass or Miscanthus?

    International Nuclear Information System (INIS)

    Zhuang Qianlai; Qin Zhangcai; Chen Min

    2013-01-01

    The productive cellulosic crops switchgrass and Miscanthus are considered as viable biofuel sources. To meet the 2022 national biofuel target mandate, actions must be taken, e.g., maize cultivation must be intensified and expanded, and other biofuel crops (switchgrass and Miscanthus) must be cultivated. This raises questions on the use efficiencies of land and water; to date, the demand on these resources to meet the national biofuel target has rarely been analyzed. Here, we present a data-model assimilation analysis, assuming that maize, switchgrass and Miscanthus will be grown on currently available croplands in the US. Model simulations suggest that maize can produce 3.0–5.4 kiloliters (kl) of ethanol for every hectare of land, depending on the feedstock to ethanol conversion efficiency; Miscanthus has more than twice the biofuel production capacity relative to maize, and switchgrass is the least productive of the three potential sources of ethanol. To meet the biofuel target, about 26.5 million hectares of land and over 90 km 3 of water (of evapotranspiration) are needed if maize grain alone is used. If Miscanthus was substituted for maize, the process would save half of the land and one third of the water. With more advanced biofuel conversion technology for Miscanthus, only nine million hectares of land and 45 km 3 of water would probably meet the national target. Miscanthus could be a good alternative biofuel crop to maize due to its significantly lower demand for land and water on a per unit of ethanol basis. (letter)

  15. InfoDROUGHT: Technical reliability assessment using crop yield data at the Spanish-national level

    Science.gov (United States)

    Contreras, Sergio; Garcia-León, David; Hunink, Johannes E.

    2017-04-01

    Drought monitoring (DM) is a key component of risk-centered drought preparedness plans and drought policies. InfoDROUGHT (www.infosequia.es) is a a site- and user-tailored and fully-integrated DM system which combines functionalities for: a) the operational satellite-based weekly-1km tracking of severity and spatial extent of drought impacts, b) the interactive and faster query and delivery of drought information through a web-mapping service. InfoDROUGHT has a flexible and modular structure. The calibration (threshold definitions) and validation of the system is performed by combining expert knowledge and auxiliary impact assessments and datasets. Different technical solutions (basic or advanced versions) or deployment options (open-standard or restricted-authenticated) can be purchased by end-users and customers according to their needs. In this analysis, the technical reliability of InfoDROUGHT and its performance for detecting drought impacts on agriculture has been evaluated in the 2003-2014 period by exploring and quantifying the relationships among the drought severity indices reported by InfoDROUGHT and the annual yield anomalies observed for different rainfed crops (maize, wheat, barley) at Spain. We hypothesize a positive relationship between the crop anomalies and the drought severity level detected by InfoDROUGHT. Annual yield anomalies were computed at the province administrative level as the difference between the annual yield reported by the Spanish Annual Survey of Crop Acreages and Yields (ESYRCE database) and the mean annual yield estimated during the study period. Yield anomalies were finally compared against drought greenness-based and thermal-based drought indices (VCI and TCI, respectively) to check the coherence of the outputs and the hypothesis stated. InfoDROUGHT has been partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant, and by the H2020-EU project "Bridging the Gap for Innovations in

  16. DNA barcoding simplifies environmental risk assessment of genetically modified crops in biodiverse regions.

    Directory of Open Access Journals (Sweden)

    Chinyere V Nzeduru

    Full Text Available Transgenes encoding for insecticidal crystal (Cry proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs represents a major element of the Environmental Risk Assessments (ERAs used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins. Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored.

  17. Assessing genetically modified crops to minimize the risk of increased food allergy: a review.

    Science.gov (United States)

    Goodman, Richard E; Hefle, Susan L; Taylor, Steven L; van Ree, Ronald

    2005-06-01

    The first genetically modified (GM) crops approved for food use (tomato and soybean) were evaluated for safety by the United States Food and Drug Administration prior to commercial production. Among other factors, those products and all additional GM crops that have been grown commercially have been evaluated for potential increases in allergenic properties using methods that are consistent with the current understanding of food allergens and knowledge regarding the prediction of allergenic activity. Although there have been refinements, the key aspects of the evaluation have not changed. The allergenic properties of the gene donor and the host (recipient) organisms are considered in determining the appropriate testing strategy. The amino acid sequence of the encoded protein is compared to all known allergens to determine whether the protein is a known allergen or is sufficiently similar to any known allergen to indicate an increased probability of allergic cross-reactivity. Stability of the protein in the presence of acid with the stomach protease pepsin is tested as a risk factor for food allergenicity. In vitro or in vivo human IgE binding are tested when appropriate, if the gene donor is an allergen or the sequence of the protein is similar to an allergen. Serum donors and skin test subjects are selected based on their proven allergic responses to the gene donor or to material containing the allergen that was matched in sequence. While some scientists and regulators have suggested using animal models, performing broadly targeted serum IgE testing or extensive pre- or post-market clinical tests, current evidence does not support these tests as being predictive or practical. Based on the evidence to date, the current assessment process has worked well to prevent the unintended introduction of allergens in commercial GM crops.

  18. Center for Advanced Biofuel Systems (CABS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni M. [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  19. Potential emissions reduction in road transport sector using biofuel in developing countries

    Science.gov (United States)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  20. Application of GIS to assess rainfall variability impacts on crop yield ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... Geospatial analysis. GIS Interpolation and other geospatial Analysis techniques were carried out to ... means of Spatial Decision Support System (SDSS) to plan crops ... rainwater variability on water availability for crop maize ...

  1. Corn stover for advanced biofuels perspectives of a soil “Lorax”

    Science.gov (United States)

    Crop residues like corn (Zea Mays L) stover are potential feedstock for production of advanced biofuels (e.g., cellulosic ethanol). Utilization of residue like stover for biofuel feedstock may provide economic and greenhouse gas mitigation benefits; however, harvesting these materials must be done i...

  2. Bio-fuel co-products in France: perspectives and consequences for cattle food

    International Nuclear Information System (INIS)

    2010-01-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  3. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  4. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  5. The green, blue and grey water footprint of crops and derived crop products

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  6. Historical Perspective on How and Why Switchgrass was Seleced as a "Model" High-Potential Energy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2007-07-01

    Economic and environmental assessments by Oak Ridge National Laboratory’s Biofuels Feedstock Development Program staff together with the screening project results, and funding limitations lead to making the decision to further develop only switchgrass as a “model” or “prototype” species in about 1990. This paper describes the conditions under which the herbaceous species were screened, summarizes results from those trials, discusses the various factors which influenced the selection of switchgrass, and provides a brief evaluation of switchgrass with respect to criteria that should be considered when selecting and developing a crop for biofuels and bioproducts.

  7. The biofuels in France

    International Nuclear Information System (INIS)

    2006-04-01

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO 2 accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  8. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Wullschleger, Stan D [ORNL; Kline, Keith L [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL; Kang, Shujiang [ORNL

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  9. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  10. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  11. Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

    Directory of Open Access Journals (Sweden)

    Markus Millinger

    2018-03-01

    Full Text Available Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy.

  12. Fuel taxes and biofuel promotion: a complementary approach

    International Nuclear Information System (INIS)

    Santamaría, Marta; Azqueta, Diego

    2015-01-01

    Public support for renewable energy technologies is usually justified in terms of its contribution to reducing energy dependency; an improvement in environmental quality and a stimulation of economic activity and employment. In the case of biofuels, greenhouse gas emissions reduction has received significant attention. Nevertheless, nowadays there is a lively debate surrounding the convenience of biofuels. This is a consequence of the potentially negative impacts revealed from their production on a large scale. The aim of the present work is to analyses the potential contribution of biofuels to the main impact categories identified above. This paper tries to analyze the role of biofuel promotion in the context of fuel taxes. Based on the assessment of biofuels in Spain related to environmental damage and economic impacts, it shows that fuel taxes and biofuel promotion should be considered as complementary tools and treated accordingly. (full text)

  13. Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Li, Zhengpeng

    2012-01-01

    Biofuels are now an important resource in the United States because of the Energy Independence and Security Act of 2007. Both increased corn growth for ethanol production and perennial dedicated energy crop growth for cellulosic feedstocks are potential sources to meet the rising demand for biofuels. However, these measures may cause adverse environmental consequences that are not yet fully understood. This study 1) evaluates the long-term impacts of increased frequency of corn in the crop rotation system on water quantity and quality as well as soil fertility in the James River Basin and 2) identifies potential grasslands for cultivating bioenergy crops (e.g. switchgrass), estimating the water quality impacts. We selected the soil and water assessment tool, a physically based multidisciplinary model, as the modeling approach to simulate a series of biofuel production scenarios involving crop rotation and land cover changes. The model simulations with different crop rotation scenarios indicate that decreases in water yield and soil nitrate nitrogen (NO3-N) concentration along with an increase in NO3-N load to stream water could justify serious concerns regarding increased corn rotations in this basin. Simulations with land cover change scenarios helped us spatially classify the grasslands in terms of biomass productivity and nitrogen loads, and we further derived the relationship of biomass production targets and the resulting nitrogen loads against switchgrass planting acreages. The suggested economically efficient (planting acreage) and environmentally friendly (water quality) planting locations and acreages can be a valuable guide for cultivating switchgrass in this basin. This information, along with the projected environmental costs (i.e. reduced water yield and increased nitrogen load), can contribute to decision support tools for land managers to seek the sustainability of biofuel development in this region.

  14. An experimental assessment on the influence of high octane fuels on biofuel based dual fuel engine performance, emission, and combustion

    Directory of Open Access Journals (Sweden)

    Masimalai Senthilkumar

    2017-01-01

    Full Text Available This paper presents an experimental study on the effect of different high octane fuels (such as eucalyptus oil, ethanol, and methanol on engine’s performance behaviour of a biofuel based dual fuel engine. A single cylinder Diesel engine was modified and tested under dual fuel mode of operation. Initially the engine was run using neat diesel, neat mahua oil as fuels. In the second phase, the engine was operated in dual fuel mode by using a specially designed variable jet carburettor to supply the high octane fuels. Engine trials were made at 100% and 40% loads (power outputs with varying amounts of high octane fuels up-to the maximum possible limit. The performance and emission characteristics of the engine were obtained and analysed. Results indicated significant improvement in brake thermal efficiency simultaneous reduction in smoke and NO emissions in dual fuel operation with all the inducted fuels. At 100% load the brake thermal efficiency increased from 25.6% to a maximum of 32.3, 30.5, and 28.4%, respectively, with eucalyptus oil, ethanol, and methanol as primary fuels. Smoke was reduced drastically from 78% with neat mahua oil a minimum of 41, 48, and 53%, respectively, with eucalyptus oil, ethanol, and methanol at the maximum efficiency point. The optimal energy share for the best engine behaviour was found to be 44.6, 27.3, and 23.2%, respectively, for eucalyptus oil, ethanol, and methanol at 100% load. Among the primary fuels tested, eucalyptus oil showed the maximum brake thermal efficiency, minimum smoke and NO emissions and maximum energy replacement for the optimal operation of the engine.

  15. Beyond commonplace biofuels: Social aspects of ethanol

    International Nuclear Information System (INIS)

    Ribeiro, Barbara Esteves

    2013-01-01

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  16. Biosafety risk assessment approaches for insect-resistant genetically modified crops

    Directory of Open Access Journals (Sweden)

    Inaam Ullah

    2017-02-01

    Full Text Available Background: Environmental risk assessment (ERA is imperative for commercial release of insect resistant, genetically modified crops (IR-GMCs.An insect specific, spider venom peptideω-HXTX-Hv1a (Hvt was successfully expressed in cotton plants. The cotton plants producing Hvt protein have demonstrated resistance against economically important insect pest species. The study was performed to assess the effects of Hvt producing cotton plants on Honey bees (Apis mellifera. Methods: Three approaches were used to evaluate the effects of Hvt protein on adults of honeybees; whole plant assays in flight cages, in vitro assays with pollen of Hvt-cotton, and assays with elevated levels of purified Hvt protein. Pollens of Bt cotton or purified Bt proteins were used as control. Results: The field experiments did not yield any meaningful data due to high rate of mortality in all treatments including the control. However, the laboratory experiments provided conclusive results in which Hvt, purified or in pollens, did not affect the survival or longevity of the bees compared to the control. During the course of study we were able to compare the quality, effectiveness and economics of different experiments. Conclusions: We conclude that Hvt either purified or produced in cotton plants do not affect the survival or longevity of honey bees. We are also of the view that starting at laboratory level assays not only gives meaningful data but also saves a lot of time and money that can be spent on other important questions regarding safety of a particular transgenic crop. Hence, a purpose-based, tiered approach could be the best choice for pre-release ERA of IR-GMCs.

  17. Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils.

    Science.gov (United States)

    Sánchez, Virtudes; López-Bellido, Francisco Javier; Cañizares, Pablo; Rodríguez, Luis

    2017-10-01

    Pollution of soil and groundwater by atrazine has become an increasing environmental concern in the last decade. A phytoremediation test using plastic pots was conducted in order to assess the ability of several crops and grasses to remove atrazine from a soil of low permeability spiked with this herbicide. Four plant species were assessed for their ability to degrade or accumulate atrazine from soils: two grasses, i.e., ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea), and two crops, i.e., barley (Hordeum vulgare) and maize (Zea mays). Three different doses of atrazine were used for the contamination of the pots: 2, 5 and 10 mg kg -1 . 16 days after spiking, the initial amount of atrazine was reduced by 88.6-99.6% in planted pots, while a decrease of only 63.1-78.2% was found for the unplanted pots, thus showing the contribution of plants to soil decontamination. All the plant species were capable of accumulating atrazine and its N-dealkylated metabolites, i.e., deethylatrazine and deisopropylatrazine, in their tissues. Some toxic responses, such as biomass decreases and/or chlorosis, were observed in plants to a greater or lesser extent for initial soil doses of atrazine above 2 mg kg -1 . Maize was the plant species with the highest ability to accumulate atrazine derivatives, reaching up to 38.4% of the initial atrazine added to the soil. Rhizosphere degradation/mineralization by microorganisms or plant enzymes, together with degradation inside the plants, have been proposed as the mechanisms that contributed to a higher extent than plant accumulation to explain the removal of atrazine from soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biofuels - 5 disturbing questions

    International Nuclear Information System (INIS)

    Legalland, J.P.; Lemarchand, J.L.

    2008-01-01

    Initially considered as the supreme weapon against greenhouse gas emissions, biofuels are today hold responsible to all harms of the Earth: leap of agriculture products price, deforestation, food crisis. Considered some time ago as the perfect clean substitute to petroleum, biofuels are now suspected to have harmful effects on the environment. Should it be just an enormous technical, environmental and human swindle? Should we abandon immediately biofuels to protect the earth and fight the threatening again starvation? Should we wait for the second generation of efficient biofuels, made from non food-derived products and cultivation wastes? This book analyses this delicate debate through 5 main questions: do they starve the world? Are they a clean energy source? Do they contribute to deforestation? Are they economically practicable? Is the second generation ready? (J.S.)

  19. Market possibilities for biofuels

    International Nuclear Information System (INIS)

    Hektor, B.

    1992-01-01

    The market for biofuels in Sweden after introduction of a proposed CO 2 -tax on fossil fuels is forecast. The competition between biofuels, fossil fuels and electricity is described for important market segments such as: Paper industry, Sawmills, Other energy-intensive industry, Power and heat producers, small Heat producers, and for Space heating of one-family houses. A market increase of the use of biofuels is probable for the segment small (district) heating centrals, 10 TWh in the next ten year period and even more during a longer period. Other market segments will not be much affected. An increased use of biofuels in paper and pulp industry will not influence the fuel market, since the increase will happen in the industry's normal lumber purchase. (2 figs., 18 tabs.)